iwlwifi: Recover TX flow stall due to stuck queue
[deliverable/linux.git] / drivers / net / bcm63xx_enet.c
1 /*
2 * Driver for BCM963xx builtin Ethernet mac
3 *
4 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/clk.h>
23 #include <linux/etherdevice.h>
24 #include <linux/delay.h>
25 #include <linux/ethtool.h>
26 #include <linux/crc32.h>
27 #include <linux/err.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/platform_device.h>
30 #include <linux/if_vlan.h>
31
32 #include <bcm63xx_dev_enet.h>
33 #include "bcm63xx_enet.h"
34
35 static char bcm_enet_driver_name[] = "bcm63xx_enet";
36 static char bcm_enet_driver_version[] = "1.0";
37
38 static int copybreak __read_mostly = 128;
39 module_param(copybreak, int, 0);
40 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
41
42 /* io memory shared between all devices */
43 static void __iomem *bcm_enet_shared_base;
44
45 /*
46 * io helpers to access mac registers
47 */
48 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
49 {
50 return bcm_readl(priv->base + off);
51 }
52
53 static inline void enet_writel(struct bcm_enet_priv *priv,
54 u32 val, u32 off)
55 {
56 bcm_writel(val, priv->base + off);
57 }
58
59 /*
60 * io helpers to access shared registers
61 */
62 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
63 {
64 return bcm_readl(bcm_enet_shared_base + off);
65 }
66
67 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
68 u32 val, u32 off)
69 {
70 bcm_writel(val, bcm_enet_shared_base + off);
71 }
72
73 /*
74 * write given data into mii register and wait for transfer to end
75 * with timeout (average measured transfer time is 25us)
76 */
77 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
78 {
79 int limit;
80
81 /* make sure mii interrupt status is cleared */
82 enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
83
84 enet_writel(priv, data, ENET_MIIDATA_REG);
85 wmb();
86
87 /* busy wait on mii interrupt bit, with timeout */
88 limit = 1000;
89 do {
90 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
91 break;
92 udelay(1);
93 } while (limit-- > 0);
94
95 return (limit < 0) ? 1 : 0;
96 }
97
98 /*
99 * MII internal read callback
100 */
101 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
102 int regnum)
103 {
104 u32 tmp, val;
105
106 tmp = regnum << ENET_MIIDATA_REG_SHIFT;
107 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
108 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
109 tmp |= ENET_MIIDATA_OP_READ_MASK;
110
111 if (do_mdio_op(priv, tmp))
112 return -1;
113
114 val = enet_readl(priv, ENET_MIIDATA_REG);
115 val &= 0xffff;
116 return val;
117 }
118
119 /*
120 * MII internal write callback
121 */
122 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
123 int regnum, u16 value)
124 {
125 u32 tmp;
126
127 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
128 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
129 tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
130 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
131 tmp |= ENET_MIIDATA_OP_WRITE_MASK;
132
133 (void)do_mdio_op(priv, tmp);
134 return 0;
135 }
136
137 /*
138 * MII read callback from phylib
139 */
140 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
141 int regnum)
142 {
143 return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
144 }
145
146 /*
147 * MII write callback from phylib
148 */
149 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
150 int regnum, u16 value)
151 {
152 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
153 }
154
155 /*
156 * MII read callback from mii core
157 */
158 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
159 int regnum)
160 {
161 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
162 }
163
164 /*
165 * MII write callback from mii core
166 */
167 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
168 int regnum, int value)
169 {
170 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
171 }
172
173 /*
174 * refill rx queue
175 */
176 static int bcm_enet_refill_rx(struct net_device *dev)
177 {
178 struct bcm_enet_priv *priv;
179
180 priv = netdev_priv(dev);
181
182 while (priv->rx_desc_count < priv->rx_ring_size) {
183 struct bcm_enet_desc *desc;
184 struct sk_buff *skb;
185 dma_addr_t p;
186 int desc_idx;
187 u32 len_stat;
188
189 desc_idx = priv->rx_dirty_desc;
190 desc = &priv->rx_desc_cpu[desc_idx];
191
192 if (!priv->rx_skb[desc_idx]) {
193 skb = netdev_alloc_skb(dev, priv->rx_skb_size);
194 if (!skb)
195 break;
196 priv->rx_skb[desc_idx] = skb;
197
198 p = dma_map_single(&priv->pdev->dev, skb->data,
199 priv->rx_skb_size,
200 DMA_FROM_DEVICE);
201 desc->address = p;
202 }
203
204 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
205 len_stat |= DMADESC_OWNER_MASK;
206 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
207 len_stat |= DMADESC_WRAP_MASK;
208 priv->rx_dirty_desc = 0;
209 } else {
210 priv->rx_dirty_desc++;
211 }
212 wmb();
213 desc->len_stat = len_stat;
214
215 priv->rx_desc_count++;
216
217 /* tell dma engine we allocated one buffer */
218 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
219 }
220
221 /* If rx ring is still empty, set a timer to try allocating
222 * again at a later time. */
223 if (priv->rx_desc_count == 0 && netif_running(dev)) {
224 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
225 priv->rx_timeout.expires = jiffies + HZ;
226 add_timer(&priv->rx_timeout);
227 }
228
229 return 0;
230 }
231
232 /*
233 * timer callback to defer refill rx queue in case we're OOM
234 */
235 static void bcm_enet_refill_rx_timer(unsigned long data)
236 {
237 struct net_device *dev;
238 struct bcm_enet_priv *priv;
239
240 dev = (struct net_device *)data;
241 priv = netdev_priv(dev);
242
243 spin_lock(&priv->rx_lock);
244 bcm_enet_refill_rx((struct net_device *)data);
245 spin_unlock(&priv->rx_lock);
246 }
247
248 /*
249 * extract packet from rx queue
250 */
251 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
252 {
253 struct bcm_enet_priv *priv;
254 struct device *kdev;
255 int processed;
256
257 priv = netdev_priv(dev);
258 kdev = &priv->pdev->dev;
259 processed = 0;
260
261 /* don't scan ring further than number of refilled
262 * descriptor */
263 if (budget > priv->rx_desc_count)
264 budget = priv->rx_desc_count;
265
266 do {
267 struct bcm_enet_desc *desc;
268 struct sk_buff *skb;
269 int desc_idx;
270 u32 len_stat;
271 unsigned int len;
272
273 desc_idx = priv->rx_curr_desc;
274 desc = &priv->rx_desc_cpu[desc_idx];
275
276 /* make sure we actually read the descriptor status at
277 * each loop */
278 rmb();
279
280 len_stat = desc->len_stat;
281
282 /* break if dma ownership belongs to hw */
283 if (len_stat & DMADESC_OWNER_MASK)
284 break;
285
286 processed++;
287 priv->rx_curr_desc++;
288 if (priv->rx_curr_desc == priv->rx_ring_size)
289 priv->rx_curr_desc = 0;
290 priv->rx_desc_count--;
291
292 /* if the packet does not have start of packet _and_
293 * end of packet flag set, then just recycle it */
294 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
295 priv->stats.rx_dropped++;
296 continue;
297 }
298
299 /* recycle packet if it's marked as bad */
