Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[deliverable/linux.git] / drivers / mtd / nand / lpc32xx_mlc.c
1 /*
2 * Driver for NAND MLC Controller in LPC32xx
3 *
4 * Author: Roland Stigge <stigge@antcom.de>
5 *
6 * Copyright © 2011 WORK Microwave GmbH
7 * Copyright © 2011, 2012 Roland Stigge
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 *
20 * NAND Flash Controller Operation:
21 * - Read: Auto Decode
22 * - Write: Auto Encode
23 * - Tested Page Sizes: 2048, 4096
24 */
25
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/clk.h>
33 #include <linux/err.h>
34 #include <linux/delay.h>
35 #include <linux/completion.h>
36 #include <linux/interrupt.h>
37 #include <linux/of.h>
38 #include <linux/of_mtd.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mtd/lpc32xx_mlc.h>
41 #include <linux/io.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/dmaengine.h>
45 #include <linux/mtd/nand_ecc.h>
46
47 #define DRV_NAME "lpc32xx_mlc"
48
49 /**********************************************************************
50 * MLC NAND controller register offsets
51 **********************************************************************/
52
53 #define MLC_BUFF(x) (x + 0x00000)
54 #define MLC_DATA(x) (x + 0x08000)
55 #define MLC_CMD(x) (x + 0x10000)
56 #define MLC_ADDR(x) (x + 0x10004)
57 #define MLC_ECC_ENC_REG(x) (x + 0x10008)
58 #define MLC_ECC_DEC_REG(x) (x + 0x1000C)
59 #define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010)
60 #define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014)
61 #define MLC_RPR(x) (x + 0x10018)
62 #define MLC_WPR(x) (x + 0x1001C)
63 #define MLC_RUBP(x) (x + 0x10020)
64 #define MLC_ROBP(x) (x + 0x10024)
65 #define MLC_SW_WP_ADD_LOW(x) (x + 0x10028)
66 #define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C)
67 #define MLC_ICR(x) (x + 0x10030)
68 #define MLC_TIME_REG(x) (x + 0x10034)
69 #define MLC_IRQ_MR(x) (x + 0x10038)
70 #define MLC_IRQ_SR(x) (x + 0x1003C)
71 #define MLC_LOCK_PR(x) (x + 0x10044)
72 #define MLC_ISR(x) (x + 0x10048)
73 #define MLC_CEH(x) (x + 0x1004C)
74
75 /**********************************************************************
76 * MLC_CMD bit definitions
77 **********************************************************************/
78 #define MLCCMD_RESET 0xFF
79
80 /**********************************************************************
81 * MLC_ICR bit definitions
82 **********************************************************************/
83 #define MLCICR_WPROT (1 << 3)
84 #define MLCICR_LARGEBLOCK (1 << 2)
85 #define MLCICR_LONGADDR (1 << 1)
86 #define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */
87
88 /**********************************************************************
89 * MLC_TIME_REG bit definitions
90 **********************************************************************/
91 #define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24)
92 #define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19)
93 #define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16)
94 #define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12)
95 #define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8)
96 #define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4)
97 #define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0)
98
99 /**********************************************************************
100 * MLC_IRQ_MR and MLC_IRQ_SR bit definitions
101 **********************************************************************/
102 #define MLCIRQ_NAND_READY (1 << 5)
103 #define MLCIRQ_CONTROLLER_READY (1 << 4)
104 #define MLCIRQ_DECODE_FAILURE (1 << 3)
105 #define MLCIRQ_DECODE_ERROR (1 << 2)
106 #define MLCIRQ_ECC_READY (1 << 1)
107 #define MLCIRQ_WRPROT_FAULT (1 << 0)
108
109 /**********************************************************************
