Merge branch 'component' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[deliverable/linux.git] / drivers / mtd / nand / sh_flctl.c
1 /*
2 * SuperH FLCTL nand controller
3 *
4 * Copyright (c) 2008 Renesas Solutions Corp.
5 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
6 *
7 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_mtd.h>
35 #include <linux/platform_device.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/sh_dma.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/mtd/sh_flctl.h>
45
46 static struct nand_ecclayout flctl_4secc_oob_16 = {
47 .eccbytes = 10,
48 .eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
49 .oobfree = {
50 {.offset = 12,
51 . length = 4} },
52 };
53
54 static struct nand_ecclayout flctl_4secc_oob_64 = {
55 .eccbytes = 4 * 10,
56 .eccpos = {
57 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
58 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
59 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
60 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
61 .oobfree = {
62 {.offset = 2, .length = 4},
63 {.offset = 16, .length = 6},
64 {.offset = 32, .length = 6},
65 {.offset = 48, .length = 6} },
66 };
67
68 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
69
70 static struct nand_bbt_descr flctl_4secc_smallpage = {
71 .options = NAND_BBT_SCAN2NDPAGE,
72 .offs = 11,
73 .len = 1,
74 .pattern = scan_ff_pattern,
75 };
76
77 static struct nand_bbt_descr flctl_4secc_largepage = {
78 .options = NAND_BBT_SCAN2NDPAGE,
79 .offs = 0,
80 .len = 2,
81 .pattern = scan_ff_pattern,
82 };
83
84 static void empty_fifo(struct sh_flctl *flctl)
85 {
86 writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
87 writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
88 }
89
90 static void start_translation(struct sh_flctl *flctl)
91 {
92 writeb(TRSTRT, FLTRCR(flctl));
93 }
94
95 static void timeout_error(struct sh_flctl *flctl, const char *str)
96 {
97 dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
98 }
99
100 static void wait_completion(struct sh_flctl *flctl)
101 {
102 uint32_t timeout = LOOP_TIMEOUT_MAX;
103
104 while (timeout--) {
105 if (readb(FLTRCR(flctl)) & TREND) {
106 writeb(0x0, FLTRCR(flctl));
107 return;
108 }
109 udelay(1);
110 }
111
112 timeout_error(flctl, __func__);
113 writeb(0x0, FLTRCR(flctl));
114 }
115
116 static void flctl_dma_complete(void *param)
117 {
118 struct sh_flctl *flctl = param;
119
120 complete(&flctl->dma_complete);
121 }
122
123 static void flctl_release_dma(struct sh_flctl *flctl)
124 {
125 if (flctl->chan_fifo0_rx) {
126 dma_release_channel(flctl->chan_fifo0_rx);
127 flctl->chan_fifo0_rx = NULL;
128 }
129 if (flctl->chan_fifo0_tx) {
130 dma_release_channel(flctl->chan_fifo0_tx);
131 flctl->chan_fifo0_tx = NULL;
132 }
133 }
134
135 static void flctl_setup_dma(struct sh_flctl *flctl)
136 {
137 dma_cap_mask_t mask;
138 struct dma_slave_config cfg;
139 struct platform_device *pdev = flctl->pdev;
140 struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
141 int ret;
142
143 if (!pdata)
144 return;
145
146 if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
147 return;
148
149 /* We can only either use DMA for both Tx and Rx or not use it at all */
150 dma_cap_zero(mask);
151 dma_cap_set(DMA_SLAVE, mask);
152
153 flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
154 (void *)(uintptr_t)pdata->slave_id_fifo0_tx);
155 dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
156 flctl->chan_fifo0_tx);
157
158 if (!flctl->chan_fifo0_tx)
159 return;
160
161 memset(&cfg, 0, sizeof(cfg));
162 cfg.direction = DMA_MEM_TO_DEV;
163 cfg.dst_addr = flctl->fifo;
164 cfg.src_addr = 0;
165 ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
166 if (ret < 0)
167 goto err;
168
169 flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
170 (void *)(uintptr_t)pdata->slave_id_fifo0_rx);
171 dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
