1a44ef63c8d1af0b4e42fd71390691d62bd01f08
[deliverable/linux.git] / drivers / mtd / nand / nandsim.c
1 /*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
6 * Copyright (C) 2004 Nokia Corporation
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24 *
25 * $Id: nandsim.c,v 1.8 2005/03/19 15:33:56 dedekind Exp $
26 */
27
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/errno.h>
35 #include <linux/string.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42
43 /* Default simulator parameters values */
44 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
45 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
46 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
47 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
48 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
49 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
50 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
51 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
52 #endif
53
54 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
55 #define CONFIG_NANDSIM_ACCESS_DELAY 25
56 #endif
57 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
58 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
59 #endif
60 #ifndef CONFIG_NANDSIM_ERASE_DELAY
61 #define CONFIG_NANDSIM_ERASE_DELAY 2
62 #endif
63 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
64 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
65 #endif
66 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
67 #define CONFIG_NANDSIM_INPUT_CYCLE 50
68 #endif
69 #ifndef CONFIG_NANDSIM_BUS_WIDTH
70 #define CONFIG_NANDSIM_BUS_WIDTH 8
71 #endif
72 #ifndef CONFIG_NANDSIM_DO_DELAYS
73 #define CONFIG_NANDSIM_DO_DELAYS 0
74 #endif
75 #ifndef CONFIG_NANDSIM_LOG
76 #define CONFIG_NANDSIM_LOG 0
77 #endif
78 #ifndef CONFIG_NANDSIM_DBG
79 #define CONFIG_NANDSIM_DBG 0
80 #endif
81
82 static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
83 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
84 static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
85 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
86 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
87 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
88 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
89 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
90 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
91 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
92 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
93 static uint log = CONFIG_NANDSIM_LOG;
94 static uint dbg = CONFIG_NANDSIM_DBG;
95 static unsigned long parts[MAX_MTD_DEVICES];
96 static unsigned int parts_num;
97 static char *badblocks = NULL;
98 static char *weakblocks = NULL;
99 static char *weakpages = NULL;
100 static unsigned int bitflips = 0;
101 static char *gravepages = NULL;
102 static unsigned int rptwear = 0;
103
104 module_param(first_id_byte, uint, 0400);
105 module_param(second_id_byte, uint, 0400);
106 module_param(third_id_byte, uint, 0400);
107 module_param(fourth_id_byte, uint, 0400);
108 module_param(access_delay, uint, 0400);
109 module_param(programm_delay, uint, 0400);
110 module_param(erase_delay, uint, 0400);
111 module_param(output_cycle, uint, 0400);
112 module_param(input_cycle, uint, 0400);
113 module_param(bus_width, uint, 0400);
114 module_param(do_delays, uint, 0400);
115 module_param(log, uint, 0400);
116 module_param(dbg, uint, 0400);
117 module_param_array(parts, ulong, &parts_num, 0400);
118 module_param(badblocks, charp, 0400);
119 module_param(weakblocks, charp, 0400);
120 module_param(weakpages, charp, 0400);
121 module_param(bitflips, uint, 0400);
122 module_param(gravepages, charp, 0400);
123 module_param(rptwear, uint, 0400);
124
125 MODULE_PARM_DESC(first_id_byte, "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
126 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
127 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
128 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
129 MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)");
130 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
131 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
132 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
133 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
134 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
135 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
136 MODULE_PARM_DESC(log, "Perform logging if not zero");
137 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
138 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
139 /* Page and erase block positions for the following parameters are independent of any partitions */
140 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
141 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
142 " separated by commas e.g. 113:2 means eb 113"
143 " can be erased only twice before failing");
144 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
145 " separated by commas e.g. 1401:2 means page 1401"
146 " can be written only twice before failing");
147 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
148 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
149 " separated by commas e.g. 1401:2 means page 1401"
150 " can be read only twice before failing");
151 MODULE_PARM_DESC(rptwear, "Number of erases inbetween reporting wear, if not zero");
152
153 /* The largest possible page size */
154 #define NS_LARGEST_PAGE_SIZE 2048
155
156 /* The prefix for simulator output */
157 #define NS_OUTPUT_PREFIX "[nandsim]"
158
159 /* Simulator's output macros (logging, debugging, warning, error) */
160 #define NS_LOG(args...) \
161 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
162 #define NS_DBG(args...) \
163 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
164 #define NS_WARN(args...) \
165 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
166 #define NS_ERR(args...) \
167 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
168 #define NS_INFO(args...) \
169 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
170
171 /* Busy-wait delay macros (microseconds, milliseconds) */
172 #define NS_UDELAY(us) \
173 do { if (do_delays) udelay(us); } while(0)
174 #define NS_MDELAY(us) \
175 do { if (do_delays) mdelay(us); } while(0)
176
177 /* Is the nandsim structure initialized ? */
178 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
179
180 /* Good operation completion status */
181 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
182
183 /* Operation failed completion status */
184 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
185
186 /* Calculate the page offset in flash RAM image by (row, column) address */
187 #define NS_RAW_OFFSET(ns) \
188 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
189
190 /* Calculate the OOB offset in flash RAM image by (row, column) address */
191 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
192
193 /* After a command is input, the simulator goes to one of the following states */
194 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
195 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
196 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
197 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
198 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
199 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
200 #define STATE_CMD_STATUS 0x00000007 /* read status */
201 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
202 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
203 #define STATE_CMD_READID 0x0000000A /* read ID */
204 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
205 #define STATE_CMD_RESET 0x0000000C /* reset */
206 #define STATE_CMD_MASK 0x0000000F /* command states mask */
207
208 /* After an addres is input, the simulator goes to one of these states */
209 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
210 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
211 #define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */
212 #define STATE_ADDR_MASK 0x00000030 /* address states mask */
213
214 /* Durind data input/output the simulator is in these states */
215 #define STATE_DATAIN 0x00000100 /* waiting for data input */
216 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
217
218 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
219 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
220 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
221 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
222 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
223
224 /* Previous operation is done, ready to accept new requests */
225 #define STATE_READY 0x00000000
226
227 /* This state is used to mark that the next state isn't known yet */
228 #define STATE_UNKNOWN 0x10000000
229
230 /* Simulator's actions bit masks */
231 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
232 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
233 #define ACTION_SECERASE 0x00300000 /* erase sector */
234 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
235 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
236 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
237 #define ACTION_MASK 0x00700000 /* action mask */
238
239 #define NS_OPER_NUM 12 /* Number of operations supported by the simulator */
240 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
241
242 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
243 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
244 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
245 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
246 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
247 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
248 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
249 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
250 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
251
252 /* Remove action bits ftom state */
253 #define NS_STATE(x) ((x) & ~ACTION_MASK)
254
255 /*
256 * Maximum previous states which need to be saved. Currently saving is
257 * only needed for page programm operation with preceeded read command
258 * (which is only valid for 512-byte pages).
259 */
260 #define NS_MAX_PREVSTATES 1
261
262 /*
263 * A union to represent flash memory contents and flash buffer.
264 */
265 union ns_mem {
266 u_char *byte; /* for byte access */
267 uint16_t *word; /* for 16-bit word access */
268 };
269
270 /*
271 * The structure which describes all the internal simulator data.
