Merge branch 'overlayfs-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[deliverable/linux.git] / drivers / mtd / nand / nandsim.c
1 /*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
6 * Copyright (C) 2004 Nokia Corporation
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24 */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45 #include <linux/seq_file.h>
46 #include <linux/debugfs.h>
47
48 /* Default simulator parameters values */
49 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
50 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
52 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
54 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
56 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57 #endif
58
59 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
60 #define CONFIG_NANDSIM_ACCESS_DELAY 25
61 #endif
62 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
64 #endif
65 #ifndef CONFIG_NANDSIM_ERASE_DELAY
66 #define CONFIG_NANDSIM_ERASE_DELAY 2
67 #endif
68 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
70 #endif
71 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
72 #define CONFIG_NANDSIM_INPUT_CYCLE 50
73 #endif
74 #ifndef CONFIG_NANDSIM_BUS_WIDTH
75 #define CONFIG_NANDSIM_BUS_WIDTH 8
76 #endif
77 #ifndef CONFIG_NANDSIM_DO_DELAYS
78 #define CONFIG_NANDSIM_DO_DELAYS 0
79 #endif
80 #ifndef CONFIG_NANDSIM_LOG
81 #define CONFIG_NANDSIM_LOG 0
82 #endif
83 #ifndef CONFIG_NANDSIM_DBG
84 #define CONFIG_NANDSIM_DBG 0
85 #endif
86 #ifndef CONFIG_NANDSIM_MAX_PARTS
87 #define CONFIG_NANDSIM_MAX_PARTS 32
88 #endif
89
90 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
91 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
92 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
93 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
94 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
95 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
96 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
97 static uint log = CONFIG_NANDSIM_LOG;
98 static uint dbg = CONFIG_NANDSIM_DBG;
99 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
100 static unsigned int parts_num;
101 static char *badblocks = NULL;
102 static char *weakblocks = NULL;
103 static char *weakpages = NULL;
104 static unsigned int bitflips = 0;
105 static char *gravepages = NULL;
106 static unsigned int overridesize = 0;
107 static char *cache_file = NULL;
108 static unsigned int bbt;
109 static unsigned int bch;
110 static u_char id_bytes[8] = {
111 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
112 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
113 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
114 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
115 [4 ... 7] = 0xFF,
116 };
117
118 module_param_array(id_bytes, byte, NULL, 0400);
119 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
120 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
121 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
122 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
123 module_param(access_delay, uint, 0400);
124 module_param(programm_delay, uint, 0400);
125 module_param(erase_delay, uint, 0400);
126 module_param(output_cycle, uint, 0400);
127 module_param(input_cycle, uint, 0400);
128 module_param(bus_width, uint, 0400);
129 module_param(do_delays, uint, 0400);
130 module_param(log, uint, 0400);
131 module_param(dbg, uint, 0400);
132 module_param_array(parts, ulong, &parts_num, 0400);
133 module_param(badblocks, charp, 0400);
134 module_param(weakblocks, charp, 0400);
135 module_param(weakpages, charp, 0400);
136 module_param(bitflips, uint, 0400);
137 module_param(gravepages, charp, 0400);
138 module_param(overridesize, uint, 0400);
139 module_param(cache_file, charp, 0400);
140 module_param(bbt, uint, 0400);
141 module_param(bch, uint, 0400);
142
143 MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command");
144 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
145 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
146 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)");
147 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
148 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
149 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
150 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
151 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
152 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
153 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
154 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
155 MODULE_PARM_DESC(log, "Perform logging if not zero");
156 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
157 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
158 /* Page and erase block positions for the following parameters are independent of any partitions */
159 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
160 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
161 " separated by commas e.g. 113:2 means eb 113"
162 " can be erased only twice before failing");
163 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
164 " separated by commas e.g. 1401:2 means page 1401"
165 " can be written only twice before failing");
166 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
167 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
168 " separated by commas e.g. 1401:2 means page 1401"
169 " can be read only twice before failing");
170 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
171 "The size is specified in erase blocks and as the exponent of a power of two"
172 " e.g. 5 means a size of 32 erase blocks");
173 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
174 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
175 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
176 "be correctable in 512-byte blocks");
177
178 /* The largest possible page size */
179 #define NS_LARGEST_PAGE_SIZE 4096
180
181 /* The prefix for simulator output */
182 #define NS_OUTPUT_PREFIX "[nandsim]"
183
184 /* Simulator's output macros (logging, debugging, warning, error) */
185 #define NS_LOG(args...) \
186 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
187 #define NS_DBG(args...) \
188 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
189 #define NS_WARN(args...) \
190 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
191 #define NS_ERR(args...) \
192 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
193 #define NS_INFO(args...) \
194 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
195
196 /* Busy-wait delay macros (microseconds, milliseconds) */
197 #define NS_UDELAY(us) \
198 do { if (do_delays) udelay(us); } while(0)
199 #define NS_MDELAY(us) \
200 do { if (do_delays) mdelay(us); } while(0)
201
202 /* Is the nandsim structure initialized ? */
203 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
204
205 /* Good operation completion status */
206 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
207
208 /* Operation failed completion status */
209 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
210
211 /* Calculate the page offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET(ns) \
213 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
214
215 /* Calculate the OOB offset in flash RAM image by (row, column) address */
216 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
217
218 /* After a command is input, the simulator goes to one of the following states */
219 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
220 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
221 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
222 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
223 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
224 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
225 #define STATE_CMD_STATUS 0x00000007 /* read status */
226 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
227 #define STATE_CMD_READID 0x0000000A /* read ID */
228 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
229 #define STATE_CMD_RESET 0x0000000C /* reset */
230 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
231 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
232 #define STATE_CMD_MASK 0x0000000F /* command states mask */
233
234 /* After an address is input, the simulator goes to one of these states */
235 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
236 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
237 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
238 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
239 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
240
241 /* During data input/output the simulator is in these states */
242 #define STATE_DATAIN 0x00000100 /* waiting for data input */
243 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
244
245 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
246 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
247 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
248 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
249
250 /* Previous operation is done, ready to accept new requests */
251 #define STATE_READY 0x00000000
252
253 /* This state is used to mark that the next state isn't known yet */
254 #define STATE_UNKNOWN 0x10000000
255
256 /* Simulator's actions bit masks */
257 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
258 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
259 #define ACTION_SECERASE 0x00300000 /* erase sector */
260 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
261 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
262 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
263 #define ACTION_MASK 0x00700000 /* action mask */
264
265 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
266 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
267
268 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
269 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
270 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */
275
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
278
279 /*
280 * Maximum previous states which need to be saved. Currently saving is
281 * only needed for page program operation with preceded read command
282 * (which is only valid for 512-byte pages).
283 */
284 #define NS_MAX_PREVSTATES 1
285
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
288
289 struct nandsim_debug_info {
290 struct dentry *dfs_root;
291 struct dentry *dfs_wear_report;
292 };
293
294 /*
295 * A union to represent flash memory contents and flash buffer.
296 */
297 union ns_mem {
298 u_char *byte; /* for byte access */
299 uint16_t *word; /* for 16-bit word access */
300 };
301
302 /*
303 * The structure which describes all the internal simulator data.
304 */
305 struct nandsim {
306 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
307 unsigned int nbparts;
308
309 uint busw; /* flash chip bus width (8 or 16) */
310 u_char ids[8]; /* chip's ID bytes */
311 uint32_t options; /* chip's characteristic bits */
312 uint32_t state; /* current chip state */
313 uint32_t nxstate; /* next expected state */
314
315 uint32_t *op; /* current operation, NULL operations isn't known yet */
316 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
317 uint16_t npstates; /* number of previous states saved */
318 uint16_t stateidx; /* current state index */
319
320 /* The simulated NAND flash pages array */
321 union ns_mem *pages;
322
323 /* Slab allocator for nand pages */
324 struct kmem_cache *nand_pages_slab;
325
326 /* Internal buffer of page + OOB size bytes */
327 union ns_mem buf;
328
329 /* NAND flash "geometry" */
330 struct {
331 uint64_t totsz; /* total flash size, bytes */
332 uint32_t secsz; /* flash sector (erase block) size, bytes */
333 uint pgsz; /* NAND flash page size, bytes */
334 uint oobsz; /* page OOB area size, bytes */
335 uint64_t totszoob; /* total flash size including OOB, bytes */
336 uint pgszoob; /* page size including OOB , bytes*/
337 uint secszoob; /* sector size including OOB, bytes */
338 uint pgnum; /* total number of pages */
339 uint pgsec; /* number of pages per sector */
340 uint secshift; /* bits number in sector size */
341 uint pgshift; /* bits number in page size */
342 uint pgaddrbytes; /* bytes per page address */
343 uint secaddrbytes; /* bytes per sector address */
344 uint idbytes; /* the number ID bytes that this chip outputs */
345 } geom;
346
347 /* NAND flash internal registers */
348 struct {
349 unsigned command; /* the command register */
350 u_char status; /* the status register */
351 uint row; /* the page number */
352 uint column; /* the offset within page */
353 uint count; /* internal counter */
354 uint num; /* number of bytes which must be processed */
355 uint off; /* fixed page offset */
356 } regs;
357
358 /* NAND flash lines state */
359 struct {
360 int ce; /* chip Enable */
361 int cle; /* command Latch Enable */
362 int ale; /* address Latch Enable */
363 int wp; /* write Protect */
364 } lines;
365
366 /* Fields needed when using a cache file */
367 struct file *cfile; /* Open file */
368 unsigned long *pages_written; /* Which pages have been written */
369 void *file_buf;
370 struct page *held_pages[NS_MAX_HELD_PAGES];
371 int held_cnt;
372
373 struct nandsim_debug_info dbg;
374 };
375
376 /*
377 * Operations array. To perform any operation the simulator must pass
378 * through the correspondent states chain.
