net: use NETDEV_TX_OK instead of 0 in ndo_start_xmit() functions
[deliverable/linux.git] / drivers / net / 3c59x.c
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
4
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
7
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
11
12 Problem reports and questions should be directed to
13 vortex@scyld.com
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 */
21
22 /*
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
25 *
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
29 */
30
31
32 #define DRV_NAME "3c59x"
33
34
35
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
41
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
62 */
63 #define tx_interrupt_mitigation 1
64
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/slab.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/mii.h>
84 #include <linux/init.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/highmem.h>
90 #include <linux/eisa.h>
91 #include <linux/bitops.h>
92 #include <linux/jiffies.h>
93 #include <asm/irq.h> /* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
99
100 #define RUN_AT(x) (jiffies + (x))
101
102 #include <linux/delay.h>
103
104
105 static const char version[] __devinitconst =
106 DRV_NAME ": Donald Becker and others.\n";
107
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111
112
113 /* Operational parameter that usually are not changed. */
114
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126
127 #define PFX DRV_NAME ": "
128
129
130
131 /*
132 Theory of Operation
133
134 I. Board Compatibility
135
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144
145 II. Board-specific settings
146
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154
155 III. Driver operation
156
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193
194 IV. Notes
195
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
201
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 PCI_USES_MASTER=4,
212 };
213
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220
221 enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
227
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
233
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_1,
239
240 CH_3C905B_2,
241 CH_3C905B_FX,
242 CH_3C905C,
243 CH_3C9202,
244 CH_3C980,
245 CH_3C9805,
246
247 CH_3CSOHO100_TX,
248 CH_3C555,
249 CH_3C556,
250 CH_3C556B,
251 CH_3C575,
252
253 CH_3C575_1,
254 CH_3CCFE575,
255 CH_3CCFE575CT,
256 CH_3CCFE656,
257 CH_3CCFEM656,
258
259 CH_3CCFEM656_1,
260 CH_3C450,
261 CH_3C920,
262 CH_3C982A,
263 CH_3C982B,
264
265 CH_905BT4,
266 CH_920B_EMB_WNM,
267 };
268
269
270 /* note: this array directly indexed by above enums, and MUST
271 * be kept in sync with both the enums above, and the PCI device
272 * table below
273 */
274 static struct vortex_chip_info {
275 const char *name;
276 int flags;
277 int drv_flags;
278 int io_size;
279 } vortex_info_tbl[] __devinitdata = {
280 {"3c590 Vortex 10Mbps",
281 PCI_USES_MASTER, IS_VORTEX, 32, },
282 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
283 PCI_USES_MASTER, IS_VORTEX, 32, },
284 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
285 PCI_USES_MASTER, IS_VORTEX, 32, },
286 {"3c595 Vortex 100baseTx",
287 PCI_USES_MASTER, IS_VORTEX, 32, },
288 {"3c595 Vortex 100baseT4",
289 PCI_USES_MASTER, IS_VORTEX, 32, },
290
291 {"3c595 Vortex 100base-MII",
292 PCI_USES_MASTER, IS_VORTEX, 32, },
293 {"3c900 Boomerang 10baseT",
294 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
295 {"3c900 Boomerang 10Mbps Combo",
296 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
297 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
298 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
299 {"3c900 Cyclone 10Mbps Combo",
300 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
301
302 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
303 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
304 {"3c900B-FL Cyclone 10base-FL",
305 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
306 {"3c905 Boomerang 100baseTx",
307 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
308 {"3c905 Boomerang 100baseT4",
309 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
310 {"3c905B Cyclone 100baseTx",
311 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
312
313 {"3c905B Cyclone 10/100/BNC",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
315 {"3c905B-FX Cyclone 100baseFx",
316 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
317 {"3c905C Tornado",
318 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
319 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
320 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
321 {"3c980 Cyclone",
322 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
323
324 {"3c980C Python-T",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
326 {"3cSOHO100-TX Hurricane",
327 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
328 {"3c555 Laptop Hurricane",
329 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
330 {"3c556 Laptop Tornado",
331 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
332 HAS_HWCKSM, 128, },
333 {"3c556B Laptop Hurricane",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
335 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
336
337 {"3c575 [Megahertz] 10/100 LAN CardBus",
338 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
339 {"3c575 Boomerang CardBus",
340 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
341 {"3CCFE575BT Cyclone CardBus",
342 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
343 INVERT_LED_PWR|HAS_HWCKSM, 128, },
344 {"3CCFE575CT Tornado CardBus",
345 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
346 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
347 {"3CCFE656 Cyclone CardBus",
348 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 INVERT_LED_PWR|HAS_HWCKSM, 128, },
350
351 {"3CCFEM656B Cyclone+Winmodem CardBus",
352 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
353 INVERT_LED_PWR|HAS_HWCKSM, 128, },
354 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
355 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
357 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
359 {"3c920 Tornado",
360 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
361 {"3c982 Hydra Dual Port A",
362 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
363
364 {"3c982 Hydra Dual Port B",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 {"3c905B-T4",
367 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
368 {"3c920B-EMB-WNM Tornado",
369 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
370
371 {NULL,}, /* NULL terminated list. */
372 };
373
374
375 static struct pci_device_id vortex_pci_tbl[] = {
376 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
377 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
378 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
379 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
380 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
381
382 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
383 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
384 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
385 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
386 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
387
388 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
389 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
390 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
391 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
392 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
393
394 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
395 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
396 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
397 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
398 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
399 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
400
401 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
402 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
403 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
404 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
405 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
406
407 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
408 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
409 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
410 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
411 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
412
413 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
414 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
415 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
416 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
417 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
418
419 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
420 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
421
422 {0,} /* 0 terminated list. */
423 };
424 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
425
426
427 /* Operational definitions.
428 These are not used by other compilation units and thus are not
429 exported in a ".h" file.
430
431 First the windows. There are eight register windows, with the command
432 and status registers available in each.
433 */
434 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
435 #define EL3_CMD 0x0e
436 #define EL3_STATUS 0x0e
437
438 /* The top five bits written to EL3_CMD are a command, the lower
439 11 bits are the parameter, if applicable.
440 Note that 11 parameters bits was fine for ethernet, but the new chip
441 can handle FDDI length frames (~4500 octets) and now parameters count
442 32-bit 'Dwords' rather than octets. */
443
444 enum vortex_cmd {
445 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
446 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
447 UpStall = 6<<11, UpUnstall = (6<<11)+1,
448 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
449 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
450 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
451 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
452 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
453 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
454 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
455
456 /* The SetRxFilter command accepts the following classes: */
457 enum RxFilter {
458 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
459
460 /* Bits in the general status register. */
461 enum vortex_status {
462 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
463 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
464 IntReq = 0x0040, StatsFull = 0x0080,
465 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
466 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
467 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
468 };
469
470 /* Register window 1 offsets, the window used in normal operation.
471 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
472 enum Window1 {
473 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
474 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
475 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
476 };
477 enum Window0 {
478 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
479 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
480 IntrStatus=0x0E, /* Valid in all windows. */
481 };
482 enum Win0_EEPROM_bits {
483 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
484 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
485 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
486 };
487 /* EEPROM locations. */
488 enum eeprom_offset {
489 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
490 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
491 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
492 DriverTune=13, Checksum=15};
493
494 enum Window2 { /* Window 2. */
495 Wn2_ResetOptions=12,
496 };
497 enum Window3 { /* Window 3: MAC/config bits. */
498 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
499 };
500
501 #define BFEXT(value, offset, bitcount) \
502 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
503
504 #define BFINS(lhs, rhs, offset, bitcount) \
505 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
506 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
507
508 #define RAM_SIZE(v) BFEXT(v, 0, 3)
509 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
510 #define RAM_SPEED(v) BFEXT(v, 4, 2)
511 #define ROM_SIZE(v) BFEXT(v, 6, 2)
512 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
513 #define XCVR(v) BFEXT(v, 20, 4)
514 #define AUTOSELECT(v) BFEXT(v, 24, 1)
515
516 enum Window4 { /* Window 4: Xcvr/media bits. */
517 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
518 };
519 enum Win4_Media_bits {
520 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
521 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
522 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
523 Media_LnkBeat = 0x0800,
524 };
525 enum Window7 { /* Window 7: Bus Master control. */
526 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
527 Wn7_MasterStatus = 12,
528 };
529 /* Boomerang bus master control registers. */
530 enum MasterCtrl {
531 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
532 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
533 };
534
535 /* The Rx and Tx descriptor lists.
536 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
537 alignment contraint on tx_ring[] and rx_ring[]. */
538 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
539 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
540 struct boom_rx_desc {
541 __le32 next; /* Last entry points to 0. */
542 __le32 status;
543 __le32 addr; /* Up to 63 addr/len pairs possible. */
544 __le32 length; /* Set LAST_FRAG to indicate last pair. */
545 };
546 /* Values for the Rx status entry. */
547 enum rx_desc_status {
548 RxDComplete=0x00008000, RxDError=0x4000,
549 /* See boomerang_rx() for actual error bits */
550 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
551 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
552 };
553
554 #ifdef MAX_SKB_FRAGS
555 #define DO_ZEROCOPY 1
556 #else
557 #define DO_ZEROCOPY 0
558 #endif
559
560 struct boom_tx_desc {
561 __le32 next; /* Last entry points to 0. */
562 __le32 status; /* bits 0:12 length, others see below. */
563 #if DO_ZEROCOPY
564 struct {
565 __le32 addr;
566 __le32 length;
567 } frag[1+MAX_SKB_FRAGS];
568 #else
569 __le32 addr;
570 __le32 length;
571 #endif
572 };
573
574 /* Values for the Tx status entry. */
575 enum tx_desc_status {
576 CRCDisable=0x2000, TxDComplete=0x8000,
577 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
578 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
579 };
580
581 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
582 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
583
584 struct vortex_extra_stats {
585 unsigned long tx_deferred;
586 unsigned long tx_max_collisions;
587 unsigned long tx_multiple_collisions;
588 unsigned long tx_single_collisions;
589 unsigned long rx_bad_ssd;
590 };
591
592 struct vortex_private {
593 /* The Rx and Tx rings should be quad-word-aligned. */
594 struct boom_rx_desc* rx_ring;
595 struct boom_tx_desc* tx_ring;
596 dma_addr_t rx_ring_dma;
597 dma_addr_t tx_ring_dma;
598 /* The addresses of transmit- and receive-in-place skbuffs. */
599 struct sk_buff* rx_skbuff[RX_RING_SIZE];
600 struct sk_buff* tx_skbuff[TX_RING_SIZE];
601 unsigned int cur_rx, cur_tx; /* The next free ring entry */
602 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
603 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
604 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
605 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
606
607 /* PCI configuration space information. */
608 struct device *gendev;
609 void __iomem *ioaddr; /* IO address space */
610 void __iomem *cb_fn_base; /* CardBus function status addr space. */
611
612 /* Some values here only for performance evaluation and path-coverage */
613 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
614 int card_idx;
615
616 /* The remainder are related to chip state, mostly media selection. */
617 struct timer_list timer; /* Media selection timer. */
618 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
619 int options; /* User-settable misc. driver options. */
620 unsigned int media_override:4, /* Passed-in media type. */
621 default_media:4, /* Read from the EEPROM/Wn3_Config. */
622 full_duplex:1, autoselect:1,
623 bus_master:1, /* Vortex can only do a fragment bus-m. */
624 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
625 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
626 partner_flow_ctrl:1, /* Partner supports flow control */
627 has_nway:1,
628 enable_wol:1, /* Wake-on-LAN is enabled */
629 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
630 open:1,
631 medialock:1,
632 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
633 large_frames:1; /* accept large frames */
634 int drv_flags;
635 u16 status_enable;
636 u16 intr_enable;
637 u16 available_media; /* From Wn3_Options. */
638 u16 capabilities, info1, info2; /* Various, from EEPROM. */
639 u16 advertising; /* NWay media advertisement */
640 unsigned char phys[2]; /* MII device addresses. */
641 u16 deferred; /* Resend these interrupts when we
642 * bale from the ISR */
643 u16 io_size; /* Size of PCI region (for release_region) */
644 spinlock_t lock; /* Serialise access to device & its vortex_private */
645 struct mii_if_info mii; /* MII lib hooks/info */
646 };
647
648 #ifdef CONFIG_PCI
649 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
650 #else
651 #define DEVICE_PCI(dev) NULL
652 #endif
653
654 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
655
656 #ifdef CONFIG_EISA
657 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
658 #else
659 #define DEVICE_EISA(dev) NULL
660 #endif
661
662 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
663
664 /* The action to take with a media selection timer tick.
