Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / drivers / mtd / nand / omap2.c
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25
26 #ifdef CONFIG_MTD_NAND_OMAP_BCH
27 #include <linux/bch.h>
28 #endif
29
30 #include <linux/platform_data/mtd-nand-omap2.h>
31
32 #define DRIVER_NAME "omap2-nand"
33 #define OMAP_NAND_TIMEOUT_MS 5000
34
35 #define NAND_Ecc_P1e (1 << 0)
36 #define NAND_Ecc_P2e (1 << 1)
37 #define NAND_Ecc_P4e (1 << 2)
38 #define NAND_Ecc_P8e (1 << 3)
39 #define NAND_Ecc_P16e (1 << 4)
40 #define NAND_Ecc_P32e (1 << 5)
41 #define NAND_Ecc_P64e (1 << 6)
42 #define NAND_Ecc_P128e (1 << 7)
43 #define NAND_Ecc_P256e (1 << 8)
44 #define NAND_Ecc_P512e (1 << 9)
45 #define NAND_Ecc_P1024e (1 << 10)
46 #define NAND_Ecc_P2048e (1 << 11)
47
48 #define NAND_Ecc_P1o (1 << 16)
49 #define NAND_Ecc_P2o (1 << 17)
50 #define NAND_Ecc_P4o (1 << 18)
51 #define NAND_Ecc_P8o (1 << 19)
52 #define NAND_Ecc_P16o (1 << 20)
53 #define NAND_Ecc_P32o (1 << 21)
54 #define NAND_Ecc_P64o (1 << 22)
55 #define NAND_Ecc_P128o (1 << 23)
56 #define NAND_Ecc_P256o (1 << 24)
57 #define NAND_Ecc_P512o (1 << 25)
58 #define NAND_Ecc_P1024o (1 << 26)
59 #define NAND_Ecc_P2048o (1 << 27)
60
61 #define TF(value) (value ? 1 : 0)
62
63 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
64 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
65 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
66 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
67 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
68 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
69 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
70 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
71
72 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
73 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
74 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
75 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
76 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
77 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
78 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
79 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
80
81 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
82 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
83 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
84 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
85 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
86 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
87 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
88 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
89
90 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
91 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
92 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
93 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
94 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
95 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
96 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
97 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
98
99 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
100 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
101
102 #define PREFETCH_CONFIG1_CS_SHIFT 24
103 #define ECC_CONFIG_CS_SHIFT 1
104 #define CS_MASK 0x7
105 #define ENABLE_PREFETCH (0x1 << 7)
106 #define DMA_MPU_MODE_SHIFT 2
107 #define ECCSIZE0_SHIFT 12
108 #define ECCSIZE1_SHIFT 22
109 #define ECC1RESULTSIZE 0x1
110 #define ECCCLEAR 0x100
111 #define ECC1 0x1
112 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
113 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
114 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
115 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
116 #define STATUS_BUFF_EMPTY 0x00000001
117
118 #define OMAP24XX_DMA_GPMC 4
119
120 /* oob info generated runtime depending on ecc algorithm and layout selected */
121 static struct nand_ecclayout omap_oobinfo;
122 /* Define some generic bad / good block scan pattern which are used
123 * while scanning a device for factory marked good / bad blocks
124 */
125 static uint8_t scan_ff_pattern[] = { 0xff };
126 static struct nand_bbt_descr bb_descrip_flashbased = {
127 .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
128 .offs = 0,
129 .len = 1,
130 .pattern = scan_ff_pattern,
131 };
132
133
134 struct omap_nand_info {
135 struct nand_hw_control controller;
136 struct omap_nand_platform_data *pdata;
137 struct mtd_info mtd;
138 struct nand_chip nand;
139 struct platform_device *pdev;
140
141 int gpmc_cs;
142 unsigned long phys_base;
143 unsigned long mem_size;
144 struct completion comp;
145 struct dma_chan *dma;
146 int gpmc_irq_fifo;
147 int gpmc_irq_count;
148 enum {
149 OMAP_NAND_IO_READ = 0, /* read */
150 OMAP_NAND_IO_WRITE, /* write */
151 } iomode;
152 u_char *buf;
153 int buf_len;
154 struct gpmc_nand_regs reg;
155
156 #ifdef CONFIG_MTD_NAND_OMAP_BCH
157 struct bch_control *bch;
158 struct nand_ecclayout ecclayout;
159 #endif
160 };
161
162 /**
163 * omap_prefetch_enable - configures and starts prefetch transfer
164 * @cs: cs (chip select) number
165 * @fifo_th: fifo threshold to be used for read/ write
166 * @dma_mode: dma mode enable (1) or disable (0)
167 * @u32_count: number of bytes to be transferred
168 * @is_write: prefetch read(0) or write post(1) mode
169 */
170 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
171 unsigned int u32_count, int is_write, struct omap_nand_info *info)
172 {
173 u32 val;
174
175 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
176 return -1;
177
178 if (readl(info->reg.gpmc_prefetch_control))
179 return -EBUSY;
180
181 /* Set the amount of bytes to be prefetched */
182 writel(u32_count, info->reg.gpmc_prefetch_config2);
183
184 /* Set dma/mpu mode, the prefetch read / post write and
185 * enable the engine. Set which cs is has requested for.
186 */
187 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
188 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
189 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
190 writel(val, info->reg.gpmc_prefetch_config1);
191
192 /* Start the prefetch engine */
193 writel(0x1, info->reg.gpmc_prefetch_control);
194
195 return 0;
196 }
197
198 /**
199 * omap_prefetch_reset - disables and stops the prefetch engine
200 */
201 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
202 {
203 u32 config1;
204
205 /* check if the same module/cs is trying to reset */
206 config1 = readl(info->reg.gpmc_prefetch_config1);
207 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
208 return -EINVAL;
209
210 /* Stop the PFPW engine */
211 writel(0x0, info->reg.gpmc_prefetch_control);
212
213 /* Reset/disable the PFPW engine */
214 writel(0x0, info->reg.gpmc_prefetch_config1);
215
216 return 0;
217 }
218
219 /**
220 * omap_hwcontrol - hardware specific access to control-lines
221 * @mtd: MTD device structure
222 * @cmd: command to device
223 * @ctrl:
224 * NAND_NCE: bit 0 -> don't care
225 * NAND_CLE: bit 1 -> Command Latch
226 * NAND_ALE: bit 2 -> Address Latch
227 *
228 * NOTE: boards may use different bits for these!!