379 */
380 static struct nandsim_operations {
381 uint32_t reqopts; /* options which are required to perform the operation */
382 uint32_t states[NS_OPER_STATES]; /* operation's states */
383 } ops[NS_OPER_NUM] = {
384 /* Read page + OOB from the beginning */
385 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
386 STATE_DATAOUT, STATE_READY}},
387 /* Read page + OOB from the second half */
388 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
389 STATE_DATAOUT, STATE_READY}},
390 /* Read OOB */
391 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
392 STATE_DATAOUT, STATE_READY}},
393 /* Program page starting from the beginning */
394 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
395 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
396 /* Program page starting from the beginning */
397 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
398 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
399 /* Program page starting from the second half */
400 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
401 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
402 /* Program OOB */
403 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
404 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
405 /* Erase sector */
406 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
407 /* Read status */
408 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
409 /* Read ID */
410 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
411 /* Large page devices read page */
412 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
413 STATE_DATAOUT, STATE_READY}},
414 /* Large page devices random page read */
415 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
416 STATE_DATAOUT, STATE_READY}},
417 };
418
419 struct weak_block {
420 struct list_head list;
421 unsigned int erase_block_no;
422 unsigned int max_erases;
423 unsigned int erases_done;
424 };
425
426 static LIST_HEAD(weak_blocks);
427
428 struct weak_page {
429 struct list_head list;
430 unsigned int page_no;
431 unsigned int max_writes;
432 unsigned int writes_done;
433 };
434
435 static LIST_HEAD(weak_pages);
436
437 struct grave_page {
438 struct list_head list;
439 unsigned int page_no;
440 unsigned int max_reads;
441 unsigned int reads_done;
442 };
443
444 static LIST_HEAD(grave_pages);
445
446 static unsigned long *erase_block_wear = NULL;
447 static unsigned int wear_eb_count = 0;
448 static unsigned long total_wear = 0;
449
450 /* MTD structure for NAND controller */
451 static struct mtd_info *nsmtd;
452
453 static int nandsim_debugfs_show(struct seq_file *m, void *private)
454 {
455 unsigned long wmin = -1, wmax = 0, avg;
456 unsigned long deciles[10], decile_max[10], tot = 0;
457 unsigned int i;
458
459 /* Calc wear stats */
460 for (i = 0; i < wear_eb_count; ++i) {
461 unsigned long wear = erase_block_wear[i];
462 if (wear < wmin)
463 wmin = wear;
464 if (wear > wmax)
465 wmax = wear;
466 tot += wear;
467 }
468
469 for (i = 0; i < 9; ++i) {
470 deciles[i] = 0;
471 decile_max[i] = (wmax * (i + 1) + 5) / 10;
472 }
473 deciles[9] = 0;
474 decile_max[9] = wmax;
475 for (i = 0; i < wear_eb_count; ++i) {
476 int d;
477 unsigned long wear = erase_block_wear[i];
478 for (d = 0; d < 10; ++d)
479 if (wear <= decile_max[d]) {
480 deciles[d] += 1;
481 break;
482 }
483 }
484 avg = tot / wear_eb_count;
485
486 /* Output wear report */
487 seq_printf(m, "Total numbers of erases: %lu\n", tot);
488 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count);
489 seq_printf(m, "Average number of erases: %lu\n", avg);
490 seq_printf(m, "Maximum number of erases: %lu\n", wmax);
491 seq_printf(m, "Minimum number of erases: %lu\n", wmin);
492 for (i = 0; i < 10; ++i) {
493 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
494 if (from > decile_max[i])
495 continue;
496 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
497 from,
498 decile_max[i],
499 deciles[i]);
500 }
501
502 return 0;
503 }
504
505 static int nandsim_debugfs_open(struct inode *inode, struct file *file)
506 {
507 return single_open(file, nandsim_debugfs_show, inode->i_private);
508 }
509
510 static const struct file_operations dfs_fops = {
511 .open = nandsim_debugfs_open,
512 .read = seq_read,
513 .llseek = seq_lseek,
514 .release = single_release,
515 };
516
517 /**
518 * nandsim_debugfs_create - initialize debugfs
519 * @dev: nandsim device description object
520 *
521 * This function creates all debugfs files for UBI device @ubi. Returns zero in
522 * case of success and a negative error code in case of failure.
523 */
524 static int nandsim_debugfs_create(struct nandsim *dev)
525 {
526 struct nandsim_debug_info *dbg = &dev->dbg;
527 struct dentry *dent;
528 int err;
529
530 if (!IS_ENABLED(CONFIG_DEBUG_FS))
531 return 0;
532
533 dent = debugfs_create_dir("nandsim", NULL);
534 if (IS_ERR_OR_NULL(dent)) {
535 int err = dent ? -ENODEV : PTR_ERR(dent);
536
537 NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
538 err);
539 return err;
540 }
541 dbg->dfs_root = dent;
542
543 dent = debugfs_create_file("wear_report", S_IRUSR,
544 dbg->dfs_root, dev, &dfs_fops);
545 if (IS_ERR_OR_NULL(dent))
546 goto out_remove;
547 dbg->dfs_wear_report = dent;
548
549 return 0;
550
551 out_remove:
552 debugfs_remove_recursive(dbg->dfs_root);
553 err = dent ? PTR_ERR(dent) : -ENODEV;
554 return err;
555 }
556
557 /**
558 * nandsim_debugfs_remove - destroy all debugfs files
559 */
560 static void nandsim_debugfs_remove(struct nandsim *ns)
561 {
562 if (IS_ENABLED(CONFIG_DEBUG_FS))
563 debugfs_remove_recursive(ns->dbg.dfs_root);
564 }
565
566 /*
567 * Allocate array of page pointers, create slab allocation for an array
568 * and initialize the array by NULL pointers.
569 *
570 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
571 */
572 static int alloc_device(struct nandsim *ns)
573 {
574 struct file *cfile;
575 int i, err;
576
577 if (cache_file) {
578 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
579 if (IS_ERR(cfile))
580 return PTR_ERR(cfile);
581 if (!(cfile->f_mode & FMODE_CAN_READ)) {
582 NS_ERR("alloc_device: cache file not readable\n");
583 err = -EINVAL;
584 goto err_close;
585 }
586 if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
587 NS_ERR("alloc_device: cache file not writeable\n");
588 err = -EINVAL;
589 goto err_close;
590 }
591 ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
592 sizeof(unsigned long));
593 if (!ns->pages_written) {
594 NS_ERR("alloc_device: unable to allocate pages written array\n");
595 err = -ENOMEM;
596 goto err_close;
597 }
598 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
599 if (!ns->file_buf) {
600 NS_ERR("alloc_device: unable to allocate file buf\n");
601 err = -ENOMEM;
602 goto err_free;
603 }
604 ns->cfile = cfile;
605 return 0;
606 }
607
608 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
609 if (!ns->pages) {
610 NS_ERR("alloc_device: unable to allocate page array\n");
611 return -ENOMEM;
612 }
613 for (i = 0; i < ns->geom.pgnum; i++) {
614 ns->pages[i].byte = NULL;
615 }
616 ns->nand_pages_slab = kmem_cache_create("nandsim",
617 ns->geom.pgszoob, 0, 0, NULL);
618 if (!ns->nand_pages_slab) {
619 NS_ERR("cache_create: unable to create kmem_cache\n");
620 return -ENOMEM;
621 }
622
623 return 0;
624
625 err_free:
626 vfree(ns->pages_written);
627 err_close:
628 filp_close(cfile, NULL);
629 return err;
630 }
631
632 /*
633 * Free any allocated pages, and free the array of page pointers.