300 if (unlikely(len_stat & DMADESC_ERR_MASK)) {
301 priv->stats.rx_errors++;
302
303 if (len_stat & DMADESC_OVSIZE_MASK)
304 priv->stats.rx_length_errors++;
305 if (len_stat & DMADESC_CRC_MASK)
306 priv->stats.rx_crc_errors++;
307 if (len_stat & DMADESC_UNDER_MASK)
308 priv->stats.rx_frame_errors++;
309 if (len_stat & DMADESC_OV_MASK)
310 priv->stats.rx_fifo_errors++;
311 continue;
312 }
313
314 /* valid packet */
315 skb = priv->rx_skb[desc_idx];
316 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
317 /* don't include FCS */
318 len -= 4;
319
320 if (len < copybreak) {
321 struct sk_buff *nskb;
322
323 nskb = netdev_alloc_skb_ip_align(dev, len);
324 if (!nskb) {
325 /* forget packet, just rearm desc */
326 priv->stats.rx_dropped++;
327 continue;
328 }
329
330 dma_sync_single_for_cpu(kdev, desc->address,
331 len, DMA_FROM_DEVICE);
332 memcpy(nskb->data, skb->data, len);
333 dma_sync_single_for_device(kdev, desc->address,
334 len, DMA_FROM_DEVICE);
335 skb = nskb;
336 } else {
337 dma_unmap_single(&priv->pdev->dev, desc->address,
338 priv->rx_skb_size, DMA_FROM_DEVICE);
339 priv->rx_skb[desc_idx] = NULL;
340 }
341
342 skb_put(skb, len);
343 skb->dev = dev;
344 skb->protocol = eth_type_trans(skb, dev);
345 priv->stats.rx_packets++;
346 priv->stats.rx_bytes += len;
347 dev->last_rx = jiffies;
348 netif_receive_skb(skb);
349
350 } while (--budget > 0);
351
352 if (processed || !priv->rx_desc_count) {
353 bcm_enet_refill_rx(dev);
354
355 /* kick rx dma */
356 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
357 ENETDMA_CHANCFG_REG(priv->rx_chan));
358 }
359
360 return processed;
361 }
362
363
364 /*
365 * try to or force reclaim of transmitted buffers
366 */
367 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
368 {
369 struct bcm_enet_priv *priv;
370 int released;
371
372 priv = netdev_priv(dev);
373 released = 0;
374
375 while (priv->tx_desc_count < priv->tx_ring_size) {
376 struct bcm_enet_desc *desc;
377 struct sk_buff *skb;
378
379 /* We run in a bh and fight against start_xmit, which
380 * is called with bh disabled */
381 spin_lock(&priv->tx_lock);
382
383 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
384
385 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
386 spin_unlock(&priv->tx_lock);
387 break;
388 }
389
390 /* ensure other field of the descriptor were not read
391 * before we checked ownership */
392 rmb();
393
394 skb = priv->tx_skb[priv->tx_dirty_desc];
395 priv->tx_skb[priv->tx_dirty_desc] = NULL;
396 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
397 DMA_TO_DEVICE);
398
399 priv->tx_dirty_desc++;
400 if (priv->tx_dirty_desc == priv->tx_ring_size)
401 priv->tx_dirty_desc = 0;
402 priv->tx_desc_count++;
403
404 spin_unlock(&priv->tx_lock);
405
406 if (desc->len_stat & DMADESC_UNDER_MASK)
407 priv->stats.tx_errors++;
408
409 dev_kfree_skb(skb);
410 released++;
411 }
412
413 if (netif_queue_stopped(dev) && released)
414 netif_wake_queue(dev);
415
416 return released;
417 }
418
419 /*
420 * poll func, called by network core
421 */
422 static int bcm_enet_poll(struct napi_struct *napi, int budget)
423 {
424 struct bcm_enet_priv *priv;
425 struct net_device *dev;
426 int tx_work_done, rx_work_done;
427
428 priv = container_of(napi, struct bcm_enet_priv, napi);
429 dev = priv->net_dev;
430
431 /* ack interrupts */
432 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
433 ENETDMA_IR_REG(priv->rx_chan));
434 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
435 ENETDMA_IR_REG(priv->tx_chan));
436
437 /* reclaim sent skb */
438 tx_work_done = bcm_enet_tx_reclaim(dev, 0);
439
440 spin_lock(&priv->rx_lock);
441 rx_work_done = bcm_enet_receive_queue(dev, budget);
442 spin_unlock(&priv->rx_lock);
443
444 if (rx_work_done >= budget || tx_work_done > 0) {
445 /* rx/tx queue is not yet empty/clean */
446 return rx_work_done;
447 }
448
449 /* no more packet in rx/tx queue, remove device from poll
450 * queue */
451 napi_complete(napi);
452
453 /* restore rx/tx interrupt */
454 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
455 ENETDMA_IRMASK_REG(priv->rx_chan));
456 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
457 ENETDMA_IRMASK_REG(priv->tx_chan));
458
459 return rx_work_done;
460 }
461
462 /*
463 * mac interrupt handler
464 */
465 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
466 {
467 struct net_device *dev;
468 struct bcm_enet_priv *priv;
469 u32 stat;
470
471 dev = dev_id;
472 priv = netdev_priv(dev);
473
474 stat = enet_readl(priv, ENET_IR_REG);
475 if (!(stat & ENET_IR_MIB))
476 return IRQ_NONE;
477
478 /* clear & mask interrupt */
479 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
480 enet_writel(priv, 0, ENET_IRMASK_REG);
481
482 /* read mib registers in workqueue */
483 schedule_work(&priv->mib_update_task);
484
485 return IRQ_HANDLED;
486 }
487
488 /*
489 * rx/tx dma interrupt handler
490 */
491 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
492 {
493 struct net_device *dev;
494 struct bcm_enet_priv *priv;
495
496 dev = dev_id;
497 priv = netdev_priv(dev);
498
499 /* mask rx/tx interrupts */
500 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
501 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
502
503 napi_schedule(&priv->napi);
504
505 return IRQ_HANDLED;
506 }
507
508 /*
509 * tx request callback
510 */
511 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
512 {
513 struct bcm_enet_priv *priv;
514 struct bcm_enet_desc *desc;
515 u32 len_stat;
516 int ret;
517
518 priv = netdev_priv(dev);
519
520 /* lock against tx reclaim */
521 spin_lock(&priv->tx_lock);
522
523 /* make sure the tx hw queue is not full, should not happen
524 * since we stop queue before it's the case */
525 if (unlikely(!priv->tx_desc_count)) {
526 netif_stop_queue(dev);
527 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
528 "available?\n");
529 ret = NETDEV_TX_BUSY;
530 goto out_unlock;
531 }
532
533 /* point to the next available desc */
534 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
535 priv->tx_skb[priv->tx_curr_desc] = skb;
536
537 /* fill descriptor */
538 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
539 DMA_TO_DEVICE);
540
541 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
542 len_stat |= DMADESC_ESOP_MASK |
543 DMADESC_APPEND_CRC |
544 DMADESC_OWNER_MASK;
545
546 priv->tx_curr_desc++;
547 if (priv->tx_curr_desc == priv->tx_ring_size) {
548 priv->tx_curr_desc = 0;
549 len_stat |= DMADESC_WRAP_MASK;
550 }
551 priv->tx_desc_count--;
552
553 /* dma might be already polling, make sure we update desc
554 * fields in correct order */
555 wmb();
556 desc->len_stat = len_stat;
557 wmb();
558
559 /* kick tx dma */
560 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
561 ENETDMA_CHANCFG_REG(priv->tx_chan));
562
563 /* stop queue if no more desc available */
564 if (!priv->tx_desc_count)
565 netif_stop_queue(dev);
566
567 priv->stats.tx_bytes += skb->len;
568 priv->stats.tx_packets++;
569 dev->trans_start = jiffies;
570 ret = NETDEV_TX_OK;
571
572 out_unlock:
573 spin_unlock(&priv->tx_lock);
574 return ret;
575 }
576
577 /*
578 * Change the interface's mac address.