172 flctl->chan_fifo0_rx);
173
174 if (!flctl->chan_fifo0_rx)
175 goto err;
176
177 cfg.direction = DMA_DEV_TO_MEM;
178 cfg.dst_addr = 0;
179 cfg.src_addr = flctl->fifo;
180 ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
181 if (ret < 0)
182 goto err;
183
184 init_completion(&flctl->dma_complete);
185
186 return;
187
188 err:
189 flctl_release_dma(flctl);
190 }
191
192 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
193 {
194 struct sh_flctl *flctl = mtd_to_flctl(mtd);
195 uint32_t addr = 0;
196
197 if (column == -1) {
198 addr = page_addr; /* ERASE1 */
199 } else if (page_addr != -1) {
200 /* SEQIN, READ0, etc.. */
201 if (flctl->chip.options & NAND_BUSWIDTH_16)
202 column >>= 1;
203 if (flctl->page_size) {
204 addr = column & 0x0FFF;
205 addr |= (page_addr & 0xff) << 16;
206 addr |= ((page_addr >> 8) & 0xff) << 24;
207 /* big than 128MB */
208 if (flctl->rw_ADRCNT == ADRCNT2_E) {
209 uint32_t addr2;
210 addr2 = (page_addr >> 16) & 0xff;
211 writel(addr2, FLADR2(flctl));
212 }
213 } else {
214 addr = column;
215 addr |= (page_addr & 0xff) << 8;
216 addr |= ((page_addr >> 8) & 0xff) << 16;
217 addr |= ((page_addr >> 16) & 0xff) << 24;
218 }
219 }
220 writel(addr, FLADR(flctl));
221 }
222
223 static void wait_rfifo_ready(struct sh_flctl *flctl)
224 {
225 uint32_t timeout = LOOP_TIMEOUT_MAX;
226
227 while (timeout--) {
228 uint32_t val;
229 /* check FIFO */
230 val = readl(FLDTCNTR(flctl)) >> 16;
231 if (val & 0xFF)
232 return;
233 udelay(1);
234 }
235 timeout_error(flctl, __func__);
236 }
237
238 static void wait_wfifo_ready(struct sh_flctl *flctl)
239 {
240 uint32_t len, timeout = LOOP_TIMEOUT_MAX;
241
242 while (timeout--) {
243 /* check FIFO */
244 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
245 if (len >= 4)
246 return;
247 udelay(1);
248 }
249 timeout_error(flctl, __func__);
250 }
251
252 static enum flctl_ecc_res_t wait_recfifo_ready
253 (struct sh_flctl *flctl, int sector_number)
254 {
255 uint32_t timeout = LOOP_TIMEOUT_MAX;
256 void __iomem *ecc_reg[4];
257 int i;
258 int state = FL_SUCCESS;
259 uint32_t data, size;
260
261 /*
262 * First this loops checks in FLDTCNTR if we are ready to read out the
263 * oob data. This is the case if either all went fine without errors or
264 * if the bottom part of the loop corrected the errors or marked them as
265 * uncorrectable and the controller is given time to push the data into
266 * the FIFO.
267 */
268 while (timeout--) {
269 /* check if all is ok and we can read out the OOB */
270 size = readl(FLDTCNTR(flctl)) >> 24;
271 if ((size & 0xFF) == 4)
272 return state;
273
274 /* check if a correction code has been calculated */
275 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
276 /*
277 * either we wait for the fifo to be filled or a
278 * correction pattern is being generated
279 */
280 udelay(1);
281 continue;
282 }
283
284 /* check for an uncorrectable error */
285 if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
286 /* check if we face a non-empty page */
287 for (i = 0; i < 512; i++) {
288 if (flctl->done_buff[i] != 0xff) {
289 state = FL_ERROR; /* can't correct */
290 break;
291 }
292 }
293
294 if (state == FL_SUCCESS)
295 dev_dbg(&flctl->pdev->dev,
296 "reading empty sector %d, ecc error ignored\n",
297 sector_number);
298
299 writel(0, FL4ECCCR(flctl));
300 continue;
301 }
302
303 /* start error correction */
304 ecc_reg[0] = FL4ECCRESULT0(flctl);
305 ecc_reg[1] = FL4ECCRESULT1(flctl);
306 ecc_reg[2] = FL4ECCRESULT2(flctl);
307 ecc_reg[3] = FL4ECCRESULT3(flctl);
308
309 for (i = 0; i < 3; i++) {
310 uint8_t org;
311 unsigned int index;
312
313 data = readl(ecc_reg[i]);
314
315 if (flctl->page_size)
316 index = (512 * sector_number) +
317 (data >> 16);
318 else
319 index = data >> 16;
320
321 org = flctl->done_buff[index];
322 flctl->done_buff[index] = org ^ (data & 0xFF);
323 }