634 */
635 static void free_device(struct nandsim *ns)
636 {
637 int i;
638
639 if (ns->cfile) {
640 kfree(ns->file_buf);
641 vfree(ns->pages_written);
642 filp_close(ns->cfile, NULL);
643 return;
644 }
645
646 if (ns->pages) {
647 for (i = 0; i < ns->geom.pgnum; i++) {
648 if (ns->pages[i].byte)
649 kmem_cache_free(ns->nand_pages_slab,
650 ns->pages[i].byte);
651 }
652 if (ns->nand_pages_slab)
653 kmem_cache_destroy(ns->nand_pages_slab);
654 vfree(ns->pages);
655 }
656 }
657
658 static char *get_partition_name(int i)
659 {
660 return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
661 }
662
663 /*
664 * Initialize the nandsim structure.
665 *
666 * RETURNS: 0 if success, -ERRNO if failure.
667 */
668 static int init_nandsim(struct mtd_info *mtd)
669 {
670 struct nand_chip *chip = mtd->priv;
671 struct nandsim *ns = chip->priv;
672 int i, ret = 0;
673 uint64_t remains;
674 uint64_t next_offset;
675
676 if (NS_IS_INITIALIZED(ns)) {
677 NS_ERR("init_nandsim: nandsim is already initialized\n");
678 return -EIO;
679 }
680
681 /* Force mtd to not do delays */
682 chip->chip_delay = 0;
683
684 /* Initialize the NAND flash parameters */
685 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
686 ns->geom.totsz = mtd->size;
687 ns->geom.pgsz = mtd->writesize;
688 ns->geom.oobsz = mtd->oobsize;
689 ns->geom.secsz = mtd->erasesize;
690 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
691 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz);
692 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
693 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
694 ns->geom.pgshift = chip->page_shift;
695 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
696 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
697 ns->options = 0;
698
699 if (ns->geom.pgsz == 512) {
700 ns->options |= OPT_PAGE512;
701 if (ns->busw == 8)
702 ns->options |= OPT_PAGE512_8BIT;
703 } else if (ns->geom.pgsz == 2048) {
704 ns->options |= OPT_PAGE2048;
705 } else if (ns->geom.pgsz == 4096) {
706 ns->options |= OPT_PAGE4096;
707 } else {
708 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
709 return -EIO;
710 }
711
712 if (ns->options & OPT_SMALLPAGE) {
713 if (ns->geom.totsz <= (32 << 20)) {
714 ns->geom.pgaddrbytes = 3;
715 ns->geom.secaddrbytes = 2;
716 } else {
717 ns->geom.pgaddrbytes = 4;
718 ns->geom.secaddrbytes = 3;
719 }
720 } else {
721 if (ns->geom.totsz <= (128 << 20)) {
722 ns->geom.pgaddrbytes = 4;
723 ns->geom.secaddrbytes = 2;
724 } else {
725 ns->geom.pgaddrbytes = 5;
726 ns->geom.secaddrbytes = 3;
727 }
728 }
729
730 /* Fill the partition_info structure */
731 if (parts_num > ARRAY_SIZE(ns->partitions)) {
732 NS_ERR("too many partitions.\n");
733 return -EINVAL;
734 }
735 remains = ns->geom.totsz;
736 next_offset = 0;
737 for (i = 0; i < parts_num; ++i) {
738 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
739
740 if (!part_sz || part_sz > remains) {
741 NS_ERR("bad partition size.\n");
742 return -EINVAL;
743 }
744 ns->partitions[i].name = get_partition_name(i);
745 if (!ns->partitions[i].name) {
746 NS_ERR("unable to allocate memory.\n");
747 return -ENOMEM;
748 }
749 ns->partitions[i].offset = next_offset;
750 ns->partitions[i].size = part_sz;
751 next_offset += ns->partitions[i].size;
752 remains -= ns->partitions[i].size;
753 }
754 ns->nbparts = parts_num;
755 if (remains) {
756 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
757 NS_ERR("too many partitions.\n");
758 return -EINVAL;
759 }
760 ns->partitions[i].name = get_partition_name(i);
761 if (!ns->partitions[i].name) {
762 NS_ERR("unable to allocate memory.\n");
763 return -ENOMEM;
764 }
765 ns->partitions[i].offset = next_offset;
766 ns->partitions[i].size = remains;
767 ns->nbparts += 1;
768 }
769
770 if (ns->busw == 16)
771 NS_WARN("16-bit flashes support wasn't tested\n");
772
773 printk("flash size: %llu MiB\n",
774 (unsigned long long)ns->geom.totsz >> 20);
775 printk("page size: %u bytes\n", ns->geom.pgsz);
776 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
777 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
778 printk("pages number: %u\n", ns->geom.pgnum);
779 printk("pages per sector: %u\n", ns->geom.pgsec);
780 printk("bus width: %u\n", ns->busw);
781 printk("bits in sector size: %u\n", ns->geom.secshift);
782 printk("bits in page size: %u\n", ns->geom.pgshift);
783 printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1);
784 printk("flash size with OOB: %llu KiB\n",
785 (unsigned long long)ns->geom.totszoob >> 10);
786 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
787 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
788 printk("options: %#x\n", ns->options);
789
790 if ((ret = alloc_device(ns)) != 0)
791 return ret;
792
793 /* Allocate / initialize the internal buffer */
794 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
795 if (!ns->buf.byte) {
796 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
797 ns->geom.pgszoob);
798 return -ENOMEM;
799 }
800 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
801
802 return 0;
803 }
804
805 /*
806 * Free the nandsim structure.
807 */
808 static void free_nandsim(struct nandsim *ns)
809 {
810 kfree(ns->buf.byte);
811 free_device(ns);
812
813 return;
814 }
815
816 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
817 {
818 char *w;
819 int zero_ok;
820 unsigned int erase_block_no;
821 loff_t offset;
822
823 if (!badblocks)
824 return 0;
825 w = badblocks;
826 do {
827 zero_ok = (*w == '0' ? 1 : 0);
828 erase_block_no = simple_strtoul(w, &w, 0);
829 if (!zero_ok && !erase_block_no) {
830 NS_ERR("invalid badblocks.\n");
831 return -EINVAL;
832 }
833 offset = (loff_t)erase_block_no * ns->geom.secsz;
834 if (mtd_block_markbad(mtd, offset)) {
835 NS_ERR("invalid badblocks.\n");
836 return -EINVAL;
837 }
838 if (*w == ',')
839 w += 1;
840 } while (*w);
841 return 0;
842 }
843
844 static int parse_weakblocks(void)
845 {
846 char *w;
847 int zero_ok;
848 unsigned int erase_block_no;
849 unsigned int max_erases;
850 struct weak_block *wb;
851
852 if (!weakblocks)
853 return 0;
854 w = weakblocks;
855 do {
856 zero_ok = (*w == '0' ? 1 : 0);
857 erase_block_no = simple_strtoul(w, &w, 0);
858 if (!zero_ok && !erase_block_no) {
859 NS_ERR("invalid weakblocks.\n");
860 return -EINVAL;
861 }
862 max_erases = 3;
863 if (*w == ':') {
864 w += 1;
865 max_erases = simple_strtoul(w, &w, 0);
866 }
867 if (*w == ',')
868 w += 1;
869 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
870 if (!wb) {
871 NS_ERR("unable to allocate memory.\n");
872 return -ENOMEM;
873 }
874 wb->erase_block_no = erase_block_no;
875 wb->max_erases = max_erases;
876 list_add(&wb->list, &weak_blocks);
877 } while (*w);
878 return 0;
879 }
880
881 static int erase_error(unsigned int erase_block_no)
882 {
883 struct weak_block *wb;
884
885 list_for_each_entry(wb, &weak_blocks, list)
886 if (wb->erase_block_no == erase_block_no) {
887 if (wb->erases_done >= wb->max_erases)
888 return 1;
889 wb->erases_done += 1;
890 return 0;
891 }
892 return 0;
893 }
894