229 */
230 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
231 {
232 struct omap_nand_info *info = container_of(mtd,
233 struct omap_nand_info, mtd);
234
235 if (cmd != NAND_CMD_NONE) {
236 if (ctrl & NAND_CLE)
237 writeb(cmd, info->reg.gpmc_nand_command);
238
239 else if (ctrl & NAND_ALE)
240 writeb(cmd, info->reg.gpmc_nand_address);
241
242 else /* NAND_NCE */
243 writeb(cmd, info->reg.gpmc_nand_data);
244 }
245 }
246
247 /**
248 * omap_read_buf8 - read data from NAND controller into buffer
249 * @mtd: MTD device structure
250 * @buf: buffer to store date
251 * @len: number of bytes to read
252 */
253 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
254 {
255 struct nand_chip *nand = mtd->priv;
256
257 ioread8_rep(nand->IO_ADDR_R, buf, len);
258 }
259
260 /**
261 * omap_write_buf8 - write buffer to NAND controller
262 * @mtd: MTD device structure
263 * @buf: data buffer
264 * @len: number of bytes to write
265 */
266 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
267 {
268 struct omap_nand_info *info = container_of(mtd,
269 struct omap_nand_info, mtd);
270 u_char *p = (u_char *)buf;
271 u32 status = 0;
272
273 while (len--) {
274 iowrite8(*p++, info->nand.IO_ADDR_W);
275 /* wait until buffer is available for write */
276 do {
277 status = readl(info->reg.gpmc_status) &
278 STATUS_BUFF_EMPTY;
279 } while (!status);
280 }
281 }
282
283 /**
284 * omap_read_buf16 - read data from NAND controller into buffer
285 * @mtd: MTD device structure
286 * @buf: buffer to store date
287 * @len: number of bytes to read
288 */
289 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
290 {
291 struct nand_chip *nand = mtd->priv;
292
293 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
294 }
295
296 /**
297 * omap_write_buf16 - write buffer to NAND controller
298 * @mtd: MTD device structure
299 * @buf: data buffer
300 * @len: number of bytes to write
301 */
302 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
303 {
304 struct omap_nand_info *info = container_of(mtd,
305 struct omap_nand_info, mtd);
306 u16 *p = (u16 *) buf;
307 u32 status = 0;
308 /* FIXME try bursts of writesw() or DMA ... */
309 len >>= 1;
310
311 while (len--) {
312 iowrite16(*p++, info->nand.IO_ADDR_W);
313 /* wait until buffer is available for write */
314 do {
315 status = readl(info->reg.gpmc_status) &
316 STATUS_BUFF_EMPTY;
317 } while (!status);
318 }
319 }
320
321 /**
322 * omap_read_buf_pref - read data from NAND controller into buffer
323 * @mtd: MTD device structure
324 * @buf: buffer to store date
325 * @len: number of bytes to read
326 */
327 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
328 {
329 struct omap_nand_info *info = container_of(mtd,
330 struct omap_nand_info, mtd);
331 uint32_t r_count = 0;
332 int ret = 0;
333 u32 *p = (u32 *)buf;
334
335 /* take care of subpage reads */
336 if (len % 4) {
337 if (info->nand.options & NAND_BUSWIDTH_16)
338 omap_read_buf16(mtd, buf, len % 4);
339 else
340 omap_read_buf8(mtd, buf, len % 4);
341 p = (u32 *) (buf + len % 4);
342 len -= len % 4;
343 }
344
345 /* configure and start prefetch transfer */
346 ret = omap_prefetch_enable(info->gpmc_cs,
347 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
348 if (ret) {
349 /* PFPW engine is busy, use cpu copy method */
350 if (info->nand.options & NAND_BUSWIDTH_16)
351 omap_read_buf16(mtd, (u_char *)p, len);
352 else
353 omap_read_buf8(mtd, (u_char *)p, len);
354 } else {
355 do {
356 r_count = readl(info->reg.gpmc_prefetch_status);
357 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
358 r_count = r_count >> 2;
359 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
360 p += r_count;
361 len -= r_count << 2;
362 } while (len);
363 /* disable and stop the PFPW engine */
364 omap_prefetch_reset(info->gpmc_cs, info);
365 }
366 }
367
368 /**
369 * omap_write_buf_pref - write buffer to NAND controller
370 * @mtd: MTD device structure
371 * @buf: data buffer
372 * @len: number of bytes to write
373 */
374 static void omap_write_buf_pref(struct mtd_info *mtd,
375 const u_char *buf, int len)
376 {
377 struct omap_nand_info *info = container_of(mtd,
378 struct omap_nand_info, mtd);
379 uint32_t w_count = 0;
380 int i = 0, ret = 0;
381 u16 *p = (u16 *)buf;
382 unsigned long tim, limit;
383 u32 val;
384
385 /* take care of subpage writes */
386 if (len % 2 != 0) {
387 writeb(*buf, info->nand.IO_ADDR_W);
388 p = (u16 *)(buf + 1);
389 len--;
390 }
391
392 /* configure and start prefetch transfer */
393 ret = omap_prefetch_enable(info->gpmc_cs,
394 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
395 if (ret) {
396 /* PFPW engine is busy, use cpu copy method */
397 if (info->nand.options & NAND_BUSWIDTH_16)
398 omap_write_buf16(mtd, (u_char *)p, len);
399 else
400 omap_write_buf8(mtd, (u_char *)p, len);
401 } else {
402 while (len) {
403 w_count = readl(info->reg.gpmc_prefetch_status);
404 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
405 w_count = w_count >> 1;
406 for (i = 0; (i < w_count) && len; i++, len -= 2)
407 iowrite16(*p++, info->nand.IO_ADDR_W);
408 }
409 /* wait for data to flushed-out before reset the prefetch */
410 tim = 0;
411 limit = (loops_per_jiffy *
412 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
413 do {
414 cpu_relax();
415 val = readl(info->reg.gpmc_prefetch_status);
416 val = PREFETCH_STATUS_COUNT(val);
417 } while (val && (tim++ < limit));
418
419 /* disable and stop the PFPW engine */
420 omap_prefetch_reset(info->gpmc_cs, info);
421 }
422 }
423
424 /*
425 * omap_nand_dma_callback: callback on the completion of dma transfer
426 * @data: pointer to completion data structure
427 */
428 static void omap_nand_dma_callback(void *data)
429 {
430 complete((struct completion *) data);
431 }
432
433 /*
434 * omap_nand_dma_transfer: configure and start dma transfer
435 * @mtd: MTD device structure
436 * @addr: virtual address in RAM of source/destination
437 * @len: number of data bytes to be transferred
438 * @is_write: flag for read/write operation
439 */
440 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