324 state = FL_REPAIRABLE;
325 writel(0, FL4ECCCR(flctl));
326 }
327
328 timeout_error(flctl, __func__);
329 return FL_TIMEOUT; /* timeout */
330 }
331
332 static void wait_wecfifo_ready(struct sh_flctl *flctl)
333 {
334 uint32_t timeout = LOOP_TIMEOUT_MAX;
335 uint32_t len;
336
337 while (timeout--) {
338 /* check FLECFIFO */
339 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
340 if (len >= 4)
341 return;
342 udelay(1);
343 }
344 timeout_error(flctl, __func__);
345 }
346
347 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
348 int len, enum dma_data_direction dir)
349 {
350 struct dma_async_tx_descriptor *desc = NULL;
351 struct dma_chan *chan;
352 enum dma_transfer_direction tr_dir;
353 dma_addr_t dma_addr;
354 dma_cookie_t cookie = -EINVAL;
355 uint32_t reg;
356 int ret;
357
358 if (dir == DMA_FROM_DEVICE) {
359 chan = flctl->chan_fifo0_rx;
360 tr_dir = DMA_DEV_TO_MEM;
361 } else {
362 chan = flctl->chan_fifo0_tx;
363 tr_dir = DMA_MEM_TO_DEV;
364 }
365
366 dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
367
368 if (dma_addr)
369 desc = dmaengine_prep_slave_single(chan, dma_addr, len,
370 tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
371
372 if (desc) {
373 reg = readl(FLINTDMACR(flctl));
374 reg |= DREQ0EN;
375 writel(reg, FLINTDMACR(flctl));
376
377 desc->callback = flctl_dma_complete;
378 desc->callback_param = flctl;
379 cookie = dmaengine_submit(desc);
380
381 dma_async_issue_pending(chan);
382 } else {
383 /* DMA failed, fall back to PIO */
384 flctl_release_dma(flctl);
385 dev_warn(&flctl->pdev->dev,
386 "DMA failed, falling back to PIO\n");
387 ret = -EIO;
388 goto out;
389 }
390
391 ret =
392 wait_for_completion_timeout(&flctl->dma_complete,
393 msecs_to_jiffies(3000));
394
395 if (ret <= 0) {
396 dmaengine_terminate_all(chan);
397 dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
398 }
399
400 out:
401 reg = readl(FLINTDMACR(flctl));
402 reg &= ~DREQ0EN;
403 writel(reg, FLINTDMACR(flctl));
404
405 dma_unmap_single(chan->device->dev, dma_addr, len, dir);
406
407 /* ret > 0 is success */
408 return ret;
409 }
410
411 static void read_datareg(struct sh_flctl *flctl, int offset)
412 {
413 unsigned long data;
414 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
415
416 wait_completion(flctl);
417
418 data = readl(FLDATAR(flctl));
419 *buf = le32_to_cpu(data);
420 }
421
422 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
423 {
424 int i, len_4align;
425 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
426
427 len_4align = (rlen + 3) / 4;
428
429 /* initiate DMA transfer */
430 if (flctl->chan_fifo0_rx && rlen >= 32 &&
431 flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0)
432 goto convert; /* DMA success */
433
434 /* do polling transfer */
435 for (i = 0; i < len_4align; i++) {
436 wait_rfifo_ready(flctl);
437 buf[i] = readl(FLDTFIFO(flctl));
438 }
439
440 convert:
441 for (i = 0; i < len_4align; i++)
442 buf[i] = be32_to_cpu(buf[i]);
443 }
444
445 static enum flctl_ecc_res_t read_ecfiforeg
446 (struct sh_flctl *flctl, uint8_t *buff, int sector)
447 {
448 int i;
449 enum flctl_ecc_res_t res;
450 unsigned long *ecc_buf = (unsigned long *)buff;
451
452 res = wait_recfifo_ready(flctl , sector);
453
454 if (res != FL_ERROR) {
455 for (i = 0; i < 4; i++) {
456 ecc_buf[i] = readl(FLECFIFO(flctl));
457 ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
458 }
459 }
460
461 return res;
462 }
463
464 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
465 unsigned int offset)
466 {
467 int i, len_4align;
468 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
469
470 len_4align = (rlen + 3) / 4;
471 for (i = 0; i < len_4align; i++) {
472 wait_wfifo_ready(flctl);
473 writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
474 }
475 }
476
477 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
478 unsigned int offset)
479 {
480 int i, len_4align;
