Merge branch 'chandan/prep-subpage-blocksize' into for-chris-4.6
[deliverable/linux.git] / drivers / mtd / nand / sunxi_nand.c
1 /*
2 * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
3 *
4 * Derived from:
5 * https://github.com/yuq/sunxi-nfc-mtd
6 * Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
7 *
8 * https://github.com/hno/Allwinner-Info
9 * Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
10 *
11 * Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
12 * Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25 #include <linux/dma-mapping.h>
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/platform_device.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_gpio.h>
33 #include <linux/of_mtd.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/nand.h>
36 #include <linux/mtd/partitions.h>
37 #include <linux/clk.h>
38 #include <linux/delay.h>
39 #include <linux/dmaengine.h>
40 #include <linux/gpio.h>
41 #include <linux/interrupt.h>
42 #include <linux/io.h>
43
44 #define NFC_REG_CTL 0x0000
45 #define NFC_REG_ST 0x0004
46 #define NFC_REG_INT 0x0008
47 #define NFC_REG_TIMING_CTL 0x000C
48 #define NFC_REG_TIMING_CFG 0x0010
49 #define NFC_REG_ADDR_LOW 0x0014
50 #define NFC_REG_ADDR_HIGH 0x0018
51 #define NFC_REG_SECTOR_NUM 0x001C
52 #define NFC_REG_CNT 0x0020
53 #define NFC_REG_CMD 0x0024
54 #define NFC_REG_RCMD_SET 0x0028
55 #define NFC_REG_WCMD_SET 0x002C
56 #define NFC_REG_IO_DATA 0x0030
57 #define NFC_REG_ECC_CTL 0x0034
58 #define NFC_REG_ECC_ST 0x0038
59 #define NFC_REG_DEBUG 0x003C
60 #define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3)
61 #define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4))
62 #define NFC_REG_SPARE_AREA 0x00A0
63 #define NFC_RAM0_BASE 0x0400
64 #define NFC_RAM1_BASE 0x0800
65
66 /* define bit use in NFC_CTL */
67 #define NFC_EN BIT(0)
68 #define NFC_RESET BIT(1)
69 #define NFC_BUS_WIDTH_MSK BIT(2)
70 #define NFC_BUS_WIDTH_8 (0 << 2)
71 #define NFC_BUS_WIDTH_16 (1 << 2)
72 #define NFC_RB_SEL_MSK BIT(3)
73 #define NFC_RB_SEL(x) ((x) << 3)
74 #define NFC_CE_SEL_MSK GENMASK(26, 24)
75 #define NFC_CE_SEL(x) ((x) << 24)
76 #define NFC_CE_CTL BIT(6)
77 #define NFC_PAGE_SHIFT_MSK GENMASK(11, 8)
78 #define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8)
79 #define NFC_SAM BIT(12)
80 #define NFC_RAM_METHOD BIT(14)
81 #define NFC_DEBUG_CTL BIT(31)
82
83 /* define bit use in NFC_ST */
84 #define NFC_RB_B2R BIT(0)
85 #define NFC_CMD_INT_FLAG BIT(1)
86 #define NFC_DMA_INT_FLAG BIT(2)
87 #define NFC_CMD_FIFO_STATUS BIT(3)
88 #define NFC_STA BIT(4)
89 #define NFC_NATCH_INT_FLAG BIT(5)
90 #define NFC_RB_STATE(x) BIT(x + 8)
91
92 /* define bit use in NFC_INT */
93 #define NFC_B2R_INT_ENABLE BIT(0)
94 #define NFC_CMD_INT_ENABLE BIT(1)
95 #define NFC_DMA_INT_ENABLE BIT(2)
96 #define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \
97 NFC_CMD_INT_ENABLE | \
98 NFC_DMA_INT_ENABLE)
99
100 /* define bit use in NFC_TIMING_CTL */
101 #define NFC_TIMING_CTL_EDO BIT(8)
102
103 /* define NFC_TIMING_CFG register layout */
104 #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \
105 (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \
106 (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \
107 (((tCAD) & 0x7) << 8))
108
109 /* define bit use in NFC_CMD */
110 #define NFC_CMD_LOW_BYTE_MSK GENMASK(7, 0)
111 #define NFC_CMD_HIGH_BYTE_MSK GENMASK(15, 8)
112 #define NFC_CMD(x) (x)
113 #define NFC_ADR_NUM_MSK GENMASK(18, 16)
114 #define NFC_ADR_NUM(x) (((x) - 1) << 16)
115 #define NFC_SEND_ADR BIT(19)
116 #define NFC_ACCESS_DIR BIT(20)
117 #define NFC_DATA_TRANS BIT(21)
118 #define NFC_SEND_CMD1 BIT(22)
119 #define NFC_WAIT_FLAG BIT(23)
120 #define NFC_SEND_CMD2 BIT(24)
121 #define NFC_SEQ BIT(25)
122 #define NFC_DATA_SWAP_METHOD BIT(26)
123 #define NFC_ROW_AUTO_INC BIT(27)
124 #define NFC_SEND_CMD3 BIT(28)
125 #define NFC_SEND_CMD4 BIT(29)
126 #define NFC_CMD_TYPE_MSK GENMASK(31, 30)
127 #define NFC_NORMAL_OP (0 << 30)
128 #define NFC_ECC_OP (1 << 30)
129 #define NFC_PAGE_OP (2 << 30)
130
131 /* define bit use in NFC_RCMD_SET */
132 #define NFC_READ_CMD_MSK GENMASK(7, 0)
133 #define NFC_RND_READ_CMD0_MSK GENMASK(15, 8)
134 #define NFC_RND_READ_CMD1_MSK GENMASK(23, 16)
135
136 /* define bit use in NFC_WCMD_SET */
137 #define NFC_PROGRAM_CMD_MSK GENMASK(7, 0)
138 #define NFC_RND_WRITE_CMD_MSK GENMASK(15, 8)
139 #define NFC_READ_CMD0_MSK GENMASK(23, 16)
140 #define NFC_READ_CMD1_MSK GENMASK(31, 24)
141
142 /* define bit use in NFC_ECC_CTL */
143 #define NFC_ECC_EN BIT(0)
144 #define NFC_ECC_PIPELINE BIT(3)
145 #define NFC_ECC_EXCEPTION BIT(4)
146 #define NFC_ECC_BLOCK_SIZE_MSK BIT(5)
147 #define NFC_RANDOM_EN BIT(9)
148 #define NFC_RANDOM_DIRECTION BIT(10)
149 #define NFC_ECC_MODE_MSK GENMASK(15, 12)
150 #define NFC_ECC_MODE(x) ((x) << 12)
151 #define NFC_RANDOM_SEED_MSK GENMASK(30, 16)
152 #define NFC_RANDOM_SEED(x) ((x) << 16)
153
154 /* define bit use in NFC_ECC_ST */
155 #define NFC_ECC_ERR(x) BIT(x)
156 #define NFC_ECC_PAT_FOUND(x) BIT(x + 16)
157 #define NFC_ECC_ERR_CNT(b, x) (((x) >> ((b) * 8)) & 0xff)
158
159 #define NFC_DEFAULT_TIMEOUT_MS 1000
160
161 #define NFC_SRAM_SIZE 1024
162
163 #define NFC_MAX_CS 7
164
165 /*
166 * Ready/Busy detection type: describes the Ready/Busy detection modes
167 *
168 * @RB_NONE: no external detection available, rely on STATUS command
169 * and software timeouts
170 * @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy
171 * pin of the NAND flash chip must be connected to one of the
172 * native NAND R/B pins (those which can be muxed to the NAND
173 * Controller)
174 * @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy
175 * pin of the NAND flash chip must be connected to a GPIO capable
176 * pin.
177 */
178 enum sunxi_nand_rb_type {
179 RB_NONE,
180 RB_NATIVE,
181 RB_GPIO,
182 };
183
184 /*
185 * Ready/Busy structure: stores information related to Ready/Busy detection
186 *
187 * @type: the Ready/Busy detection mode
188 * @info: information related to the R/B detection mode. Either a gpio