272 */
273 struct nandsim {
274 struct mtd_partition partitions[MAX_MTD_DEVICES];
275 unsigned int nbparts;
276
277 uint busw; /* flash chip bus width (8 or 16) */
278 u_char ids[4]; /* chip's ID bytes */
279 uint32_t options; /* chip's characteristic bits */
280 uint32_t state; /* current chip state */
281 uint32_t nxstate; /* next expected state */
282
283 uint32_t *op; /* current operation, NULL operations isn't known yet */
284 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
285 uint16_t npstates; /* number of previous states saved */
286 uint16_t stateidx; /* current state index */
287
288 /* The simulated NAND flash pages array */
289 union ns_mem *pages;
290
291 /* Internal buffer of page + OOB size bytes */
292 union ns_mem buf;
293
294 /* NAND flash "geometry" */
295 struct nandsin_geometry {
296 uint32_t totsz; /* total flash size, bytes */
297 uint32_t secsz; /* flash sector (erase block) size, bytes */
298 uint pgsz; /* NAND flash page size, bytes */
299 uint oobsz; /* page OOB area size, bytes */
300 uint32_t totszoob; /* total flash size including OOB, bytes */
301 uint pgszoob; /* page size including OOB , bytes*/
302 uint secszoob; /* sector size including OOB, bytes */
303 uint pgnum; /* total number of pages */
304 uint pgsec; /* number of pages per sector */
305 uint secshift; /* bits number in sector size */
306 uint pgshift; /* bits number in page size */
307 uint oobshift; /* bits number in OOB size */
308 uint pgaddrbytes; /* bytes per page address */
309 uint secaddrbytes; /* bytes per sector address */
310 uint idbytes; /* the number ID bytes that this chip outputs */
311 } geom;
312
313 /* NAND flash internal registers */
314 struct nandsim_regs {
315 unsigned command; /* the command register */
316 u_char status; /* the status register */
317 uint row; /* the page number */
318 uint column; /* the offset within page */
319 uint count; /* internal counter */
320 uint num; /* number of bytes which must be processed */
321 uint off; /* fixed page offset */
322 } regs;
323
324 /* NAND flash lines state */
325 struct ns_lines_status {
326 int ce; /* chip Enable */
327 int cle; /* command Latch Enable */
328 int ale; /* address Latch Enable */
329 int wp; /* write Protect */
330 } lines;
331 };
332
333 /*
334 * Operations array. To perform any operation the simulator must pass
335 * through the correspondent states chain.
336 */
337 static struct nandsim_operations {
338 uint32_t reqopts; /* options which are required to perform the operation */
339 uint32_t states[NS_OPER_STATES]; /* operation's states */
340 } ops[NS_OPER_NUM] = {
341 /* Read page + OOB from the beginning */
342 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
343 STATE_DATAOUT, STATE_READY}},
344 /* Read page + OOB from the second half */
345 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
346 STATE_DATAOUT, STATE_READY}},
347 /* Read OOB */
348 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
349 STATE_DATAOUT, STATE_READY}},
350 /* Programm page starting from the beginning */
351 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
352 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
353 /* Programm page starting from the beginning */
354 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
355 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
356 /* Programm page starting from the second half */
357 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
358 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
359 /* Programm OOB */
360 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
361 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
362 /* Erase sector */
363 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
364 /* Read status */
365 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
366 /* Read multi-plane status */
367 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
368 /* Read ID */
369 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
370 /* Large page devices read page */
371 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
372 STATE_DATAOUT, STATE_READY}}
373 };
374
375 struct weak_block {
376 struct list_head list;
377 unsigned int erase_block_no;
378 unsigned int max_erases;
379 unsigned int erases_done;
380 };
381
382 static LIST_HEAD(weak_blocks);
383
384 struct weak_page {
385 struct list_head list;
386 unsigned int page_no;
387 unsigned int max_writes;
388 unsigned int writes_done;
389 };
390
391 static LIST_HEAD(weak_pages);
392
393 struct grave_page {
394 struct list_head list;
395 unsigned int page_no;
396 unsigned int max_reads;
397 unsigned int reads_done;
398 };
399
400 static LIST_HEAD(grave_pages);
401
402 static unsigned long *erase_block_wear = NULL;
403 static unsigned int wear_eb_count = 0;
404 static unsigned long total_wear = 0;
405 static unsigned int rptwear_cnt = 0;
406
407 /* MTD structure for NAND controller */
408 static struct mtd_info *nsmtd;
409
410 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
411
412 /*
413 * Allocate array of page pointers and initialize the array to NULL
414 * pointers.
415 *
416 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
417 */
418 static int alloc_device(struct nandsim *ns)
419 {
420 int i;
421
422 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
423 if (!ns->pages) {
424 NS_ERR("alloc_map: unable to allocate page array\n");
425 return -ENOMEM;
426 }
427 for (i = 0; i < ns->geom.pgnum; i++) {
428 ns->pages[i].byte = NULL;
429 }
430
431 return 0;
432 }
433
434 /*
435 * Free any allocated pages, and free the array of page pointers.
436 */
437 static void free_device(struct nandsim *ns)
438 {
439 int i;
440
441 if (ns->pages) {
442 for (i = 0; i < ns->geom.pgnum; i++) {
443 if (ns->pages[i].byte)
444 kfree(ns->pages[i].byte);
445 }
446 vfree(ns->pages);
447 }
448 }
449
450 static char *get_partition_name(int i)
451 {
452 char buf[64];
453 sprintf(buf, "NAND simulator partition %d", i);
454 return kstrdup(buf, GFP_KERNEL);
455 }
456
457 /*
458 * Initialize the nandsim structure.
459 *
460 * RETURNS: 0 if success, -ERRNO if failure.
