bnx2: Update version to 1.8.2.
[deliverable/linux.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2008 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/zlib.h>
50 #include <linux/log2.h>
51
52 #include "bnx2.h"
53 #include "bnx2_fw.h"
54 #include "bnx2_fw2.h"
55
56 #define FW_BUF_SIZE 0x10000
57
58 #define DRV_MODULE_NAME "bnx2"
59 #define PFX DRV_MODULE_NAME ": "
60 #define DRV_MODULE_VERSION "1.8.2"
61 #define DRV_MODULE_RELDATE "Nov 10, 2008"
62
63 #define RUN_AT(x) (jiffies + (x))
64
65 /* Time in jiffies before concluding the transmitter is hung. */
66 #define TX_TIMEOUT (5*HZ)
67
68 static char version[] __devinitdata =
69 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
70
71 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
72 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
73 MODULE_LICENSE("GPL");
74 MODULE_VERSION(DRV_MODULE_VERSION);
75
76 static int disable_msi = 0;
77
78 module_param(disable_msi, int, 0);
79 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
80
81 typedef enum {
82 BCM5706 = 0,
83 NC370T,
84 NC370I,
85 BCM5706S,
86 NC370F,
87 BCM5708,
88 BCM5708S,
89 BCM5709,
90 BCM5709S,
91 BCM5716,
92 BCM5716S,
93 } board_t;
94
95 /* indexed by board_t, above */
96 static struct {
97 char *name;
98 } board_info[] __devinitdata = {
99 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
100 { "HP NC370T Multifunction Gigabit Server Adapter" },
101 { "HP NC370i Multifunction Gigabit Server Adapter" },
102 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
103 { "HP NC370F Multifunction Gigabit Server Adapter" },
104 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
105 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
106 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
107 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
108 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
109 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
110 };
111
112 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
113 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
114 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
115 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
116 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
117 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
118 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
119 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
120 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
121 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
122 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
123 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
124 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
125 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
126 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
127 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
128 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
129 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
131 { PCI_VENDOR_ID_BROADCOM, 0x163b,
132 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
133 { PCI_VENDOR_ID_BROADCOM, 0x163c,
134 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
135 { 0, }
136 };
137
138 static struct flash_spec flash_table[] =
139 {
140 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
141 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
142 /* Slow EEPROM */
143 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
144 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
145 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
146 "EEPROM - slow"},
147 /* Expansion entry 0001 */
148 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
149 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
150 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
151 "Entry 0001"},
152 /* Saifun SA25F010 (non-buffered flash) */
153 /* strap, cfg1, & write1 need updates */
154 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
155 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
156 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
157 "Non-buffered flash (128kB)"},
158 /* Saifun SA25F020 (non-buffered flash) */
159 /* strap, cfg1, & write1 need updates */
160 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
162 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
163 "Non-buffered flash (256kB)"},
164 /* Expansion entry 0100 */
165 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
166 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
167 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
168 "Entry 0100"},
169 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
170 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
171 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
172 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
173 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
174 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
175 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
176 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
177 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
178 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
179 /* Saifun SA25F005 (non-buffered flash) */
180 /* strap, cfg1, & write1 need updates */
181 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
182 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
184 "Non-buffered flash (64kB)"},
185 /* Fast EEPROM */
186 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
187 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
188 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
189 "EEPROM - fast"},
190 /* Expansion entry 1001 */
191 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
192 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
193 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
194 "Entry 1001"},
195 /* Expansion entry 1010 */
196 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
197 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
198 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
199 "Entry 1010"},
200 /* ATMEL AT45DB011B (buffered flash) */
201 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
202 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
203 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
204 "Buffered flash (128kB)"},
205 /* Expansion entry 1100 */
206 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
209 "Entry 1100"},
210 /* Expansion entry 1101 */
211 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
213 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
214 "Entry 1101"},
215 /* Ateml Expansion entry 1110 */
216 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
217 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
218 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
219 "Entry 1110 (Atmel)"},
220 /* ATMEL AT45DB021B (buffered flash) */
221 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
222 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
223 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
224 "Buffered flash (256kB)"},
225 };
226
227 static struct flash_spec flash_5709 = {
228 .flags = BNX2_NV_BUFFERED,
229 .page_bits = BCM5709_FLASH_PAGE_BITS,
230 .page_size = BCM5709_FLASH_PAGE_SIZE,
231 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
232 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
233 .name = "5709 Buffered flash (256kB)",
234 };
235
236 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
237
238 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
239 {
240 u32 diff;
241
242 smp_mb();
243
244 /* The ring uses 256 indices for 255 entries, one of them
245 * needs to be skipped.
246 */
247 diff = txr->tx_prod - txr->tx_cons;
248 if (unlikely(diff >= TX_DESC_CNT)) {
249 diff &= 0xffff;
250 if (diff == TX_DESC_CNT)
251 diff = MAX_TX_DESC_CNT;
252 }
253 return (bp->tx_ring_size - diff);
254 }
255
256 static u32
257 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
258 {
259 u32 val;
260
261 spin_lock_bh(&bp->indirect_lock);
262 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
263 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
264 spin_unlock_bh(&bp->indirect_lock);
265 return val;
266 }
267
268 static void
269 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
270 {
271 spin_lock_bh(&bp->indirect_lock);
272 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
273 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
274 spin_unlock_bh(&bp->indirect_lock);
275 }
276
277 static void
278 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
279 {
280 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
281 }
282
283 static u32
284 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
285 {
286 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
287 }
288
289 static void
290 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
291 {
292 offset += cid_addr;
293 spin_lock_bh(&bp->indirect_lock);
294 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
295 int i;
296
297 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
298 REG_WR(bp, BNX2_CTX_CTX_CTRL,
299 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
300 for (i = 0; i < 5; i++) {
301 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
302 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
303 break;
304 udelay(5);
305 }
306 } else {
307 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
308 REG_WR(bp, BNX2_CTX_DATA, val);
309 }
310 spin_unlock_bh(&bp->indirect_lock);
311 }
312
313 static int
314 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
315 {
316 u32 val1;
317 int i, ret;
318
319 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
320 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
321 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
322
323 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
324 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
325
326 udelay(40);
327 }
328
329 val1 = (bp->phy_addr << 21) | (reg << 16) |
330 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
331 BNX2_EMAC_MDIO_COMM_START_BUSY;
332 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
333
334 for (i = 0; i < 50; i++) {
335 udelay(10);
336
337 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
338 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
339 udelay(5);
340
341 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
342 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
343
344 break;
345 }
346 }
347
348 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
349 *val = 0x0;
350 ret = -EBUSY;
351 }
352 else {
353 *val = val1;
354 ret = 0;
355 }
356
357 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
358 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
359 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
360
361 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
362 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
363
364 udelay(40);
365 }
366
367 return ret;
368 }
369
370 static int
371 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
372 {
373 u32 val1;
374 int i, ret;
375
376 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
377 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
378 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
379
380 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
381 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
382
383 udelay(40);
384 }
385
386 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
387 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
388 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
389 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
390
391 for (i = 0; i < 50; i++) {
392 udelay(10);
393
394 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
395 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
396 udelay(5);
397 break;
398 }
399 }
400
401 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
402 ret = -EBUSY;
403 else
404 ret = 0;
405
406 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
407 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
408 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
409
410 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
411 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
412
413 udelay(40);
414 }
415
416 return ret;
417 }
418
419 static void
420 bnx2_disable_int(struct bnx2 *bp)
421 {
422 int i;
423 struct bnx2_napi *bnapi;
424
425 for (i = 0; i < bp->irq_nvecs; i++) {
426 bnapi = &bp->bnx2_napi[i];
427 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
428 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
429 }
430 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
431 }
432
433 static void
434 bnx2_enable_int(struct bnx2 *bp)
435 {
436 int i;
437 struct bnx2_napi *bnapi;
438
439 for (i = 0; i < bp->irq_nvecs; i++) {
440 bnapi = &bp->bnx2_napi[i];
441
442 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
443 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
444 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
445 bnapi->last_status_idx);
446
447 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
448 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
449 bnapi->last_status_idx);
450 }
451 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
452 }
453
454 static void
455 bnx2_disable_int_sync(struct bnx2 *bp)
456 {
457 int i;
458
459 atomic_inc(&bp->intr_sem);
460 bnx2_disable_int(bp);
461 for (i = 0; i < bp->irq_nvecs; i++)
462 synchronize_irq(bp->irq_tbl[i].vector);
463 }
464
465 static void
466 bnx2_napi_disable(struct bnx2 *bp)
467 {
468 int i;
469
470 for (i = 0; i < bp->irq_nvecs; i++)
471 napi_disable(&bp->bnx2_napi[i].napi);
472 }
473
474 static void
475 bnx2_napi_enable(struct bnx2 *bp)
476 {
477 int i;
478
479 for (i = 0; i < bp->irq_nvecs; i++)
480 napi_enable(&bp->bnx2_napi[i].napi);
481 }
482
483 static void
484 bnx2_netif_stop(struct bnx2 *bp)
485 {
486 bnx2_disable_int_sync(bp);
487 if (netif_running(bp->dev)) {
488 bnx2_napi_disable(bp);
489 netif_tx_disable(bp->dev);
490 bp->dev->trans_start = jiffies; /* prevent tx timeout */
491 }
492 }
493
494 static void
495 bnx2_netif_start(struct bnx2 *bp)
496 {
497 if (atomic_dec_and_test(&bp->intr_sem)) {
498 if (netif_running(bp->dev)) {
499 netif_tx_wake_all_queues(bp->dev);
500 bnx2_napi_enable(bp);
501 bnx2_enable_int(bp);
502 }
503 }
504 }
505
506 static void
507 bnx2_free_tx_mem(struct bnx2 *bp)
508 {
509 int i;
510
511 for (i = 0; i < bp->num_tx_rings; i++) {
512 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
513 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
514
515 if (txr->tx_desc_ring) {
516 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
517 txr->tx_desc_ring,
518 txr->tx_desc_mapping);
519 txr->tx_desc_ring = NULL;
520 }
521 kfree(txr->tx_buf_ring);
522 txr->tx_buf_ring = NULL;
523 }
524 }
525
526 static void
527 bnx2_free_rx_mem(struct bnx2 *bp)
528 {
529 int i;
530
531 for (i = 0; i < bp->num_rx_rings; i++) {
532 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
533 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
534 int j;
535
536 for (j = 0; j < bp->rx_max_ring; j++) {
537 if (rxr->rx_desc_ring[j])
538 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
539 rxr->rx_desc_ring[j],
540 rxr->rx_desc_mapping[j]);
541 rxr->rx_desc_ring[j] = NULL;
542 }
543 if (rxr->rx_buf_ring)
544 vfree(rxr->rx_buf_ring);
545 rxr->rx_buf_ring = NULL;
546
547 for (j = 0; j < bp->rx_max_pg_ring; j++) {
548 if (rxr->rx_pg_desc_ring[j])
549 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
550 rxr->rx_pg_desc_ring[i],
551 rxr->rx_pg_desc_mapping[i]);
552 rxr->rx_pg_desc_ring[i] = NULL;
553 }
554 if (rxr->rx_pg_ring)
555 vfree(rxr->rx_pg_ring);
556 rxr->rx_pg_ring = NULL;
557 }
558 }
559
560 static int
561 bnx2_alloc_tx_mem(struct bnx2 *bp)
562 {
563 int i;
564
565 for (i = 0; i < bp->num_tx_rings; i++) {
566 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
567 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
568
569 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
570 if (txr->tx_buf_ring == NULL)
571 return -ENOMEM;
572
573 txr->tx_desc_ring =
574 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
575 &txr->tx_desc_mapping);
576 if (txr->tx_desc_ring == NULL)
577 return -ENOMEM;
578 }
579 return 0;
580 }
581
582 static int
583 bnx2_alloc_rx_mem(struct bnx2 *bp)
584 {
585 int i;
586
587 for (i = 0; i < bp->num_rx_rings; i++) {
588 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
589 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
590 int j;
591
592 rxr->rx_buf_ring =
593 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
594 if (rxr->rx_buf_ring == NULL)
595 return -ENOMEM;
596
597 memset(rxr->rx_buf_ring, 0,
598 SW_RXBD_RING_SIZE * bp->rx_max_ring);
599
600 for (j = 0; j < bp->rx_max_ring; j++) {
601 rxr->rx_desc_ring[j] =
602 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
603 &rxr->rx_desc_mapping[j]);
604 if (rxr->rx_desc_ring[j] == NULL)
605 return -ENOMEM;
606
607 }
608
609 if (bp->rx_pg_ring_size) {
610 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
611 bp->rx_max_pg_ring);
612 if (rxr->rx_pg_ring == NULL)
613 return -ENOMEM;
614
615 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
616 bp->rx_max_pg_ring);
617 }
618
619 for (j = 0; j < bp->rx_max_pg_ring; j++) {
620 rxr->rx_pg_desc_ring[j] =
621 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
622 &rxr->rx_pg_desc_mapping[j]);
623 if (rxr->rx_pg_desc_ring[j] == NULL)
624 return -ENOMEM;
625
626 }
627 }
628 return 0;
629 }
630
631 static void
632 bnx2_free_mem(struct bnx2 *bp)
633 {
634 int i;
635 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
636
637 bnx2_free_tx_mem(bp);
638 bnx2_free_rx_mem(bp);
639
640 for (i = 0; i < bp->ctx_pages; i++) {
641 if (bp->ctx_blk[i]) {
642 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
643 bp->ctx_blk[i],
644 bp->ctx_blk_mapping[i]);
645 bp->ctx_blk[i] = NULL;
646 }
647 }
648 if (bnapi->status_blk.msi) {
649 pci_free_consistent(bp->pdev, bp->status_stats_size,
650 bnapi->status_blk.msi,
651 bp->status_blk_mapping);
652 bnapi->status_blk.msi = NULL;
653 bp->stats_blk = NULL;
654 }
655 }
656
657 static int
658 bnx2_alloc_mem(struct bnx2 *bp)
659 {
660 int i, status_blk_size, err;
661 struct bnx2_napi *bnapi;
662 void *status_blk;
663
664 /* Combine status and statistics blocks into one allocation. */
665 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
666 if (bp->flags & BNX2_FLAG_MSIX_CAP)
667 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
668 BNX2_SBLK_MSIX_ALIGN_SIZE);
669 bp->status_stats_size = status_blk_size +
670 sizeof(struct statistics_block);
671
672 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
673 &bp->status_blk_mapping);
674 if (status_blk == NULL)
675 goto alloc_mem_err;
676
677 memset(status_blk, 0, bp->status_stats_size);
678
679 bnapi = &bp->bnx2_napi[0];
680 bnapi->status_blk.msi = status_blk;
681 bnapi->hw_tx_cons_ptr =
682 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
683 bnapi->hw_rx_cons_ptr =
684 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
685 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
686 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
687 struct status_block_msix *sblk;
688
689 bnapi = &bp->bnx2_napi[i];
690
691 sblk = (void *) (status_blk +
692 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
693 bnapi->status_blk.msix = sblk;
694 bnapi->hw_tx_cons_ptr =
695 &sblk->status_tx_quick_consumer_index;
696 bnapi->hw_rx_cons_ptr =
697 &sblk->status_rx_quick_consumer_index;
698 bnapi->int_num = i << 24;
699 }
700 }
701
702 bp->stats_blk = status_blk + status_blk_size;
703
704 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
705
706 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
707 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
708 if (bp->ctx_pages == 0)
709 bp->ctx_pages = 1;
710 for (i = 0; i < bp->ctx_pages; i++) {
711 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
712 BCM_PAGE_SIZE,
713 &bp->ctx_blk_mapping[i]);
714 if (bp->ctx_blk[i] == NULL)
715 goto alloc_mem_err;
716 }
717 }
718
719 err = bnx2_alloc_rx_mem(bp);
720 if (err)
721 goto alloc_mem_err;
722
723 err = bnx2_alloc_tx_mem(bp);
724 if (err)
725 goto alloc_mem_err;
726
727 return 0;
728
729 alloc_mem_err:
730 bnx2_free_mem(bp);
731 return -ENOMEM;
732 }
733
734 static void
735 bnx2_report_fw_link(struct bnx2 *bp)
736 {
737 u32 fw_link_status = 0;
738
739 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
740 return;
741
742 if (bp->link_up) {
743 u32 bmsr;
744
745 switch (bp->line_speed) {
746 case SPEED_10:
747 if (bp->duplex == DUPLEX_HALF)
748 fw_link_status = BNX2_LINK_STATUS_10HALF;
749 else
750 fw_link_status = BNX2_LINK_STATUS_10FULL;
751 break;
752 case SPEED_100:
753 if (bp->duplex == DUPLEX_HALF)
754 fw_link_status = BNX2_LINK_STATUS_100HALF;
755 else
756 fw_link_status = BNX2_LINK_STATUS_100FULL;
757 break;
758 case SPEED_1000:
759 if (bp->duplex == DUPLEX_HALF)
760 fw_link_status = BNX2_LINK_STATUS_1000HALF;
761 else
762 fw_link_status = BNX2_LINK_STATUS_1000FULL;
763 break;
764 case SPEED_2500:
765 if (bp->duplex == DUPLEX_HALF)
766 fw_link_status = BNX2_LINK_STATUS_2500HALF;
767 else
768 fw_link_status = BNX2_LINK_STATUS_2500FULL;
769 break;
770 }
771
772 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
773
774 if (bp->autoneg) {
775 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
776
777 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
778 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
779
780 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
781 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
782 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
783 else
784 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
785 }
786 }
787 else
788 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
789
790 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
791 }
792
793 static char *
794 bnx2_xceiver_str(struct bnx2 *bp)
795 {
796 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
797 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
798 "Copper"));
799 }
800
801 static void
802 bnx2_report_link(struct bnx2 *bp)
803 {
804 if (bp->link_up) {
805 netif_carrier_on(bp->dev);
806 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
807 bnx2_xceiver_str(bp));
808
809 printk("%d Mbps ", bp->line_speed);
810
811 if (bp->duplex == DUPLEX_FULL)
812 printk("full duplex");
813 else
814 printk("half duplex");
815
816 if (bp->flow_ctrl) {
817 if (bp->flow_ctrl & FLOW_CTRL_RX) {
818 printk(", receive ");
819 if (bp->flow_ctrl & FLOW_CTRL_TX)
820 printk("& transmit ");
821 }
822 else {
823 printk(", transmit ");
824 }
825 printk("flow control ON");
826 }
827 printk("\n");
828 }
829 else {
830 netif_carrier_off(bp->dev);
831 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
832 bnx2_xceiver_str(bp));
833 }
834
835 bnx2_report_fw_link(bp);
836 }
837
838 static void
839 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
840 {
841 u32 local_adv, remote_adv;
842
843 bp->flow_ctrl = 0;
844 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
845 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
846
847 if (bp->duplex == DUPLEX_FULL) {
848 bp->flow_ctrl = bp->req_flow_ctrl;
849 }
