Merge branch 'next/dt-samsung' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene...
[deliverable/linux.git] / drivers / mtd / nand / omap2.c
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25
26 #ifdef CONFIG_MTD_NAND_OMAP_BCH
27 #include <linux/bch.h>
28 #endif
29
30 #include <plat-omap/dma-omap.h>
31 #include <linux/platform_data/mtd-nand-omap2.h>
32
33 #define DRIVER_NAME "omap2-nand"
34 #define OMAP_NAND_TIMEOUT_MS 5000
35
36 #define NAND_Ecc_P1e (1 << 0)
37 #define NAND_Ecc_P2e (1 << 1)
38 #define NAND_Ecc_P4e (1 << 2)
39 #define NAND_Ecc_P8e (1 << 3)
40 #define NAND_Ecc_P16e (1 << 4)
41 #define NAND_Ecc_P32e (1 << 5)
42 #define NAND_Ecc_P64e (1 << 6)
43 #define NAND_Ecc_P128e (1 << 7)
44 #define NAND_Ecc_P256e (1 << 8)
45 #define NAND_Ecc_P512e (1 << 9)
46 #define NAND_Ecc_P1024e (1 << 10)
47 #define NAND_Ecc_P2048e (1 << 11)
48
49 #define NAND_Ecc_P1o (1 << 16)
50 #define NAND_Ecc_P2o (1 << 17)
51 #define NAND_Ecc_P4o (1 << 18)
52 #define NAND_Ecc_P8o (1 << 19)
53 #define NAND_Ecc_P16o (1 << 20)
54 #define NAND_Ecc_P32o (1 << 21)
55 #define NAND_Ecc_P64o (1 << 22)
56 #define NAND_Ecc_P128o (1 << 23)
57 #define NAND_Ecc_P256o (1 << 24)
58 #define NAND_Ecc_P512o (1 << 25)
59 #define NAND_Ecc_P1024o (1 << 26)
60 #define NAND_Ecc_P2048o (1 << 27)
61
62 #define TF(value) (value ? 1 : 0)
63
64 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
65 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
66 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
67 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
68 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
69 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
70 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
71 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
72
73 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
74 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
75 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
76 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
77 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
78 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
79 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
80 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
81
82 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
83 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
84 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
85 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
86 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
87 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
88 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
89 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
90
91 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
92 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
93 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
94 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
95 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
96 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
97 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
98 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
99
100 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
101 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
102
103 #define PREFETCH_CONFIG1_CS_SHIFT 24
104 #define ECC_CONFIG_CS_SHIFT 1
105 #define CS_MASK 0x7
106 #define ENABLE_PREFETCH (0x1 << 7)
107 #define DMA_MPU_MODE_SHIFT 2
108 #define ECCSIZE0_SHIFT 12
109 #define ECCSIZE1_SHIFT 22
110 #define ECC1RESULTSIZE 0x1
111 #define ECCCLEAR 0x100
112 #define ECC1 0x1
113 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
114 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
115 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
116 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
117 #define STATUS_BUFF_EMPTY 0x00000001
118
119 #define OMAP24XX_DMA_GPMC 4
120
121 /* oob info generated runtime depending on ecc algorithm and layout selected */
122 static struct nand_ecclayout omap_oobinfo;
123 /* Define some generic bad / good block scan pattern which are used
124 * while scanning a device for factory marked good / bad blocks
125 */
126 static uint8_t scan_ff_pattern[] = { 0xff };
127 static struct nand_bbt_descr bb_descrip_flashbased = {
128 .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
129 .offs = 0,
130 .len = 1,
131 .pattern = scan_ff_pattern,
132 };
133
134
135 struct omap_nand_info {
136 struct nand_hw_control controller;
137 struct omap_nand_platform_data *pdata;
138 struct mtd_info mtd;
139 struct nand_chip nand;
140 struct platform_device *pdev;
141
142 int gpmc_cs;
143 unsigned long phys_base;
144 unsigned long mem_size;
145 struct completion comp;
146 struct dma_chan *dma;
147 int gpmc_irq_fifo;
148 int gpmc_irq_count;
149 enum {
150 OMAP_NAND_IO_READ = 0, /* read */
151 OMAP_NAND_IO_WRITE, /* write */
152 } iomode;
153 u_char *buf;
154 int buf_len;
155 struct gpmc_nand_regs reg;
156
157 #ifdef CONFIG_MTD_NAND_OMAP_BCH
158 struct bch_control *bch;
159 struct nand_ecclayout ecclayout;
160 #endif
161 };
162
163 /**
164 * omap_prefetch_enable - configures and starts prefetch transfer
165 * @cs: cs (chip select) number
166 * @fifo_th: fifo threshold to be used for read/ write
167 * @dma_mode: dma mode enable (1) or disable (0)
168 * @u32_count: number of bytes to be transferred
169 * @is_write: prefetch read(0) or write post(1) mode
170 */
171 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
172 unsigned int u32_count, int is_write, struct omap_nand_info *info)
173 {
174 u32 val;
175
176 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
177 return -1;
178
179 if (readl(info->reg.gpmc_prefetch_control))
180 return -EBUSY;
181
182 /* Set the amount of bytes to be prefetched */
183 writel(u32_count, info->reg.gpmc_prefetch_config2);
184
185 /* Set dma/mpu mode, the prefetch read / post write and
186 * enable the engine. Set which cs is has requested for.
187 */
188 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
189 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
190 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
191 writel(val, info->reg.gpmc_prefetch_config1);
192
193 /* Start the prefetch engine */
194 writel(0x1, info->reg.gpmc_prefetch_control);
195
196 return 0;
197 }
198
199 /**
200 * omap_prefetch_reset - disables and stops the prefetch engine
201 */
202 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
203 {
204 u32 config1;
205
206 /* check if the same module/cs is trying to reset */
207 config1 = readl(info->reg.gpmc_prefetch_config1);
208 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
209 return -EINVAL;
210
211 /* Stop the PFPW engine */
212 writel(0x0, info->reg.gpmc_prefetch_control);
213
214 /* Reset/disable the PFPW engine */
215 writel(0x0, info->reg.gpmc_prefetch_config1);
216
217 return 0;
218 }
219
220 /**
221 * omap_hwcontrol - hardware specific access to control-lines
222 * @mtd: MTD device structure
223 * @cmd: command to device
224 * @ctrl:
225 * NAND_NCE: bit 0 -> don't care
226 * NAND_CLE: bit 1 -> Command Latch
227 * NAND_ALE: bit 2 -> Address Latch
228 *
229 * NOTE: boards may use different bits for these!!