110 * MLC_LOCK_PR bit definitions
111 **********************************************************************/
112 #define MLCLOCKPR_MAGIC 0xA25E
113
114 /**********************************************************************
115 * MLC_ISR bit definitions
116 **********************************************************************/
117 #define MLCISR_DECODER_FAILURE (1 << 6)
118 #define MLCISR_ERRORS ((1 << 4) | (1 << 5))
119 #define MLCISR_ERRORS_DETECTED (1 << 3)
120 #define MLCISR_ECC_READY (1 << 2)
121 #define MLCISR_CONTROLLER_READY (1 << 1)
122 #define MLCISR_NAND_READY (1 << 0)
123
124 /**********************************************************************
125 * MLC_CEH bit definitions
126 **********************************************************************/
127 #define MLCCEH_NORMAL (1 << 0)
128
129 struct lpc32xx_nand_cfg_mlc {
130 uint32_t tcea_delay;
131 uint32_t busy_delay;
132 uint32_t nand_ta;
133 uint32_t rd_high;
134 uint32_t rd_low;
135 uint32_t wr_high;
136 uint32_t wr_low;
137 int wp_gpio;
138 struct mtd_partition *parts;
139 unsigned num_parts;
140 };
141
142 static struct nand_ecclayout lpc32xx_nand_oob = {
143 .eccbytes = 40,
144 .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
145 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
146 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
147 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
148 .oobfree = {
149 { .offset = 0,
150 .length = 6, },
151 { .offset = 16,
152 .length = 6, },
153 { .offset = 32,
154 .length = 6, },
155 { .offset = 48,
156 .length = 6, },
157 },
158 };
159
160 static struct nand_bbt_descr lpc32xx_nand_bbt = {
161 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
162 NAND_BBT_WRITE,
163 .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
164 };
165
166 static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
167 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
168 NAND_BBT_WRITE,
169 .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
170 };
171
172 struct lpc32xx_nand_host {
173 struct nand_chip nand_chip;
174 struct lpc32xx_mlc_platform_data *pdata;
175 struct clk *clk;
176 struct mtd_info mtd;
177 void __iomem *io_base;
178 int irq;
179 struct lpc32xx_nand_cfg_mlc *ncfg;
180 struct completion comp_nand;
181 struct completion comp_controller;
182 uint32_t llptr;
183 /*
184 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
185 */
186 dma_addr_t oob_buf_phy;
187 /*
188 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
189 */
190 uint8_t *oob_buf;
191 /* Physical address of DMA base address */
192 dma_addr_t io_base_phy;
193
194 struct completion comp_dma;
195 struct dma_chan *dma_chan;
196 struct dma_slave_config dma_slave_config;
197 struct scatterlist sgl;
198 uint8_t *dma_buf;
199 uint8_t *dummy_buf;
200 int mlcsubpages; /* number of 512bytes-subpages */
201 };
202
203 /*
204 * Activate/Deactivate DMA Operation:
205 *
206 * Using the PL080 DMA Controller for transferring the 512 byte subpages
207 * instead of doing readl() / writel() in a loop slows it down significantly.
208 * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
209 *
210 * - readl() of 128 x 32 bits in a loop: ~20us
211 * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
212 * - DMA read of 512 bytes (32 bit, no bursts): ~100us
213 *
214 * This applies to the transfer itself. In the DMA case: only the
215 * wait_for_completion() (DMA setup _not_ included).
216 *
217 * Note that the 512 bytes subpage transfer is done directly from/to a
218 * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
219 * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
220 * controller transferring data between its internal buffer to/from the NAND
221 * chip.)
222 *
223 * Therefore, using the PL080 DMA is disabled by default, for now.