850 return;
851 }
852
853 if (bp->duplex != DUPLEX_FULL) {
854 return;
855 }
856
857 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
858 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
859 u32 val;
860
861 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
862 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
863 bp->flow_ctrl |= FLOW_CTRL_TX;
864 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
865 bp->flow_ctrl |= FLOW_CTRL_RX;
866 return;
867 }
868
869 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
870 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
871
872 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
873 u32 new_local_adv = 0;
874 u32 new_remote_adv = 0;
875
876 if (local_adv & ADVERTISE_1000XPAUSE)
877 new_local_adv |= ADVERTISE_PAUSE_CAP;
878 if (local_adv & ADVERTISE_1000XPSE_ASYM)
879 new_local_adv |= ADVERTISE_PAUSE_ASYM;
880 if (remote_adv & ADVERTISE_1000XPAUSE)
881 new_remote_adv |= ADVERTISE_PAUSE_CAP;
882 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
883 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
884
885 local_adv = new_local_adv;
886 remote_adv = new_remote_adv;
887 }
888
889 /* See Table 28B-3 of 802.3ab-1999 spec. */
890 if (local_adv & ADVERTISE_PAUSE_CAP) {
891 if(local_adv & ADVERTISE_PAUSE_ASYM) {
892 if (remote_adv & ADVERTISE_PAUSE_CAP) {
893 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
894 }
895 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
896 bp->flow_ctrl = FLOW_CTRL_RX;
897 }
898 }
899 else {
900 if (remote_adv & ADVERTISE_PAUSE_CAP) {
901 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
902 }
903 }
904 }
905 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
906 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
907 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
908
909 bp->flow_ctrl = FLOW_CTRL_TX;
910 }
911 }
912 }
913
914 static int
915 bnx2_5709s_linkup(struct bnx2 *bp)
916 {
917 u32 val, speed;
918
919 bp->link_up = 1;
920
921 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
922 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
923 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
924
925 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
926 bp->line_speed = bp->req_line_speed;
927 bp->duplex = bp->req_duplex;
928 return 0;
929 }
930 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
931 switch (speed) {
932 case MII_BNX2_GP_TOP_AN_SPEED_10:
933 bp->line_speed = SPEED_10;
934 break;
935 case MII_BNX2_GP_TOP_AN_SPEED_100:
936 bp->line_speed = SPEED_100;
937 break;
938 case MII_BNX2_GP_TOP_AN_SPEED_1G:
939 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
940 bp->line_speed = SPEED_1000;
941 break;
942 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
943 bp->line_speed = SPEED_2500;
944 break;
945 }
946 if (val & MII_BNX2_GP_TOP_AN_FD)
947 bp->duplex = DUPLEX_FULL;
948 else
949 bp->duplex = DUPLEX_HALF;
950 return 0;
951 }
952
953 static int
954 bnx2_5708s_linkup(struct bnx2 *bp)
955 {
956 u32 val;
957
958 bp->link_up = 1;
959 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
960 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
961 case BCM5708S_1000X_STAT1_SPEED_10:
962 bp->line_speed = SPEED_10;
963 break;
964 case BCM5708S_1000X_STAT1_SPEED_100:
965 bp->line_speed = SPEED_100;
966 break;
967 case BCM5708S_1000X_STAT1_SPEED_1G:
968 bp->line_speed = SPEED_1000;
969 break;
970 case BCM5708S_1000X_STAT1_SPEED_2G5:
971 bp->line_speed = SPEED_2500;
972 break;
973 }
974 if (val & BCM5708S_1000X_STAT1_FD)
975 bp->duplex = DUPLEX_FULL;
976 else
977 bp->duplex = DUPLEX_HALF;
978
979 return 0;
980 }
981
982 static int
983 bnx2_5706s_linkup(struct bnx2 *bp)
984 {
985 u32 bmcr, local_adv, remote_adv, common;
986
987 bp->link_up = 1;
988 bp->line_speed = SPEED_1000;
989
990 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
991 if (bmcr & BMCR_FULLDPLX) {
992 bp->duplex = DUPLEX_FULL;
993 }
994 else {
995 bp->duplex = DUPLEX_HALF;
996 }
997
998 if (!(bmcr & BMCR_ANENABLE)) {
999 return 0;
1000 }
1001
1002 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1003 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1004
1005 common = local_adv & remote_adv;
1006 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1007
1008 if (common & ADVERTISE_1000XFULL) {
1009 bp->duplex = DUPLEX_FULL;
1010 }
1011 else {
1012 bp->duplex = DUPLEX_HALF;
1013 }
1014 }
1015
1016 return 0;
1017 }
1018
1019 static int
1020 bnx2_copper_linkup(struct bnx2 *bp)
1021 {
1022 u32 bmcr;
1023
1024 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1025 if (bmcr & BMCR_ANENABLE) {
1026 u32 local_adv, remote_adv, common;
1027
1028 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1029 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1030
1031 common = local_adv & (remote_adv >> 2);
1032 if (common & ADVERTISE_1000FULL) {
1033 bp->line_speed = SPEED_1000;
1034 bp->duplex = DUPLEX_FULL;
1035 }
1036 else if (common & ADVERTISE_1000HALF) {
1037 bp->line_speed = SPEED_1000;
1038 bp->duplex = DUPLEX_HALF;
1039 }
1040 else {
1041 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1042 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1043
1044 common = local_adv & remote_adv;
1045 if (common & ADVERTISE_100FULL) {
1046 bp->line_speed = SPEED_100;
1047 bp->duplex = DUPLEX_FULL;
1048 }
1049 else if (common & ADVERTISE_100HALF) {
1050 bp->line_speed = SPEED_100;
1051 bp->duplex = DUPLEX_HALF;
1052 }
1053 else if (common & ADVERTISE_10FULL) {
1054 bp->line_speed = SPEED_10;
1055 bp->duplex = DUPLEX_FULL;
1056 }
1057 else if (common & ADVERTISE_10HALF) {
1058 bp->line_speed = SPEED_10;
1059 bp->duplex = DUPLEX_HALF;
1060 }
1061 else {
1062 bp->line_speed = 0;
1063 bp->link_up = 0;
1064 }
1065 }
1066 }
1067 else {
1068 if (bmcr & BMCR_SPEED100) {
1069 bp->line_speed = SPEED_100;
1070 }
1071 else {
1072 bp->line_speed = SPEED_10;
1073 }
1074 if (bmcr & BMCR_FULLDPLX) {
1075 bp->duplex = DUPLEX_FULL;
1076 }
1077 else {
1078 bp->duplex = DUPLEX_HALF;
1079 }
1080 }
1081
1082 return 0;
1083 }
1084
1085 static void
1086 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1087 {
1088 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1089
1090 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1091 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1092 val |= 0x02 << 8;
1093
1094 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1095 u32 lo_water, hi_water;
1096
1097 if (bp->flow_ctrl & FLOW_CTRL_TX)
1098 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1099 else
1100 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1101 if (lo_water >= bp->rx_ring_size)
1102 lo_water = 0;
1103
1104 hi_water = bp->rx_ring_size / 4;
1105
1106 if (hi_water <= lo_water)
1107 lo_water = 0;
1108
1109 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1110 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1111
1112 if (hi_water > 0xf)
1113 hi_water = 0xf;
1114 else if (hi_water == 0)
1115 lo_water = 0;
1116 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1117 }
1118 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1119 }
1120
1121 static void
1122 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1123 {
1124 int i;
1125 u32 cid;
1126
1127 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1128 if (i == 1)
1129 cid = RX_RSS_CID;
1130 bnx2_init_rx_context(bp, cid);
1131 }
1132 }
1133
1134 static void
1135 bnx2_set_mac_link(struct bnx2 *bp)
1136 {
1137 u32 val;
1138
1139 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1140 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1141 (bp->duplex == DUPLEX_HALF)) {
1142 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1143 }
1144
1145 /* Configure the EMAC mode register. */
1146 val = REG_RD(bp, BNX2_EMAC_MODE);
1147
1148 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1149 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1150 BNX2_EMAC_MODE_25G_MODE);
1151
1152 if (bp->link_up) {
1153 switch (bp->line_speed) {
1154 case SPEED_10:
1155 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1156 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1157 break;
1158 }
1159 /* fall through */
1160 case SPEED_100:
1161 val |= BNX2_EMAC_MODE_PORT_MII;
1162 break;
1163 case SPEED_2500:
1164 val |= BNX2_EMAC_MODE_25G_MODE;
1165 /* fall through */
1166 case SPEED_1000:
1167 val |= BNX2_EMAC_MODE_PORT_GMII;
1168 break;
1169 }
1170 }
1171 else {
1172 val |= BNX2_EMAC_MODE_PORT_GMII;
1173 }
1174
1175 /* Set the MAC to operate in the appropriate duplex mode. */
1176 if (bp->duplex == DUPLEX_HALF)
1177 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1178 REG_WR(bp, BNX2_EMAC_MODE, val);
1179
1180 /* Enable/disable rx PAUSE. */
1181 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1182
1183 if (bp->flow_ctrl & FLOW_CTRL_RX)
1184 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1185 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1186
1187 /* Enable/disable tx PAUSE. */
1188 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1189 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1190
1191 if (bp->flow_ctrl & FLOW_CTRL_TX)
1192 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1193 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1194
1195 /* Acknowledge the interrupt. */
1196 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1197
1198 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1199 bnx2_init_all_rx_contexts(bp);
1200 }
1201
1202 static void
1203 bnx2_enable_bmsr1(struct bnx2 *bp)
1204 {
1205 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1206 (CHIP_NUM(bp) == CHIP_NUM_5709))
1207 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1208 MII_BNX2_BLK_ADDR_GP_STATUS);
1209 }
1210
1211 static void
1212 bnx2_disable_bmsr1(struct bnx2 *bp)
1213 {
1214 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1215 (CHIP_NUM(bp) == CHIP_NUM_5709))
1216 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1217 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1218 }
1219
1220 static int
1221 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1222 {
1223 u32 up1;
1224 int ret = 1;
1225
1226 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1227 return 0;
1228
1229 if (bp->autoneg & AUTONEG_SPEED)
1230 bp->advertising |= ADVERTISED_2500baseX_Full;
1231
1232 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1233 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1234
1235 bnx2_read_phy(bp, bp->mii_up1, &up1);
1236 if (!(up1 & BCM5708S_UP1_2G5)) {
1237 up1 |= BCM5708S_UP1_2G5;
1238 bnx2_write_phy(bp, bp->mii_up1, up1);
1239 ret = 0;
1240 }
1241
1242 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1243 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1244 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1245
1246 return ret;
1247 }
1248
1249 static int
1250 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1251 {
1252 u32 up1;
1253 int ret = 0;
1254
1255 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1256 return 0;
1257
1258 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1259 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1260
1261 bnx2_read_phy(bp, bp->mii_up1, &up1);
1262 if (up1 & BCM5708S_UP1_2G5) {
1263 up1 &= ~BCM5708S_UP1_2G5;
1264 bnx2_write_phy(bp, bp->mii_up1, up1);
1265 ret = 1;
1266 }
1267
1268 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1269 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1270 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1271
1272 return ret;
1273 }
1274
1275 static void
1276 bnx2_enable_forced_2g5(struct bnx2 *bp)
1277 {
1278 u32 bmcr;
1279
1280 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1281 return;
1282
1283 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1284 u32 val;
1285
1286 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1287 MII_BNX2_BLK_ADDR_SERDES_DIG);
1288 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1289 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1290 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1291 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1292
1293 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1294 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1295 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1296
1297 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1298 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1299 bmcr |= BCM5708S_BMCR_FORCE_2500;
1300 }
1301
1302 if (bp->autoneg & AUTONEG_SPEED) {
1303 bmcr &= ~BMCR_ANENABLE;
1304 if (bp->req_duplex == DUPLEX_FULL)
1305 bmcr |= BMCR_FULLDPLX;
1306 }
1307 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1308 }
1309
1310 static void
1311 bnx2_disable_forced_2g5(struct bnx2 *bp)
1312 {
1313 u32 bmcr;
1314
1315 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1316 return;
1317
1318 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1319 u32 val;
1320
1321 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1322 MII_BNX2_BLK_ADDR_SERDES_DIG);
1323 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1324 val &= ~MII_BNX2_SD_MISC1_FORCE;
1325 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1326
1327 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1328 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1329 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1330
1331 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1332 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1333 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1334 }
1335
1336 if (bp->autoneg & AUTONEG_SPEED)
1337 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1338 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1339 }
1340
1341 static void
1342 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1343 {
1344 u32 val;
1345
1346 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1347 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1348 if (start)
1349 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1350 else
1351 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1352 }
1353
1354 static int
1355 bnx2_set_link(struct bnx2 *bp)
1356 {
1357 u32 bmsr;
1358 u8 link_up;
1359
1360 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1361 bp->link_up = 1;
1362 return 0;
1363 }
1364
1365 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1366 return 0;
1367
1368 link_up = bp->link_up;
1369
1370 bnx2_enable_bmsr1(bp);
1371 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1372 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1373 bnx2_disable_bmsr1(bp);
1374
1375 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1376 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1377 u32 val, an_dbg;
1378
1379 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1380 bnx2_5706s_force_link_dn(bp, 0);
1381 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1382 }
1383 val = REG_RD(bp, BNX2_EMAC_STATUS);
1384
1385 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1386 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1387 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1388
1389 if ((val & BNX2_EMAC_STATUS_LINK) &&
1390 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1391 bmsr |= BMSR_LSTATUS;
1392 else
1393 bmsr &= ~BMSR_LSTATUS;
1394 }
1395
1396 if (bmsr & BMSR_LSTATUS) {
1397 bp->link_up = 1;
1398
1399 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1400 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1401 bnx2_5706s_linkup(bp);
1402 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1403 bnx2_5708s_linkup(bp);
1404 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1405 bnx2_5709s_linkup(bp);
1406 }
1407 else {
1408 bnx2_copper_linkup(bp);
1409 }
1410 bnx2_resolve_flow_ctrl(bp);
1411 }
1412 else {
1413 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1414 (bp->autoneg & AUTONEG_SPEED))
1415 bnx2_disable_forced_2g5(bp);
1416
1417 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1418 u32 bmcr;
1419
1420 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1421 bmcr |= BMCR_ANENABLE;
1422 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1423
1424 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1425 }
1426 bp->link_up = 0;
1427 }
1428
1429 if (bp->link_up != link_up) {
1430 bnx2_report_link(bp);
1431 }
1432
1433 bnx2_set_mac_link(bp);
1434
1435 return 0;
1436 }
1437
1438 static int
1439 bnx2_reset_phy(struct bnx2 *bp)
1440 {
1441 int i;
1442 u32 reg;
1443
1444 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1445
1446 #define PHY_RESET_MAX_WAIT 100
1447 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1448 udelay(10);
1449
1450 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1451 if (!(reg & BMCR_RESET)) {
1452 udelay(20);
1453 break;
1454 }
1455 }
1456 if (i == PHY_RESET_MAX_WAIT) {
1457 return -EBUSY;
1458 }
1459 return 0;
1460 }
1461
1462 static u32
1463 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1464 {
1465 u32 adv = 0;
1466
1467 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1468 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1469
1470 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1471 adv = ADVERTISE_1000XPAUSE;
1472 }
1473 else {
1474 adv = ADVERTISE_PAUSE_CAP;
1475 }
1476 }
1477 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1478 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1479 adv = ADVERTISE_1000XPSE_ASYM;
1480 }
1481 else {
1482 adv = ADVERTISE_PAUSE_ASYM;
1483 }
1484 }
1485 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1486 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1487 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1488 }
1489 else {
1490 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1491 }
1492 }
1493 return adv;
1494 }
1495
1496 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1497
1498 static int
1499 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1500 {
1501 u32 speed_arg = 0, pause_adv;
1502
1503 pause_adv = bnx2_phy_get_pause_adv(bp);
1504
1505 if (bp->autoneg & AUTONEG_SPEED) {
1506 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1507 if (bp->advertising & ADVERTISED_10baseT_Half)
1508 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1509 if (bp->advertising & ADVERTISED_10baseT_Full)
1510 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1511 if (bp->advertising & ADVERTISED_100baseT_Half)
1512 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1513 if (bp->advertising & ADVERTISED_100baseT_Full)
1514 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1515 if (bp->advertising & ADVERTISED_1000baseT_Full)
1516 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1517 if (bp->advertising & ADVERTISED_2500baseX_Full)
1518 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1519 } else {
1520 if (bp->req_line_speed == SPEED_2500)
1521 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1522 else if (bp->req_line_speed == SPEED_1000)
1523 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1524 else if (bp->req_line_speed == SPEED_100) {
1525 if (bp->req_duplex == DUPLEX_FULL)
1526 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1527 else
1528 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1529 } else if (bp->req_line_speed == SPEED_10) {
1530 if (bp->req_duplex == DUPLEX_FULL)
1531 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1532 else
1533 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1534 }
1535 }
1536
1537 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1538 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1539 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1540 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1541
1542 if (port == PORT_TP)
1543 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1544 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1545
1546 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1547
1548 spin_unlock_bh(&bp->phy_lock);
1549 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1550 spin_lock_bh(&bp->phy_lock);
1551
1552 return 0;
1553 }
1554
1555 static int
1556 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1557 {
1558 u32 adv, bmcr;
1559 u32 new_adv = 0;
1560
1561 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1562 return (bnx2_setup_remote_phy(bp, port));
1563
1564 if (!(bp->autoneg & AUTONEG_SPEED)) {
1565 u32 new_bmcr;
1566 int force_link_down = 0;
1567
1568 if (bp->req_line_speed == SPEED_2500) {
1569 if (!bnx2_test_and_enable_2g5(bp))
1570 force_link_down = 1;
1571 } else if (bp->req_line_speed == SPEED_1000) {
1572 if (bnx2_test_and_disable_2g5(bp))
1573 force_link_down = 1;
1574 }
1575 bnx2_read_phy(bp, bp->mii_adv, &adv);
1576 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1577
1578 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1579 new_bmcr = bmcr & ~BMCR_ANENABLE;
1580 new_bmcr |= BMCR_SPEED1000;
1581
1582 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1583 if (bp->req_line_speed == SPEED_2500)
1584 bnx2_enable_forced_2g5(bp);
1585 else if (bp->req_line_speed == SPEED_1000) {
1586 bnx2_disable_forced_2g5(bp);
1587 new_bmcr &= ~0x2000;
1588 }
1589
1590 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1591 if (bp->req_line_speed == SPEED_2500)
1592 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1593 else
1594 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1595 }
1596
1597 if (bp->req_duplex == DUPLEX_FULL) {
1598 adv |= ADVERTISE_1000XFULL;
1599 new_bmcr |= BMCR_FULLDPLX;
1600 }
1601 else {
1602 adv |= ADVERTISE_1000XHALF;
1603 new_bmcr &= ~BMCR_FULLDPLX;
1604 }
1605 if ((new_bmcr != bmcr) || (force_link_down)) {
1606 /* Force a link down visible on the other side */
1607 if (bp->link_up) {
1608 bnx2_write_phy(bp, bp->mii_adv, adv &
1609 ~(ADVERTISE_1000XFULL |
1610 ADVERTISE_1000XHALF));
1611 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1612 BMCR_ANRESTART | BMCR_ANENABLE);
1613
1614 bp->link_up = 0;
1615 netif_carrier_off(bp->dev);
1616 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1617 bnx2_report_link(bp);
1618 }
1619 bnx2_write_phy(bp, bp->mii_adv, adv);
1620 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1621 } else {
1622 bnx2_resolve_flow_ctrl(bp);
1623 bnx2_set_mac_link(bp);
1624 }
1625 return 0;
1626 }
1627
1628 bnx2_test_and_enable_2g5(bp);
1629
1630 if (bp->advertising & ADVERTISED_1000baseT_Full)
1631 new_adv |= ADVERTISE_1000XFULL;
1632
1633 new_adv |= bnx2_phy_get_pause_adv(bp);
1634
1635 bnx2_read_phy(bp, bp->mii_adv, &adv);
1636 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1637
1638 bp->serdes_an_pending = 0;
1639 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1640 /* Force a link down visible on the other side */
1641 if (bp->link_up) {
1642 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1643 spin_unlock_bh(&bp->phy_lock);
1644 msleep(20);
1645 spin_lock_bh(&bp->phy_lock);
1646 }
1647
1648 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1649 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1650 BMCR_ANENABLE);
1651 /* Speed up link-up time when the link partner
1652 * does not autonegotiate which is very common
1653 * in blade servers. Some blade servers use
1654 * IPMI for kerboard input and it's important
1655 * to minimize link disruptions. Autoneg. involves
1656 * exchanging base pages plus 3 next pages and
1657 * normally completes in about 120 msec.
