[MTD NAND] Indent all of drivers/mtd/nand/*.c.
[deliverable/linux.git] / drivers / mtd / nand / s3c2410.c
1 /* linux/drivers/mtd/nand/s3c2410.c
2 *
3 * Copyright (c) 2004,2005 Simtec Electronics
4 * http://www.simtec.co.uk/products/SWLINUX/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * Samsung S3C2410/S3C240 NAND driver
8 *
9 * Changelog:
10 * 21-Sep-2004 BJD Initial version
11 * 23-Sep-2004 BJD Mulitple device support
12 * 28-Sep-2004 BJD Fixed ECC placement for Hardware mode
13 * 12-Oct-2004 BJD Fixed errors in use of platform data
14 * 18-Feb-2005 BJD Fix sparse errors
15 * 14-Mar-2005 BJD Applied tglx's code reduction patch
16 * 02-May-2005 BJD Fixed s3c2440 support
17 * 02-May-2005 BJD Reduced hwcontrol decode
18 * 20-Jun-2005 BJD Updated s3c2440 support, fixed timing bug
19 * 08-Jul-2005 BJD Fix OOPS when no platform data supplied
20 * 20-Oct-2005 BJD Fix timing calculation bug
21 *
22 * $Id: s3c2410.c,v 1.20 2005/11/07 11:14:31 gleixner Exp $
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
27 * (at your option) any later version.
28 *
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
33 *
34 * You should have received a copy of the GNU General Public License
35 * along with this program; if not, write to the Free Software
36 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
37 */
38
39 #include <config/mtd/nand/s3c2410/hwecc.h>
40 #include <config/mtd/nand/s3c2410/debug.h>
41
42 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
43 #define DEBUG
44 #endif
45
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/init.h>
49 #include <linux/kernel.h>
50 #include <linux/string.h>
51 #include <linux/ioport.h>
52 #include <linux/platform_device.h>
53 #include <linux/delay.h>
54 #include <linux/err.h>
55 #include <linux/slab.h>
56 #include <linux/clk.h>
57
58 #include <linux/mtd/mtd.h>
59 #include <linux/mtd/nand.h>
60 #include <linux/mtd/nand_ecc.h>
61 #include <linux/mtd/partitions.h>
62
63 #include <asm/io.h>
64
65 #include <asm/arch/regs-nand.h>
66 #include <asm/arch/nand.h>
67
68 #define PFX "s3c2410-nand: "
69
70 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
71 static int hardware_ecc = 1;
72 #else
73 static int hardware_ecc = 0;
74 #endif
75
76 /* new oob placement block for use with hardware ecc generation
77 */
78
79 static struct nand_oobinfo nand_hw_eccoob = {
80 .useecc = MTD_NANDECC_AUTOPLACE,
81 .eccbytes = 3,
82 .eccpos = {0, 1, 2},
83 .oobfree = {{8, 8}}
84 };
85
86 /* controller and mtd information */
87
88 struct s3c2410_nand_info;
89
90 struct s3c2410_nand_mtd {
91 struct mtd_info mtd;
92 struct nand_chip chip;
93 struct s3c2410_nand_set *set;
94 struct s3c2410_nand_info *info;
95 int scan_res;
96 };
97
98 /* overview of the s3c2410 nand state */
99
100 struct s3c2410_nand_info {
101 /* mtd info */
102 struct nand_hw_control controller;
103 struct s3c2410_nand_mtd *mtds;
104 struct s3c2410_platform_nand *platform;
105
106 /* device info */
107 struct device *device;
108 struct resource *area;
109 struct clk *clk;
110 void __iomem *regs;
111 int mtd_count;
112
113 unsigned char is_s3c2440;
114 };
115
116 /* conversion functions */
117
118 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
119 {
120 return container_of(mtd, struct s3c2410_nand_mtd, mtd);
121 }
122
123 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
124 {
125 return s3c2410_nand_mtd_toours(mtd)->info;
126 }
127
128 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