481 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
482
483 len_4align = (rlen + 3) / 4;
484
485 for (i = 0; i < len_4align; i++)
486 buf[i] = cpu_to_be32(buf[i]);
487
488 /* initiate DMA transfer */
489 if (flctl->chan_fifo0_tx && rlen >= 32 &&
490 flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0)
491 return; /* DMA success */
492
493 /* do polling transfer */
494 for (i = 0; i < len_4align; i++) {
495 wait_wecfifo_ready(flctl);
496 writel(buf[i], FLECFIFO(flctl));
497 }
498 }
499
500 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
501 {
502 struct sh_flctl *flctl = mtd_to_flctl(mtd);
503 uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
504 uint32_t flcmdcr_val, addr_len_bytes = 0;
505
506 /* Set SNAND bit if page size is 2048byte */
507 if (flctl->page_size)
508 flcmncr_val |= SNAND_E;
509 else
510 flcmncr_val &= ~SNAND_E;
511
512 /* default FLCMDCR val */
513 flcmdcr_val = DOCMD1_E | DOADR_E;
514
515 /* Set for FLCMDCR */
516 switch (cmd) {
517 case NAND_CMD_ERASE1:
518 addr_len_bytes = flctl->erase_ADRCNT;
519 flcmdcr_val |= DOCMD2_E;
520 break;
521 case NAND_CMD_READ0:
522 case NAND_CMD_READOOB:
523 case NAND_CMD_RNDOUT:
524 addr_len_bytes = flctl->rw_ADRCNT;
525 flcmdcr_val |= CDSRC_E;
526 if (flctl->chip.options & NAND_BUSWIDTH_16)
527 flcmncr_val |= SEL_16BIT;
528 break;
529 case NAND_CMD_SEQIN:
530 /* This case is that cmd is READ0 or READ1 or READ00 */
531 flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */
532 break;
533 case NAND_CMD_PAGEPROG:
534 addr_len_bytes = flctl->rw_ADRCNT;
535 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
536 if (flctl->chip.options & NAND_BUSWIDTH_16)
537 flcmncr_val |= SEL_16BIT;
538 break;
539 case NAND_CMD_READID:
540 flcmncr_val &= ~SNAND_E;
541 flcmdcr_val |= CDSRC_E;
542 addr_len_bytes = ADRCNT_1;
543 break;
544 case NAND_CMD_STATUS:
545 case NAND_CMD_RESET:
546 flcmncr_val &= ~SNAND_E;
547 flcmdcr_val &= ~(DOADR_E | DOSR_E);
548 break;
549 default:
550 break;
551 }
552
553 /* Set address bytes parameter */
554 flcmdcr_val |= addr_len_bytes;
555
556 /* Now actually write */
557 writel(flcmncr_val, FLCMNCR(flctl));
558 writel(flcmdcr_val, FLCMDCR(flctl));
559 writel(flcmcdr_val, FLCMCDR(flctl));
560 }
561
562 static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
563 uint8_t *buf, int oob_required, int page)
564 {
565 chip->read_buf(mtd, buf, mtd->writesize);
566 if (oob_required)
567 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
568 return 0;
569 }
570
571 static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
572 const uint8_t *buf, int oob_required,
573 int page)
574 {
575 chip->write_buf(mtd, buf, mtd->writesize);
576 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
577 return 0;
578 }
579
580 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
581 {
582 struct sh_flctl *flctl = mtd_to_flctl(mtd);
583 int sector, page_sectors;
584 enum flctl_ecc_res_t ecc_result;
585
586 page_sectors = flctl->page_size ? 4 : 1;
587
588 set_cmd_regs(mtd, NAND_CMD_READ0,
589 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
590
591 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
592 FLCMNCR(flctl));
593 writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
594 writel(page_addr << 2, FLADR(flctl));
595
596 empty_fifo(flctl);
597 start_translation(flctl);
598
599 for (sector = 0; sector < page_sectors; sector++) {
600 read_fiforeg(flctl, 512, 512 * sector);
601
602 ecc_result = read_ecfiforeg(flctl,
603 &flctl->done_buff[mtd->writesize + 16 * sector],
604 sector);
605
606 switch (ecc_result) {
607 case FL_REPAIRABLE:
608 dev_info(&flctl->pdev->dev,
609 "applied ecc on page 0x%x", page_addr);
610 mtd->ecc_stats.corrected++;
611 break;
612 case FL_ERROR:
613 dev_warn(&flctl->pdev->dev,
614 "page 0x%x contains corrupted data\n",
615 page_addr);
616 mtd->ecc_stats.failed++;
617 break;
618 default:
619 ;
620 }
621 }