461 */
462 static int init_nandsim(struct mtd_info *mtd)
463 {
464 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
465 struct nandsim *ns = (struct nandsim *)(chip->priv);
466 int i, ret = 0;
467 u_int32_t remains;
468 u_int32_t next_offset;
469
470 if (NS_IS_INITIALIZED(ns)) {
471 NS_ERR("init_nandsim: nandsim is already initialized\n");
472 return -EIO;
473 }
474
475 /* Force mtd to not do delays */
476 chip->chip_delay = 0;
477
478 /* Initialize the NAND flash parameters */
479 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
480 ns->geom.totsz = mtd->size;
481 ns->geom.pgsz = mtd->writesize;
482 ns->geom.oobsz = mtd->oobsize;
483 ns->geom.secsz = mtd->erasesize;
484 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
485 ns->geom.pgnum = ns->geom.totsz / ns->geom.pgsz;
486 ns->geom.totszoob = ns->geom.totsz + ns->geom.pgnum * ns->geom.oobsz;
487 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
488 ns->geom.pgshift = chip->page_shift;
489 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
490 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
491 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
492 ns->options = 0;
493
494 if (ns->geom.pgsz == 256) {
495 ns->options |= OPT_PAGE256;
496 }
497 else if (ns->geom.pgsz == 512) {
498 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
499 if (ns->busw == 8)
500 ns->options |= OPT_PAGE512_8BIT;
501 } else if (ns->geom.pgsz == 2048) {
502 ns->options |= OPT_PAGE2048;
503 } else {
504 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
505 return -EIO;
506 }
507
508 if (ns->options & OPT_SMALLPAGE) {
509 if (ns->geom.totsz < (64 << 20)) {
510 ns->geom.pgaddrbytes = 3;
511 ns->geom.secaddrbytes = 2;
512 } else {
513 ns->geom.pgaddrbytes = 4;
514 ns->geom.secaddrbytes = 3;
515 }
516 } else {
517 if (ns->geom.totsz <= (128 << 20)) {
518 ns->geom.pgaddrbytes = 4;
519 ns->geom.secaddrbytes = 2;
520 } else {
521 ns->geom.pgaddrbytes = 5;
522 ns->geom.secaddrbytes = 3;
523 }
524 }
525
526 /* Fill the partition_info structure */
527 if (parts_num > ARRAY_SIZE(ns->partitions)) {
528 NS_ERR("too many partitions.\n");
529 ret = -EINVAL;
530 goto error;
531 }
532 remains = ns->geom.totsz;
533 next_offset = 0;
534 for (i = 0; i < parts_num; ++i) {
535 unsigned long part = parts[i];
536 if (!part || part > remains / ns->geom.secsz) {
537 NS_ERR("bad partition size.\n");
538 ret = -EINVAL;
539 goto error;
540 }
541 ns->partitions[i].name = get_partition_name(i);
542 ns->partitions[i].offset = next_offset;
543 ns->partitions[i].size = part * ns->geom.secsz;
544 next_offset += ns->partitions[i].size;
545 remains -= ns->partitions[i].size;
546 }
547 ns->nbparts = parts_num;
548 if (remains) {
549 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
550 NS_ERR("too many partitions.\n");
551 ret = -EINVAL;
552 goto error;
553 }
554 ns->partitions[i].name = get_partition_name(i);
555 ns->partitions[i].offset = next_offset;
556 ns->partitions[i].size = remains;
557 ns->nbparts += 1;
558 }
559
560 /* Detect how many ID bytes the NAND chip outputs */
561 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
562 if (second_id_byte != nand_flash_ids[i].id)
563 continue;
564 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
565 ns->options |= OPT_AUTOINCR;
566 }
567
568 if (ns->busw == 16)
569 NS_WARN("16-bit flashes support wasn't tested\n");
570
571 printk("flash size: %u MiB\n", ns->geom.totsz >> 20);
572 printk("page size: %u bytes\n", ns->geom.pgsz);
573 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
574 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
575 printk("pages number: %u\n", ns->geom.pgnum);
576 printk("pages per sector: %u\n", ns->geom.pgsec);
577 printk("bus width: %u\n", ns->busw);
578 printk("bits in sector size: %u\n", ns->geom.secshift);
579 printk("bits in page size: %u\n", ns->geom.pgshift);
580 printk("bits in OOB size: %u\n", ns->geom.oobshift);
581 printk("flash size with OOB: %u KiB\n", ns->geom.totszoob >> 10);
582 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
583 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
584 printk("options: %#x\n", ns->options);
585
586 if ((ret = alloc_device(ns)) != 0)
587 goto error;
588
589 /* Allocate / initialize the internal buffer */
590 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
591 if (!ns->buf.byte) {
592 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
593 ns->geom.pgszoob);
594 ret = -ENOMEM;
595 goto error;
596 }
597 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
598
599 return 0;
600
601 error:
602 free_device(ns);
603
604 return ret;
605 }
606
607 /*
608 * Free the nandsim structure.
609 */
610 static void free_nandsim(struct nandsim *ns)
611 {
612 kfree(ns->buf.byte);
613 free_device(ns);
614
615 return;
616 }
617
618 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
619 {
620 char *w;
621 int zero_ok;
622 unsigned int erase_block_no;
623 loff_t offset;
624
625 if (!badblocks)
626 return 0;
627 w = badblocks;
628 do {
629 zero_ok = (*w == '0' ? 1 : 0);
630 erase_block_no = simple_strtoul(w, &w, 0);
631 if (!zero_ok && !erase_block_no) {
632 NS_ERR("invalid badblocks.\n");
633 return -EINVAL;
634 }
635 offset = erase_block_no * ns->geom.secsz;
636 if (mtd->block_markbad(mtd, offset)) {
637 NS_ERR("invalid badblocks.\n");
638 return -EINVAL;
639 }
640 if (*w == ',')
641 w += 1;
642 } while (*w);
643 return 0;
644 }
645
646 static int parse_weakblocks(void)
647 {
648 char *w;
649 int zero_ok;
650 unsigned int erase_block_no;
651 unsigned int max_erases;
652 struct weak_block *wb;
653
654 if (!weakblocks)
655 return 0;
656 w = weakblocks;
657 do {
658 zero_ok = (*w == '0' ? 1 : 0);
659 erase_block_no = simple_strtoul(w, &w, 0);
660 if (!zero_ok && !erase_block_no) {
661 NS_ERR("invalid weakblocks.\n");
662 return -EINVAL;
663 }
664 max_erases = 3;
665 if (*w == ':') {
666 w += 1;
667 max_erases = simple_strtoul(w, &w, 0);
668 }
669 if (*w == ',')
670 w += 1;
671 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
672 if (!wb) {
673 NS_ERR("unable to allocate memory.\n");
674 return -ENOMEM;
675 }
676 wb->erase_block_no = erase_block_no;
677 wb->max_erases = max_erases;
678 list_add(&wb->list, &weak_blocks);
679 } while (*w);
680 return 0;
681 }
682
683 static int erase_error(unsigned int erase_block_no)
684 {
685 struct weak_block *wb;
686
687 list_for_each_entry(wb, &weak_blocks, list)
688 if (wb->erase_block_no == erase_block_no) {
689 if (wb->erases_done >= wb->max_erases)
690 return 1;
691 wb->erases_done += 1;
692 return 0;
693 }
694 return 0;
695 }
696
697 static int parse_weakpages(void)
698 {
699 char *w;
700 int zero_ok;
701 unsigned int page_no;
702 unsigned int max_writes;
703 struct weak_page *wp;
704
705 if (!weakpages)
706 return 0;
707 w = weakpages;
708 do {
709 zero_ok = (*w == '0' ? 1 : 0);
710 page_no = simple_strtoul(w, &w, 0);