224 *
225 */
226 static int use_dma;
227
228 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
229 {
230 uint32_t clkrate, tmp;
231
232 /* Reset MLC controller */
233 writel(MLCCMD_RESET, MLC_CMD(host->io_base));
234 udelay(1000);
235
236 /* Get base clock for MLC block */
237 clkrate = clk_get_rate(host->clk);
238 if (clkrate == 0)
239 clkrate = 104000000;
240
241 /* Unlock MLC_ICR
242 * (among others, will be locked again automatically) */
243 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
244
245 /* Configure MLC Controller: Large Block, 5 Byte Address */
246 tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
247 writel(tmp, MLC_ICR(host->io_base));
248
249 /* Unlock MLC_TIME_REG
250 * (among others, will be locked again automatically) */
251 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
252
253 /* Compute clock setup values, see LPC and NAND manual */
254 tmp = 0;
255 tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
256 tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
257 tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
258 tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
259 tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
260 tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
261 tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
262 writel(tmp, MLC_TIME_REG(host->io_base));
263
264 /* Enable IRQ for CONTROLLER_READY and NAND_READY */
265 writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
266 MLC_IRQ_MR(host->io_base));
267
268 /* Normal nCE operation: nCE controlled by controller */
269 writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
270 }
271
272 /*
273 * Hardware specific access to control lines
274 */
275 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
276 unsigned int ctrl)
277 {
278 struct nand_chip *nand_chip = mtd->priv;
279 struct lpc32xx_nand_host *host = nand_chip->priv;
280
281 if (cmd != NAND_CMD_NONE) {
282 if (ctrl & NAND_CLE)
283 writel(cmd, MLC_CMD(host->io_base));
284 else
285 writel(cmd, MLC_ADDR(host->io_base));
286 }
287 }
288
289 /*
290 * Read Device Ready (NAND device _and_ controller ready)
291 */
292 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
293 {
294 struct nand_chip *nand_chip = mtd->priv;
295 struct lpc32xx_nand_host *host = nand_chip->priv;
296
297 if ((readb(MLC_ISR(host->io_base)) &
298 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
299 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
300 return 1;
301
302 return 0;
303 }
304
305 static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
306 {
307 uint8_t sr;
308
309 /* Clear interrupt flag by reading status */
310 sr = readb(MLC_IRQ_SR(host->io_base));
311 if (sr & MLCIRQ_NAND_READY)
312 complete(&host->comp_nand);
313 if (sr & MLCIRQ_CONTROLLER_READY)
314 complete(&host->comp_controller);
315
316 return IRQ_HANDLED;
317 }
318
319 static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip)
320 {
321 struct lpc32xx_nand_host *host = chip->priv;
322
323 if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
324 goto exit;
325
326 wait_for_completion(&host->comp_nand);
327
328 while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
329 /* Seems to be delayed sometimes by controller */
330 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
331 cpu_relax();
332 }
333
334 exit:
335 return NAND_STATUS_READY;
336 }
337
338 static int lpc32xx_waitfunc_controller(struct mtd_info *mtd,
339 struct nand_chip *chip)
340 {
341 struct lpc32xx_nand_host *host = chip->priv;
342
343 if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
344 goto exit;
345
346 wait_for_completion(&host->comp_controller);
347
348 while (!(readb(MLC_ISR(host->io_base)) &
349 MLCISR_CONTROLLER_READY)) {
350 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
351 cpu_relax();
352 }
353
354 exit:
355 return NAND_STATUS_READY;
356 }
357
358 static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
359 {
360 lpc32xx_waitfunc_nand(mtd, chip);
361 lpc32xx_waitfunc_controller(mtd, chip);
362
363 return NAND_STATUS_READY;
364 }
365
366 /*
367 * Enable NAND write protect
368 */
369 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
370 {
371 if (gpio_is_valid(host->ncfg->wp_gpio))
372 gpio_set_value(host->ncfg->wp_gpio, 0);
373 }
374
375 /*
376 * Disable NAND write protect