129 {
130 return platform_get_drvdata(dev);
131 }
132
133 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
134 {
135 return dev->dev.platform_data;
136 }
137
138 /* timing calculations */
139
140 #define NS_IN_KHZ 1000000
141
142 static int s3c2410_nand_calc_rate(int wanted, unsigned long clk, int max)
143 {
144 int result;
145
146 result = (wanted * clk) / NS_IN_KHZ;
147 result++;
148
149 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
150
151 if (result > max) {
152 printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
153 return -1;
154 }
155
156 if (result < 1)
157 result = 1;
158
159 return result;
160 }
161
162 #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
163
164 /* controller setup */
165
166 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info, struct platform_device *pdev)
167 {
168 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
169 unsigned long clkrate = clk_get_rate(info->clk);
170 int tacls, twrph0, twrph1;
171 unsigned long cfg;
172
173 /* calculate the timing information for the controller */
174
175 clkrate /= 1000; /* turn clock into kHz for ease of use */
176
177 if (plat != NULL) {
178 tacls = s3c2410_nand_calc_rate(plat->tacls, clkrate, 4);
179 twrph0 = s3c2410_nand_calc_rate(plat->twrph0, clkrate, 8);
180 twrph1 = s3c2410_nand_calc_rate(plat->twrph1, clkrate, 8);
181 } else {
182 /* default timings */
183 tacls = 4;
184 twrph0 = 8;
185 twrph1 = 8;
186 }
187
188 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
189 printk(KERN_ERR PFX "cannot get timings suitable for board\n");
190 return -EINVAL;
191 }
192
193 printk(KERN_INFO PFX "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
194 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
195
196 if (!info->is_s3c2440) {
197 cfg = S3C2410_NFCONF_EN;
198 cfg |= S3C2410_NFCONF_TACLS(tacls - 1);
199 cfg |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
200 cfg |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
201 } else {
202 cfg = S3C2440_NFCONF_TACLS(tacls - 1);
203 cfg |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
204 cfg |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
205 }
206
207 pr_debug(PFX "NF_CONF is 0x%lx\n", cfg);
208
209 writel(cfg, info->regs + S3C2410_NFCONF);
210 return 0;
211 }
212
213 /* select chip */
214
215 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
216 {
217 struct s3c2410_nand_info *info;
218 struct s3c2410_nand_mtd *nmtd;
219 struct nand_chip *this = mtd->priv;
220 void __iomem *reg;
221 unsigned long cur;
222 unsigned long bit;
223
224 nmtd = this->priv;
225 info = nmtd->info;
226
227 bit = (info->is_s3c2440) ? S3C2440_NFCONT_nFCE : S3C2410_NFCONF_nFCE;
228 reg = info->regs + ((info->is_s3c2440) ? S3C2440_NFCONT : S3C2410_NFCONF);
229
230 cur = readl(reg);
231
232 if (chip == -1) {
233 cur |= bit;
234 } else {
235 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
236 printk(KERN_ERR PFX "chip %d out of range\n", chip);
237 return;
238 }
239
240 if (info->platform != NULL) {
241 if (info->platform->select_chip != NULL)
242 (info->platform->select_chip) (nmtd->set, chip);
243 }
244
245 cur &= ~bit;
246 }
247
248 writel(cur, reg);
249 }
250
251 /* command and control functions
252 *
253 * Note, these all use tglx's method of changing the IO_ADDR_W field
254 * to make the code simpler, and use the nand layer's code to issue the
255 * command and address sequences via the proper IO ports.