711 if (!zero_ok && !page_no) {
712 NS_ERR("invalid weakpagess.\n");
713 return -EINVAL;
714 }
715 max_writes = 3;
716 if (*w == ':') {
717 w += 1;
718 max_writes = simple_strtoul(w, &w, 0);
719 }
720 if (*w == ',')
721 w += 1;
722 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
723 if (!wp) {
724 NS_ERR("unable to allocate memory.\n");
725 return -ENOMEM;
726 }
727 wp->page_no = page_no;
728 wp->max_writes = max_writes;
729 list_add(&wp->list, &weak_pages);
730 } while (*w);
731 return 0;
732 }
733
734 static int write_error(unsigned int page_no)
735 {
736 struct weak_page *wp;
737
738 list_for_each_entry(wp, &weak_pages, list)
739 if (wp->page_no == page_no) {
740 if (wp->writes_done >= wp->max_writes)
741 return 1;
742 wp->writes_done += 1;
743 return 0;
744 }
745 return 0;
746 }
747
748 static int parse_gravepages(void)
749 {
750 char *g;
751 int zero_ok;
752 unsigned int page_no;
753 unsigned int max_reads;
754 struct grave_page *gp;
755
756 if (!gravepages)
757 return 0;
758 g = gravepages;
759 do {
760 zero_ok = (*g == '0' ? 1 : 0);
761 page_no = simple_strtoul(g, &g, 0);
762 if (!zero_ok && !page_no) {
763 NS_ERR("invalid gravepagess.\n");
764 return -EINVAL;
765 }
766 max_reads = 3;
767 if (*g == ':') {
768 g += 1;
769 max_reads = simple_strtoul(g, &g, 0);
770 }
771 if (*g == ',')
772 g += 1;
773 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
774 if (!gp) {
775 NS_ERR("unable to allocate memory.\n");
776 return -ENOMEM;
777 }
778 gp->page_no = page_no;
779 gp->max_reads = max_reads;
780 list_add(&gp->list, &grave_pages);
781 } while (*g);
782 return 0;
783 }
784
785 static int read_error(unsigned int page_no)
786 {
787 struct grave_page *gp;
788
789 list_for_each_entry(gp, &grave_pages, list)
790 if (gp->page_no == page_no) {
791 if (gp->reads_done >= gp->max_reads)
792 return 1;
793 gp->reads_done += 1;
794 return 0;
795 }
796 return 0;
797 }
798
799 static void free_lists(void)
800 {
801 struct list_head *pos, *n;
802 list_for_each_safe(pos, n, &weak_blocks) {
803 list_del(pos);
804 kfree(list_entry(pos, struct weak_block, list));
805 }
806 list_for_each_safe(pos, n, &weak_pages) {
807 list_del(pos);
808 kfree(list_entry(pos, struct weak_page, list));
809 }
810 list_for_each_safe(pos, n, &grave_pages) {
811 list_del(pos);
812 kfree(list_entry(pos, struct grave_page, list));
813 }
814 kfree(erase_block_wear);
815 }
816
817 static int setup_wear_reporting(struct mtd_info *mtd)
818 {
819 size_t mem;
820
821 if (!rptwear)
822 return 0;
823 wear_eb_count = mtd->size / mtd->erasesize;
824 mem = wear_eb_count * sizeof(unsigned long);
825 if (mem / sizeof(unsigned long) != wear_eb_count) {
826 NS_ERR("Too many erase blocks for wear reporting\n");
827 return -ENOMEM;
828 }
829 erase_block_wear = kzalloc(mem, GFP_KERNEL);
830 if (!erase_block_wear) {
831 NS_ERR("Too many erase blocks for wear reporting\n");
832 return -ENOMEM;
833 }
834 return 0;
835 }
836
837 static void update_wear(unsigned int erase_block_no)
838 {
839 unsigned long wmin = -1, wmax = 0, avg;
840 unsigned long deciles[10], decile_max[10], tot = 0;
841 unsigned int i;
842
843 if (!erase_block_wear)
844 return;
845 total_wear += 1;
846 if (total_wear == 0)
847 NS_ERR("Erase counter total overflow\n");
848 erase_block_wear[erase_block_no] += 1;
849 if (erase_block_wear[erase_block_no] == 0)
850 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
851 rptwear_cnt += 1;
852 if (rptwear_cnt < rptwear)
853 return;
854 rptwear_cnt = 0;
855 /* Calc wear stats */
856 for (i = 0; i < wear_eb_count; ++i) {
857 unsigned long wear = erase_block_wear[i];
858 if (wear < wmin)
859 wmin = wear;
860 if (wear > wmax)
861 wmax = wear;
862 tot += wear;
863 }
864 for (i = 0; i < 9; ++i) {
865 deciles[i] = 0;
866 decile_max[i] = (wmax * (i + 1) + 5) / 10;
867 }
868 deciles[9] = 0;
869 decile_max[9] = wmax;
870 for (i = 0; i < wear_eb_count; ++i) {
871 int d;
872 unsigned long wear = erase_block_wear[i];
873 for (d = 0; d < 10; ++d)
874 if (wear <= decile_max[d]) {
875 deciles[d] += 1;
876 break;
877 }
878 }
879 avg = tot / wear_eb_count;
880 /* Output wear report */
881 NS_INFO("*** Wear Report ***\n");
882 NS_INFO("Total numbers of erases: %lu\n", tot);
883 NS_INFO("Number of erase blocks: %u\n", wear_eb_count);
884 NS_INFO("Average number of erases: %lu\n", avg);
885 NS_INFO("Maximum number of erases: %lu\n", wmax);
886 NS_INFO("Minimum number of erases: %lu\n", wmin);
887 for (i = 0; i < 10; ++i) {
888 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
889 if (from > decile_max[i])
890 continue;
891 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
892 from,
893 decile_max[i],
894 deciles[i]);
895 }
896 NS_INFO("*** End of Wear Report ***\n");
897 }
898
899 /*
900 * Returns the string representation of 'state' state.
901 */
902 static char *get_state_name(uint32_t state)
903 {
904 switch (NS_STATE(state)) {
905 case STATE_CMD_READ0:
906 return "STATE_CMD_READ0";
907 case STATE_CMD_READ1:
908 return "STATE_CMD_READ1";
909 case STATE_CMD_PAGEPROG:
910 return "STATE_CMD_PAGEPROG";
911 case STATE_CMD_READOOB:
912 return "STATE_CMD_READOOB";
913 case STATE_CMD_READSTART:
914 return "STATE_CMD_READSTART";
915 case STATE_CMD_ERASE1:
916 return "STATE_CMD_ERASE1";
917 case STATE_CMD_STATUS:
918 return "STATE_CMD_STATUS";
919 case STATE_CMD_STATUS_M:
920 return "STATE_CMD_STATUS_M";
921 case STATE_CMD_SEQIN:
922 return "STATE_CMD_SEQIN";
923 case STATE_CMD_READID:
924 return "STATE_CMD_READID";
925 case STATE_CMD_ERASE2:
926 return "STATE_CMD_ERASE2";
927 case STATE_CMD_RESET:
928 return "STATE_CMD_RESET";
929 case STATE_ADDR_PAGE:
930 return "STATE_ADDR_PAGE";
931 case STATE_ADDR_SEC:
932 return "STATE_ADDR_SEC";
933 case STATE_ADDR_ZERO:
934 return "STATE_ADDR_ZERO";
935 case STATE_DATAIN:
936 return "STATE_DATAIN";
937 case STATE_DATAOUT:
938 return "STATE_DATAOUT";
939 case STATE_DATAOUT_ID:
940 return "STATE_DATAOUT_ID";
941 case STATE_DATAOUT_STATUS:
942 return "STATE_DATAOUT_STATUS";
943 case STATE_DATAOUT_STATUS_M:
944 return "STATE_DATAOUT_STATUS_M";
945 case STATE_READY:
946 return "STATE_READY";
947 case STATE_UNKNOWN:
948 return "STATE_UNKNOWN";
949 }
950
951 NS_ERR("get_state_name: unknown state, BUG\n");
952 return NULL;
953 }
954
955 /*
956 * Check if command is valid.
957 *
958 * RETURNS: 1 if wrong command, 0 if right.
959 */
960 static int check_command(int cmd)
961 {
962 switch (cmd) {
963
964 case NAND_CMD_READ0:
965 case NAND_CMD_READSTART:
966 case NAND_CMD_PAGEPROG:
967 case NAND_CMD_READOOB:
968 case NAND_CMD_ERASE1:
969 case NAND_CMD_STATUS:
970 case NAND_CMD_SEQIN:
971 case NAND_CMD_READID:
972 case NAND_CMD_ERASE2:
973 case NAND_CMD_RESET:
974 case NAND_CMD_READ1:
975 return 0;
976
977 case NAND_CMD_STATUS_MULTI:
978 default:
979 return 1;
980 }
981 }
982
983 /*
984 * Returns state after command is accepted by command number.