230 */
231 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
232 {
233 struct omap_nand_info *info = container_of(mtd,
234 struct omap_nand_info, mtd);
235
236 if (cmd != NAND_CMD_NONE) {
237 if (ctrl & NAND_CLE)
238 writeb(cmd, info->reg.gpmc_nand_command);
239
240 else if (ctrl & NAND_ALE)
241 writeb(cmd, info->reg.gpmc_nand_address);
242
243 else /* NAND_NCE */
244 writeb(cmd, info->reg.gpmc_nand_data);
245 }
246 }
247
248 /**
249 * omap_read_buf8 - read data from NAND controller into buffer
250 * @mtd: MTD device structure
251 * @buf: buffer to store date
252 * @len: number of bytes to read
253 */
254 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
255 {
256 struct nand_chip *nand = mtd->priv;
257
258 ioread8_rep(nand->IO_ADDR_R, buf, len);
259 }
260
261 /**
262 * omap_write_buf8 - write buffer to NAND controller
263 * @mtd: MTD device structure
264 * @buf: data buffer
265 * @len: number of bytes to write
266 */
267 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
268 {
269 struct omap_nand_info *info = container_of(mtd,
270 struct omap_nand_info, mtd);
271 u_char *p = (u_char *)buf;
272 u32 status = 0;
273
274 while (len--) {
275 iowrite8(*p++, info->nand.IO_ADDR_W);
276 /* wait until buffer is available for write */
277 do {
278 status = readl(info->reg.gpmc_status) &
279 STATUS_BUFF_EMPTY;
280 } while (!status);
281 }
282 }
283
284 /**
285 * omap_read_buf16 - read data from NAND controller into buffer
286 * @mtd: MTD device structure
287 * @buf: buffer to store date
288 * @len: number of bytes to read
289 */
290 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
291 {
292 struct nand_chip *nand = mtd->priv;
293
294 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
295 }
296
297 /**
298 * omap_write_buf16 - write buffer to NAND controller
299 * @mtd: MTD device structure
300 * @buf: data buffer
301 * @len: number of bytes to write
302 */
303 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
304 {
305 struct omap_nand_info *info = container_of(mtd,
306 struct omap_nand_info, mtd);
307 u16 *p = (u16 *) buf;
308 u32 status = 0;
309 /* FIXME try bursts of writesw() or DMA ... */
310 len >>= 1;
311
312 while (len--) {
313 iowrite16(*p++, info->nand.IO_ADDR_W);
314 /* wait until buffer is available for write */
315 do {
316 status = readl(info->reg.gpmc_status) &
317 STATUS_BUFF_EMPTY;
318 } while (!status);
319 }
320 }
321
322 /**
323 * omap_read_buf_pref - read data from NAND controller into buffer
324 * @mtd: MTD device structure
325 * @buf: buffer to store date
326 * @len: number of bytes to read
327 */
328 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
329 {
330 struct omap_nand_info *info = container_of(mtd,
331 struct omap_nand_info, mtd);
332 uint32_t r_count = 0;
333 int ret = 0;
334 u32 *p = (u32 *)buf;
335
336 /* take care of subpage reads */
337 if (len % 4) {
338 if (info->nand.options & NAND_BUSWIDTH_16)
339 omap_read_buf16(mtd, buf, len % 4);
340 else
341 omap_read_buf8(mtd, buf, len % 4);
342 p = (u32 *) (buf + len % 4);
343 len -= len % 4;
344 }
345
346 /* configure and start prefetch transfer */
347 ret = omap_prefetch_enable(info->gpmc_cs,
348 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
349 if (ret) {
350 /* PFPW engine is busy, use cpu copy method */
351 if (info->nand.options & NAND_BUSWIDTH_16)
352 omap_read_buf16(mtd, (u_char *)p, len);
353 else
354 omap_read_buf8(mtd, (u_char *)p, len);
355 } else {
356 do {
357 r_count = readl(info->reg.gpmc_prefetch_status);
358 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
359 r_count = r_count >> 2;
360 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
361 p += r_count;
362 len -= r_count << 2;
363 } while (len);
364 /* disable and stop the PFPW engine */
365 omap_prefetch_reset(info->gpmc_cs, info);
366 }
367 }
368
369 /**
370 * omap_write_buf_pref - write buffer to NAND controller
371 * @mtd: MTD device structure
372 * @buf: data buffer
373 * @len: number of bytes to write
374 */
375 static void omap_write_buf_pref(struct mtd_info *mtd,
376 const u_char *buf, int len)
377 {
378 struct omap_nand_info *info = container_of(mtd,
379 struct omap_nand_info, mtd);
380 uint32_t w_count = 0;
381 int i = 0, ret = 0;
382 u16 *p = (u16 *)buf;
383 unsigned long tim, limit;
384 u32 val;
385
386 /* take care of subpage writes */
387 if (len % 2 != 0) {
388 writeb(*buf, info->nand.IO_ADDR_W);
389 p = (u16 *)(buf + 1);
390 len--;
391 }
392
393 /* configure and start prefetch transfer */
394 ret = omap_prefetch_enable(info->gpmc_cs,
395 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
396 if (ret) {
397 /* PFPW engine is busy, use cpu copy method */
398 if (info->nand.options & NAND_BUSWIDTH_16)
399 omap_write_buf16(mtd, (u_char *)p, len);
400 else
401 omap_write_buf8(mtd, (u_char *)p, len);
402 } else {
403 while (len) {
404 w_count = readl(info->reg.gpmc_prefetch_status);
405 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
406 w_count = w_count >> 1;
407 for (i = 0; (i < w_count) && len; i++, len -= 2)
408 iowrite16(*p++, info->nand.IO_ADDR_W);
409 }
410 /* wait for data to flushed-out before reset the prefetch */
411 tim = 0;
412 limit = (loops_per_jiffy *
413 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
414 do {
415 cpu_relax();
416 val = readl(info->reg.gpmc_prefetch_status);
417 val = PREFETCH_STATUS_COUNT(val);
418 } while (val && (tim++ < limit));
419
420 /* disable and stop the PFPW engine */
421 omap_prefetch_reset(info->gpmc_cs, info);
422 }
423 }
424
425 /*
426 * omap_nand_dma_callback: callback on the completion of dma transfer
427 * @data: pointer to completion data structure
428 */
429 static void omap_nand_dma_callback(void *data)
430 {
431 complete((struct completion *) data);
432 }
433
434 /*
435 * omap_nand_dma_transfer: configure and start dma transfer
436 * @mtd: MTD device structure
437 * @addr: virtual address in RAM of source/destination
438 * @len: number of data bytes to be transferred
439 * @is_write: flag for read/write operation
440 */
441 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