256 *
257 */
258
259 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd)
260 {
261 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
262 struct nand_chip *chip = mtd->priv;
263
264 switch (cmd) {
265 case NAND_CTL_SETNCE:
266 case NAND_CTL_CLRNCE:
267 printk(KERN_ERR "%s: called for NCE\n", __FUNCTION__);
268 break;
269
270 case NAND_CTL_SETCLE:
271 chip->IO_ADDR_W = info->regs + S3C2410_NFCMD;
272 break;
273
274 case NAND_CTL_SETALE:
275 chip->IO_ADDR_W = info->regs + S3C2410_NFADDR;
276 break;
277
278 /* NAND_CTL_CLRCLE: */
279 /* NAND_CTL_CLRALE: */
280 default:
281 chip->IO_ADDR_W = info->regs + S3C2410_NFDATA;
282 break;
283 }
284 }
285
286 /* command and control functions */
287
288 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd)
289 {
290 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
291 struct nand_chip *chip = mtd->priv;
292
293 switch (cmd) {
294 case NAND_CTL_SETNCE:
295 case NAND_CTL_CLRNCE:
296 printk(KERN_ERR "%s: called for NCE\n", __FUNCTION__);
297 break;
298
299 case NAND_CTL_SETCLE:
300 chip->IO_ADDR_W = info->regs + S3C2440_NFCMD;
301 break;
302
303 case NAND_CTL_SETALE:
304 chip->IO_ADDR_W = info->regs + S3C2440_NFADDR;
305 break;
306
307 /* NAND_CTL_CLRCLE: */
308 /* NAND_CTL_CLRALE: */
309 default:
310 chip->IO_ADDR_W = info->regs + S3C2440_NFDATA;
311 break;
312 }
313 }
314
315 /* s3c2410_nand_devready()
316 *
317 * returns 0 if the nand is busy, 1 if it is ready
318 */
319
320 static int s3c2410_nand_devready(struct mtd_info *mtd)
321 {
322 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
323
324 if (info->is_s3c2440)
325 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
326 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
327 }
328
329 /* ECC handling functions */
330
331 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
332 {
333 pr_debug("s3c2410_nand_correct_data(%p,%p,%p,%p)\n", mtd, dat, read_ecc, calc_ecc);
334
335 pr_debug("eccs: read %02x,%02x,%02x vs calc %02x,%02x,%02x\n",
336 read_ecc[0], read_ecc[1], read_ecc[2], calc_ecc[0], calc_ecc[1], calc_ecc[2]);
337
338 if (read_ecc[0] == calc_ecc[0] && read_ecc[1] == calc_ecc[1] && read_ecc[2] == calc_ecc[2])
339 return 0;
340
341 /* we curently have no method for correcting the error */
342
343 return -1;
344 }
345
346 /* ECC functions
347 *
348 * These allow the s3c2410 and s3c2440 to use the controller's ECC
349 * generator block to ECC the data as it passes through]
350 */
351
352 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
353 {
354 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
355 unsigned long ctrl;
356
357 ctrl = readl(info->regs + S3C2410_NFCONF);
358 ctrl |= S3C2410_NFCONF_INITECC;
359 writel(ctrl, info->regs + S3C2410_NFCONF);
360 }
361
362 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
363 {
364 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
365 unsigned long ctrl;
366
367 ctrl = readl(info->regs + S3C2440_NFCONT);
368 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
369 }
370
371 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
372 {
373 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
374
375 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
376 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
377 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
378
379 pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
380
381 return 0;
382 }
383
384 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
385 {
386 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
387 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
388
389 ecc_code[0] = ecc;
390 ecc_code[1] = ecc >> 8;
391 ecc_code[2] = ecc >> 16;
392
393 pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
394
395 return 0;
396 }
397
398 /* over-ride the standard functions for a little more speed. We can
399 * use read/write block to move the data buffers to/from the controller
400 */
401
402 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
403 {