189 * id or a native R/B id (those supported by the NAND controller).
190 */
191 struct sunxi_nand_rb {
192 enum sunxi_nand_rb_type type;
193 union {
194 int gpio;
195 int nativeid;
196 } info;
197 };
198
199 /*
200 * Chip Select structure: stores information related to NAND Chip Select
201 *
202 * @cs: the NAND CS id used to communicate with a NAND Chip
203 * @rb: the Ready/Busy description
204 */
205 struct sunxi_nand_chip_sel {
206 u8 cs;
207 struct sunxi_nand_rb rb;
208 };
209
210 /*
211 * sunxi HW ECC infos: stores information related to HW ECC support
212 *
213 * @mode: the sunxi ECC mode field deduced from ECC requirements
214 * @layout: the OOB layout depending on the ECC requirements and the
215 * selected ECC mode
216 */
217 struct sunxi_nand_hw_ecc {
218 int mode;
219 struct nand_ecclayout layout;
220 };
221
222 /*
223 * NAND chip structure: stores NAND chip device related information
224 *
225 * @node: used to store NAND chips into a list
226 * @nand: base NAND chip structure
227 * @mtd: base MTD structure
228 * @clk_rate: clk_rate required for this NAND chip
229 * @timing_cfg TIMING_CFG register value for this NAND chip
230 * @selected: current active CS
231 * @nsels: number of CS lines required by the NAND chip
232 * @sels: array of CS lines descriptions
233 */
234 struct sunxi_nand_chip {
235 struct list_head node;
236 struct nand_chip nand;
237 unsigned long clk_rate;
238 u32 timing_cfg;
239 u32 timing_ctl;
240 int selected;
241 int nsels;
242 struct sunxi_nand_chip_sel sels[0];
243 };
244
245 static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
246 {
247 return container_of(nand, struct sunxi_nand_chip, nand);
248 }
249
250 /*
251 * NAND Controller structure: stores sunxi NAND controller information
252 *
253 * @controller: base controller structure
254 * @dev: parent device (used to print error messages)
255 * @regs: NAND controller registers
256 * @ahb_clk: NAND Controller AHB clock
257 * @mod_clk: NAND Controller mod clock
258 * @assigned_cs: bitmask describing already assigned CS lines
259 * @clk_rate: NAND controller current clock rate
260 * @chips: a list containing all the NAND chips attached to
261 * this NAND controller
262 * @complete: a completion object used to wait for NAND
263 * controller events
264 */
265 struct sunxi_nfc {
266 struct nand_hw_control controller;
267 struct device *dev;
268 void __iomem *regs;
269 struct clk *ahb_clk;
270 struct clk *mod_clk;
271 unsigned long assigned_cs;
272 unsigned long clk_rate;
273 struct list_head chips;
274 struct completion complete;
275 };
276
277 static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
278 {
279 return container_of(ctrl, struct sunxi_nfc, controller);
280 }
281
282 static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
283 {
284 struct sunxi_nfc *nfc = dev_id;
285 u32 st = readl(nfc->regs + NFC_REG_ST);
286 u32 ien = readl(nfc->regs + NFC_REG_INT);
287
288 if (!(ien & st))
289 return IRQ_NONE;
290
291 if ((ien & st) == ien)
292 complete(&nfc->complete);
293
294 writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
295 writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
296
297 return IRQ_HANDLED;
298 }
299
300 static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
301 unsigned int timeout_ms)
302 {
303 init_completion(&nfc->complete);
304
305 writel(flags, nfc->regs + NFC_REG_INT);
306
307 if (!timeout_ms)
308 timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
309
310 if (!wait_for_completion_timeout(&nfc->complete,
311 msecs_to_jiffies(timeout_ms))) {
312 dev_err(nfc->dev, "wait interrupt timedout\n");
313 return -ETIMEDOUT;
314 }
315
316 return 0;
317 }
318
319 static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
320 {
321 unsigned long timeout = jiffies +
322 msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
323
324 do {
325 if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
326 return 0;
327 } while (time_before(jiffies, timeout));
328
329 dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
330 return -ETIMEDOUT;
331 }
332
333 static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
334 {
335 unsigned long timeout = jiffies +
336 msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
337
338 writel(0, nfc->regs + NFC_REG_ECC_CTL);
339 writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
340
341 do {
342 if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
343 return 0;
344 } while (time_before(jiffies, timeout));
345
346 dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
347 return -ETIMEDOUT;
348 }
349
350 static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
351 {
352 struct nand_chip *nand = mtd_to_nand(mtd);
353 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
354 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
355 struct sunxi_nand_rb *rb;
356 unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
357 int ret;
358
359 if (sunxi_nand->selected < 0)
360 return 0;
361
362 rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
363
364 switch (rb->type) {
365 case RB_NATIVE:
366 ret = !!(readl(nfc->regs + NFC_REG_ST) &
367 NFC_RB_STATE(rb->info.nativeid));
368 if (ret)
369 break;
370
371 sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
372 ret = !!(readl(nfc->regs + NFC_REG_ST) &
373 NFC_RB_STATE(rb->info.nativeid));
374 break;
375 case RB_GPIO:
376 ret = gpio_get_value(rb->info.gpio);
377 break;
378 case RB_NONE:
379 default:
380 ret = 0;
381 dev_err(nfc->dev, "cannot check R/B NAND status!\n");
382 break;
383 }
384
385 return ret;
386 }
387
388 static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
389 {
390 struct nand_chip *nand = mtd_to_nand(mtd);
391 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
392 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
393 struct sunxi_nand_chip_sel *sel;
394 u32 ctl;
395
396 if (chip > 0 && chip >= sunxi_nand->nsels)
397 return;
398
399 if (chip == sunxi_nand->selected)
400 return;
401
402 ctl = readl(nfc->regs + NFC_REG_CTL) &
403 ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
