Merge tag 'for-linus-4.6-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / mtd / nand / fsmc_nand.c
1 /*
2 * drivers/mtd/nand/fsmc_nand.c
3 *
4 * ST Microelectronics
5 * Flexible Static Memory Controller (FSMC)
6 * Driver for NAND portions
7 *
8 * Copyright © 2010 ST Microelectronics
9 * Vipin Kumar <vipin.kumar@st.com>
10 * Ashish Priyadarshi
11 *
12 * Based on drivers/mtd/nand/nomadik_nand.c
13 *
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
17 */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/dmaengine.h>
22 #include <linux/dma-direction.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/resource.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/nand_ecc.h>
33 #include <linux/platform_device.h>
34 #include <linux/of.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/io.h>
37 #include <linux/slab.h>
38 #include <linux/mtd/fsmc.h>
39 #include <linux/amba/bus.h>
40 #include <mtd/mtd-abi.h>
41
42 static struct nand_ecclayout fsmc_ecc1_128_layout = {
43 .eccbytes = 24,
44 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
45 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
46 .oobfree = {
47 {.offset = 8, .length = 8},
48 {.offset = 24, .length = 8},
49 {.offset = 40, .length = 8},
50 {.offset = 56, .length = 8},
51 {.offset = 72, .length = 8},
52 {.offset = 88, .length = 8},
53 {.offset = 104, .length = 8},
54 {.offset = 120, .length = 8}
55 }
56 };
57
58 static struct nand_ecclayout fsmc_ecc1_64_layout = {
59 .eccbytes = 12,
60 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52},
61 .oobfree = {
62 {.offset = 8, .length = 8},
63 {.offset = 24, .length = 8},
64 {.offset = 40, .length = 8},
65 {.offset = 56, .length = 8},
66 }
67 };
68
69 static struct nand_ecclayout fsmc_ecc1_16_layout = {
70 .eccbytes = 3,
71 .eccpos = {2, 3, 4},
72 .oobfree = {
73 {.offset = 8, .length = 8},
74 }
75 };
76
77 /*
78 * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes
79 * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46
80 * bytes are free for use.
81 */
82 static struct nand_ecclayout fsmc_ecc4_256_layout = {
83 .eccbytes = 208,
84 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
85 9, 10, 11, 12, 13, 14,
86 18, 19, 20, 21, 22, 23, 24,
87 25, 26, 27, 28, 29, 30,
88 34, 35, 36, 37, 38, 39, 40,
89 41, 42, 43, 44, 45, 46,
90 50, 51, 52, 53, 54, 55, 56,
91 57, 58, 59, 60, 61, 62,
92 66, 67, 68, 69, 70, 71, 72,
93 73, 74, 75, 76, 77, 78,
94 82, 83, 84, 85, 86, 87, 88,
95 89, 90, 91, 92, 93, 94,
96 98, 99, 100, 101, 102, 103, 104,
97 105, 106, 107, 108, 109, 110,
98 114, 115, 116, 117, 118, 119, 120,
99 121, 122, 123, 124, 125, 126,
100 130, 131, 132, 133, 134, 135, 136,
101 137, 138, 139, 140, 141, 142,
102 146, 147, 148, 149, 150, 151, 152,
103 153, 154, 155, 156, 157, 158,
104 162, 163, 164, 165, 166, 167, 168,
105 169, 170, 171, 172, 173, 174,
106 178, 179, 180, 181, 182, 183, 184,
107 185, 186, 187, 188, 189, 190,
108 194, 195, 196, 197, 198, 199, 200,
109 201, 202, 203, 204, 205, 206,
110 210, 211, 212, 213, 214, 215, 216,
111 217, 218, 219, 220, 221, 222,
112 226, 227, 228, 229, 230, 231, 232,
113 233, 234, 235, 236, 237, 238,
114 242, 243, 244, 245, 246, 247, 248,
115 249, 250, 251, 252, 253, 254
116 },
117 .oobfree = {
118 {.offset = 15, .length = 3},
119 {.offset = 31, .length = 3},
120 {.offset = 47, .length = 3},
121 {.offset = 63, .length = 3},
122 {.offset = 79, .length = 3},
123 {.offset = 95, .length = 3},
124 {.offset = 111, .length = 3},
125 {.offset = 127, .length = 3},
126 {.offset = 143, .length = 3},
127 {.offset = 159, .length = 3},
128 {.offset = 175, .length = 3},
129 {.offset = 191, .length = 3},
130 {.offset = 207, .length = 3},
131 {.offset = 223, .length = 3},
132 {.offset = 239, .length = 3},
133 {.offset = 255, .length = 1}
134 }
135 };
136
137 /*
138 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
139 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
140 * bytes are free for use.
