mtd: nand: make use of nand_set/get_controller_data() helpers
[deliverable/linux.git] / drivers / mtd / nand / lpc32xx_slc.c
1 /*
2 * NXP LPC32XX NAND SLC driver
3 *
4 * Authors:
5 * Kevin Wells <kevin.wells@nxp.com>
6 * Roland Stigge <stigge@antcom.de>
7 *
8 * Copyright © 2011 NXP Semiconductors
9 * Copyright © 2012 Roland Stigge
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 */
21
22 #include <linux/slab.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/nand.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/clk.h>
29 #include <linux/err.h>
30 #include <linux/delay.h>
31 #include <linux/io.h>
32 #include <linux/mm.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmaengine.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/gpio.h>
37 #include <linux/of.h>
38 #include <linux/of_mtd.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mtd/lpc32xx_slc.h>
41
42 #define LPC32XX_MODNAME "lpc32xx-nand"
43
44 /**********************************************************************
45 * SLC NAND controller register offsets
46 **********************************************************************/
47
48 #define SLC_DATA(x) (x + 0x000)
49 #define SLC_ADDR(x) (x + 0x004)
50 #define SLC_CMD(x) (x + 0x008)
51 #define SLC_STOP(x) (x + 0x00C)
52 #define SLC_CTRL(x) (x + 0x010)
53 #define SLC_CFG(x) (x + 0x014)
54 #define SLC_STAT(x) (x + 0x018)
55 #define SLC_INT_STAT(x) (x + 0x01C)
56 #define SLC_IEN(x) (x + 0x020)
57 #define SLC_ISR(x) (x + 0x024)
58 #define SLC_ICR(x) (x + 0x028)
59 #define SLC_TAC(x) (x + 0x02C)
60 #define SLC_TC(x) (x + 0x030)
61 #define SLC_ECC(x) (x + 0x034)
62 #define SLC_DMA_DATA(x) (x + 0x038)
63
64 /**********************************************************************
65 * slc_ctrl register definitions
66 **********************************************************************/
67 #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
68 #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
69 #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
70
71 /**********************************************************************
72 * slc_cfg register definitions
73 **********************************************************************/
74 #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
75 #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
76 #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
77 #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
78 #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
79 #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
80
81 /**********************************************************************
82 * slc_stat register definitions
83 **********************************************************************/
84 #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
85 #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
86 #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
87
88 /**********************************************************************
89 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
90 **********************************************************************/
91 #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
92 #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
93
94 /**********************************************************************
95 * slc_tac register definitions
96 **********************************************************************/
97 /* Computation of clock cycles on basis of controller and device clock rates */
98 #define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
99
100 /* Clock setting for RDY write sample wait time in 2*n clocks */
101 #define SLCTAC_WDR(n) (((n) & 0xF) << 28)
102 /* Write pulse width in clock cycles, 1 to 16 clocks */
103 #define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24))
104 /* Write hold time of control and data signals, 1 to 16 clocks */
105 #define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20))
106 /* Write setup time of control and data signals, 1 to 16 clocks */
107 #define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16))
108 /* Clock setting for RDY read sample wait time in 2*n clocks */
109 #define SLCTAC_RDR(n) (((n) & 0xF) << 12)
110 /* Read pulse width in clock cycles, 1 to 16 clocks */
111 #define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8))
112 /* Read hold time of control and data signals, 1 to 16 clocks */
113 #define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4))
114 /* Read setup time of control and data signals, 1 to 16 clocks */
115 #define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0))
116
117 /**********************************************************************
118 * slc_ecc register definitions
119 **********************************************************************/
120 /* ECC line party fetch macro */
121 #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
122 #define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
123
124 /*
125 * DMA requires storage space for the DMA local buffer and the hardware ECC
126 * storage area. The DMA local buffer is only used if DMA mapping fails
127 * during runtime.