665 Note that we deviate from the 3Com order by checking 10base2 before AUI.
666 */
667 enum xcvr_types {
668 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
669 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
670 };
671
672 static const struct media_table {
673 char *name;
674 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
675 mask:8, /* The transceiver-present bit in Wn3_Config.*/
676 next:8; /* The media type to try next. */
677 int wait; /* Time before we check media status. */
678 } media_tbl[] = {
679 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
680 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
681 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
682 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
683 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
684 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
685 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
686 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
687 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
688 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
689 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
690 };
691
692 static struct {
693 const char str[ETH_GSTRING_LEN];
694 } ethtool_stats_keys[] = {
695 { "tx_deferred" },
696 { "tx_max_collisions" },
697 { "tx_multiple_collisions" },
698 { "tx_single_collisions" },
699 { "rx_bad_ssd" },
700 };
701
702 /* number of ETHTOOL_GSTATS u64's */
703 #define VORTEX_NUM_STATS 5
704
705 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
706 int chip_idx, int card_idx);
707 static int vortex_up(struct net_device *dev);
708 static void vortex_down(struct net_device *dev, int final);
709 static int vortex_open(struct net_device *dev);
710 static void mdio_sync(void __iomem *ioaddr, int bits);
711 static int mdio_read(struct net_device *dev, int phy_id, int location);
712 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
713 static void vortex_timer(unsigned long arg);
714 static void rx_oom_timer(unsigned long arg);
715 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
716 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
717 static int vortex_rx(struct net_device *dev);
718 static int boomerang_rx(struct net_device *dev);
719 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
720 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
721 static int vortex_close(struct net_device *dev);
722 static void dump_tx_ring(struct net_device *dev);
723 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
724 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
725 static void set_rx_mode(struct net_device *dev);
726 #ifdef CONFIG_PCI
727 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
728 #endif
729 static void vortex_tx_timeout(struct net_device *dev);
730 static void acpi_set_WOL(struct net_device *dev);
731 static const struct ethtool_ops vortex_ethtool_ops;
732 static void set_8021q_mode(struct net_device *dev, int enable);
733
734 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
735 /* Option count limit only -- unlimited interfaces are supported. */
736 #define MAX_UNITS 8
737 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
738 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
739 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
740 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
741 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
742 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
743 static int global_options = -1;
744 static int global_full_duplex = -1;
745 static int global_enable_wol = -1;
746 static int global_use_mmio = -1;
747
748 /* Variables to work-around the Compaq PCI BIOS32 problem. */
749 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
750 static struct net_device *compaq_net_device;
751
752 static int vortex_cards_found;
753
754 module_param(debug, int, 0);
755 module_param(global_options, int, 0);
756 module_param_array(options, int, NULL, 0);
757 module_param(global_full_duplex, int, 0);
758 module_param_array(full_duplex, int, NULL, 0);
759 module_param_array(hw_checksums, int, NULL, 0);
760 module_param_array(flow_ctrl, int, NULL, 0);
761 module_param(global_enable_wol, int, 0);
762 module_param_array(enable_wol, int, NULL, 0);
763 module_param(rx_copybreak, int, 0);
764 module_param(max_interrupt_work, int, 0);
765 module_param(compaq_ioaddr, int, 0);
766 module_param(compaq_irq, int, 0);
767 module_param(compaq_device_id, int, 0);
768 module_param(watchdog, int, 0);
769 module_param(global_use_mmio, int, 0);
770 module_param_array(use_mmio, int, NULL, 0);
771 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
772 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
773 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
774 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
775 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
776 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
777 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
778 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
779 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
780 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
781 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
782 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
783 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
784 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
785 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
786 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
787 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
788
789 #ifdef CONFIG_NET_POLL_CONTROLLER
790 static void poll_vortex(struct net_device *dev)
791 {
792 struct vortex_private *vp = netdev_priv(dev);
793 unsigned long flags;
794 local_irq_save(flags);
795 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
796 local_irq_restore(flags);
797 }
798 #endif
799
800 #ifdef CONFIG_PM
801
802 static int vortex_suspend(struct pci_dev *pdev, pm_message_t state)
803 {
804 struct net_device *dev = pci_get_drvdata(pdev);
805
806 if (dev && netdev_priv(dev)) {
807 if (netif_running(dev)) {
808 netif_device_detach(dev);
809 vortex_down(dev, 1);
810 }
811 pci_save_state(pdev);
812 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
813 free_irq(dev->irq, dev);
814 pci_disable_device(pdev);
815 pci_set_power_state(pdev, pci_choose_state(pdev, state));
816 }
817 return 0;
818 }
819
820 static int vortex_resume(struct pci_dev *pdev)
821 {
822 struct net_device *dev = pci_get_drvdata(pdev);
823 struct vortex_private *vp = netdev_priv(dev);
824 int err;
825
826 if (dev && vp) {
827 pci_set_power_state(pdev, PCI_D0);
828 pci_restore_state(pdev);
829 err = pci_enable_device(pdev);
830 if (err) {
831 pr_warning("%s: Could not enable device\n",
832 dev->name);
833 return err;
834 }
835 pci_set_master(pdev);
836 if (request_irq(dev->irq, vp->full_bus_master_rx ?
837 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev)) {
838 pr_warning("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
839 pci_disable_device(pdev);
840 return -EBUSY;
841 }
842 if (netif_running(dev)) {
843 err = vortex_up(dev);
844 if (err)
845 return err;
846 else
847 netif_device_attach(dev);
848 }
849 }
850 return 0;
851 }
852
853 #endif /* CONFIG_PM */
854
855 #ifdef CONFIG_EISA
856 static struct eisa_device_id vortex_eisa_ids[] = {
857 { "TCM5920", CH_3C592 },
858 { "TCM5970", CH_3C597 },
859 { "" }
860 };
861 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
862
863 static int __init vortex_eisa_probe(struct device *device)
864 {
865 void __iomem *ioaddr;
866 struct eisa_device *edev;
867
868 edev = to_eisa_device(device);
869
870 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
871 return -EBUSY;
872
873 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
874
875 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
876 edev->id.driver_data, vortex_cards_found)) {
877 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
878 return -ENODEV;
879 }
880
881 vortex_cards_found++;
882
883 return 0;
884 }
885
886 static int __devexit vortex_eisa_remove(struct device *device)
887 {
888 struct eisa_device *edev;
889 struct net_device *dev;
890 struct vortex_private *vp;
891 void __iomem *ioaddr;
892
893 edev = to_eisa_device(device);
894 dev = eisa_get_drvdata(edev);
895
896 if (!dev) {
897 pr_err("vortex_eisa_remove called for Compaq device!\n");
898 BUG();
899 }
900
901 vp = netdev_priv(dev);
902 ioaddr = vp->ioaddr;
903
904 unregister_netdev(dev);
905 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
906 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
907
908 free_netdev(dev);
909 return 0;
910 }
911
912 static struct eisa_driver vortex_eisa_driver = {
913 .id_table = vortex_eisa_ids,
914 .driver = {
915 .name = "3c59x",
916 .probe = vortex_eisa_probe,
917 .remove = __devexit_p(vortex_eisa_remove)
918 }
919 };
920
921 #endif /* CONFIG_EISA */
922
923 /* returns count found (>= 0), or negative on error */
924 static int __init vortex_eisa_init(void)
925 {
926 int eisa_found = 0;
927 int orig_cards_found = vortex_cards_found;
928
929 #ifdef CONFIG_EISA
930 int err;
931
932 err = eisa_driver_register (&vortex_eisa_driver);
933 if (!err) {
934 /*
935 * Because of the way EISA bus is probed, we cannot assume
936 * any device have been found when we exit from
937 * eisa_driver_register (the bus root driver may not be
938 * initialized yet). So we blindly assume something was
939 * found, and let the sysfs magic happend...
940 */
941 eisa_found = 1;
942 }
943 #endif
944
945 /* Special code to work-around the Compaq PCI BIOS32 problem. */
946 if (compaq_ioaddr) {
947 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
948 compaq_irq, compaq_device_id, vortex_cards_found++);
949 }
950
951 return vortex_cards_found - orig_cards_found + eisa_found;
952 }
953
954 /* returns count (>= 0), or negative on error */
955 static int __devinit vortex_init_one(struct pci_dev *pdev,
956 const struct pci_device_id *ent)
957 {
958 int rc, unit, pci_bar;
959 struct vortex_chip_info *vci;
960 void __iomem *ioaddr;
961
962 /* wake up and enable device */
963 rc = pci_enable_device(pdev);
964 if (rc < 0)
965 goto out;
966
967 unit = vortex_cards_found;
968
969 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
970 /* Determine the default if the user didn't override us */
971 vci = &vortex_info_tbl[ent->driver_data];
972 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
973 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
974 pci_bar = use_mmio[unit] ? 1 : 0;
975 else
976 pci_bar = global_use_mmio ? 1 : 0;
977
978 ioaddr = pci_iomap(pdev, pci_bar, 0);
979 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
980 ioaddr = pci_iomap(pdev, 0, 0);
981
982 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
983 ent->driver_data, unit);
984 if (rc < 0) {
985 pci_disable_device(pdev);
986 goto out;
987 }
988
989 vortex_cards_found++;
990
991 out:
992 return rc;
993 }
994
995 static const struct net_device_ops boomrang_netdev_ops = {
996 .ndo_open = vortex_open,
997 .ndo_stop = vortex_close,
998 .ndo_start_xmit = boomerang_start_xmit,
999 .ndo_tx_timeout = vortex_tx_timeout,
1000 .ndo_get_stats = vortex_get_stats,
1001 #ifdef CONFIG_PCI
1002 .ndo_do_ioctl = vortex_ioctl,
1003 #endif
1004 .ndo_set_multicast_list = set_rx_mode,
1005 .ndo_change_mtu = eth_change_mtu,
1006 .ndo_set_mac_address = eth_mac_addr,
1007 .ndo_validate_addr = eth_validate_addr,
1008 #ifdef CONFIG_NET_POLL_CONTROLLER
1009 .ndo_poll_controller = poll_vortex,
1010 #endif
1011 };
1012
1013 static const struct net_device_ops vortex_netdev_ops = {
1014 .ndo_open = vortex_open,
1015 .ndo_stop = vortex_close,
1016 .ndo_start_xmit = vortex_start_xmit,
1017 .ndo_tx_timeout = vortex_tx_timeout,
1018 .ndo_get_stats = vortex_get_stats,
1019 #ifdef CONFIG_PCI
1020 .ndo_do_ioctl = vortex_ioctl,
1021 #endif
1022 .ndo_set_multicast_list = set_rx_mode,
1023 .ndo_change_mtu = eth_change_mtu,
1024 .ndo_set_mac_address = eth_mac_addr,
1025 .ndo_validate_addr = eth_validate_addr,
1026 #ifdef CONFIG_NET_POLL_CONTROLLER
1027 .ndo_poll_controller = poll_vortex,
1028 #endif
1029 };
1030
1031 /*
1032 * Start up the PCI/EISA device which is described by *gendev.