141 */
142 static struct nand_ecclayout fsmc_ecc4_224_layout = {
143 .eccbytes = 104,
144 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
145 9, 10, 11, 12, 13, 14,
146 18, 19, 20, 21, 22, 23, 24,
147 25, 26, 27, 28, 29, 30,
148 34, 35, 36, 37, 38, 39, 40,
149 41, 42, 43, 44, 45, 46,
150 50, 51, 52, 53, 54, 55, 56,
151 57, 58, 59, 60, 61, 62,
152 66, 67, 68, 69, 70, 71, 72,
153 73, 74, 75, 76, 77, 78,
154 82, 83, 84, 85, 86, 87, 88,
155 89, 90, 91, 92, 93, 94,
156 98, 99, 100, 101, 102, 103, 104,
157 105, 106, 107, 108, 109, 110,
158 114, 115, 116, 117, 118, 119, 120,
159 121, 122, 123, 124, 125, 126
160 },
161 .oobfree = {
162 {.offset = 15, .length = 3},
163 {.offset = 31, .length = 3},
164 {.offset = 47, .length = 3},
165 {.offset = 63, .length = 3},
166 {.offset = 79, .length = 3},
167 {.offset = 95, .length = 3},
168 {.offset = 111, .length = 3},
169 {.offset = 127, .length = 97}
170 }
171 };
172
173 /*
174 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes
175 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22
176 * bytes are free for use.
177 */
178 static struct nand_ecclayout fsmc_ecc4_128_layout = {
179 .eccbytes = 104,
180 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
181 9, 10, 11, 12, 13, 14,
182 18, 19, 20, 21, 22, 23, 24,
183 25, 26, 27, 28, 29, 30,
184 34, 35, 36, 37, 38, 39, 40,
185 41, 42, 43, 44, 45, 46,
186 50, 51, 52, 53, 54, 55, 56,
187 57, 58, 59, 60, 61, 62,
188 66, 67, 68, 69, 70, 71, 72,
189 73, 74, 75, 76, 77, 78,
190 82, 83, 84, 85, 86, 87, 88,
191 89, 90, 91, 92, 93, 94,
192 98, 99, 100, 101, 102, 103, 104,
193 105, 106, 107, 108, 109, 110,
194 114, 115, 116, 117, 118, 119, 120,
195 121, 122, 123, 124, 125, 126
196 },
197 .oobfree = {
198 {.offset = 15, .length = 3},
199 {.offset = 31, .length = 3},
200 {.offset = 47, .length = 3},
201 {.offset = 63, .length = 3},
202 {.offset = 79, .length = 3},
203 {.offset = 95, .length = 3},
204 {.offset = 111, .length = 3},
205 {.offset = 127, .length = 1}
206 }
207 };
208
209 /*
210 * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of
211 * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10
212 * bytes are free for use.
213 */
214 static struct nand_ecclayout fsmc_ecc4_64_layout = {
215 .eccbytes = 52,
216 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
217 9, 10, 11, 12, 13, 14,
218 18, 19, 20, 21, 22, 23, 24,
219 25, 26, 27, 28, 29, 30,
220 34, 35, 36, 37, 38, 39, 40,
221 41, 42, 43, 44, 45, 46,
222 50, 51, 52, 53, 54, 55, 56,
223 57, 58, 59, 60, 61, 62,
224 },
225 .oobfree = {
226 {.offset = 15, .length = 3},
227 {.offset = 31, .length = 3},
228 {.offset = 47, .length = 3},
229 {.offset = 63, .length = 1},
230 }
231 };
232
233 /*
234 * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of
235 * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One
236 * byte is free for use.
237 */
238 static struct nand_ecclayout fsmc_ecc4_16_layout = {
239 .eccbytes = 13,
240 .eccpos = { 0, 1, 2, 3, 6, 7, 8,
241 9, 10, 11, 12, 13, 14
242 },
243 .oobfree = {
244 {.offset = 15, .length = 1},
245 }
246 };
247
248 /*
249 * ECC placement definitions in oobfree type format.
250 * There are 13 bytes of ecc for every 512 byte block and it has to be read
251 * consecutively and immediately after the 512 byte data block for hardware to
252 * generate the error bit offsets in 512 byte data.
253 * Managing the ecc bytes in the following way makes it easier for software to
254 * read ecc bytes consecutive to data bytes. This way is similar to
255 * oobfree structure maintained already in generic nand driver
256 */
257 static struct fsmc_eccplace fsmc_ecc4_lp_place = {
258 .eccplace = {
259 {.offset = 2, .length = 13},
260 {.offset = 18, .length = 13},
261 {.offset = 34, .length = 13},
262 {.offset = 50, .length = 13},
263 {.offset = 66, .length = 13},
264 {.offset = 82, .length = 13},
265 {.offset = 98, .length = 13},
266 {.offset = 114, .length = 13}
267 }
268 };
269
270 static struct fsmc_eccplace fsmc_ecc4_sp_place = {
271 .eccplace = {
272 {.offset = 0, .length = 4},
273 {.offset = 6, .length = 9}
274 }
275 };
276
277 /**
278 * struct fsmc_nand_data - structure for FSMC NAND device state
279 *
280 * @pid: Part ID on the AMBA PrimeCell format
281 * @mtd: MTD info for a NAND flash.
282 * @nand: Chip related info for a NAND flash.