377 */
378 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
379 {
380 if (gpio_is_valid(host->ncfg->wp_gpio))
381 gpio_set_value(host->ncfg->wp_gpio, 1);
382 }
383
384 static void lpc32xx_dma_complete_func(void *completion)
385 {
386 complete(completion);
387 }
388
389 static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
390 enum dma_transfer_direction dir)
391 {
392 struct nand_chip *chip = mtd->priv;
393 struct lpc32xx_nand_host *host = chip->priv;
394 struct dma_async_tx_descriptor *desc;
395 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
396 int res;
397
398 sg_init_one(&host->sgl, mem, len);
399
400 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
401 DMA_BIDIRECTIONAL);
402 if (res != 1) {
403 dev_err(mtd->dev.parent, "Failed to map sg list\n");
404 return -ENXIO;
405 }
406 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
407 flags);
408 if (!desc) {
409 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
410 goto out1;
411 }
412
413 init_completion(&host->comp_dma);
414 desc->callback = lpc32xx_dma_complete_func;
415 desc->callback_param = &host->comp_dma;
416
417 dmaengine_submit(desc);
418 dma_async_issue_pending(host->dma_chan);
419
420 wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
421
422 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
423 DMA_BIDIRECTIONAL);
424 return 0;
425 out1:
426 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
427 DMA_BIDIRECTIONAL);
428 return -ENXIO;
429 }
430
431 static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip,
432 uint8_t *buf, int oob_required, int page)
433 {
434 struct lpc32xx_nand_host *host = chip->priv;
435 int i, j;
436 uint8_t *oobbuf = chip->oob_poi;
437 uint32_t mlc_isr;
438 int res;
439 uint8_t *dma_buf;
440 bool dma_mapped;
441
442 if ((void *)buf <= high_memory) {
443 dma_buf = buf;
444 dma_mapped = true;
445 } else {
446 dma_buf = host->dma_buf;
447 dma_mapped = false;
448 }
449
450 /* Writing Command and Address */
451 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
452
453 /* For all sub-pages */
454 for (i = 0; i < host->mlcsubpages; i++) {
455 /* Start Auto Decode Command */
456 writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
457
458 /* Wait for Controller Ready */
459 lpc32xx_waitfunc_controller(mtd, chip);
460
461 /* Check ECC Error status */
462 mlc_isr = readl(MLC_ISR(host->io_base));
463 if (mlc_isr & MLCISR_DECODER_FAILURE) {
464 mtd->ecc_stats.failed++;
465 dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
466 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
467 mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
468 }
469
470 /* Read 512 + 16 Bytes */
471 if (use_dma) {
472 res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
473 DMA_DEV_TO_MEM);
474 if (res)
475 return res;
476 } else {
477 for (j = 0; j < (512 >> 2); j++) {
478 *((uint32_t *)(buf)) =
479 readl(MLC_BUFF(host->io_base));
480 buf += 4;
481 }
482 }
483 for (j = 0; j < (16 >> 2); j++) {
484 *((uint32_t *)(oobbuf)) =
485 readl(MLC_BUFF(host->io_base));
486 oobbuf += 4;
487 }
488 }
489
490 if (use_dma && !dma_mapped)
491 memcpy(buf, dma_buf, mtd->writesize);
492
493 return 0;
494 }
495
496 static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd,
497 struct nand_chip *chip,
498 const uint8_t *buf, int oob_required)
499 {
500 struct lpc32xx_nand_host *host = chip->priv;
501 const uint8_t *oobbuf = chip->oob_poi;
502 uint8_t *dma_buf = (uint8_t *)buf;
503 int res;
504 int i, j;
505
506 if (use_dma && (void *)buf >= high_memory) {
507 dma_buf = host->dma_buf;
508 memcpy(dma_buf, buf, mtd->writesize);
509 }
510
511 for (i = 0; i < host->mlcsubpages; i++) {
512 /* Start Encode */
513 writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
514
515 /* Write 512 + 6 Bytes to Buffer */
516 if (use_dma) {
517 res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
518 DMA_MEM_TO_DEV);
519 if (res)
520 return res;
521 } else {
522 for (j = 0; j < (512 >> 2); j++) {
523 writel(*((uint32_t *)(buf)),
524 MLC_BUFF(host->io_base));
525 buf += 4;
526 }
527 }
528 writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
529 oobbuf += 4;
530 writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
531 oobbuf += 12;
532
533 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
534 writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