1033 * Return 0 on success.
1034 *
1035 * NOTE: pdev can be NULL, for the case of a Compaq device
1036 */
1037 static int __devinit vortex_probe1(struct device *gendev,
1038 void __iomem *ioaddr, int irq,
1039 int chip_idx, int card_idx)
1040 {
1041 struct vortex_private *vp;
1042 int option;
1043 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1044 int i, step;
1045 struct net_device *dev;
1046 static int printed_version;
1047 int retval, print_info;
1048 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1049 const char *print_name = "3c59x";
1050 struct pci_dev *pdev = NULL;
1051 struct eisa_device *edev = NULL;
1052
1053 if (!printed_version) {
1054 pr_info("%s", version);
1055 printed_version = 1;
1056 }
1057
1058 if (gendev) {
1059 if ((pdev = DEVICE_PCI(gendev))) {
1060 print_name = pci_name(pdev);
1061 }
1062
1063 if ((edev = DEVICE_EISA(gendev))) {
1064 print_name = dev_name(&edev->dev);
1065 }
1066 }
1067
1068 dev = alloc_etherdev(sizeof(*vp));
1069 retval = -ENOMEM;
1070 if (!dev) {
1071 pr_err(PFX "unable to allocate etherdev, aborting\n");
1072 goto out;
1073 }
1074 SET_NETDEV_DEV(dev, gendev);
1075 vp = netdev_priv(dev);
1076
1077 option = global_options;
1078
1079 /* The lower four bits are the media type. */
1080 if (dev->mem_start) {
1081 /*
1082 * The 'options' param is passed in as the third arg to the
1083 * LILO 'ether=' argument for non-modular use
1084 */
1085 option = dev->mem_start;
1086 }
1087 else if (card_idx < MAX_UNITS) {
1088 if (options[card_idx] >= 0)
1089 option = options[card_idx];
1090 }
1091
1092 if (option > 0) {
1093 if (option & 0x8000)
1094 vortex_debug = 7;
1095 if (option & 0x4000)
1096 vortex_debug = 2;
1097 if (option & 0x0400)
1098 vp->enable_wol = 1;
1099 }
1100
1101 print_info = (vortex_debug > 1);
1102 if (print_info)
1103 pr_info("See Documentation/networking/vortex.txt\n");
1104
1105 pr_info("%s: 3Com %s %s at %p.\n",
1106 print_name,
1107 pdev ? "PCI" : "EISA",
1108 vci->name,
1109 ioaddr);
1110
1111 dev->base_addr = (unsigned long)ioaddr;
1112 dev->irq = irq;
1113 dev->mtu = mtu;
1114 vp->ioaddr = ioaddr;
1115 vp->large_frames = mtu > 1500;
1116 vp->drv_flags = vci->drv_flags;
1117 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1118 vp->io_size = vci->io_size;
1119 vp->card_idx = card_idx;
1120
1121 /* module list only for Compaq device */
1122 if (gendev == NULL) {
1123 compaq_net_device = dev;
1124 }
1125
1126 /* PCI-only startup logic */
1127 if (pdev) {
1128 /* EISA resources already marked, so only PCI needs to do this here */
1129 /* Ignore return value, because Cardbus drivers already allocate for us */
1130 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1131 vp->must_free_region = 1;
1132
1133 /* enable bus-mastering if necessary */
1134 if (vci->flags & PCI_USES_MASTER)
1135 pci_set_master(pdev);
1136
1137 if (vci->drv_flags & IS_VORTEX) {
1138 u8 pci_latency;
1139 u8 new_latency = 248;
1140
1141 /* Check the PCI latency value. On the 3c590 series the latency timer
1142 must be set to the maximum value to avoid data corruption that occurs
1143 when the timer expires during a transfer. This bug exists the Vortex
1144 chip only. */
1145 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1146 if (pci_latency < new_latency) {
1147 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1148 print_name, pci_latency, new_latency);
1149 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1150 }
1151 }
1152 }
1153
1154 spin_lock_init(&vp->lock);
1155 vp->gendev = gendev;
1156 vp->mii.dev = dev;
1157 vp->mii.mdio_read = mdio_read;
1158 vp->mii.mdio_write = mdio_write;
1159 vp->mii.phy_id_mask = 0x1f;
1160 vp->mii.reg_num_mask = 0x1f;
1161
1162 /* Makes sure rings are at least 16 byte aligned. */
1163 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1164 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1165 &vp->rx_ring_dma);
1166 retval = -ENOMEM;
1167 if (!vp->rx_ring)
1168 goto free_region;
1169
1170 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1171 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1172
1173 /* if we are a PCI driver, we store info in pdev->driver_data
1174 * instead of a module list */
1175 if (pdev)
1176 pci_set_drvdata(pdev, dev);
1177 if (edev)
1178 eisa_set_drvdata(edev, dev);
1179
1180 vp->media_override = 7;
1181 if (option >= 0) {
1182 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1183 if (vp->media_override != 7)
1184 vp->medialock = 1;
1185 vp->full_duplex = (option & 0x200) ? 1 : 0;
1186 vp->bus_master = (option & 16) ? 1 : 0;
1187 }
1188
1189 if (global_full_duplex > 0)
1190 vp->full_duplex = 1;
1191 if (global_enable_wol > 0)
1192 vp->enable_wol = 1;
1193
1194 if (card_idx < MAX_UNITS) {
1195 if (full_duplex[card_idx] > 0)
1196 vp->full_duplex = 1;
1197 if (flow_ctrl[card_idx] > 0)
1198 vp->flow_ctrl = 1;
1199 if (enable_wol[card_idx] > 0)
1200 vp->enable_wol = 1;
1201 }
1202
1203 vp->mii.force_media = vp->full_duplex;
1204 vp->options = option;
1205 /* Read the station address from the EEPROM. */
1206 EL3WINDOW(0);
1207 {
1208 int base;
1209
1210 if (vci->drv_flags & EEPROM_8BIT)
1211 base = 0x230;
1212 else if (vci->drv_flags & EEPROM_OFFSET)
1213 base = EEPROM_Read + 0x30;
1214 else
1215 base = EEPROM_Read;
1216
1217 for (i = 0; i < 0x40; i++) {
1218 int timer;
1219 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1220 /* Pause for at least 162 us. for the read to take place. */
1221 for (timer = 10; timer >= 0; timer--) {
1222 udelay(162);
1223 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1224 break;
1225 }
1226 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1227 }
1228 }
1229 for (i = 0; i < 0x18; i++)
1230 checksum ^= eeprom[i];
1231 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1232 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1233 while (i < 0x21)
1234 checksum ^= eeprom[i++];
1235 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1236 }
1237 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1238 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1239 for (i = 0; i < 3; i++)
1240 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1241 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1242 if (print_info)
1243 pr_cont(" %pM", dev->dev_addr);
1244 /* Unfortunately an all zero eeprom passes the checksum and this
1245 gets found in the wild in failure cases. Crypto is hard 8) */
1246 if (!is_valid_ether_addr(dev->dev_addr)) {
1247 retval = -EINVAL;
1248 pr_err("*** EEPROM MAC address is invalid.\n");
1249 goto free_ring; /* With every pack */
1250 }
1251 EL3WINDOW(2);
1252 for (i = 0; i < 6; i++)
1253 iowrite8(dev->dev_addr[i], ioaddr + i);
1254
1255 if (print_info)
1256 pr_cont(", IRQ %d\n", dev->irq);
1257 /* Tell them about an invalid IRQ. */
1258 if (dev->irq <= 0 || dev->irq >= nr_irqs)
1259 pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1260 dev->irq);
1261
1262 EL3WINDOW(4);
1263 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1264 if (print_info) {
1265 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1266 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1267 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1268 }
1269
1270
1271 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1272 unsigned short n;
1273
1274 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1275 if (!vp->cb_fn_base) {
1276 retval = -ENOMEM;
1277 goto free_ring;
1278 }
1279
1280 if (print_info) {
1281 pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1282 print_name,
1283 (unsigned long long)pci_resource_start(pdev, 2),
1284 vp->cb_fn_base);
1285 }
1286 EL3WINDOW(2);
1287
1288 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1289 if (vp->drv_flags & INVERT_LED_PWR)
1290 n |= 0x10;
1291 if (vp->drv_flags & INVERT_MII_PWR)
1292 n |= 0x4000;
1293 iowrite16(n, ioaddr + Wn2_ResetOptions);
1294 if (vp->drv_flags & WNO_XCVR_PWR) {
1295 EL3WINDOW(0);
1296 iowrite16(0x0800, ioaddr);
1297 }
1298 }
1299
1300 /* Extract our information from the EEPROM data. */
1301 vp->info1 = eeprom[13];
1302 vp->info2 = eeprom[15];
1303 vp->capabilities = eeprom[16];
1304
1305 if (vp->info1 & 0x8000) {
1306 vp->full_duplex = 1;
1307 if (print_info)
1308 pr_info("Full duplex capable\n");
1309 }
1310
1311 {
1312 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1313 unsigned int config;
1314 EL3WINDOW(3);
1315 vp->available_media = ioread16(ioaddr + Wn3_Options);
1316 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1317 vp->available_media = 0x40;
1318 config = ioread32(ioaddr + Wn3_Config);
1319 if (print_info) {
1320 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n",
1321 config, ioread16(ioaddr + Wn3_Options));
1322 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1323 8 << RAM_SIZE(config),
1324 RAM_WIDTH(config) ? "word" : "byte",
1325 ram_split[RAM_SPLIT(config)],
1326 AUTOSELECT(config) ? "autoselect/" : "",
1327 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1328 media_tbl[XCVR(config)].name);
1329 }
1330 vp->default_media = XCVR(config);
1331 if (vp->default_media == XCVR_NWAY)
1332 vp->has_nway = 1;
1333 vp->autoselect = AUTOSELECT(config);
1334 }
1335
1336 if (vp->media_override != 7) {
1337 pr_info("%s: Media override to transceiver type %d (%s).\n",
1338 print_name, vp->media_override,
1339 media_tbl[vp->media_override].name);
1340 dev->if_port = vp->media_override;
1341 } else
1342 dev->if_port = vp->default_media;
1343
1344 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1345 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1346 int phy, phy_idx = 0;
1347 EL3WINDOW(4);
1348 mii_preamble_required++;
1349 if (vp->drv_flags & EXTRA_PREAMBLE)
1350 mii_preamble_required++;
1351 mdio_sync(ioaddr, 32);
1352 mdio_read(dev, 24, MII_BMSR);
1353 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1354 int mii_status, phyx;
1355
1356 /*
1357 * For the 3c905CX we look at index 24 first, because it bogusly
1358 * reports an external PHY at all indices
1359 */
1360 if (phy == 0)
1361 phyx = 24;
1362 else if (phy <= 24)
1363 phyx = phy - 1;
1364 else
1365 phyx = phy;
1366 mii_status = mdio_read(dev, phyx, MII_BMSR);
1367 if (mii_status && mii_status != 0xffff) {
1368 vp->phys[phy_idx++] = phyx;
1369 if (print_info) {
1370 pr_info(" MII transceiver found at address %d, status %4x.\n",
1371 phyx, mii_status);
1372 }
1373 if ((mii_status & 0x0040) == 0)
1374 mii_preamble_required++;
1375 }
1376 }
1377 mii_preamble_required--;
1378 if (phy_idx == 0) {
1379 pr_warning(" ***WARNING*** No MII transceivers found!\n");
1380 vp->phys[0] = 24;
1381 } else {
1382 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1383 if (vp->full_duplex) {
1384 /* Only advertise the FD media types. */
1385 vp->advertising &= ~0x02A0;
1386 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1387 }
1388 }
1389 vp->mii.phy_id = vp->phys[0];
1390 }
1391
1392 if (vp->capabilities & CapBusMaster) {
1393 vp->full_bus_master_tx = 1;
1394 if (print_info) {
1395 pr_info(" Enabling bus-master transmits and %s receives.\n",
1396 (vp->info2 & 1) ? "early" : "whole-frame" );
1397 }
1398 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1399 vp->bus_master = 0; /* AKPM: vortex only */
1400 }
1401
1402 /* The 3c59x-specific entries in the device structure. */
1403 if (vp->full_bus_master_tx) {
1404 dev->netdev_ops = &boomrang_netdev_ops;
1405 /* Actually, it still should work with iommu. */
1406 if (card_idx < MAX_UNITS &&
1407 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1408 hw_checksums[card_idx] == 1)) {
1409 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1410 }
1411 } else
1412 dev->netdev_ops = &vortex_netdev_ops;
1413
1414 if (print_info) {
1415 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1416 print_name,
1417 (dev->features & NETIF_F_SG) ? "en":"dis",
1418 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1419 }
1420
1421 dev->ethtool_ops = &vortex_ethtool_ops;
1422 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1423
1424 if (pdev) {
1425 vp->pm_state_valid = 1;
1426 pci_save_state(VORTEX_PCI(vp));
1427 acpi_set_WOL(dev);
1428 }
1429 retval = register_netdev(dev);
1430 if (retval == 0)
1431 return 0;
1432
1433 free_ring:
1434 pci_free_consistent(pdev,