579 */
580 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
581 {
582 struct bcm_enet_priv *priv;
583 struct sockaddr *addr = p;
584 u32 val;
585
586 priv = netdev_priv(dev);
587 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
588
589 /* use perfect match register 0 to store my mac address */
590 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
591 (dev->dev_addr[4] << 8) | dev->dev_addr[5];
592 enet_writel(priv, val, ENET_PML_REG(0));
593
594 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
595 val |= ENET_PMH_DATAVALID_MASK;
596 enet_writel(priv, val, ENET_PMH_REG(0));
597
598 return 0;
599 }
600
601 /*
602 * Change rx mode (promiscous/allmulti) and update multicast list
603 */
604 static void bcm_enet_set_multicast_list(struct net_device *dev)
605 {
606 struct bcm_enet_priv *priv;
607 struct dev_mc_list *mc_list;
608 u32 val;
609 int i;
610
611 priv = netdev_priv(dev);
612
613 val = enet_readl(priv, ENET_RXCFG_REG);
614
615 if (dev->flags & IFF_PROMISC)
616 val |= ENET_RXCFG_PROMISC_MASK;
617 else
618 val &= ~ENET_RXCFG_PROMISC_MASK;
619
620 /* only 3 perfect match registers left, first one is used for
621 * own mac address */
622 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
623 val |= ENET_RXCFG_ALLMCAST_MASK;
624 else
625 val &= ~ENET_RXCFG_ALLMCAST_MASK;
626
627 /* no need to set perfect match registers if we catch all
628 * multicast */
629 if (val & ENET_RXCFG_ALLMCAST_MASK) {
630 enet_writel(priv, val, ENET_RXCFG_REG);
631 return;
632 }
633
634 i = 0;
635 netdev_for_each_mc_addr(mc_list, dev) {
636 u8 *dmi_addr;
637 u32 tmp;
638
639 if (i == 3)
640 break;
641 /* update perfect match registers */
642 dmi_addr = mc_list->dmi_addr;
643 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
644 (dmi_addr[4] << 8) | dmi_addr[5];
645 enet_writel(priv, tmp, ENET_PML_REG(i + 1));
646
647 tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
648 tmp |= ENET_PMH_DATAVALID_MASK;
649 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
650 }
651
652 for (; i < 3; i++) {
653 enet_writel(priv, 0, ENET_PML_REG(i + 1));
654 enet_writel(priv, 0, ENET_PMH_REG(i + 1));
655 }
656
657 enet_writel(priv, val, ENET_RXCFG_REG);
658 }
659
660 /*
661 * set mac duplex parameters
662 */
663 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
664 {
665 u32 val;
666
667 val = enet_readl(priv, ENET_TXCTL_REG);
668 if (fullduplex)
669 val |= ENET_TXCTL_FD_MASK;
670 else
671 val &= ~ENET_TXCTL_FD_MASK;
672 enet_writel(priv, val, ENET_TXCTL_REG);
673 }
674
675 /*
676 * set mac flow control parameters
677 */
678 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
679 {
680 u32 val;
681
682 /* rx flow control (pause frame handling) */
683 val = enet_readl(priv, ENET_RXCFG_REG);
684 if (rx_en)
685 val |= ENET_RXCFG_ENFLOW_MASK;
686 else
687 val &= ~ENET_RXCFG_ENFLOW_MASK;
688 enet_writel(priv, val, ENET_RXCFG_REG);
689
690 /* tx flow control (pause frame generation) */
691 val = enet_dma_readl(priv, ENETDMA_CFG_REG);
692 if (tx_en)
693 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
694 else
695 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
696 enet_dma_writel(priv, val, ENETDMA_CFG_REG);
697 }
698
699 /*
700 * link changed callback (from phylib)
701 */
702 static void bcm_enet_adjust_phy_link(struct net_device *dev)
703 {
704 struct bcm_enet_priv *priv;
705 struct phy_device *phydev;
706 int status_changed;
707
708 priv = netdev_priv(dev);
709 phydev = priv->phydev;
710 status_changed = 0;
711
712 if (priv->old_link != phydev->link) {
713 status_changed = 1;
714 priv->old_link = phydev->link;
715 }
716
717 /* reflect duplex change in mac configuration */
718 if (phydev->link && phydev->duplex != priv->old_duplex) {
719 bcm_enet_set_duplex(priv,
720 (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
721 status_changed = 1;
722 priv->old_duplex = phydev->duplex;
723 }
724
725 /* enable flow control if remote advertise it (trust phylib to
726 * check that duplex is full */
727 if (phydev->link && phydev->pause != priv->old_pause) {
728 int rx_pause_en, tx_pause_en;
729
730 if (phydev->pause) {
731 /* pause was advertised by lpa and us */
732 rx_pause_en = 1;
733 tx_pause_en = 1;
734 } else if (!priv->pause_auto) {
735 /* pause setting overrided by user */
736 rx_pause_en = priv->pause_rx;
737 tx_pause_en = priv->pause_tx;
738 } else {
739 rx_pause_en = 0;
740 tx_pause_en = 0;
741 }
742
743 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
744 status_changed = 1;
745 priv->old_pause = phydev->pause;
746 }
747
748 if (status_changed) {
749 pr_info("%s: link %s", dev->name, phydev->link ?