441 unsigned int len, int is_write)
442 {
443 struct omap_nand_info *info = container_of(mtd,
444 struct omap_nand_info, mtd);
445 struct dma_async_tx_descriptor *tx;
446 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
447 DMA_FROM_DEVICE;
448 struct scatterlist sg;
449 unsigned long tim, limit;
450 unsigned n;
451 int ret;
452 u32 val;
453
454 if (addr >= high_memory) {
455 struct page *p1;
456
457 if (((size_t)addr & PAGE_MASK) !=
458 ((size_t)(addr + len - 1) & PAGE_MASK))
459 goto out_copy;
460 p1 = vmalloc_to_page(addr);
461 if (!p1)
462 goto out_copy;
463 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
464 }
465
466 sg_init_one(&sg, addr, len);
467 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
468 if (n == 0) {
469 dev_err(&info->pdev->dev,
470 "Couldn't DMA map a %d byte buffer\n", len);
471 goto out_copy;
472 }
473
474 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
475 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
476 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
477 if (!tx)
478 goto out_copy_unmap;
479
480 tx->callback = omap_nand_dma_callback;
481 tx->callback_param = &info->comp;
482 dmaengine_submit(tx);
483
484 /* configure and start prefetch transfer */
485 ret = omap_prefetch_enable(info->gpmc_cs,
486 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
487 if (ret)
488 /* PFPW engine is busy, use cpu copy method */
489 goto out_copy_unmap;
490
491 init_completion(&info->comp);
492 dma_async_issue_pending(info->dma);
493
494 /* setup and start DMA using dma_addr */
495 wait_for_completion(&info->comp);
496 tim = 0;
497 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
498
499 do {
500 cpu_relax();
501 val = readl(info->reg.gpmc_prefetch_status);
502 val = PREFETCH_STATUS_COUNT(val);
503 } while (val && (tim++ < limit));
504
505 /* disable and stop the PFPW engine */
506 omap_prefetch_reset(info->gpmc_cs, info);
507
508 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
509 return 0;
510
511 out_copy_unmap:
512 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
513 out_copy:
514 if (info->nand.options & NAND_BUSWIDTH_16)
515 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
516 : omap_write_buf16(mtd, (u_char *) addr, len);
517 else
518 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
519 : omap_write_buf8(mtd, (u_char *) addr, len);
520 return 0;
521 }
522
523 /**
524 * omap_read_buf_dma_pref - read data from NAND controller into buffer
525 * @mtd: MTD device structure
526 * @buf: buffer to store date
527 * @len: number of bytes to read
528 */
529 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
530 {
531 if (len <= mtd->oobsize)
532 omap_read_buf_pref(mtd, buf, len);
533 else
534 /* start transfer in DMA mode */
535 omap_nand_dma_transfer(mtd, buf, len, 0x0);
536 }
537
538 /**
539 * omap_write_buf_dma_pref - write buffer to NAND controller
540 * @mtd: MTD device structure
541 * @buf: data buffer
542 * @len: number of bytes to write
543 */
544 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
545 const u_char *buf, int len)
546 {
547 if (len <= mtd->oobsize)
548 omap_write_buf_pref(mtd, buf, len);
549 else
550 /* start transfer in DMA mode */
551 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
552 }
553
554 /*
555 * omap_nand_irq - GPMC irq handler
556 * @this_irq: gpmc irq number
557 * @dev: omap_nand_info structure pointer is passed here
558 */
559 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
560 {
561 struct omap_nand_info *info = (struct omap_nand_info *) dev;
562 u32 bytes;
563
564 bytes = readl(info->reg.gpmc_prefetch_status);
565 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
566 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
567 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
568 if (this_irq == info->gpmc_irq_count)
569 goto done;
570
571 if (info->buf_len && (info->buf_len < bytes))
572 bytes = info->buf_len;
573 else if (!info->buf_len)
574 bytes = 0;
575 iowrite32_rep(info->nand.IO_ADDR_W,
576 (u32 *)info->buf, bytes >> 2);
577 info->buf = info->buf + bytes;
578 info->buf_len -= bytes;
579
580 } else {
581 ioread32_rep(info->nand.IO_ADDR_R,
582 (u32 *)info->buf, bytes >> 2);
583 info->buf = info->buf + bytes;
584
585 if (this_irq == info->gpmc_irq_count)
586 goto done;
587 }
588
589 return IRQ_HANDLED;
590
591 done:
592 complete(&info->comp);
593
594 disable_irq_nosync(info->gpmc_irq_fifo);
595 disable_irq_nosync(info->gpmc_irq_count);
596
597 return IRQ_HANDLED;
598 }
599
600 /*
601 * omap_read_buf_irq_pref - read data from NAND controller into buffer
602 * @mtd: MTD device structure
603 * @buf: buffer to store date
604 * @len: number of bytes to read
605 */
606 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
607 {
608 struct omap_nand_info *info = container_of(mtd,
609 struct omap_nand_info, mtd);
610 int ret = 0;
611
612 if (len <= mtd->oobsize) {
613 omap_read_buf_pref(mtd, buf, len);
614 return;
615 }
616
617 info->iomode = OMAP_NAND_IO_READ;
618 info->buf = buf;
619 init_completion(&info->comp);
620
621 /* configure and start prefetch transfer */
622 ret = omap_prefetch_enable(info->gpmc_cs,
623 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
624 if (ret)
625 /* PFPW engine is busy, use cpu copy method */
626 goto out_copy;
627
628 info->buf_len = len;
629
630 enable_irq(info->gpmc_irq_count);
631 enable_irq(info->gpmc_irq_fifo);
632
633 /* waiting for read to complete */
634 wait_for_completion(&info->comp);
635
636 /* disable and stop the PFPW engine */
637 omap_prefetch_reset(info->gpmc_cs, info);
638 return;
639
640 out_copy:
641 if (info->nand.options & NAND_BUSWIDTH_16)
642 omap_read_buf16(mtd, buf, len);
643 else
644 omap_read_buf8(mtd, buf, len);
645 }
646
647 /*
648 * omap_write_buf_irq_pref - write buffer to NAND controller
649 * @mtd: MTD device structure
650 * @buf: data buffer
651 * @len: number of bytes to write
652 */
653 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
654 const u_char *buf, int len)
655 {
656 struct omap_nand_info *info = container_of(mtd,
657 struct omap_nand_info, mtd);