1435 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1436 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1437 vp->rx_ring,
1438 vp->rx_ring_dma);
1439 free_region:
1440 if (vp->must_free_region)
1441 release_region(dev->base_addr, vci->io_size);
1442 free_netdev(dev);
1443 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval);
1444 out:
1445 return retval;
1446 }
1447
1448 static void
1449 issue_and_wait(struct net_device *dev, int cmd)
1450 {
1451 struct vortex_private *vp = netdev_priv(dev);
1452 void __iomem *ioaddr = vp->ioaddr;
1453 int i;
1454
1455 iowrite16(cmd, ioaddr + EL3_CMD);
1456 for (i = 0; i < 2000; i++) {
1457 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1458 return;
1459 }
1460
1461 /* OK, that didn't work. Do it the slow way. One second */
1462 for (i = 0; i < 100000; i++) {
1463 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1464 if (vortex_debug > 1)
1465 pr_info("%s: command 0x%04x took %d usecs\n",
1466 dev->name, cmd, i * 10);
1467 return;
1468 }
1469 udelay(10);
1470 }
1471 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1472 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1473 }
1474
1475 static void
1476 vortex_set_duplex(struct net_device *dev)
1477 {
1478 struct vortex_private *vp = netdev_priv(dev);
1479 void __iomem *ioaddr = vp->ioaddr;
1480
1481 pr_info("%s: setting %s-duplex.\n",
1482 dev->name, (vp->full_duplex) ? "full" : "half");
1483
1484 EL3WINDOW(3);
1485 /* Set the full-duplex bit. */
1486 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1487 (vp->large_frames ? 0x40 : 0) |
1488 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1489 0x100 : 0),
1490 ioaddr + Wn3_MAC_Ctrl);
1491 }
1492
1493 static void vortex_check_media(struct net_device *dev, unsigned int init)
1494 {
1495 struct vortex_private *vp = netdev_priv(dev);
1496 unsigned int ok_to_print = 0;
1497
1498 if (vortex_debug > 3)
1499 ok_to_print = 1;
1500
1501 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1502 vp->full_duplex = vp->mii.full_duplex;
1503 vortex_set_duplex(dev);
1504 } else if (init) {
1505 vortex_set_duplex(dev);
1506 }
1507 }
1508
1509 static int
1510 vortex_up(struct net_device *dev)
1511 {
1512 struct vortex_private *vp = netdev_priv(dev);
1513 void __iomem *ioaddr = vp->ioaddr;
1514 unsigned int config;
1515 int i, mii_reg1, mii_reg5, err = 0;
1516
1517 if (VORTEX_PCI(vp)) {
1518 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1519 if (vp->pm_state_valid)
1520 pci_restore_state(VORTEX_PCI(vp));
1521 err = pci_enable_device(VORTEX_PCI(vp));
1522 if (err) {
1523 pr_warning("%s: Could not enable device\n",
1524 dev->name);
1525 goto err_out;
1526 }
1527 }
1528
1529 /* Before initializing select the active media port. */
1530 EL3WINDOW(3);
1531 config = ioread32(ioaddr + Wn3_Config);
1532
1533 if (vp->media_override != 7) {
1534 pr_info("%s: Media override to transceiver %d (%s).\n",
1535 dev->name, vp->media_override,
1536 media_tbl[vp->media_override].name);
1537 dev->if_port = vp->media_override;
1538 } else if (vp->autoselect) {
1539 if (vp->has_nway) {
1540 if (vortex_debug > 1)
1541 pr_info("%s: using NWAY device table, not %d\n",
1542 dev->name, dev->if_port);
1543 dev->if_port = XCVR_NWAY;
1544 } else {
1545 /* Find first available media type, starting with 100baseTx. */
1546 dev->if_port = XCVR_100baseTx;
1547 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1548 dev->if_port = media_tbl[dev->if_port].next;
1549 if (vortex_debug > 1)
1550 pr_info("%s: first available media type: %s\n",
1551 dev->name, media_tbl[dev->if_port].name);
1552 }
1553 } else {
1554 dev->if_port = vp->default_media;
1555 if (vortex_debug > 1)
1556 pr_info("%s: using default media %s\n",
1557 dev->name, media_tbl[dev->if_port].name);
1558 }
1559
1560 init_timer(&vp->timer);
1561 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1562 vp->timer.data = (unsigned long)dev;
1563 vp->timer.function = vortex_timer; /* timer handler */
1564 add_timer(&vp->timer);
1565
1566 init_timer(&vp->rx_oom_timer);
1567 vp->rx_oom_timer.data = (unsigned long)dev;
1568 vp->rx_oom_timer.function = rx_oom_timer;
1569
1570 if (vortex_debug > 1)
1571 pr_debug("%s: Initial media type %s.\n",
1572 dev->name, media_tbl[dev->if_port].name);
1573
1574 vp->full_duplex = vp->mii.force_media;
1575 config = BFINS(config, dev->if_port, 20, 4);
1576 if (vortex_debug > 6)
1577 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1578 iowrite32(config, ioaddr + Wn3_Config);
1579
1580 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1581 EL3WINDOW(4);
1582 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1583 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1584 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1585 vp->mii.full_duplex = vp->full_duplex;
1586
1587 vortex_check_media(dev, 1);
1588 }
1589 else
1590 vortex_set_duplex(dev);
1591
1592 issue_and_wait(dev, TxReset);
1593 /*
1594 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1595 */
1596 issue_and_wait(dev, RxReset|0x04);
1597
1598
1599 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1600
1601 if (vortex_debug > 1) {
1602 EL3WINDOW(4);
1603 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1604 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1605 }
1606
1607 /* Set the station address and mask in window 2 each time opened. */
1608 EL3WINDOW(2);
1609 for (i = 0; i < 6; i++)
1610 iowrite8(dev->dev_addr[i], ioaddr + i);
1611 for (; i < 12; i+=2)
1612 iowrite16(0, ioaddr + i);
1613
1614 if (vp->cb_fn_base) {
1615 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1616 if (vp->drv_flags & INVERT_LED_PWR)
1617 n |= 0x10;
1618 if (vp->drv_flags & INVERT_MII_PWR)
1619 n |= 0x4000;
1620 iowrite16(n, ioaddr + Wn2_ResetOptions);
1621 }
1622
1623 if (dev->if_port == XCVR_10base2)
1624 /* Start the thinnet transceiver. We should really wait 50ms...*/
1625 iowrite16(StartCoax, ioaddr + EL3_CMD);
1626 if (dev->if_port != XCVR_NWAY) {
1627 EL3WINDOW(4);
1628 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1629 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1630 }
1631
1632 /* Switch to the stats window, and clear all stats by reading. */
1633 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1634 EL3WINDOW(6);
1635 for (i = 0; i < 10; i++)
1636 ioread8(ioaddr + i);
1637 ioread16(ioaddr + 10);
1638 ioread16(ioaddr + 12);
1639 /* New: On the Vortex we must also clear the BadSSD counter. */
1640 EL3WINDOW(4);
1641 ioread8(ioaddr + 12);
1642 /* ..and on the Boomerang we enable the extra statistics bits. */
1643 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1644
1645 /* Switch to register set 7 for normal use. */
1646 EL3WINDOW(7);
1647
1648 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1649 vp->cur_rx = vp->dirty_rx = 0;
1650 /* Initialize the RxEarly register as recommended. */
1651 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1652 iowrite32(0x0020, ioaddr + PktStatus);
1653 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1654 }
1655 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1656 vp->cur_tx = vp->dirty_tx = 0;
1657 if (vp->drv_flags & IS_BOOMERANG)
1658 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1659 /* Clear the Rx, Tx rings. */
1660 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1661 vp->rx_ring[i].status = 0;
1662 for (i = 0; i < TX_RING_SIZE; i++)
1663 vp->tx_skbuff[i] = NULL;
1664 iowrite32(0, ioaddr + DownListPtr);
1665 }
1666 /* Set receiver mode: presumably accept b-case and phys addr only. */
1667 set_rx_mode(dev);
1668 /* enable 802.1q tagged frames */
1669 set_8021q_mode(dev, 1);
1670 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1671
1672 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1673 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1674 /* Allow status bits to be seen. */
1675 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1676 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1677 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1678 (vp->bus_master ? DMADone : 0);
1679 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1680 (vp->full_bus_master_rx ? 0 : RxComplete) |
1681 StatsFull | HostError | TxComplete | IntReq
1682 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1683 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1684 /* Ack all pending events, and set active indicator mask. */
1685 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1686 ioaddr + EL3_CMD);
1687 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1688 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1689 iowrite32(0x8000, vp->cb_fn_base + 4);
1690 netif_start_queue (dev);
1691 err_out:
1692 return err;
1693 }
1694
1695 static int
1696 vortex_open(struct net_device *dev)
1697 {
1698 struct vortex_private *vp = netdev_priv(dev);
1699 int i;
1700 int retval;
1701
1702 /* Use the now-standard shared IRQ implementation. */
1703 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1704 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1705 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1706 goto err;
1707 }
1708
1709 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1710 if (vortex_debug > 2)
1711 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
1712 for (i = 0; i < RX_RING_SIZE; i++) {
1713 struct sk_buff *skb;
1714 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1715 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1716 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1717
1718 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1719 GFP_KERNEL);
1720 vp->rx_skbuff[i] = skb;
1721 if (skb == NULL)
1722 break; /* Bad news! */
1723
1724 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1725 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1726 }
1727 if (i != RX_RING_SIZE) {
1728 int j;
1729 pr_emerg("%s: no memory for rx ring\n", dev->name);
1730 for (j = 0; j < i; j++) {
1731 if (vp->rx_skbuff[j]) {
1732 dev_kfree_skb(vp->rx_skbuff[j]);
1733 vp->rx_skbuff[j] = NULL;
1734 }
1735 }
1736 retval = -ENOMEM;
1737 goto err_free_irq;
1738 }
1739 /* Wrap the ring. */
1740 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1741 }
1742
1743 retval = vortex_up(dev);
1744 if (!retval)
1745 goto out;
1746
1747 err_free_irq:
1748 free_irq(dev->irq, dev);
1749 err:
1750 if (vortex_debug > 1)
1751 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1752 out:
1753 return retval;
1754 }
1755
1756 static void
1757 vortex_timer(unsigned long data)
1758 {
1759 struct net_device *dev = (struct net_device *)data;
1760 struct vortex_private *vp = netdev_priv(dev);
1761 void __iomem *ioaddr = vp->ioaddr;
1762 int next_tick = 60*HZ;
1763 int ok = 0;
1764 int media_status, old_window;
1765
1766 if (vortex_debug > 2) {
1767 pr_debug("%s: Media selection timer tick happened, %s.\n",
1768 dev->name, media_tbl[dev->if_port].name);
1769 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1770 }
1771
1772 disable_irq_lockdep(dev->irq);
1773 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1774 EL3WINDOW(4);
1775 media_status = ioread16(ioaddr + Wn4_Media);
1776 switch (dev->if_port) {
1777 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1778 if (media_status & Media_LnkBeat) {
1779 netif_carrier_on(dev);
1780 ok = 1;
1781 if (vortex_debug > 1)
1782 pr_debug("%s: Media %s has link beat, %x.\n",
1783 dev->name, media_tbl[dev->if_port].name, media_status);
1784 } else {
1785 netif_carrier_off(dev);
1786 if (vortex_debug > 1) {
1787 pr_debug("%s: Media %s has no link beat, %x.\n",
1788 dev->name, media_tbl[dev->if_port].name, media_status);
1789 }
1790 }
1791 break;
1792 case XCVR_MII: case XCVR_NWAY:
1793 {
1794 ok = 1;
1795 /* Interrupts are already disabled */
1796 spin_lock(&vp->lock);
1797 vortex_check_media(dev, 0);
1798 spin_unlock(&vp->lock);
1799 }
1800 break;
1801 default: /* Other media types handled by Tx timeouts. */
1802 if (vortex_debug > 1)
1803 pr_debug("%s: Media %s has no indication, %x.\n",
1804 dev->name, media_tbl[dev->if_port].name, media_status);
1805 ok = 1;
1806 }
1807
1808 if (!netif_carrier_ok(dev))
1809 next_tick = 5*HZ;
1810
1811 if (vp->medialock)
1812 goto leave_media_alone;
1813
1814 if (!ok) {