895 static int parse_weakpages(void)
896 {
897 char *w;
898 int zero_ok;
899 unsigned int page_no;
900 unsigned int max_writes;
901 struct weak_page *wp;
902
903 if (!weakpages)
904 return 0;
905 w = weakpages;
906 do {
907 zero_ok = (*w == '0' ? 1 : 0);
908 page_no = simple_strtoul(w, &w, 0);
909 if (!zero_ok && !page_no) {
910 NS_ERR("invalid weakpagess.\n");
911 return -EINVAL;
912 }
913 max_writes = 3;
914 if (*w == ':') {
915 w += 1;
916 max_writes = simple_strtoul(w, &w, 0);
917 }
918 if (*w == ',')
919 w += 1;
920 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
921 if (!wp) {
922 NS_ERR("unable to allocate memory.\n");
923 return -ENOMEM;
924 }
925 wp->page_no = page_no;
926 wp->max_writes = max_writes;
927 list_add(&wp->list, &weak_pages);
928 } while (*w);
929 return 0;
930 }
931
932 static int write_error(unsigned int page_no)
933 {
934 struct weak_page *wp;
935
936 list_for_each_entry(wp, &weak_pages, list)
937 if (wp->page_no == page_no) {
938 if (wp->writes_done >= wp->max_writes)
939 return 1;
940 wp->writes_done += 1;
941 return 0;
942 }
943 return 0;
944 }
945
946 static int parse_gravepages(void)
947 {
948 char *g;
949 int zero_ok;
950 unsigned int page_no;
951 unsigned int max_reads;
952 struct grave_page *gp;
953
954 if (!gravepages)
955 return 0;
956 g = gravepages;
957 do {
958 zero_ok = (*g == '0' ? 1 : 0);
959 page_no = simple_strtoul(g, &g, 0);
960 if (!zero_ok && !page_no) {
961 NS_ERR("invalid gravepagess.\n");
962 return -EINVAL;
963 }
964 max_reads = 3;
965 if (*g == ':') {
966 g += 1;
967 max_reads = simple_strtoul(g, &g, 0);
968 }
969 if (*g == ',')
970 g += 1;
971 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
972 if (!gp) {
973 NS_ERR("unable to allocate memory.\n");
974 return -ENOMEM;
975 }
976 gp->page_no = page_no;
977 gp->max_reads = max_reads;
978 list_add(&gp->list, &grave_pages);
979 } while (*g);
980 return 0;
981 }
982
983 static int read_error(unsigned int page_no)
984 {
985 struct grave_page *gp;
986
987 list_for_each_entry(gp, &grave_pages, list)
988 if (gp->page_no == page_no) {
989 if (gp->reads_done >= gp->max_reads)
990 return 1;
991 gp->reads_done += 1;
992 return 0;
993 }
994 return 0;
995 }
996
997 static void free_lists(void)
998 {
999 struct list_head *pos, *n;
1000 list_for_each_safe(pos, n, &weak_blocks) {
1001 list_del(pos);
1002 kfree(list_entry(pos, struct weak_block, list));
1003 }
1004 list_for_each_safe(pos, n, &weak_pages) {
1005 list_del(pos);
1006 kfree(list_entry(pos, struct weak_page, list));
1007 }
1008 list_for_each_safe(pos, n, &grave_pages) {
1009 list_del(pos);
1010 kfree(list_entry(pos, struct grave_page, list));
1011 }
1012 kfree(erase_block_wear);
1013 }
1014
1015 static int setup_wear_reporting(struct mtd_info *mtd)
1016 {
1017 size_t mem;
1018
1019 wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1020 mem = wear_eb_count * sizeof(unsigned long);
1021 if (mem / sizeof(unsigned long) != wear_eb_count) {
1022 NS_ERR("Too many erase blocks for wear reporting\n");
1023 return -ENOMEM;
1024 }
1025 erase_block_wear = kzalloc(mem, GFP_KERNEL);
1026 if (!erase_block_wear) {
1027 NS_ERR("Too many erase blocks for wear reporting\n");
1028 return -ENOMEM;
1029 }
1030 return 0;
1031 }
1032
1033 static void update_wear(unsigned int erase_block_no)
1034 {
1035 if (!erase_block_wear)
1036 return;
1037 total_wear += 1;
1038 /*
1039 * TODO: Notify this through a debugfs entry,
1040 * instead of showing an error message.
1041 */
1042 if (total_wear == 0)
1043 NS_ERR("Erase counter total overflow\n");
1044 erase_block_wear[erase_block_no] += 1;
1045 if (erase_block_wear[erase_block_no] == 0)
1046 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1047 }
1048
1049 /*
1050 * Returns the string representation of 'state' state.
1051 */
1052 static char *get_state_name(uint32_t state)
1053 {
1054 switch (NS_STATE(state)) {
1055 case STATE_CMD_READ0:
1056 return "STATE_CMD_READ0";
1057 case STATE_CMD_READ1:
1058 return "STATE_CMD_READ1";
1059 case STATE_CMD_PAGEPROG:
1060 return "STATE_CMD_PAGEPROG";
1061 case STATE_CMD_READOOB:
1062 return "STATE_CMD_READOOB";
1063 case STATE_CMD_READSTART:
1064 return "STATE_CMD_READSTART";
1065 case STATE_CMD_ERASE1:
1066 return "STATE_CMD_ERASE1";
1067 case STATE_CMD_STATUS:
1068 return "STATE_CMD_STATUS";
1069 case STATE_CMD_SEQIN:
1070 return "STATE_CMD_SEQIN";
1071 case STATE_CMD_READID:
1072 return "STATE_CMD_READID";
1073 case STATE_CMD_ERASE2:
1074 return "STATE_CMD_ERASE2";
1075 case STATE_CMD_RESET:
1076 return "STATE_CMD_RESET";
1077 case STATE_CMD_RNDOUT:
1078 return "STATE_CMD_RNDOUT";
1079 case STATE_CMD_RNDOUTSTART:
1080 return "STATE_CMD_RNDOUTSTART";
1081 case STATE_ADDR_PAGE:
1082 return "STATE_ADDR_PAGE";
1083 case STATE_ADDR_SEC:
1084 return "STATE_ADDR_SEC";
1085 case STATE_ADDR_ZERO:
1086 return "STATE_ADDR_ZERO";
1087 case STATE_ADDR_COLUMN:
1088 return "STATE_ADDR_COLUMN";
1089 case STATE_DATAIN:
1090 return "STATE_DATAIN";
1091 case STATE_DATAOUT:
1092 return "STATE_DATAOUT";
1093 case STATE_DATAOUT_ID:
1094 return "STATE_DATAOUT_ID";
1095 case STATE_DATAOUT_STATUS:
1096 return "STATE_DATAOUT_STATUS";
1097 case STATE_READY:
1098 return "STATE_READY";
1099 case STATE_UNKNOWN:
1100 return "STATE_UNKNOWN";
1101 }
1102
1103 NS_ERR("get_state_name: unknown state, BUG\n");
1104 return NULL;
1105 }
1106
1107 /*
1108 * Check if command is valid.
1109 *
1110 * RETURNS: 1 if wrong command, 0 if right.
1111 */
1112 static int check_command(int cmd)
1113 {
1114 switch (cmd) {
1115
1116 case NAND_CMD_READ0:
1117 case NAND_CMD_READ1:
1118 case NAND_CMD_READSTART:
1119 case NAND_CMD_PAGEPROG:
1120 case NAND_CMD_READOOB:
1121 case NAND_CMD_ERASE1:
1122 case NAND_CMD_STATUS:
1123 case NAND_CMD_SEQIN:
1124 case NAND_CMD_READID:
1125 case NAND_CMD_ERASE2:
1126 case NAND_CMD_RESET:
1127 case NAND_CMD_RNDOUT:
1128 case NAND_CMD_RNDOUTSTART:
1129 return 0;
1130
1131 default:
1132 return 1;
1133 }
1134 }
1135
1136 /*
1137 * Returns state after command is accepted by command number.
1138 */
1139 static uint32_t get_state_by_command(unsigned command)
1140 {
1141 switch (command) {
1142 case NAND_CMD_READ0:
1143 return STATE_CMD_READ0;
1144 case NAND_CMD_READ1:
1145 return STATE_CMD_READ1;
1146 case NAND_CMD_PAGEPROG:
1147 return STATE_CMD_PAGEPROG;
1148 case NAND_CMD_READSTART:
1149 return STATE_CMD_READSTART;
1150 case NAND_CMD_READOOB:
1151 return STATE_CMD_READOOB;
1152 case NAND_CMD_ERASE1:
1153 return STATE_CMD_ERASE1;
1154 case NAND_CMD_STATUS:
1155 return STATE_CMD_STATUS;
1156 case NAND_CMD_SEQIN:
1157 return STATE_CMD_SEQIN;
1158 case NAND_CMD_READID:
1159 return STATE_CMD_READID;
1160 case NAND_CMD_ERASE2:
1161 return STATE_CMD_ERASE2;
1162 case NAND_CMD_RESET:
1163 return STATE_CMD_RESET;
1164 case NAND_CMD_RNDOUT:
1165 return STATE_CMD_RNDOUT;
1166 case NAND_CMD_RNDOUTSTART:
1167 return STATE_CMD_RNDOUTSTART;
1168 }
1169
1170 NS_ERR("get_state_by_command: unknown command, BUG\n");
1171 return 0;
1172 }
1173
1174 /*
1175 * Move an address byte to the correspondent internal register.