750 "UP" : "DOWN");
751 if (phydev->link)
752 pr_cont(" - %d/%s - flow control %s", phydev->speed,
753 DUPLEX_FULL == phydev->duplex ? "full" : "half",
754 phydev->pause == 1 ? "rx&tx" : "off");
755
756 pr_cont("\n");
757 }
758 }
759
760 /*
761 * link changed callback (if phylib is not used)
762 */
763 static void bcm_enet_adjust_link(struct net_device *dev)
764 {
765 struct bcm_enet_priv *priv;
766
767 priv = netdev_priv(dev);
768 bcm_enet_set_duplex(priv, priv->force_duplex_full);
769 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
770 netif_carrier_on(dev);
771
772 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
773 dev->name,
774 priv->force_speed_100 ? 100 : 10,
775 priv->force_duplex_full ? "full" : "half",
776 priv->pause_rx ? "rx" : "off",
777 priv->pause_tx ? "tx" : "off");
778 }
779
780 /*
781 * open callback, allocate dma rings & buffers and start rx operation
782 */
783 static int bcm_enet_open(struct net_device *dev)
784 {
785 struct bcm_enet_priv *priv;
786 struct sockaddr addr;
787 struct device *kdev;
788 struct phy_device *phydev;
789 int i, ret;
790 unsigned int size;
791 char phy_id[MII_BUS_ID_SIZE + 3];
792 void *p;
793 u32 val;
794
795 priv = netdev_priv(dev);
796 kdev = &priv->pdev->dev;
797
798 if (priv->has_phy) {
799 /* connect to PHY */
800 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
801 priv->mac_id ? "1" : "0", priv->phy_id);
802
803 phydev = phy_connect(dev, phy_id, &bcm_enet_adjust_phy_link, 0,
804 PHY_INTERFACE_MODE_MII);
805
806 if (IS_ERR(phydev)) {
807 dev_err(kdev, "could not attach to PHY\n");
808 return PTR_ERR(phydev);
809 }
810
811 /* mask with MAC supported features */
812 phydev->supported &= (SUPPORTED_10baseT_Half |
813 SUPPORTED_10baseT_Full |
814 SUPPORTED_100baseT_Half |
815 SUPPORTED_100baseT_Full |
816 SUPPORTED_Autoneg |
817 SUPPORTED_Pause |
818 SUPPORTED_MII);
819 phydev->advertising = phydev->supported;
820
821 if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
822 phydev->advertising |= SUPPORTED_Pause;
823 else
824 phydev->advertising &= ~SUPPORTED_Pause;
825
826 dev_info(kdev, "attached PHY at address %d [%s]\n",
827 phydev->addr, phydev->drv->name);
828
829 priv->old_link = 0;
830 priv->old_duplex = -1;
831 priv->old_pause = -1;
832 priv->phydev = phydev;
833 }
834
835 /* mask all interrupts and request them */
836 enet_writel(priv, 0, ENET_IRMASK_REG);
837 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
838 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
839
840 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
841 if (ret)
842 goto out_phy_disconnect;
843
844 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
845 IRQF_SAMPLE_RANDOM | IRQF_DISABLED, dev->name, dev);
846 if (ret)
847 goto out_freeirq;
848
849 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
850 IRQF_DISABLED, dev->name, dev);
851 if (ret)
852 goto out_freeirq_rx;
853
854 /* initialize perfect match registers */
855 for (i = 0; i < 4; i++) {
856 enet_writel(priv, 0, ENET_PML_REG(i));
857 enet_writel(priv, 0, ENET_PMH_REG(i));
858 }
859
860 /* write device mac address */
861 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
862 bcm_enet_set_mac_address(dev, &addr);
863
864 /* allocate rx dma ring */
865 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
866 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
867 if (!p) {
868 dev_err(kdev, "cannot allocate rx ring %u\n", size);
869 ret = -ENOMEM;
870 goto out_freeirq_tx;
871 }
872
873 memset(p, 0, size);
874 priv->rx_desc_alloc_size = size;
875 priv->rx_desc_cpu = p;
876
877 /* allocate tx dma ring */
878 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
879 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
880 if (!p) {
881 dev_err(kdev, "cannot allocate tx ring\n");
882 ret = -ENOMEM;
883 goto out_free_rx_ring;
884 }
885
886 memset(p, 0, size);
887 priv->tx_desc_alloc_size = size;
888 priv->tx_desc_cpu = p;
889
890 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
891 GFP_KERNEL);
892 if (!priv->tx_skb) {
893 dev_err(kdev, "cannot allocate rx skb queue\n");
894 ret = -ENOMEM;
895 goto out_free_tx_ring;
896 }
897
898 priv->tx_desc_count = priv->tx_ring_size;
899 priv->tx_dirty_desc = 0;
900 priv->tx_curr_desc = 0;
901 spin_lock_init(&priv->tx_lock);
902
903 /* init & fill rx ring with skbs */
904 priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
905 GFP_KERNEL);
906 if (!priv->rx_skb) {
907 dev_err(kdev, "cannot allocate rx skb queue\n");
908 ret = -ENOMEM;
909 goto out_free_tx_skb;
910 }
911
912 priv->rx_desc_count = 0;
913 priv->rx_dirty_desc = 0;
914 priv->rx_curr_desc = 0;
915
916 /* initialize flow control buffer allocation */
917 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
918 ENETDMA_BUFALLOC_REG(priv->rx_chan));
919
920 if (bcm_enet_refill_rx(dev)) {
921 dev_err(kdev, "cannot allocate rx skb queue\n");
922 ret = -ENOMEM;
923 goto out;
924 }
925
926 /* write rx & tx ring addresses */
927 enet_dma_writel(priv, priv->rx_desc_dma,
928 ENETDMA_RSTART_REG(priv->rx_chan));
929 enet_dma_writel(priv, priv->tx_desc_dma,
930 ENETDMA_RSTART_REG(priv->tx_chan));
931
932 /* clear remaining state ram for rx & tx channel */
933 enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->rx_chan));
934 enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->tx_chan));
935 enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->rx_chan));
936 enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->tx_chan));
937 enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->rx_chan));
938 enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->tx_chan));
939
940 /* set max rx/tx length */
941 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
942 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
943
944 /* set dma maximum burst len */
945 enet_dma_writel(priv, BCMENET_DMA_MAXBURST,
946 ENETDMA_MAXBURST_REG(priv->rx_chan));
947 enet_dma_writel(priv, BCMENET_DMA_MAXBURST,
948 ENETDMA_MAXBURST_REG(priv->tx_chan));
949
950 /* set correct transmit fifo watermark */
951 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
952
953 /* set flow control low/high threshold to 1/3 / 2/3 */
954 val = priv->rx_ring_size / 3;
955 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
956 val = (priv->rx_ring_size * 2) / 3;
957 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
958
959 /* all set, enable mac and interrupts, start dma engine and
960 * kick rx dma channel */
961 wmb();
962 enet_writel(priv, ENET_CTL_ENABLE_MASK, ENET_CTL_REG);
963 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
964 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
965 ENETDMA_CHANCFG_REG(priv->rx_chan));
966
967 /* watch "mib counters about to overflow" interrupt */
968 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
969 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
970
971 /* watch "packet transferred" interrupt in rx and tx */
972 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
973 ENETDMA_IR_REG(priv->rx_chan));
974 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
975 ENETDMA_IR_REG(priv->tx_chan));
976
977 /* make sure we enable napi before rx interrupt */
978 napi_enable(&priv->napi);
979
980 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
981 ENETDMA_IRMASK_REG(priv->rx_chan));
982 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
983 ENETDMA_IRMASK_REG(priv->tx_chan));
984
985 if (priv->has_phy)
986 phy_start(priv->phydev);
987 else
988 bcm_enet_adjust_link(dev);
989
990 netif_start_queue(dev);
991 return 0;
992
993 out:
994 for (i = 0; i < priv->rx_ring_size; i++) {
995 struct bcm_enet_desc *desc;
996
997 if (!priv->rx_skb[i])
998 continue;
999
1000 desc = &priv->rx_desc_cpu[i];
1001 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1002 DMA_FROM_DEVICE);
1003 kfree_skb(priv->rx_skb[i]);
1004 }
1005 kfree(priv->rx_skb);
1006
1007 out_free_tx_skb:
1008 kfree(priv->tx_skb);
1009
1010 out_free_tx_ring:
1011 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1012 priv->tx_desc_cpu, priv->tx_desc_dma);
1013
1014 out_free_rx_ring:
1015 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1016 priv->rx_desc_cpu, priv->rx_desc_dma);
1017
1018 out_freeirq_tx:
1019 free_irq(priv->irq_tx, dev);
1020
1021 out_freeirq_rx:
1022 free_irq(priv->irq_rx, dev);
1023
1024 out_freeirq:
1025 free_irq(dev->irq, dev);
1026
1027 out_phy_disconnect:
1028 phy_disconnect(priv->phydev);
1029
1030 return ret;
1031 }
1032
1033 /*
1034 * disable mac
1035 */
1036 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1037 {
1038 int limit;
1039 u32 val;
1040
1041 val = enet_readl(priv, ENET_CTL_REG);
1042 val |= ENET_CTL_DISABLE_MASK;
1043 enet_writel(priv, val, ENET_CTL_REG);
1044
1045 limit = 1000;
1046 do {
1047 u32 val;
1048
1049 val = enet_readl(priv, ENET_CTL_REG);
1050 if (!(val & ENET_CTL_DISABLE_MASK))