985 */
986 static uint32_t get_state_by_command(unsigned command)
987 {
988 switch (command) {
989 case NAND_CMD_READ0:
990 return STATE_CMD_READ0;
991 case NAND_CMD_READ1:
992 return STATE_CMD_READ1;
993 case NAND_CMD_PAGEPROG:
994 return STATE_CMD_PAGEPROG;
995 case NAND_CMD_READSTART:
996 return STATE_CMD_READSTART;
997 case NAND_CMD_READOOB:
998 return STATE_CMD_READOOB;
999 case NAND_CMD_ERASE1:
1000 return STATE_CMD_ERASE1;
1001 case NAND_CMD_STATUS:
1002 return STATE_CMD_STATUS;
1003 case NAND_CMD_STATUS_MULTI:
1004 return STATE_CMD_STATUS_M;
1005 case NAND_CMD_SEQIN:
1006 return STATE_CMD_SEQIN;
1007 case NAND_CMD_READID:
1008 return STATE_CMD_READID;
1009 case NAND_CMD_ERASE2:
1010 return STATE_CMD_ERASE2;
1011 case NAND_CMD_RESET:
1012 return STATE_CMD_RESET;
1013 }
1014
1015 NS_ERR("get_state_by_command: unknown command, BUG\n");
1016 return 0;
1017 }
1018
1019 /*
1020 * Move an address byte to the correspondent internal register.
1021 */
1022 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1023 {
1024 uint byte = (uint)bt;
1025
1026 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1027 ns->regs.column |= (byte << 8 * ns->regs.count);
1028 else {
1029 ns->regs.row |= (byte << 8 * (ns->regs.count -
1030 ns->geom.pgaddrbytes +
1031 ns->geom.secaddrbytes));
1032 }
1033
1034 return;
1035 }
1036
1037 /*
1038 * Switch to STATE_READY state.
1039 */
1040 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1041 {
1042 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1043
1044 ns->state = STATE_READY;
1045 ns->nxstate = STATE_UNKNOWN;
1046 ns->op = NULL;
1047 ns->npstates = 0;
1048 ns->stateidx = 0;
1049 ns->regs.num = 0;
1050 ns->regs.count = 0;
1051 ns->regs.off = 0;
1052 ns->regs.row = 0;
1053 ns->regs.column = 0;
1054 ns->regs.status = status;
1055 }
1056
1057 /*
1058 * If the operation isn't known yet, try to find it in the global array
1059 * of supported operations.
1060 *
1061 * Operation can be unknown because of the following.
1062 * 1. New command was accepted and this is the firs call to find the
1063 * correspondent states chain. In this case ns->npstates = 0;
1064 * 2. There is several operations which begin with the same command(s)
1065 * (for example program from the second half and read from the
1066 * second half operations both begin with the READ1 command). In this
1067 * case the ns->pstates[] array contains previous states.
1068 *
1069 * Thus, the function tries to find operation containing the following
1070 * states (if the 'flag' parameter is 0):
1071 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1072 *
1073 * If (one and only one) matching operation is found, it is accepted (
1074 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1075 * zeroed).
1076 *
1077 * If there are several maches, the current state is pushed to the
1078 * ns->pstates.
1079 *
1080 * The operation can be unknown only while commands are input to the chip.
1081 * As soon as address command is accepted, the operation must be known.
1082 * In such situation the function is called with 'flag' != 0, and the
1083 * operation is searched using the following pattern:
1084 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1085 *
1086 * It is supposed that this pattern must either match one operation on
1087 * none. There can't be ambiguity in that case.
1088 *
1089 * If no matches found, the functions does the following:
1090 * 1. if there are saved states present, try to ignore them and search
1091 * again only using the last command. If nothing was found, switch
1092 * to the STATE_READY state.
1093 * 2. if there are no saved states, switch to the STATE_READY state.
1094 *
1095 * RETURNS: -2 - no matched operations found.
1096 * -1 - several matches.
1097 * 0 - operation is found.
1098 */
1099 static int find_operation(struct nandsim *ns, uint32_t flag)
1100 {
1101 int opsfound = 0;
1102 int i, j, idx = 0;
1103
1104 for (i = 0; i < NS_OPER_NUM; i++) {
1105
1106 int found = 1;
1107
1108 if (!(ns->options & ops[i].reqopts))
1109 /* Ignore operations we can't perform */
1110 continue;
1111
1112 if (flag) {
1113 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1114 continue;
1115 } else {
1116 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1117 continue;
1118 }
1119
1120 for (j = 0; j < ns->npstates; j++)
1121 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1122 && (ns->options & ops[idx].reqopts)) {
1123 found = 0;
1124 break;
1125 }
1126
1127 if (found) {
1128 idx = i;
1129 opsfound += 1;
1130 }
1131 }
1132
1133 if (opsfound == 1) {
1134 /* Exact match */
1135 ns->op = &ops[idx].states[0];
1136 if (flag) {
1137 /*
1138 * In this case the find_operation function was
1139 * called when address has just began input. But it isn't
1140 * yet fully input and the current state must
1141 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1142 * state must be the next state (ns->nxstate).
1143 */
1144 ns->stateidx = ns->npstates - 1;
1145 } else {
1146 ns->stateidx = ns->npstates;
1147 }
1148 ns->npstates = 0;
1149 ns->state = ns->op[ns->stateidx];
1150 ns->nxstate = ns->op[ns->stateidx + 1];
1151 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1152 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1153 return 0;
1154 }
1155
1156 if (opsfound == 0) {
1157 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1158 if (ns->npstates != 0) {
1159 NS_DBG("find_operation: no operation found, try again with state %s\n",
1160 get_state_name(ns->state));
1161 ns->npstates = 0;
1162 return find_operation(ns, 0);
1163
1164 }
1165 NS_DBG("find_operation: no operations found\n");
1166 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1167 return -2;
1168 }
1169
1170 if (flag) {
1171 /* This shouldn't happen */
1172 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1173 return -2;
1174 }
1175
1176 NS_DBG("find_operation: there is still ambiguity\n");
1177
1178 ns->pstates[ns->npstates++] = ns->state;
1179
1180 return -1;
1181 }
1182
1183 /*
1184 * Returns a pointer to the current page.
1185 */
1186 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1187 {
1188 return &(ns->pages[ns->regs.row]);
1189 }
1190
1191 /*
1192 * Retuns a pointer to the current byte, within the current page.
1193 */
1194 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1195 {
1196 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1197 }
1198
1199 /*
1200 * Fill the NAND buffer with data read from the specified page.
1201 */
1202 static void read_page(struct nandsim *ns, int num)
1203 {
1204 union ns_mem *mypage;
1205
1206 mypage = NS_GET_PAGE(ns);
1207 if (mypage->byte == NULL) {
1208 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1209 memset(ns->buf.byte, 0xFF, num);
1210 } else {
1211 unsigned int page_no = ns->regs.row;
1212 NS_DBG("read_page: page %d allocated, reading from %d\n",
1213 ns->regs.row, ns->regs.column + ns->regs.off);
1214 if (read_error(page_no)) {
1215 int i;
1216 memset(ns->buf.byte, 0xFF, num);
1217 for (i = 0; i < num; ++i)
1218 ns->buf.byte[i] = random32();
1219 NS_WARN("simulating read error in page %u\n", page_no);
1220 return;
1221 }
1222 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1223 if (bitflips && random32() < (1 << 22)) {
1224 int flips = 1;
1225 if (bitflips > 1)
1226 flips = (random32() % (int) bitflips) + 1;
1227 while (flips--) {
1228 int pos = random32() % (num * 8);
1229 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1230 NS_WARN("read_page: flipping bit %d in page %d "
1231 "reading from %d ecc: corrected=%u failed=%u\n",
1232 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1233 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1234 }
1235 }
1236 }
1237 }
1238
1239 /*
1240 * Erase all pages in the specified sector.