128 */
129 #define LPC32XX_DMA_DATA_SIZE 4096
130 #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
131
132 /* Number of bytes used for ECC stored in NAND per 256 bytes */
133 #define LPC32XX_SLC_DEV_ECC_BYTES 3
134
135 /*
136 * If the NAND base clock frequency can't be fetched, this frequency will be
137 * used instead as the base. This rate is used to setup the timing registers
138 * used for NAND accesses.
139 */
140 #define LPC32XX_DEF_BUS_RATE 133250000
141
142 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
143 #define LPC32XX_DMA_TIMEOUT 100
144
145 /*
146 * NAND ECC Layout for small page NAND devices
147 * Note: For large and huge page devices, the default layouts are used
148 */
149 static struct nand_ecclayout lpc32xx_nand_oob_16 = {
150 .eccbytes = 6,
151 .eccpos = {10, 11, 12, 13, 14, 15},
152 .oobfree = {
153 { .offset = 0, .length = 4 },
154 { .offset = 6, .length = 4 },
155 },
156 };
157
158 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
159 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
160
161 /*
162 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
163 * Note: Large page devices used the default layout
164 */
165 static struct nand_bbt_descr bbt_smallpage_main_descr = {
166 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
167 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
168 .offs = 0,
169 .len = 4,
170 .veroffs = 6,
171 .maxblocks = 4,
172 .pattern = bbt_pattern
173 };
174
175 static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
176 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
177 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
178 .offs = 0,
179 .len = 4,
180 .veroffs = 6,
181 .maxblocks = 4,
182 .pattern = mirror_pattern
183 };
184
185 /*
186 * NAND platform configuration structure
187 */
188 struct lpc32xx_nand_cfg_slc {
189 uint32_t wdr_clks;
190 uint32_t wwidth;
191 uint32_t whold;
192 uint32_t wsetup;
193 uint32_t rdr_clks;
194 uint32_t rwidth;
195 uint32_t rhold;
196 uint32_t rsetup;
197 bool use_bbt;
198 int wp_gpio;
199 struct mtd_partition *parts;
200 unsigned num_parts;
201 };
202
203 struct lpc32xx_nand_host {
204 struct nand_chip nand_chip;
205 struct lpc32xx_slc_platform_data *pdata;
206 struct clk *clk;
207 void __iomem *io_base;
208 struct lpc32xx_nand_cfg_slc *ncfg;
209
210 struct completion comp;
211 struct dma_chan *dma_chan;
212 uint32_t dma_buf_len;
213 struct dma_slave_config dma_slave_config;
214 struct scatterlist sgl;
215
216 /*
217 * DMA and CPU addresses of ECC work area and data buffer
218 */
219 uint32_t *ecc_buf;
220 uint8_t *data_buf;
221 dma_addr_t io_base_dma;
222 };
223
224 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
225 {
226 uint32_t clkrate, tmp;
227
228 /* Reset SLC controller */
229 writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
230 udelay(1000);
231
232 /* Basic setup */
233 writel(0, SLC_CFG(host->io_base));
234 writel(0, SLC_IEN(host->io_base));
235 writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
236 SLC_ICR(host->io_base));
237
238 /* Get base clock for SLC block */
239 clkrate = clk_get_rate(host->clk);
240 if (clkrate == 0)
241 clkrate = LPC32XX_DEF_BUS_RATE;
242
243 /* Compute clock setup values */
244 tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
245 SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
246 SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
247 SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
248 SLCTAC_RDR(host->ncfg->rdr_clks) |
249 SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
250 SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
251 SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
252 writel(tmp, SLC_TAC(host->io_base));
253 }
254
255 /*
256 * Hardware specific access to control lines
257 */
258 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
259 unsigned int ctrl)
260 {
261 uint32_t tmp;
262 struct nand_chip *chip = mtd_to_nand(mtd);
263 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
264
265 /* Does CE state need to be changed? */