283 * @partitions: Partition info for a NAND Flash.
284 * @nr_partitions: Total number of partition of a NAND flash.
285 *
286 * @ecc_place: ECC placing locations in oobfree type format.
287 * @bank: Bank number for probed device.
288 * @clk: Clock structure for FSMC.
289 *
290 * @read_dma_chan: DMA channel for read access
291 * @write_dma_chan: DMA channel for write access to NAND
292 * @dma_access_complete: Completion structure
293 *
294 * @data_pa: NAND Physical port for Data.
295 * @data_va: NAND port for Data.
296 * @cmd_va: NAND port for Command.
297 * @addr_va: NAND port for Address.
298 * @regs_va: FSMC regs base address.
299 */
300 struct fsmc_nand_data {
301 u32 pid;
302 struct nand_chip nand;
303 struct mtd_partition *partitions;
304 unsigned int nr_partitions;
305
306 struct fsmc_eccplace *ecc_place;
307 unsigned int bank;
308 struct device *dev;
309 enum access_mode mode;
310 struct clk *clk;
311
312 /* DMA related objects */
313 struct dma_chan *read_dma_chan;
314 struct dma_chan *write_dma_chan;
315 struct completion dma_access_complete;
316
317 struct fsmc_nand_timings *dev_timings;
318
319 dma_addr_t data_pa;
320 void __iomem *data_va;
321 void __iomem *cmd_va;
322 void __iomem *addr_va;
323 void __iomem *regs_va;
324
325 void (*select_chip)(uint32_t bank, uint32_t busw);
326 };
327
328 static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
329 {
330 return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
331 }
332
333 /* Assert CS signal based on chipnr */
334 static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
335 {
336 struct nand_chip *chip = mtd_to_nand(mtd);
337 struct fsmc_nand_data *host;
338
339 host = mtd_to_fsmc(mtd);
340
341 switch (chipnr) {
342 case -1:
343 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
344 break;
345 case 0:
346 case 1:
347 case 2:
348 case 3:
349 if (host->select_chip)
350 host->select_chip(chipnr,
351 chip->options & NAND_BUSWIDTH_16);
352 break;
353
354 default:
355 dev_err(host->dev, "unsupported chip-select %d\n", chipnr);
356 }
357 }
358
359 /*
360 * fsmc_cmd_ctrl - For facilitaing Hardware access
361 * This routine allows hardware specific access to control-lines(ALE,CLE)
362 */
363 static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
364 {
365 struct nand_chip *this = mtd_to_nand(mtd);
366 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
367 void __iomem *regs = host->regs_va;
368 unsigned int bank = host->bank;
369
370 if (ctrl & NAND_CTRL_CHANGE) {
371 u32 pc;
372
373 if (ctrl & NAND_CLE) {
374 this->IO_ADDR_R = host->cmd_va;
375 this->IO_ADDR_W = host->cmd_va;
376 } else if (ctrl & NAND_ALE) {
377 this->IO_ADDR_R = host->addr_va;
378 this->IO_ADDR_W = host->addr_va;
379 } else {
380 this->IO_ADDR_R = host->data_va;
381 this->IO_ADDR_W = host->data_va;
382 }
383
384 pc = readl(FSMC_NAND_REG(regs, bank, PC));
385 if (ctrl & NAND_NCE)
386 pc |= FSMC_ENABLE;
387 else
388 pc &= ~FSMC_ENABLE;
389 writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
390 }
391
392 mb();
393
394 if (cmd != NAND_CMD_NONE)
395 writeb_relaxed(cmd, this->IO_ADDR_W);
396 }
397
398 /*
399 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
400 *
401 * This routine initializes timing parameters related to NAND memory access in
402 * FSMC registers
403 */
404 static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
405 uint32_t busw, struct fsmc_nand_timings *timings)
406 {
407 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
408 uint32_t tclr, tar, thiz, thold, twait, tset;
409 struct fsmc_nand_timings *tims;
410 struct fsmc_nand_timings default_timings = {
411 .tclr = FSMC_TCLR_1,
412 .tar = FSMC_TAR_1,
413 .thiz = FSMC_THIZ_1,
414 .thold = FSMC_THOLD_4,
415 .twait = FSMC_TWAIT_6,
416 .tset = FSMC_TSET_0,
417 };
418
419 if (timings)
420 tims = timings;
421 else
422 tims = &default_timings;
423
424 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
425 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
426 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
427 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
428 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
429 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
430
431 if (busw)
432 writel_relaxed(value | FSMC_DEVWID_16,
433 FSMC_NAND_REG(regs, bank, PC));
434 else
435 writel_relaxed(value | FSMC_DEVWID_8,
436 FSMC_NAND_REG(regs, bank, PC));
437
438 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
439 FSMC_NAND_REG(regs, bank, PC));
440 writel_relaxed(thiz | thold | twait | tset,
441 FSMC_NAND_REG(regs, bank, COMM));
442 writel_relaxed(thiz | thold | twait | tset,
443 FSMC_NAND_REG(regs, bank, ATTRIB));
444 }
445
446 /*
447 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