658 int ret = 0;
659 unsigned long tim, limit;
660 u32 val;
661
662 if (len <= mtd->oobsize) {
663 omap_write_buf_pref(mtd, buf, len);
664 return;
665 }
666
667 info->iomode = OMAP_NAND_IO_WRITE;
668 info->buf = (u_char *) buf;
669 init_completion(&info->comp);
670
671 /* configure and start prefetch transfer : size=24 */
672 ret = omap_prefetch_enable(info->gpmc_cs,
673 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
674 if (ret)
675 /* PFPW engine is busy, use cpu copy method */
676 goto out_copy;
677
678 info->buf_len = len;
679
680 enable_irq(info->gpmc_irq_count);
681 enable_irq(info->gpmc_irq_fifo);
682
683 /* waiting for write to complete */
684 wait_for_completion(&info->comp);
685
686 /* wait for data to flushed-out before reset the prefetch */
687 tim = 0;
688 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
689 do {
690 val = readl(info->reg.gpmc_prefetch_status);
691 val = PREFETCH_STATUS_COUNT(val);
692 cpu_relax();
693 } while (val && (tim++ < limit));
694
695 /* disable and stop the PFPW engine */
696 omap_prefetch_reset(info->gpmc_cs, info);
697 return;
698
699 out_copy:
700 if (info->nand.options & NAND_BUSWIDTH_16)
701 omap_write_buf16(mtd, buf, len);
702 else
703 omap_write_buf8(mtd, buf, len);
704 }
705
706 /**
707 * gen_true_ecc - This function will generate true ECC value
708 * @ecc_buf: buffer to store ecc code
709 *
710 * This generated true ECC value can be used when correcting
711 * data read from NAND flash memory core
712 */
713 static void gen_true_ecc(u8 *ecc_buf)
714 {
715 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
716 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
717
718 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
719 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
720 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
721 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
722 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
723 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
724 }
725
726 /**
727 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
728 * @ecc_data1: ecc code from nand spare area
729 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
730 * @page_data: page data
731 *
732 * This function compares two ECC's and indicates if there is an error.
733 * If the error can be corrected it will be corrected to the buffer.
734 * If there is no error, %0 is returned. If there is an error but it
735 * was corrected, %1 is returned. Otherwise, %-1 is returned.
736 */
737 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
738 u8 *ecc_data2, /* read from register */
739 u8 *page_data)
740 {
741 uint i;
742 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
743 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
744 u8 ecc_bit[24];
745 u8 ecc_sum = 0;
746 u8 find_bit = 0;
747 uint find_byte = 0;
748 int isEccFF;
749
750 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
751
752 gen_true_ecc(ecc_data1);
753 gen_true_ecc(ecc_data2);
754
755 for (i = 0; i <= 2; i++) {
756 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
757 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
758 }
759
760 for (i = 0; i < 8; i++) {
761 tmp0_bit[i] = *ecc_data1 % 2;
762 *ecc_data1 = *ecc_data1 / 2;
763 }
764
765 for (i = 0; i < 8; i++) {
766 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
767 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
768 }
769
770 for (i = 0; i < 8; i++) {
771 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
772 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
773 }
774
775 for (i = 0; i < 8; i++) {
776 comp0_bit[i] = *ecc_data2 % 2;
777 *ecc_data2 = *ecc_data2 / 2;
778 }
779
780 for (i = 0; i < 8; i++) {
781 comp1_bit[i] = *(ecc_data2 + 1) % 2;
782 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
783 }
784
785 for (i = 0; i < 8; i++) {
786 comp2_bit[i] = *(ecc_data2 + 2) % 2;
787 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
788 }
789
790 for (i = 0; i < 6; i++)
791 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
792
793 for (i = 0; i < 8; i++)
794 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
795
796 for (i = 0; i < 8; i++)
797 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
798
799 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
800 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
801
802 for (i = 0; i < 24; i++)
803 ecc_sum += ecc_bit[i];
804
805 switch (ecc_sum) {
806 case 0:
807 /* Not reached because this function is not called if
808 * ECC values are equal
809 */
810 return 0;
811
812 case 1:
813 /* Uncorrectable error */
814 pr_debug("ECC UNCORRECTED_ERROR 1\n");
815 return -1;
816
817 case 11:
818 /* UN-Correctable error */
819 pr_debug("ECC UNCORRECTED_ERROR B\n");
820 return -1;
821
822 case 12:
823 /* Correctable error */
824 find_byte = (ecc_bit[23] << 8) +
825 (ecc_bit[21] << 7) +
826 (ecc_bit[19] << 6) +
827 (ecc_bit[17] << 5) +
828 (ecc_bit[15] << 4) +
829 (ecc_bit[13] << 3) +
830 (ecc_bit[11] << 2) +
831 (ecc_bit[9] << 1) +
832 ecc_bit[7];
833
834 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
835
836 pr_debug("Correcting single bit ECC error at offset: "
837 "%d, bit: %d\n", find_byte, find_bit);
838
839 page_data[find_byte] ^= (1 << find_bit);
840
841 return 1;
842 default:
843 if (isEccFF) {
844 if (ecc_data2[0] == 0 &&
845 ecc_data2[1] == 0 &&
846 ecc_data2[2] == 0)
847 return 0;
848 }
849 pr_debug("UNCORRECTED_ERROR default\n");
850 return -1;
851 }
852 }
853
854 /**
855 * omap_correct_data - Compares the ECC read with HW generated ECC
856 * @mtd: MTD device structure
857 * @dat: page data
858 * @read_ecc: ecc read from nand flash
859 * @calc_ecc: ecc read from HW ECC registers
860 *
861 * Compares the ecc read from nand spare area with ECC registers values
862 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
863 * detection and correction. If there are no errors, %0 is returned. If
864 * there were errors and all of the errors were corrected, the number of
865 * corrected errors is returned. If uncorrectable errors exist, %-1 is
866 * returned.