266 tmp = readl(SLC_CFG(host->io_base));
267 if (ctrl & NAND_NCE)
268 tmp |= SLCCFG_CE_LOW;
269 else
270 tmp &= ~SLCCFG_CE_LOW;
271 writel(tmp, SLC_CFG(host->io_base));
272
273 if (cmd != NAND_CMD_NONE) {
274 if (ctrl & NAND_CLE)
275 writel(cmd, SLC_CMD(host->io_base));
276 else
277 writel(cmd, SLC_ADDR(host->io_base));
278 }
279 }
280
281 /*
282 * Read the Device Ready pin
283 */
284 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
285 {
286 struct nand_chip *chip = mtd_to_nand(mtd);
287 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
288 int rdy = 0;
289
290 if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
291 rdy = 1;
292
293 return rdy;
294 }
295
296 /*
297 * Enable NAND write protect
298 */
299 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
300 {
301 if (gpio_is_valid(host->ncfg->wp_gpio))
302 gpio_set_value(host->ncfg->wp_gpio, 0);
303 }
304
305 /*
306 * Disable NAND write protect
307 */
308 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
309 {
310 if (gpio_is_valid(host->ncfg->wp_gpio))
311 gpio_set_value(host->ncfg->wp_gpio, 1);
312 }
313
314 /*
315 * Prepares SLC for transfers with H/W ECC enabled
316 */
317 static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
318 {
319 /* Hardware ECC is enabled automatically in hardware as needed */
320 }
321
322 /*
323 * Calculates the ECC for the data
324 */
325 static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
326 const unsigned char *buf,
327 unsigned char *code)
328 {
329 /*
330 * ECC is calculated automatically in hardware during syndrome read
331 * and write operations, so it doesn't need to be calculated here.
332 */
333 return 0;
334 }
335
336 /*
337 * Read a single byte from NAND device
338 */
339 static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
340 {
341 struct nand_chip *chip = mtd_to_nand(mtd);
342 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
343
344 return (uint8_t)readl(SLC_DATA(host->io_base));
345 }
346
347 /*
348 * Simple device read without ECC
349 */
350 static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
351 {
352 struct nand_chip *chip = mtd_to_nand(mtd);
353 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
354
355 /* Direct device read with no ECC */
356 while (len-- > 0)
357 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
358 }
359
360 /*
361 * Simple device write without ECC
362 */
363 static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
364 {
365 struct nand_chip *chip = mtd_to_nand(mtd);
366 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
367
368 /* Direct device write with no ECC */
369 while (len-- > 0)
370 writel((uint32_t)*buf++, SLC_DATA(host->io_base));
371 }
372
373 /*
374 * Read the OOB data from the device without ECC using FIFO method
375 */
376 static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
377 struct nand_chip *chip, int page)
378 {
379 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
380 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
381
382 return 0;
383 }
384
385 /*
386 * Write the OOB data to the device without ECC using FIFO method
387 */
388 static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
389 struct nand_chip *chip, int page)
390 {
391 int status;
392
393 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
394 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
395
396 /* Send command to program the OOB data */
397 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
398
399 status = chip->waitfunc(mtd, chip);
400
401 return status & NAND_STATUS_FAIL ? -EIO : 0;
402 }
403
404 /*
405 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
406 */
407 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
408 {
409 int i;
410
411 for (i = 0; i < (count * 3); i += 3) {
412 uint32_t ce = ecc[i / 3];
413 ce = ~(ce << 2) & 0xFFFFFF;
414 spare[i + 2] = (uint8_t)(ce & 0xFF);
415 ce >>= 8;
416 spare[i + 1] = (uint8_t)(ce & 0xFF);
417 ce >>= 8;
418 spare[i] = (uint8_t)(ce & 0xFF);
419 }
420 }
421
422 static void lpc32xx_dma_complete_func(void *completion)