622
623 wait_completion(flctl);
624
625 writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
626 FLCMNCR(flctl));
627 }
628
629 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
630 {
631 struct sh_flctl *flctl = mtd_to_flctl(mtd);
632 int page_sectors = flctl->page_size ? 4 : 1;
633 int i;
634
635 set_cmd_regs(mtd, NAND_CMD_READ0,
636 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
637
638 empty_fifo(flctl);
639
640 for (i = 0; i < page_sectors; i++) {
641 set_addr(mtd, (512 + 16) * i + 512 , page_addr);
642 writel(16, FLDTCNTR(flctl));
643
644 start_translation(flctl);
645 read_fiforeg(flctl, 16, 16 * i);
646 wait_completion(flctl);
647 }
648 }
649
650 static void execmd_write_page_sector(struct mtd_info *mtd)
651 {
652 struct sh_flctl *flctl = mtd_to_flctl(mtd);
653 int page_addr = flctl->seqin_page_addr;
654 int sector, page_sectors;
655
656 page_sectors = flctl->page_size ? 4 : 1;
657
658 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
659 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
660
661 empty_fifo(flctl);
662 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
663 writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
664 writel(page_addr << 2, FLADR(flctl));
665 start_translation(flctl);
666
667 for (sector = 0; sector < page_sectors; sector++) {
668 write_fiforeg(flctl, 512, 512 * sector);
669 write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
670 }
671
672 wait_completion(flctl);
673 writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
674 }
675
676 static void execmd_write_oob(struct mtd_info *mtd)
677 {
678 struct sh_flctl *flctl = mtd_to_flctl(mtd);
679 int page_addr = flctl->seqin_page_addr;
680 int sector, page_sectors;
681
682 page_sectors = flctl->page_size ? 4 : 1;
683
684 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
685 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
686
687 for (sector = 0; sector < page_sectors; sector++) {
688 empty_fifo(flctl);
689 set_addr(mtd, sector * 528 + 512, page_addr);
690 writel(16, FLDTCNTR(flctl)); /* set read size */
691
692 start_translation(flctl);
693 write_fiforeg(flctl, 16, 16 * sector);
694 wait_completion(flctl);
695 }
696 }
697
698 static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
699 int column, int page_addr)
700 {
701 struct sh_flctl *flctl = mtd_to_flctl(mtd);
702 uint32_t read_cmd = 0;
703
704 pm_runtime_get_sync(&flctl->pdev->dev);
705
706 flctl->read_bytes = 0;
707 if (command != NAND_CMD_PAGEPROG)
708 flctl->index = 0;
709
710 switch (command) {
711 case NAND_CMD_READ1:
712 case NAND_CMD_READ0:
713 if (flctl->hwecc) {
714 /* read page with hwecc */
715 execmd_read_page_sector(mtd, page_addr);
716 break;
717 }
718 if (flctl->page_size)
719 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
720 | command);
721 else
722 set_cmd_regs(mtd, command, command);
723
724 set_addr(mtd, 0, page_addr);
725
726 flctl->read_bytes = mtd->writesize + mtd->oobsize;
727 if (flctl->chip.options & NAND_BUSWIDTH_16)
728 column >>= 1;
729 flctl->index += column;
730 goto read_normal_exit;
731
732 case NAND_CMD_READOOB:
733 if (flctl->hwecc) {
734 /* read page with hwecc */
735 execmd_read_oob(mtd, page_addr);
736 break;
737 }
738
739 if (flctl->page_size) {
740 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
741 | NAND_CMD_READ0);
742 set_addr(mtd, mtd->writesize, page_addr);
743 } else {
744 set_cmd_regs(mtd, command, command);
745 set_addr(mtd, 0, page_addr);
746 }
747 flctl->read_bytes = mtd->oobsize;
748 goto read_normal_exit;
749
750 case NAND_CMD_RNDOUT:
751 if (flctl->hwecc)
752 break;
753
754 if (flctl->page_size)
755 set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
756 | command);
757 else
758 set_cmd_regs(mtd, command, command);
759
760 set_addr(mtd, column, 0);
761
762 flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
763 goto read_normal_exit;
764