442 unsigned int len, int is_write)
443 {
444 struct omap_nand_info *info = container_of(mtd,
445 struct omap_nand_info, mtd);
446 struct dma_async_tx_descriptor *tx;
447 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
448 DMA_FROM_DEVICE;
449 struct scatterlist sg;
450 unsigned long tim, limit;
451 unsigned n;
452 int ret;
453 u32 val;
454
455 if (addr >= high_memory) {
456 struct page *p1;
457
458 if (((size_t)addr & PAGE_MASK) !=
459 ((size_t)(addr + len - 1) & PAGE_MASK))
460 goto out_copy;
461 p1 = vmalloc_to_page(addr);
462 if (!p1)
463 goto out_copy;
464 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
465 }
466
467 sg_init_one(&sg, addr, len);
468 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
469 if (n == 0) {
470 dev_err(&info->pdev->dev,
471 "Couldn't DMA map a %d byte buffer\n", len);
472 goto out_copy;
473 }
474
475 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
476 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
477 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
478 if (!tx)
479 goto out_copy_unmap;
480
481 tx->callback = omap_nand_dma_callback;
482 tx->callback_param = &info->comp;
483 dmaengine_submit(tx);
484
485 /* configure and start prefetch transfer */
486 ret = omap_prefetch_enable(info->gpmc_cs,
487 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
488 if (ret)
489 /* PFPW engine is busy, use cpu copy method */
490 goto out_copy_unmap;
491
492 init_completion(&info->comp);
493 dma_async_issue_pending(info->dma);
494
495 /* setup and start DMA using dma_addr */
496 wait_for_completion(&info->comp);
497 tim = 0;
498 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
499
500 do {
501 cpu_relax();
502 val = readl(info->reg.gpmc_prefetch_status);
503 val = PREFETCH_STATUS_COUNT(val);
504 } while (val && (tim++ < limit));
505
506 /* disable and stop the PFPW engine */
507 omap_prefetch_reset(info->gpmc_cs, info);
508
509 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
510 return 0;
511
512 out_copy_unmap:
513 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
514 out_copy:
515 if (info->nand.options & NAND_BUSWIDTH_16)
516 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
517 : omap_write_buf16(mtd, (u_char *) addr, len);
518 else
519 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
520 : omap_write_buf8(mtd, (u_char *) addr, len);
521 return 0;
522 }
523
524 /**
525 * omap_read_buf_dma_pref - read data from NAND controller into buffer
526 * @mtd: MTD device structure
527 * @buf: buffer to store date
528 * @len: number of bytes to read
529 */
530 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
531 {
532 if (len <= mtd->oobsize)
533 omap_read_buf_pref(mtd, buf, len);
534 else
535 /* start transfer in DMA mode */
536 omap_nand_dma_transfer(mtd, buf, len, 0x0);
537 }
538
539 /**
540 * omap_write_buf_dma_pref - write buffer to NAND controller
541 * @mtd: MTD device structure
542 * @buf: data buffer
543 * @len: number of bytes to write
544 */
545 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
546 const u_char *buf, int len)
547 {
548 if (len <= mtd->oobsize)
549 omap_write_buf_pref(mtd, buf, len);
550 else
551 /* start transfer in DMA mode */
552 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
553 }
554
555 /*
556 * omap_nand_irq - GPMC irq handler
557 * @this_irq: gpmc irq number
558 * @dev: omap_nand_info structure pointer is passed here
559 */
560 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
561 {
562 struct omap_nand_info *info = (struct omap_nand_info *) dev;
563 u32 bytes;
564
565 bytes = readl(info->reg.gpmc_prefetch_status);
566 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
567 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
568 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
569 if (this_irq == info->gpmc_irq_count)
570 goto done;
571
572 if (info->buf_len && (info->buf_len < bytes))
573 bytes = info->buf_len;
574 else if (!info->buf_len)
575 bytes = 0;
576 iowrite32_rep(info->nand.IO_ADDR_W,
577 (u32 *)info->buf, bytes >> 2);
578 info->buf = info->buf + bytes;
579 info->buf_len -= bytes;
580
581 } else {
582 ioread32_rep(info->nand.IO_ADDR_R,
583 (u32 *)info->buf, bytes >> 2);
584 info->buf = info->buf + bytes;
585
586 if (this_irq == info->gpmc_irq_count)
587 goto done;
588 }
589
590 return IRQ_HANDLED;
591
592 done:
593 complete(&info->comp);
594
595 disable_irq_nosync(info->gpmc_irq_fifo);
596 disable_irq_nosync(info->gpmc_irq_count);
597
598 return IRQ_HANDLED;
599 }
600
601 /*
602 * omap_read_buf_irq_pref - read data from NAND controller into buffer
603 * @mtd: MTD device structure
604 * @buf: buffer to store date
605 * @len: number of bytes to read
606 */
607 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
608 {
609 struct omap_nand_info *info = container_of(mtd,
610 struct omap_nand_info, mtd);
611 int ret = 0;
612
613 if (len <= mtd->oobsize) {
614 omap_read_buf_pref(mtd, buf, len);
615 return;
616 }
617
618 info->iomode = OMAP_NAND_IO_READ;
619 info->buf = buf;
620 init_completion(&info->comp);
621
622 /* configure and start prefetch transfer */
623 ret = omap_prefetch_enable(info->gpmc_cs,
624 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
625 if (ret)
626 /* PFPW engine is busy, use cpu copy method */
627 goto out_copy;
628
629 info->buf_len = len;
630
631 enable_irq(info->gpmc_irq_count);
632 enable_irq(info->gpmc_irq_fifo);
633
634 /* waiting for read to complete */
635 wait_for_completion(&info->comp);
636
637 /* disable and stop the PFPW engine */
638 omap_prefetch_reset(info->gpmc_cs, info);
639 return;
640
641 out_copy:
642 if (info->nand.options & NAND_BUSWIDTH_16)
643 omap_read_buf16(mtd, buf, len);
644 else
645 omap_read_buf8(mtd, buf, len);
646 }
647
648 /*
649 * omap_write_buf_irq_pref - write buffer to NAND controller
650 * @mtd: MTD device structure
651 * @buf: data buffer
652 * @len: number of bytes to write
653 */
654 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
655 const u_char *buf, int len)
656 {
657 struct omap_nand_info *info = container_of(mtd,
658 struct omap_nand_info, mtd);