423 {
424 complete(completion);
425 }
426
427 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
428 void *mem, int len, enum dma_transfer_direction dir)
429 {
430 struct nand_chip *chip = mtd_to_nand(mtd);
431 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
432 struct dma_async_tx_descriptor *desc;
433 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
434 int res;
435
436 host->dma_slave_config.direction = dir;
437 host->dma_slave_config.src_addr = dma;
438 host->dma_slave_config.dst_addr = dma;
439 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
440 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
441 host->dma_slave_config.src_maxburst = 4;
442 host->dma_slave_config.dst_maxburst = 4;
443 /* DMA controller does flow control: */
444 host->dma_slave_config.device_fc = false;
445 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
446 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
447 return -ENXIO;
448 }
449
450 sg_init_one(&host->sgl, mem, len);
451
452 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
453 DMA_BIDIRECTIONAL);
454 if (res != 1) {
455 dev_err(mtd->dev.parent, "Failed to map sg list\n");
456 return -ENXIO;
457 }
458 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
459 flags);
460 if (!desc) {
461 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
462 goto out1;
463 }
464
465 init_completion(&host->comp);
466 desc->callback = lpc32xx_dma_complete_func;
467 desc->callback_param = &host->comp;
468
469 dmaengine_submit(desc);
470 dma_async_issue_pending(host->dma_chan);
471
472 wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
473
474 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
475 DMA_BIDIRECTIONAL);
476
477 return 0;
478 out1:
479 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
480 DMA_BIDIRECTIONAL);
481 return -ENXIO;
482 }
483
484 /*
485 * DMA read/write transfers with ECC support
486 */
487 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
488 int read)
489 {
490 struct nand_chip *chip = mtd_to_nand(mtd);
491 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
492 int i, status = 0;
493 unsigned long timeout;
494 int res;
495 enum dma_transfer_direction dir =
496 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
497 uint8_t *dma_buf;
498 bool dma_mapped;
499
500 if ((void *)buf <= high_memory) {
501 dma_buf = buf;
502 dma_mapped = true;
503 } else {
504 dma_buf = host->data_buf;
505 dma_mapped = false;
506 if (!read)
507 memcpy(host->data_buf, buf, mtd->writesize);
508 }
509
510 if (read) {
511 writel(readl(SLC_CFG(host->io_base)) |
512 SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
513 SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
514 } else {
515 writel((readl(SLC_CFG(host->io_base)) |
516 SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
517 ~SLCCFG_DMA_DIR,
518 SLC_CFG(host->io_base));
519 }
520
521 /* Clear initial ECC */
522 writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
523
524 /* Transfer size is data area only */
525 writel(mtd->writesize, SLC_TC(host->io_base));
526
527 /* Start transfer in the NAND controller */
528 writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
529 SLC_CTRL(host->io_base));
530
531 for (i = 0; i < chip->ecc.steps; i++) {
532 /* Data */
533 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
534 dma_buf + i * chip->ecc.size,
535 mtd->writesize / chip->ecc.steps, dir);
536 if (res)
537 return res;
538
539 /* Always _read_ ECC */
540 if (i == chip->ecc.steps - 1)
541 break;
542 if (!read) /* ECC availability delayed on write */
543 udelay(10);
544 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
545 &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
546 if (res)
547 return res;
548 }
549
550 /*
551 * According to NXP, the DMA can be finished here, but the NAND
552 * controller may still have buffered data. After porting to using the
553 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
554 * appears to be always true, according to tests. Keeping the check for
555 * safety reasons for now.