867 */
868 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
869 u_char *read_ecc, u_char *calc_ecc)
870 {
871 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
872 mtd);
873 int blockCnt = 0, i = 0, ret = 0;
874 int stat = 0;
875
876 /* Ex NAND_ECC_HW12_2048 */
877 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
878 (info->nand.ecc.size == 2048))
879 blockCnt = 4;
880 else
881 blockCnt = 1;
882
883 for (i = 0; i < blockCnt; i++) {
884 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
885 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
886 if (ret < 0)
887 return ret;
888 /* keep track of the number of corrected errors */
889 stat += ret;
890 }
891 read_ecc += 3;
892 calc_ecc += 3;
893 dat += 512;
894 }
895 return stat;
896 }
897
898 /**
899 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
900 * @mtd: MTD device structure
901 * @dat: The pointer to data on which ecc is computed
902 * @ecc_code: The ecc_code buffer
903 *
904 * Using noninverted ECC can be considered ugly since writing a blank
905 * page ie. padding will clear the ECC bytes. This is no problem as long
906 * nobody is trying to write data on the seemingly unused page. Reading
907 * an erased page will produce an ECC mismatch between generated and read
908 * ECC bytes that has to be dealt with separately.
909 */
910 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
911 u_char *ecc_code)
912 {
913 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
914 mtd);
915 u32 val;
916
917 val = readl(info->reg.gpmc_ecc_config);
918 if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs)
919 return -EINVAL;
920
921 /* read ecc result */
922 val = readl(info->reg.gpmc_ecc1_result);
923 *ecc_code++ = val; /* P128e, ..., P1e */
924 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
925 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
926 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
927
928 return 0;
929 }
930
931 /**
932 * omap_enable_hwecc - This function enables the hardware ecc functionality
933 * @mtd: MTD device structure
934 * @mode: Read/Write mode
935 */
936 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
937 {
938 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
939 mtd);
940 struct nand_chip *chip = mtd->priv;
941 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
942 u32 val;
943
944 /* clear ecc and enable bits */
945 val = ECCCLEAR | ECC1;
946 writel(val, info->reg.gpmc_ecc_control);
947
948 /* program ecc and result sizes */
949 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
950 ECC1RESULTSIZE);
951 writel(val, info->reg.gpmc_ecc_size_config);
952
953 switch (mode) {
954 case NAND_ECC_READ:
955 case NAND_ECC_WRITE:
956 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
957 break;
958 case NAND_ECC_READSYN:
959 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
960 break;
961 default:
962 dev_info(&info->pdev->dev,
963 "error: unrecognized Mode[%d]!\n", mode);
964 break;
965 }
966
967 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
968 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
969 writel(val, info->reg.gpmc_ecc_config);
970 }
971
972 /**
973 * omap_wait - wait until the command is done
974 * @mtd: MTD device structure
975 * @chip: NAND Chip structure
976 *
977 * Wait function is called during Program and erase operations and
978 * the way it is called from MTD layer, we should wait till the NAND
979 * chip is ready after the programming/erase operation has completed.
980 *
981 * Erase can take up to 400ms and program up to 20ms according to
982 * general NAND and SmartMedia specs
983 */
984 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
985 {
986 struct nand_chip *this = mtd->priv;
987 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
988 mtd);
989 unsigned long timeo = jiffies;
990 int status, state = this->state;
991
992 if (state == FL_ERASING)
993 timeo += (HZ * 400) / 1000;
994 else
995 timeo += (HZ * 20) / 1000;
996
997 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
998 while (time_before(jiffies, timeo)) {
999 status = readb(info->reg.gpmc_nand_data);
1000 if (status & NAND_STATUS_READY)
1001 break;
1002 cond_resched();
1003 }
1004
1005 status = readb(info->reg.gpmc_nand_data);
1006 return status;
1007 }
1008
1009 /**
1010 * omap_dev_ready - calls the platform specific dev_ready function
1011 * @mtd: MTD device structure
1012 */
1013 static int omap_dev_ready(struct mtd_info *mtd)
1014 {
1015 unsigned int val = 0;
1016 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1017 mtd);
1018
1019 val = readl(info->reg.gpmc_status);
1020
1021 if ((val & 0x100) == 0x100) {
1022 return 1;
1023 } else {
1024 return 0;
1025 }
1026 }
1027
1028 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1029
1030 /**
1031 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
1032 * @mtd: MTD device structure
1033 * @mode: Read/Write mode
1034 */
1035 static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1036 {
1037 int nerrors;
1038 unsigned int dev_width, nsectors;
1039 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1040 mtd);
1041 struct nand_chip *chip = mtd->priv;
1042 u32 val;
1043
1044 nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4;
1045 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1046 nsectors = 1;
1047 /*
1048 * Program GPMC to perform correction on one 512-byte sector at a time.
1049 * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and
1050 * gives a slight (5%) performance gain (but requires additional code).
1051 */
1052
1053 writel(ECC1, info->reg.gpmc_ecc_control);
1054
1055 /*
1056 * When using BCH, sector size is hardcoded to 512 bytes.