659 int ret = 0;
660 unsigned long tim, limit;
661 u32 val;
662
663 if (len <= mtd->oobsize) {
664 omap_write_buf_pref(mtd, buf, len);
665 return;
666 }
667
668 info->iomode = OMAP_NAND_IO_WRITE;
669 info->buf = (u_char *) buf;
670 init_completion(&info->comp);
671
672 /* configure and start prefetch transfer : size=24 */
673 ret = omap_prefetch_enable(info->gpmc_cs,
674 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
675 if (ret)
676 /* PFPW engine is busy, use cpu copy method */
677 goto out_copy;
678
679 info->buf_len = len;
680
681 enable_irq(info->gpmc_irq_count);
682 enable_irq(info->gpmc_irq_fifo);
683
684 /* waiting for write to complete */
685 wait_for_completion(&info->comp);
686
687 /* wait for data to flushed-out before reset the prefetch */
688 tim = 0;
689 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
690 do {
691 val = readl(info->reg.gpmc_prefetch_status);
692 val = PREFETCH_STATUS_COUNT(val);
693 cpu_relax();
694 } while (val && (tim++ < limit));
695
696 /* disable and stop the PFPW engine */
697 omap_prefetch_reset(info->gpmc_cs, info);
698 return;
699
700 out_copy:
701 if (info->nand.options & NAND_BUSWIDTH_16)
702 omap_write_buf16(mtd, buf, len);
703 else
704 omap_write_buf8(mtd, buf, len);
705 }
706
707 /**
708 * gen_true_ecc - This function will generate true ECC value
709 * @ecc_buf: buffer to store ecc code
710 *
711 * This generated true ECC value can be used when correcting
712 * data read from NAND flash memory core
713 */
714 static void gen_true_ecc(u8 *ecc_buf)
715 {
716 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
717 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
718
719 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
720 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
721 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
722 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
723 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
724 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
725 }
726
727 /**
728 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
729 * @ecc_data1: ecc code from nand spare area
730 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
731 * @page_data: page data
732 *
733 * This function compares two ECC's and indicates if there is an error.
734 * If the error can be corrected it will be corrected to the buffer.
735 * If there is no error, %0 is returned. If there is an error but it
736 * was corrected, %1 is returned. Otherwise, %-1 is returned.
737 */
738 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
739 u8 *ecc_data2, /* read from register */
740 u8 *page_data)
741 {
742 uint i;
743 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
744 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
745 u8 ecc_bit[24];
746 u8 ecc_sum = 0;
747 u8 find_bit = 0;
748 uint find_byte = 0;
749 int isEccFF;
750
751 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
752
753 gen_true_ecc(ecc_data1);
754 gen_true_ecc(ecc_data2);
755
756 for (i = 0; i <= 2; i++) {
757 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
758 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
759 }
760
761 for (i = 0; i < 8; i++) {
762 tmp0_bit[i] = *ecc_data1 % 2;
763 *ecc_data1 = *ecc_data1 / 2;
764 }
765
766 for (i = 0; i < 8; i++) {
767 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
768 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
769 }
770
771 for (i = 0; i < 8; i++) {
772 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
773 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
774 }
775
776 for (i = 0; i < 8; i++) {
777 comp0_bit[i] = *ecc_data2 % 2;
778 *ecc_data2 = *ecc_data2 / 2;
779 }
780
781 for (i = 0; i < 8; i++) {
782 comp1_bit[i] = *(ecc_data2 + 1) % 2;
783 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
784 }
785
786 for (i = 0; i < 8; i++) {
787 comp2_bit[i] = *(ecc_data2 + 2) % 2;
788 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
789 }
790
791 for (i = 0; i < 6; i++)
792 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
793
794 for (i = 0; i < 8; i++)
795 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
796
797 for (i = 0; i < 8; i++)
798 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
799
800 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
801 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
802
803 for (i = 0; i < 24; i++)
804 ecc_sum += ecc_bit[i];
805
806 switch (ecc_sum) {
807 case 0:
808 /* Not reached because this function is not called if
809 * ECC values are equal
810 */
811 return 0;
812
813 case 1:
814 /* Uncorrectable error */
815 pr_debug("ECC UNCORRECTED_ERROR 1\n");
816 return -1;
817
818 case 11:
819 /* UN-Correctable error */
820 pr_debug("ECC UNCORRECTED_ERROR B\n");
821 return -1;
822
823 case 12:
824 /* Correctable error */
825 find_byte = (ecc_bit[23] << 8) +
826 (ecc_bit[21] << 7) +
827 (ecc_bit[19] << 6) +
828 (ecc_bit[17] << 5) +
829 (ecc_bit[15] << 4) +
830 (ecc_bit[13] << 3) +
831 (ecc_bit[11] << 2) +
832 (ecc_bit[9] << 1) +
833 ecc_bit[7];
834
835 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
836
837 pr_debug("Correcting single bit ECC error at offset: "
838 "%d, bit: %d\n", find_byte, find_bit);
839
840 page_data[find_byte] ^= (1 << find_bit);
841
842 return 1;
843 default:
844 if (isEccFF) {
845 if (ecc_data2[0] == 0 &&
846 ecc_data2[1] == 0 &&
847 ecc_data2[2] == 0)
848 return 0;
849 }
850 pr_debug("UNCORRECTED_ERROR default\n");
851 return -1;
852 }
853 }
854
855 /**
856 * omap_correct_data - Compares the ECC read with HW generated ECC
857 * @mtd: MTD device structure
858 * @dat: page data
859 * @read_ecc: ecc read from nand flash
860 * @calc_ecc: ecc read from HW ECC registers
861 *
862 * Compares the ecc read from nand spare area with ECC registers values
863 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
864 * detection and correction. If there are no errors, %0 is returned. If
865 * there were errors and all of the errors were corrected, the number of
866 * corrected errors is returned. If uncorrectable errors exist, %-1 is
867 * returned.