1658 */
1659 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1660 bp->serdes_an_pending = 1;
1661 mod_timer(&bp->timer, jiffies + bp->current_interval);
1662 } else {
1663 bnx2_resolve_flow_ctrl(bp);
1664 bnx2_set_mac_link(bp);
1665 }
1666
1667 return 0;
1668 }
1669
1670 #define ETHTOOL_ALL_FIBRE_SPEED \
1671 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1672 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1673 (ADVERTISED_1000baseT_Full)
1674
1675 #define ETHTOOL_ALL_COPPER_SPEED \
1676 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1677 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1678 ADVERTISED_1000baseT_Full)
1679
1680 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1681 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1682
1683 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1684
1685 static void
1686 bnx2_set_default_remote_link(struct bnx2 *bp)
1687 {
1688 u32 link;
1689
1690 if (bp->phy_port == PORT_TP)
1691 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1692 else
1693 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1694
1695 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1696 bp->req_line_speed = 0;
1697 bp->autoneg |= AUTONEG_SPEED;
1698 bp->advertising = ADVERTISED_Autoneg;
1699 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1700 bp->advertising |= ADVERTISED_10baseT_Half;
1701 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1702 bp->advertising |= ADVERTISED_10baseT_Full;
1703 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1704 bp->advertising |= ADVERTISED_100baseT_Half;
1705 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1706 bp->advertising |= ADVERTISED_100baseT_Full;
1707 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1708 bp->advertising |= ADVERTISED_1000baseT_Full;
1709 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1710 bp->advertising |= ADVERTISED_2500baseX_Full;
1711 } else {
1712 bp->autoneg = 0;
1713 bp->advertising = 0;
1714 bp->req_duplex = DUPLEX_FULL;
1715 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1716 bp->req_line_speed = SPEED_10;
1717 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1718 bp->req_duplex = DUPLEX_HALF;
1719 }
1720 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1721 bp->req_line_speed = SPEED_100;
1722 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1723 bp->req_duplex = DUPLEX_HALF;
1724 }
1725 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1726 bp->req_line_speed = SPEED_1000;
1727 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1728 bp->req_line_speed = SPEED_2500;
1729 }
1730 }
1731
1732 static void
1733 bnx2_set_default_link(struct bnx2 *bp)
1734 {
1735 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1736 bnx2_set_default_remote_link(bp);
1737 return;
1738 }
1739
1740 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1741 bp->req_line_speed = 0;
1742 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1743 u32 reg;
1744
1745 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1746
1747 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1748 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1749 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1750 bp->autoneg = 0;
1751 bp->req_line_speed = bp->line_speed = SPEED_1000;
1752 bp->req_duplex = DUPLEX_FULL;
1753 }
1754 } else
1755 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1756 }
1757
1758 static void
1759 bnx2_send_heart_beat(struct bnx2 *bp)
1760 {
1761 u32 msg;
1762 u32 addr;
1763
1764 spin_lock(&bp->indirect_lock);
1765 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1766 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1767 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1768 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1769 spin_unlock(&bp->indirect_lock);
1770 }
1771
1772 static void
1773 bnx2_remote_phy_event(struct bnx2 *bp)
1774 {
1775 u32 msg;
1776 u8 link_up = bp->link_up;
1777 u8 old_port;
1778
1779 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1780
1781 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1782 bnx2_send_heart_beat(bp);
1783
1784 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1785
1786 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1787 bp->link_up = 0;
1788 else {
1789 u32 speed;
1790
1791 bp->link_up = 1;
1792 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1793 bp->duplex = DUPLEX_FULL;
1794 switch (speed) {
1795 case BNX2_LINK_STATUS_10HALF:
1796 bp->duplex = DUPLEX_HALF;
1797 case BNX2_LINK_STATUS_10FULL:
1798 bp->line_speed = SPEED_10;
1799 break;
1800 case BNX2_LINK_STATUS_100HALF:
1801 bp->duplex = DUPLEX_HALF;
1802 case BNX2_LINK_STATUS_100BASE_T4:
1803 case BNX2_LINK_STATUS_100FULL:
1804 bp->line_speed = SPEED_100;
1805 break;
1806 case BNX2_LINK_STATUS_1000HALF:
1807 bp->duplex = DUPLEX_HALF;
1808 case BNX2_LINK_STATUS_1000FULL:
1809 bp->line_speed = SPEED_1000;
1810 break;
1811 case BNX2_LINK_STATUS_2500HALF:
1812 bp->duplex = DUPLEX_HALF;
1813 case BNX2_LINK_STATUS_2500FULL:
1814 bp->line_speed = SPEED_2500;
1815 break;
1816 default:
1817 bp->line_speed = 0;
1818 break;
1819 }
1820
1821 bp->flow_ctrl = 0;
1822 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1823 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1824 if (bp->duplex == DUPLEX_FULL)
1825 bp->flow_ctrl = bp->req_flow_ctrl;
1826 } else {
1827 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
1828 bp->flow_ctrl |= FLOW_CTRL_TX;
1829 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
1830 bp->flow_ctrl |= FLOW_CTRL_RX;
1831 }
1832
1833 old_port = bp->phy_port;
1834 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
1835 bp->phy_port = PORT_FIBRE;
1836 else
1837 bp->phy_port = PORT_TP;
1838
1839 if (old_port != bp->phy_port)
1840 bnx2_set_default_link(bp);
1841
1842 }
1843 if (bp->link_up != link_up)
1844 bnx2_report_link(bp);
1845
1846 bnx2_set_mac_link(bp);
1847 }
1848
1849 static int
1850 bnx2_set_remote_link(struct bnx2 *bp)
1851 {
1852 u32 evt_code;
1853
1854 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
1855 switch (evt_code) {
1856 case BNX2_FW_EVT_CODE_LINK_EVENT:
1857 bnx2_remote_phy_event(bp);
1858 break;
1859 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
1860 default:
1861 bnx2_send_heart_beat(bp);
1862 break;
1863 }
1864 return 0;
1865 }
1866
1867 static int
1868 bnx2_setup_copper_phy(struct bnx2 *bp)
1869 {
1870 u32 bmcr;
1871 u32 new_bmcr;
1872
1873 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1874
1875 if (bp->autoneg & AUTONEG_SPEED) {
1876 u32 adv_reg, adv1000_reg;
1877 u32 new_adv_reg = 0;
1878 u32 new_adv1000_reg = 0;
1879
1880 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
1881 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
1882 ADVERTISE_PAUSE_ASYM);
1883
1884 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
1885 adv1000_reg &= PHY_ALL_1000_SPEED;
1886
1887 if (bp->advertising & ADVERTISED_10baseT_Half)
1888 new_adv_reg |= ADVERTISE_10HALF;
1889 if (bp->advertising & ADVERTISED_10baseT_Full)
1890 new_adv_reg |= ADVERTISE_10FULL;
1891 if (bp->advertising & ADVERTISED_100baseT_Half)
1892 new_adv_reg |= ADVERTISE_100HALF;
1893 if (bp->advertising & ADVERTISED_100baseT_Full)
1894 new_adv_reg |= ADVERTISE_100FULL;
1895 if (bp->advertising & ADVERTISED_1000baseT_Full)
1896 new_adv1000_reg |= ADVERTISE_1000FULL;
1897
1898 new_adv_reg |= ADVERTISE_CSMA;
1899
1900 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
1901
1902 if ((adv1000_reg != new_adv1000_reg) ||
1903 (adv_reg != new_adv_reg) ||
1904 ((bmcr & BMCR_ANENABLE) == 0)) {
1905
1906 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
1907 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
1908 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
1909 BMCR_ANENABLE);
1910 }
1911 else if (bp->link_up) {
1912 /* Flow ctrl may have changed from auto to forced */
1913 /* or vice-versa. */
1914
1915 bnx2_resolve_flow_ctrl(bp);
1916 bnx2_set_mac_link(bp);
1917 }
1918 return 0;
1919 }
1920
1921 new_bmcr = 0;
1922 if (bp->req_line_speed == SPEED_100) {
1923 new_bmcr |= BMCR_SPEED100;
1924 }
1925 if (bp->req_duplex == DUPLEX_FULL) {
1926 new_bmcr |= BMCR_FULLDPLX;
1927 }
1928 if (new_bmcr != bmcr) {
1929 u32 bmsr;
1930
1931 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1932 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1933
1934 if (bmsr & BMSR_LSTATUS) {
1935 /* Force link down */
1936 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1937 spin_unlock_bh(&bp->phy_lock);
1938 msleep(50);
1939 spin_lock_bh(&bp->phy_lock);
1940
1941 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1942 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1943 }
1944
1945 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1946
1947 /* Normally, the new speed is setup after the link has
1948 * gone down and up again. In some cases, link will not go
1949 * down so we need to set up the new speed here.