1057 * Here we are using wrapping mode 6 both for reading and writing, with:
1058 * size0 = 0 (no additional protected byte in spare area)
1059 * size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1060 */
1061 val = (32 << ECCSIZE1_SHIFT) | (0 << ECCSIZE0_SHIFT);
1062 writel(val, info->reg.gpmc_ecc_size_config);
1063
1064 /* BCH configuration */
1065 val = ((1 << 16) | /* enable BCH */
1066 (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
1067 (0x06 << 8) | /* wrap mode = 6 */
1068 (dev_width << 7) | /* bus width */
1069 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1070 (info->gpmc_cs << 1) | /* ECC CS */
1071 (0x1)); /* enable ECC */
1072
1073 writel(val, info->reg.gpmc_ecc_config);
1074
1075 /* clear ecc and enable bits */
1076 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1077 }
1078
1079 /**
1080 * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
1081 * @mtd: MTD device structure
1082 * @dat: The pointer to data on which ecc is computed
1083 * @ecc_code: The ecc_code buffer
1084 */
1085 static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
1086 u_char *ecc_code)
1087 {
1088 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1089 mtd);
1090 unsigned long nsectors, val1, val2;
1091 int i;
1092
1093 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1094
1095 for (i = 0; i < nsectors; i++) {
1096
1097 /* Read hw-computed remainder */
1098 val1 = readl(info->reg.gpmc_bch_result0[i]);
1099 val2 = readl(info->reg.gpmc_bch_result1[i]);
1100
1101 /*
1102 * Add constant polynomial to remainder, in order to get an ecc
1103 * sequence of 0xFFs for a buffer filled with 0xFFs; and
1104 * left-justify the resulting polynomial.
1105 */
1106 *ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
1107 *ecc_code++ = 0x13 ^ ((val2 >> 4) & 0xFF);
1108 *ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
1109 *ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
1110 *ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
1111 *ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
1112 *ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
1113 }
1114
1115 return 0;
1116 }
1117
1118 /**
1119 * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
1120 * @mtd: MTD device structure
1121 * @dat: The pointer to data on which ecc is computed
1122 * @ecc_code: The ecc_code buffer
1123 */
1124 static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
1125 u_char *ecc_code)
1126 {
1127 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1128 mtd);
1129 unsigned long nsectors, val1, val2, val3, val4;
1130 int i;
1131
1132 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1133
1134 for (i = 0; i < nsectors; i++) {
1135
1136 /* Read hw-computed remainder */
1137 val1 = readl(info->reg.gpmc_bch_result0[i]);
1138 val2 = readl(info->reg.gpmc_bch_result1[i]);
1139 val3 = readl(info->reg.gpmc_bch_result2[i]);
1140 val4 = readl(info->reg.gpmc_bch_result3[i]);
1141
1142 /*
1143 * Add constant polynomial to remainder, in order to get an ecc
1144 * sequence of 0xFFs for a buffer filled with 0xFFs.
1145 */
1146 *ecc_code++ = 0xef ^ (val4 & 0xFF);
1147 *ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
1148 *ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
1149 *ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
1150 *ecc_code++ = 0xed ^ (val3 & 0xFF);
1151 *ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
1152 *ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
1153 *ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
1154 *ecc_code++ = 0x97 ^ (val2 & 0xFF);
1155 *ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
1156 *ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
1157 *ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
1158 *ecc_code++ = 0xb5 ^ (val1 & 0xFF);
1159 }
1160
1161 return 0;
1162 }
1163
1164 /**
1165 * omap3_correct_data_bch - Decode received data and correct errors
1166 * @mtd: MTD device structure
1167 * @data: page data
1168 * @read_ecc: ecc read from nand flash
1169 * @calc_ecc: ecc read from HW ECC registers
1170 */
1171 static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
1172 u_char *read_ecc, u_char *calc_ecc)
1173 {
1174 int i, count;
1175 /* cannot correct more than 8 errors */
1176 unsigned int errloc[8];
1177 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1178 mtd);
1179
1180 count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
1181 errloc);
1182 if (count > 0) {
1183 /* correct errors */
1184 for (i = 0; i < count; i++) {
1185 /* correct data only, not ecc bytes */
1186 if (errloc[i] < 8*512)
1187 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
1188 pr_debug("corrected bitflip %u\n", errloc[i]);
1189 }
1190 } else if (count < 0) {
1191 pr_err("ecc unrecoverable error\n");
1192 }
1193 return count;
1194 }
1195
1196 /**
1197 * omap3_free_bch - Release BCH ecc resources
1198 * @mtd: MTD device structure
1199 */
1200 static void omap3_free_bch(struct mtd_info *mtd)
1201 {
1202 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1203 mtd);
1204 if (info->bch) {
1205 free_bch(info->bch);
1206 info->bch = NULL;
1207 }
1208 }
1209
1210 /**
1211 * omap3_init_bch - Initialize BCH ECC
1212 * @mtd: MTD device structure
1213 * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
1214 */
1215 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1216 {
1217 int max_errors;
1218 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1219 mtd);
1220 #ifdef CONFIG_MTD_NAND_OMAP_BCH8
1221 const int hw_errors = 8;
1222 #else
1223 const int hw_errors = 4;
1224 #endif
1225 info->bch = NULL;
1226
1227 max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4;
1228 if (max_errors != hw_errors) {
1229 pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
1230 max_errors, hw_errors);
1231 goto fail;
1232 }
1233
1234 /* software bch library is only used to detect and locate errors */
1235 info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */);
1236 if (!info->bch)
1237 goto fail;
1238
1239 info->nand.ecc.size = 512;
1240 info->nand.ecc.hwctl = omap3_enable_hwecc_bch;
1241 info->nand.ecc.correct = omap3_correct_data_bch;
1242 info->nand.ecc.mode = NAND_ECC_HW;
1243
1244 /*
1245 * The number of corrected errors in an ecc block that will trigger
1246 * block scrubbing defaults to the ecc strength (4 or 8).
1247 * Set mtd->bitflip_threshold here to define a custom threshold.