1815 unsigned int config;
1816
1817 do {
1818 dev->if_port = media_tbl[dev->if_port].next;
1819 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1820 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1821 dev->if_port = vp->default_media;
1822 if (vortex_debug > 1)
1823 pr_debug("%s: Media selection failing, using default %s port.\n",
1824 dev->name, media_tbl[dev->if_port].name);
1825 } else {
1826 if (vortex_debug > 1)
1827 pr_debug("%s: Media selection failed, now trying %s port.\n",
1828 dev->name, media_tbl[dev->if_port].name);
1829 next_tick = media_tbl[dev->if_port].wait;
1830 }
1831 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1832 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1833
1834 EL3WINDOW(3);
1835 config = ioread32(ioaddr + Wn3_Config);
1836 config = BFINS(config, dev->if_port, 20, 4);
1837 iowrite32(config, ioaddr + Wn3_Config);
1838
1839 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1840 ioaddr + EL3_CMD);
1841 if (vortex_debug > 1)
1842 pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1843 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1844 }
1845
1846 leave_media_alone:
1847 if (vortex_debug > 2)
1848 pr_debug("%s: Media selection timer finished, %s.\n",
1849 dev->name, media_tbl[dev->if_port].name);
1850
1851 EL3WINDOW(old_window);
1852 enable_irq_lockdep(dev->irq);
1853 mod_timer(&vp->timer, RUN_AT(next_tick));
1854 if (vp->deferred)
1855 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1856 return;
1857 }
1858
1859 static void vortex_tx_timeout(struct net_device *dev)
1860 {
1861 struct vortex_private *vp = netdev_priv(dev);
1862 void __iomem *ioaddr = vp->ioaddr;
1863
1864 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1865 dev->name, ioread8(ioaddr + TxStatus),
1866 ioread16(ioaddr + EL3_STATUS));
1867 EL3WINDOW(4);
1868 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1869 ioread16(ioaddr + Wn4_NetDiag),
1870 ioread16(ioaddr + Wn4_Media),
1871 ioread32(ioaddr + PktStatus),
1872 ioread16(ioaddr + Wn4_FIFODiag));
1873 /* Slight code bloat to be user friendly. */
1874 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1875 pr_err("%s: Transmitter encountered 16 collisions --"
1876 " network cable problem?\n", dev->name);
1877 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1878 pr_err("%s: Interrupt posted but not delivered --"
1879 " IRQ blocked by another device?\n", dev->name);
1880 /* Bad idea here.. but we might as well handle a few events. */
1881 {
1882 /*
1883 * Block interrupts because vortex_interrupt does a bare spin_lock()
1884 */
1885 unsigned long flags;
1886 local_irq_save(flags);
1887 if (vp->full_bus_master_tx)
1888 boomerang_interrupt(dev->irq, dev);
1889 else
1890 vortex_interrupt(dev->irq, dev);
1891 local_irq_restore(flags);
1892 }
1893 }
1894
1895 if (vortex_debug > 0)
1896 dump_tx_ring(dev);
1897
1898 issue_and_wait(dev, TxReset);
1899
1900 dev->stats.tx_errors++;
1901 if (vp->full_bus_master_tx) {
1902 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1903 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1904 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1905 ioaddr + DownListPtr);
1906 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1907 netif_wake_queue (dev);
1908 if (vp->drv_flags & IS_BOOMERANG)
1909 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1910 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1911 } else {
1912 dev->stats.tx_dropped++;
1913 netif_wake_queue(dev);
1914 }
1915
1916 /* Issue Tx Enable */
1917 iowrite16(TxEnable, ioaddr + EL3_CMD);
1918 dev->trans_start = jiffies;
1919
1920 /* Switch to register set 7 for normal use. */
1921 EL3WINDOW(7);
1922 }
1923
1924 /*
1925 * Handle uncommon interrupt sources. This is a separate routine to minimize
1926 * the cache impact.
1927 */
1928 static void
1929 vortex_error(struct net_device *dev, int status)
1930 {
1931 struct vortex_private *vp = netdev_priv(dev);
1932 void __iomem *ioaddr = vp->ioaddr;
1933 int do_tx_reset = 0, reset_mask = 0;
1934 unsigned char tx_status = 0;
1935
1936 if (vortex_debug > 2) {
1937 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1938 }
1939
1940 if (status & TxComplete) { /* Really "TxError" for us. */
1941 tx_status = ioread8(ioaddr + TxStatus);
1942 /* Presumably a tx-timeout. We must merely re-enable. */
1943 if (vortex_debug > 2
1944 || (tx_status != 0x88 && vortex_debug > 0)) {
1945 pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1946 dev->name, tx_status);
1947 if (tx_status == 0x82) {
1948 pr_err("Probably a duplex mismatch. See "
1949 "Documentation/networking/vortex.txt\n");
1950 }
1951 dump_tx_ring(dev);
1952 }
1953 if (tx_status & 0x14) dev->stats.tx_fifo_errors++;
1954 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
1955 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1956 iowrite8(0, ioaddr + TxStatus);
1957 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1958 do_tx_reset = 1;
1959 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1960 do_tx_reset = 1;
1961 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1962 } else { /* Merely re-enable the transmitter. */
1963 iowrite16(TxEnable, ioaddr + EL3_CMD);
1964 }
1965 }
1966
1967 if (status & RxEarly) { /* Rx early is unused. */
1968 vortex_rx(dev);
1969 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1970 }
1971 if (status & StatsFull) { /* Empty statistics. */
1972 static int DoneDidThat;
1973 if (vortex_debug > 4)
1974 pr_debug("%s: Updating stats.\n", dev->name);
1975 update_stats(ioaddr, dev);
1976 /* HACK: Disable statistics as an interrupt source. */
1977 /* This occurs when we have the wrong media type! */
1978 if (DoneDidThat == 0 &&
1979 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1980 pr_warning("%s: Updating statistics failed, disabling "
1981 "stats as an interrupt source.\n", dev->name);
1982 EL3WINDOW(5);
1983 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
1984 vp->intr_enable &= ~StatsFull;
1985 EL3WINDOW(7);
1986 DoneDidThat++;
1987 }
1988 }
1989 if (status & IntReq) { /* Restore all interrupt sources. */
1990 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1991 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1992 }
1993 if (status & HostError) {
1994 u16 fifo_diag;
1995 EL3WINDOW(4);
1996 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
1997 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
1998 dev->name, fifo_diag);
1999 /* Adapter failure requires Tx/Rx reset and reinit. */
2000 if (vp->full_bus_master_tx) {
2001 int bus_status = ioread32(ioaddr + PktStatus);
2002 /* 0x80000000 PCI master abort. */
2003 /* 0x40000000 PCI target abort. */
2004 if (vortex_debug)
2005 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2006
2007 /* In this case, blow the card away */
2008 /* Must not enter D3 or we can't legally issue the reset! */
2009 vortex_down(dev, 0);
2010 issue_and_wait(dev, TotalReset | 0xff);
2011 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2012 } else if (fifo_diag & 0x0400)
2013 do_tx_reset = 1;
2014 if (fifo_diag & 0x3000) {
2015 /* Reset Rx fifo and upload logic */
2016 issue_and_wait(dev, RxReset|0x07);
2017 /* Set the Rx filter to the current state. */
2018 set_rx_mode(dev);
2019 /* enable 802.1q VLAN tagged frames */
2020 set_8021q_mode(dev, 1);
2021 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2022 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2023 }
2024 }
2025
2026 if (do_tx_reset) {
2027 issue_and_wait(dev, TxReset|reset_mask);
2028 iowrite16(TxEnable, ioaddr + EL3_CMD);
2029 if (!vp->full_bus_master_tx)
2030 netif_wake_queue(dev);
2031 }
2032 }
2033
2034 static int
2035 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2036 {
2037 struct vortex_private *vp = netdev_priv(dev);
2038 void __iomem *ioaddr = vp->ioaddr;
2039
2040 /* Put out the doubleword header... */
2041 iowrite32(skb->len, ioaddr + TX_FIFO);
2042 if (vp->bus_master) {
2043 /* Set the bus-master controller to transfer the packet. */
2044 int len = (skb->len + 3) & ~3;
2045 iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2046 ioaddr + Wn7_MasterAddr);
2047 iowrite16(len, ioaddr + Wn7_MasterLen);
2048 vp->tx_skb = skb;
2049 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2050 /* netif_wake_queue() will be called at the DMADone interrupt. */
2051 } else {
2052 /* ... and the packet rounded to a doubleword. */
2053 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2054 dev_kfree_skb (skb);
2055 if (ioread16(ioaddr + TxFree) > 1536) {
2056 netif_start_queue (dev); /* AKPM: redundant? */
2057 } else {
2058 /* Interrupt us when the FIFO has room for max-sized packet. */
2059 netif_stop_queue(dev);
2060 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2061 }
2062 }
2063
2064 dev->trans_start = jiffies;
2065
2066 /* Clear the Tx status stack. */
2067 {
2068 int tx_status;
2069 int i = 32;
2070
2071 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2072 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2073 if (vortex_debug > 2)
2074 pr_debug("%s: Tx error, status %2.2x.\n",
2075 dev->name, tx_status);
2076 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2077 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2078 if (tx_status & 0x30) {
2079 issue_and_wait(dev, TxReset);
2080 }
2081 iowrite16(TxEnable, ioaddr + EL3_CMD);
2082 }
2083 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2084 }
2085 }
2086 return NETDEV_TX_OK;
2087 }
2088
2089 static int
2090 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2091 {
2092 struct vortex_private *vp = netdev_priv(dev);
2093 void __iomem *ioaddr = vp->ioaddr;
2094 /* Calculate the next Tx descriptor entry. */
2095 int entry = vp->cur_tx % TX_RING_SIZE;
2096 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2097 unsigned long flags;
2098
2099 if (vortex_debug > 6) {
2100 pr_debug("boomerang_start_xmit()\n");
2101 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2102 dev->name, vp->cur_tx);
2103 }
2104
2105 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2106 if (vortex_debug > 0)
2107 pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2108 dev->name);
2109 netif_stop_queue(dev);
2110 return NETDEV_TX_BUSY;
2111 }
2112
2113 vp->tx_skbuff[entry] = skb;
2114
2115 vp->tx_ring[entry].next = 0;
2116 #if DO_ZEROCOPY
2117 if (skb->ip_summed != CHECKSUM_PARTIAL)
2118 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2119 else
2120 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2121
2122 if (!skb_shinfo(skb)->nr_frags) {
2123 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2124 skb->len, PCI_DMA_TODEVICE));
2125 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2126 } else {
2127 int i;
2128
2129 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2130 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2131 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2132
2133 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2134 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2135
2136 vp->tx_ring[entry].frag[i+1].addr =
2137 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2138 (void*)page_address(frag->page) + frag->page_offset,
2139 frag->size, PCI_DMA_TODEVICE));
2140
2141 if (i == skb_shinfo(skb)->nr_frags-1)
2142 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2143 else
2144 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2145 }
2146 }
2147 #else
2148 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2149 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2150 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2151 #endif
2152
2153 spin_lock_irqsave(&vp->lock, flags);
2154 /* Wait for the stall to complete. */
2155 issue_and_wait(dev, DownStall);
2156 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2157 if (ioread32(ioaddr + DownListPtr) == 0) {
2158 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2159 vp->queued_packet++;
2160 }
2161
2162 vp->cur_tx++;
2163 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2164 netif_stop_queue (dev);
2165 } else { /* Clear previous interrupt enable. */
2166 #if defined(tx_interrupt_mitigation)
2167 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2168 * were selected, this would corrupt DN_COMPLETE. No?