404
405 if (chip >= 0) {
406 sel = &sunxi_nand->sels[chip];
407
408 ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
409 NFC_PAGE_SHIFT(nand->page_shift - 10);
410 if (sel->rb.type == RB_NONE) {
411 nand->dev_ready = NULL;
412 } else {
413 nand->dev_ready = sunxi_nfc_dev_ready;
414 if (sel->rb.type == RB_NATIVE)
415 ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
416 }
417
418 writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
419
420 if (nfc->clk_rate != sunxi_nand->clk_rate) {
421 clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
422 nfc->clk_rate = sunxi_nand->clk_rate;
423 }
424 }
425
426 writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
427 writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
428 writel(ctl, nfc->regs + NFC_REG_CTL);
429
430 sunxi_nand->selected = chip;
431 }
432
433 static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
434 {
435 struct nand_chip *nand = mtd_to_nand(mtd);
436 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
437 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
438 int ret;
439 int cnt;
440 int offs = 0;
441 u32 tmp;
442
443 while (len > offs) {
444 cnt = min(len - offs, NFC_SRAM_SIZE);
445
446 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
447 if (ret)
448 break;
449
450 writel(cnt, nfc->regs + NFC_REG_CNT);
451 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
452 writel(tmp, nfc->regs + NFC_REG_CMD);
453
454 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
455 if (ret)
456 break;
457
458 if (buf)
459 memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
460 cnt);
461 offs += cnt;
462 }
463 }
464
465 static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
466 int len)
467 {
468 struct nand_chip *nand = mtd_to_nand(mtd);
469 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
470 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
471 int ret;
472 int cnt;
473 int offs = 0;
474 u32 tmp;
475
476 while (len > offs) {
477 cnt = min(len - offs, NFC_SRAM_SIZE);
478
479 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
480 if (ret)
481 break;
482
483 writel(cnt, nfc->regs + NFC_REG_CNT);
484 memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
485 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
486 NFC_ACCESS_DIR;
487 writel(tmp, nfc->regs + NFC_REG_CMD);
488
489 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
490 if (ret)
491 break;
492
493 offs += cnt;
494 }
495 }
496
497 static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
498 {
499 uint8_t ret;
500
501 sunxi_nfc_read_buf(mtd, &ret, 1);
502
503 return ret;
504 }
505
506 static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
507 unsigned int ctrl)
508 {
509 struct nand_chip *nand = mtd_to_nand(mtd);
510 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
511 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
512 int ret;
513 u32 tmp;
514
515 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
516 if (ret)
517 return;
518
519 if (ctrl & NAND_CTRL_CHANGE) {
520 tmp = readl(nfc->regs + NFC_REG_CTL);
521 if (ctrl & NAND_NCE)
522 tmp |= NFC_CE_CTL;
523 else
524 tmp &= ~NFC_CE_CTL;
525 writel(tmp, nfc->regs + NFC_REG_CTL);
526 }
527
528 if (dat == NAND_CMD_NONE)
529 return;
530
531 if (ctrl & NAND_CLE) {
532 writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
533 } else {
534 writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
535 writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
536 }
537
538 sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
539 }
540
541 static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
542 {
543 struct nand_chip *nand = mtd_to_nand(mtd);
544 struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
545 struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
546 u32 ecc_ctl;
547
548 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
549 ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
550 NFC_ECC_BLOCK_SIZE_MSK);
551 ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION;
552
553 writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
554 }
555
556 static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
557 {
558 struct nand_chip *nand = mtd_to_nand(mtd);
559 struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
560
561 writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
562 nfc->regs + NFC_REG_ECC_CTL);
563 }
564
565 static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
566 {
567 buf[0] = user_data;
568 buf[1] = user_data >> 8;
569 buf[2] = user_data >> 16;
570 buf[3] = user_data >> 24;
571 }
572
573 static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
574 u8 *data, int data_off,
575 u8 *oob, int oob_off,
576 int *cur_off,
577 unsigned int *max_bitflips)
578 {
579 struct nand_chip *nand = mtd_to_nand(mtd);
580 struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
581 struct nand_ecc_ctrl *ecc = &nand->ecc;
582 u32 status;
583 int ret;
584
585 if (*cur_off != data_off)
586 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
587
588 sunxi_nfc_read_buf(mtd, NULL, ecc->size);
589
590 if (data_off + ecc->size != oob_off)
591 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
592
593 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
594 if (ret)
595 return ret;
596
597 writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
598 nfc->regs + NFC_REG_CMD);
599
600 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
601 if (ret)
602 return ret;
603
604 status = readl(nfc->regs + NFC_REG_ECC_ST);
605 ret = NFC_ECC_ERR_CNT(0, readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0)));
606
607 memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
608
609 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
610 sunxi_nfc_read_buf(mtd, oob, ecc->bytes + 4);
611
612 if (status & NFC_ECC_ERR(0)) {
613 ret = nand_check_erased_ecc_chunk(data, ecc->size,
614 oob, ecc->bytes + 4,
615 NULL, 0, ecc->strength);
616 } else {
617 /*
618 * The engine protects 4 bytes of OOB data per chunk.