868 */
869 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
870 u_char *read_ecc, u_char *calc_ecc)
871 {
872 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
873 mtd);
874 int blockCnt = 0, i = 0, ret = 0;
875 int stat = 0;
876
877 /* Ex NAND_ECC_HW12_2048 */
878 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
879 (info->nand.ecc.size == 2048))
880 blockCnt = 4;
881 else
882 blockCnt = 1;
883
884 for (i = 0; i < blockCnt; i++) {
885 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
886 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
887 if (ret < 0)
888 return ret;
889 /* keep track of the number of corrected errors */
890 stat += ret;
891 }
892 read_ecc += 3;
893 calc_ecc += 3;
894 dat += 512;
895 }
896 return stat;
897 }
898
899 /**
900 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
901 * @mtd: MTD device structure
902 * @dat: The pointer to data on which ecc is computed
903 * @ecc_code: The ecc_code buffer
904 *
905 * Using noninverted ECC can be considered ugly since writing a blank
906 * page ie. padding will clear the ECC bytes. This is no problem as long
907 * nobody is trying to write data on the seemingly unused page. Reading
908 * an erased page will produce an ECC mismatch between generated and read
909 * ECC bytes that has to be dealt with separately.
910 */
911 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
912 u_char *ecc_code)
913 {
914 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
915 mtd);
916 u32 val;
917
918 val = readl(info->reg.gpmc_ecc_config);
919 if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs)
920 return -EINVAL;
921
922 /* read ecc result */
923 val = readl(info->reg.gpmc_ecc1_result);
924 *ecc_code++ = val; /* P128e, ..., P1e */
925 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
926 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
927 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
928
929 return 0;
930 }
931
932 /**
933 * omap_enable_hwecc - This function enables the hardware ecc functionality
934 * @mtd: MTD device structure
935 * @mode: Read/Write mode
936 */
937 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
938 {
939 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
940 mtd);
941 struct nand_chip *chip = mtd->priv;
942 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
943 u32 val;
944
945 /* clear ecc and enable bits */
946 val = ECCCLEAR | ECC1;
947 writel(val, info->reg.gpmc_ecc_control);
948
949 /* program ecc and result sizes */
950 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
951 ECC1RESULTSIZE);
952 writel(val, info->reg.gpmc_ecc_size_config);
953
954 switch (mode) {
955 case NAND_ECC_READ:
956 case NAND_ECC_WRITE:
957 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
958 break;
959 case NAND_ECC_READSYN:
960 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
961 break;
962 default:
963 dev_info(&info->pdev->dev,
964 "error: unrecognized Mode[%d]!\n", mode);
965 break;
966 }
967
968 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
969 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
970 writel(val, info->reg.gpmc_ecc_config);
971 }
972
973 /**
974 * omap_wait - wait until the command is done
975 * @mtd: MTD device structure
976 * @chip: NAND Chip structure
977 *
978 * Wait function is called during Program and erase operations and
979 * the way it is called from MTD layer, we should wait till the NAND
980 * chip is ready after the programming/erase operation has completed.
981 *
982 * Erase can take up to 400ms and program up to 20ms according to
983 * general NAND and SmartMedia specs
984 */
985 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
986 {
987 struct nand_chip *this = mtd->priv;
988 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
989 mtd);
990 unsigned long timeo = jiffies;
991 int status, state = this->state;
992
993 if (state == FL_ERASING)
994 timeo += (HZ * 400) / 1000;
995 else
996 timeo += (HZ * 20) / 1000;
997
998 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
999 while (time_before(jiffies, timeo)) {
1000 status = readb(info->reg.gpmc_nand_data);
1001 if (status & NAND_STATUS_READY)
1002 break;
1003 cond_resched();
1004 }
1005
1006 status = readb(info->reg.gpmc_nand_data);
1007 return status;
1008 }
1009
1010 /**
1011 * omap_dev_ready - calls the platform specific dev_ready function
1012 * @mtd: MTD device structure
1013 */
1014 static int omap_dev_ready(struct mtd_info *mtd)
1015 {
1016 unsigned int val = 0;
1017 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1018 mtd);
1019
1020 val = readl(info->reg.gpmc_status);
1021
1022 if ((val & 0x100) == 0x100) {
1023 return 1;
1024 } else {
1025 return 0;
1026 }
1027 }
1028
1029 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1030
1031 /**
1032 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
1033 * @mtd: MTD device structure
1034 * @mode: Read/Write mode
1035 */
1036 static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1037 {
1038 int nerrors;
1039 unsigned int dev_width, nsectors;
1040 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1041 mtd);
1042 struct nand_chip *chip = mtd->priv;
1043 u32 val;
1044
1045 nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4;
1046 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1047 nsectors = 1;
1048 /*
1049 * Program GPMC to perform correction on one 512-byte sector at a time.
1050 * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and
1051 * gives a slight (5%) performance gain (but requires additional code).
1052 */
1053
1054 writel(ECC1, info->reg.gpmc_ecc_control);
1055
1056 /*
1057 * When using BCH, sector size is hardcoded to 512 bytes.