765 case NAND_CMD_READID:
766 set_cmd_regs(mtd, command, command);
767
768 /* READID is always performed using an 8-bit bus */
769 if (flctl->chip.options & NAND_BUSWIDTH_16)
770 column <<= 1;
771 set_addr(mtd, column, 0);
772
773 flctl->read_bytes = 8;
774 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
775 empty_fifo(flctl);
776 start_translation(flctl);
777 read_fiforeg(flctl, flctl->read_bytes, 0);
778 wait_completion(flctl);
779 break;
780
781 case NAND_CMD_ERASE1:
782 flctl->erase1_page_addr = page_addr;
783 break;
784
785 case NAND_CMD_ERASE2:
786 set_cmd_regs(mtd, NAND_CMD_ERASE1,
787 (command << 8) | NAND_CMD_ERASE1);
788 set_addr(mtd, -1, flctl->erase1_page_addr);
789 start_translation(flctl);
790 wait_completion(flctl);
791 break;
792
793 case NAND_CMD_SEQIN:
794 if (!flctl->page_size) {
795 /* output read command */
796 if (column >= mtd->writesize) {
797 column -= mtd->writesize;
798 read_cmd = NAND_CMD_READOOB;
799 } else if (column < 256) {
800 read_cmd = NAND_CMD_READ0;
801 } else {
802 column -= 256;
803 read_cmd = NAND_CMD_READ1;
804 }
805 }
806 flctl->seqin_column = column;
807 flctl->seqin_page_addr = page_addr;
808 flctl->seqin_read_cmd = read_cmd;
809 break;
810
811 case NAND_CMD_PAGEPROG:
812 empty_fifo(flctl);
813 if (!flctl->page_size) {
814 set_cmd_regs(mtd, NAND_CMD_SEQIN,
815 flctl->seqin_read_cmd);
816 set_addr(mtd, -1, -1);
817 writel(0, FLDTCNTR(flctl)); /* set 0 size */
818 start_translation(flctl);
819 wait_completion(flctl);
820 }
821 if (flctl->hwecc) {
822 /* write page with hwecc */
823 if (flctl->seqin_column == mtd->writesize)
824 execmd_write_oob(mtd);
825 else if (!flctl->seqin_column)
826 execmd_write_page_sector(mtd);
827 else
828 printk(KERN_ERR "Invalid address !?\n");
829 break;
830 }
831 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
832 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
833 writel(flctl->index, FLDTCNTR(flctl)); /* set write size */
834 start_translation(flctl);
835 write_fiforeg(flctl, flctl->index, 0);
836 wait_completion(flctl);
837 break;
838
839 case NAND_CMD_STATUS:
840 set_cmd_regs(mtd, command, command);
841 set_addr(mtd, -1, -1);
842
843 flctl->read_bytes = 1;
844 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
845 start_translation(flctl);
846 read_datareg(flctl, 0); /* read and end */
847 break;
848
849 case NAND_CMD_RESET:
850 set_cmd_regs(mtd, command, command);
851 set_addr(mtd, -1, -1);
852
853 writel(0, FLDTCNTR(flctl)); /* set 0 size */
854 start_translation(flctl);
855 wait_completion(flctl);
856 break;
857
858 default:
859 break;
860 }
861 goto runtime_exit;
862
863 read_normal_exit:
864 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
865 empty_fifo(flctl);
866 start_translation(flctl);
867 read_fiforeg(flctl, flctl->read_bytes, 0);
868 wait_completion(flctl);
869 runtime_exit:
870 pm_runtime_put_sync(&flctl->pdev->dev);
871 return;
872 }
873
874 static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
875 {
876 struct sh_flctl *flctl = mtd_to_flctl(mtd);
877 int ret;
878
879 switch (chipnr) {
880 case -1:
881 flctl->flcmncr_base &= ~CE0_ENABLE;
882
883 pm_runtime_get_sync(&flctl->pdev->dev);
884 writel(flctl->flcmncr_base, FLCMNCR(flctl));
885
886 if (flctl->qos_request) {
887 dev_pm_qos_remove_request(&flctl->pm_qos);
888 flctl->qos_request = 0;
889 }
890
891 pm_runtime_put_sync(&flctl->pdev->dev);
892 break;
893 case 0:
894 flctl->flcmncr_base |= CE0_ENABLE;
895
896 if (!flctl->qos_request) {
897 ret = dev_pm_qos_add_request(&flctl->pdev->dev,
898 &flctl->pm_qos,
899 DEV_PM_QOS_RESUME_LATENCY,
900 100);
901 if (ret < 0)
902 dev_err(&flctl->pdev->dev,
903 "PM QoS request failed: %d\n", ret);
904 flctl->qos_request = 1;
905 }
906
907 if (flctl->holden) {
908 pm_runtime_get_sync(&flctl->pdev->dev);
909 writel(HOLDEN, FLHOLDCR(flctl));
910 pm_runtime_put_sync(&flctl->pdev->dev);
911 }
912 break;