619 * Retrieve the corrected OOB bytes.
620 */
621 sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(0)),
622 oob);
623 }
624
625 if (ret < 0) {
626 mtd->ecc_stats.failed++;
627 } else {
628 mtd->ecc_stats.corrected += ret;
629 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
630 }
631
632 *cur_off = oob_off + ecc->bytes + 4;
633
634 return 0;
635 }
636
637 static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
638 u8 *oob, int *cur_off)
639 {
640 struct nand_chip *nand = mtd_to_nand(mtd);
641 struct nand_ecc_ctrl *ecc = &nand->ecc;
642 int offset = ((ecc->bytes + 4) * ecc->steps);
643 int len = mtd->oobsize - offset;
644
645 if (len <= 0)
646 return;
647
648 if (*cur_off != offset)
649 nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
650 offset + mtd->writesize, -1);
651
652 sunxi_nfc_read_buf(mtd, oob + offset, len);
653
654 *cur_off = mtd->oobsize + mtd->writesize;
655 }
656
657 static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
658 {
659 return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
660 }
661
662 static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
663 const u8 *data, int data_off,
664 const u8 *oob, int oob_off,
665 int *cur_off)
666 {
667 struct nand_chip *nand = mtd_to_nand(mtd);
668 struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
669 struct nand_ecc_ctrl *ecc = &nand->ecc;
670 int ret;
671
672 if (data_off != *cur_off)
673 nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);
674
675 sunxi_nfc_write_buf(mtd, data, ecc->size);
676
677 /* Fill OOB data in */
678 writel(sunxi_nfc_buf_to_user_data(oob),
679 nfc->regs + NFC_REG_USER_DATA(0));
680
681 if (data_off + ecc->size != oob_off)
682 nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);
683
684 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
685 if (ret)
686 return ret;
687
688 writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
689 NFC_ACCESS_DIR | NFC_ECC_OP,
690 nfc->regs + NFC_REG_CMD);
691
692 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
693 if (ret)
694 return ret;
695
696 *cur_off = oob_off + ecc->bytes + 4;
697
698 return 0;
699 }
700
701 static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
702 u8 *oob, int *cur_off)
703 {
704 struct nand_chip *nand = mtd_to_nand(mtd);
705 struct nand_ecc_ctrl *ecc = &nand->ecc;
706 int offset = ((ecc->bytes + 4) * ecc->steps);
707 int len = mtd->oobsize - offset;
708
709 if (len <= 0)
710 return;
711
712 if (*cur_off != offset)
713 nand->cmdfunc(mtd, NAND_CMD_RNDIN,
714 offset + mtd->writesize, -1);
715
716 sunxi_nfc_write_buf(mtd, oob + offset, len);
717
718 *cur_off = mtd->oobsize + mtd->writesize;
719 }
720
721 static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
722 struct nand_chip *chip, uint8_t *buf,
723 int oob_required, int page)
724 {
725 struct nand_ecc_ctrl *ecc = &chip->ecc;
726 unsigned int max_bitflips = 0;
727 int ret, i, cur_off = 0;
728
729 sunxi_nfc_hw_ecc_enable(mtd);
730
731 for (i = 0; i < ecc->steps; i++) {
732 int data_off = i * ecc->size;
733 int oob_off = i * (ecc->bytes + 4);
734 u8 *data = buf + data_off;
735 u8 *oob = chip->oob_poi + oob_off;
736
737 ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
738 oob_off + mtd->writesize,
739 &cur_off, &max_bitflips);
740 if (ret)
741 return ret;
742 }
743
744 if (oob_required)
745 sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off);
746
747 sunxi_nfc_hw_ecc_disable(mtd);
748
749 return max_bitflips;
750 }
751
752 static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
753 struct nand_chip *chip,
754 const uint8_t *buf, int oob_required,
755 int page)
756 {
757 struct nand_ecc_ctrl *ecc = &chip->ecc;
758 int ret, i, cur_off = 0;
759
760 sunxi_nfc_hw_ecc_enable(mtd);
761
762 for (i = 0; i < ecc->steps; i++) {
763 int data_off = i * ecc->size;
764 int oob_off = i * (ecc->bytes + 4);
765 const u8 *data = buf + data_off;
766 const u8 *oob = chip->oob_poi + oob_off;
767
768 ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
769 oob_off + mtd->writesize,
770 &cur_off);
771 if (ret)
772 return ret;
773 }
774
775 if (oob_required)
776 sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off);
777
778 sunxi_nfc_hw_ecc_disable(mtd);
779
780 return 0;
781 }
782
783 static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
784 struct nand_chip *chip,
785 uint8_t *buf, int oob_required,
786 int page)
787 {
788 struct nand_ecc_ctrl *ecc = &chip->ecc;
789 unsigned int max_bitflips = 0;
790 int ret, i, cur_off = 0;
791
792 sunxi_nfc_hw_ecc_enable(mtd);
793
794 for (i = 0; i < ecc->steps; i++) {