1950 */
1951 if (bmsr & BMSR_LSTATUS) {
1952 bp->line_speed = bp->req_line_speed;
1953 bp->duplex = bp->req_duplex;
1954 bnx2_resolve_flow_ctrl(bp);
1955 bnx2_set_mac_link(bp);
1956 }
1957 } else {
1958 bnx2_resolve_flow_ctrl(bp);
1959 bnx2_set_mac_link(bp);
1960 }
1961 return 0;
1962 }
1963
1964 static int
1965 bnx2_setup_phy(struct bnx2 *bp, u8 port)
1966 {
1967 if (bp->loopback == MAC_LOOPBACK)
1968 return 0;
1969
1970 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1971 return (bnx2_setup_serdes_phy(bp, port));
1972 }
1973 else {
1974 return (bnx2_setup_copper_phy(bp));
1975 }
1976 }
1977
1978 static int
1979 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
1980 {
1981 u32 val;
1982
1983 bp->mii_bmcr = MII_BMCR + 0x10;
1984 bp->mii_bmsr = MII_BMSR + 0x10;
1985 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
1986 bp->mii_adv = MII_ADVERTISE + 0x10;
1987 bp->mii_lpa = MII_LPA + 0x10;
1988 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
1989
1990 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
1991 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
1992
1993 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1994 if (reset_phy)
1995 bnx2_reset_phy(bp);
1996
1997 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
1998
1999 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2000 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2001 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2002 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2003
2004 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2005 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2006 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2007 val |= BCM5708S_UP1_2G5;
2008 else
2009 val &= ~BCM5708S_UP1_2G5;
2010 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2011
2012 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2013 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2014 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2015 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2016
2017 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2018
2019 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2020 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2021 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2022
2023 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2024
2025 return 0;
2026 }
2027
2028 static int
2029 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2030 {
2031 u32 val;
2032
2033 if (reset_phy)
2034 bnx2_reset_phy(bp);
2035
2036 bp->mii_up1 = BCM5708S_UP1;
2037
2038 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2039 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2040 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2041
2042 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2043 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2044 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2045
2046 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2047 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2048 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2049
2050 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2051 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2052 val |= BCM5708S_UP1_2G5;
2053 bnx2_write_phy(bp, BCM5708S_UP1, val);
2054 }
2055
2056 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2057 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2058 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2059 /* increase tx signal amplitude */
2060 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2061 BCM5708S_BLK_ADDR_TX_MISC);
2062 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2063 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2064 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2065 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2066 }
2067
2068 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2069 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2070
2071 if (val) {
2072 u32 is_backplane;
2073
2074 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2075 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2076 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2077 BCM5708S_BLK_ADDR_TX_MISC);
2078 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2079 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2080 BCM5708S_BLK_ADDR_DIG);
2081 }
2082 }
2083 return 0;
2084 }
2085
2086 static int
2087 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2088 {
2089 if (reset_phy)
2090 bnx2_reset_phy(bp);
2091
2092 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2093
2094 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2095 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2096
2097 if (bp->dev->mtu > 1500) {
2098 u32 val;
2099
2100 /* Set extended packet length bit */
2101 bnx2_write_phy(bp, 0x18, 0x7);
2102 bnx2_read_phy(bp, 0x18, &val);
2103 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2104
2105 bnx2_write_phy(bp, 0x1c, 0x6c00);
2106 bnx2_read_phy(bp, 0x1c, &val);
2107 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2108 }
2109 else {
2110 u32 val;
2111
2112 bnx2_write_phy(bp, 0x18, 0x7);
2113 bnx2_read_phy(bp, 0x18, &val);
2114 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2115
2116 bnx2_write_phy(bp, 0x1c, 0x6c00);
2117 bnx2_read_phy(bp, 0x1c, &val);
2118 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2119 }
2120
2121 return 0;
2122 }
2123
2124 static int
2125 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2126 {
2127 u32 val;
2128
2129 if (reset_phy)
2130 bnx2_reset_phy(bp);
2131
2132 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2133 bnx2_write_phy(bp, 0x18, 0x0c00);
2134 bnx2_write_phy(bp, 0x17, 0x000a);
2135 bnx2_write_phy(bp, 0x15, 0x310b);
2136 bnx2_write_phy(bp, 0x17, 0x201f);
2137 bnx2_write_phy(bp, 0x15, 0x9506);
2138 bnx2_write_phy(bp, 0x17, 0x401f);
2139 bnx2_write_phy(bp, 0x15, 0x14e2);
2140 bnx2_write_phy(bp, 0x18, 0x0400);
2141 }
2142
2143 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2144 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2145 MII_BNX2_DSP_EXPAND_REG | 0x8);
2146 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2147 val &= ~(1 << 8);
2148 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2149 }
2150
2151 if (bp->dev->mtu > 1500) {
2152 /* Set extended packet length bit */
2153 bnx2_write_phy(bp, 0x18, 0x7);
2154 bnx2_read_phy(bp, 0x18, &val);
2155 bnx2_write_phy(bp, 0x18, val | 0x4000);
2156
2157 bnx2_read_phy(bp, 0x10, &val);
2158 bnx2_write_phy(bp, 0x10, val | 0x1);
2159 }
2160 else {
2161 bnx2_write_phy(bp, 0x18, 0x7);
2162 bnx2_read_phy(bp, 0x18, &val);
2163 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2164
2165 bnx2_read_phy(bp, 0x10, &val);
2166 bnx2_write_phy(bp, 0x10, val & ~0x1);
2167 }
2168
2169 /* ethernet@wirespeed */
2170 bnx2_write_phy(bp, 0x18, 0x7007);
2171 bnx2_read_phy(bp, 0x18, &val);
2172 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2173 return 0;
2174 }
2175
2176
2177 static int
2178 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2179 {
2180 u32 val;
2181 int rc = 0;
2182
2183 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2184 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2185
2186 bp->mii_bmcr = MII_BMCR;
2187 bp->mii_bmsr = MII_BMSR;
2188 bp->mii_bmsr1 = MII_BMSR;
2189 bp->mii_adv = MII_ADVERTISE;
2190 bp->mii_lpa = MII_LPA;
2191
2192 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2193
2194 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2195 goto setup_phy;
2196
2197 bnx2_read_phy(bp, MII_PHYSID1, &val);
2198 bp->phy_id = val << 16;
2199 bnx2_read_phy(bp, MII_PHYSID2, &val);
2200 bp->phy_id |= val & 0xffff;
2201
2202 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2203 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2204 rc = bnx2_init_5706s_phy(bp, reset_phy);
2205 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2206 rc = bnx2_init_5708s_phy(bp, reset_phy);
2207 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2208 rc = bnx2_init_5709s_phy(bp, reset_phy);
2209 }
2210 else {
2211 rc = bnx2_init_copper_phy(bp, reset_phy);
2212 }
2213
2214 setup_phy:
2215 if (!rc)
2216 rc = bnx2_setup_phy(bp, bp->phy_port);
2217
2218 return rc;
2219 }
2220
2221 static int
2222 bnx2_set_mac_loopback(struct bnx2 *bp)
2223 {
2224 u32 mac_mode;
2225
2226 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2227 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2228 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2229 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2230 bp->link_up = 1;
2231 return 0;
2232 }
2233
2234 static int bnx2_test_link(struct bnx2 *);
2235
2236 static int
2237 bnx2_set_phy_loopback(struct bnx2 *bp)
2238 {
2239 u32 mac_mode;
2240 int rc, i;
2241
2242 spin_lock_bh(&bp->phy_lock);
2243 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2244 BMCR_SPEED1000);
2245 spin_unlock_bh(&bp->phy_lock);
2246 if (rc)
2247 return rc;
2248
2249 for (i = 0; i < 10; i++) {
2250 if (bnx2_test_link(bp) == 0)
2251 break;
2252 msleep(100);
2253 }
2254
2255 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2256 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2257 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2258 BNX2_EMAC_MODE_25G_MODE);
2259
2260 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2261 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2262 bp->link_up = 1;
2263 return 0;
2264 }
2265
2266 static int
2267 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2268 {
2269 int i;
2270 u32 val;
2271
2272 bp->fw_wr_seq++;
2273 msg_data |= bp->fw_wr_seq;
2274
2275 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2276
2277 if (!ack)
2278 return 0;
2279
2280 /* wait for an acknowledgement. */
2281 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2282 msleep(10);
2283
2284 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2285
2286 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2287 break;
2288 }
2289 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2290 return 0;
2291
2292 /* If we timed out, inform the firmware that this is the case. */
2293 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2294 if (!silent)
2295 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2296 "%x\n", msg_data);
2297
2298 msg_data &= ~BNX2_DRV_MSG_CODE;
2299 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2300
2301 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2302
2303 return -EBUSY;
2304 }
2305
2306 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2307 return -EIO;
2308
2309 return 0;
2310 }
2311
2312 static int
2313 bnx2_init_5709_context(struct bnx2 *bp)
2314 {
2315 int i, ret = 0;
2316 u32 val;
2317
2318 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2319 val |= (BCM_PAGE_BITS - 8) << 16;
2320 REG_WR(bp, BNX2_CTX_COMMAND, val);
2321 for (i = 0; i < 10; i++) {
2322 val = REG_RD(bp, BNX2_CTX_COMMAND);
2323 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2324 break;
2325 udelay(2);
2326 }
2327 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2328 return -EBUSY;
2329
2330 for (i = 0; i < bp->ctx_pages; i++) {
2331 int j;
2332
2333 if (bp->ctx_blk[i])
2334 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2335 else
2336 return -ENOMEM;
2337
2338 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2339 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2340 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2341 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2342 (u64) bp->ctx_blk_mapping[i] >> 32);
2343 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2344 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2345 for (j = 0; j < 10; j++) {
2346
2347 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2348 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2349 break;
2350 udelay(5);
2351 }
2352 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2353 ret = -EBUSY;
2354 break;
2355 }
2356 }
2357 return ret;
2358 }
2359
2360 static void
2361 bnx2_init_context(struct bnx2 *bp)
2362 {
2363 u32 vcid;
2364
2365 vcid = 96;
2366 while (vcid) {
2367 u32 vcid_addr, pcid_addr, offset;
2368 int i;
2369
2370 vcid--;
2371
2372 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2373 u32 new_vcid;
2374
2375 vcid_addr = GET_PCID_ADDR(vcid);
2376 if (vcid & 0x8) {
2377 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2378 }
2379 else {
2380 new_vcid = vcid;
2381 }
2382 pcid_addr = GET_PCID_ADDR(new_vcid);
2383 }
2384 else {
2385 vcid_addr = GET_CID_ADDR(vcid);
2386 pcid_addr = vcid_addr;
2387 }
2388
2389 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2390 vcid_addr += (i << PHY_CTX_SHIFT);
2391 pcid_addr += (i << PHY_CTX_SHIFT);
2392
2393 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2394 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2395
2396 /* Zero out the context. */
2397 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2398 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2399 }
2400 }
2401 }
2402
2403 static int
2404 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2405 {
2406 u16 *good_mbuf;
2407 u32 good_mbuf_cnt;
2408 u32 val;
2409
2410 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2411 if (good_mbuf == NULL) {
2412 printk(KERN_ERR PFX "Failed to allocate memory in "
2413 "bnx2_alloc_bad_rbuf\n");
2414 return -ENOMEM;
2415 }
2416
2417 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2418 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2419
2420 good_mbuf_cnt = 0;
2421
2422 /* Allocate a bunch of mbufs and save the good ones in an array. */
2423 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2424 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2425 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2426 BNX2_RBUF_COMMAND_ALLOC_REQ);
2427
2428 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2429
2430 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2431
2432 /* The addresses with Bit 9 set are bad memory blocks. */
2433 if (!(val & (1 << 9))) {
2434 good_mbuf[good_mbuf_cnt] = (u16) val;
2435 good_mbuf_cnt++;
2436 }
2437
2438 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2439 }
2440
2441 /* Free the good ones back to the mbuf pool thus discarding
2442 * all the bad ones. */
2443 while (good_mbuf_cnt) {
2444 good_mbuf_cnt--;
2445
2446 val = good_mbuf[good_mbuf_cnt];
2447 val = (val << 9) | val | 1;
2448
2449 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2450 }
2451 kfree(good_mbuf);
2452 return 0;
2453 }
2454
2455 static void
2456 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2457 {
2458 u32 val;
2459
2460 val = (mac_addr[0] << 8) | mac_addr[1];
2461
2462 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2463
2464 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2465 (mac_addr[4] << 8) | mac_addr[5];
2466
2467 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2468 }
2469
2470 static inline int
2471 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2472 {
2473 dma_addr_t mapping;
2474 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2475 struct rx_bd *rxbd =
2476 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2477 struct page *page = alloc_page(GFP_ATOMIC);
2478
2479 if (!page)
2480 return -ENOMEM;
2481 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2482 PCI_DMA_FROMDEVICE);
2483 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2484 __free_page(page);
2485 return -EIO;
2486 }
2487
2488 rx_pg->page = page;
2489 pci_unmap_addr_set(rx_pg, mapping, mapping);
2490 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2491 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2492 return 0;
2493 }
2494
2495 static void
2496 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2497 {
2498 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2499 struct page *page = rx_pg->page;
2500
2501 if (!page)
2502 return;
2503
2504 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2505 PCI_DMA_FROMDEVICE);
2506
2507 __free_page(page);
2508 rx_pg->page = NULL;
2509 }
2510
2511 static inline int
2512 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2513 {
2514 struct sk_buff *skb;
2515 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2516 dma_addr_t mapping;
2517 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2518 unsigned long align;
2519
2520 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2521 if (skb == NULL) {
2522 return -ENOMEM;
2523 }
2524
2525 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2526 skb_reserve(skb, BNX2_RX_ALIGN - align);
2527
2528 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2529 PCI_DMA_FROMDEVICE);
2530 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2531 dev_kfree_skb(skb);
2532 return -EIO;
2533 }
2534
2535 rx_buf->skb = skb;
2536 pci_unmap_addr_set(rx_buf, mapping, mapping);
2537
2538 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2539 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2540
2541 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2542
2543 return 0;
2544 }
2545
2546 static int
2547 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2548 {
2549 struct status_block *sblk = bnapi->status_blk.msi;
2550 u32 new_link_state, old_link_state;
2551 int is_set = 1;
2552
2553 new_link_state = sblk->status_attn_bits & event;
2554 old_link_state = sblk->status_attn_bits_ack & event;
2555 if (new_link_state != old_link_state) {
2556 if (new_link_state)
2557 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2558 else
2559 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2560 } else
2561 is_set = 0;
2562
2563 return is_set;
2564 }
2565
2566 static void
2567 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2568 {
2569 spin_lock(&bp->phy_lock);
2570
2571 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2572 bnx2_set_link(bp);
2573 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2574 bnx2_set_remote_link(bp);
2575
2576 spin_unlock(&bp->phy_lock);
2577
2578 }
2579
2580 static inline u16
2581 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2582 {
2583 u16 cons;
2584
2585 /* Tell compiler that status block fields can change. */
2586 barrier();
2587 cons = *bnapi->hw_tx_cons_ptr;
2588 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2589 cons++;
2590 return cons;
2591 }
2592
2593 static int
2594 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2595 {
2596 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2597 u16 hw_cons, sw_cons, sw_ring_cons;
2598 int tx_pkt = 0, index;
2599 struct netdev_queue *txq;
2600
2601 index = (bnapi - bp->bnx2_napi);
2602 txq = netdev_get_tx_queue(bp->dev, index);
2603
2604 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2605 sw_cons = txr->tx_cons;
2606
2607 while (sw_cons != hw_cons) {
2608 struct sw_tx_bd *tx_buf;
2609 struct sk_buff *skb;
2610 int i, last;
2611
2612 sw_ring_cons = TX_RING_IDX(sw_cons);
2613
2614 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2615 skb = tx_buf->skb;
2616
2617 /* partial BD completions possible with TSO packets */
2618 if (skb_is_gso(skb)) {
2619 u16 last_idx, last_ring_idx;
2620
2621 last_idx = sw_cons +
2622 skb_shinfo(skb)->nr_frags + 1;
2623 last_ring_idx = sw_ring_cons +
2624 skb_shinfo(skb)->nr_frags + 1;
2625 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2626 last_idx++;
2627 }
2628 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2629 break;
2630 }
2631 }
2632
2633 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
2634
2635 tx_buf->skb = NULL;
2636 last = skb_shinfo(skb)->nr_frags;
2637
2638 for (i = 0; i < last; i++) {
2639 sw_cons = NEXT_TX_BD(sw_cons);
2640 }
2641
2642 sw_cons = NEXT_TX_BD(sw_cons);
2643
2644 dev_kfree_skb(skb);
2645 tx_pkt++;
2646 if (tx_pkt == budget)
2647 break;
2648
2649 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2650 }
2651
2652 txr->hw_tx_cons = hw_cons;
2653 txr->tx_cons = sw_cons;
2654
2655 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2656 * before checking for netif_tx_queue_stopped(). Without the
2657 * memory barrier, there is a small possibility that bnx2_start_xmit()
2658 * will miss it and cause the queue to be stopped forever.
2659 */
2660 smp_mb();
2661
2662 if (unlikely(netif_tx_queue_stopped(txq)) &&
2663 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2664 __netif_tx_lock(txq, smp_processor_id());
2665 if ((netif_tx_queue_stopped(txq)) &&
2666 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2667 netif_tx_wake_queue(txq);
2668 __netif_tx_unlock(txq);
2669 }
2670
2671 return tx_pkt;
2672 }
2673
2674 static void
2675 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2676 struct sk_buff *skb, int count)
2677 {
2678 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2679 struct rx_bd *cons_bd, *prod_bd;
2680 int i;
2681 u16 hw_prod, prod;
2682 u16 cons = rxr->rx_pg_cons;
2683
2684 cons_rx_pg = &rxr->rx_pg_ring[cons];
2685
2686 /* The caller was unable to allocate a new page to replace the
2687 * last one in the frags array, so we need to recycle that page
2688 * and then free the skb.
2689 */
2690 if (skb) {
2691 struct page *page;
2692 struct skb_shared_info *shinfo;
2693
2694 shinfo = skb_shinfo(skb);
2695 shinfo->nr_frags--;
2696 page = shinfo->frags[shinfo->nr_frags].page;
2697 shinfo->frags[shinfo->nr_frags].page = NULL;
2698
2699 cons_rx_pg->page = page;
2700 dev_kfree_skb(skb);
2701 }
2702
2703 hw_prod = rxr->rx_pg_prod;
2704
2705 for (i = 0; i < count; i++) {
2706 prod = RX_PG_RING_IDX(hw_prod);
2707
2708 prod_rx_pg = &rxr->rx_pg_ring[prod];
2709 cons_rx_pg = &rxr->rx_pg_ring[cons];
2710 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2711 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2712
2713 if (prod != cons) {
2714 prod_rx_pg->page = cons_rx_pg->page;
2715 cons_rx_pg->page = NULL;
2716 pci_unmap_addr_set(prod_rx_pg, mapping,
2717 pci_unmap_addr(cons_rx_pg, mapping));
2718
2719 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2720 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2721
2722 }
2723 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2724 hw_prod = NEXT_RX_BD(hw_prod);
2725 }
2726 rxr->rx_pg_prod = hw_prod;
2727 rxr->rx_pg_cons = cons;
2728 }
2729
2730 static inline void
2731 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2732 struct sk_buff *skb, u16 cons, u16 prod)
2733 {
2734 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2735 struct rx_bd *cons_bd, *prod_bd;
2736
2737 cons_rx_buf = &rxr->rx_buf_ring[cons];
2738 prod_rx_buf = &rxr->rx_buf_ring[prod];
2739
2740 pci_dma_sync_single_for_device(bp->pdev,
2741 pci_unmap_addr(cons_rx_buf, mapping),
2742 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2743
2744 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2745
2746 prod_rx_buf->skb = skb;
2747
2748 if (cons == prod)
2749 return;
2750
2751 pci_unmap_addr_set(prod_rx_buf, mapping,
2752 pci_unmap_addr(cons_rx_buf, mapping));
2753
2754 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2755 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2756 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2757 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2758 }
2759
2760 static int
2761 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2762 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2763 u32 ring_idx)
2764 {
2765 int err;
2766 u16 prod = ring_idx & 0xffff;
2767
2768 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2769 if (unlikely(err)) {
2770 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2771 if (hdr_len) {
2772 unsigned int raw_len = len + 4;
2773 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2774
2775 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2776 }
2777 return err;
2778 }
2779
2780 skb_reserve(skb, BNX2_RX_OFFSET);
2781 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2782 PCI_DMA_FROMDEVICE);
2783
2784 if (hdr_len == 0) {
2785 skb_put(skb, len);
2786 return 0;
2787 } else {
2788 unsigned int i, frag_len, frag_size, pages;
2789 struct sw_pg *rx_pg;
2790 u16 pg_cons = rxr->rx_pg_cons;
2791 u16 pg_prod = rxr->rx_pg_prod;
2792
2793 frag_size = len + 4 - hdr_len;
2794 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2795 skb_put(skb, hdr_len);
2796
2797 for (i = 0; i < pages; i++) {
2798 dma_addr_t mapping_old;
2799
2800 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2801 if (unlikely(frag_len <= 4)) {
2802 unsigned int tail = 4 - frag_len;
2803
2804 rxr->rx_pg_cons = pg_cons;
2805 rxr->rx_pg_prod = pg_prod;
2806 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2807 pages - i);
2808 skb->len -= tail;
2809 if (i == 0) {
2810 skb->tail -= tail;
2811 } else {
2812 skb_frag_t *frag =
2813 &skb_shinfo(skb)->frags[i - 1];
2814 frag->size -= tail;
2815 skb->data_len -= tail;
2816 skb->truesize -= tail;
2817 }
2818 return 0;
2819 }
2820 rx_pg = &rxr->rx_pg_ring[pg_cons];
2821
2822 /* Don't unmap yet. If we're unable to allocate a new
2823 * page, we need to recycle the page and the DMA addr.