1248 */
1249
1250 if (max_errors == 8) {
1251 info->nand.ecc.strength = 8;
1252 info->nand.ecc.bytes = 13;
1253 info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
1254 } else {
1255 info->nand.ecc.strength = 4;
1256 info->nand.ecc.bytes = 7;
1257 info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
1258 }
1259
1260 pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
1261 return 0;
1262 fail:
1263 omap3_free_bch(mtd);
1264 return -1;
1265 }
1266
1267 /**
1268 * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
1269 * @mtd: MTD device structure
1270 */
1271 static int omap3_init_bch_tail(struct mtd_info *mtd)
1272 {
1273 int i, steps;
1274 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1275 mtd);
1276 struct nand_ecclayout *layout = &info->ecclayout;
1277
1278 /* build oob layout */
1279 steps = mtd->writesize/info->nand.ecc.size;
1280 layout->eccbytes = steps*info->nand.ecc.bytes;
1281
1282 /* do not bother creating special oob layouts for small page devices */
1283 if (mtd->oobsize < 64) {
1284 pr_err("BCH ecc is not supported on small page devices\n");
1285 goto fail;
1286 }
1287
1288 /* reserve 2 bytes for bad block marker */
1289 if (layout->eccbytes+2 > mtd->oobsize) {
1290 pr_err("no oob layout available for oobsize %d eccbytes %u\n",
1291 mtd->oobsize, layout->eccbytes);
1292 goto fail;
1293 }
1294
1295 /* put ecc bytes at oob tail */
1296 for (i = 0; i < layout->eccbytes; i++)
1297 layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
1298
1299 layout->oobfree[0].offset = 2;
1300 layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
1301 info->nand.ecc.layout = layout;
1302
1303 if (!(info->nand.options & NAND_BUSWIDTH_16))
1304 info->nand.badblock_pattern = &bb_descrip_flashbased;
1305 return 0;
1306 fail:
1307 omap3_free_bch(mtd);
1308 return -1;
1309 }
1310
1311 #else
1312 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1313 {
1314 pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
1315 return -1;
1316 }
1317 static int omap3_init_bch_tail(struct mtd_info *mtd)
1318 {
1319 return -1;
1320 }
1321 static void omap3_free_bch(struct mtd_info *mtd)
1322 {
1323 }
1324 #endif /* CONFIG_MTD_NAND_OMAP_BCH */
1325
1326 static int __devinit omap_nand_probe(struct platform_device *pdev)
1327 {
1328 struct omap_nand_info *info;
1329 struct omap_nand_platform_data *pdata;
1330 int err;
1331 int i, offset;
1332 dma_cap_mask_t mask;
1333 unsigned sig;
1334 struct resource *res;
1335
1336 pdata = pdev->dev.platform_data;
1337 if (pdata == NULL) {
1338 dev_err(&pdev->dev, "platform data missing\n");
1339 return -ENODEV;
1340 }
1341
1342 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
1343 if (!info)
1344 return -ENOMEM;
1345
1346 platform_set_drvdata(pdev, info);
1347
1348 spin_lock_init(&info->controller.lock);
1349 init_waitqueue_head(&info->controller.wq);
1350
1351 info->pdev = pdev;
1352
1353 info->gpmc_cs = pdata->cs;
1354 info->reg = pdata->reg;
1355
1356 info->mtd.priv = &info->nand;
1357 info->mtd.name = dev_name(&pdev->dev);
1358 info->mtd.owner = THIS_MODULE;
1359
1360 info->nand.options = pdata->devsize;
1361 info->nand.options |= NAND_SKIP_BBTSCAN;
1362
1363 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1364 if (res == NULL) {
1365 err = -EINVAL;
1366 dev_err(&pdev->dev, "error getting memory resource\n");
1367 goto out_free_info;
1368 }
1369
1370 info->phys_base = res->start;
1371 info->mem_size = resource_size(res);
1372
1373 if (!request_mem_region(info->phys_base, info->mem_size,
1374 pdev->dev.driver->name)) {
1375 err = -EBUSY;
1376 goto out_free_info;
1377 }
1378
1379 info->nand.IO_ADDR_R = ioremap(info->phys_base, info->mem_size);
1380 if (!info->nand.IO_ADDR_R) {
1381 err = -ENOMEM;
1382 goto out_release_mem_region;
1383 }
1384
1385 info->nand.controller = &info->controller;
1386
1387 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
1388 info->nand.cmd_ctrl = omap_hwcontrol;
1389
1390 /*
1391 * If RDY/BSY line is connected to OMAP then use the omap ready
1392 * function and the generic nand_wait function which reads the status
1393 * register after monitoring the RDY/BSY line. Otherwise use a standard
1394 * chip delay which is slightly more than tR (AC Timing) of the NAND
1395 * device and read status register until you get a failure or success
1396 */
1397 if (pdata->dev_ready) {
1398 info->nand.dev_ready = omap_dev_ready;
1399 info->nand.chip_delay = 0;
1400 } else {
1401 info->nand.waitfunc = omap_wait;
1402 info->nand.chip_delay = 50;
1403 }
1404
1405 switch (pdata->xfer_type) {
1406 case NAND_OMAP_PREFETCH_POLLED:
1407 info->nand.read_buf = omap_read_buf_pref;
1408 info->nand.write_buf = omap_write_buf_pref;
1409 break;
1410
1411 case NAND_OMAP_POLLED:
1412 if (info->nand.options & NAND_BUSWIDTH_16) {
1413 info->nand.read_buf = omap_read_buf16;
1414 info->nand.write_buf = omap_write_buf16;
1415 } else {
1416 info->nand.read_buf = omap_read_buf8;
1417 info->nand.write_buf = omap_write_buf8;
1418 }
1419 break;
1420
1421 case NAND_OMAP_PREFETCH_DMA:
1422 dma_cap_zero(mask);
1423 dma_cap_set(DMA_SLAVE, mask);
1424 sig = OMAP24XX_DMA_GPMC;
1425 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1426 if (!info->dma) {
1427 dev_err(&pdev->dev, "DMA engine request failed\n");
1428 err = -ENXIO;
1429 goto out_release_mem_region;
1430 } else {
1431 struct dma_slave_config cfg;
1432
1433 memset(&cfg, 0, sizeof(cfg));
1434 cfg.src_addr = info->phys_base;
1435 cfg.dst_addr = info->phys_base;
1436 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1437 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1438 cfg.src_maxburst = 16;