404 struct nand_chip *this = mtd->priv;
405 readsb(this->IO_ADDR_R, buf, len);
406 }
407
408 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
409 {
410 struct nand_chip *this = mtd->priv;
411 writesb(this->IO_ADDR_W, buf, len);
412 }
413
414 /* device management functions */
415
416 static int s3c2410_nand_remove(struct platform_device *pdev)
417 {
418 struct s3c2410_nand_info *info = to_nand_info(pdev);
419
420 platform_set_drvdata(pdev, NULL);
421
422 if (info == NULL)
423 return 0;
424
425 /* first thing we need to do is release all our mtds
426 * and their partitions, then go through freeing the
427 * resources used
428 */
429
430 if (info->mtds != NULL) {
431 struct s3c2410_nand_mtd *ptr = info->mtds;
432 int mtdno;
433
434 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
435 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
436 nand_release(&ptr->mtd);
437 }
438
439 kfree(info->mtds);
440 }
441
442 /* free the common resources */
443
444 if (info->clk != NULL && !IS_ERR(info->clk)) {
445 clk_disable(info->clk);
446 clk_put(info->clk);
447 }
448
449 if (info->regs != NULL) {
450 iounmap(info->regs);
451 info->regs = NULL;
452 }
453
454 if (info->area != NULL) {
455 release_resource(info->area);
456 kfree(info->area);
457 info->area = NULL;
458 }
459
460 kfree(info);
461
462 return 0;
463 }
464
465 #ifdef CONFIG_MTD_PARTITIONS
466 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
467 struct s3c2410_nand_mtd *mtd,
468 struct s3c2410_nand_set *set)
469 {
470 if (set == NULL)
471 return add_mtd_device(&mtd->mtd);
472
473 if (set->nr_partitions > 0 && set->partitions != NULL) {
474 return add_mtd_partitions(&mtd->mtd, set->partitions, set->nr_partitions);
475 }
476
477 return add_mtd_device(&mtd->mtd);
478 }
479 #else
480 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
481 struct s3c2410_nand_mtd *mtd,
482 struct s3c2410_nand_set *set)
483 {
484 return add_mtd_device(&mtd->mtd);
485 }
486 #endif
487
488 /* s3c2410_nand_init_chip
489 *
490 * init a single instance of an chip
491 */
492
493 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
494 struct s3c2410_nand_mtd *nmtd,
495 struct s3c2410_nand_set *set)
496 {
497 struct nand_chip *chip = &nmtd->chip;
498
499 chip->IO_ADDR_R = info->regs + S3C2410_NFDATA;
500 chip->IO_ADDR_W = info->regs + S3C2410_NFDATA;
501 chip->hwcontrol = s3c2410_nand_hwcontrol;
502 chip->dev_ready = s3c2410_nand_devready;
503 chip->write_buf = s3c2410_nand_write_buf;
504 chip->read_buf = s3c2410_nand_read_buf;
505 chip->select_chip = s3c2410_nand_select_chip;
506 chip->chip_delay = 50;
507 chip->priv = nmtd;
508 chip->options = 0;
509 chip->controller = &info->controller;
510
511 if (info->is_s3c2440) {
512 chip->IO_ADDR_R = info->regs + S3C2440_NFDATA;
513 chip->IO_ADDR_W = info->regs + S3C2440_NFDATA;
514 chip->hwcontrol = s3c2440_nand_hwcontrol;
515 }
516
517 nmtd->info = info;
518 nmtd->mtd.priv = chip;
519 nmtd->set = set;
520
521 if (hardware_ecc) {
522 chip->correct_data = s3c2410_nand_correct_data;
523 chip->enable_hwecc = s3c2410_nand_enable_hwecc;
524 chip->calculate_ecc = s3c2410_nand_calculate_ecc;
525 chip->eccmode = NAND_ECC_HW3_512;
526 chip->autooob = &nand_hw_eccoob;
527
528 if (info->is_s3c2440) {
529 chip->enable_hwecc = s3c2440_nand_enable_hwecc;
530 chip->calculate_ecc = s3c2440_nand_calculate_ecc;
531 }
532 } else {
533 chip->eccmode = NAND_ECC_SOFT;
534 }
535 }
536
537 /* s3c2410_nand_probe
538 *
539 * called by device layer when it finds a device matching
540 * one our driver can handled. This code checks to see if
541 * it can allocate all necessary resources then calls the
542 * nand layer to look for devices
543 */
544
545 static int s3c24xx_nand_probe(struct platform_device *pdev, int is_s3c2440)
546 {
547 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
548 struct s3c2410_nand_info *info;
549 struct s3c2410_nand_mtd *nmtd;
550 struct s3c2410_nand_set *sets;
551 struct resource *res;
552 int err = 0;
553 int size;
554 int nr_sets;