2824 */
2825 mapping_old = pci_unmap_addr(rx_pg, mapping);
2826 if (i == pages - 1)
2827 frag_len -= 4;
2828
2829 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
2830 rx_pg->page = NULL;
2831
2832 err = bnx2_alloc_rx_page(bp, rxr,
2833 RX_PG_RING_IDX(pg_prod));
2834 if (unlikely(err)) {
2835 rxr->rx_pg_cons = pg_cons;
2836 rxr->rx_pg_prod = pg_prod;
2837 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
2838 pages - i);
2839 return err;
2840 }
2841
2842 pci_unmap_page(bp->pdev, mapping_old,
2843 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2844
2845 frag_size -= frag_len;
2846 skb->data_len += frag_len;
2847 skb->truesize += frag_len;
2848 skb->len += frag_len;
2849
2850 pg_prod = NEXT_RX_BD(pg_prod);
2851 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
2852 }
2853 rxr->rx_pg_prod = pg_prod;
2854 rxr->rx_pg_cons = pg_cons;
2855 }
2856 return 0;
2857 }
2858
2859 static inline u16
2860 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
2861 {
2862 u16 cons;
2863
2864 /* Tell compiler that status block fields can change. */
2865 barrier();
2866 cons = *bnapi->hw_rx_cons_ptr;
2867 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
2868 cons++;
2869 return cons;
2870 }
2871
2872 static int
2873 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2874 {
2875 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
2876 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
2877 struct l2_fhdr *rx_hdr;
2878 int rx_pkt = 0, pg_ring_used = 0;
2879
2880 hw_cons = bnx2_get_hw_rx_cons(bnapi);
2881 sw_cons = rxr->rx_cons;
2882 sw_prod = rxr->rx_prod;
2883
2884 /* Memory barrier necessary as speculative reads of the rx
2885 * buffer can be ahead of the index in the status block
2886 */
2887 rmb();
2888 while (sw_cons != hw_cons) {
2889 unsigned int len, hdr_len;
2890 u32 status;
2891 struct sw_bd *rx_buf;
2892 struct sk_buff *skb;
2893 dma_addr_t dma_addr;
2894 u16 vtag = 0;
2895 int hw_vlan __maybe_unused = 0;
2896
2897 sw_ring_cons = RX_RING_IDX(sw_cons);
2898 sw_ring_prod = RX_RING_IDX(sw_prod);
2899
2900 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
2901 skb = rx_buf->skb;
2902
2903 rx_buf->skb = NULL;
2904
2905 dma_addr = pci_unmap_addr(rx_buf, mapping);
2906
2907 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
2908 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
2909 PCI_DMA_FROMDEVICE);
2910
2911 rx_hdr = (struct l2_fhdr *) skb->data;
2912 len = rx_hdr->l2_fhdr_pkt_len;
2913
2914 if ((status = rx_hdr->l2_fhdr_status) &
2915 (L2_FHDR_ERRORS_BAD_CRC |
2916 L2_FHDR_ERRORS_PHY_DECODE |
2917 L2_FHDR_ERRORS_ALIGNMENT |
2918 L2_FHDR_ERRORS_TOO_SHORT |
2919 L2_FHDR_ERRORS_GIANT_FRAME)) {
2920
2921 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
2922 sw_ring_prod);
2923 goto next_rx;
2924 }
2925 hdr_len = 0;
2926 if (status & L2_FHDR_STATUS_SPLIT) {
2927 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
2928 pg_ring_used = 1;
2929 } else if (len > bp->rx_jumbo_thresh) {
2930 hdr_len = bp->rx_jumbo_thresh;
2931 pg_ring_used = 1;
2932 }
2933
2934 len -= 4;
2935
2936 if (len <= bp->rx_copy_thresh) {
2937 struct sk_buff *new_skb;
2938
2939 new_skb = netdev_alloc_skb(bp->dev, len + 6);
2940 if (new_skb == NULL) {
2941 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
2942 sw_ring_prod);
2943 goto next_rx;
2944 }
2945
2946 /* aligned copy */
2947 skb_copy_from_linear_data_offset(skb,
2948 BNX2_RX_OFFSET - 6,
2949 new_skb->data, len + 6);
2950 skb_reserve(new_skb, 6);
2951 skb_put(new_skb, len);
2952
2953 bnx2_reuse_rx_skb(bp, rxr, skb,
2954 sw_ring_cons, sw_ring_prod);
2955
2956 skb = new_skb;
2957 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
2958 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
2959 goto next_rx;
2960
2961 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
2962 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
2963 vtag = rx_hdr->l2_fhdr_vlan_tag;
2964 #ifdef BCM_VLAN
2965 if (bp->vlgrp)
2966 hw_vlan = 1;
2967 else
2968 #endif
2969 {
2970 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
2971 __skb_push(skb, 4);
2972
2973 memmove(ve, skb->data + 4, ETH_ALEN * 2);
2974 ve->h_vlan_proto = htons(ETH_P_8021Q);
2975 ve->h_vlan_TCI = htons(vtag);
2976 len += 4;
2977 }
2978 }
2979
2980 skb->protocol = eth_type_trans(skb, bp->dev);
2981
2982 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
2983 (ntohs(skb->protocol) != 0x8100)) {
2984
2985 dev_kfree_skb(skb);
2986 goto next_rx;
2987
2988 }
2989
2990 skb->ip_summed = CHECKSUM_NONE;
2991 if (bp->rx_csum &&
2992 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
2993 L2_FHDR_STATUS_UDP_DATAGRAM))) {
2994
2995 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
2996 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
2997 skb->ip_summed = CHECKSUM_UNNECESSARY;
2998 }
2999
3000 #ifdef BCM_VLAN
3001 if (hw_vlan)
3002 vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3003 else
3004 #endif
3005 netif_receive_skb(skb);
3006
3007 rx_pkt++;
3008
3009 next_rx:
3010 sw_cons = NEXT_RX_BD(sw_cons);
3011 sw_prod = NEXT_RX_BD(sw_prod);
3012
3013 if ((rx_pkt == budget))
3014 break;
3015
3016 /* Refresh hw_cons to see if there is new work */
3017 if (sw_cons == hw_cons) {
3018 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3019 rmb();
3020 }
3021 }
3022 rxr->rx_cons = sw_cons;
3023 rxr->rx_prod = sw_prod;
3024
3025 if (pg_ring_used)
3026 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3027
3028 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3029
3030 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3031
3032 mmiowb();
3033
3034 return rx_pkt;
3035
3036 }
3037
3038 /* MSI ISR - The only difference between this and the INTx ISR
3039 * is that the MSI interrupt is always serviced.
3040 */
3041 static irqreturn_t
3042 bnx2_msi(int irq, void *dev_instance)
3043 {
3044 struct bnx2_napi *bnapi = dev_instance;
3045 struct bnx2 *bp = bnapi->bp;
3046 struct net_device *dev = bp->dev;
3047
3048 prefetch(bnapi->status_blk.msi);
3049 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3050 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3051 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3052
3053 /* Return here if interrupt is disabled. */
3054 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3055 return IRQ_HANDLED;
3056
3057 netif_rx_schedule(dev, &bnapi->napi);
3058
3059 return IRQ_HANDLED;
3060 }
3061
3062 static irqreturn_t
3063 bnx2_msi_1shot(int irq, void *dev_instance)
3064 {
3065 struct bnx2_napi *bnapi = dev_instance;
3066 struct bnx2 *bp = bnapi->bp;
3067 struct net_device *dev = bp->dev;
3068
3069 prefetch(bnapi->status_blk.msi);
3070
3071 /* Return here if interrupt is disabled. */
3072 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3073 return IRQ_HANDLED;
3074
3075 netif_rx_schedule(dev, &bnapi->napi);
3076
3077 return IRQ_HANDLED;
3078 }
3079
3080 static irqreturn_t
3081 bnx2_interrupt(int irq, void *dev_instance)
3082 {
3083 struct bnx2_napi *bnapi = dev_instance;
3084 struct bnx2 *bp = bnapi->bp;
3085 struct net_device *dev = bp->dev;
3086 struct status_block *sblk = bnapi->status_blk.msi;
3087
3088 /* When using INTx, it is possible for the interrupt to arrive
3089 * at the CPU before the status block posted prior to the
3090 * interrupt. Reading a register will flush the status block.
3091 * When using MSI, the MSI message will always complete after
3092 * the status block write.
3093 */
3094 if ((sblk->status_idx == bnapi->last_status_idx) &&
3095 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3096 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3097 return IRQ_NONE;
3098
3099 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3100 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3101 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3102
3103 /* Read back to deassert IRQ immediately to avoid too many
3104 * spurious interrupts.
3105 */
3106 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3107
3108 /* Return here if interrupt is shared and is disabled. */
3109 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3110 return IRQ_HANDLED;
3111
3112 if (netif_rx_schedule_prep(dev, &bnapi->napi)) {
3113 bnapi->last_status_idx = sblk->status_idx;
3114 __netif_rx_schedule(dev, &bnapi->napi);
3115 }
3116
3117 return IRQ_HANDLED;
3118 }
3119
3120 static inline int
3121 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3122 {
3123 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3124 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3125
3126 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3127 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3128 return 1;
3129 return 0;
3130 }
3131
3132 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3133 STATUS_ATTN_BITS_TIMER_ABORT)
3134
3135 static inline int
3136 bnx2_has_work(struct bnx2_napi *bnapi)
3137 {
3138 struct status_block *sblk = bnapi->status_blk.msi;
3139
3140 if (bnx2_has_fast_work(bnapi))
3141 return 1;
3142
3143 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3144 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3145 return 1;
3146
3147 return 0;
3148 }
3149
3150 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3151 {
3152 struct status_block *sblk = bnapi->status_blk.msi;
3153 u32 status_attn_bits = sblk->status_attn_bits;
3154 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3155
3156 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3157 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3158
3159 bnx2_phy_int(bp, bnapi);
3160
3161 /* This is needed to take care of transient status
3162 * during link changes.
3163 */
3164 REG_WR(bp, BNX2_HC_COMMAND,
3165 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3166 REG_RD(bp, BNX2_HC_COMMAND);
3167 }
3168 }
3169
3170 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3171 int work_done, int budget)
3172 {
3173 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3174 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3175
3176 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3177 bnx2_tx_int(bp, bnapi, 0);
3178
3179 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3180 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3181
3182 return work_done;
3183 }
3184
3185 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3186 {
3187 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3188 struct bnx2 *bp = bnapi->bp;
3189 int work_done = 0;
3190 struct status_block_msix *sblk = bnapi->status_blk.msix;
3191
3192 while (1) {
3193 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3194 if (unlikely(work_done >= budget))
3195 break;
3196
3197 bnapi->last_status_idx = sblk->status_idx;
3198 /* status idx must be read before checking for more work. */
3199 rmb();
3200 if (likely(!bnx2_has_fast_work(bnapi))) {
3201
3202 netif_rx_complete(bp->dev, napi);
3203 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3204 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3205 bnapi->last_status_idx);
3206 break;
3207 }
3208 }
3209 return work_done;
3210 }
3211
3212 static int bnx2_poll(struct napi_struct *napi, int budget)
3213 {
3214 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3215 struct bnx2 *bp = bnapi->bp;
3216 int work_done = 0;
3217 struct status_block *sblk = bnapi->status_blk.msi;
3218
3219 while (1) {
3220 bnx2_poll_link(bp, bnapi);
3221
3222 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3223
3224 if (unlikely(work_done >= budget))
3225 break;
3226
3227 /* bnapi->last_status_idx is used below to tell the hw how
3228 * much work has been processed, so we must read it before
3229 * checking for more work.
3230 */
3231 bnapi->last_status_idx = sblk->status_idx;
3232 rmb();
3233 if (likely(!bnx2_has_work(bnapi))) {
3234 netif_rx_complete(bp->dev, napi);
3235 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3236 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3237 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3238 bnapi->last_status_idx);
3239 break;
3240 }
3241 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3242 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3243 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3244 bnapi->last_status_idx);
3245
3246 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3247 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3248 bnapi->last_status_idx);
3249 break;
3250 }
3251 }
3252
3253 return work_done;
3254 }
3255
3256 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3257 * from set_multicast.