1439 cfg.dst_maxburst = 16;
1440 err = dmaengine_slave_config(info->dma, &cfg);
1441 if (err) {
1442 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1443 err);
1444 goto out_release_mem_region;
1445 }
1446 info->nand.read_buf = omap_read_buf_dma_pref;
1447 info->nand.write_buf = omap_write_buf_dma_pref;
1448 }
1449 break;
1450
1451 case NAND_OMAP_PREFETCH_IRQ:
1452 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1453 if (info->gpmc_irq_fifo <= 0) {
1454 dev_err(&pdev->dev, "error getting fifo irq\n");
1455 err = -ENODEV;
1456 goto out_release_mem_region;
1457 }
1458 err = request_irq(info->gpmc_irq_fifo, omap_nand_irq,
1459 IRQF_SHARED, "gpmc-nand-fifo", info);
1460 if (err) {
1461 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1462 info->gpmc_irq_fifo, err);
1463 info->gpmc_irq_fifo = 0;
1464 goto out_release_mem_region;
1465 }
1466
1467 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1468 if (info->gpmc_irq_count <= 0) {
1469 dev_err(&pdev->dev, "error getting count irq\n");
1470 err = -ENODEV;
1471 goto out_release_mem_region;
1472 }
1473 err = request_irq(info->gpmc_irq_count, omap_nand_irq,
1474 IRQF_SHARED, "gpmc-nand-count", info);
1475 if (err) {
1476 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1477 info->gpmc_irq_count, err);
1478 info->gpmc_irq_count = 0;
1479 goto out_release_mem_region;
1480 }
1481
1482 info->nand.read_buf = omap_read_buf_irq_pref;
1483 info->nand.write_buf = omap_write_buf_irq_pref;
1484
1485 break;
1486
1487 default:
1488 dev_err(&pdev->dev,
1489 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1490 err = -EINVAL;
1491 goto out_release_mem_region;
1492 }
1493
1494 /* select the ecc type */
1495 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1496 info->nand.ecc.mode = NAND_ECC_SOFT;
1497 else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1498 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1499 info->nand.ecc.bytes = 3;
1500 info->nand.ecc.size = 512;
1501 info->nand.ecc.strength = 1;
1502 info->nand.ecc.calculate = omap_calculate_ecc;
1503 info->nand.ecc.hwctl = omap_enable_hwecc;
1504 info->nand.ecc.correct = omap_correct_data;
1505 info->nand.ecc.mode = NAND_ECC_HW;
1506 } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1507 (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1508 err = omap3_init_bch(&info->mtd, pdata->ecc_opt);
1509 if (err) {
1510 err = -EINVAL;
1511 goto out_release_mem_region;
1512 }
1513 }
1514
1515 /* DIP switches on some boards change between 8 and 16 bit
1516 * bus widths for flash. Try the other width if the first try fails.
1517 */
1518 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1519 info->nand.options ^= NAND_BUSWIDTH_16;
1520 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1521 err = -ENXIO;
1522 goto out_release_mem_region;
1523 }
1524 }
1525
1526 /* rom code layout */
1527 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1528
1529 if (info->nand.options & NAND_BUSWIDTH_16)
1530 offset = 2;
1531 else {
1532 offset = 1;
1533 info->nand.badblock_pattern = &bb_descrip_flashbased;
1534 }
1535 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1536 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1537 omap_oobinfo.eccpos[i] = i+offset;
1538
1539 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1540 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1541 (offset + omap_oobinfo.eccbytes);
1542
1543 info->nand.ecc.layout = &omap_oobinfo;
1544 } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1545 (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1546 /* build OOB layout for BCH ECC correction */
1547 err = omap3_init_bch_tail(&info->mtd);
1548 if (err) {
1549 err = -EINVAL;
1550 goto out_release_mem_region;
1551 }
1552 }
1553
1554 /* second phase scan */
1555 if (nand_scan_tail(&info->mtd)) {
1556 err = -ENXIO;
1557 goto out_release_mem_region;
1558 }
1559
1560 mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
1561 pdata->nr_parts);
1562
1563 platform_set_drvdata(pdev, &info->mtd);
1564
1565 return 0;
1566
1567 out_release_mem_region:
1568 if (info->dma)
1569 dma_release_channel(info->dma);
1570 if (info->gpmc_irq_count > 0)
1571 free_irq(info->gpmc_irq_count, info);
1572 if (info->gpmc_irq_fifo > 0)
1573 free_irq(info->gpmc_irq_fifo, info);
1574 release_mem_region(info->phys_base, info->mem_size);
1575 out_free_info:
1576 kfree(info);
1577
1578 return err;
1579 }
1580
1581 static int omap_nand_remove(struct platform_device *pdev)
1582 {
1583 struct mtd_info *mtd = platform_get_drvdata(pdev);
1584 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1585 mtd);
1586 omap3_free_bch(&info->mtd);
1587
1588 platform_set_drvdata(pdev, NULL);
1589 if (info->dma)
1590 dma_release_channel(info->dma);
1591
1592 if (info->gpmc_irq_count > 0)
1593 free_irq(info->gpmc_irq_count, info);
1594 if (info->gpmc_irq_fifo > 0)
1595 free_irq(info->gpmc_irq_fifo, info);
1596
1597 /* Release NAND device, its internal structures and partitions */
1598 nand_release(&info->mtd);
1599 iounmap(info->nand.IO_ADDR_R);
1600 release_mem_region(info->phys_base, info->mem_size);
1601 kfree(info);
1602 return 0;
1603 }
1604
1605 static struct platform_driver omap_nand_driver = {
1606 .probe = omap_nand_probe,
1607 .remove = omap_nand_remove,
1608 .driver = {
1609 .name = DRIVER_NAME,
1610 .owner = THIS_MODULE,
1611 },
1612 };
1613
1614 module_platform_driver(omap_nand_driver);
1615
1616 MODULE_ALIAS("platform:" DRIVER_NAME);
1617 MODULE_LICENSE("GPL");
1618 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
This page took 0.063579 seconds and 6 git commands to generate.