556 */
557 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
558 dev_warn(mtd->dev.parent, "FIFO not empty!\n");
559 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
560 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
561 time_before(jiffies, timeout))
562 cpu_relax();
563 if (!time_before(jiffies, timeout)) {
564 dev_err(mtd->dev.parent, "FIFO held data too long\n");
565 status = -EIO;
566 }
567 }
568
569 /* Read last calculated ECC value */
570 if (!read)
571 udelay(10);
572 host->ecc_buf[chip->ecc.steps - 1] =
573 readl(SLC_ECC(host->io_base));
574
575 /* Flush DMA */
576 dmaengine_terminate_all(host->dma_chan);
577
578 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
579 readl(SLC_TC(host->io_base))) {
580 /* Something is left in the FIFO, something is wrong */
581 dev_err(mtd->dev.parent, "DMA FIFO failure\n");
582 status = -EIO;
583 }
584
585 /* Stop DMA & HW ECC */
586 writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
587 SLC_CTRL(host->io_base));
588 writel(readl(SLC_CFG(host->io_base)) &
589 ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
590 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
591
592 if (!dma_mapped && read)
593 memcpy(buf, host->data_buf, mtd->writesize);
594
595 return status;
596 }
597
598 /*
599 * Read the data and OOB data from the device, use ECC correction with the
600 * data, disable ECC for the OOB data
601 */
602 static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
603 struct nand_chip *chip, uint8_t *buf,
604 int oob_required, int page)
605 {
606 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
607 int stat, i, status;
608 uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
609
610 /* Issue read command */
611 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
612
613 /* Read data and oob, calculate ECC */
614 status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
615
616 /* Get OOB data */
617 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
618
619 /* Convert to stored ECC format */
620 lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
621
622 /* Pointer to ECC data retrieved from NAND spare area */
623 oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];
624
625 for (i = 0; i < chip->ecc.steps; i++) {
626 stat = chip->ecc.correct(mtd, buf, oobecc,
627 &tmpecc[i * chip->ecc.bytes]);
628 if (stat < 0)
629 mtd->ecc_stats.failed++;
630 else
631 mtd->ecc_stats.corrected += stat;
632
633 buf += chip->ecc.size;
634 oobecc += chip->ecc.bytes;
635 }
636
637 return status;
638 }
639
640 /*
641 * Read the data and OOB data from the device, no ECC correction with the
642 * data or OOB data
643 */
644 static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
645 struct nand_chip *chip,
646 uint8_t *buf, int oob_required,
647 int page)
648 {
649 /* Issue read command */
650 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
651
652 /* Raw reads can just use the FIFO interface */
653 chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
654 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
655
656 return 0;
657 }
658
659 /*
660 * Write the data and OOB data to the device, use ECC with the data,
661 * disable ECC for the OOB data
662 */
663 static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
664 struct nand_chip *chip,
665 const uint8_t *buf,
666 int oob_required, int page)
667 {
668 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
669 uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
670 int error;
671
672 /* Write data, calculate ECC on outbound data */
673 error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
674 if (error)
675 return error;
676
677 /*
678 * The calculated ECC needs some manual work done to it before
679 * committing it to NAND. Process the calculated ECC and place
680 * the resultant values directly into the OOB buffer. */
681 lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
682
683 /* Write ECC data to device */
684 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
685 return 0;
686 }
687
688 /*
689 * Write the data and OOB data to the device, no ECC correction with the
690 * data or OOB data
691 */
692 static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
693 struct nand_chip *chip,
694 const uint8_t *buf,
695 int oob_required, int page)
696 {
697 /* Raw writes can just use the FIFO interface */
698 chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
699 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
700 return 0;
701 }
702
703 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
704 {
705 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
706 dma_cap_mask_t mask;
707
708 if (!host->pdata || !host->pdata->dma_filter) {
709 dev_err(mtd->dev.parent, "no DMA platform data\n");
710 return -ENOENT;
711 }
712
713 dma_cap_zero(mask);
714 dma_cap_set(DMA_SLAVE, mask);
715 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
716 "nand-slc");
717 if (!host->dma_chan) {
718 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