913 default:
914 BUG();
915 }
916 }
917
918 static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
919 {
920 struct sh_flctl *flctl = mtd_to_flctl(mtd);
921
922 memcpy(&flctl->done_buff[flctl->index], buf, len);
923 flctl->index += len;
924 }
925
926 static uint8_t flctl_read_byte(struct mtd_info *mtd)
927 {
928 struct sh_flctl *flctl = mtd_to_flctl(mtd);
929 uint8_t data;
930
931 data = flctl->done_buff[flctl->index];
932 flctl->index++;
933 return data;
934 }
935
936 static uint16_t flctl_read_word(struct mtd_info *mtd)
937 {
938 struct sh_flctl *flctl = mtd_to_flctl(mtd);
939 uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index];
940
941 flctl->index += 2;
942 return *buf;
943 }
944
945 static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
946 {
947 struct sh_flctl *flctl = mtd_to_flctl(mtd);
948
949 memcpy(buf, &flctl->done_buff[flctl->index], len);
950 flctl->index += len;
951 }
952
953 static int flctl_chip_init_tail(struct mtd_info *mtd)
954 {
955 struct sh_flctl *flctl = mtd_to_flctl(mtd);
956 struct nand_chip *chip = &flctl->chip;
957
958 if (mtd->writesize == 512) {
959 flctl->page_size = 0;
960 if (chip->chipsize > (32 << 20)) {
961 /* big than 32MB */
962 flctl->rw_ADRCNT = ADRCNT_4;
963 flctl->erase_ADRCNT = ADRCNT_3;
964 } else if (chip->chipsize > (2 << 16)) {
965 /* big than 128KB */
966 flctl->rw_ADRCNT = ADRCNT_3;
967 flctl->erase_ADRCNT = ADRCNT_2;
968 } else {
969 flctl->rw_ADRCNT = ADRCNT_2;
970 flctl->erase_ADRCNT = ADRCNT_1;
971 }
972 } else {
973 flctl->page_size = 1;
974 if (chip->chipsize > (128 << 20)) {
975 /* big than 128MB */
976 flctl->rw_ADRCNT = ADRCNT2_E;
977 flctl->erase_ADRCNT = ADRCNT_3;
978 } else if (chip->chipsize > (8 << 16)) {
979 /* big than 512KB */
980 flctl->rw_ADRCNT = ADRCNT_4;
981 flctl->erase_ADRCNT = ADRCNT_2;
982 } else {
983 flctl->rw_ADRCNT = ADRCNT_3;
984 flctl->erase_ADRCNT = ADRCNT_1;
985 }
986 }
987
988 if (flctl->hwecc) {
989 if (mtd->writesize == 512) {
990 chip->ecc.layout = &flctl_4secc_oob_16;
991 chip->badblock_pattern = &flctl_4secc_smallpage;
992 } else {
993 chip->ecc.layout = &flctl_4secc_oob_64;
994 chip->badblock_pattern = &flctl_4secc_largepage;
995 }
996
997 chip->ecc.size = 512;
998 chip->ecc.bytes = 10;
999 chip->ecc.strength = 4;
1000 chip->ecc.read_page = flctl_read_page_hwecc;
1001 chip->ecc.write_page = flctl_write_page_hwecc;
1002 chip->ecc.mode = NAND_ECC_HW;
1003
1004 /* 4 symbols ECC enabled */
1005 flctl->flcmncr_base |= _4ECCEN;
1006 } else {
1007 chip->ecc.mode = NAND_ECC_SOFT;
1008 }
1009
1010 return 0;
1011 }
1012
1013 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1014 {
1015 struct sh_flctl *flctl = dev_id;
1016
1017 dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1018 writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1019
1020 return IRQ_HANDLED;
1021 }
1022
1023 struct flctl_soc_config {
1024 unsigned long flcmncr_val;
1025 unsigned has_hwecc:1;
1026 unsigned use_holden:1;
1027 };
1028
1029 static struct flctl_soc_config flctl_sh7372_config = {
1030 .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1031 .has_hwecc = 1,
1032 .use_holden = 1,
1033 };
1034
1035 static const struct of_device_id of_flctl_match[] = {
1036 { .compatible = "renesas,shmobile-flctl-sh7372",
1037 .data = &flctl_sh7372_config },
1038 {},
1039 };
1040 MODULE_DEVICE_TABLE(of, of_flctl_match);
1041
1042 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1043 {
1044 const struct of_device_id *match;
1045 struct flctl_soc_config *config;
1046 struct sh_flctl_platform_data *pdata;
1047 struct device_node *dn = dev->of_node;
1048 int ret;
1049
1050 match = of_match_device(of_flctl_match, dev);
1051 if (match)
1052 config = (struct flctl_soc_config *)match->data;
1053 else {
1054 dev_err(dev, "%s: no OF configuration attached\n", __func__);
1055 return NULL;
1056 }
1057
1058 pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1059 GFP_KERNEL);