1051 break;
1052 udelay(1);
1053 } while (limit--);
1054 }
1055
1056 /*
1057 * disable dma in given channel
1058 */
1059 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1060 {
1061 int limit;
1062
1063 enet_dma_writel(priv, 0, ENETDMA_CHANCFG_REG(chan));
1064
1065 limit = 1000;
1066 do {
1067 u32 val;
1068
1069 val = enet_dma_readl(priv, ENETDMA_CHANCFG_REG(chan));
1070 if (!(val & ENETDMA_CHANCFG_EN_MASK))
1071 break;
1072 udelay(1);
1073 } while (limit--);
1074 }
1075
1076 /*
1077 * stop callback
1078 */
1079 static int bcm_enet_stop(struct net_device *dev)
1080 {
1081 struct bcm_enet_priv *priv;
1082 struct device *kdev;
1083 int i;
1084
1085 priv = netdev_priv(dev);
1086 kdev = &priv->pdev->dev;
1087
1088 netif_stop_queue(dev);
1089 napi_disable(&priv->napi);
1090 if (priv->has_phy)
1091 phy_stop(priv->phydev);
1092 del_timer_sync(&priv->rx_timeout);
1093
1094 /* mask all interrupts */
1095 enet_writel(priv, 0, ENET_IRMASK_REG);
1096 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
1097 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
1098
1099 /* make sure no mib update is scheduled */
1100 flush_scheduled_work();
1101
1102 /* disable dma & mac */
1103 bcm_enet_disable_dma(priv, priv->tx_chan);
1104 bcm_enet_disable_dma(priv, priv->rx_chan);
1105 bcm_enet_disable_mac(priv);
1106
1107 /* force reclaim of all tx buffers */
1108 bcm_enet_tx_reclaim(dev, 1);
1109
1110 /* free the rx skb ring */
1111 for (i = 0; i < priv->rx_ring_size; i++) {
1112 struct bcm_enet_desc *desc;
1113
1114 if (!priv->rx_skb[i])
1115 continue;
1116
1117 desc = &priv->rx_desc_cpu[i];
1118 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1119 DMA_FROM_DEVICE);
1120 kfree_skb(priv->rx_skb[i]);
1121 }
1122
1123 /* free remaining allocated memory */
1124 kfree(priv->rx_skb);
1125 kfree(priv->tx_skb);
1126 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1127 priv->rx_desc_cpu, priv->rx_desc_dma);
1128 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1129 priv->tx_desc_cpu, priv->tx_desc_dma);
1130 free_irq(priv->irq_tx, dev);
1131 free_irq(priv->irq_rx, dev);
1132 free_irq(dev->irq, dev);
1133
1134 /* release phy */
1135 if (priv->has_phy) {
1136 phy_disconnect(priv->phydev);
1137 priv->phydev = NULL;
1138 }
1139
1140 return 0;
1141 }
1142
1143 /*
1144 * core request to return device rx/tx stats
1145 */
1146 static struct net_device_stats *bcm_enet_get_stats(struct net_device *dev)
1147 {
1148 struct bcm_enet_priv *priv;
1149
1150 priv = netdev_priv(dev);
1151 return &priv->stats;
1152 }
1153
1154 /*
1155 * ethtool callbacks
1156 */
1157 struct bcm_enet_stats {
1158 char stat_string[ETH_GSTRING_LEN];
1159 int sizeof_stat;
1160 int stat_offset;
1161 int mib_reg;
1162 };
1163
1164 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \
1165 offsetof(struct bcm_enet_priv, m)
1166
1167 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1168 { "rx_packets", GEN_STAT(stats.rx_packets), -1 },
1169 { "tx_packets", GEN_STAT(stats.tx_packets), -1 },
1170 { "rx_bytes", GEN_STAT(stats.rx_bytes), -1 },
1171 { "tx_bytes", GEN_STAT(stats.tx_bytes), -1 },
1172 { "rx_errors", GEN_STAT(stats.rx_errors), -1 },
1173 { "tx_errors", GEN_STAT(stats.tx_errors), -1 },
1174 { "rx_dropped", GEN_STAT(stats.rx_dropped), -1 },
1175 { "tx_dropped", GEN_STAT(stats.tx_dropped), -1 },
1176
1177 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1178 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1179 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1180 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1181 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1182 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1183 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1184 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1185 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1186 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1187 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1188 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1189 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1190 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1191 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1192 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1193 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1194 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1195 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1196 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1197 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1198
1199 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1200 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1201 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1202 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1203 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1204 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1205 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1206 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1207 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1208 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1209 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1210 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1211 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1212 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1213 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1214 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1215 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1216 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1217 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1218 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1219 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1220 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1221
1222 };
1223
1224 #define BCM_ENET_STATS_LEN \
1225 (sizeof(bcm_enet_gstrings_stats) / sizeof(struct bcm_enet_stats))
1226
1227 static const u32 unused_mib_regs[] = {
1228 ETH_MIB_TX_ALL_OCTETS,
1229 ETH_MIB_TX_ALL_PKTS,
1230 ETH_MIB_RX_ALL_OCTETS,
1231 ETH_MIB_RX_ALL_PKTS,
1232 };
1233
1234
1235 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1236 struct ethtool_drvinfo *drvinfo)
1237 {
1238 strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
1239 strncpy(drvinfo->version, bcm_enet_driver_version, 32);
1240 strncpy(drvinfo->fw_version, "N/A", 32);
1241 strncpy(drvinfo->bus_info, "bcm63xx", 32);
1242 drvinfo->n_stats = BCM_ENET_STATS_LEN;
1243 }
1244
1245 static int bcm_enet_get_sset_count(struct net_device *netdev,
1246 int string_set)
1247 {
1248 switch (string_set) {
1249 case ETH_SS_STATS:
1250 return BCM_ENET_STATS_LEN;
1251 default:
1252 return -EINVAL;
1253 }
1254 }
1255
1256 static void bcm_enet_get_strings(struct net_device *netdev,
1257 u32 stringset, u8 *data)
1258 {
1259 int i;
1260
1261 switch (stringset) {
1262 case ETH_SS_STATS:
1263 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1264 memcpy(data + i * ETH_GSTRING_LEN,
1265 bcm_enet_gstrings_stats[i].stat_string,
1266 ETH_GSTRING_LEN);
1267 }
1268 break;
1269 }
1270 }
1271
1272 static void update_mib_counters(struct bcm_enet_priv *priv)
1273 {
1274 int i;
1275
1276 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1277 const struct bcm_enet_stats *s;
1278 u32 val;
1279 char *p;
1280
1281 s = &bcm_enet_gstrings_stats[i];
1282 if (s->mib_reg == -1)
1283 continue;
1284
1285 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1286 p = (char *)priv + s->stat_offset;
1287
1288 if (s->sizeof_stat == sizeof(u64))
1289 *(u64 *)p += val;
1290 else
1291 *(u32 *)p += val;
1292 }
1293
1294 /* also empty unused mib counters to make sure mib counter
1295 * overflow interrupt is cleared */
1296 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1297 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1298 }
1299
1300 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1301 {
1302 struct bcm_enet_priv *priv;
1303
1304 priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1305 mutex_lock(&priv->mib_update_lock);
1306 update_mib_counters(priv);
1307 mutex_unlock(&priv->mib_update_lock);
1308
1309 /* reenable mib interrupt */
1310 if (netif_running(priv->net_dev))
1311 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1312 }
1313
1314 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1315 struct ethtool_stats *stats,
1316 u64 *data)
1317 {
1318 struct bcm_enet_priv *priv;
1319 int i;
1320
1321 priv = netdev_priv(netdev);
1322
1323 mutex_lock(&priv->mib_update_lock);
1324 update_mib_counters(priv);
1325
1326 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1327 const struct bcm_enet_stats *s;
1328 char *p;
1329
1330 s = &bcm_enet_gstrings_stats[i];
1331 p = (char *)priv + s->stat_offset;
1332 data[i] = (s->sizeof_stat == sizeof(u64)) ?