1058 * Here we are using wrapping mode 6 both for reading and writing, with:
1059 * size0 = 0 (no additional protected byte in spare area)
1060 * size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1061 */
1062 val = (32 << ECCSIZE1_SHIFT) | (0 << ECCSIZE0_SHIFT);
1063 writel(val, info->reg.gpmc_ecc_size_config);
1064
1065 /* BCH configuration */
1066 val = ((1 << 16) | /* enable BCH */
1067 (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
1068 (0x06 << 8) | /* wrap mode = 6 */
1069 (dev_width << 7) | /* bus width */
1070 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1071 (info->gpmc_cs << 1) | /* ECC CS */
1072 (0x1)); /* enable ECC */
1073
1074 writel(val, info->reg.gpmc_ecc_config);
1075
1076 /* clear ecc and enable bits */
1077 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1078 }
1079
1080 /**
1081 * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
1082 * @mtd: MTD device structure
1083 * @dat: The pointer to data on which ecc is computed
1084 * @ecc_code: The ecc_code buffer
1085 */
1086 static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
1087 u_char *ecc_code)
1088 {
1089 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1090 mtd);
1091 unsigned long nsectors, val1, val2;
1092 int i;
1093
1094 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1095
1096 for (i = 0; i < nsectors; i++) {
1097
1098 /* Read hw-computed remainder */
1099 val1 = readl(info->reg.gpmc_bch_result0[i]);
1100 val2 = readl(info->reg.gpmc_bch_result1[i]);
1101
1102 /*
1103 * Add constant polynomial to remainder, in order to get an ecc
1104 * sequence of 0xFFs for a buffer filled with 0xFFs; and
1105 * left-justify the resulting polynomial.
1106 */
1107 *ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
1108 *ecc_code++ = 0x13 ^ ((val2 >> 4) & 0xFF);
1109 *ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
1110 *ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
1111 *ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
1112 *ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
1113 *ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
1114 }
1115
1116 return 0;
1117 }
1118
1119 /**
1120 * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
1121 * @mtd: MTD device structure
1122 * @dat: The pointer to data on which ecc is computed
1123 * @ecc_code: The ecc_code buffer
1124 */
1125 static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
1126 u_char *ecc_code)
1127 {
1128 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1129 mtd);
1130 unsigned long nsectors, val1, val2, val3, val4;
1131 int i;
1132
1133 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1134
1135 for (i = 0; i < nsectors; i++) {
1136
1137 /* Read hw-computed remainder */
1138 val1 = readl(info->reg.gpmc_bch_result0[i]);
1139 val2 = readl(info->reg.gpmc_bch_result1[i]);
1140 val3 = readl(info->reg.gpmc_bch_result2[i]);
1141 val4 = readl(info->reg.gpmc_bch_result3[i]);
1142
1143 /*
1144 * Add constant polynomial to remainder, in order to get an ecc
1145 * sequence of 0xFFs for a buffer filled with 0xFFs.
1146 */
1147 *ecc_code++ = 0xef ^ (val4 & 0xFF);
1148 *ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
1149 *ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
1150 *ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
1151 *ecc_code++ = 0xed ^ (val3 & 0xFF);
1152 *ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
1153 *ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
1154 *ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
1155 *ecc_code++ = 0x97 ^ (val2 & 0xFF);
1156 *ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
1157 *ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
1158 *ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
1159 *ecc_code++ = 0xb5 ^ (val1 & 0xFF);
1160 }
1161
1162 return 0;
1163 }
1164
1165 /**
1166 * omap3_correct_data_bch - Decode received data and correct errors
1167 * @mtd: MTD device structure
1168 * @data: page data
1169 * @read_ecc: ecc read from nand flash
1170 * @calc_ecc: ecc read from HW ECC registers
1171 */
1172 static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
1173 u_char *read_ecc, u_char *calc_ecc)
1174 {
1175 int i, count;
1176 /* cannot correct more than 8 errors */
1177 unsigned int errloc[8];
1178 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1179 mtd);
1180
1181 count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
1182 errloc);
1183 if (count > 0) {
1184 /* correct errors */
1185 for (i = 0; i < count; i++) {
1186 /* correct data only, not ecc bytes */
1187 if (errloc[i] < 8*512)
1188 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
1189 pr_debug("corrected bitflip %u\n", errloc[i]);
1190 }
1191 } else if (count < 0) {
1192 pr_err("ecc unrecoverable error\n");
1193 }
1194 return count;
1195 }
1196
1197 /**
1198 * omap3_free_bch - Release BCH ecc resources
1199 * @mtd: MTD device structure
1200 */
1201 static void omap3_free_bch(struct mtd_info *mtd)
1202 {
1203 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1204 mtd);
1205 if (info->bch) {
1206 free_bch(info->bch);
1207 info->bch = NULL;
1208 }
1209 }
1210
1211 /**
1212 * omap3_init_bch - Initialize BCH ECC
1213 * @mtd: MTD device structure
1214 * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
1215 */
1216 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1217 {
1218 int max_errors;
1219 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1220 mtd);
1221 #ifdef CONFIG_MTD_NAND_OMAP_BCH8
1222 const int hw_errors = 8;
1223 #else
1224 const int hw_errors = 4;
1225 #endif
1226 info->bch = NULL;
1227
1228 max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4;
1229 if (max_errors != hw_errors) {
1230 pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
1231 max_errors, hw_errors);
1232 goto fail;
1233 }
1234
1235 /* software bch library is only used to detect and locate errors */
1236 info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */);
1237 if (!info->bch)
1238 goto fail;
1239
1240 info->nand.ecc.size = 512;
1241 info->nand.ecc.hwctl = omap3_enable_hwecc_bch;
1242 info->nand.ecc.correct = omap3_correct_data_bch;
1243 info->nand.ecc.mode = NAND_ECC_HW;
1244
1245 /*
1246 * The number of corrected errors in an ecc block that will trigger
1247 * block scrubbing defaults to the ecc strength (4 or 8).
1248 * Set mtd->bitflip_threshold here to define a custom threshold.