3258 */
3259 static void
3260 bnx2_set_rx_mode(struct net_device *dev)
3261 {
3262 struct bnx2 *bp = netdev_priv(dev);
3263 u32 rx_mode, sort_mode;
3264 struct dev_addr_list *uc_ptr;
3265 int i;
3266
3267 if (!netif_running(dev))
3268 return;
3269
3270 spin_lock_bh(&bp->phy_lock);
3271
3272 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3273 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3274 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3275 #ifdef BCM_VLAN
3276 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3277 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3278 #else
3279 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3280 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3281 #endif
3282 if (dev->flags & IFF_PROMISC) {
3283 /* Promiscuous mode. */
3284 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3285 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3286 BNX2_RPM_SORT_USER0_PROM_VLAN;
3287 }
3288 else if (dev->flags & IFF_ALLMULTI) {
3289 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3290 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3291 0xffffffff);
3292 }
3293 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3294 }
3295 else {
3296 /* Accept one or more multicast(s). */
3297 struct dev_mc_list *mclist;
3298 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3299 u32 regidx;
3300 u32 bit;
3301 u32 crc;
3302
3303 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3304
3305 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3306 i++, mclist = mclist->next) {
3307
3308 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3309 bit = crc & 0xff;
3310 regidx = (bit & 0xe0) >> 5;
3311 bit &= 0x1f;
3312 mc_filter[regidx] |= (1 << bit);
3313 }
3314
3315 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3316 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3317 mc_filter[i]);
3318 }
3319
3320 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3321 }
3322
3323 uc_ptr = NULL;
3324 if (dev->uc_count > BNX2_MAX_UNICAST_ADDRESSES) {
3325 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3326 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3327 BNX2_RPM_SORT_USER0_PROM_VLAN;
3328 } else if (!(dev->flags & IFF_PROMISC)) {
3329 uc_ptr = dev->uc_list;
3330
3331 /* Add all entries into to the match filter list */
3332 for (i = 0; i < dev->uc_count; i++) {
3333 bnx2_set_mac_addr(bp, uc_ptr->da_addr,
3334 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3335 sort_mode |= (1 <<
3336 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3337 uc_ptr = uc_ptr->next;
3338 }
3339
3340 }
3341
3342 if (rx_mode != bp->rx_mode) {
3343 bp->rx_mode = rx_mode;
3344 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3345 }
3346
3347 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3348 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3349 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3350
3351 spin_unlock_bh(&bp->phy_lock);
3352 }
3353
3354 static void
3355 load_rv2p_fw(struct bnx2 *bp, __le32 *rv2p_code, u32 rv2p_code_len,
3356 u32 rv2p_proc)
3357 {
3358 int i;
3359 u32 val;
3360
3361 if (rv2p_proc == RV2P_PROC2 && CHIP_NUM(bp) == CHIP_NUM_5709) {
3362 val = le32_to_cpu(rv2p_code[XI_RV2P_PROC2_MAX_BD_PAGE_LOC]);
3363 val &= ~XI_RV2P_PROC2_BD_PAGE_SIZE_MSK;
3364 val |= XI_RV2P_PROC2_BD_PAGE_SIZE;
3365 rv2p_code[XI_RV2P_PROC2_MAX_BD_PAGE_LOC] = cpu_to_le32(val);
3366 }
3367
3368 for (i = 0; i < rv2p_code_len; i += 8) {
3369 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, le32_to_cpu(*rv2p_code));
3370 rv2p_code++;
3371 REG_WR(bp, BNX2_RV2P_INSTR_LOW, le32_to_cpu(*rv2p_code));
3372 rv2p_code++;
3373
3374 if (rv2p_proc == RV2P_PROC1) {
3375 val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3376 REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
3377 }
3378 else {
3379 val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3380 REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
3381 }
3382 }
3383
3384 /* Reset the processor, un-stall is done later. */
3385 if (rv2p_proc == RV2P_PROC1) {
3386 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3387 }
3388 else {
3389 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3390 }
3391 }
3392
3393 static int
3394 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg, struct fw_info *fw)
3395 {
3396 u32 offset;
3397 u32 val;
3398 int rc;
3399
3400 /* Halt the CPU. */
3401 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3402 val |= cpu_reg->mode_value_halt;
3403 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3404 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3405
3406 /* Load the Text area. */
3407 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
3408 if (fw->gz_text) {
3409 int j;
3410
3411 rc = zlib_inflate_blob(fw->text, FW_BUF_SIZE, fw->gz_text,
3412 fw->gz_text_len);
3413 if (rc < 0)
3414 return rc;
3415
3416 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
3417 bnx2_reg_wr_ind(bp, offset, le32_to_cpu(fw->text[j]));
3418 }
3419 }
3420
3421 /* Load the Data area. */
3422 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
3423 if (fw->data) {
3424 int j;
3425
3426 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
3427 bnx2_reg_wr_ind(bp, offset, fw->data[j]);
3428 }
3429 }
3430
3431 /* Load the SBSS area. */
3432 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
3433 if (fw->sbss_len) {
3434 int j;
3435
3436 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
3437 bnx2_reg_wr_ind(bp, offset, 0);
3438 }
3439 }
3440
3441 /* Load the BSS area. */
3442 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
3443 if (fw->bss_len) {
3444 int j;
3445
3446 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
3447 bnx2_reg_wr_ind(bp, offset, 0);
3448 }
3449 }
3450
3451 /* Load the Read-Only area. */
3452 offset = cpu_reg->spad_base +
3453 (fw->rodata_addr - cpu_reg->mips_view_base);
3454 if (fw->rodata) {
3455 int j;
3456
3457 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
3458 bnx2_reg_wr_ind(bp, offset, fw->rodata[j]);
3459 }
3460 }
3461
3462 /* Clear the pre-fetch instruction. */
3463 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3464 bnx2_reg_wr_ind(bp, cpu_reg->pc, fw->start_addr);
3465
3466 /* Start the CPU. */
3467 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3468 val &= ~cpu_reg->mode_value_halt;
3469 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3470 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3471
3472 return 0;
3473 }
3474
3475 static int
3476 bnx2_init_cpus(struct bnx2 *bp)
3477 {
3478 struct fw_info *fw;
3479 int rc, rv2p_len;
3480 void *text, *rv2p;
3481
3482 /* Initialize the RV2P processor. */
3483 text = vmalloc(FW_BUF_SIZE);
3484 if (!text)
3485 return -ENOMEM;
3486 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3487 rv2p = bnx2_xi_rv2p_proc1;
3488 rv2p_len = sizeof(bnx2_xi_rv2p_proc1);
3489 } else {
3490 rv2p = bnx2_rv2p_proc1;
3491 rv2p_len = sizeof(bnx2_rv2p_proc1);
3492 }
3493 rc = zlib_inflate_blob(text, FW_BUF_SIZE, rv2p, rv2p_len);
3494 if (rc < 0)
3495 goto init_cpu_err;
3496
3497 load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC1);
3498
3499 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3500 rv2p = bnx2_xi_rv2p_proc2;
3501 rv2p_len = sizeof(bnx2_xi_rv2p_proc2);
3502 } else {
3503 rv2p = bnx2_rv2p_proc2;
3504 rv2p_len = sizeof(bnx2_rv2p_proc2);
3505 }
3506 rc = zlib_inflate_blob(text, FW_BUF_SIZE, rv2p, rv2p_len);
3507 if (rc < 0)
3508 goto init_cpu_err;
3509
3510 load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC2);
3511
3512 /* Initialize the RX Processor. */
3513 if (CHIP_NUM(bp) == CHIP_NUM_5709)
3514 fw = &bnx2_rxp_fw_09;
3515 else
3516 fw = &bnx2_rxp_fw_06;
3517
3518 fw->text = text;
3519 rc = load_cpu_fw(bp, &cpu_reg_rxp, fw);
3520 if (rc)
3521 goto init_cpu_err;
3522
3523 /* Initialize the TX Processor. */
3524 if (CHIP_NUM(bp) == CHIP_NUM_5709)
3525 fw = &bnx2_txp_fw_09;
3526 else
3527 fw = &bnx2_txp_fw_06;
3528
3529 fw->text = text;
3530 rc = load_cpu_fw(bp, &cpu_reg_txp, fw);
3531 if (rc)
3532 goto init_cpu_err;
3533
3534 /* Initialize the TX Patch-up Processor. */
3535 if (CHIP_NUM(bp) == CHIP_NUM_5709)
3536 fw = &bnx2_tpat_fw_09;
3537 else
3538 fw = &bnx2_tpat_fw_06;
3539
3540 fw->text = text;
3541 rc = load_cpu_fw(bp, &cpu_reg_tpat, fw);
3542 if (rc)
3543 goto init_cpu_err;
3544
3545 /* Initialize the Completion Processor. */
3546 if (CHIP_NUM(bp) == CHIP_NUM_5709)
3547 fw = &bnx2_com_fw_09;
3548 else
3549 fw = &bnx2_com_fw_06;
3550
3551 fw->text = text;
3552 rc = load_cpu_fw(bp, &cpu_reg_com, fw);
3553 if (rc)
3554 goto init_cpu_err;
3555
3556 /* Initialize the Command Processor. */
3557 if (CHIP_NUM(bp) == CHIP_NUM_5709)
3558 fw = &bnx2_cp_fw_09;
3559 else
3560 fw = &bnx2_cp_fw_06;
3561
3562 fw->text = text;
3563 rc = load_cpu_fw(bp, &cpu_reg_cp, fw);
3564
3565 init_cpu_err:
3566 vfree(text);
3567 return rc;
3568 }
3569
3570 static int
3571 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3572 {
3573 u16 pmcsr;
3574
3575 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3576
3577 switch (state) {
3578 case PCI_D0: {
3579 u32 val;
3580
3581 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3582 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3583 PCI_PM_CTRL_PME_STATUS);
3584
3585 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3586 /* delay required during transition out of D3hot */
3587 msleep(20);
3588
3589 val = REG_RD(bp, BNX2_EMAC_MODE);
3590 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3591 val &= ~BNX2_EMAC_MODE_MPKT;
3592 REG_WR(bp, BNX2_EMAC_MODE, val);
3593
3594 val = REG_RD(bp, BNX2_RPM_CONFIG);
3595 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3596 REG_WR(bp, BNX2_RPM_CONFIG, val);
3597 break;
3598 }
3599 case PCI_D3hot: {
3600 int i;
3601 u32 val, wol_msg;
3602
3603 if (bp->wol) {
3604 u32 advertising;
3605 u8 autoneg;
3606
3607 autoneg = bp->autoneg;
3608 advertising = bp->advertising;
3609
3610 if (bp->phy_port == PORT_TP) {
3611 bp->autoneg = AUTONEG_SPEED;
3612 bp->advertising = ADVERTISED_10baseT_Half |
3613 ADVERTISED_10baseT_Full |
3614 ADVERTISED_100baseT_Half |
3615 ADVERTISED_100baseT_Full |
3616 ADVERTISED_Autoneg;
3617 }
3618
3619 spin_lock_bh(&bp->phy_lock);
3620 bnx2_setup_phy(bp, bp->phy_port);
3621 spin_unlock_bh(&bp->phy_lock);
3622
3623 bp->autoneg = autoneg;
3624 bp->advertising = advertising;
3625
3626 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3627
3628 val = REG_RD(bp, BNX2_EMAC_MODE);
3629
3630 /* Enable port mode. */
3631 val &= ~BNX2_EMAC_MODE_PORT;
3632 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3633 BNX2_EMAC_MODE_ACPI_RCVD |
3634 BNX2_EMAC_MODE_MPKT;
3635 if (bp->phy_port == PORT_TP)
3636 val |= BNX2_EMAC_MODE_PORT_MII;
3637 else {
3638 val |= BNX2_EMAC_MODE_PORT_GMII;
3639 if (bp->line_speed == SPEED_2500)
3640 val |= BNX2_EMAC_MODE_25G_MODE;
3641 }
3642
3643 REG_WR(bp, BNX2_EMAC_MODE, val);
3644
3645 /* receive all multicast */
3646 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3647 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3648 0xffffffff);
3649 }
3650 REG_WR(bp, BNX2_EMAC_RX_MODE,
3651 BNX2_EMAC_RX_MODE_SORT_MODE);
3652
3653 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3654 BNX2_RPM_SORT_USER0_MC_EN;
3655 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3656 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3657 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3658 BNX2_RPM_SORT_USER0_ENA);
3659
3660 /* Need to enable EMAC and RPM for WOL. */
3661 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3662 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3663 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3664 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3665
3666 val = REG_RD(bp, BNX2_RPM_CONFIG);
3667 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3668 REG_WR(bp, BNX2_RPM_CONFIG, val);
3669
3670 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3671 }
3672 else {
3673 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3674 }
3675
3676 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3677 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3678 1, 0);
3679
3680 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3681 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3682 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3683
3684 if (bp->wol)
3685 pmcsr |= 3;
3686 }
3687 else {
3688 pmcsr |= 3;
3689 }
3690 if (bp->wol) {
3691 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3692 }
3693 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3694 pmcsr);
3695
3696 /* No more memory access after this point until
3697 * device is brought back to D0.
3698 */
3699 udelay(50);
3700 break;
3701 }
3702 default:
3703 return -EINVAL;
3704 }
3705 return 0;
3706 }
3707
3708 static int
3709 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3710 {
3711 u32 val;
3712 int j;
3713
3714 /* Request access to the flash interface. */
3715 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
3716 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3717 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3718 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
3719 break;
3720
3721 udelay(5);
3722 }
3723
3724 if (j >= NVRAM_TIMEOUT_COUNT)
3725 return -EBUSY;
3726
3727 return 0;
3728 }
3729
3730 static int
3731 bnx2_release_nvram_lock(struct bnx2 *bp)
3732 {
3733 int j;
3734 u32 val;
3735
3736 /* Relinquish nvram interface. */
3737 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
3738
3739 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3740 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3741 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
3742 break;
3743
3744 udelay(5);
3745 }
3746
3747 if (j >= NVRAM_TIMEOUT_COUNT)
3748 return -EBUSY;
3749
3750 return 0;
3751 }
3752
3753
3754 static int
3755 bnx2_enable_nvram_write(struct bnx2 *bp)
3756 {
3757 u32 val;
3758
3759 val = REG_RD(bp, BNX2_MISC_CFG);
3760 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
3761
3762 if (bp->flash_info->flags & BNX2_NV_WREN) {
3763 int j;
3764
3765 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3766 REG_WR(bp, BNX2_NVM_COMMAND,
3767 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
3768
3769 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3770 udelay(5);
3771
3772 val = REG_RD(bp, BNX2_NVM_COMMAND);
3773 if (val & BNX2_NVM_COMMAND_DONE)
3774 break;
3775 }
3776
3777 if (j >= NVRAM_TIMEOUT_COUNT)
3778 return -EBUSY;
3779 }
3780 return 0;
3781 }
3782
3783 static void
3784 bnx2_disable_nvram_write(struct bnx2 *bp)
3785 {
3786 u32 val;
3787
3788 val = REG_RD(bp, BNX2_MISC_CFG);
3789 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
3790 }
3791
3792
3793 static void
3794 bnx2_enable_nvram_access(struct bnx2 *bp)
3795 {
3796 u32 val;
3797
3798 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
3799 /* Enable both bits, even on read. */
3800 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
3801 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
3802 }
3803
3804 static void
3805 bnx2_disable_nvram_access(struct bnx2 *bp)
3806 {
3807 u32 val;
3808
3809 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
3810 /* Disable both bits, even after read. */
3811 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
3812 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
3813 BNX2_NVM_ACCESS_ENABLE_WR_EN));
3814 }
3815
3816 static int
3817 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
3818 {
3819 u32 cmd;
3820 int j;
3821
3822 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
3823 /* Buffered flash, no erase needed */
3824 return 0;
3825
3826 /* Build an erase command */
3827 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
3828 BNX2_NVM_COMMAND_DOIT;
3829
3830 /* Need to clear DONE bit separately. */
3831 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3832
3833 /* Address of the NVRAM to read from. */
3834 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3835
3836 /* Issue an erase command. */
3837 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3838
3839 /* Wait for completion. */
3840 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3841 u32 val;
3842
3843 udelay(5);
3844
3845 val = REG_RD(bp, BNX2_NVM_COMMAND);
3846 if (val & BNX2_NVM_COMMAND_DONE)
3847 break;
3848 }
3849
3850 if (j >= NVRAM_TIMEOUT_COUNT)
3851 return -EBUSY;
3852
3853 return 0;
3854 }
3855
3856 static int
3857 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
3858 {
3859 u32 cmd;
3860 int j;
3861
3862 /* Build the command word. */
3863 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
3864
3865 /* Calculate an offset of a buffered flash, not needed for 5709. */
3866 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
3867 offset = ((offset / bp->flash_info->page_size) <<
3868 bp->flash_info->page_bits) +
3869 (offset % bp->flash_info->page_size);
3870 }
3871
3872 /* Need to clear DONE bit separately. */
3873 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3874
3875 /* Address of the NVRAM to read from. */
3876 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3877
3878 /* Issue a read command. */
3879 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3880
3881 /* Wait for completion. */
3882 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3883 u32 val;
3884
3885 udelay(5);
3886
3887 val = REG_RD(bp, BNX2_NVM_COMMAND);
3888 if (val & BNX2_NVM_COMMAND_DONE) {
3889 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
3890 memcpy(ret_val, &v, 4);
3891 break;
3892 }
3893 }
3894 if (j >= NVRAM_TIMEOUT_COUNT)
3895 return -EBUSY;
3896
3897 return 0;
3898 }
3899
3900
3901 static int
3902 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
3903 {
3904 u32 cmd;
3905 __be32 val32;
3906 int j;
3907
3908 /* Build the command word. */
3909 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
3910
3911 /* Calculate an offset of a buffered flash, not needed for 5709. */
3912 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
3913 offset = ((offset / bp->flash_info->page_size) <<
3914 bp->flash_info->page_bits) +
3915 (offset % bp->flash_info->page_size);
3916 }
3917
3918 /* Need to clear DONE bit separately. */
3919 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3920
3921 memcpy(&val32, val, 4);
3922
3923 /* Write the data. */
3924 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
3925
3926 /* Address of the NVRAM to write to. */
3927 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3928
3929 /* Issue the write command. */
3930 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3931
3932 /* Wait for completion. */
3933 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3934 udelay(5);
3935
3936 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
3937 break;
3938 }
3939 if (j >= NVRAM_TIMEOUT_COUNT)
3940 return -EBUSY;
3941
3942 return 0;
3943 }
3944
3945 static int
3946 bnx2_init_nvram(struct bnx2 *bp)
3947 {
3948 u32 val;
3949 int j, entry_count, rc = 0;
3950 struct flash_spec *flash;
3951
3952 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3953 bp->flash_info = &flash_5709;
3954 goto get_flash_size;
3955 }
3956
3957 /* Determine the selected interface. */
3958 val = REG_RD(bp, BNX2_NVM_CFG1);
3959
3960 entry_count = ARRAY_SIZE(flash_table);
3961
3962 if (val & 0x40000000) {
3963
3964 /* Flash interface has been reconfigured */
3965 for (j = 0, flash = &flash_table[0]; j < entry_count;
3966 j++, flash++) {
3967 if ((val & FLASH_BACKUP_STRAP_MASK) ==
3968 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
3969 bp->flash_info = flash;
3970 break;
3971 }
3972 }
3973 }
3974 else {
3975 u32 mask;
3976 /* Not yet been reconfigured */
3977
3978 if (val & (1 << 23))
3979 mask = FLASH_BACKUP_STRAP_MASK;
3980 else
3981 mask = FLASH_STRAP_MASK;
3982
3983 for (j = 0, flash = &flash_table[0]; j < entry_count;
3984 j++, flash++) {
3985
3986 if ((val & mask) == (flash->strapping & mask)) {
3987 bp->flash_info = flash;
3988
3989 /* Request access to the flash interface. */
3990 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
3991 return rc;
3992
3993 /* Enable access to flash interface */
3994 bnx2_enable_nvram_access(bp);
3995
3996 /* Reconfigure the flash interface */
3997 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
3998 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
3999 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4000 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4001
4002 /* Disable access to flash interface */
4003 bnx2_disable_nvram_access(bp);
4004 bnx2_release_nvram_lock(bp);
4005
4006 break;
4007 }
4008 }
4009 } /* if (val & 0x40000000) */
4010
4011 if (j == entry_count) {
4012 bp->flash_info = NULL;
4013 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4014 return -ENODEV;
4015 }
4016
4017 get_flash_size:
4018 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4019 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4020 if (val)
4021 bp->flash_size = val;
4022 else
4023 bp->flash_size = bp->flash_info->total_size;
4024
4025 return rc;
4026 }
4027
4028 static int
4029 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4030 int buf_size)
4031 {
4032 int rc = 0;
4033 u32 cmd_flags, offset32, len32, extra;
4034
4035 if (buf_size == 0)
4036 return 0;
4037
4038 /* Request access to the flash interface. */
4039 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4040 return rc;
4041
4042 /* Enable access to flash interface */
4043 bnx2_enable_nvram_access(bp);
4044
4045 len32 = buf_size;
4046 offset32 = offset;
4047 extra = 0;
4048
4049 cmd_flags = 0;
4050
4051 if (offset32 & 3) {
4052 u8 buf[4];
4053 u32 pre_len;
4054
4055 offset32 &= ~3;
4056 pre_len = 4 - (offset & 3);
4057
4058 if (pre_len >= len32) {
4059 pre_len = len32;
4060 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4061 BNX2_NVM_COMMAND_LAST;
4062 }
4063 else {
4064 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4065 }
4066
4067 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4068
4069 if (rc)
4070 return rc;
4071
4072 memcpy(ret_buf, buf + (offset & 3), pre_len);
4073
4074 offset32 += 4;
4075 ret_buf += pre_len;
4076 len32 -= pre_len;
4077 }
4078 if (len32 & 3) {
4079 extra = 4 - (len32 & 3);
4080 len32 = (len32 + 4) & ~3;
4081 }
4082
4083 if (len32 == 4) {
4084 u8 buf[4];
4085
4086 if (cmd_flags)
4087 cmd_flags = BNX2_NVM_COMMAND_LAST;
4088 else
4089 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4090 BNX2_NVM_COMMAND_LAST;
4091
4092 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4093
4094 memcpy(ret_buf, buf, 4 - extra);
4095 }
4096 else if (len32 > 0) {
4097 u8 buf[4];
4098
4099 /* Read the first word. */
4100 if (cmd_flags)
4101 cmd_flags = 0;
4102 else
4103 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4104
4105 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4106
4107 /* Advance to the next dword. */
4108 offset32 += 4;
4109 ret_buf += 4;
4110 len32 -= 4;
4111
4112 while (len32 > 4 && rc == 0) {
4113 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4114
4115 /* Advance to the next dword. */
4116 offset32 += 4;
4117 ret_buf += 4;
4118 len32 -= 4;
4119 }
4120
4121 if (rc)
4122 return rc;
4123
4124 cmd_flags = BNX2_NVM_COMMAND_LAST;
4125 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4126
4127 memcpy(ret_buf, buf, 4 - extra);
4128 }
4129
4130 /* Disable access to flash interface */
4131 bnx2_disable_nvram_access(bp);
4132
4133 bnx2_release_nvram_lock(bp);
4134
4135 return rc;
4136 }
4137
4138 static int
4139 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4140 int buf_size)
4141 {
4142 u32 written, offset32, len32;
4143 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4144 int rc = 0;
4145 int align_start, align_end;
4146
4147 buf = data_buf;
4148 offset32 = offset;
4149 len32 = buf_size;
4150 align_start = align_end = 0;
4151
4152 if ((align_start = (offset32 & 3))) {
4153 offset32 &= ~3;
4154 len32 += align_start;
4155 if (len32 < 4)
4156 len32 = 4;
4157 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4158 return rc;
4159 }
4160
4161 if (len32 & 3) {
4162 align_end = 4 - (len32 & 3);
4163 len32 += align_end;
4164 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4165 return rc;
4166 }
4167
4168 if (align_start || align_end) {
4169 align_buf = kmalloc(len32, GFP_KERNEL);
4170 if (align_buf == NULL)
4171 return -ENOMEM;
4172 if (align_start) {
4173 memcpy(align_buf, start, 4);
4174 }
4175 if (align_end) {
4176 memcpy(align_buf + len32 - 4, end, 4);
4177 }
4178 memcpy(align_buf + align_start, data_buf, buf_size);
4179 buf = align_buf;
4180 }
4181
4182 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4183 flash_buffer = kmalloc(264, GFP_KERNEL);
4184 if (flash_buffer == NULL) {
4185 rc = -ENOMEM;
4186 goto nvram_write_end;
4187 }
4188 }
4189
4190 written = 0;
4191 while ((written < len32) && (rc == 0)) {
4192 u32 page_start, page_end, data_start, data_end;
4193 u32 addr, cmd_flags;
4194 int i;
4195
4196 /* Find the page_start addr */
4197 page_start = offset32 + written;
4198 page_start -= (page_start % bp->flash_info->page_size);
4199 /* Find the page_end addr */
4200 page_end = page_start + bp->flash_info->page_size;
4201 /* Find the data_start addr */
4202 data_start = (written == 0) ? offset32 : page_start;
4203 /* Find the data_end addr */
4204 data_end = (page_end > offset32 + len32) ?