719 return -EBUSY;
720 }
721
722 return 0;
723 }
724
725 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
726 {
727 struct lpc32xx_nand_cfg_slc *ncfg;
728 struct device_node *np = dev->of_node;
729
730 ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
731 if (!ncfg)
732 return NULL;
733
734 of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
735 of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
736 of_property_read_u32(np, "nxp,whold", &ncfg->whold);
737 of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
738 of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
739 of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
740 of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
741 of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
742
743 if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
744 !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
745 !ncfg->rhold || !ncfg->rsetup) {
746 dev_err(dev, "chip parameters not specified correctly\n");
747 return NULL;
748 }
749
750 ncfg->use_bbt = of_get_nand_on_flash_bbt(np);
751 ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
752
753 return ncfg;
754 }
755
756 /*
757 * Probe for NAND controller
758 */
759 static int lpc32xx_nand_probe(struct platform_device *pdev)
760 {
761 struct lpc32xx_nand_host *host;
762 struct mtd_info *mtd;
763 struct nand_chip *chip;
764 struct resource *rc;
765 int res;
766
767 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
768 if (rc == NULL) {
769 dev_err(&pdev->dev, "No memory resource found for device\n");
770 return -EBUSY;
771 }
772
773 /* Allocate memory for the device structure (and zero it) */
774 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
775 if (!host)
776 return -ENOMEM;
777 host->io_base_dma = rc->start;
778
779 host->io_base = devm_ioremap_resource(&pdev->dev, rc);
780 if (IS_ERR(host->io_base))
781 return PTR_ERR(host->io_base);
782
783 if (pdev->dev.of_node)
784 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
785 if (!host->ncfg) {
786 dev_err(&pdev->dev,
787 "Missing or bad NAND config from device tree\n");
788 return -ENOENT;
789 }
790 if (host->ncfg->wp_gpio == -EPROBE_DEFER)
791 return -EPROBE_DEFER;
792 if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
793 host->ncfg->wp_gpio, "NAND WP")) {
794 dev_err(&pdev->dev, "GPIO not available\n");
795 return -EBUSY;
796 }
797 lpc32xx_wp_disable(host);
798
799 host->pdata = dev_get_platdata(&pdev->dev);
800
801 chip = &host->nand_chip;
802 mtd = nand_to_mtd(chip);
803 nand_set_controller_data(chip, host);
804 nand_set_flash_node(chip, pdev->dev.of_node);
805 mtd->owner = THIS_MODULE;
806 mtd->dev.parent = &pdev->dev;
807
808 /* Get NAND clock */
809 host->clk = devm_clk_get(&pdev->dev, NULL);
810 if (IS_ERR(host->clk)) {
811 dev_err(&pdev->dev, "Clock failure\n");
812 res = -ENOENT;
813 goto err_exit1;
814 }
815 clk_prepare_enable(host->clk);
816
817 /* Set NAND IO addresses and command/ready functions */
818 chip->IO_ADDR_R = SLC_DATA(host->io_base);
819 chip->IO_ADDR_W = SLC_DATA(host->io_base);
820 chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
821 chip->dev_ready = lpc32xx_nand_device_ready;
822 chip->chip_delay = 20; /* 20us command delay time */
823
824 /* Init NAND controller */
825 lpc32xx_nand_setup(host);
826
827 platform_set_drvdata(pdev, host);
828
829 /* NAND callbacks for LPC32xx SLC hardware */
830 chip->ecc.mode = NAND_ECC_HW_SYNDROME;
831 chip->read_byte = lpc32xx_nand_read_byte;
832 chip->read_buf = lpc32xx_nand_read_buf;
833 chip->write_buf = lpc32xx_nand_write_buf;
834 chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
835 chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
836 chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
837 chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
838 chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
839 chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
840 chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
841 chip->ecc.correct = nand_correct_data;
842 chip->ecc.strength = 1;
843 chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
844
845 /*
846 * Allocate a large enough buffer for a single huge page plus
847 * extra space for the spare area and ECC storage area
848 */
849 host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
850 host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
851 GFP_KERNEL);
852 if (host->data_buf == NULL) {
853 res = -ENOMEM;
854 goto err_exit2;
855 }
856
857 res = lpc32xx_nand_dma_setup(host);
858 if (res) {
859 res = -EIO;
860 goto err_exit2;
861 }
862
863 /* Find NAND device */
864 if (nand_scan_ident(mtd, 1, NULL)) {
865 res = -ENXIO;
866 goto err_exit3;
867 }
868
869 /* OOB and ECC CPU and DMA work areas */
870 host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
871
872 /*
873 * Small page FLASH has a unique OOB layout, but large and huge
874 * page FLASH use the standard layout. Small page FLASH uses a
875 * custom BBT marker layout.