1249 */
1250
1251 if (max_errors == 8) {
1252 info->nand.ecc.strength = 8;
1253 info->nand.ecc.bytes = 13;
1254 info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
1255 } else {
1256 info->nand.ecc.strength = 4;
1257 info->nand.ecc.bytes = 7;
1258 info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
1259 }
1260
1261 pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
1262 return 0;
1263 fail:
1264 omap3_free_bch(mtd);
1265 return -1;
1266 }
1267
1268 /**
1269 * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
1270 * @mtd: MTD device structure
1271 */
1272 static int omap3_init_bch_tail(struct mtd_info *mtd)
1273 {
1274 int i, steps;
1275 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1276 mtd);
1277 struct nand_ecclayout *layout = &info->ecclayout;
1278
1279 /* build oob layout */
1280 steps = mtd->writesize/info->nand.ecc.size;
1281 layout->eccbytes = steps*info->nand.ecc.bytes;
1282
1283 /* do not bother creating special oob layouts for small page devices */
1284 if (mtd->oobsize < 64) {
1285 pr_err("BCH ecc is not supported on small page devices\n");
1286 goto fail;
1287 }
1288
1289 /* reserve 2 bytes for bad block marker */
1290 if (layout->eccbytes+2 > mtd->oobsize) {
1291 pr_err("no oob layout available for oobsize %d eccbytes %u\n",
1292 mtd->oobsize, layout->eccbytes);
1293 goto fail;
1294 }
1295
1296 /* put ecc bytes at oob tail */
1297 for (i = 0; i < layout->eccbytes; i++)
1298 layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
1299
1300 layout->oobfree[0].offset = 2;
1301 layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
1302 info->nand.ecc.layout = layout;
1303
1304 if (!(info->nand.options & NAND_BUSWIDTH_16))
1305 info->nand.badblock_pattern = &bb_descrip_flashbased;
1306 return 0;
1307 fail:
1308 omap3_free_bch(mtd);
1309 return -1;
1310 }
1311
1312 #else
1313 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1314 {
1315 pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
1316 return -1;
1317 }
1318 static int omap3_init_bch_tail(struct mtd_info *mtd)
1319 {
1320 return -1;
1321 }
1322 static void omap3_free_bch(struct mtd_info *mtd)
1323 {
1324 }
1325 #endif /* CONFIG_MTD_NAND_OMAP_BCH */
1326
1327 static int __devinit omap_nand_probe(struct platform_device *pdev)
1328 {
1329 struct omap_nand_info *info;
1330 struct omap_nand_platform_data *pdata;
1331 int err;
1332 int i, offset;
1333 dma_cap_mask_t mask;
1334 unsigned sig;
1335 struct resource *res;
1336
1337 pdata = pdev->dev.platform_data;
1338 if (pdata == NULL) {
1339 dev_err(&pdev->dev, "platform data missing\n");
1340 return -ENODEV;
1341 }
1342
1343 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
1344 if (!info)
1345 return -ENOMEM;
1346
1347 platform_set_drvdata(pdev, info);
1348
1349 spin_lock_init(&info->controller.lock);
1350 init_waitqueue_head(&info->controller.wq);
1351
1352 info->pdev = pdev;
1353
1354 info->gpmc_cs = pdata->cs;
1355 info->reg = pdata->reg;
1356
1357 info->mtd.priv = &info->nand;
1358 info->mtd.name = dev_name(&pdev->dev);
1359 info->mtd.owner = THIS_MODULE;
1360
1361 info->nand.options = pdata->devsize;
1362 info->nand.options |= NAND_SKIP_BBTSCAN;
1363
1364 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1365 if (res == NULL) {
1366 err = -EINVAL;
1367 dev_err(&pdev->dev, "error getting memory resource\n");
1368 goto out_free_info;
1369 }
1370
1371 info->phys_base = res->start;
1372 info->mem_size = resource_size(res);
1373
1374 if (!request_mem_region(info->phys_base, info->mem_size,
1375 pdev->dev.driver->name)) {
1376 err = -EBUSY;
1377 goto out_free_info;
1378 }
1379
1380 info->nand.IO_ADDR_R = ioremap(info->phys_base, info->mem_size);
1381 if (!info->nand.IO_ADDR_R) {
1382 err = -ENOMEM;
1383 goto out_release_mem_region;
1384 }
1385
1386 info->nand.controller = &info->controller;
1387
1388 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
1389 info->nand.cmd_ctrl = omap_hwcontrol;
1390
1391 /*
1392 * If RDY/BSY line is connected to OMAP then use the omap ready
1393 * function and the generic nand_wait function which reads the status
1394 * register after monitoring the RDY/BSY line. Otherwise use a standard
1395 * chip delay which is slightly more than tR (AC Timing) of the NAND
1396 * device and read status register until you get a failure or success
1397 */
1398 if (pdata->dev_ready) {
1399 info->nand.dev_ready = omap_dev_ready;
1400 info->nand.chip_delay = 0;
1401 } else {
1402 info->nand.waitfunc = omap_wait;
1403 info->nand.chip_delay = 50;
1404 }
1405
1406 switch (pdata->xfer_type) {
1407 case NAND_OMAP_PREFETCH_POLLED:
1408 info->nand.read_buf = omap_read_buf_pref;
1409 info->nand.write_buf = omap_write_buf_pref;
1410 break;
1411
1412 case NAND_OMAP_POLLED:
1413 if (info->nand.options & NAND_BUSWIDTH_16) {
1414 info->nand.read_buf = omap_read_buf16;
1415 info->nand.write_buf = omap_write_buf16;
1416 } else {
1417 info->nand.read_buf = omap_read_buf8;
1418 info->nand.write_buf = omap_write_buf8;
1419 }
1420 break;
1421
1422 case NAND_OMAP_PREFETCH_DMA:
1423 dma_cap_zero(mask);
1424 dma_cap_set(DMA_SLAVE, mask);
1425 sig = OMAP24XX_DMA_GPMC;
1426 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1427 if (!info->dma) {
1428 dev_err(&pdev->dev, "DMA engine request failed\n");
1429 err = -ENXIO;
1430 goto out_release_mem_region;
1431 } else {
1432 struct dma_slave_config cfg;
1433
1434 memset(&cfg, 0, sizeof(cfg));
1435 cfg.src_addr = info->phys_base;
1436 cfg.dst_addr = info->phys_base;
1437 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1438 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1439 cfg.src_maxburst = 16;