4205 (offset32 + len32) : page_end;
4206
4207 /* Request access to the flash interface. */
4208 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4209 goto nvram_write_end;
4210
4211 /* Enable access to flash interface */
4212 bnx2_enable_nvram_access(bp);
4213
4214 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4215 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4216 int j;
4217
4218 /* Read the whole page into the buffer
4219 * (non-buffer flash only) */
4220 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4221 if (j == (bp->flash_info->page_size - 4)) {
4222 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4223 }
4224 rc = bnx2_nvram_read_dword(bp,
4225 page_start + j,
4226 &flash_buffer[j],
4227 cmd_flags);
4228
4229 if (rc)
4230 goto nvram_write_end;
4231
4232 cmd_flags = 0;
4233 }
4234 }
4235
4236 /* Enable writes to flash interface (unlock write-protect) */
4237 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4238 goto nvram_write_end;
4239
4240 /* Loop to write back the buffer data from page_start to
4241 * data_start */
4242 i = 0;
4243 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4244 /* Erase the page */
4245 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4246 goto nvram_write_end;
4247
4248 /* Re-enable the write again for the actual write */
4249 bnx2_enable_nvram_write(bp);
4250
4251 for (addr = page_start; addr < data_start;
4252 addr += 4, i += 4) {
4253
4254 rc = bnx2_nvram_write_dword(bp, addr,
4255 &flash_buffer[i], cmd_flags);
4256
4257 if (rc != 0)
4258 goto nvram_write_end;
4259
4260 cmd_flags = 0;
4261 }
4262 }
4263
4264 /* Loop to write the new data from data_start to data_end */
4265 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4266 if ((addr == page_end - 4) ||
4267 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4268 (addr == data_end - 4))) {
4269
4270 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4271 }
4272 rc = bnx2_nvram_write_dword(bp, addr, buf,
4273 cmd_flags);
4274
4275 if (rc != 0)
4276 goto nvram_write_end;
4277
4278 cmd_flags = 0;
4279 buf += 4;
4280 }
4281
4282 /* Loop to write back the buffer data from data_end
4283 * to page_end */
4284 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4285 for (addr = data_end; addr < page_end;
4286 addr += 4, i += 4) {
4287
4288 if (addr == page_end-4) {
4289 cmd_flags = BNX2_NVM_COMMAND_LAST;
4290 }
4291 rc = bnx2_nvram_write_dword(bp, addr,
4292 &flash_buffer[i], cmd_flags);
4293
4294 if (rc != 0)
4295 goto nvram_write_end;
4296
4297 cmd_flags = 0;
4298 }
4299 }
4300
4301 /* Disable writes to flash interface (lock write-protect) */
4302 bnx2_disable_nvram_write(bp);
4303
4304 /* Disable access to flash interface */
4305 bnx2_disable_nvram_access(bp);
4306 bnx2_release_nvram_lock(bp);
4307
4308 /* Increment written */
4309 written += data_end - data_start;
4310 }
4311
4312 nvram_write_end:
4313 kfree(flash_buffer);
4314 kfree(align_buf);
4315 return rc;
4316 }
4317
4318 static void
4319 bnx2_init_fw_cap(struct bnx2 *bp)
4320 {
4321 u32 val, sig = 0;
4322
4323 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4324 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4325
4326 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4327 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4328
4329 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4330 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4331 return;
4332
4333 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4334 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4335 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4336 }
4337
4338 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4339 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4340 u32 link;
4341
4342 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4343
4344 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4345 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4346 bp->phy_port = PORT_FIBRE;
4347 else
4348 bp->phy_port = PORT_TP;
4349
4350 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4351 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4352 }
4353
4354 if (netif_running(bp->dev) && sig)
4355 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4356 }
4357
4358 static void
4359 bnx2_setup_msix_tbl(struct bnx2 *bp)
4360 {
4361 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4362
4363 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4364 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4365 }
4366
4367 static int
4368 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4369 {
4370 u32 val;
4371 int i, rc = 0;
4372 u8 old_port;
4373
4374 /* Wait for the current PCI transaction to complete before
4375 * issuing a reset. */
4376 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4377 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4378 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4379 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4380 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4381 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4382 udelay(5);
4383
4384 /* Wait for the firmware to tell us it is ok to issue a reset. */
4385 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4386
4387 /* Deposit a driver reset signature so the firmware knows that
4388 * this is a soft reset. */
4389 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4390 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4391
4392 /* Do a dummy read to force the chip to complete all current transaction
4393 * before we issue a reset. */
4394 val = REG_RD(bp, BNX2_MISC_ID);
4395
4396 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4397 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4398 REG_RD(bp, BNX2_MISC_COMMAND);
4399 udelay(5);
4400
4401 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4402 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4403
4404 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4405
4406 } else {
4407 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4408 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4409 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4410
4411 /* Chip reset. */
4412 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4413
4414 /* Reading back any register after chip reset will hang the
4415 * bus on 5706 A0 and A1. The msleep below provides plenty
4416 * of margin for write posting.
4417 */
4418 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4419 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4420 msleep(20);
4421
4422 /* Reset takes approximate 30 usec */
4423 for (i = 0; i < 10; i++) {
4424 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4425 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4426 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4427 break;
4428 udelay(10);
4429 }
4430
4431 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4432 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4433 printk(KERN_ERR PFX "Chip reset did not complete\n");
4434 return -EBUSY;
4435 }
4436 }
4437
4438 /* Make sure byte swapping is properly configured. */
4439 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4440 if (val != 0x01020304) {
4441 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4442 return -ENODEV;
4443 }
4444
4445 /* Wait for the firmware to finish its initialization. */
4446 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4447 if (rc)
4448 return rc;
4449
4450 spin_lock_bh(&bp->phy_lock);
4451 old_port = bp->phy_port;
4452 bnx2_init_fw_cap(bp);
4453 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4454 old_port != bp->phy_port)
4455 bnx2_set_default_remote_link(bp);
4456 spin_unlock_bh(&bp->phy_lock);
4457
4458 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4459 /* Adjust the voltage regular to two steps lower. The default
4460 * of this register is 0x0000000e. */
4461 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4462
4463 /* Remove bad rbuf memory from the free pool. */
4464 rc = bnx2_alloc_bad_rbuf(bp);
4465 }
4466
4467 if (bp->flags & BNX2_FLAG_USING_MSIX)
4468 bnx2_setup_msix_tbl(bp);
4469
4470 return rc;
4471 }
4472
4473 static int
4474 bnx2_init_chip(struct bnx2 *bp)
4475 {
4476 u32 val, mtu;
4477 int rc, i;
4478
4479 /* Make sure the interrupt is not active. */
4480 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4481
4482 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4483 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4484 #ifdef __BIG_ENDIAN
4485 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4486 #endif
4487 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4488 DMA_READ_CHANS << 12 |
4489 DMA_WRITE_CHANS << 16;
4490
4491 val |= (0x2 << 20) | (1 << 11);
4492
4493 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4494 val |= (1 << 23);
4495
4496 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4497 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4498 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4499
4500 REG_WR(bp, BNX2_DMA_CONFIG, val);
4501
4502 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4503 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4504 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4505 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4506 }
4507
4508 if (bp->flags & BNX2_FLAG_PCIX) {
4509 u16 val16;
4510
4511 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4512 &val16);
4513 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4514 val16 & ~PCI_X_CMD_ERO);
4515 }
4516
4517 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4518 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4519 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4520 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4521
4522 /* Initialize context mapping and zero out the quick contexts. The
4523 * context block must have already been enabled. */
4524 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4525 rc = bnx2_init_5709_context(bp);
4526 if (rc)
4527 return rc;
4528 } else
4529 bnx2_init_context(bp);
4530
4531 if ((rc = bnx2_init_cpus(bp)) != 0)
4532 return rc;
4533
4534 bnx2_init_nvram(bp);
4535
4536 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4537
4538 val = REG_RD(bp, BNX2_MQ_CONFIG);
4539 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4540 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4541 if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
4542 val |= BNX2_MQ_CONFIG_HALT_DIS;
4543
4544 REG_WR(bp, BNX2_MQ_CONFIG, val);
4545
4546 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4547 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4548 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4549
4550 val = (BCM_PAGE_BITS - 8) << 24;
4551 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4552
4553 /* Configure page size. */
4554 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4555 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4556 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4557 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4558
4559 val = bp->mac_addr[0] +
4560 (bp->mac_addr[1] << 8) +
4561 (bp->mac_addr[2] << 16) +
4562 bp->mac_addr[3] +
4563 (bp->mac_addr[4] << 8) +
4564 (bp->mac_addr[5] << 16);
4565 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4566
4567 /* Program the MTU. Also include 4 bytes for CRC32. */
4568 mtu = bp->dev->mtu;
4569 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4570 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4571 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4572 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4573
4574 if (mtu < 1500)
4575 mtu = 1500;
4576
4577 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4578 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4579 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4580
4581 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4582 bp->bnx2_napi[i].last_status_idx = 0;
4583
4584 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4585
4586 /* Set up how to generate a link change interrupt. */
4587 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4588
4589 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4590 (u64) bp->status_blk_mapping & 0xffffffff);
4591 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4592
4593 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4594 (u64) bp->stats_blk_mapping & 0xffffffff);
4595 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4596 (u64) bp->stats_blk_mapping >> 32);
4597
4598 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4599 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4600
4601 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4602 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4603
4604 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4605 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4606
4607 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4608
4609 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4610
4611 REG_WR(bp, BNX2_HC_COM_TICKS,
4612 (bp->com_ticks_int << 16) | bp->com_ticks);
4613
4614 REG_WR(bp, BNX2_HC_CMD_TICKS,
4615 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4616
4617 if (CHIP_NUM(bp) == CHIP_NUM_5708)
4618 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4619 else
4620 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4621 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4622
4623 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4624 val = BNX2_HC_CONFIG_COLLECT_STATS;
4625 else {
4626 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4627 BNX2_HC_CONFIG_COLLECT_STATS;
4628 }
4629
4630 if (bp->irq_nvecs > 1) {
4631 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4632 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4633
4634 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4635 }
4636
4637 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4638 val |= BNX2_HC_CONFIG_ONE_SHOT;
4639
4640 REG_WR(bp, BNX2_HC_CONFIG, val);
4641
4642 for (i = 1; i < bp->irq_nvecs; i++) {
4643 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4644 BNX2_HC_SB_CONFIG_1;
4645
4646 REG_WR(bp, base,
4647 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4648 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4649 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4650
4651 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4652 (bp->tx_quick_cons_trip_int << 16) |
4653 bp->tx_quick_cons_trip);
4654
4655 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4656 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4657
4658 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4659 (bp->rx_quick_cons_trip_int << 16) |
4660 bp->rx_quick_cons_trip);
4661
4662 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4663 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4664 }
4665
4666 /* Clear internal stats counters. */
4667 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4668
4669 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4670
4671 /* Initialize the receive filter. */
4672 bnx2_set_rx_mode(bp->dev);
4673
4674 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4675 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4676 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4677 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4678 }
4679 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4680 1, 0);
4681
4682 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4683 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4684
4685 udelay(20);
4686
4687 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4688
4689 return rc;
4690 }
4691
4692 static void
4693 bnx2_clear_ring_states(struct bnx2 *bp)
4694 {
4695 struct bnx2_napi *bnapi;
4696 struct bnx2_tx_ring_info *txr;
4697 struct bnx2_rx_ring_info *rxr;
4698 int i;
4699
4700 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4701 bnapi = &bp->bnx2_napi[i];
4702 txr = &bnapi->tx_ring;
4703 rxr = &bnapi->rx_ring;
4704
4705 txr->tx_cons = 0;
4706 txr->hw_tx_cons = 0;
4707 rxr->rx_prod_bseq = 0;
4708 rxr->rx_prod = 0;
4709 rxr->rx_cons = 0;
4710 rxr->rx_pg_prod = 0;
4711 rxr->rx_pg_cons = 0;
4712 }
4713 }
4714
4715 static void
4716 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
4717 {
4718 u32 val, offset0, offset1, offset2, offset3;
4719 u32 cid_addr = GET_CID_ADDR(cid);
4720
4721 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4722 offset0 = BNX2_L2CTX_TYPE_XI;
4723 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
4724 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
4725 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
4726 } else {
4727 offset0 = BNX2_L2CTX_TYPE;
4728 offset1 = BNX2_L2CTX_CMD_TYPE;
4729 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
4730 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
4731 }
4732 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
4733 bnx2_ctx_wr(bp, cid_addr, offset0, val);
4734
4735 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4736 bnx2_ctx_wr(bp, cid_addr, offset1, val);
4737
4738 val = (u64) txr->tx_desc_mapping >> 32;
4739 bnx2_ctx_wr(bp, cid_addr, offset2, val);
4740
4741 val = (u64) txr->tx_desc_mapping & 0xffffffff;
4742 bnx2_ctx_wr(bp, cid_addr, offset3, val);
4743 }
4744
4745 static void
4746 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
4747 {
4748 struct tx_bd *txbd;
4749 u32 cid = TX_CID;
4750 struct bnx2_napi *bnapi;
4751 struct bnx2_tx_ring_info *txr;
4752
4753 bnapi = &bp->bnx2_napi[ring_num];
4754 txr = &bnapi->tx_ring;
4755
4756 if (ring_num == 0)
4757 cid = TX_CID;
4758 else
4759 cid = TX_TSS_CID + ring_num - 1;
4760
4761 bp->tx_wake_thresh = bp->tx_ring_size / 2;
4762
4763 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
4764
4765 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
4766 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
4767
4768 txr->tx_prod = 0;
4769 txr->tx_prod_bseq = 0;
4770
4771 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
4772 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
4773
4774 bnx2_init_tx_context(bp, cid, txr);
4775 }
4776
4777 static void
4778 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
4779 int num_rings)
4780 {
4781 int i;
4782 struct rx_bd *rxbd;
4783
4784 for (i = 0; i < num_rings; i++) {
4785 int j;
4786
4787 rxbd = &rx_ring[i][0];
4788 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
4789 rxbd->rx_bd_len = buf_size;
4790 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
4791 }
4792 if (i == (num_rings - 1))
4793 j = 0;
4794 else
4795 j = i + 1;
4796 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
4797 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
4798 }
4799 }
4800
4801 static void
4802 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
4803 {
4804 int i;
4805 u16 prod, ring_prod;
4806 u32 cid, rx_cid_addr, val;
4807 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
4808 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
4809
4810 if (ring_num == 0)
4811 cid = RX_CID;
4812 else
4813 cid = RX_RSS_CID + ring_num - 1;
4814
4815 rx_cid_addr = GET_CID_ADDR(cid);
4816
4817 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