555 int setno;
556
557 pr_debug("s3c2410_nand_probe(%p)\n", pdev);
558
559 info = kmalloc(sizeof(*info), GFP_KERNEL);
560 if (info == NULL) {
561 dev_err(&pdev->dev, "no memory for flash info\n");
562 err = -ENOMEM;
563 goto exit_error;
564 }
565
566 memzero(info, sizeof(*info));
567 platform_set_drvdata(pdev, info);
568
569 spin_lock_init(&info->controller.lock);
570 init_waitqueue_head(&info->controller.wq);
571
572 /* get the clock source and enable it */
573
574 info->clk = clk_get(&pdev->dev, "nand");
575 if (IS_ERR(info->clk)) {
576 dev_err(&pdev->dev, "failed to get clock");
577 err = -ENOENT;
578 goto exit_error;
579 }
580
581 clk_enable(info->clk);
582
583 /* allocate and map the resource */
584
585 /* currently we assume we have the one resource */
586 res = pdev->resource;
587 size = res->end - res->start + 1;
588
589 info->area = request_mem_region(res->start, size, pdev->name);
590
591 if (info->area == NULL) {
592 dev_err(&pdev->dev, "cannot reserve register region\n");
593 err = -ENOENT;
594 goto exit_error;
595 }
596
597 info->device = &pdev->dev;
598 info->platform = plat;
599 info->regs = ioremap(res->start, size);
600 info->is_s3c2440 = is_s3c2440;
601
602 if (info->regs == NULL) {
603 dev_err(&pdev->dev, "cannot reserve register region\n");
604 err = -EIO;
605 goto exit_error;
606 }
607
608 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
609
610 /* initialise the hardware */
611
612 err = s3c2410_nand_inithw(info, pdev);
613 if (err != 0)
614 goto exit_error;
615
616 sets = (plat != NULL) ? plat->sets : NULL;
617 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
618
619 info->mtd_count = nr_sets;
620
621 /* allocate our information */
622
623 size = nr_sets * sizeof(*info->mtds);
624 info->mtds = kmalloc(size, GFP_KERNEL);
625 if (info->mtds == NULL) {
626 dev_err(&pdev->dev, "failed to allocate mtd storage\n");
627 err = -ENOMEM;
628 goto exit_error;
629 }
630
631 memzero(info->mtds, size);
632
633 /* initialise all possible chips */
634
635 nmtd = info->mtds;
636
637 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
638 pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
639
640 s3c2410_nand_init_chip(info, nmtd, sets);
641
642 nmtd->scan_res = nand_scan(&nmtd->mtd, (sets) ? sets->nr_chips : 1);
643
644 if (nmtd->scan_res == 0) {
645 s3c2410_nand_add_partition(info, nmtd, sets);
646 }
647
648 if (sets != NULL)
649 sets++;
650 }
651
652 pr_debug("initialised ok\n");
653 return 0;
654
655 exit_error:
656 s3c2410_nand_remove(pdev);
657
658 if (err == 0)
659 err = -EINVAL;
660 return err;
661 }
662
663 /* driver device registration */
664
665 static int s3c2410_nand_probe(struct platform_device *dev)
666 {
667 return s3c24xx_nand_probe(dev, 0);
668 }
669
670 static int s3c2440_nand_probe(struct platform_device *dev)
671 {
672 return s3c24xx_nand_probe(dev, 1);
673 }
674
675 static struct platform_driver s3c2410_nand_driver = {
676 .probe = s3c2410_nand_probe,
677 .remove = s3c2410_nand_remove,
678 .driver = {
679 .name = "s3c2410-nand",
680 .owner = THIS_MODULE,
681 },
682 };
683
684 static struct platform_driver s3c2440_nand_driver = {
685 .probe = s3c2440_nand_probe,
686 .remove = s3c2410_nand_remove,
687 .driver = {
688 .name = "s3c2440-nand",
689 .owner = THIS_MODULE,
690 },
691 };
692
693 static int __init s3c2410_nand_init(void)
694 {
695 printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
696
697 platform_driver_register(&s3c2440_nand_driver);
698 return platform_driver_register(&s3c2410_nand_driver);
699 }
700
701 static void __exit s3c2410_nand_exit(void)
702 {
703 platform_driver_unregister(&s3c2440_nand_driver);
704 platform_driver_unregister(&s3c2410_nand_driver);
705 }
706
707 module_init(s3c2410_nand_init);
708 module_exit(s3c2410_nand_exit);
709
710 MODULE_LICENSE("GPL");
711 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
712 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
This page took 0.046278 seconds and 5 git commands to generate.