535
536 /* Wait for Controller Ready */
537 lpc32xx_waitfunc_controller(mtd, chip);
538 }
539 return 0;
540 }
541
542 static int lpc32xx_write_page(struct mtd_info *mtd, struct nand_chip *chip,
543 const uint8_t *buf, int oob_required, int page,
544 int cached, int raw)
545 {
546 int res;
547
548 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
549 res = lpc32xx_write_page_lowlevel(mtd, chip, buf, oob_required);
550 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
551 lpc32xx_waitfunc(mtd, chip);
552
553 return res;
554 }
555
556 static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
557 int page)
558 {
559 struct lpc32xx_nand_host *host = chip->priv;
560
561 /* Read whole page - necessary with MLC controller! */
562 lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page);
563
564 return 0;
565 }
566
567 static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
568 int page)
569 {
570 /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
571 return 0;
572 }
573
574 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
575 static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode)
576 {
577 /* Always enabled! */
578 }
579
580 static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
581 {
582 struct mtd_info *mtd = &host->mtd;
583 dma_cap_mask_t mask;
584
585 if (!host->pdata || !host->pdata->dma_filter) {
586 dev_err(mtd->dev.parent, "no DMA platform data\n");
587 return -ENOENT;
588 }
589
590 dma_cap_zero(mask);
591 dma_cap_set(DMA_SLAVE, mask);
592 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
593 "nand-mlc");
594 if (!host->dma_chan) {
595 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
596 return -EBUSY;
597 }
598
599 /*
600 * Set direction to a sensible value even if the dmaengine driver
601 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
602 * driver criticizes it as "alien transfer direction".
603 */
604 host->dma_slave_config.direction = DMA_DEV_TO_MEM;
605 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
606 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
607 host->dma_slave_config.src_maxburst = 128;
608 host->dma_slave_config.dst_maxburst = 128;
609 /* DMA controller does flow control: */
610 host->dma_slave_config.device_fc = false;
611 host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
612 host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
613 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
614 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
615 goto out1;
616 }
617
618 return 0;
619 out1:
620 dma_release_channel(host->dma_chan);
621 return -ENXIO;
622 }
623
624 static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
625 {
626 struct lpc32xx_nand_cfg_mlc *ncfg;
627 struct device_node *np = dev->of_node;
628
629 ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
630 if (!ncfg) {
631 dev_err(dev, "could not allocate memory for platform data\n");
632 return NULL;
633 }
634
635 of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
636 of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
637 of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
638 of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
639 of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
640 of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
641 of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
642
643 if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
644 !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
645 !ncfg->wr_low) {
646 dev_err(dev, "chip parameters not specified correctly\n");
647 return NULL;
648 }
649
650 ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
651
652 return ncfg;
653 }
654
655 /*
656 * Probe for NAND controller
657 */
658 static int __devinit lpc32xx_nand_probe(struct platform_device *pdev)
659 {
660 struct lpc32xx_nand_host *host;
661 struct mtd_info *mtd;
662 struct nand_chip *nand_chip;
663 struct resource *rc;
664 int res;
665 struct mtd_part_parser_data ppdata = {};
666
667 /* Allocate memory for the device structure (and zero it) */
668 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
669 if (!host) {
670 dev_err(&pdev->dev, "failed to allocate device structure.\n");
671 return -ENOMEM;
672 }
673
674 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
675 if (rc == NULL) {