1176 */
1177 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1178 {
1179 uint byte = (uint)bt;
1180
1181 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1182 ns->regs.column |= (byte << 8 * ns->regs.count);
1183 else {
1184 ns->regs.row |= (byte << 8 * (ns->regs.count -
1185 ns->geom.pgaddrbytes +
1186 ns->geom.secaddrbytes));
1187 }
1188
1189 return;
1190 }
1191
1192 /*
1193 * Switch to STATE_READY state.
1194 */
1195 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1196 {
1197 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1198
1199 ns->state = STATE_READY;
1200 ns->nxstate = STATE_UNKNOWN;
1201 ns->op = NULL;
1202 ns->npstates = 0;
1203 ns->stateidx = 0;
1204 ns->regs.num = 0;
1205 ns->regs.count = 0;
1206 ns->regs.off = 0;
1207 ns->regs.row = 0;
1208 ns->regs.column = 0;
1209 ns->regs.status = status;
1210 }
1211
1212 /*
1213 * If the operation isn't known yet, try to find it in the global array
1214 * of supported operations.
1215 *
1216 * Operation can be unknown because of the following.
1217 * 1. New command was accepted and this is the first call to find the
1218 * correspondent states chain. In this case ns->npstates = 0;
1219 * 2. There are several operations which begin with the same command(s)
1220 * (for example program from the second half and read from the
1221 * second half operations both begin with the READ1 command). In this
1222 * case the ns->pstates[] array contains previous states.
1223 *
1224 * Thus, the function tries to find operation containing the following
1225 * states (if the 'flag' parameter is 0):
1226 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1227 *
1228 * If (one and only one) matching operation is found, it is accepted (
1229 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1230 * zeroed).
1231 *
1232 * If there are several matches, the current state is pushed to the
1233 * ns->pstates.
1234 *
1235 * The operation can be unknown only while commands are input to the chip.
1236 * As soon as address command is accepted, the operation must be known.
1237 * In such situation the function is called with 'flag' != 0, and the
1238 * operation is searched using the following pattern:
1239 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1240 *
1241 * It is supposed that this pattern must either match one operation or
1242 * none. There can't be ambiguity in that case.
1243 *
1244 * If no matches found, the function does the following:
1245 * 1. if there are saved states present, try to ignore them and search
1246 * again only using the last command. If nothing was found, switch
1247 * to the STATE_READY state.
1248 * 2. if there are no saved states, switch to the STATE_READY state.
1249 *
1250 * RETURNS: -2 - no matched operations found.
1251 * -1 - several matches.
1252 * 0 - operation is found.
1253 */
1254 static int find_operation(struct nandsim *ns, uint32_t flag)
1255 {
1256 int opsfound = 0;
1257 int i, j, idx = 0;
1258
1259 for (i = 0; i < NS_OPER_NUM; i++) {
1260
1261 int found = 1;
1262
1263 if (!(ns->options & ops[i].reqopts))
1264 /* Ignore operations we can't perform */
1265 continue;
1266
1267 if (flag) {
1268 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1269 continue;
1270 } else {
1271 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1272 continue;
1273 }
1274
1275 for (j = 0; j < ns->npstates; j++)
1276 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1277 && (ns->options & ops[idx].reqopts)) {
1278 found = 0;
1279 break;
1280 }
1281
1282 if (found) {
1283 idx = i;
1284 opsfound += 1;
1285 }
1286 }
1287
1288 if (opsfound == 1) {
1289 /* Exact match */
1290 ns->op = &ops[idx].states[0];
1291 if (flag) {
1292 /*
1293 * In this case the find_operation function was
1294 * called when address has just began input. But it isn't
1295 * yet fully input and the current state must
1296 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1297 * state must be the next state (ns->nxstate).
1298 */
1299 ns->stateidx = ns->npstates - 1;
1300 } else {
1301 ns->stateidx = ns->npstates;
1302 }
1303 ns->npstates = 0;
1304 ns->state = ns->op[ns->stateidx];
1305 ns->nxstate = ns->op[ns->stateidx + 1];
1306 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1307 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1308 return 0;
1309 }
1310
1311 if (opsfound == 0) {
1312 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1313 if (ns->npstates != 0) {
1314 NS_DBG("find_operation: no operation found, try again with state %s\n",
1315 get_state_name(ns->state));
1316 ns->npstates = 0;
1317 return find_operation(ns, 0);
1318
1319 }
1320 NS_DBG("find_operation: no operations found\n");
1321 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1322 return -2;
1323 }
1324
1325 if (flag) {
1326 /* This shouldn't happen */
1327 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1328 return -2;
1329 }
1330
1331 NS_DBG("find_operation: there is still ambiguity\n");
1332
1333 ns->pstates[ns->npstates++] = ns->state;
1334
1335 return -1;
1336 }
1337
1338 static void put_pages(struct nandsim *ns)
1339 {
1340 int i;
1341
1342 for (i = 0; i < ns->held_cnt; i++)
1343 page_cache_release(ns->held_pages[i]);
1344 }
1345
1346 /* Get page cache pages in advance to provide NOFS memory allocation */
1347 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1348 {
1349 pgoff_t index, start_index, end_index;
1350 struct page *page;
1351 struct address_space *mapping = file->f_mapping;
1352
1353 start_index = pos >> PAGE_CACHE_SHIFT;
1354 end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1355 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1356 return -EINVAL;
1357 ns->held_cnt = 0;
1358 for (index = start_index; index <= end_index; index++) {
1359 page = find_get_page(mapping, index);
1360 if (page == NULL) {
1361 page = find_or_create_page(mapping, index, GFP_NOFS);
1362 if (page == NULL) {
1363 write_inode_now(mapping->host, 1);
1364 page = find_or_create_page(mapping, index, GFP_NOFS);
1365 }
1366 if (page == NULL) {
1367 put_pages(ns);
1368 return -ENOMEM;
1369 }
1370 unlock_page(page);
1371 }
1372 ns->held_pages[ns->held_cnt++] = page;
1373 }
1374 return 0;
1375 }
1376
1377 static int set_memalloc(void)
1378 {
1379 if (current->flags & PF_MEMALLOC)
1380 return 0;
1381 current->flags |= PF_MEMALLOC;
1382 return 1;
1383 }
1384
1385 static void clear_memalloc(int memalloc)
1386 {
1387 if (memalloc)
1388 current->flags &= ~PF_MEMALLOC;
1389 }
1390
1391 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1392 {
1393 ssize_t tx;
1394 int err, memalloc;
1395
1396 err = get_pages(ns, file, count, pos);
1397 if (err)
1398 return err;
1399 memalloc = set_memalloc();
1400 tx = kernel_read(file, pos, buf, count);
1401 clear_memalloc(memalloc);
1402 put_pages(ns);
1403 return tx;
1404 }
1405
1406 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1407 {
1408 ssize_t tx;
1409 int err, memalloc;
1410
1411 err = get_pages(ns, file, count, pos);
1412 if (err)
1413 return err;
1414 memalloc = set_memalloc();
1415 tx = kernel_write(file, buf, count, pos);
1416 clear_memalloc(memalloc);
1417 put_pages(ns);
1418 return tx;
1419 }
1420
1421 /*
1422 * Returns a pointer to the current page.
1423 */
1424 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1425 {
1426 return &(ns->pages[ns->regs.row]);
1427 }
1428
1429 /*
1430 * Retuns a pointer to the current byte, within the current page.
1431 */
1432 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1433 {
1434 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1435 }
1436
1437 static int do_read_error(struct nandsim *ns, int num)
1438 {
1439 unsigned int page_no = ns->regs.row;
1440
1441 if (read_error(page_no)) {
1442 prandom_bytes(ns->buf.byte, num);
1443 NS_WARN("simulating read error in page %u\n", page_no);
1444 return 1;
1445 }
1446 return 0;
1447 }
1448
1449 static void do_bit_flips(struct nandsim *ns, int num)
1450 {
1451 if (bitflips && prandom_u32() < (1 << 22)) {
1452 int flips = 1;
1453 if (bitflips > 1)
1454 flips = (prandom_u32() % (int) bitflips) + 1;
1455 while (flips--) {
1456 int pos = prandom_u32() % (num * 8);
1457 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1458 NS_WARN("read_page: flipping bit %d in page %d "
1459 "reading from %d ecc: corrected=%u failed=%u\n",
1460 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1461 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1462 }
1463 }
1464 }
1465
1466 /*
1467 * Fill the NAND buffer with data read from the specified page.