795 int data_off = i * (ecc->size + ecc->bytes + 4);
796 int oob_off = data_off + ecc->size;
797 u8 *data = buf + (i * ecc->size);
798 u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
799
800 ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
801 oob_off, &cur_off,
802 &max_bitflips);
803 if (ret)
804 return ret;
805 }
806
807 if (oob_required)
808 sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off);
809
810 sunxi_nfc_hw_ecc_disable(mtd);
811
812 return max_bitflips;
813 }
814
815 static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
816 struct nand_chip *chip,
817 const uint8_t *buf,
818 int oob_required, int page)
819 {
820 struct nand_ecc_ctrl *ecc = &chip->ecc;
821 int ret, i, cur_off = 0;
822
823 sunxi_nfc_hw_ecc_enable(mtd);
824
825 for (i = 0; i < ecc->steps; i++) {
826 int data_off = i * (ecc->size + ecc->bytes + 4);
827 int oob_off = data_off + ecc->size;
828 const u8 *data = buf + (i * ecc->size);
829 const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
830
831 ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
832 oob, oob_off, &cur_off);
833 if (ret)
834 return ret;
835 }
836
837 if (oob_required)
838 sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off);
839
840 sunxi_nfc_hw_ecc_disable(mtd);
841
842 return 0;
843 }
844
845 static const s32 tWB_lut[] = {6, 12, 16, 20};
846 static const s32 tRHW_lut[] = {4, 8, 12, 20};
847
848 static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
849 u32 clk_period)
850 {
851 u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
852 int i;
853
854 for (i = 0; i < lut_size; i++) {
855 if (clk_cycles <= lut[i])
856 return i;
857 }
858
859 /* Doesn't fit */
860 return -EINVAL;
861 }
862
863 #define sunxi_nand_lookup_timing(l, p, c) \
864 _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
865
866 static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
867 const struct nand_sdr_timings *timings)
868 {
869 struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
870 u32 min_clk_period = 0;
871 s32 tWB, tADL, tWHR, tRHW, tCAD;
872
873 /* T1 <=> tCLS */
874 if (timings->tCLS_min > min_clk_period)
875 min_clk_period = timings->tCLS_min;
876
877 /* T2 <=> tCLH */
878 if (timings->tCLH_min > min_clk_period)
879 min_clk_period = timings->tCLH_min;
880
881 /* T3 <=> tCS */
882 if (timings->tCS_min > min_clk_period)
883 min_clk_period = timings->tCS_min;
884
885 /* T4 <=> tCH */
886 if (timings->tCH_min > min_clk_period)
887 min_clk_period = timings->tCH_min;
888
889 /* T5 <=> tWP */
890 if (timings->tWP_min > min_clk_period)
891 min_clk_period = timings->tWP_min;
892
893 /* T6 <=> tWH */
894 if (timings->tWH_min > min_clk_period)
895 min_clk_period = timings->tWH_min;
896
897 /* T7 <=> tALS */
898 if (timings->tALS_min > min_clk_period)
899 min_clk_period = timings->tALS_min;
900
901 /* T8 <=> tDS */
902 if (timings->tDS_min > min_clk_period)
903 min_clk_period = timings->tDS_min;
904
905 /* T9 <=> tDH */
906 if (timings->tDH_min > min_clk_period)
907 min_clk_period = timings->tDH_min;
908
909 /* T10 <=> tRR */
910 if (timings->tRR_min > (min_clk_period * 3))
911 min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
912
913 /* T11 <=> tALH */
914 if (timings->tALH_min > min_clk_period)
915 min_clk_period = timings->tALH_min;
916
917 /* T12 <=> tRP */
918 if (timings->tRP_min > min_clk_period)
919 min_clk_period = timings->tRP_min;
920
921 /* T13 <=> tREH */
922 if (timings->tREH_min > min_clk_period)
923 min_clk_period = timings->tREH_min;
924
925 /* T14 <=> tRC */
926 if (timings->tRC_min > (min_clk_period * 2))
927 min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
928
929 /* T15 <=> tWC */
930 if (timings->tWC_min > (min_clk_period * 2))
931 min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
932
933 /* T16 - T19 + tCAD */
934 tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
935 min_clk_period);
936 if (tWB < 0) {
937 dev_err(nfc->dev, "unsupported tWB\n");
938 return tWB;
939 }
940
941 tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
942 if (tADL > 3) {
943 dev_err(nfc->dev, "unsupported tADL\n");
944 return -EINVAL;
945 }
946
947 tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
948 if (tWHR > 3) {
949 dev_err(nfc->dev, "unsupported tWHR\n");
950 return -EINVAL;
951 }
952
953 tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
954 min_clk_period);
955 if (tRHW < 0) {
956 dev_err(nfc->dev, "unsupported tRHW\n");
957 return tRHW;
958 }
959
960 /*
961 * TODO: according to ONFI specs this value only applies for DDR NAND,
962 * but Allwinner seems to set this to 0x7. Mimic them for now.