1241 */
1242 static void erase_sector(struct nandsim *ns)
1243 {
1244 union ns_mem *mypage;
1245 int i;
1246
1247 mypage = NS_GET_PAGE(ns);
1248 for (i = 0; i < ns->geom.pgsec; i++) {
1249 if (mypage->byte != NULL) {
1250 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1251 kfree(mypage->byte);
1252 mypage->byte = NULL;
1253 }
1254 mypage++;
1255 }
1256 }
1257
1258 /*
1259 * Program the specified page with the contents from the NAND buffer.
1260 */
1261 static int prog_page(struct nandsim *ns, int num)
1262 {
1263 int i;
1264 union ns_mem *mypage;
1265 u_char *pg_off;
1266
1267 mypage = NS_GET_PAGE(ns);
1268 if (mypage->byte == NULL) {
1269 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1270 mypage->byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
1271 if (mypage->byte == NULL) {
1272 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1273 return -1;
1274 }
1275 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1276 }
1277
1278 pg_off = NS_PAGE_BYTE_OFF(ns);
1279 for (i = 0; i < num; i++)
1280 pg_off[i] &= ns->buf.byte[i];
1281
1282 return 0;
1283 }
1284
1285 /*
1286 * If state has any action bit, perform this action.
1287 *
1288 * RETURNS: 0 if success, -1 if error.
1289 */
1290 static int do_state_action(struct nandsim *ns, uint32_t action)
1291 {
1292 int num;
1293 int busdiv = ns->busw == 8 ? 1 : 2;
1294 unsigned int erase_block_no, page_no;
1295
1296 action &= ACTION_MASK;
1297
1298 /* Check that page address input is correct */
1299 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1300 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1301 return -1;
1302 }
1303
1304 switch (action) {
1305
1306 case ACTION_CPY:
1307 /*
1308 * Copy page data to the internal buffer.
1309 */
1310
1311 /* Column shouldn't be very large */
1312 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1313 NS_ERR("do_state_action: column number is too large\n");
1314 break;
1315 }
1316 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1317 read_page(ns, num);
1318
1319 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1320 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1321
1322 if (ns->regs.off == 0)
1323 NS_LOG("read page %d\n", ns->regs.row);
1324 else if (ns->regs.off < ns->geom.pgsz)
1325 NS_LOG("read page %d (second half)\n", ns->regs.row);
1326 else
1327 NS_LOG("read OOB of page %d\n", ns->regs.row);
1328
1329 NS_UDELAY(access_delay);
1330 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1331
1332 break;
1333
1334 case ACTION_SECERASE:
1335 /*
1336 * Erase sector.
1337 */
1338
1339 if (ns->lines.wp) {
1340 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1341 return -1;
1342 }
1343
1344 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1345 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1346 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1347 return -1;
1348 }
1349
1350 ns->regs.row = (ns->regs.row <<
1351 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1352 ns->regs.column = 0;
1353
1354 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1355
1356 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1357 ns->regs.row, NS_RAW_OFFSET(ns));
1358 NS_LOG("erase sector %u\n", erase_block_no);
1359
1360 erase_sector(ns);
1361
1362 NS_MDELAY(erase_delay);
1363
1364 if (erase_block_wear)
1365 update_wear(erase_block_no);
1366
1367 if (erase_error(erase_block_no)) {
1368 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1369 return -1;
1370 }
1371
1372 break;
1373
1374 case ACTION_PRGPAGE:
1375 /*
1376 * Programm page - move internal buffer data to the page.
1377 */
1378
1379 if (ns->lines.wp) {
1380 NS_WARN("do_state_action: device is write-protected, programm\n");
1381 return -1;
1382 }
1383
1384 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1385 if (num != ns->regs.count) {
1386 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1387 ns->regs.count, num);
1388 return -1;
1389 }
1390
1391 if (prog_page(ns, num) == -1)
1392 return -1;
1393
1394 page_no = ns->regs.row;
1395
1396 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1397 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1398 NS_LOG("programm page %d\n", ns->regs.row);
1399
1400 NS_UDELAY(programm_delay);
1401 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1402
1403 if (write_error(page_no)) {
1404 NS_WARN("simulating write failure in page %u\n", page_no);
1405 return -1;
1406 }
1407
1408 break;
1409
1410 case ACTION_ZEROOFF:
1411 NS_DBG("do_state_action: set internal offset to 0\n");
1412 ns->regs.off = 0;
1413 break;
1414
1415 case ACTION_HALFOFF:
1416 if (!(ns->options & OPT_PAGE512_8BIT)) {
1417 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1418 "byte page size 8x chips\n");
1419 return -1;
1420 }
1421 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1422 ns->regs.off = ns->geom.pgsz/2;
1423 break;
1424
1425 case ACTION_OOBOFF:
1426 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1427 ns->regs.off = ns->geom.pgsz;
1428 break;
1429
1430 default:
1431 NS_DBG("do_state_action: BUG! unknown action\n");
1432 }
1433
1434 return 0;
1435 }
1436
1437 /*
1438 * Switch simulator's state.
1439 */
1440 static void switch_state(struct nandsim *ns)
1441 {
1442 if (ns->op) {
1443 /*
1444 * The current operation have already been identified.
1445 * Just follow the states chain.
1446 */
1447
1448 ns->stateidx += 1;
1449 ns->state = ns->nxstate;
1450 ns->nxstate = ns->op[ns->stateidx + 1];
1451
1452 NS_DBG("switch_state: operation is known, switch to the next state, "
1453 "state: %s, nxstate: %s\n",
1454 get_state_name(ns->state), get_state_name(ns->nxstate));
1455
1456 /* See, whether we need to do some action */
1457 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1458 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1459 return;
1460 }
1461
1462 } else {
1463 /*
1464 * We don't yet know which operation we perform.
1465 * Try to identify it.
1466 */
1467
1468 /*
1469 * The only event causing the switch_state function to
1470 * be called with yet unknown operation is new command.