1468 */
1469 static void read_page(struct nandsim *ns, int num)
1470 {
1471 union ns_mem *mypage;
1472
1473 if (ns->cfile) {
1474 if (!test_bit(ns->regs.row, ns->pages_written)) {
1475 NS_DBG("read_page: page %d not written\n", ns->regs.row);
1476 memset(ns->buf.byte, 0xFF, num);
1477 } else {
1478 loff_t pos;
1479 ssize_t tx;
1480
1481 NS_DBG("read_page: page %d written, reading from %d\n",
1482 ns->regs.row, ns->regs.column + ns->regs.off);
1483 if (do_read_error(ns, num))
1484 return;
1485 pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1486 tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1487 if (tx != num) {
1488 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1489 return;
1490 }
1491 do_bit_flips(ns, num);
1492 }
1493 return;
1494 }
1495
1496 mypage = NS_GET_PAGE(ns);
1497 if (mypage->byte == NULL) {
1498 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1499 memset(ns->buf.byte, 0xFF, num);
1500 } else {
1501 NS_DBG("read_page: page %d allocated, reading from %d\n",
1502 ns->regs.row, ns->regs.column + ns->regs.off);
1503 if (do_read_error(ns, num))
1504 return;
1505 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1506 do_bit_flips(ns, num);
1507 }
1508 }
1509
1510 /*
1511 * Erase all pages in the specified sector.
1512 */
1513 static void erase_sector(struct nandsim *ns)
1514 {
1515 union ns_mem *mypage;
1516 int i;
1517
1518 if (ns->cfile) {
1519 for (i = 0; i < ns->geom.pgsec; i++)
1520 if (__test_and_clear_bit(ns->regs.row + i,
1521 ns->pages_written)) {
1522 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1523 }
1524 return;
1525 }
1526
1527 mypage = NS_GET_PAGE(ns);
1528 for (i = 0; i < ns->geom.pgsec; i++) {
1529 if (mypage->byte != NULL) {
1530 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1531 kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1532 mypage->byte = NULL;
1533 }
1534 mypage++;
1535 }
1536 }
1537
1538 /*
1539 * Program the specified page with the contents from the NAND buffer.
1540 */
1541 static int prog_page(struct nandsim *ns, int num)
1542 {
1543 int i;
1544 union ns_mem *mypage;
1545 u_char *pg_off;
1546
1547 if (ns->cfile) {
1548 loff_t off;
1549 ssize_t tx;
1550 int all;
1551
1552 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1553 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1554 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1555 if (!test_bit(ns->regs.row, ns->pages_written)) {
1556 all = 1;
1557 memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1558 } else {
1559 all = 0;
1560 tx = read_file(ns, ns->cfile, pg_off, num, off);
1561 if (tx != num) {
1562 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1563 return -1;
1564 }
1565 }
1566 for (i = 0; i < num; i++)
1567 pg_off[i] &= ns->buf.byte[i];
1568 if (all) {
1569 loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1570 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1571 if (tx != ns->geom.pgszoob) {
1572 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1573 return -1;
1574 }
1575 __set_bit(ns->regs.row, ns->pages_written);
1576 } else {
1577 tx = write_file(ns, ns->cfile, pg_off, num, off);
1578 if (tx != num) {
1579 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1580 return -1;
1581 }
1582 }
1583 return 0;
1584 }
1585
1586 mypage = NS_GET_PAGE(ns);
1587 if (mypage->byte == NULL) {
1588 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1589 /*
1590 * We allocate memory with GFP_NOFS because a flash FS may
1591 * utilize this. If it is holding an FS lock, then gets here,
1592 * then kernel memory alloc runs writeback which goes to the FS
1593 * again and deadlocks. This was seen in practice.
1594 */
1595 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1596 if (mypage->byte == NULL) {
1597 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1598 return -1;
1599 }
1600 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1601 }
1602
1603 pg_off = NS_PAGE_BYTE_OFF(ns);
1604 for (i = 0; i < num; i++)
1605 pg_off[i] &= ns->buf.byte[i];
1606
1607 return 0;
1608 }
1609
1610 /*
1611 * If state has any action bit, perform this action.
1612 *
1613 * RETURNS: 0 if success, -1 if error.
1614 */
1615 static int do_state_action(struct nandsim *ns, uint32_t action)
1616 {
1617 int num;
1618 int busdiv = ns->busw == 8 ? 1 : 2;
1619 unsigned int erase_block_no, page_no;
1620
1621 action &= ACTION_MASK;
1622
1623 /* Check that page address input is correct */
1624 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1625 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1626 return -1;
1627 }
1628
1629 switch (action) {
1630
1631 case ACTION_CPY:
1632 /*
1633 * Copy page data to the internal buffer.
1634 */
1635
1636 /* Column shouldn't be very large */
1637 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1638 NS_ERR("do_state_action: column number is too large\n");
1639 break;
1640 }
1641 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1642 read_page(ns, num);
1643
1644 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1645 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1646
1647 if (ns->regs.off == 0)
1648 NS_LOG("read page %d\n", ns->regs.row);
1649 else if (ns->regs.off < ns->geom.pgsz)
1650 NS_LOG("read page %d (second half)\n", ns->regs.row);
1651 else
1652 NS_LOG("read OOB of page %d\n", ns->regs.row);
1653
1654 NS_UDELAY(access_delay);
1655 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1656
1657 break;
1658
1659 case ACTION_SECERASE:
1660 /*
1661 * Erase sector.
1662 */
1663
1664 if (ns->lines.wp) {
1665 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1666 return -1;
1667 }
1668
1669 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1670 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1671 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1672 return -1;
1673 }
1674
1675 ns->regs.row = (ns->regs.row <<
1676 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1677 ns->regs.column = 0;
1678
1679 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1680
1681 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1682 ns->regs.row, NS_RAW_OFFSET(ns));
1683 NS_LOG("erase sector %u\n", erase_block_no);
1684
1685 erase_sector(ns);
1686
1687 NS_MDELAY(erase_delay);
1688
1689 if (erase_block_wear)
1690 update_wear(erase_block_no);
1691
1692 if (erase_error(erase_block_no)) {
1693 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1694 return -1;
1695 }
1696
1697 break;
1698
1699 case ACTION_PRGPAGE:
1700 /*
1701 * Program page - move internal buffer data to the page.
1702 */
1703
1704 if (ns->lines.wp) {
1705 NS_WARN("do_state_action: device is write-protected, programm\n");
1706 return -1;
1707 }
1708
1709 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1710 if (num != ns->regs.count) {
1711 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1712 ns->regs.count, num);
1713 return -1;
1714 }
1715
1716 if (prog_page(ns, num) == -1)
1717 return -1;
1718
1719 page_no = ns->regs.row;
1720
1721 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1722 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1723 NS_LOG("programm page %d\n", ns->regs.row);
1724
1725 NS_UDELAY(programm_delay);
1726 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1727
1728 if (write_error(page_no)) {
1729 NS_WARN("simulating write failure in page %u\n", page_no);
1730 return -1;
1731 }
1732
1733 break;
1734
1735 case ACTION_ZEROOFF:
1736 NS_DBG("do_state_action: set internal offset to 0\n");
1737 ns->regs.off = 0;
1738 break;
1739
1740 case ACTION_HALFOFF:
1741 if (!(ns->options & OPT_PAGE512_8BIT)) {
1742 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1743 "byte page size 8x chips\n");
1744 return -1;
1745 }
1746 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1747 ns->regs.off = ns->geom.pgsz/2;
1748 break;
1749
1750 case ACTION_OOBOFF:
1751 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1752 ns->regs.off = ns->geom.pgsz;
1753 break;
1754
1755 default:
1756 NS_DBG("do_state_action: BUG! unknown action\n");
1757 }
1758
1759 return 0;
1760 }
1761
1762 /*
1763 * Switch simulator's state.
1764 */
1765 static void switch_state(struct nandsim *ns)
1766 {
1767 if (ns->op) {
1768 /*
1769 * The current operation have already been identified.
1770 * Just follow the states chain.
1771 */
1772
1773 ns->stateidx += 1;
1774 ns->state = ns->nxstate;
1775 ns->nxstate = ns->op[ns->stateidx + 1];
1776
1777 NS_DBG("switch_state: operation is known, switch to the next state, "
1778 "state: %s, nxstate: %s\n",
1779 get_state_name(ns->state), get_state_name(ns->nxstate));
1780
1781 /* See, whether we need to do some action */
1782 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1783 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1784 return;
1785 }
1786
1787 } else {
1788 /*
1789 * We don't yet know which operation we perform.
1790 * Try to identify it.
1791 */
1792
1793 /*
1794 * The only event causing the switch_state function to
1795 * be called with yet unknown operation is new command.