2169 */
2170 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2171 #endif
2172 }
2173 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2174 spin_unlock_irqrestore(&vp->lock, flags);
2175 dev->trans_start = jiffies;
2176 return NETDEV_TX_OK;
2177 }
2178
2179 /* The interrupt handler does all of the Rx thread work and cleans up
2180 after the Tx thread. */
2181
2182 /*
2183 * This is the ISR for the vortex series chips.
2184 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2185 */
2186
2187 static irqreturn_t
2188 vortex_interrupt(int irq, void *dev_id)
2189 {
2190 struct net_device *dev = dev_id;
2191 struct vortex_private *vp = netdev_priv(dev);
2192 void __iomem *ioaddr;
2193 int status;
2194 int work_done = max_interrupt_work;
2195 int handled = 0;
2196
2197 ioaddr = vp->ioaddr;
2198 spin_lock(&vp->lock);
2199
2200 status = ioread16(ioaddr + EL3_STATUS);
2201
2202 if (vortex_debug > 6)
2203 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2204
2205 if ((status & IntLatch) == 0)
2206 goto handler_exit; /* No interrupt: shared IRQs cause this */
2207 handled = 1;
2208
2209 if (status & IntReq) {
2210 status |= vp->deferred;
2211 vp->deferred = 0;
2212 }
2213
2214 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2215 goto handler_exit;
2216
2217 if (vortex_debug > 4)
2218 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2219 dev->name, status, ioread8(ioaddr + Timer));
2220
2221 do {
2222 if (vortex_debug > 5)
2223 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2224 dev->name, status);
2225 if (status & RxComplete)
2226 vortex_rx(dev);
2227
2228 if (status & TxAvailable) {
2229 if (vortex_debug > 5)
2230 pr_debug(" TX room bit was handled.\n");
2231 /* There's room in the FIFO for a full-sized packet. */
2232 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2233 netif_wake_queue (dev);
2234 }
2235
2236 if (status & DMADone) {
2237 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2238 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2239 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2240 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2241 if (ioread16(ioaddr + TxFree) > 1536) {
2242 /*
2243 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2244 * insufficient FIFO room, the TxAvailable test will succeed and call
2245 * netif_wake_queue()
2246 */
2247 netif_wake_queue(dev);
2248 } else { /* Interrupt when FIFO has room for max-sized packet. */
2249 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2250 netif_stop_queue(dev);
2251 }
2252 }
2253 }
2254 /* Check for all uncommon interrupts at once. */
2255 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2256 if (status == 0xffff)
2257 break;
2258 vortex_error(dev, status);
2259 }
2260
2261 if (--work_done < 0) {
2262 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2263 dev->name, status);
2264 /* Disable all pending interrupts. */
2265 do {
2266 vp->deferred |= status;
2267 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2268 ioaddr + EL3_CMD);
2269 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2270 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2271 /* The timer will reenable interrupts. */
2272 mod_timer(&vp->timer, jiffies + 1*HZ);
2273 break;
2274 }
2275 /* Acknowledge the IRQ. */
2276 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2277 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2278
2279 if (vortex_debug > 4)
2280 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2281 dev->name, status);
2282 handler_exit:
2283 spin_unlock(&vp->lock);
2284 return IRQ_RETVAL(handled);
2285 }
2286
2287 /*
2288 * This is the ISR for the boomerang series chips.
2289 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2290 */
2291
2292 static irqreturn_t
2293 boomerang_interrupt(int irq, void *dev_id)
2294 {
2295 struct net_device *dev = dev_id;
2296 struct vortex_private *vp = netdev_priv(dev);
2297 void __iomem *ioaddr;
2298 int status;
2299 int work_done = max_interrupt_work;
2300
2301 ioaddr = vp->ioaddr;
2302
2303 /*
2304 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2305 * and boomerang_start_xmit
2306 */
2307 spin_lock(&vp->lock);
2308
2309 status = ioread16(ioaddr + EL3_STATUS);
2310
2311 if (vortex_debug > 6)
2312 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2313
2314 if ((status & IntLatch) == 0)
2315 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2316
2317 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2318 if (vortex_debug > 1)
2319 pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2320 goto handler_exit;
2321 }
2322
2323 if (status & IntReq) {
2324 status |= vp->deferred;
2325 vp->deferred = 0;
2326 }
2327
2328 if (vortex_debug > 4)
2329 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2330 dev->name, status, ioread8(ioaddr + Timer));
2331 do {
2332 if (vortex_debug > 5)
2333 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2334 dev->name, status);
2335 if (status & UpComplete) {
2336 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2337 if (vortex_debug > 5)
2338 pr_debug("boomerang_interrupt->boomerang_rx\n");
2339 boomerang_rx(dev);
2340 }
2341
2342 if (status & DownComplete) {
2343 unsigned int dirty_tx = vp->dirty_tx;
2344
2345 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2346 while (vp->cur_tx - dirty_tx > 0) {
2347 int entry = dirty_tx % TX_RING_SIZE;
2348 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2349 if (ioread32(ioaddr + DownListPtr) ==
2350 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2351 break; /* It still hasn't been processed. */
2352 #else
2353 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2354 break; /* It still hasn't been processed. */
2355 #endif
2356
2357 if (vp->tx_skbuff[entry]) {
2358 struct sk_buff *skb = vp->tx_skbuff[entry];
2359 #if DO_ZEROCOPY
2360 int i;
2361 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2362 pci_unmap_single(VORTEX_PCI(vp),
2363 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2364 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2365 PCI_DMA_TODEVICE);
2366 #else
2367 pci_unmap_single(VORTEX_PCI(vp),
2368 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2369 #endif
2370 dev_kfree_skb_irq(skb);
2371 vp->tx_skbuff[entry] = NULL;
2372 } else {
2373 pr_debug("boomerang_interrupt: no skb!\n");
2374 }
2375 /* dev->stats.tx_packets++; Counted below. */
2376 dirty_tx++;
2377 }
2378 vp->dirty_tx = dirty_tx;
2379 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2380 if (vortex_debug > 6)
2381 pr_debug("boomerang_interrupt: wake queue\n");
2382 netif_wake_queue (dev);
2383 }
2384 }
2385
2386 /* Check for all uncommon interrupts at once. */
2387 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2388 vortex_error(dev, status);
2389
2390 if (--work_done < 0) {
2391 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2392 dev->name, status);
2393 /* Disable all pending interrupts. */
2394 do {
2395 vp->deferred |= status;
2396 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2397 ioaddr + EL3_CMD);
2398 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2399 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2400 /* The timer will reenable interrupts. */
2401 mod_timer(&vp->timer, jiffies + 1*HZ);
2402 break;
2403 }
2404 /* Acknowledge the IRQ. */
2405 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2406 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2407 iowrite32(0x8000, vp->cb_fn_base + 4);
2408
2409 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2410
2411 if (vortex_debug > 4)
2412 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2413 dev->name, status);
2414 handler_exit:
2415 spin_unlock(&vp->lock);
2416 return IRQ_HANDLED;
2417 }
2418
2419 static int vortex_rx(struct net_device *dev)
2420 {
2421 struct vortex_private *vp = netdev_priv(dev);
2422 void __iomem *ioaddr = vp->ioaddr;
2423 int i;
2424 short rx_status;
2425
2426 if (vortex_debug > 5)
2427 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2428 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2429 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2430 if (rx_status & 0x4000) { /* Error, update stats. */
2431 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2432 if (vortex_debug > 2)
2433 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2434 dev->stats.rx_errors++;
2435 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2436 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2437 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2438 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2439 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2440 } else {
2441 /* The packet length: up to 4.5K!. */
2442 int pkt_len = rx_status & 0x1fff;
2443 struct sk_buff *skb;
2444
2445 skb = dev_alloc_skb(pkt_len + 5);
2446 if (vortex_debug > 4)
2447 pr_debug("Receiving packet size %d status %4.4x.\n",
2448 pkt_len, rx_status);
2449 if (skb != NULL) {
2450 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2451 /* 'skb_put()' points to the start of sk_buff data area. */
2452 if (vp->bus_master &&
2453 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2454 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2455 pkt_len, PCI_DMA_FROMDEVICE);
2456 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2457 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2458 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2459 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2460 ;
2461 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2462 } else {
2463 ioread32_rep(ioaddr + RX_FIFO,
2464 skb_put(skb, pkt_len),
2465 (pkt_len + 3) >> 2);
2466 }
2467 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2468 skb->protocol = eth_type_trans(skb, dev);
2469 netif_rx(skb);
2470 dev->stats.rx_packets++;
2471 /* Wait a limited time to go to next packet. */
2472 for (i = 200; i >= 0; i--)
2473 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2474 break;
2475 continue;
2476 } else if (vortex_debug > 0)
2477 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2478 dev->name, pkt_len);
2479 dev->stats.rx_dropped++;
2480 }
2481 issue_and_wait(dev, RxDiscard);
2482 }
2483
2484 return 0;
2485 }
2486
2487 static int
2488 boomerang_rx(struct net_device *dev)
2489 {
2490 struct vortex_private *vp = netdev_priv(dev);
2491 int entry = vp->cur_rx % RX_RING_SIZE;
2492 void __iomem *ioaddr = vp->ioaddr;
2493 int rx_status;
2494 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2495
2496 if (vortex_debug > 5)
2497 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2498
2499 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2500 if (--rx_work_limit < 0)
2501 break;
2502 if (rx_status & RxDError) { /* Error, update stats. */
2503 unsigned char rx_error = rx_status >> 16;
2504 if (vortex_debug > 2)
2505 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2506 dev->stats.rx_errors++;
2507 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2508 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2509 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2510 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2511 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2512 } else {
2513 /* The packet length: up to 4.5K!. */
2514 int pkt_len = rx_status & 0x1fff;
2515 struct sk_buff *skb;
2516 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2517
2518 if (vortex_debug > 4)
2519 pr_debug("Receiving packet size %d status %4.4x.\n",
2520 pkt_len, rx_status);
2521
2522 /* Check if the packet is long enough to just accept without
2523 copying to a properly sized skbuff. */
2524 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2525 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2526 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2527 /* 'skb_put()' points to the start of sk_buff data area. */
2528 memcpy(skb_put(skb, pkt_len),
2529 vp->rx_skbuff[entry]->data,
2530 pkt_len);
2531 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2532 vp->rx_copy++;
2533 } else {
2534 /* Pass up the skbuff already on the Rx ring. */
2535 skb = vp->rx_skbuff[entry];
2536 vp->rx_skbuff[entry] = NULL;
2537 skb_put(skb, pkt_len);
2538 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2539 vp->rx_nocopy++;
2540 }
2541 skb->protocol = eth_type_trans(skb, dev);
2542 { /* Use hardware checksum info. */
2543 int csum_bits = rx_status & 0xee000000;
2544 if (csum_bits &&
2545 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2546 csum_bits == (IPChksumValid | UDPChksumValid))) {
2547 skb->ip_summed = CHECKSUM_UNNECESSARY;
2548 vp->rx_csumhits++;
2549 }
2550 }
2551 netif_rx(skb);
2552 dev->stats.rx_packets++;
2553 }
2554 entry = (++vp->cur_rx) % RX_RING_SIZE;
2555 }
2556 /* Refill the Rx ring buffers. */
2557 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2558 struct sk_buff *skb;
2559 entry = vp->dirty_rx % RX_RING_SIZE;
2560 if (vp->rx_skbuff[entry] == NULL) {
2561 skb = netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN);
2562 if (skb == NULL) {
2563 static unsigned long last_jif;
2564 if (time_after(jiffies, last_jif + 10 * HZ)) {
2565 pr_warning("%s: memory shortage\n", dev->name);
2566 last_jif = jiffies;
2567 }
2568 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2569 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2570 break; /* Bad news! */
2571 }
2572
2573 skb_reserve(skb, NET_IP_ALIGN);
2574 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2575 vp->rx_skbuff[entry] = skb;
2576 }
2577 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2578 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2579 }
2580 return 0;
2581 }
2582
2583 /*
2584 * If we've hit a total OOM refilling the Rx ring we poll once a second
2585 * for some memory. Otherwise there is no way to restart the rx process.