1333 *(u64 *)p : *(u32 *)p;
1334 }
1335 mutex_unlock(&priv->mib_update_lock);
1336 }
1337
1338 static int bcm_enet_get_settings(struct net_device *dev,
1339 struct ethtool_cmd *cmd)
1340 {
1341 struct bcm_enet_priv *priv;
1342
1343 priv = netdev_priv(dev);
1344
1345 cmd->maxrxpkt = 0;
1346 cmd->maxtxpkt = 0;
1347
1348 if (priv->has_phy) {
1349 if (!priv->phydev)
1350 return -ENODEV;
1351 return phy_ethtool_gset(priv->phydev, cmd);
1352 } else {
1353 cmd->autoneg = 0;
1354 cmd->speed = (priv->force_speed_100) ? SPEED_100 : SPEED_10;
1355 cmd->duplex = (priv->force_duplex_full) ?
1356 DUPLEX_FULL : DUPLEX_HALF;
1357 cmd->supported = ADVERTISED_10baseT_Half |
1358 ADVERTISED_10baseT_Full |
1359 ADVERTISED_100baseT_Half |
1360 ADVERTISED_100baseT_Full;
1361 cmd->advertising = 0;
1362 cmd->port = PORT_MII;
1363 cmd->transceiver = XCVR_EXTERNAL;
1364 }
1365 return 0;
1366 }
1367
1368 static int bcm_enet_set_settings(struct net_device *dev,
1369 struct ethtool_cmd *cmd)
1370 {
1371 struct bcm_enet_priv *priv;
1372
1373 priv = netdev_priv(dev);
1374 if (priv->has_phy) {
1375 if (!priv->phydev)
1376 return -ENODEV;
1377 return phy_ethtool_sset(priv->phydev, cmd);
1378 } else {
1379
1380 if (cmd->autoneg ||
1381 (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
1382 cmd->port != PORT_MII)
1383 return -EINVAL;
1384
1385 priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
1386 priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
1387
1388 if (netif_running(dev))
1389 bcm_enet_adjust_link(dev);
1390 return 0;
1391 }
1392 }
1393
1394 static void bcm_enet_get_ringparam(struct net_device *dev,
1395 struct ethtool_ringparam *ering)
1396 {
1397 struct bcm_enet_priv *priv;
1398
1399 priv = netdev_priv(dev);
1400
1401 /* rx/tx ring is actually only limited by memory */
1402 ering->rx_max_pending = 8192;
1403 ering->tx_max_pending = 8192;
1404 ering->rx_mini_max_pending = 0;
1405 ering->rx_jumbo_max_pending = 0;
1406 ering->rx_pending = priv->rx_ring_size;
1407 ering->tx_pending = priv->tx_ring_size;
1408 }
1409
1410 static int bcm_enet_set_ringparam(struct net_device *dev,
1411 struct ethtool_ringparam *ering)
1412 {
1413 struct bcm_enet_priv *priv;
1414 int was_running;
1415
1416 priv = netdev_priv(dev);
1417
1418 was_running = 0;
1419 if (netif_running(dev)) {
1420 bcm_enet_stop(dev);
1421 was_running = 1;
1422 }
1423
1424 priv->rx_ring_size = ering->rx_pending;
1425 priv->tx_ring_size = ering->tx_pending;
1426
1427 if (was_running) {
1428 int err;
1429
1430 err = bcm_enet_open(dev);
1431 if (err)
1432 dev_close(dev);
1433 else
1434 bcm_enet_set_multicast_list(dev);
1435 }
1436 return 0;
1437 }
1438
1439 static void bcm_enet_get_pauseparam(struct net_device *dev,
1440 struct ethtool_pauseparam *ecmd)
1441 {
1442 struct bcm_enet_priv *priv;
1443
1444 priv = netdev_priv(dev);
1445 ecmd->autoneg = priv->pause_auto;
1446 ecmd->rx_pause = priv->pause_rx;
1447 ecmd->tx_pause = priv->pause_tx;
1448 }
1449
1450 static int bcm_enet_set_pauseparam(struct net_device *dev,
1451 struct ethtool_pauseparam *ecmd)
1452 {
1453 struct bcm_enet_priv *priv;
1454
1455 priv = netdev_priv(dev);
1456
1457 if (priv->has_phy) {
1458 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1459 /* asymetric pause mode not supported,
1460 * actually possible but integrated PHY has RO
1461 * asym_pause bit */
1462 return -EINVAL;
1463 }
1464 } else {
1465 /* no pause autoneg on direct mii connection */
1466 if (ecmd->autoneg)
1467 return -EINVAL;
1468 }
1469
1470 priv->pause_auto = ecmd->autoneg;
1471 priv->pause_rx = ecmd->rx_pause;
1472 priv->pause_tx = ecmd->tx_pause;
1473
1474 return 0;
1475 }
1476
1477 static struct ethtool_ops bcm_enet_ethtool_ops = {
1478 .get_strings = bcm_enet_get_strings,
1479 .get_sset_count = bcm_enet_get_sset_count,
1480 .get_ethtool_stats = bcm_enet_get_ethtool_stats,
1481 .get_settings = bcm_enet_get_settings,
1482 .set_settings = bcm_enet_set_settings,
1483 .get_drvinfo = bcm_enet_get_drvinfo,
1484 .get_link = ethtool_op_get_link,
1485 .get_ringparam = bcm_enet_get_ringparam,
1486 .set_ringparam = bcm_enet_set_ringparam,
1487 .get_pauseparam = bcm_enet_get_pauseparam,
1488 .set_pauseparam = bcm_enet_set_pauseparam,
1489 };
1490
1491 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1492 {
1493 struct bcm_enet_priv *priv;
1494
1495 priv = netdev_priv(dev);
1496 if (priv->has_phy) {
1497 if (!priv->phydev)
1498 return -ENODEV;
1499 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
1500 } else {
1501 struct mii_if_info mii;
1502
1503 mii.dev = dev;
1504 mii.mdio_read = bcm_enet_mdio_read_mii;
1505 mii.mdio_write = bcm_enet_mdio_write_mii;
1506 mii.phy_id = 0;
1507 mii.phy_id_mask = 0x3f;
1508 mii.reg_num_mask = 0x1f;
1509 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1510 }
1511 }
1512
1513 /*
1514 * calculate actual hardware mtu
1515 */
1516 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
1517 {
1518 int actual_mtu;
1519
1520 actual_mtu = mtu;
1521
1522 /* add ethernet header + vlan tag size */
1523 actual_mtu += VLAN_ETH_HLEN;
1524
1525 if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
1526 return -EINVAL;
1527
1528 /*
1529 * setup maximum size before we get overflow mark in
1530 * descriptor, note that this will not prevent reception of
1531 * big frames, they will be split into multiple buffers
1532 * anyway
1533 */
1534 priv->hw_mtu = actual_mtu;
1535
1536 /*
1537 * align rx buffer size to dma burst len, account FCS since
1538 * it's appended
1539 */
1540 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1541 BCMENET_DMA_MAXBURST * 4);
1542 return 0;
1543 }
1544
1545 /*
1546 * adjust mtu, can't be called while device is running
1547 */
1548 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1549 {
1550 int ret;
1551
1552 if (netif_running(dev))
1553 return -EBUSY;
1554
1555 ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