1471 */
1472 ns->state = get_state_by_command(ns->regs.command);
1473
1474 NS_DBG("switch_state: operation is unknown, try to find it\n");
1475
1476 if (find_operation(ns, 0) != 0)
1477 return;
1478
1479 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1480 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1481 return;
1482 }
1483 }
1484
1485 /* For 16x devices column means the page offset in words */
1486 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1487 NS_DBG("switch_state: double the column number for 16x device\n");
1488 ns->regs.column <<= 1;
1489 }
1490
1491 if (NS_STATE(ns->nxstate) == STATE_READY) {
1492 /*
1493 * The current state is the last. Return to STATE_READY
1494 */
1495
1496 u_char status = NS_STATUS_OK(ns);
1497
1498 /* In case of data states, see if all bytes were input/output */
1499 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1500 && ns->regs.count != ns->regs.num) {
1501 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1502 ns->regs.num - ns->regs.count);
1503 status = NS_STATUS_FAILED(ns);
1504 }
1505
1506 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1507
1508 switch_to_ready_state(ns, status);
1509
1510 return;
1511 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1512 /*
1513 * If the next state is data input/output, switch to it now
1514 */
1515
1516 ns->state = ns->nxstate;
1517 ns->nxstate = ns->op[++ns->stateidx + 1];
1518 ns->regs.num = ns->regs.count = 0;
1519
1520 NS_DBG("switch_state: the next state is data I/O, switch, "
1521 "state: %s, nxstate: %s\n",
1522 get_state_name(ns->state), get_state_name(ns->nxstate));
1523
1524 /*
1525 * Set the internal register to the count of bytes which
1526 * are expected to be input or output
1527 */
1528 switch (NS_STATE(ns->state)) {
1529 case STATE_DATAIN:
1530 case STATE_DATAOUT:
1531 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1532 break;
1533
1534 case STATE_DATAOUT_ID:
1535 ns->regs.num = ns->geom.idbytes;
1536 break;
1537
1538 case STATE_DATAOUT_STATUS:
1539 case STATE_DATAOUT_STATUS_M:
1540 ns->regs.count = ns->regs.num = 0;
1541 break;
1542
1543 default:
1544 NS_ERR("switch_state: BUG! unknown data state\n");
1545 }
1546
1547 } else if (ns->nxstate & STATE_ADDR_MASK) {
1548 /*
1549 * If the next state is address input, set the internal
1550 * register to the number of expected address bytes
1551 */
1552
1553 ns->regs.count = 0;
1554
1555 switch (NS_STATE(ns->nxstate)) {
1556 case STATE_ADDR_PAGE:
1557 ns->regs.num = ns->geom.pgaddrbytes;
1558
1559 break;
1560 case STATE_ADDR_SEC:
1561 ns->regs.num = ns->geom.secaddrbytes;
1562 break;
1563
1564 case STATE_ADDR_ZERO:
1565 ns->regs.num = 1;
1566 break;
1567
1568 default:
1569 NS_ERR("switch_state: BUG! unknown address state\n");
1570 }
1571 } else {
1572 /*
1573 * Just reset internal counters.
1574 */
1575
1576 ns->regs.num = 0;
1577 ns->regs.count = 0;
1578 }
1579 }
1580
1581 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1582 {
1583 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1584 u_char outb = 0x00;
1585
1586 /* Sanity and correctness checks */
1587 if (!ns->lines.ce) {
1588 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1589 return outb;
1590 }
1591 if (ns->lines.ale || ns->lines.cle) {
1592 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1593 return outb;
1594 }
1595 if (!(ns->state & STATE_DATAOUT_MASK)) {
1596 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1597 "return %#x\n", get_state_name(ns->state), (uint)outb);
1598 return outb;
1599 }
1600
1601 /* Status register may be read as many times as it is wanted */
1602 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1603 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1604 return ns->regs.status;
1605 }
1606
1607 /* Check if there is any data in the internal buffer which may be read */
1608 if (ns->regs.count == ns->regs.num) {
1609 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1610 return outb;
1611 }
1612
1613 switch (NS_STATE(ns->state)) {
1614 case STATE_DATAOUT:
1615 if (ns->busw == 8) {
1616 outb = ns->buf.byte[ns->regs.count];
1617 ns->regs.count += 1;
1618 } else {
1619 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1620 ns->regs.count += 2;
1621 }
1622 break;
1623 case STATE_DATAOUT_ID:
1624 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1625 outb = ns->ids[ns->regs.count];
1626 ns->regs.count += 1;
1627 break;
1628 default:
1629 BUG();
1630 }
1631
1632 if (ns->regs.count == ns->regs.num) {
1633 NS_DBG("read_byte: all bytes were read\n");
1634
1635 /*
1636 * The OPT_AUTOINCR allows to read next conseqitive pages without
1637 * new read operation cycle.
1638 */
1639 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1640 ns->regs.count = 0;
1641 if (ns->regs.row + 1 < ns->geom.pgnum)
1642 ns->regs.row += 1;
1643 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1644 do_state_action(ns, ACTION_CPY);
1645 }
1646 else if (NS_STATE(ns->nxstate) == STATE_READY)
1647 switch_state(ns);
1648
1649 }
1650
1651 return outb;
1652 }
1653
1654 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1655 {
1656 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1657
1658 /* Sanity and correctness checks */
1659 if (!ns->lines.ce) {
1660 NS_ERR("write_byte: chip is disabled, ignore write\n");
1661 return;
1662 }
1663 if (ns->lines.ale && ns->lines.cle) {
1664 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1665 return;
1666 }
1667
1668 if (ns->lines.cle == 1) {
1669 /*
1670 * The byte written is a command.
1671 */
1672
1673 if (byte == NAND_CMD_RESET) {
1674 NS_LOG("reset chip\n");
1675 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1676 return;
1677 }
1678
1679 /*
1680 * Chip might still be in STATE_DATAOUT
1681 * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1682 * STATE_DATAOUT_STATUS_M state. If so, switch state.
1683 */
1684 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1685 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1686 || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
1687 switch_state(ns);
1688
1689 /* Check if chip is expecting command */
1690 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1691 /*
1692 * We are in situation when something else (not command)
1693 * was expected but command was input. In this case ignore
1694 * previous command(s)/state(s) and accept the last one.
1695 */
1696 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1697 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1698 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1699 }
1700
1701 /* Check that the command byte is correct */
1702 if (check_command(byte)) {
1703 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1704 return;
1705 }
1706
1707 NS_DBG("command byte corresponding to %s state accepted\n",
1708 get_state_name(get_state_by_command(byte)));
1709 ns->regs.command = byte;
1710 switch_state(ns);
1711
1712 } else if (ns->lines.ale == 1) {
1713 /*
1714 * The byte written is an address.
1715 */
1716
1717 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1718
1719 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1720
1721 if (find_operation(ns, 1) < 0)
1722 return;
1723
1724 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1725 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1726 return;
1727 }
1728
1729 ns->regs.count = 0;
1730 switch (NS_STATE(ns->nxstate)) {
1731 case STATE_ADDR_PAGE:
1732 ns->regs.num = ns->geom.pgaddrbytes;
1733 break;
1734 case STATE_ADDR_SEC:
1735 ns->regs.num = ns->geom.secaddrbytes;
1736 break;
1737 case STATE_ADDR_ZERO:
1738 ns->regs.num = 1;
1739 break;
1740 default:
1741 BUG();
1742 }
1743 }
1744
1745 /* Check that chip is expecting address */
1746 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1747 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1748 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1749 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1750 return;
1751 }
1752
1753 /* Check if this is expected byte */
1754 if (ns->regs.count == ns->regs.num) {
1755 NS_ERR("write_byte: no more address bytes expected\n");
1756 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1757 return;
1758 }
1759
1760 accept_addr_byte(ns, byte);
1761
1762 ns->regs.count += 1;
1763
1764 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1765 (uint)byte, ns->regs.count, ns->regs.num);
1766
1767 if (ns->regs.count == ns->regs.num) {
1768 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1769 switch_state(ns);
1770 }
1771
1772 } else {
1773 /*
1774 * The byte written is an input data.