1060 if (!pdata)
1061 return NULL;
1062
1063 /* set SoC specific options */
1064 pdata->flcmncr_val = config->flcmncr_val;
1065 pdata->has_hwecc = config->has_hwecc;
1066 pdata->use_holden = config->use_holden;
1067
1068 /* parse user defined options */
1069 ret = of_get_nand_bus_width(dn);
1070 if (ret == 16)
1071 pdata->flcmncr_val |= SEL_16BIT;
1072 else if (ret != 8) {
1073 dev_err(dev, "%s: invalid bus width\n", __func__);
1074 return NULL;
1075 }
1076
1077 return pdata;
1078 }
1079
1080 static int flctl_probe(struct platform_device *pdev)
1081 {
1082 struct resource *res;
1083 struct sh_flctl *flctl;
1084 struct mtd_info *flctl_mtd;
1085 struct nand_chip *nand;
1086 struct sh_flctl_platform_data *pdata;
1087 int ret;
1088 int irq;
1089
1090 flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1091 if (!flctl)
1092 return -ENOMEM;
1093
1094 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1095 flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1096 if (IS_ERR(flctl->reg))
1097 return PTR_ERR(flctl->reg);
1098 flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1099
1100 irq = platform_get_irq(pdev, 0);
1101 if (irq < 0) {
1102 dev_err(&pdev->dev, "failed to get flste irq data\n");
1103 return -ENXIO;
1104 }
1105
1106 ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1107 "flste", flctl);
1108 if (ret) {
1109 dev_err(&pdev->dev, "request interrupt failed.\n");
1110 return ret;
1111 }
1112
1113 if (pdev->dev.of_node)
1114 pdata = flctl_parse_dt(&pdev->dev);
1115 else
1116 pdata = dev_get_platdata(&pdev->dev);
1117
1118 if (!pdata) {
1119 dev_err(&pdev->dev, "no setup data defined\n");
1120 return -EINVAL;
1121 }
1122
1123 platform_set_drvdata(pdev, flctl);
1124 nand = &flctl->chip;
1125 flctl_mtd = nand_to_mtd(nand);
1126 nand_set_flash_node(nand, pdev->dev.of_node);
1127 flctl_mtd->dev.parent = &pdev->dev;
1128 flctl->pdev = pdev;
1129 flctl->hwecc = pdata->has_hwecc;
1130 flctl->holden = pdata->use_holden;
1131 flctl->flcmncr_base = pdata->flcmncr_val;
1132 flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1133
1134 /* Set address of hardware control function */
1135 /* 20 us command delay time */
1136 nand->chip_delay = 20;
1137
1138 nand->read_byte = flctl_read_byte;
1139 nand->write_buf = flctl_write_buf;
1140 nand->read_buf = flctl_read_buf;
1141 nand->select_chip = flctl_select_chip;
1142 nand->cmdfunc = flctl_cmdfunc;
1143
1144 if (pdata->flcmncr_val & SEL_16BIT) {
1145 nand->options |= NAND_BUSWIDTH_16;
1146 nand->read_word = flctl_read_word;
1147 }
1148
1149 pm_runtime_enable(&pdev->dev);
1150 pm_runtime_resume(&pdev->dev);
1151
1152 flctl_setup_dma(flctl);
1153
1154 ret = nand_scan_ident(flctl_mtd, 1, NULL);
1155 if (ret)
1156 goto err_chip;
1157
1158 ret = flctl_chip_init_tail(flctl_mtd);
1159 if (ret)
1160 goto err_chip;
1161
1162 ret = nand_scan_tail(flctl_mtd);
1163 if (ret)
1164 goto err_chip;
1165
1166 ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1167
1168 return 0;
1169
1170 err_chip:
1171 flctl_release_dma(flctl);
1172 pm_runtime_disable(&pdev->dev);
1173 return ret;
1174 }
1175
1176 static int flctl_remove(struct platform_device *pdev)
1177 {
1178 struct sh_flctl *flctl = platform_get_drvdata(pdev);
1179
1180 flctl_release_dma(flctl);
1181 nand_release(nand_to_mtd(&flctl->chip));
1182 pm_runtime_disable(&pdev->dev);
1183
1184 return 0;
1185 }
1186
1187 static struct platform_driver flctl_driver = {
1188 .remove = flctl_remove,
1189 .driver = {
1190 .name = "sh_flctl",
1191 .of_match_table = of_match_ptr(of_flctl_match),
1192 },
1193 };
1194
1195 module_platform_driver_probe(flctl_driver, flctl_probe);
1196
1197 MODULE_LICENSE("GPL");
1198 MODULE_AUTHOR("Yoshihiro Shimoda");
1199 MODULE_DESCRIPTION("SuperH FLCTL driver");
1200 MODULE_ALIAS("platform:sh_flctl");
This page took 0.055636 seconds and 6 git commands to generate.