448 */
449 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
450 {
451 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
452 void __iomem *regs = host->regs_va;
453 uint32_t bank = host->bank;
454
455 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
456 FSMC_NAND_REG(regs, bank, PC));
457 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
458 FSMC_NAND_REG(regs, bank, PC));
459 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
460 FSMC_NAND_REG(regs, bank, PC));
461 }
462
463 /*
464 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
465 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
466 * max of 8-bits)
467 */
468 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
469 uint8_t *ecc)
470 {
471 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
472 void __iomem *regs = host->regs_va;
473 uint32_t bank = host->bank;
474 uint32_t ecc_tmp;
475 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
476
477 do {
478 if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
479 break;
480 else
481 cond_resched();
482 } while (!time_after_eq(jiffies, deadline));
483
484 if (time_after_eq(jiffies, deadline)) {
485 dev_err(host->dev, "calculate ecc timed out\n");
486 return -ETIMEDOUT;
487 }
488
489 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
490 ecc[0] = (uint8_t) (ecc_tmp >> 0);
491 ecc[1] = (uint8_t) (ecc_tmp >> 8);
492 ecc[2] = (uint8_t) (ecc_tmp >> 16);
493 ecc[3] = (uint8_t) (ecc_tmp >> 24);
494
495 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
496 ecc[4] = (uint8_t) (ecc_tmp >> 0);
497 ecc[5] = (uint8_t) (ecc_tmp >> 8);
498 ecc[6] = (uint8_t) (ecc_tmp >> 16);
499 ecc[7] = (uint8_t) (ecc_tmp >> 24);
500
501 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
502 ecc[8] = (uint8_t) (ecc_tmp >> 0);
503 ecc[9] = (uint8_t) (ecc_tmp >> 8);
504 ecc[10] = (uint8_t) (ecc_tmp >> 16);
505 ecc[11] = (uint8_t) (ecc_tmp >> 24);
506
507 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
508 ecc[12] = (uint8_t) (ecc_tmp >> 16);
509
510 return 0;
511 }
512
513 /*
514 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
515 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
516 * max of 1-bit)
517 */
518 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
519 uint8_t *ecc)
520 {
521 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
522 void __iomem *regs = host->regs_va;
523 uint32_t bank = host->bank;
524 uint32_t ecc_tmp;
525
526 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
527 ecc[0] = (uint8_t) (ecc_tmp >> 0);
528 ecc[1] = (uint8_t) (ecc_tmp >> 8);
529 ecc[2] = (uint8_t) (ecc_tmp >> 16);
530
531 return 0;
532 }
533
534 /* Count the number of 0's in buff upto a max of max_bits */
535 static int count_written_bits(uint8_t *buff, int size, int max_bits)
536 {
537 int k, written_bits = 0;
538
539 for (k = 0; k < size; k++) {
540 written_bits += hweight8(~buff[k]);
541 if (written_bits > max_bits)
542 break;
543 }
544
545 return written_bits;
546 }
547
548 static void dma_complete(void *param)
549 {
550 struct fsmc_nand_data *host = param;
551
552 complete(&host->dma_access_complete);
553 }
554
555 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
556 enum dma_data_direction direction)
557 {
558 struct dma_chan *chan;
559 struct dma_device *dma_dev;
560 struct dma_async_tx_descriptor *tx;
561 dma_addr_t dma_dst, dma_src, dma_addr;
562 dma_cookie_t cookie;
563 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
564 int ret;
565 unsigned long time_left;
566
567 if (direction == DMA_TO_DEVICE)
568 chan = host->write_dma_chan;
569 else if (direction == DMA_FROM_DEVICE)
570 chan = host->read_dma_chan;
571 else
572 return -EINVAL;
573
574 dma_dev = chan->device;
575 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
576
577 if (direction == DMA_TO_DEVICE) {
578 dma_src = dma_addr;
579 dma_dst = host->data_pa;
580 } else {
581 dma_src = host->data_pa;
582 dma_dst = dma_addr;
583 }
584
585 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
586 len, flags);
587 if (!tx) {
588 dev_err(host->dev, "device_prep_dma_memcpy error\n");
589 ret = -EIO;
590 goto unmap_dma;
591 }
592
593 tx->callback = dma_complete;
594 tx->callback_param = host;
595 cookie = tx->tx_submit(tx);
596
597 ret = dma_submit_error(cookie);
598 if (ret) {
599 dev_err(host->dev, "dma_submit_error %d\n", cookie);
600 goto unmap_dma;
601 }
602
603 dma_async_issue_pending(chan);
604
605 time_left =
606 wait_for_completion_timeout(&host->dma_access_complete,
607 msecs_to_jiffies(3000));
608 if (time_left == 0) {
609 dmaengine_terminate_all(chan);
610 dev_err(host->dev, "wait_for_completion_timeout\n");
611 ret = -ETIMEDOUT;
612 goto unmap_dma;
613 }
614
615 ret = 0;
616
617 unmap_dma:
618 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