963 */
964 tCAD = 0x7;
965
966 /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
967 chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
968
969 /*
970 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
971 * output cycle timings shall be used if the host drives tRC less than
972 * 30 ns.
973 */
974 chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0;
975
976 /* Convert min_clk_period from picoseconds to nanoseconds */
977 min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
978
979 /*
980 * Convert min_clk_period into a clk frequency, then get the
981 * appropriate rate for the NAND controller IP given this formula
982 * (specified in the datasheet):
983 * nand clk_rate = 2 * min_clk_rate
984 */
985 chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;
986
987 return 0;
988 }
989
990 static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
991 struct device_node *np)
992 {
993 struct mtd_info *mtd = nand_to_mtd(&chip->nand);
994 const struct nand_sdr_timings *timings;
995 int ret;
996 int mode;
997
998 mode = onfi_get_async_timing_mode(&chip->nand);
999 if (mode == ONFI_TIMING_MODE_UNKNOWN) {
1000 mode = chip->nand.onfi_timing_mode_default;
1001 } else {
1002 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
1003 int i;
1004
1005 mode = fls(mode) - 1;
1006 if (mode < 0)
1007 mode = 0;
1008
1009 feature[0] = mode;
1010 for (i = 0; i < chip->nsels; i++) {
1011 chip->nand.select_chip(mtd, i);
1012 ret = chip->nand.onfi_set_features(mtd, &chip->nand,
1013 ONFI_FEATURE_ADDR_TIMING_MODE,
1014 feature);
1015 chip->nand.select_chip(mtd, -1);
1016 if (ret)
1017 return ret;
1018 }
1019 }
1020
1021 timings = onfi_async_timing_mode_to_sdr_timings(mode);
1022 if (IS_ERR(timings))
1023 return PTR_ERR(timings);
1024
1025 return sunxi_nand_chip_set_timings(chip, timings);
1026 }
1027
1028 static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
1029 struct nand_ecc_ctrl *ecc,
1030 struct device_node *np)
1031 {
1032 static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
1033 struct nand_chip *nand = mtd_to_nand(mtd);
1034 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
1035 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
1036 struct sunxi_nand_hw_ecc *data;
1037 struct nand_ecclayout *layout;
1038 int nsectors;
1039 int ret;
1040 int i;
1041
1042 data = kzalloc(sizeof(*data), GFP_KERNEL);
1043 if (!data)
1044 return -ENOMEM;
1045
1046 /* Add ECC info retrieval from DT */
1047 for (i = 0; i < ARRAY_SIZE(strengths); i++) {
1048 if (ecc->strength <= strengths[i])
1049 break;
1050 }
1051
1052 if (i >= ARRAY_SIZE(strengths)) {
1053 dev_err(nfc->dev, "unsupported strength\n");
1054 ret = -ENOTSUPP;
1055 goto err;
1056 }
1057
1058 data->mode = i;
1059
1060 /* HW ECC always request ECC bytes for 1024 bytes blocks */
1061 ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
1062
1063 /* HW ECC always work with even numbers of ECC bytes */
1064 ecc->bytes = ALIGN(ecc->bytes, 2);
1065
1066 layout = &data->layout;
1067 nsectors = mtd->writesize / ecc->size;
1068
1069 if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
1070 ret = -EINVAL;
1071 goto err;
1072 }
1073
1074 layout->eccbytes = (ecc->bytes * nsectors);
1075
1076 ecc->layout = layout;
1077 ecc->priv = data;
1078
1079 return 0;
1080
1081 err:
1082 kfree(data);
1083
1084 return ret;
1085 }
1086
1087 static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
1088 {
1089 kfree(ecc->priv);
1090 }
1091
1092 static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
1093 struct nand_ecc_ctrl *ecc,
1094 struct device_node *np)
1095 {
1096 struct nand_ecclayout *layout;
1097 int nsectors;
1098 int i, j;
1099 int ret;
1100
1101 ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1102 if (ret)
1103 return ret;
1104
1105 ecc->read_page = sunxi_nfc_hw_ecc_read_page;
1106 ecc->write_page = sunxi_nfc_hw_ecc_write_page;
1107 layout = ecc->layout;
1108 nsectors = mtd->writesize / ecc->size;
1109
1110 for (i = 0; i < nsectors; i++) {
1111 if (i) {
1112 layout->oobfree[i].offset =
1113 layout->oobfree[i - 1].offset +
1114 layout->oobfree[i - 1].length +
1115 ecc->bytes;
1116 layout->oobfree[i].length = 4;
1117 } else {
1118 /*
1119 * The first 2 bytes are used for BB markers, hence we
1120 * only have 2 bytes available in the first user data
1121 * section.