1556 if (ret)
1557 return ret;
1558 dev->mtu = new_mtu;
1559 return 0;
1560 }
1561
1562 /*
1563 * preinit hardware to allow mii operation while device is down
1564 */
1565 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1566 {
1567 u32 val;
1568 int limit;
1569
1570 /* make sure mac is disabled */
1571 bcm_enet_disable_mac(priv);
1572
1573 /* soft reset mac */
1574 val = ENET_CTL_SRESET_MASK;
1575 enet_writel(priv, val, ENET_CTL_REG);
1576 wmb();
1577
1578 limit = 1000;
1579 do {
1580 val = enet_readl(priv, ENET_CTL_REG);
1581 if (!(val & ENET_CTL_SRESET_MASK))
1582 break;
1583 udelay(1);
1584 } while (limit--);
1585
1586 /* select correct mii interface */
1587 val = enet_readl(priv, ENET_CTL_REG);
1588 if (priv->use_external_mii)
1589 val |= ENET_CTL_EPHYSEL_MASK;
1590 else
1591 val &= ~ENET_CTL_EPHYSEL_MASK;
1592 enet_writel(priv, val, ENET_CTL_REG);
1593
1594 /* turn on mdc clock */
1595 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1596 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1597
1598 /* set mib counters to self-clear when read */
1599 val = enet_readl(priv, ENET_MIBCTL_REG);
1600 val |= ENET_MIBCTL_RDCLEAR_MASK;
1601 enet_writel(priv, val, ENET_MIBCTL_REG);
1602 }
1603
1604 static const struct net_device_ops bcm_enet_ops = {
1605 .ndo_open = bcm_enet_open,
1606 .ndo_stop = bcm_enet_stop,
1607 .ndo_start_xmit = bcm_enet_start_xmit,
1608 .ndo_get_stats = bcm_enet_get_stats,
1609 .ndo_set_mac_address = bcm_enet_set_mac_address,
1610 .ndo_set_multicast_list = bcm_enet_set_multicast_list,
1611 .ndo_do_ioctl = bcm_enet_ioctl,
1612 .ndo_change_mtu = bcm_enet_change_mtu,
1613 #ifdef CONFIG_NET_POLL_CONTROLLER
1614 .ndo_poll_controller = bcm_enet_netpoll,
1615 #endif
1616 };
1617
1618 /*
1619 * allocate netdevice, request register memory and register device.
1620 */
1621 static int __devinit bcm_enet_probe(struct platform_device *pdev)
1622 {
1623 struct bcm_enet_priv *priv;
1624 struct net_device *dev;
1625 struct bcm63xx_enet_platform_data *pd;
1626 struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1627 struct mii_bus *bus;
1628 const char *clk_name;
1629 unsigned int iomem_size;
1630 int i, ret;
1631
1632 /* stop if shared driver failed, assume driver->probe will be
1633 * called in the same order we register devices (correct ?) */
1634 if (!bcm_enet_shared_base)
1635 return -ENODEV;
1636
1637 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1638 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1639 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1640 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1641 if (!res_mem || !res_irq || !res_irq_rx || !res_irq_tx)
1642 return -ENODEV;
1643
1644 ret = 0;
1645 dev = alloc_etherdev(sizeof(*priv));
1646 if (!dev)
1647 return -ENOMEM;
1648 priv = netdev_priv(dev);
1649 memset(priv, 0, sizeof(*priv));
1650
1651 ret = compute_hw_mtu(priv, dev->mtu);
1652 if (ret)
1653 goto out;
1654
1655 iomem_size = res_mem->end - res_mem->start + 1;
1656 if (!request_mem_region(res_mem->start, iomem_size, "bcm63xx_enet")) {
1657 ret = -EBUSY;
1658 goto out;
1659 }
1660
1661 priv->base = ioremap(res_mem->start, iomem_size);
1662 if (priv->base == NULL) {
1663 ret = -ENOMEM;
1664 goto out_release_mem;
1665 }
1666 dev->irq = priv->irq = res_irq->start;
1667 priv->irq_rx = res_irq_rx->start;
1668 priv->irq_tx = res_irq_tx->start;
1669 priv->mac_id = pdev->id;
1670
1671 /* get rx & tx dma channel id for this mac */
1672 if (priv->mac_id == 0) {
1673 priv->rx_chan = 0;
1674 priv->tx_chan = 1;
1675 clk_name = "enet0";
1676 } else {
1677 priv->rx_chan = 2;
1678 priv->tx_chan = 3;
1679 clk_name = "enet1";
1680 }
1681
1682 priv->mac_clk = clk_get(&pdev->dev, clk_name);
1683 if (IS_ERR(priv->mac_clk)) {
1684 ret = PTR_ERR(priv->mac_clk);
1685 goto out_unmap;
1686 }
1687 clk_enable(priv->mac_clk);
1688
1689 /* initialize default and fetch platform data */
1690 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1691 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1692
1693 pd = pdev->dev.platform_data;
1694 if (pd) {
1695 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1696 priv->has_phy = pd->has_phy;
1697 priv->phy_id = pd->phy_id;
1698 priv->has_phy_interrupt = pd->has_phy_interrupt;
1699 priv->phy_interrupt = pd->phy_interrupt;
1700 priv->use_external_mii = !pd->use_internal_phy;
1701 priv->pause_auto = pd->pause_auto;
1702 priv->pause_rx = pd->pause_rx;
1703 priv->pause_tx = pd->pause_tx;
1704 priv->force_duplex_full = pd->force_duplex_full;
1705 priv->force_speed_100 = pd->force_speed_100;
1706 }
1707
1708 if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1709 /* using internal PHY, enable clock */
1710 priv->phy_clk = clk_get(&pdev->dev, "ephy");
1711 if (IS_ERR(priv->phy_clk)) {
1712 ret = PTR_ERR(priv->phy_clk);
1713 priv->phy_clk = NULL;
1714 goto out_put_clk_mac;
1715 }
1716 clk_enable(priv->phy_clk);
1717 }
1718
1719 /* do minimal hardware init to be able to probe mii bus */
1720 bcm_enet_hw_preinit(priv);
1721
1722 /* MII bus registration */
1723 if (priv->has_phy) {
1724
1725 priv->mii_bus = mdiobus_alloc();
1726 if (!priv->mii_bus) {
1727 ret = -ENOMEM;
1728 goto out_uninit_hw;
1729 }
1730
1731 bus = priv->mii_bus;
1732 bus->name = "bcm63xx_enet MII bus";
1733 bus->parent = &pdev->dev;
1734 bus->priv = priv;
1735 bus->read = bcm_enet_mdio_read_phylib;
1736 bus->write = bcm_enet_mdio_write_phylib;
1737 sprintf(bus->id, "%d", priv->mac_id);
1738
1739 /* only probe bus where we think the PHY is, because
1740 * the mdio read operation return 0 instead of 0xffff
1741 * if a slave is not present on hw */
1742 bus->phy_mask = ~(1 << priv->phy_id);
1743
1744 bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1745 if (!bus->irq) {
1746 ret = -ENOMEM;
1747 goto out_free_mdio;
1748 }
1749
1750 if (priv->has_phy_interrupt)