1796 */
1797 ns->state = get_state_by_command(ns->regs.command);
1798
1799 NS_DBG("switch_state: operation is unknown, try to find it\n");
1800
1801 if (find_operation(ns, 0) != 0)
1802 return;
1803
1804 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1805 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1806 return;
1807 }
1808 }
1809
1810 /* For 16x devices column means the page offset in words */
1811 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1812 NS_DBG("switch_state: double the column number for 16x device\n");
1813 ns->regs.column <<= 1;
1814 }
1815
1816 if (NS_STATE(ns->nxstate) == STATE_READY) {
1817 /*
1818 * The current state is the last. Return to STATE_READY
1819 */
1820
1821 u_char status = NS_STATUS_OK(ns);
1822
1823 /* In case of data states, see if all bytes were input/output */
1824 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1825 && ns->regs.count != ns->regs.num) {
1826 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1827 ns->regs.num - ns->regs.count);
1828 status = NS_STATUS_FAILED(ns);
1829 }
1830
1831 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1832
1833 switch_to_ready_state(ns, status);
1834
1835 return;
1836 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1837 /*
1838 * If the next state is data input/output, switch to it now
1839 */
1840
1841 ns->state = ns->nxstate;
1842 ns->nxstate = ns->op[++ns->stateidx + 1];
1843 ns->regs.num = ns->regs.count = 0;
1844
1845 NS_DBG("switch_state: the next state is data I/O, switch, "
1846 "state: %s, nxstate: %s\n",
1847 get_state_name(ns->state), get_state_name(ns->nxstate));
1848
1849 /*
1850 * Set the internal register to the count of bytes which
1851 * are expected to be input or output
1852 */
1853 switch (NS_STATE(ns->state)) {
1854 case STATE_DATAIN:
1855 case STATE_DATAOUT:
1856 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1857 break;
1858
1859 case STATE_DATAOUT_ID:
1860 ns->regs.num = ns->geom.idbytes;
1861 break;
1862
1863 case STATE_DATAOUT_STATUS:
1864 ns->regs.count = ns->regs.num = 0;
1865 break;
1866
1867 default:
1868 NS_ERR("switch_state: BUG! unknown data state\n");
1869 }
1870
1871 } else if (ns->nxstate & STATE_ADDR_MASK) {
1872 /*
1873 * If the next state is address input, set the internal
1874 * register to the number of expected address bytes
1875 */
1876
1877 ns->regs.count = 0;
1878
1879 switch (NS_STATE(ns->nxstate)) {
1880 case STATE_ADDR_PAGE:
1881 ns->regs.num = ns->geom.pgaddrbytes;
1882
1883 break;
1884 case STATE_ADDR_SEC:
1885 ns->regs.num = ns->geom.secaddrbytes;
1886 break;
1887
1888 case STATE_ADDR_ZERO:
1889 ns->regs.num = 1;
1890 break;
1891
1892 case STATE_ADDR_COLUMN:
1893 /* Column address is always 2 bytes */
1894 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1895 break;
1896
1897 default:
1898 NS_ERR("switch_state: BUG! unknown address state\n");
1899 }
1900 } else {
1901 /*
1902 * Just reset internal counters.
1903 */
1904
1905 ns->regs.num = 0;
1906 ns->regs.count = 0;
1907 }
1908 }
1909
1910 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1911 {
1912 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1913 u_char outb = 0x00;
1914
1915 /* Sanity and correctness checks */
1916 if (!ns->lines.ce) {
1917 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1918 return outb;
1919 }
1920 if (ns->lines.ale || ns->lines.cle) {
1921 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1922 return outb;
1923 }
1924 if (!(ns->state & STATE_DATAOUT_MASK)) {
1925 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1926 "return %#x\n", get_state_name(ns->state), (uint)outb);
1927 return outb;
1928 }
1929
1930 /* Status register may be read as many times as it is wanted */
1931 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1932 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1933 return ns->regs.status;
1934 }
1935
1936 /* Check if there is any data in the internal buffer which may be read */
1937 if (ns->regs.count == ns->regs.num) {
1938 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1939 return outb;
1940 }
1941
1942 switch (NS_STATE(ns->state)) {
1943 case STATE_DATAOUT:
1944 if (ns->busw == 8) {
1945 outb = ns->buf.byte[ns->regs.count];
1946 ns->regs.count += 1;
1947 } else {
1948 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1949 ns->regs.count += 2;
1950 }
1951 break;
1952 case STATE_DATAOUT_ID:
1953 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1954 outb = ns->ids[ns->regs.count];
1955 ns->regs.count += 1;
1956 break;
1957 default:
1958 BUG();
1959 }
1960
1961 if (ns->regs.count == ns->regs.num) {
1962 NS_DBG("read_byte: all bytes were read\n");
1963
1964 if (NS_STATE(ns->nxstate) == STATE_READY)
1965 switch_state(ns);
1966 }
1967
1968 return outb;
1969 }
1970
1971 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1972 {
1973 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1974
1975 /* Sanity and correctness checks */
1976 if (!ns->lines.ce) {
1977 NS_ERR("write_byte: chip is disabled, ignore write\n");
1978 return;
1979 }
1980 if (ns->lines.ale && ns->lines.cle) {
1981 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1982 return;
1983 }
1984
1985 if (ns->lines.cle == 1) {
1986 /*
1987 * The byte written is a command.
1988 */
1989
1990 if (byte == NAND_CMD_RESET) {
1991 NS_LOG("reset chip\n");
1992 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1993 return;
1994 }
1995
1996 /* Check that the command byte is correct */
1997 if (check_command(byte)) {
1998 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1999 return;
2000 }
2001
2002 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2003 || NS_STATE(ns->state) == STATE_DATAOUT) {
2004 int row = ns->regs.row;
2005
2006 switch_state(ns);
2007 if (byte == NAND_CMD_RNDOUT)
2008 ns->regs.row = row;
2009 }
2010
2011 /* Check if chip is expecting command */
2012 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2013 /* Do not warn if only 2 id bytes are read */
2014 if (!(ns->regs.command == NAND_CMD_READID &&
2015 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2016 /*
2017 * We are in situation when something else (not command)
2018 * was expected but command was input. In this case ignore
2019 * previous command(s)/state(s) and accept the last one.
2020 */
2021 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2022 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2023 }
2024 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2025 }
2026
2027 NS_DBG("command byte corresponding to %s state accepted\n",
2028 get_state_name(get_state_by_command(byte)));
2029 ns->regs.command = byte;
2030 switch_state(ns);
2031
2032 } else if (ns->lines.ale == 1) {
2033 /*
2034 * The byte written is an address.
2035 */
2036
2037 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2038
2039 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2040
2041 if (find_operation(ns, 1) < 0)
2042 return;
2043
2044 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2045 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2046 return;
2047 }
2048
2049 ns->regs.count = 0;
2050 switch (NS_STATE(ns->nxstate)) {
2051 case STATE_ADDR_PAGE:
2052 ns->regs.num = ns->geom.pgaddrbytes;
2053 break;
2054 case STATE_ADDR_SEC:
2055 ns->regs.num = ns->geom.secaddrbytes;
2056 break;
2057 case STATE_ADDR_ZERO:
2058 ns->regs.num = 1;
2059 break;
2060 default:
2061 BUG();
2062 }
2063 }
2064
2065 /* Check that chip is expecting address */
2066 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2067 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2068 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2069 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2070 return;
2071 }
2072
2073 /* Check if this is expected byte */
2074 if (ns->regs.count == ns->regs.num) {
2075 NS_ERR("write_byte: no more address bytes expected\n");
2076 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2077 return;
2078 }
2079
2080 accept_addr_byte(ns, byte);
2081
2082 ns->regs.count += 1;
2083
2084 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2085 (uint)byte, ns->regs.count, ns->regs.num);
2086
2087 if (ns->regs.count == ns->regs.num) {
2088 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2089 switch_state(ns);
2090 }
2091
2092 } else {
2093 /*
2094 * The byte written is an input data.