2586 */
2587 static void
2588 rx_oom_timer(unsigned long arg)
2589 {
2590 struct net_device *dev = (struct net_device *)arg;
2591 struct vortex_private *vp = netdev_priv(dev);
2592
2593 spin_lock_irq(&vp->lock);
2594 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2595 boomerang_rx(dev);
2596 if (vortex_debug > 1) {
2597 pr_debug("%s: rx_oom_timer %s\n", dev->name,
2598 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2599 }
2600 spin_unlock_irq(&vp->lock);
2601 }
2602
2603 static void
2604 vortex_down(struct net_device *dev, int final_down)
2605 {
2606 struct vortex_private *vp = netdev_priv(dev);
2607 void __iomem *ioaddr = vp->ioaddr;
2608
2609 netif_stop_queue (dev);
2610
2611 del_timer_sync(&vp->rx_oom_timer);
2612 del_timer_sync(&vp->timer);
2613
2614 /* Turn off statistics ASAP. We update dev->stats below. */
2615 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2616
2617 /* Disable the receiver and transmitter. */
2618 iowrite16(RxDisable, ioaddr + EL3_CMD);
2619 iowrite16(TxDisable, ioaddr + EL3_CMD);
2620
2621 /* Disable receiving 802.1q tagged frames */
2622 set_8021q_mode(dev, 0);
2623
2624 if (dev->if_port == XCVR_10base2)
2625 /* Turn off thinnet power. Green! */
2626 iowrite16(StopCoax, ioaddr + EL3_CMD);
2627
2628 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2629
2630 update_stats(ioaddr, dev);
2631 if (vp->full_bus_master_rx)
2632 iowrite32(0, ioaddr + UpListPtr);
2633 if (vp->full_bus_master_tx)
2634 iowrite32(0, ioaddr + DownListPtr);
2635
2636 if (final_down && VORTEX_PCI(vp)) {
2637 vp->pm_state_valid = 1;
2638 pci_save_state(VORTEX_PCI(vp));
2639 acpi_set_WOL(dev);
2640 }
2641 }
2642
2643 static int
2644 vortex_close(struct net_device *dev)
2645 {
2646 struct vortex_private *vp = netdev_priv(dev);
2647 void __iomem *ioaddr = vp->ioaddr;
2648 int i;
2649
2650 if (netif_device_present(dev))
2651 vortex_down(dev, 1);
2652
2653 if (vortex_debug > 1) {
2654 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2655 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2656 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2657 " tx_queued %d Rx pre-checksummed %d.\n",
2658 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2659 }
2660
2661 #if DO_ZEROCOPY
2662 if (vp->rx_csumhits &&
2663 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2664 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2665 pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2666 }
2667 #endif
2668
2669 free_irq(dev->irq, dev);
2670
2671 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2672 for (i = 0; i < RX_RING_SIZE; i++)
2673 if (vp->rx_skbuff[i]) {
2674 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2675 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2676 dev_kfree_skb(vp->rx_skbuff[i]);
2677 vp->rx_skbuff[i] = NULL;
2678 }
2679 }
2680 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2681 for (i = 0; i < TX_RING_SIZE; i++) {
2682 if (vp->tx_skbuff[i]) {
2683 struct sk_buff *skb = vp->tx_skbuff[i];
2684 #if DO_ZEROCOPY
2685 int k;
2686
2687 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2688 pci_unmap_single(VORTEX_PCI(vp),
2689 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2690 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2691 PCI_DMA_TODEVICE);
2692 #else
2693 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2694 #endif
2695 dev_kfree_skb(skb);
2696 vp->tx_skbuff[i] = NULL;
2697 }
2698 }
2699 }
2700
2701 return 0;
2702 }
2703
2704 static void
2705 dump_tx_ring(struct net_device *dev)
2706 {
2707 if (vortex_debug > 0) {
2708 struct vortex_private *vp = netdev_priv(dev);
2709 void __iomem *ioaddr = vp->ioaddr;
2710
2711 if (vp->full_bus_master_tx) {
2712 int i;
2713 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2714
2715 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2716 vp->full_bus_master_tx,
2717 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2718 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2719 pr_err(" Transmit list %8.8x vs. %p.\n",
2720 ioread32(ioaddr + DownListPtr),
2721 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2722 issue_and_wait(dev, DownStall);
2723 for (i = 0; i < TX_RING_SIZE; i++) {
2724 pr_err(" %d: @%p length %8.8x status %8.8x\n", i,
2725 &vp->tx_ring[i],
2726 #if DO_ZEROCOPY
2727 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2728 #else
2729 le32_to_cpu(vp->tx_ring[i].length),
2730 #endif
2731 le32_to_cpu(vp->tx_ring[i].status));
2732 }
2733 if (!stalled)
2734 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2735 }
2736 }
2737 }
2738
2739 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2740 {
2741 struct vortex_private *vp = netdev_priv(dev);
2742 void __iomem *ioaddr = vp->ioaddr;
2743 unsigned long flags;
2744
2745 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2746 spin_lock_irqsave (&vp->lock, flags);
2747 update_stats(ioaddr, dev);
2748 spin_unlock_irqrestore (&vp->lock, flags);
2749 }
2750 return &dev->stats;
2751 }
2752
2753 /* Update statistics.
2754 Unlike with the EL3 we need not worry about interrupts changing
2755 the window setting from underneath us, but we must still guard
2756 against a race condition with a StatsUpdate interrupt updating the
2757 table. This is done by checking that the ASM (!) code generated uses
2758 atomic updates with '+='.
2759 */
2760 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2761 {
2762 struct vortex_private *vp = netdev_priv(dev);
2763 int old_window = ioread16(ioaddr + EL3_CMD);
2764
2765 if (old_window == 0xffff) /* Chip suspended or ejected. */
2766 return;
2767 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2768 /* Switch to the stats window, and read everything. */
2769 EL3WINDOW(6);
2770 dev->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2771 dev->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2772 dev->stats.tx_window_errors += ioread8(ioaddr + 4);
2773 dev->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2774 dev->stats.tx_packets += ioread8(ioaddr + 6);
2775 dev->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2776 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2777 /* Don't bother with register 9, an extension of registers 6&7.