1751 bus->irq[priv->phy_id] = priv->phy_interrupt;
1752 else
1753 bus->irq[priv->phy_id] = PHY_POLL;
1754
1755 ret = mdiobus_register(bus);
1756 if (ret) {
1757 dev_err(&pdev->dev, "unable to register mdio bus\n");
1758 goto out_free_mdio;
1759 }
1760 } else {
1761
1762 /* run platform code to initialize PHY device */
1763 if (pd->mii_config &&
1764 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1765 bcm_enet_mdio_write_mii)) {
1766 dev_err(&pdev->dev, "unable to configure mdio bus\n");
1767 goto out_uninit_hw;
1768 }
1769 }
1770
1771 spin_lock_init(&priv->rx_lock);
1772
1773 /* init rx timeout (used for oom) */
1774 init_timer(&priv->rx_timeout);
1775 priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1776 priv->rx_timeout.data = (unsigned long)dev;
1777
1778 /* init the mib update lock&work */
1779 mutex_init(&priv->mib_update_lock);
1780 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1781
1782 /* zero mib counters */
1783 for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1784 enet_writel(priv, 0, ENET_MIB_REG(i));
1785
1786 /* register netdevice */
1787 dev->netdev_ops = &bcm_enet_ops;
1788 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1789
1790 SET_ETHTOOL_OPS(dev, &bcm_enet_ethtool_ops);
1791 SET_NETDEV_DEV(dev, &pdev->dev);
1792
1793 ret = register_netdev(dev);
1794 if (ret)
1795 goto out_unregister_mdio;
1796
1797 netif_carrier_off(dev);
1798 platform_set_drvdata(pdev, dev);
1799 priv->pdev = pdev;
1800 priv->net_dev = dev;
1801
1802 return 0;
1803
1804 out_unregister_mdio:
1805 if (priv->mii_bus) {
1806 mdiobus_unregister(priv->mii_bus);
1807 kfree(priv->mii_bus->irq);
1808 }
1809
1810 out_free_mdio:
1811 if (priv->mii_bus)
1812 mdiobus_free(priv->mii_bus);
1813
1814 out_uninit_hw:
1815 /* turn off mdc clock */
1816 enet_writel(priv, 0, ENET_MIISC_REG);
1817 if (priv->phy_clk) {
1818 clk_disable(priv->phy_clk);
1819 clk_put(priv->phy_clk);
1820 }
1821
1822 out_put_clk_mac:
1823 clk_disable(priv->mac_clk);
1824 clk_put(priv->mac_clk);
1825
1826 out_unmap:
1827 iounmap(priv->base);
1828
1829 out_release_mem:
1830 release_mem_region(res_mem->start, iomem_size);
1831 out:
1832 free_netdev(dev);
1833 return ret;
1834 }
1835
1836
1837 /*
1838 * exit func, stops hardware and unregisters netdevice
1839 */
1840 static int __devexit bcm_enet_remove(struct platform_device *pdev)
1841 {
1842 struct bcm_enet_priv *priv;
1843 struct net_device *dev;
1844 struct resource *res;
1845
1846 /* stop netdevice */
1847 dev = platform_get_drvdata(pdev);
1848 priv = netdev_priv(dev);
1849 unregister_netdev(dev);
1850
1851 /* turn off mdc clock */
1852 enet_writel(priv, 0, ENET_MIISC_REG);
1853
1854 if (priv->has_phy) {
1855 mdiobus_unregister(priv->mii_bus);
1856 kfree(priv->mii_bus->irq);
1857 mdiobus_free(priv->mii_bus);
1858 } else {
1859 struct bcm63xx_enet_platform_data *pd;
1860
1861 pd = pdev->dev.platform_data;
1862 if (pd && pd->mii_config)
1863 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1864 bcm_enet_mdio_write_mii);
1865 }
1866
1867 /* release device resources */
1868 iounmap(priv->base);
1869 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1870 release_mem_region(res->start, res->end - res->start + 1);
1871
1872 /* disable hw block clocks */
1873 if (priv->phy_clk) {
1874 clk_disable(priv->phy_clk);
1875 clk_put(priv->phy_clk);
1876 }
1877 clk_disable(priv->mac_clk);
1878 clk_put(priv->mac_clk);
1879
1880 platform_set_drvdata(pdev, NULL);
1881 free_netdev(dev);
1882 return 0;
1883 }
1884
1885 struct platform_driver bcm63xx_enet_driver = {
1886 .probe = bcm_enet_probe,
1887 .remove = __devexit_p(bcm_enet_remove),
1888 .driver = {
1889 .name = "bcm63xx_enet",
1890 .owner = THIS_MODULE,
1891 },
1892 };
1893
1894 /*
1895 * reserve & remap memory space shared between all macs
1896 */
1897 static int __devinit bcm_enet_shared_probe(struct platform_device *pdev)
1898 {
1899 struct resource *res;
1900 unsigned int iomem_size;
1901
1902 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1903 if (!res)
1904 return -ENODEV;
1905
1906 iomem_size = res->end - res->start + 1;
1907 if (!request_mem_region(res->start, iomem_size, "bcm63xx_enet_dma"))
1908 return -EBUSY;
1909
1910 bcm_enet_shared_base = ioremap(res->start, iomem_size);
1911 if (!bcm_enet_shared_base) {
1912 release_mem_region(res->start, iomem_size);
1913 return -ENOMEM;
1914 }
1915 return 0;
1916 }
1917
1918 static int __devexit bcm_enet_shared_remove(struct platform_device *pdev)
1919 {
1920 struct resource *res;
1921
1922 iounmap(bcm_enet_shared_base);
1923 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1924 release_mem_region(res->start, res->end - res->start + 1);
1925 return 0;
1926 }
1927
1928 /*
1929 * this "shared" driver is needed because both macs share a single
1930 * address space
1931 */
1932 struct platform_driver bcm63xx_enet_shared_driver = {
1933 .probe = bcm_enet_shared_probe,
1934 .remove = __devexit_p(bcm_enet_shared_remove),
1935 .driver = {
1936 .name = "bcm63xx_enet_shared",
1937 .owner = THIS_MODULE,
1938 },
1939 };
1940
1941 /*
1942 * entry point
1943 */
1944 static int __init bcm_enet_init(void)
1945 {
1946 int ret;
1947
1948 ret = platform_driver_register(&bcm63xx_enet_shared_driver);
1949 if (ret)
1950 return ret;
1951
1952 ret = platform_driver_register(&bcm63xx_enet_driver);
1953 if (ret)
1954 platform_driver_unregister(&bcm63xx_enet_shared_driver);
1955
1956 return ret;
1957 }
1958
1959 static void __exit bcm_enet_exit(void)
1960 {
1961 platform_driver_unregister(&bcm63xx_enet_driver);
1962 platform_driver_unregister(&bcm63xx_enet_shared_driver);
1963 }
1964
1965
1966 module_init(bcm_enet_init);
1967 module_exit(bcm_enet_exit);
1968
1969 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
1970 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
1971 MODULE_LICENSE("GPL");
This page took 0.097519 seconds and 5 git commands to generate.