1122 */
1123 layout->oobfree[i].length = 2;
1124 layout->oobfree[i].offset = 2;
1125 }
1126
1127 for (j = 0; j < ecc->bytes; j++)
1128 layout->eccpos[(ecc->bytes * i) + j] =
1129 layout->oobfree[i].offset +
1130 layout->oobfree[i].length + j;
1131 }
1132
1133 if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
1134 layout->oobfree[nsectors].offset =
1135 layout->oobfree[nsectors - 1].offset +
1136 layout->oobfree[nsectors - 1].length +
1137 ecc->bytes;
1138 layout->oobfree[nsectors].length = mtd->oobsize -
1139 ((ecc->bytes + 4) * nsectors);
1140 }
1141
1142 return 0;
1143 }
1144
1145 static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
1146 struct nand_ecc_ctrl *ecc,
1147 struct device_node *np)
1148 {
1149 struct nand_ecclayout *layout;
1150 int nsectors;
1151 int i;
1152 int ret;
1153
1154 ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1155 if (ret)
1156 return ret;
1157
1158 ecc->prepad = 4;
1159 ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
1160 ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
1161
1162 layout = ecc->layout;
1163 nsectors = mtd->writesize / ecc->size;
1164
1165 for (i = 0; i < (ecc->bytes * nsectors); i++)
1166 layout->eccpos[i] = i;
1167
1168 layout->oobfree[0].length = mtd->oobsize - i;
1169 layout->oobfree[0].offset = i;
1170
1171 return 0;
1172 }
1173
1174 static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
1175 {
1176 switch (ecc->mode) {
1177 case NAND_ECC_HW:
1178 case NAND_ECC_HW_SYNDROME:
1179 sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
1180 break;
1181 case NAND_ECC_NONE:
1182 kfree(ecc->layout);
1183 default:
1184 break;
1185 }
1186 }
1187
1188 static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
1189 struct device_node *np)
1190 {
1191 struct nand_chip *nand = mtd_to_nand(mtd);
1192 int ret;
1193
1194 if (!ecc->size) {
1195 ecc->size = nand->ecc_step_ds;
1196 ecc->strength = nand->ecc_strength_ds;
1197 }
1198
1199 if (!ecc->size || !ecc->strength)
1200 return -EINVAL;
1201
1202 switch (ecc->mode) {
1203 case NAND_ECC_SOFT_BCH:
1204 break;
1205 case NAND_ECC_HW:
1206 ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
1207 if (ret)
1208 return ret;
1209 break;
1210 case NAND_ECC_HW_SYNDROME:
1211 ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
1212 if (ret)
1213 return ret;
1214 break;
1215 case NAND_ECC_NONE:
1216 ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
1217 if (!ecc->layout)
1218 return -ENOMEM;
1219 ecc->layout->oobfree[0].length = mtd->oobsize;
1220 case NAND_ECC_SOFT:
1221 break;
1222 default:
1223 return -EINVAL;
1224 }
1225
1226 return 0;
1227 }
1228
1229 static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
1230 struct device_node *np)
1231 {
1232 const struct nand_sdr_timings *timings;
1233 struct sunxi_nand_chip *chip;
1234 struct mtd_info *mtd;
1235 struct nand_chip *nand;
1236 int nsels;
1237 int ret;
1238 int i;
1239 u32 tmp;
1240
1241 if (!of_get_property(np, "reg", &nsels))
1242 return -EINVAL;
1243
1244 nsels /= sizeof(u32);
1245 if (!nsels) {
1246 dev_err(dev, "invalid reg property size\n");
1247 return -EINVAL;
1248 }
1249
1250 chip = devm_kzalloc(dev,
1251 sizeof(*chip) +
1252 (nsels * sizeof(struct sunxi_nand_chip_sel)),
1253 GFP_KERNEL);
1254 if (!chip) {
1255 dev_err(dev, "could not allocate chip\n");
1256 return -ENOMEM;
1257 }
1258
1259 chip->nsels = nsels;
1260 chip->selected = -1;
1261
1262 for (i = 0; i < nsels; i++) {
1263 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1264 if (ret) {
1265 dev_err(dev, "could not retrieve reg property: %d\n",
1266 ret);
1267 return ret;
1268 }
1269
1270 if (tmp > NFC_MAX_CS) {
1271 dev_err(dev,
1272 "invalid reg value: %u (max CS = 7)\n",
1273 tmp);
1274 return -EINVAL;
1275 }
1276
1277 if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1278 dev_err(dev, "CS %d already assigned\n", tmp);
1279 return -EINVAL;
1280 }
1281
1282 chip->sels[i].cs = tmp;
1283
1284 if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
1285 tmp < 2) {
1286 chip->sels[i].rb.type = RB_NATIVE;
1287 chip->sels[i].rb.info.nativeid = tmp;
1288 } else {
1289 ret = of_get_named_gpio(np, "rb-gpios", i);
1290 if (ret >= 0) {
1291 tmp = ret;
1292 chip->sels[i].rb.type = RB_GPIO;
1293 chip->sels[i].rb.info.gpio = tmp;
1294 ret = devm_gpio_request(dev, tmp, "nand-rb");
1295 if (ret)
1296 return ret;
1297
1298 ret = gpio_direction_input(tmp);
1299 if (ret)
1300 return ret;
1301 } else {
1302 chip->sels[i].rb.type = RB_NONE;
1303 }
1304 }
1305 }
1306
1307 timings = onfi_async_timing_mode_to_sdr_timings(0);
1308 if (IS_ERR(timings)) {
1309 ret = PTR_ERR(timings);
1310 dev_err(dev,
1311 "could not retrieve timings for ONFI mode 0: %d\n",
1312 ret);
1313 return ret;
1314 }
1315
1316 ret = sunxi_nand_chip_set_timings(chip, timings);
1317 if (ret) {
1318 dev_err(dev, "could not configure chip timings: %d\n", ret);
1319 return ret;
1320 }
1321
1322 nand = &chip->nand;
1323 /* Default tR value specified in the ONFI spec (chapter 4.15.1) */
1324 nand->chip_delay = 200;
1325 nand->controller = &nfc->controller;
1326 /*
1327 * Set the ECC mode to the default value in case nothing is specified
1328 * in the DT.