619
620 return ret;
621 }
622
623 /*
624 * fsmc_write_buf - write buffer to chip
625 * @mtd: MTD device structure
626 * @buf: data buffer
627 * @len: number of bytes to write
628 */
629 static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
630 {
631 int i;
632 struct nand_chip *chip = mtd_to_nand(mtd);
633
634 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
635 IS_ALIGNED(len, sizeof(uint32_t))) {
636 uint32_t *p = (uint32_t *)buf;
637 len = len >> 2;
638 for (i = 0; i < len; i++)
639 writel_relaxed(p[i], chip->IO_ADDR_W);
640 } else {
641 for (i = 0; i < len; i++)
642 writeb_relaxed(buf[i], chip->IO_ADDR_W);
643 }
644 }
645
646 /*
647 * fsmc_read_buf - read chip data into buffer
648 * @mtd: MTD device structure
649 * @buf: buffer to store date
650 * @len: number of bytes to read
651 */
652 static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
653 {
654 int i;
655 struct nand_chip *chip = mtd_to_nand(mtd);
656
657 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
658 IS_ALIGNED(len, sizeof(uint32_t))) {
659 uint32_t *p = (uint32_t *)buf;
660 len = len >> 2;
661 for (i = 0; i < len; i++)
662 p[i] = readl_relaxed(chip->IO_ADDR_R);
663 } else {
664 for (i = 0; i < len; i++)
665 buf[i] = readb_relaxed(chip->IO_ADDR_R);
666 }
667 }
668
669 /*
670 * fsmc_read_buf_dma - read chip data into buffer
671 * @mtd: MTD device structure
672 * @buf: buffer to store date
673 * @len: number of bytes to read
674 */
675 static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
676 {
677 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
678
679 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
680 }
681
682 /*
683 * fsmc_write_buf_dma - write buffer to chip
684 * @mtd: MTD device structure
685 * @buf: data buffer
686 * @len: number of bytes to write
687 */
688 static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
689 int len)
690 {
691 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
692
693 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
694 }
695
696 /*
697 * fsmc_read_page_hwecc
698 * @mtd: mtd info structure
699 * @chip: nand chip info structure
700 * @buf: buffer to store read data
701 * @oob_required: caller expects OOB data read to chip->oob_poi
702 * @page: page number to read
703 *
704 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
705 * performed in a strict sequence as follows:
706 * data(512 byte) -> ecc(13 byte)
707 * After this read, fsmc hardware generates and reports error data bits(up to a
708 * max of 8 bits)
709 */
710 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
711 uint8_t *buf, int oob_required, int page)
712 {
713 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
714 struct fsmc_eccplace *ecc_place = host->ecc_place;
715 int i, j, s, stat, eccsize = chip->ecc.size;
716 int eccbytes = chip->ecc.bytes;
717 int eccsteps = chip->ecc.steps;
718 uint8_t *p = buf;
719 uint8_t *ecc_calc = chip->buffers->ecccalc;
720 uint8_t *ecc_code = chip->buffers->ecccode;
721 int off, len, group = 0;
722 /*
723 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
724 * end up reading 14 bytes (7 words) from oob. The local array is
725 * to maintain word alignment
726 */
727 uint16_t ecc_oob[7];
728 uint8_t *oob = (uint8_t *)&ecc_oob[0];
729 unsigned int max_bitflips = 0;
730
731 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
732 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
733 chip->ecc.hwctl(mtd, NAND_ECC_READ);
734 chip->read_buf(mtd, p, eccsize);
735
736 for (j = 0; j < eccbytes;) {
737 off = ecc_place->eccplace[group].offset;
738 len = ecc_place->eccplace[group].length;
739 group++;
740
741 /*
742 * length is intentionally kept a higher multiple of 2
743 * to read at least 13 bytes even in case of 16 bit NAND
744 * devices
745 */
746 if (chip->options & NAND_BUSWIDTH_16)
747 len = roundup(len, 2);
748
749 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
750 chip->read_buf(mtd, oob + j, len);
751 j += len;
752 }
753
754 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
755 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
756
757 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
758 if (stat < 0) {
759 mtd->ecc_stats.failed++;
760 } else {
761 mtd->ecc_stats.corrected += stat;
762 max_bitflips = max_t(unsigned int, max_bitflips, stat);
763 }
764 }
765
766 return max_bitflips;
767 }
768
769 /*
770 * fsmc_bch8_correct_data
771 * @mtd: mtd info structure
772 * @dat: buffer of read data
773 * @read_ecc: ecc read from device spare area
774 * @calc_ecc: ecc calculated from read data
775 *
776 * calc_ecc is a 104 bit information containing maximum of 8 error
777 * offset informations of 13 bits each in 512 bytes of read data.