876 */
877 if (mtd->writesize <= 512)
878 chip->ecc.layout = &lpc32xx_nand_oob_16;
879
880 /* These sizes remain the same regardless of page size */
881 chip->ecc.size = 256;
882 chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
883 chip->ecc.prepad = chip->ecc.postpad = 0;
884
885 /* Avoid extra scan if using BBT, setup BBT support */
886 if (host->ncfg->use_bbt) {
887 chip->bbt_options |= NAND_BBT_USE_FLASH;
888
889 /*
890 * Use a custom BBT marker setup for small page FLASH that
891 * won't interfere with the ECC layout. Large and huge page
892 * FLASH use the standard layout.
893 */
894 if (mtd->writesize <= 512) {
895 chip->bbt_td = &bbt_smallpage_main_descr;
896 chip->bbt_md = &bbt_smallpage_mirror_descr;
897 }
898 }
899
900 /*
901 * Fills out all the uninitialized function pointers with the defaults
902 */
903 if (nand_scan_tail(mtd)) {
904 res = -ENXIO;
905 goto err_exit3;
906 }
907
908 mtd->name = "nxp_lpc3220_slc";
909 res = mtd_device_register(mtd, host->ncfg->parts,
910 host->ncfg->num_parts);
911 if (!res)
912 return res;
913
914 nand_release(mtd);
915
916 err_exit3:
917 dma_release_channel(host->dma_chan);
918 err_exit2:
919 clk_disable_unprepare(host->clk);
920 err_exit1:
921 lpc32xx_wp_enable(host);
922
923 return res;
924 }
925
926 /*
927 * Remove NAND device.
928 */
929 static int lpc32xx_nand_remove(struct platform_device *pdev)
930 {
931 uint32_t tmp;
932 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
933 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
934
935 nand_release(mtd);
936 dma_release_channel(host->dma_chan);
937
938 /* Force CE high */
939 tmp = readl(SLC_CTRL(host->io_base));
940 tmp &= ~SLCCFG_CE_LOW;
941 writel(tmp, SLC_CTRL(host->io_base));
942
943 clk_disable_unprepare(host->clk);
944 lpc32xx_wp_enable(host);
945
946 return 0;
947 }
948
949 #ifdef CONFIG_PM
950 static int lpc32xx_nand_resume(struct platform_device *pdev)
951 {
952 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
953
954 /* Re-enable NAND clock */
955 clk_prepare_enable(host->clk);
956
957 /* Fresh init of NAND controller */
958 lpc32xx_nand_setup(host);
959
960 /* Disable write protect */
961 lpc32xx_wp_disable(host);
962
963 return 0;
964 }
965
966 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
967 {
968 uint32_t tmp;
969 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
970
971 /* Force CE high */
972 tmp = readl(SLC_CTRL(host->io_base));
973 tmp &= ~SLCCFG_CE_LOW;
974 writel(tmp, SLC_CTRL(host->io_base));
975
976 /* Enable write protect for safety */
977 lpc32xx_wp_enable(host);
978
979 /* Disable clock */
980 clk_disable_unprepare(host->clk);
981
982 return 0;
983 }
984
985 #else
986 #define lpc32xx_nand_resume NULL
987 #define lpc32xx_nand_suspend NULL
988 #endif
989
990 static const struct of_device_id lpc32xx_nand_match[] = {
991 { .compatible = "nxp,lpc3220-slc" },
992 { /* sentinel */ },
993 };
994 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
995
996 static struct platform_driver lpc32xx_nand_driver = {
997 .probe = lpc32xx_nand_probe,
998 .remove = lpc32xx_nand_remove,
999 .resume = lpc32xx_nand_resume,
1000 .suspend = lpc32xx_nand_suspend,
1001 .driver = {
1002 .name = LPC32XX_MODNAME,
1003 .of_match_table = lpc32xx_nand_match,
1004 },
1005 };
1006
1007 module_platform_driver(lpc32xx_nand_driver);
1008
1009 MODULE_LICENSE("GPL");
1010 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1011 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1012 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
This page took 0.053233 seconds and 5 git commands to generate.