1775 */
1776
1777 /* Check that chip is expecting data input */
1778 if (!(ns->state & STATE_DATAIN_MASK)) {
1779 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1780 "switch to %s\n", (uint)byte,
1781 get_state_name(ns->state), get_state_name(STATE_READY));
1782 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1783 return;
1784 }
1785
1786 /* Check if this is expected byte */
1787 if (ns->regs.count == ns->regs.num) {
1788 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1789 ns->regs.num);
1790 return;
1791 }
1792
1793 if (ns->busw == 8) {
1794 ns->buf.byte[ns->regs.count] = byte;
1795 ns->regs.count += 1;
1796 } else {
1797 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1798 ns->regs.count += 2;
1799 }
1800 }
1801
1802 return;
1803 }
1804
1805 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1806 {
1807 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1808
1809 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1810 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1811 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1812
1813 if (cmd != NAND_CMD_NONE)
1814 ns_nand_write_byte(mtd, cmd);
1815 }
1816
1817 static int ns_device_ready(struct mtd_info *mtd)
1818 {
1819 NS_DBG("device_ready\n");
1820 return 1;
1821 }
1822
1823 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1824 {
1825 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1826
1827 NS_DBG("read_word\n");
1828
1829 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1830 }
1831
1832 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1833 {
1834 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1835
1836 /* Check that chip is expecting data input */
1837 if (!(ns->state & STATE_DATAIN_MASK)) {
1838 NS_ERR("write_buf: data input isn't expected, state is %s, "
1839 "switch to STATE_READY\n", get_state_name(ns->state));
1840 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1841 return;
1842 }
1843
1844 /* Check if these are expected bytes */
1845 if (ns->regs.count + len > ns->regs.num) {
1846 NS_ERR("write_buf: too many input bytes\n");
1847 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1848 return;
1849 }
1850
1851 memcpy(ns->buf.byte + ns->regs.count, buf, len);
1852 ns->regs.count += len;
1853
1854 if (ns->regs.count == ns->regs.num) {
1855 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1856 }
1857 }
1858
1859 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1860 {
1861 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1862
1863 /* Sanity and correctness checks */
1864 if (!ns->lines.ce) {
1865 NS_ERR("read_buf: chip is disabled\n");
1866 return;
1867 }
1868 if (ns->lines.ale || ns->lines.cle) {
1869 NS_ERR("read_buf: ALE or CLE pin is high\n");
1870 return;
1871 }
1872 if (!(ns->state & STATE_DATAOUT_MASK)) {
1873 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1874 get_state_name(ns->state));
1875 return;
1876 }
1877
1878 if (NS_STATE(ns->state) != STATE_DATAOUT) {
1879 int i;
1880
1881 for (i = 0; i < len; i++)
1882 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1883
1884 return;
1885 }
1886
1887 /* Check if these are expected bytes */
1888 if (ns->regs.count + len > ns->regs.num) {
1889 NS_ERR("read_buf: too many bytes to read\n");
1890 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1891 return;
1892 }
1893
1894 memcpy(buf, ns->buf.byte + ns->regs.count, len);
1895 ns->regs.count += len;
1896
1897 if (ns->regs.count == ns->regs.num) {
1898 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1899 ns->regs.count = 0;
1900 if (ns->regs.row + 1 < ns->geom.pgnum)
1901 ns->regs.row += 1;
1902 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1903 do_state_action(ns, ACTION_CPY);
1904 }
1905 else if (NS_STATE(ns->nxstate) == STATE_READY)
1906 switch_state(ns);
1907 }
1908
1909 return;
1910 }
1911
1912 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1913 {
1914 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1915
1916 if (!memcmp(buf, &ns_verify_buf[0], len)) {
1917 NS_DBG("verify_buf: the buffer is OK\n");
1918 return 0;
1919 } else {
1920 NS_DBG("verify_buf: the buffer is wrong\n");
1921 return -EFAULT;
1922 }
1923 }
1924
1925 /*
1926 * Module initialization function
1927 */
1928 static int __init ns_init_module(void)
1929 {
1930 struct nand_chip *chip;
1931 struct nandsim *nand;
1932 int retval = -ENOMEM, i;
1933
1934 if (bus_width != 8 && bus_width != 16) {
1935 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1936 return -EINVAL;
1937 }
1938
1939 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1940 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1941 + sizeof(struct nandsim), GFP_KERNEL);
1942 if (!nsmtd) {
1943 NS_ERR("unable to allocate core structures.\n");
1944 return -ENOMEM;
1945 }
1946 chip = (struct nand_chip *)(nsmtd + 1);
1947 nsmtd->priv = (void *)chip;
1948 nand = (struct nandsim *)(chip + 1);
1949 chip->priv = (void *)nand;
1950
1951 /*
1952 * Register simulator's callbacks.
1953 */
1954 chip->cmd_ctrl = ns_hwcontrol;
1955 chip->read_byte = ns_nand_read_byte;
1956 chip->dev_ready = ns_device_ready;
1957 chip->write_buf = ns_nand_write_buf;
1958 chip->read_buf = ns_nand_read_buf;
1959 chip->verify_buf = ns_nand_verify_buf;
1960 chip->read_word = ns_nand_read_word;
1961 chip->ecc.mode = NAND_ECC_SOFT;
1962 chip->options |= NAND_SKIP_BBTSCAN;
1963
1964 /*
1965 * Perform minimum nandsim structure initialization to handle
1966 * the initial ID read command correctly
1967 */
1968 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
1969 nand->geom.idbytes = 4;
1970 else
1971 nand->geom.idbytes = 2;
1972 nand->regs.status = NS_STATUS_OK(nand);
1973 nand->nxstate = STATE_UNKNOWN;
1974 nand->options |= OPT_PAGE256; /* temporary value */
1975 nand->ids[0] = first_id_byte;
1976 nand->ids[1] = second_id_byte;
1977 nand->ids[2] = third_id_byte;
1978 nand->ids[3] = fourth_id_byte;
1979 if (bus_width == 16) {
1980 nand->busw = 16;
1981 chip->options |= NAND_BUSWIDTH_16;
1982 }
1983
1984 nsmtd->owner = THIS_MODULE;
1985
1986 if ((retval = parse_weakblocks()) != 0)
1987 goto error;
1988
1989 if ((retval = parse_weakpages()) != 0)
1990 goto error;
1991
1992 if ((retval = parse_gravepages()) != 0)
1993 goto error;
1994
1995 if ((retval = nand_scan(nsmtd, 1)) != 0) {
1996 NS_ERR("can't register NAND Simulator\n");
1997 if (retval > 0)
1998 retval = -ENXIO;
1999 goto error;
2000 }
2001
2002 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2003 goto err_exit;
2004
2005 if ((retval = init_nandsim(nsmtd)) != 0)
2006 goto err_exit;
2007
2008 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2009 goto err_exit;
2010
2011 if ((retval = nand_default_bbt(nsmtd)) != 0)
2012 goto err_exit;
2013
2014 /* Register NAND partitions */
2015 if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2016 goto err_exit;
2017
2018 return 0;
2019
2020 err_exit:
2021 free_nandsim(nand);
2022 nand_release(nsmtd);
2023 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2024 kfree(nand->partitions[i].name);
2025 error:
2026 kfree(nsmtd);
2027 free_lists();
2028
2029 return retval;
2030 }
2031
2032 module_init(ns_init_module);
2033
2034 /*
2035 * Module clean-up function
2036 */
2037 static void __exit ns_cleanup_module(void)
2038 {
2039 struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2040 int i;
2041
2042 free_nandsim(ns); /* Free nandsim private resources */
2043 nand_release(nsmtd); /* Unregister driver */
2044 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2045 kfree(ns->partitions[i].name);
2046 kfree(nsmtd); /* Free other structures */
2047 free_lists();
2048 }
2049
2050 module_exit(ns_cleanup_module);
2051
2052 MODULE_LICENSE ("GPL");
2053 MODULE_AUTHOR ("Artem B. Bityuckiy");
2054 MODULE_DESCRIPTION ("The NAND flash simulator");
This page took 0.126529 seconds and 5 git commands to generate.