778 */
779 static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
780 uint8_t *read_ecc, uint8_t *calc_ecc)
781 {
782 struct nand_chip *chip = mtd_to_nand(mtd);
783 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
784 void __iomem *regs = host->regs_va;
785 unsigned int bank = host->bank;
786 uint32_t err_idx[8];
787 uint32_t num_err, i;
788 uint32_t ecc1, ecc2, ecc3, ecc4;
789
790 num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
791
792 /* no bit flipping */
793 if (likely(num_err == 0))
794 return 0;
795
796 /* too many errors */
797 if (unlikely(num_err > 8)) {
798 /*
799 * This is a temporary erase check. A newly erased page read
800 * would result in an ecc error because the oob data is also
801 * erased to FF and the calculated ecc for an FF data is not
802 * FF..FF.
803 * This is a workaround to skip performing correction in case
804 * data is FF..FF
805 *
806 * Logic:
807 * For every page, each bit written as 0 is counted until these
808 * number of bits are greater than 8 (the maximum correction
809 * capability of FSMC for each 512 + 13 bytes)
810 */
811
812 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
813 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
814
815 if ((bits_ecc + bits_data) <= 8) {
816 if (bits_data)
817 memset(dat, 0xff, chip->ecc.size);
818 return bits_data;
819 }
820
821 return -EBADMSG;
822 }
823
824 /*
825 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
826 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
827 *
828 * calc_ecc is a 104 bit information containing maximum of 8 error
829 * offset informations of 13 bits each. calc_ecc is copied into a
830 * uint64_t array and error offset indexes are populated in err_idx
831 * array
832 */
833 ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
834 ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
835 ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
836 ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
837
838 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
839 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
840 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
841 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
842 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
843 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
844 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
845 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
846
847 i = 0;
848 while (num_err--) {
849 change_bit(0, (unsigned long *)&err_idx[i]);
850 change_bit(1, (unsigned long *)&err_idx[i]);
851
852 if (err_idx[i] < chip->ecc.size * 8) {
853 change_bit(err_idx[i], (unsigned long *)dat);
854 i++;
855 }
856 }
857 return i;
858 }
859
860 static bool filter(struct dma_chan *chan, void *slave)
861 {
862 chan->private = slave;
863 return true;
864 }
865
866 #ifdef CONFIG_OF
867 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
868 struct device_node *np)
869 {
870 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
871 u32 val;
872 int ret;
873
874 /* Set default NAND width to 8 bits */
875 pdata->width = 8;
876 if (!of_property_read_u32(np, "bank-width", &val)) {
877 if (val == 2) {
878 pdata->width = 16;
879 } else if (val != 1) {
880 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
881 return -EINVAL;
882 }
883 }
884 if (of_get_property(np, "nand-skip-bbtscan", NULL))
885 pdata->options = NAND_SKIP_BBTSCAN;
886
887 pdata->nand_timings = devm_kzalloc(&pdev->dev,
888 sizeof(*pdata->nand_timings), GFP_KERNEL);
889 if (!pdata->nand_timings)
890 return -ENOMEM;
891 ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
892 sizeof(*pdata->nand_timings));
893 if (ret) {
894 dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
895 pdata->nand_timings = NULL;
896 }
897
898 /* Set default NAND bank to 0 */
899 pdata->bank = 0;
900 if (!of_property_read_u32(np, "bank", &val)) {
901 if (val > 3) {
902 dev_err(&pdev->dev, "invalid bank %u\n", val);
903 return -EINVAL;
904 }
905 pdata->bank = val;
906 }
907 return 0;
908 }
909 #else
910 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
911 struct device_node *np)
912 {
913 return -ENOSYS;
914 }
915 #endif
916
917 /*
918 * fsmc_nand_probe - Probe function
919 * @pdev: platform device structure
920 */
921 static int __init fsmc_nand_probe(struct platform_device *pdev)
922 {
923 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
924 struct device_node __maybe_unused *np = pdev->dev.of_node;
925 struct fsmc_nand_data *host;
926 struct mtd_info *mtd;
927 struct nand_chip *nand;
928 struct resource *res;
929 dma_cap_mask_t mask;
930 int ret = 0;
931 u32 pid;
932 int i;
933
934 if (np) {
935 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
936 pdev->dev.platform_data = pdata;
937 ret = fsmc_nand_probe_config_dt(pdev, np);
938 if (ret) {
939 dev_err(&pdev->dev, "no platform data\n");
940 return -ENODEV;
941 }
942 }
943
944 if (!pdata) {
945 dev_err(&pdev->dev, "platform data is NULL\n");
946 return -EINVAL;
947 }
948
949 /* Allocate memory for the device structure (and zero it) */
950 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
951 if (!host)
952 return -ENOMEM;
953
954 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
955 host->data_va = devm_ioremap_resource(&pdev->dev, res);
956 if (IS_ERR(host->data_va))
957 return PTR_ERR(host->data_va);
958
959 host->data_pa = (dma_addr_t)res->start;
960
961 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
962 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
963 if (IS_ERR(host->addr_va))
964 return PTR_ERR(host->addr_va);
965
966 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
967 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
968 if (IS_ERR(host->cmd_va))
969 return PTR_ERR(host->cmd_va);
970
971 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
972 host->regs_va = devm_ioremap_resource(&pdev->dev, res);
973 if (IS_ERR(host->regs_va))
974 return PTR_ERR(host->regs_va);
975
976 host->clk = clk_get(&pdev->dev, NULL);
977 if (IS_ERR(host->clk)) {
978 dev_err(&pdev->dev, "failed to fetch block clock\n");
979 return PTR_ERR(host->clk);
980 }
981
982 ret = clk_prepare_enable(host->clk);
983 if (ret)
984 goto err_clk_prepare_enable;
985
986 /*
987 * This device ID is actually a common AMBA ID as used on the
988 * AMBA PrimeCell bus. However it is not a PrimeCell.