2778 If we do use the 6&7 values the atomic update assumption above
2779 is invalid. */
2780 dev->stats.rx_bytes += ioread16(ioaddr + 10);
2781 dev->stats.tx_bytes += ioread16(ioaddr + 12);
2782 /* Extra stats for get_ethtool_stats() */
2783 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2784 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2785 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2786 EL3WINDOW(4);
2787 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2788
2789 dev->stats.collisions = vp->xstats.tx_multiple_collisions
2790 + vp->xstats.tx_single_collisions
2791 + vp->xstats.tx_max_collisions;
2792
2793 {
2794 u8 up = ioread8(ioaddr + 13);
2795 dev->stats.rx_bytes += (up & 0x0f) << 16;
2796 dev->stats.tx_bytes += (up & 0xf0) << 12;
2797 }
2798
2799 EL3WINDOW(old_window >> 13);
2800 return;
2801 }
2802
2803 static int vortex_nway_reset(struct net_device *dev)
2804 {
2805 struct vortex_private *vp = netdev_priv(dev);
2806 void __iomem *ioaddr = vp->ioaddr;
2807 unsigned long flags;
2808 int rc;
2809
2810 spin_lock_irqsave(&vp->lock, flags);
2811 EL3WINDOW(4);
2812 rc = mii_nway_restart(&vp->mii);
2813 spin_unlock_irqrestore(&vp->lock, flags);
2814 return rc;
2815 }
2816
2817 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2818 {
2819 struct vortex_private *vp = netdev_priv(dev);
2820 void __iomem *ioaddr = vp->ioaddr;
2821 unsigned long flags;
2822 int rc;
2823
2824 spin_lock_irqsave(&vp->lock, flags);
2825 EL3WINDOW(4);
2826 rc = mii_ethtool_gset(&vp->mii, cmd);
2827 spin_unlock_irqrestore(&vp->lock, flags);
2828 return rc;
2829 }
2830
2831 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2832 {
2833 struct vortex_private *vp = netdev_priv(dev);
2834 void __iomem *ioaddr = vp->ioaddr;
2835 unsigned long flags;
2836 int rc;
2837
2838 spin_lock_irqsave(&vp->lock, flags);
2839 EL3WINDOW(4);
2840 rc = mii_ethtool_sset(&vp->mii, cmd);
2841 spin_unlock_irqrestore(&vp->lock, flags);
2842 return rc;
2843 }
2844
2845 static u32 vortex_get_msglevel(struct net_device *dev)
2846 {
2847 return vortex_debug;
2848 }
2849
2850 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2851 {
2852 vortex_debug = dbg;
2853 }
2854
2855 static int vortex_get_sset_count(struct net_device *dev, int sset)
2856 {
2857 switch (sset) {
2858 case ETH_SS_STATS:
2859 return VORTEX_NUM_STATS;
2860 default:
2861 return -EOPNOTSUPP;
2862 }
2863 }
2864
2865 static void vortex_get_ethtool_stats(struct net_device *dev,
2866 struct ethtool_stats *stats, u64 *data)
2867 {
2868 struct vortex_private *vp = netdev_priv(dev);
2869 void __iomem *ioaddr = vp->ioaddr;
2870 unsigned long flags;
2871
2872 spin_lock_irqsave(&vp->lock, flags);
2873 update_stats(ioaddr, dev);
2874 spin_unlock_irqrestore(&vp->lock, flags);
2875
2876 data[0] = vp->xstats.tx_deferred;
2877 data[1] = vp->xstats.tx_max_collisions;
2878 data[2] = vp->xstats.tx_multiple_collisions;
2879 data[3] = vp->xstats.tx_single_collisions;
2880 data[4] = vp->xstats.rx_bad_ssd;
2881 }
2882
2883
2884 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2885 {
2886 switch (stringset) {
2887 case ETH_SS_STATS:
2888 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2889 break;
2890 default:
2891 WARN_ON(1);
2892 break;
2893 }
2894 }
2895
2896 static void vortex_get_drvinfo(struct net_device *dev,
2897 struct ethtool_drvinfo *info)
2898 {
2899 struct vortex_private *vp = netdev_priv(dev);
2900
2901 strcpy(info->driver, DRV_NAME);
2902 if (VORTEX_PCI(vp)) {
2903 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2904 } else {
2905 if (VORTEX_EISA(vp))
2906 strcpy(info->bus_info, dev_name(vp->gendev));
2907 else
2908 sprintf(info->bus_info, "EISA 0x%lx %d",
2909 dev->base_addr, dev->irq);
2910 }
2911 }
2912
2913 static const struct ethtool_ops vortex_ethtool_ops = {
2914 .get_drvinfo = vortex_get_drvinfo,
2915 .get_strings = vortex_get_strings,
2916 .get_msglevel = vortex_get_msglevel,
2917 .set_msglevel = vortex_set_msglevel,
2918 .get_ethtool_stats = vortex_get_ethtool_stats,
2919 .get_sset_count = vortex_get_sset_count,
2920 .get_settings = vortex_get_settings,
2921 .set_settings = vortex_set_settings,
2922 .get_link = ethtool_op_get_link,
2923 .nway_reset = vortex_nway_reset,
2924 };
2925
2926 #ifdef CONFIG_PCI
2927 /*
2928 * Must power the device up to do MDIO operations
2929 */
2930 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2931 {
2932 int err;
2933 struct vortex_private *vp = netdev_priv(dev);
2934 void __iomem *ioaddr = vp->ioaddr;
2935 unsigned long flags;
2936 pci_power_t state = 0;
2937
2938 if(VORTEX_PCI(vp))
2939 state = VORTEX_PCI(vp)->current_state;
2940
2941 /* The kernel core really should have pci_get_power_state() */
2942
2943 if(state != 0)
2944 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
2945 spin_lock_irqsave(&vp->lock, flags);
2946 EL3WINDOW(4);
2947 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
2948 spin_unlock_irqrestore(&vp->lock, flags);
2949 if(state != 0)
2950 pci_set_power_state(VORTEX_PCI(vp), state);
2951
2952 return err;
2953 }
2954 #endif
2955
2956
2957 /* Pre-Cyclone chips have no documented multicast filter, so the only
2958 multicast setting is to receive all multicast frames. At least
2959 the chip has a very clean way to set the mode, unlike many others. */
2960 static void set_rx_mode(struct net_device *dev)
2961 {
2962 struct vortex_private *vp = netdev_priv(dev);
2963 void __iomem *ioaddr = vp->ioaddr;
2964 int new_mode;
2965
2966 if (dev->flags & IFF_PROMISC) {
2967 if (vortex_debug > 3)
2968 pr_notice("%s: Setting promiscuous mode.\n", dev->name);
2969 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
2970 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
2971 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
2972 } else
2973 new_mode = SetRxFilter | RxStation | RxBroadcast;
2974
2975 iowrite16(new_mode, ioaddr + EL3_CMD);
2976 }
2977
2978 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
2979 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
2980 Note that this must be done after each RxReset due to some backwards
2981 compatibility logic in the Cyclone and Tornado ASICs */
2982
2983 /* The Ethernet Type used for 802.1q tagged frames */
2984 #define VLAN_ETHER_TYPE 0x8100
2985
2986 static void set_8021q_mode(struct net_device *dev, int enable)
2987 {
2988 struct vortex_private *vp = netdev_priv(dev);
2989 void __iomem *ioaddr = vp->ioaddr;
2990 int old_window = ioread16(ioaddr + EL3_CMD);
2991 int mac_ctrl;
2992
2993 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
2994 /* cyclone and tornado chipsets can recognize 802.1q
2995 * tagged frames and treat them correctly */
2996
2997 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
2998 if (enable)
2999 max_pkt_size += 4; /* 802.1Q VLAN tag */
3000
3001 EL3WINDOW(3);
3002 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3003
3004 /* set VlanEtherType to let the hardware checksumming
3005 treat tagged frames correctly */
3006 EL3WINDOW(7);
3007 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3008 } else {
3009 /* on older cards we have to enable large frames */
3010
3011 vp->large_frames = dev->mtu > 1500 || enable;
3012
3013 EL3WINDOW(3);
3014 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3015 if (vp->large_frames)
3016 mac_ctrl |= 0x40;
3017 else
3018 mac_ctrl &= ~0x40;
3019 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3020 }
3021
3022 EL3WINDOW(old_window);
3023 }
3024 #else
3025
3026 static void set_8021q_mode(struct net_device *dev, int enable)
3027 {
3028 }
3029
3030
3031 #endif
3032
3033 /* MII transceiver control section.
3034 Read and write the MII registers using software-generated serial
3035 MDIO protocol. See the MII specifications or DP83840A data sheet
3036 for details. */
3037
3038 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3039 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3040 "overclocking" issues. */
3041 #define mdio_delay() ioread32(mdio_addr)
3042
3043 #define MDIO_SHIFT_CLK 0x01
3044 #define MDIO_DIR_WRITE 0x04
3045 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3046 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3047 #define MDIO_DATA_READ 0x02
3048 #define MDIO_ENB_IN 0x00
3049
3050 /* Generate the preamble required for initial synchronization and
3051 a few older transceivers. */
3052 static void mdio_sync(void __iomem *ioaddr, int bits)
3053 {
3054 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3055
3056 /* Establish sync by sending at least 32 logic ones. */
3057 while (-- bits >= 0) {
3058 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3059 mdio_delay();
3060 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3061 mdio_delay();
3062 }
3063 }
3064
3065 static int mdio_read(struct net_device *dev, int phy_id, int location)
3066 {
3067 int i;
3068 struct vortex_private *vp = netdev_priv(dev);
3069 void __iomem *ioaddr = vp->ioaddr;
3070 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3071 unsigned int retval = 0;
3072 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3073
3074 if (mii_preamble_required)
3075 mdio_sync(ioaddr, 32);
3076
3077 /* Shift the read command bits out. */
3078 for (i = 14; i >= 0; i--) {
3079 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3080 iowrite16(dataval, mdio_addr);
3081 mdio_delay();
3082 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3083 mdio_delay();
3084 }
3085 /* Read the two transition, 16 data, and wire-idle bits. */
3086 for (i = 19; i > 0; i--) {
3087 iowrite16(MDIO_ENB_IN, mdio_addr);
3088 mdio_delay();
3089 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3090 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3091 mdio_delay();
3092 }
3093 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3094 }
3095
3096 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3097 {
3098 struct vortex_private *vp = netdev_priv(dev);
3099 void __iomem *ioaddr = vp->ioaddr;
3100 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3101 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3102 int i;
3103
3104 if (mii_preamble_required)
3105 mdio_sync(ioaddr, 32);
3106
3107 /* Shift the command bits out. */
3108 for (i = 31; i >= 0; i--) {
3109 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3110 iowrite16(dataval, mdio_addr);
3111 mdio_delay();
3112 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3113 mdio_delay();
3114 }
3115 /* Leave the interface idle. */
3116 for (i = 1; i >= 0; i--) {
3117 iowrite16(MDIO_ENB_IN, mdio_addr);
3118 mdio_delay();
3119 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3120 mdio_delay();
3121 }
3122 return;
3123 }
3124
3125 /* ACPI: Advanced Configuration and Power Interface. */
3126 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3127 static void acpi_set_WOL(struct net_device *dev)
3128 {
3129 struct vortex_private *vp = netdev_priv(dev);
3130 void __iomem *ioaddr = vp->ioaddr;
3131
3132 device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3133
3134 if (vp->enable_wol) {
3135 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3136 EL3WINDOW(7);
3137 iowrite16(2, ioaddr + 0x0c);
3138 /* The RxFilter must accept the WOL frames. */
3139 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3140 iowrite16(RxEnable, ioaddr + EL3_CMD);
3141
3142 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3143 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3144
3145 vp->enable_wol = 0;
3146 return;
3147 }
3148
3149 /* Change the power state to D3; RxEnable doesn't take effect. */
3150 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3151 }
3152 }
3153
3154
3155 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3156 {
3157 struct net_device *dev = pci_get_drvdata(pdev);
3158 struct vortex_private *vp;
3159
3160 if (!dev) {
3161 pr_err("vortex_remove_one called for Compaq device!\n");
3162 BUG();
3163 }
3164
3165 vp = netdev_priv(dev);
3166
3167 if (vp->cb_fn_base)
3168 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3169
3170 unregister_netdev(dev);
3171
3172 if (VORTEX_PCI(vp)) {
3173 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3174 if (vp->pm_state_valid)
3175 pci_restore_state(VORTEX_PCI(vp));
3176 pci_disable_device(VORTEX_PCI(vp));
3177 }
3178 /* Should really use issue_and_wait() here */
3179 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3180 vp->ioaddr + EL3_CMD);
3181
3182 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3183
3184 pci_free_consistent(pdev,
3185 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3186 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3187 vp->rx_ring,
3188 vp->rx_ring_dma);
3189 if (vp->must_free_region)
3190 release_region(dev->base_addr, vp->io_size);
3191 free_netdev(dev);
3192 }
3193
3194
3195 static struct pci_driver vortex_driver = {
3196 .name = "3c59x",
3197 .probe = vortex_init_one,
3198 .remove = __devexit_p(vortex_remove_one),
3199 .id_table = vortex_pci_tbl,
3200 #ifdef CONFIG_PM
3201 .suspend = vortex_suspend,
3202 .resume = vortex_resume,
3203 #endif
3204 };
3205
3206
3207 static int vortex_have_pci;
3208 static int vortex_have_eisa;
3209
3210
3211 static int __init vortex_init(void)
3212 {
3213 int pci_rc, eisa_rc;
3214
3215 pci_rc = pci_register_driver(&vortex_driver);
3216 eisa_rc = vortex_eisa_init();
3217
3218 if (pci_rc == 0)
3219 vortex_have_pci = 1;
3220 if (eisa_rc > 0)
3221 vortex_have_eisa = 1;
3222
3223 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3224 }
3225
3226
3227 static void __exit vortex_eisa_cleanup(void)
3228 {
3229 struct vortex_private *vp;
3230 void __iomem *ioaddr;
3231
3232 #ifdef CONFIG_EISA
3233 /* Take care of the EISA devices */
3234 eisa_driver_unregister(&vortex_eisa_driver);
3235 #endif
3236
3237 if (compaq_net_device) {
3238 vp = netdev_priv(compaq_net_device);
3239 ioaddr = ioport_map(compaq_net_device->base_addr,
3240 VORTEX_TOTAL_SIZE);
3241
3242 unregister_netdev(compaq_net_device);
3243 iowrite16(TotalReset, ioaddr + EL3_CMD);
3244 release_region(compaq_net_device->base_addr,
3245 VORTEX_TOTAL_SIZE);
3246
3247 free_netdev(compaq_net_device);
3248 }
3249 }
3250
3251
3252 static void __exit vortex_cleanup(void)
3253 {
3254 if (vortex_have_pci)
3255 pci_unregister_driver(&vortex_driver);
3256 if (vortex_have_eisa)
3257 vortex_eisa_cleanup();
3258 }
3259
3260
3261 module_init(vortex_init);
3262 module_exit(vortex_cleanup);
This page took 0.105091 seconds and 5 git commands to generate.