676 dev_err(&pdev->dev, "No memory resource found for device!\r\n");
677 return -ENXIO;
678 }
679
680 host->io_base = devm_request_and_ioremap(&pdev->dev, rc);
681 if (host->io_base == NULL) {
682 dev_err(&pdev->dev, "ioremap failed\n");
683 return -EIO;
684 }
685 host->io_base_phy = rc->start;
686
687 mtd = &host->mtd;
688 nand_chip = &host->nand_chip;
689 if (pdev->dev.of_node)
690 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
691 if (!host->ncfg) {
692 dev_err(&pdev->dev,
693 "Missing or bad NAND config from device tree\n");
694 return -ENOENT;
695 }
696 if (host->ncfg->wp_gpio == -EPROBE_DEFER)
697 return -EPROBE_DEFER;
698 if (gpio_is_valid(host->ncfg->wp_gpio) &&
699 gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
700 dev_err(&pdev->dev, "GPIO not available\n");
701 return -EBUSY;
702 }
703 lpc32xx_wp_disable(host);
704
705 host->pdata = pdev->dev.platform_data;
706
707 nand_chip->priv = host; /* link the private data structures */
708 mtd->priv = nand_chip;
709 mtd->owner = THIS_MODULE;
710 mtd->dev.parent = &pdev->dev;
711
712 /* Get NAND clock */
713 host->clk = clk_get(&pdev->dev, NULL);
714 if (IS_ERR(host->clk)) {
715 dev_err(&pdev->dev, "Clock initialization failure\n");
716 res = -ENOENT;
717 goto err_exit1;
718 }
719 clk_enable(host->clk);
720
721 nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
722 nand_chip->dev_ready = lpc32xx_nand_device_ready;
723 nand_chip->chip_delay = 25; /* us */
724 nand_chip->IO_ADDR_R = MLC_DATA(host->io_base);
725 nand_chip->IO_ADDR_W = MLC_DATA(host->io_base);
726
727 /* Init NAND controller */
728 lpc32xx_nand_setup(host);
729
730 platform_set_drvdata(pdev, host);
731
732 /* Initialize function pointers */
733 nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
734 nand_chip->ecc.read_page_raw = lpc32xx_read_page;
735 nand_chip->ecc.read_page = lpc32xx_read_page;
736 nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
737 nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
738 nand_chip->ecc.write_oob = lpc32xx_write_oob;
739 nand_chip->ecc.read_oob = lpc32xx_read_oob;
740 nand_chip->ecc.strength = 4;
741 nand_chip->write_page = lpc32xx_write_page;
742 nand_chip->waitfunc = lpc32xx_waitfunc;
743
744 nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
745 nand_chip->bbt_td = &lpc32xx_nand_bbt;
746 nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
747
748 /* bitflip_threshold's default is defined as ecc_strength anyway.
749 * Unfortunately, it is set only later at add_mtd_device(). Meanwhile
750 * being 0, it causes bad block table scanning errors in
751 * nand_scan_tail(), so preparing it here. */
752 mtd->bitflip_threshold = nand_chip->ecc.strength;
753
754 if (use_dma) {
755 res = lpc32xx_dma_setup(host);
756 if (res) {
757 res = -EIO;
758 goto err_exit2;
759 }
760 }
761
762 /*
763 * Scan to find existance of the device and
764 * Get the type of NAND device SMALL block or LARGE block
765 */
766 if (nand_scan_ident(mtd, 1, NULL)) {
767 res = -ENXIO;
768 goto err_exit3;
769 }
770
771 host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
772 if (!host->dma_buf) {
773 dev_err(&pdev->dev, "Error allocating dma_buf memory\n");
774 res = -ENOMEM;
775 goto err_exit3;
776 }
777
778 host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
779 if (!host->dummy_buf) {
780 dev_err(&pdev->dev, "Error allocating dummy_buf memory\n");
781 res = -ENOMEM;
782 goto err_exit3;
783 }
784
785 nand_chip->ecc.mode = NAND_ECC_HW;
786 nand_chip->ecc.size = mtd->writesize;
787 nand_chip->ecc.layout = &lpc32xx_nand_oob;
788 host->mlcsubpages = mtd->writesize / 512;
789
790 /* initially clear interrupt status */
791 readb(MLC_IRQ_SR(host->io_base));
792
793 init_completion(&host->comp_nand);
794 init_completion(&host->comp_controller);
795
796 host->irq = platform_get_irq(pdev, 0);
797 if ((host->irq < 0) || (host->irq >= NR_IRQS)) {
798 dev_err(&pdev->dev, "failed to get platform irq\n");
799 res = -EINVAL;
800 goto err_exit3;
801 }
802
803 if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
804 IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
805 dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
806 res = -ENXIO;
807 goto err_exit3;
808 }
809
810 /*
811 * Fills out all the uninitialized function pointers with the defaults
812 * And scans for a bad block table if appropriate.