989 */
990 for (pid = 0, i = 0; i < 4; i++)
991 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
992 host->pid = pid;
993 dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
994 "revision %02x, config %02x\n",
995 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
996 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
997
998 host->bank = pdata->bank;
999 host->select_chip = pdata->select_bank;
1000 host->partitions = pdata->partitions;
1001 host->nr_partitions = pdata->nr_partitions;
1002 host->dev = &pdev->dev;
1003 host->dev_timings = pdata->nand_timings;
1004 host->mode = pdata->mode;
1005
1006 if (host->mode == USE_DMA_ACCESS)
1007 init_completion(&host->dma_access_complete);
1008
1009 /* Link all private pointers */
1010 mtd = nand_to_mtd(&host->nand);
1011 nand = &host->nand;
1012 nand_set_controller_data(nand, host);
1013 nand_set_flash_node(nand, np);
1014
1015 mtd->dev.parent = &pdev->dev;
1016 nand->IO_ADDR_R = host->data_va;
1017 nand->IO_ADDR_W = host->data_va;
1018 nand->cmd_ctrl = fsmc_cmd_ctrl;
1019 nand->chip_delay = 30;
1020
1021 /*
1022 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
1023 * can overwrite this value if the DT provides a different value.
1024 */
1025 nand->ecc.mode = NAND_ECC_HW;
1026 nand->ecc.hwctl = fsmc_enable_hwecc;
1027 nand->ecc.size = 512;
1028 nand->options = pdata->options;
1029 nand->select_chip = fsmc_select_chip;
1030 nand->badblockbits = 7;
1031 nand_set_flash_node(nand, np);
1032
1033 if (pdata->width == FSMC_NAND_BW16)
1034 nand->options |= NAND_BUSWIDTH_16;
1035
1036 switch (host->mode) {
1037 case USE_DMA_ACCESS:
1038 dma_cap_zero(mask);
1039 dma_cap_set(DMA_MEMCPY, mask);
1040 host->read_dma_chan = dma_request_channel(mask, filter,
1041 pdata->read_dma_priv);
1042 if (!host->read_dma_chan) {
1043 dev_err(&pdev->dev, "Unable to get read dma channel\n");
1044 goto err_req_read_chnl;
1045 }
1046 host->write_dma_chan = dma_request_channel(mask, filter,
1047 pdata->write_dma_priv);
1048 if (!host->write_dma_chan) {
1049 dev_err(&pdev->dev, "Unable to get write dma channel\n");
1050 goto err_req_write_chnl;
1051 }
1052 nand->read_buf = fsmc_read_buf_dma;
1053 nand->write_buf = fsmc_write_buf_dma;
1054 break;
1055
1056 default:
1057 case USE_WORD_ACCESS:
1058 nand->read_buf = fsmc_read_buf;
1059 nand->write_buf = fsmc_write_buf;
1060 break;
1061 }
1062
1063 fsmc_nand_setup(host->regs_va, host->bank,
1064 nand->options & NAND_BUSWIDTH_16,
1065 host->dev_timings);
1066
1067 if (AMBA_REV_BITS(host->pid) >= 8) {
1068 nand->ecc.read_page = fsmc_read_page_hwecc;
1069 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1070 nand->ecc.correct = fsmc_bch8_correct_data;
1071 nand->ecc.bytes = 13;
1072 nand->ecc.strength = 8;
1073 }
1074
1075 /*
1076 * Scan to find existence of the device
1077 */
1078 if (nand_scan_ident(mtd, 1, NULL)) {
1079 ret = -ENXIO;
1080 dev_err(&pdev->dev, "No NAND Device found!\n");
1081 goto err_scan_ident;
1082 }
1083
1084 if (AMBA_REV_BITS(host->pid) >= 8) {
1085 switch (mtd->oobsize) {
1086 case 16:
1087 nand->ecc.layout = &fsmc_ecc4_16_layout;
1088 host->ecc_place = &fsmc_ecc4_sp_place;
1089 break;
1090 case 64:
1091 nand->ecc.layout = &fsmc_ecc4_64_layout;
1092 host->ecc_place = &fsmc_ecc4_lp_place;
1093 break;
1094 case 128:
1095 nand->ecc.layout = &fsmc_ecc4_128_layout;
1096 host->ecc_place = &fsmc_ecc4_lp_place;
1097 break;
1098 case 224:
1099 nand->ecc.layout = &fsmc_ecc4_224_layout;
1100 host->ecc_place = &fsmc_ecc4_lp_place;
1101 break;
1102 case 256:
1103 nand->ecc.layout = &fsmc_ecc4_256_layout;
1104 host->ecc_place = &fsmc_ecc4_lp_place;
1105 break;
1106 default:
1107 dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1108 mtd->oobsize);
1109 ret = -EINVAL;
1110 goto err_probe;
1111 }
1112 } else {
1113 switch (nand->ecc.mode) {
1114 case NAND_ECC_HW:
1115 dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
1116 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1117 nand->ecc.correct = nand_correct_data;
1118 nand->ecc.bytes = 3;
1119 nand->ecc.strength = 1;
1120 break;
1121
1122 case NAND_ECC_SOFT_BCH:
1123 dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
1124 break;
1125
1126 default:
1127 dev_err(&pdev->dev, "Unsupported ECC mode!\n");
1128 goto err_probe;
1129 }
1130
1131 /*
1132 * Don't set layout for BCH4 SW ECC. This will be
1133 * generated later in nand_bch_init() later.