2095 */
2096
2097 /* Check that chip is expecting data input */
2098 if (!(ns->state & STATE_DATAIN_MASK)) {
2099 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2100 "switch to %s\n", (uint)byte,
2101 get_state_name(ns->state), get_state_name(STATE_READY));
2102 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2103 return;
2104 }
2105
2106 /* Check if this is expected byte */
2107 if (ns->regs.count == ns->regs.num) {
2108 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2109 ns->regs.num);
2110 return;
2111 }
2112
2113 if (ns->busw == 8) {
2114 ns->buf.byte[ns->regs.count] = byte;
2115 ns->regs.count += 1;
2116 } else {
2117 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2118 ns->regs.count += 2;
2119 }
2120 }
2121
2122 return;
2123 }
2124
2125 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2126 {
2127 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2128
2129 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2130 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2131 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2132
2133 if (cmd != NAND_CMD_NONE)
2134 ns_nand_write_byte(mtd, cmd);
2135 }
2136
2137 static int ns_device_ready(struct mtd_info *mtd)
2138 {
2139 NS_DBG("device_ready\n");
2140 return 1;
2141 }
2142
2143 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2144 {
2145 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2146
2147 NS_DBG("read_word\n");
2148
2149 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2150 }
2151
2152 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2153 {
2154 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2155
2156 /* Check that chip is expecting data input */
2157 if (!(ns->state & STATE_DATAIN_MASK)) {
2158 NS_ERR("write_buf: data input isn't expected, state is %s, "
2159 "switch to STATE_READY\n", get_state_name(ns->state));
2160 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2161 return;
2162 }
2163
2164 /* Check if these are expected bytes */
2165 if (ns->regs.count + len > ns->regs.num) {
2166 NS_ERR("write_buf: too many input bytes\n");
2167 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2168 return;
2169 }
2170
2171 memcpy(ns->buf.byte + ns->regs.count, buf, len);
2172 ns->regs.count += len;
2173
2174 if (ns->regs.count == ns->regs.num) {
2175 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2176 }
2177 }
2178
2179 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2180 {
2181 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2182
2183 /* Sanity and correctness checks */
2184 if (!ns->lines.ce) {
2185 NS_ERR("read_buf: chip is disabled\n");
2186 return;
2187 }
2188 if (ns->lines.ale || ns->lines.cle) {
2189 NS_ERR("read_buf: ALE or CLE pin is high\n");
2190 return;
2191 }
2192 if (!(ns->state & STATE_DATAOUT_MASK)) {
2193 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2194 get_state_name(ns->state));
2195 return;
2196 }
2197
2198 if (NS_STATE(ns->state) != STATE_DATAOUT) {
2199 int i;
2200
2201 for (i = 0; i < len; i++)
2202 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2203
2204 return;
2205 }
2206
2207 /* Check if these are expected bytes */
2208 if (ns->regs.count + len > ns->regs.num) {
2209 NS_ERR("read_buf: too many bytes to read\n");
2210 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2211 return;
2212 }
2213
2214 memcpy(buf, ns->buf.byte + ns->regs.count, len);
2215 ns->regs.count += len;
2216
2217 if (ns->regs.count == ns->regs.num) {
2218 if (NS_STATE(ns->nxstate) == STATE_READY)
2219 switch_state(ns);
2220 }
2221
2222 return;
2223 }
2224
2225 /*
2226 * Module initialization function
2227 */
2228 static int __init ns_init_module(void)
2229 {
2230 struct nand_chip *chip;
2231 struct nandsim *nand;
2232 int retval = -ENOMEM, i;
2233
2234 if (bus_width != 8 && bus_width != 16) {
2235 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2236 return -EINVAL;
2237 }
2238
2239 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2240 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2241 + sizeof(struct nandsim), GFP_KERNEL);
2242 if (!nsmtd) {
2243 NS_ERR("unable to allocate core structures.\n");
2244 return -ENOMEM;
2245 }
2246 chip = (struct nand_chip *)(nsmtd + 1);
2247 nsmtd->priv = (void *)chip;
2248 nand = (struct nandsim *)(chip + 1);
2249 chip->priv = (void *)nand;
2250
2251 /*
2252 * Register simulator's callbacks.
2253 */
2254 chip->cmd_ctrl = ns_hwcontrol;
2255 chip->read_byte = ns_nand_read_byte;
2256 chip->dev_ready = ns_device_ready;
2257 chip->write_buf = ns_nand_write_buf;
2258 chip->read_buf = ns_nand_read_buf;
2259 chip->read_word = ns_nand_read_word;
2260 chip->ecc.mode = NAND_ECC_SOFT;
2261 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2262 /* and 'badblocks' parameters to work */
2263 chip->options |= NAND_SKIP_BBTSCAN;
2264
2265 switch (bbt) {
2266 case 2:
2267 chip->bbt_options |= NAND_BBT_NO_OOB;
2268 case 1:
2269 chip->bbt_options |= NAND_BBT_USE_FLASH;
2270 case 0:
2271 break;
2272 default:
2273 NS_ERR("bbt has to be 0..2\n");
2274 retval = -EINVAL;
2275 goto error;
2276 }
2277 /*
2278 * Perform minimum nandsim structure initialization to handle
2279 * the initial ID read command correctly
2280 */
2281 if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2282 nand->geom.idbytes = 8;
2283 else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2284 nand->geom.idbytes = 6;
2285 else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2286 nand->geom.idbytes = 4;
2287 else
2288 nand->geom.idbytes = 2;
2289 nand->regs.status = NS_STATUS_OK(nand);
2290 nand->nxstate = STATE_UNKNOWN;
2291 nand->options |= OPT_PAGE512; /* temporary value */
2292 memcpy(nand->ids, id_bytes, sizeof(nand->ids));
2293 if (bus_width == 16) {
2294 nand->busw = 16;
2295 chip->options |= NAND_BUSWIDTH_16;
2296 }
2297
2298 nsmtd->owner = THIS_MODULE;
2299
2300 if ((retval = parse_weakblocks()) != 0)
2301 goto error;
2302
2303 if ((retval = parse_weakpages()) != 0)
2304 goto error;
2305
2306 if ((retval = parse_gravepages()) != 0)
2307 goto error;
2308
2309 retval = nand_scan_ident(nsmtd, 1, NULL);
2310 if (retval) {
2311 NS_ERR("cannot scan NAND Simulator device\n");
2312 if (retval > 0)
2313 retval = -ENXIO;
2314 goto error;
2315 }
2316
2317 if (bch) {
2318 unsigned int eccsteps, eccbytes;
2319 if (!mtd_nand_has_bch()) {
2320 NS_ERR("BCH ECC support is disabled\n");
2321 retval = -EINVAL;
2322 goto error;
2323 }
2324 /* use 512-byte ecc blocks */
2325 eccsteps = nsmtd->writesize/512;
2326 eccbytes = (bch*13+7)/8;
2327 /* do not bother supporting small page devices */
2328 if ((nsmtd->oobsize < 64) || !eccsteps) {
2329 NS_ERR("bch not available on small page devices\n");
2330 retval = -EINVAL;
2331 goto error;
2332 }
2333 if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2334 NS_ERR("invalid bch value %u\n", bch);
2335 retval = -EINVAL;
2336 goto error;
2337 }
2338 chip->ecc.mode = NAND_ECC_SOFT_BCH;
2339 chip->ecc.size = 512;
2340 chip->ecc.strength = bch;
2341 chip->ecc.bytes = eccbytes;
2342 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2343 }
2344
2345 retval = nand_scan_tail(nsmtd);
2346 if (retval) {
2347 NS_ERR("can't register NAND Simulator\n");
2348 if (retval > 0)
2349 retval = -ENXIO;
2350 goto error;
2351 }
2352
2353 if (overridesize) {
2354 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2355 if (new_size >> overridesize != nsmtd->erasesize) {
2356 NS_ERR("overridesize is too big\n");
2357 retval = -EINVAL;
2358 goto err_exit;
2359 }
2360 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2361 nsmtd->size = new_size;
2362 chip->chipsize = new_size;
2363 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2364 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2365 }
2366
2367 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2368 goto err_exit;
2369
2370 if ((retval = nandsim_debugfs_create(nand)) != 0)
2371 goto err_exit;
2372
2373 if ((retval = init_nandsim(nsmtd)) != 0)
2374 goto err_exit;
2375
2376 if ((retval = chip->scan_bbt(nsmtd)) != 0)
2377 goto err_exit;
2378
2379 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2380 goto err_exit;
2381
2382 /* Register NAND partitions */
2383 retval = mtd_device_register(nsmtd, &nand->partitions[0],
2384 nand->nbparts);
2385 if (retval != 0)
2386 goto err_exit;
2387
2388 return 0;
2389
2390 err_exit:
2391 free_nandsim(nand);
2392 nand_release(nsmtd);
2393 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2394 kfree(nand->partitions[i].name);
2395 error:
2396 kfree(nsmtd);
2397 free_lists();
2398
2399 return retval;
2400 }
2401
2402 module_init(ns_init_module);
2403
2404 /*
2405 * Module clean-up function
2406 */
2407 static void __exit ns_cleanup_module(void)
2408 {
2409 struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2410 int i;
2411
2412 nandsim_debugfs_remove(ns);
2413 free_nandsim(ns); /* Free nandsim private resources */
2414 nand_release(nsmtd); /* Unregister driver */
2415 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2416 kfree(ns->partitions[i].name);
2417 kfree(nsmtd); /* Free other structures */
2418 free_lists();
2419 }
2420
2421 module_exit(ns_cleanup_module);
2422
2423 MODULE_LICENSE ("GPL");
2424 MODULE_AUTHOR ("Artem B. Bityuckiy");
2425 MODULE_DESCRIPTION ("The NAND flash simulator");
This page took 0.078832 seconds and 6 git commands to generate.