1329 */
1330 nand->ecc.mode = NAND_ECC_HW;
1331 nand_set_flash_node(nand, np);
1332 nand->select_chip = sunxi_nfc_select_chip;
1333 nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
1334 nand->read_buf = sunxi_nfc_read_buf;
1335 nand->write_buf = sunxi_nfc_write_buf;
1336 nand->read_byte = sunxi_nfc_read_byte;
1337
1338 mtd = nand_to_mtd(nand);
1339 mtd->dev.parent = dev;
1340
1341 ret = nand_scan_ident(mtd, nsels, NULL);
1342 if (ret)
1343 return ret;
1344
1345 if (nand->bbt_options & NAND_BBT_USE_FLASH)
1346 nand->bbt_options |= NAND_BBT_NO_OOB;
1347
1348 ret = sunxi_nand_chip_init_timings(chip, np);
1349 if (ret) {
1350 dev_err(dev, "could not configure chip timings: %d\n", ret);
1351 return ret;
1352 }
1353
1354 ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
1355 if (ret) {
1356 dev_err(dev, "ECC init failed: %d\n", ret);
1357 return ret;
1358 }
1359
1360 ret = nand_scan_tail(mtd);
1361 if (ret) {
1362 dev_err(dev, "nand_scan_tail failed: %d\n", ret);
1363 return ret;
1364 }
1365
1366 ret = mtd_device_register(mtd, NULL, 0);
1367 if (ret) {
1368 dev_err(dev, "failed to register mtd device: %d\n", ret);
1369 nand_release(mtd);
1370 return ret;
1371 }
1372
1373 list_add_tail(&chip->node, &nfc->chips);
1374
1375 return 0;
1376 }
1377
1378 static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
1379 {
1380 struct device_node *np = dev->of_node;
1381 struct device_node *nand_np;
1382 int nchips = of_get_child_count(np);
1383 int ret;
1384
1385 if (nchips > 8) {
1386 dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
1387 return -EINVAL;
1388 }
1389
1390 for_each_child_of_node(np, nand_np) {
1391 ret = sunxi_nand_chip_init(dev, nfc, nand_np);
1392 if (ret) {
1393 of_node_put(nand_np);
1394 return ret;
1395 }
1396 }
1397
1398 return 0;
1399 }
1400
1401 static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
1402 {
1403 struct sunxi_nand_chip *chip;
1404
1405 while (!list_empty(&nfc->chips)) {
1406 chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
1407 node);
1408 nand_release(nand_to_mtd(&chip->nand));
1409 sunxi_nand_ecc_cleanup(&chip->nand.ecc);
1410 list_del(&chip->node);
1411 }
1412 }
1413
1414 static int sunxi_nfc_probe(struct platform_device *pdev)
1415 {
1416 struct device *dev = &pdev->dev;
1417 struct resource *r;
1418 struct sunxi_nfc *nfc;
1419 int irq;
1420 int ret;
1421
1422 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1423 if (!nfc)
1424 return -ENOMEM;
1425
1426 nfc->dev = dev;
1427 spin_lock_init(&nfc->controller.lock);
1428 init_waitqueue_head(&nfc->controller.wq);
1429 INIT_LIST_HEAD(&nfc->chips);
1430
1431 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1432 nfc->regs = devm_ioremap_resource(dev, r);
1433 if (IS_ERR(nfc->regs))
1434 return PTR_ERR(nfc->regs);
1435
1436 irq = platform_get_irq(pdev, 0);
1437 if (irq < 0) {
1438 dev_err(dev, "failed to retrieve irq\n");
1439 return irq;
1440 }
1441
1442 nfc->ahb_clk = devm_clk_get(dev, "ahb");
1443 if (IS_ERR(nfc->ahb_clk)) {
1444 dev_err(dev, "failed to retrieve ahb clk\n");
1445 return PTR_ERR(nfc->ahb_clk);
1446 }
1447
1448 ret = clk_prepare_enable(nfc->ahb_clk);
1449 if (ret)
1450 return ret;
1451
1452 nfc->mod_clk = devm_clk_get(dev, "mod");
1453 if (IS_ERR(nfc->mod_clk)) {
1454 dev_err(dev, "failed to retrieve mod clk\n");
1455 ret = PTR_ERR(nfc->mod_clk);
1456 goto out_ahb_clk_unprepare;
1457 }
1458
1459 ret = clk_prepare_enable(nfc->mod_clk);
1460 if (ret)
1461 goto out_ahb_clk_unprepare;
1462
1463 ret = sunxi_nfc_rst(nfc);
1464 if (ret)
1465 goto out_mod_clk_unprepare;
1466
1467 writel(0, nfc->regs + NFC_REG_INT);
1468 ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
1469 0, "sunxi-nand", nfc);
1470 if (ret)
1471 goto out_mod_clk_unprepare;
1472
1473 platform_set_drvdata(pdev, nfc);
1474
1475 ret = sunxi_nand_chips_init(dev, nfc);
1476 if (ret) {
1477 dev_err(dev, "failed to init nand chips\n");
1478 goto out_mod_clk_unprepare;
1479 }
1480
1481 return 0;
1482
1483 out_mod_clk_unprepare:
1484 clk_disable_unprepare(nfc->mod_clk);
1485 out_ahb_clk_unprepare:
1486 clk_disable_unprepare(nfc->ahb_clk);
1487
1488 return ret;
1489 }
1490
1491 static int sunxi_nfc_remove(struct platform_device *pdev)
1492 {
1493 struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
1494
1495 sunxi_nand_chips_cleanup(nfc);
1496
1497 return 0;
1498 }
1499
1500 static const struct of_device_id sunxi_nfc_ids[] = {
1501 { .compatible = "allwinner,sun4i-a10-nand" },
1502 { /* sentinel */ }
1503 };
1504 MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
1505
1506 static struct platform_driver sunxi_nfc_driver = {
1507 .driver = {
1508 .name = "sunxi_nand",
1509 .of_match_table = sunxi_nfc_ids,
1510 },
1511 .probe = sunxi_nfc_probe,
1512 .remove = sunxi_nfc_remove,
1513 };
1514 module_platform_driver(sunxi_nfc_driver);
1515
1516 MODULE_LICENSE("GPL v2");
1517 MODULE_AUTHOR("Boris BREZILLON");
1518 MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
1519 MODULE_ALIAS("platform:sunxi_nand");
This page took 0.061471 seconds and 6 git commands to generate.