1134 */
1135 if (nand->ecc.mode != NAND_ECC_SOFT_BCH) {
1136 switch (mtd->oobsize) {
1137 case 16:
1138 nand->ecc.layout = &fsmc_ecc1_16_layout;
1139 break;
1140 case 64:
1141 nand->ecc.layout = &fsmc_ecc1_64_layout;
1142 break;
1143 case 128:
1144 nand->ecc.layout = &fsmc_ecc1_128_layout;
1145 break;
1146 default:
1147 dev_warn(&pdev->dev,
1148 "No oob scheme defined for oobsize %d\n",
1149 mtd->oobsize);
1150 ret = -EINVAL;
1151 goto err_probe;
1152 }
1153 }
1154 }
1155
1156 /* Second stage of scan to fill MTD data-structures */
1157 if (nand_scan_tail(mtd)) {
1158 ret = -ENXIO;
1159 goto err_probe;
1160 }
1161
1162 /*
1163 * The partition information can is accessed by (in the same precedence)
1164 *
1165 * command line through Bootloader,
1166 * platform data,
1167 * default partition information present in driver.
1168 */
1169 /*
1170 * Check for partition info passed
1171 */
1172 mtd->name = "nand";
1173 ret = mtd_device_register(mtd, host->partitions, host->nr_partitions);
1174 if (ret)
1175 goto err_probe;
1176
1177 platform_set_drvdata(pdev, host);
1178 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1179 return 0;
1180
1181 err_probe:
1182 err_scan_ident:
1183 if (host->mode == USE_DMA_ACCESS)
1184 dma_release_channel(host->write_dma_chan);
1185 err_req_write_chnl:
1186 if (host->mode == USE_DMA_ACCESS)
1187 dma_release_channel(host->read_dma_chan);
1188 err_req_read_chnl:
1189 clk_disable_unprepare(host->clk);
1190 err_clk_prepare_enable:
1191 clk_put(host->clk);
1192 return ret;
1193 }
1194
1195 /*
1196 * Clean up routine
1197 */
1198 static int fsmc_nand_remove(struct platform_device *pdev)
1199 {
1200 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1201
1202 if (host) {
1203 nand_release(nand_to_mtd(&host->nand));
1204
1205 if (host->mode == USE_DMA_ACCESS) {
1206 dma_release_channel(host->write_dma_chan);
1207 dma_release_channel(host->read_dma_chan);
1208 }
1209 clk_disable_unprepare(host->clk);
1210 clk_put(host->clk);
1211 }
1212
1213 return 0;
1214 }
1215
1216 #ifdef CONFIG_PM_SLEEP
1217 static int fsmc_nand_suspend(struct device *dev)
1218 {
1219 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1220 if (host)
1221 clk_disable_unprepare(host->clk);
1222 return 0;
1223 }
1224
1225 static int fsmc_nand_resume(struct device *dev)
1226 {
1227 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1228 if (host) {
1229 clk_prepare_enable(host->clk);
1230 fsmc_nand_setup(host->regs_va, host->bank,
1231 host->nand.options & NAND_BUSWIDTH_16,
1232 host->dev_timings);
1233 }
1234 return 0;
1235 }
1236 #endif
1237
1238 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1239
1240 #ifdef CONFIG_OF
1241 static const struct of_device_id fsmc_nand_id_table[] = {
1242 { .compatible = "st,spear600-fsmc-nand" },
1243 { .compatible = "stericsson,fsmc-nand" },
1244 {}
1245 };
1246 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1247 #endif
1248
1249 static struct platform_driver fsmc_nand_driver = {
1250 .remove = fsmc_nand_remove,
1251 .driver = {
1252 .name = "fsmc-nand",
1253 .of_match_table = of_match_ptr(fsmc_nand_id_table),
1254 .pm = &fsmc_nand_pm_ops,
1255 },
1256 };
1257
1258 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1259
1260 MODULE_LICENSE("GPL");
1261 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1262 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
This page took 0.075029 seconds and 5 git commands to generate.