813 */
814 if (nand_scan_tail(mtd)) {
815 res = -ENXIO;
816 goto err_exit4;
817 }
818
819 mtd->name = DRV_NAME;
820
821 ppdata.of_node = pdev->dev.of_node;
822 res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
823 host->ncfg->num_parts);
824 if (!res)
825 return res;
826
827 nand_release(mtd);
828
829 err_exit4:
830 free_irq(host->irq, host);
831 err_exit3:
832 if (use_dma)
833 dma_release_channel(host->dma_chan);
834 err_exit2:
835 clk_disable(host->clk);
836 clk_put(host->clk);
837 platform_set_drvdata(pdev, NULL);
838 err_exit1:
839 lpc32xx_wp_enable(host);
840 gpio_free(host->ncfg->wp_gpio);
841
842 return res;
843 }
844
845 /*
846 * Remove NAND device
847 */
848 static int __devexit lpc32xx_nand_remove(struct platform_device *pdev)
849 {
850 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
851 struct mtd_info *mtd = &host->mtd;
852
853 nand_release(mtd);
854 free_irq(host->irq, host);
855 if (use_dma)
856 dma_release_channel(host->dma_chan);
857
858 clk_disable(host->clk);
859 clk_put(host->clk);
860 platform_set_drvdata(pdev, NULL);
861
862 lpc32xx_wp_enable(host);
863 gpio_free(host->ncfg->wp_gpio);
864
865 return 0;
866 }
867
868 #ifdef CONFIG_PM
869 static int lpc32xx_nand_resume(struct platform_device *pdev)
870 {
871 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
872
873 /* Re-enable NAND clock */
874 clk_enable(host->clk);
875
876 /* Fresh init of NAND controller */
877 lpc32xx_nand_setup(host);
878
879 /* Disable write protect */
880 lpc32xx_wp_disable(host);
881
882 return 0;
883 }
884
885 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
886 {
887 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
888
889 /* Enable write protect for safety */
890 lpc32xx_wp_enable(host);
891
892 /* Disable clock */
893 clk_disable(host->clk);
894 return 0;
895 }
896
897 #else
898 #define lpc32xx_nand_resume NULL
899 #define lpc32xx_nand_suspend NULL
900 #endif
901
902 static const struct of_device_id lpc32xx_nand_match[] = {
903 { .compatible = "nxp,lpc3220-mlc" },
904 { /* sentinel */ },
905 };
906 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
907
908 static struct platform_driver lpc32xx_nand_driver = {
909 .probe = lpc32xx_nand_probe,
910 .remove = __devexit_p(lpc32xx_nand_remove),
911 .resume = lpc32xx_nand_resume,
912 .suspend = lpc32xx_nand_suspend,
913 .driver = {
914 .name = DRV_NAME,
915 .owner = THIS_MODULE,
916 .of_match_table = of_match_ptr(lpc32xx_nand_match),
917 },
918 };
919
920 module_platform_driver(lpc32xx_nand_driver);
921
922 MODULE_LICENSE("GPL");
923 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
924 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");
This page took 0.05432 seconds and 5 git commands to generate.