1440 cfg.dst_maxburst = 16;
1441 err = dmaengine_slave_config(info->dma, &cfg);
1442 if (err) {
1443 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1444 err);
1445 goto out_release_mem_region;
1446 }
1447 info->nand.read_buf = omap_read_buf_dma_pref;
1448 info->nand.write_buf = omap_write_buf_dma_pref;
1449 }
1450 break;
1451
1452 case NAND_OMAP_PREFETCH_IRQ:
1453 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1454 if (info->gpmc_irq_fifo <= 0) {
1455 dev_err(&pdev->dev, "error getting fifo irq\n");
1456 err = -ENODEV;
1457 goto out_release_mem_region;
1458 }
1459 err = request_irq(info->gpmc_irq_fifo, omap_nand_irq,
1460 IRQF_SHARED, "gpmc-nand-fifo", info);
1461 if (err) {
1462 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1463 info->gpmc_irq_fifo, err);
1464 info->gpmc_irq_fifo = 0;
1465 goto out_release_mem_region;
1466 }
1467
1468 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1469 if (info->gpmc_irq_count <= 0) {
1470 dev_err(&pdev->dev, "error getting count irq\n");
1471 err = -ENODEV;
1472 goto out_release_mem_region;
1473 }
1474 err = request_irq(info->gpmc_irq_count, omap_nand_irq,
1475 IRQF_SHARED, "gpmc-nand-count", info);
1476 if (err) {
1477 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1478 info->gpmc_irq_count, err);
1479 info->gpmc_irq_count = 0;
1480 goto out_release_mem_region;
1481 }
1482
1483 info->nand.read_buf = omap_read_buf_irq_pref;
1484 info->nand.write_buf = omap_write_buf_irq_pref;
1485
1486 break;
1487
1488 default:
1489 dev_err(&pdev->dev,
1490 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1491 err = -EINVAL;
1492 goto out_release_mem_region;
1493 }
1494
1495 /* select the ecc type */
1496 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1497 info->nand.ecc.mode = NAND_ECC_SOFT;
1498 else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1499 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1500 info->nand.ecc.bytes = 3;
1501 info->nand.ecc.size = 512;
1502 info->nand.ecc.strength = 1;
1503 info->nand.ecc.calculate = omap_calculate_ecc;
1504 info->nand.ecc.hwctl = omap_enable_hwecc;
1505 info->nand.ecc.correct = omap_correct_data;
1506 info->nand.ecc.mode = NAND_ECC_HW;
1507 } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1508 (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1509 err = omap3_init_bch(&info->mtd, pdata->ecc_opt);
1510 if (err) {
1511 err = -EINVAL;
1512 goto out_release_mem_region;
1513 }
1514 }
1515
1516 /* DIP switches on some boards change between 8 and 16 bit
1517 * bus widths for flash. Try the other width if the first try fails.
1518 */
1519 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1520 info->nand.options ^= NAND_BUSWIDTH_16;
1521 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1522 err = -ENXIO;
1523 goto out_release_mem_region;
1524 }
1525 }
1526
1527 /* rom code layout */
1528 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1529
1530 if (info->nand.options & NAND_BUSWIDTH_16)
1531 offset = 2;
1532 else {
1533 offset = 1;
1534 info->nand.badblock_pattern = &bb_descrip_flashbased;
1535 }
1536 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1537 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1538 omap_oobinfo.eccpos[i] = i+offset;
1539
1540 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1541 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1542 (offset + omap_oobinfo.eccbytes);
1543
1544 info->nand.ecc.layout = &omap_oobinfo;
1545 } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1546 (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1547 /* build OOB layout for BCH ECC correction */
1548 err = omap3_init_bch_tail(&info->mtd);
1549 if (err) {
1550 err = -EINVAL;
1551 goto out_release_mem_region;
1552 }
1553 }
1554
1555 /* second phase scan */
1556 if (nand_scan_tail(&info->mtd)) {
1557 err = -ENXIO;
1558 goto out_release_mem_region;
1559 }
1560
1561 mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
1562 pdata->nr_parts);
1563
1564 platform_set_drvdata(pdev, &info->mtd);
1565
1566 return 0;
1567
1568 out_release_mem_region:
1569 if (info->dma)
1570 dma_release_channel(info->dma);
1571 if (info->gpmc_irq_count > 0)
1572 free_irq(info->gpmc_irq_count, info);
1573 if (info->gpmc_irq_fifo > 0)
1574 free_irq(info->gpmc_irq_fifo, info);
1575 release_mem_region(info->phys_base, info->mem_size);
1576 out_free_info:
1577 kfree(info);
1578
1579 return err;
1580 }
1581
1582 static int omap_nand_remove(struct platform_device *pdev)
1583 {
1584 struct mtd_info *mtd = platform_get_drvdata(pdev);
1585 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1586 mtd);
1587 omap3_free_bch(&info->mtd);
1588
1589 platform_set_drvdata(pdev, NULL);
1590 if (info->dma)
1591 dma_release_channel(info->dma);
1592
1593 if (info->gpmc_irq_count > 0)
1594 free_irq(info->gpmc_irq_count, info);
1595 if (info->gpmc_irq_fifo > 0)
1596 free_irq(info->gpmc_irq_fifo, info);
1597
1598 /* Release NAND device, its internal structures and partitions */
1599 nand_release(&info->mtd);
1600 iounmap(info->nand.IO_ADDR_R);
1601 release_mem_region(info->phys_base, info->mem_size);
1602 kfree(info);
1603 return 0;
1604 }
1605
1606 static struct platform_driver omap_nand_driver = {
1607 .probe = omap_nand_probe,
1608 .remove = omap_nand_remove,
1609 .driver = {
1610 .name = DRIVER_NAME,
1611 .owner = THIS_MODULE,
1612 },
1613 };
1614
1615 module_platform_driver(omap_nand_driver);
1616
1617 MODULE_ALIAS("platform:" DRIVER_NAME);
1618 MODULE_LICENSE("GPL");
1619 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
This page took 0.062802 seconds and 6 git commands to generate.