4818 bp->rx_buf_use_size, bp->rx_max_ring);
4819
4820 bnx2_init_rx_context(bp, cid);
4821
4822 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4823 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
4824 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
4825 }
4826
4827 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
4828 if (bp->rx_pg_ring_size) {
4829 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
4830 rxr->rx_pg_desc_mapping,
4831 PAGE_SIZE, bp->rx_max_pg_ring);
4832 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
4833 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
4834 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
4835 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
4836
4837 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
4838 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
4839
4840 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
4841 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
4842
4843 if (CHIP_NUM(bp) == CHIP_NUM_5709)
4844 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
4845 }
4846
4847 val = (u64) rxr->rx_desc_mapping[0] >> 32;
4848 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
4849
4850 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
4851 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
4852
4853 ring_prod = prod = rxr->rx_pg_prod;
4854 for (i = 0; i < bp->rx_pg_ring_size; i++) {
4855 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
4856 break;
4857 prod = NEXT_RX_BD(prod);
4858 ring_prod = RX_PG_RING_IDX(prod);
4859 }
4860 rxr->rx_pg_prod = prod;
4861
4862 ring_prod = prod = rxr->rx_prod;
4863 for (i = 0; i < bp->rx_ring_size; i++) {
4864 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
4865 break;
4866 prod = NEXT_RX_BD(prod);
4867 ring_prod = RX_RING_IDX(prod);
4868 }
4869 rxr->rx_prod = prod;
4870
4871 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
4872 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
4873 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
4874
4875 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
4876 REG_WR16(bp, rxr->rx_bidx_addr, prod);
4877
4878 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
4879 }
4880
4881 static void
4882 bnx2_init_all_rings(struct bnx2 *bp)
4883 {
4884 int i;
4885 u32 val;
4886
4887 bnx2_clear_ring_states(bp);
4888
4889 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
4890 for (i = 0; i < bp->num_tx_rings; i++)
4891 bnx2_init_tx_ring(bp, i);
4892
4893 if (bp->num_tx_rings > 1)
4894 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
4895 (TX_TSS_CID << 7));
4896
4897 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
4898 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
4899
4900 for (i = 0; i < bp->num_rx_rings; i++)
4901 bnx2_init_rx_ring(bp, i);
4902
4903 if (bp->num_rx_rings > 1) {
4904 u32 tbl_32;
4905 u8 *tbl = (u8 *) &tbl_32;
4906
4907 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
4908 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
4909
4910 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
4911 tbl[i % 4] = i % (bp->num_rx_rings - 1);
4912 if ((i % 4) == 3)
4913 bnx2_reg_wr_ind(bp,
4914 BNX2_RXP_SCRATCH_RSS_TBL + i,
4915 cpu_to_be32(tbl_32));
4916 }
4917
4918 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
4919 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
4920
4921 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
4922
4923 }
4924 }
4925
4926 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
4927 {
4928 u32 max, num_rings = 1;
4929
4930 while (ring_size > MAX_RX_DESC_CNT) {
4931 ring_size -= MAX_RX_DESC_CNT;
4932 num_rings++;
4933 }
4934 /* round to next power of 2 */
4935 max = max_size;
4936 while ((max & num_rings) == 0)
4937 max >>= 1;
4938
4939 if (num_rings != max)
4940 max <<= 1;
4941
4942 return max;
4943 }
4944
4945 static void
4946 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
4947 {
4948 u32 rx_size, rx_space, jumbo_size;
4949
4950 /* 8 for CRC and VLAN */
4951 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
4952
4953 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
4954 sizeof(struct skb_shared_info);
4955
4956 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
4957 bp->rx_pg_ring_size = 0;
4958 bp->rx_max_pg_ring = 0;
4959 bp->rx_max_pg_ring_idx = 0;
4960 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
4961 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
4962
4963 jumbo_size = size * pages;
4964 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
4965 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
4966
4967 bp->rx_pg_ring_size = jumbo_size;
4968 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
4969 MAX_RX_PG_RINGS);
4970 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
4971 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
4972 bp->rx_copy_thresh = 0;
4973 }
4974
4975 bp->rx_buf_use_size = rx_size;
4976 /* hw alignment */
4977 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
4978 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
4979 bp->rx_ring_size = size;
4980 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
4981 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
4982 }
4983
4984 static void
4985 bnx2_free_tx_skbs(struct bnx2 *bp)
4986 {
4987 int i;
4988
4989 for (i = 0; i < bp->num_tx_rings; i++) {
4990 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
4991 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
4992 int j;
4993
4994 if (txr->tx_buf_ring == NULL)
4995 continue;
4996
4997 for (j = 0; j < TX_DESC_CNT; ) {
4998 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
4999 struct sk_buff *skb = tx_buf->skb;
5000
5001 if (skb == NULL) {
5002 j++;
5003 continue;
5004 }
5005
5006 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5007
5008 tx_buf->skb = NULL;
5009
5010 j += skb_shinfo(skb)->nr_frags + 1;
5011 dev_kfree_skb(skb);
5012 }
5013 }
5014 }
5015
5016 static void
5017 bnx2_free_rx_skbs(struct bnx2 *bp)
5018 {
5019 int i;
5020
5021 for (i = 0; i < bp->num_rx_rings; i++) {
5022 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5023 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5024 int j;
5025
5026 if (rxr->rx_buf_ring == NULL)
5027 return;
5028
5029 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5030 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5031 struct sk_buff *skb = rx_buf->skb;
5032
5033 if (skb == NULL)
5034 continue;
5035
5036 pci_unmap_single(bp->pdev,
5037 pci_unmap_addr(rx_buf, mapping),
5038 bp->rx_buf_use_size,
5039 PCI_DMA_FROMDEVICE);
5040
5041 rx_buf->skb = NULL;
5042
5043 dev_kfree_skb(skb);
5044 }
5045 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5046 bnx2_free_rx_page(bp, rxr, j);
5047 }
5048 }
5049
5050 static void
5051 bnx2_free_skbs(struct bnx2 *bp)
5052 {
5053 bnx2_free_tx_skbs(bp);
5054 bnx2_free_rx_skbs(bp);
5055 }
5056
5057 static int
5058 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5059 {
5060 int rc;
5061
5062 rc = bnx2_reset_chip(bp, reset_code);
5063 bnx2_free_skbs(bp);
5064 if (rc)
5065 return rc;
5066
5067 if ((rc = bnx2_init_chip(bp)) != 0)
5068 return rc;
5069
5070 bnx2_init_all_rings(bp);
5071 return 0;
5072 }
5073
5074 static int
5075 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5076 {
5077 int rc;
5078
5079 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5080 return rc;
5081
5082 spin_lock_bh(&bp->phy_lock);
5083 bnx2_init_phy(bp, reset_phy);
5084 bnx2_set_link(bp);
5085 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5086 bnx2_remote_phy_event(bp);
5087 spin_unlock_bh(&bp->phy_lock);
5088 return 0;
5089 }
5090
5091 static int
5092 bnx2_shutdown_chip(struct bnx2 *bp)
5093 {
5094 u32 reset_code;
5095
5096 if (bp->flags & BNX2_FLAG_NO_WOL)
5097 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5098 else if (bp->wol)
5099 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5100 else
5101 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5102
5103 return bnx2_reset_chip(bp, reset_code);
5104 }
5105
5106 static int
5107 bnx2_test_registers(struct bnx2 *bp)
5108 {
5109 int ret;
5110 int i, is_5709;
5111 static const struct {
5112 u16 offset;
5113 u16 flags;
5114 #define BNX2_FL_NOT_5709 1
5115 u32 rw_mask;
5116 u32 ro_mask;
5117 } reg_tbl[] = {
5118 { 0x006c, 0, 0x00000000, 0x0000003f },
5119 { 0x0090, 0, 0xffffffff, 0x00000000 },
5120 { 0x0094, 0, 0x00000000, 0x00000000 },
5121
5122 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5123 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5124 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5125 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5126 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5127 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5128 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5129 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5130 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5131
5132 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5133 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5134 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5135 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5136 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5137 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5138
5139 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5140 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5141 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5142
5143 { 0x1000, 0, 0x00000000, 0x00000001 },
5144 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5145
5146 { 0x1408, 0, 0x01c00800, 0x00000000 },
5147 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5148 { 0x14a8, 0, 0x00000000, 0x000001ff },
5149 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5150 { 0x14b0, 0, 0x00000002, 0x00000001 },
5151 { 0x14b8, 0, 0x00000000, 0x00000000 },
5152 { 0x14c0, 0, 0x00000000, 0x00000009 },
5153 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5154 { 0x14cc, 0, 0x00000000, 0x00000001 },
5155 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5156
5157 { 0x1800, 0, 0x00000000, 0x00000001 },
5158 { 0x1804, 0, 0x00000000, 0x00000003 },
5159
5160 { 0x2800, 0, 0x00000000, 0x00000001 },
5161 { 0x2804, 0, 0x00000000, 0x00003f01 },
5162 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5163 { 0x2810, 0, 0xffff0000, 0x00000000 },
5164 { 0x2814, 0, 0xffff0000, 0x00000000 },
5165 { 0x2818, 0, 0xffff0000, 0x00000000 },
5166 { 0x281c, 0, 0xffff0000, 0x00000000 },
5167 { 0x2834, 0, 0xffffffff, 0x00000000 },
5168 { 0x2840, 0, 0x00000000, 0xffffffff },
5169 { 0x2844, 0, 0x00000000, 0xffffffff },
5170 { 0x2848, 0, 0xffffffff, 0x00000000 },
5171 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5172
5173 { 0x2c00, 0, 0x00000000, 0x00000011 },
5174 { 0x2c04, 0, 0x00000000, 0x00030007 },
5175
5176 { 0x3c00, 0, 0x00000000, 0x00000001 },
5177 { 0x3c04, 0, 0x00000000, 0x00070000 },
5178 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5179 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5180 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5181 { 0x3c14, 0, 0x00000000, 0xffffffff },
5182 { 0x3c18, 0, 0x00000000, 0xffffffff },
5183 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5184 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5185
5186 { 0x5004, 0, 0x00000000, 0x0000007f },
5187 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5188
5189 { 0x5c00, 0, 0x00000000, 0x00000001 },
5190 { 0x5c04, 0, 0x00000000, 0x0003000f },
5191 { 0x5c08, 0, 0x00000003, 0x00000000 },
5192 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5193 { 0x5c10, 0, 0x00000000, 0xffffffff },
5194 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5195 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5196 { 0x5c88, 0, 0x00000000, 0x00077373 },
5197 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5198
5199 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5200 { 0x680c, 0, 0xffffffff, 0x00000000 },
5201 { 0x6810, 0, 0xffffffff, 0x00000000 },
5202 { 0x6814, 0, 0xffffffff, 0x00000000 },
5203 { 0x6818, 0, 0xffffffff, 0x00000000 },
5204 { 0x681c, 0, 0xffffffff, 0x00000000 },
5205 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5206 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5207 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5208 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5209 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5210 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5211 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5212 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5213 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5214 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5215 { 0x684c, 0, 0xffffffff, 0x00000000 },
5216 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5217 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5218 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5219 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5220 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5221 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5222
5223 { 0xffff, 0, 0x00000000, 0x00000000 },
5224 };
5225
5226 ret = 0;
5227 is_5709 = 0;
5228 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5229 is_5709 = 1;
5230
5231 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5232 u32 offset, rw_mask, ro_mask, save_val, val;
5233 u16 flags = reg_tbl[i].flags;
5234
5235 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5236 continue;
5237
5238 offset = (u32) reg_tbl[i].offset;
5239 rw_mask = reg_tbl[i].rw_mask;
5240 ro_mask = reg_tbl[i].ro_mask;
5241
5242 save_val = readl(bp->regview + offset);
5243
5244 writel(0, bp->regview + offset);
5245
5246 val = readl(bp->regview + offset);
5247 if ((val & rw_mask) != 0) {
5248 goto reg_test_err;
5249 }
5250
5251 if ((val & ro_mask) != (save_val & ro_mask)) {
5252 goto reg_test_err;
5253 }
5254
5255 writel(0xffffffff, bp->regview + offset);
5256
5257 val = readl(bp->regview + offset);
5258 if ((val & rw_mask) != rw_mask) {
5259 goto reg_test_err;
5260 }
5261
5262 if ((val & ro_mask) != (save_val & ro_mask)) {
5263 goto reg_test_err;
5264 }
5265
5266 writel(save_val, bp->regview + offset);
5267 continue;
5268
5269 reg_test_err:
5270 writel(save_val, bp->regview + offset);
5271 ret = -ENODEV;
5272 break;
5273 }
5274 return ret;
5275 }
5276
5277 static int
5278 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5279 {
5280 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5281 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5282 int i;
5283
5284 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5285 u32 offset;
5286
5287 for (offset = 0; offset < size; offset += 4) {
5288
5289 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5290
5291 if (bnx2_reg_rd_ind(bp, start + offset) !=
5292 test_pattern[i]) {
5293 return -ENODEV;
5294 }
5295 }
5296 }
5297 return 0;
5298 }
5299
5300 static int
5301 bnx2_test_memory(struct bnx2 *bp)
5302 {
5303 int ret = 0;
5304 int i;
5305 static struct mem_entry {
5306 u32 offset;
5307 u32 len;
5308 } mem_tbl_5706[] = {
5309 { 0x60000, 0x4000 },
5310 { 0xa0000, 0x3000 },
5311 { 0xe0000, 0x4000 },
5312 { 0x120000, 0x4000 },
5313 { 0x1a0000, 0x4000 },
5314 { 0x160000, 0x4000 },
5315 { 0xffffffff, 0 },
5316 },
5317 mem_tbl_5709[] = {
5318 { 0x60000, 0x4000 },
5319 { 0xa0000, 0x3000 },
5320 { 0xe0000, 0x4000 },
5321 { 0x120000, 0x4000 },
5322 { 0x1a0000, 0x4000 },
5323 { 0xffffffff, 0 },
5324 };
5325 struct mem_entry *mem_tbl;
5326
5327 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5328 mem_tbl = mem_tbl_5709;
5329 else
5330 mem_tbl = mem_tbl_5706;
5331
5332 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5333 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5334 mem_tbl[i].len)) != 0) {
5335 return ret;
5336 }
5337 }
5338
5339 return ret;
5340 }
5341
5342 #define BNX2_MAC_LOOPBACK 0
5343 #define BNX2_PHY_LOOPBACK 1
5344
5345 static int
5346 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5347 {
5348 unsigned int pkt_size, num_pkts, i;
5349 struct sk_buff *skb, *rx_skb;
5350 unsigned char *packet;
5351 u16 rx_start_idx, rx_idx;
5352 dma_addr_t map;
5353 struct tx_bd *txbd;
5354 struct sw_bd *rx_buf;
5355 struct l2_fhdr *rx_hdr;
5356 int ret = -ENODEV;
5357 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5358 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5359 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5360
5361 tx_napi = bnapi;
5362
5363 txr = &tx_napi->tx_ring;
5364 rxr = &bnapi->rx_ring;
5365 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5366 bp->loopback = MAC_LOOPBACK;
5367 bnx2_set_mac_loopback(bp);
5368 }
5369 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5370 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5371 return 0;
5372
5373 bp->loopback = PHY_LOOPBACK;
5374 bnx2_set_phy_loopback(bp);
5375 }
5376 else
5377 return -EINVAL;
5378
5379 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5380 skb = netdev_alloc_skb(bp->dev, pkt_size);
5381 if (!skb)
5382 return -ENOMEM;
5383 packet = skb_put(skb, pkt_size);
5384 memcpy(packet, bp->dev->dev_addr, 6);
5385 memset(packet + 6, 0x0, 8);
5386 for (i = 14; i < pkt_size; i++)
5387 packet[i] = (unsigned char) (i & 0xff);
5388
5389 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
5390 dev_kfree_skb(skb);
5391 return -EIO;
5392 }
5393 map = skb_shinfo(skb)->dma_maps[0];
5394
5395 REG_WR(bp, BNX2_HC_COMMAND,
5396 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5397
5398 REG_RD(bp, BNX2_HC_COMMAND);
5399
5400 udelay(5);
5401 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5402
5403 num_pkts = 0;
5404
5405 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5406
5407 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5408 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5409 txbd->tx_bd_mss_nbytes = pkt_size;
5410 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5411
5412 num_pkts++;
5413 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5414 txr->tx_prod_bseq += pkt_size;
5415
5416 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5417 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5418
5419 udelay(100);
5420
5421 REG_WR(bp, BNX2_HC_COMMAND,
5422 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5423
5424 REG_RD(bp, BNX2_HC_COMMAND);
5425
5426 udelay(5);
5427
5428 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5429 dev_kfree_skb(skb);
5430
5431 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5432 goto loopback_test_done;
5433
5434 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5435 if (rx_idx != rx_start_idx + num_pkts) {
5436 goto loopback_test_done;
5437 }
5438
5439 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5440 rx_skb = rx_buf->skb;
5441
5442 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5443 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5444
5445 pci_dma_sync_single_for_cpu(bp->pdev,
5446 pci_unmap_addr(rx_buf, mapping),
5447 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5448
5449 if (rx_hdr->l2_fhdr_status &
5450 (L2_FHDR_ERRORS_BAD_CRC |
5451 L2_FHDR_ERRORS_PHY_DECODE |
5452 L2_FHDR_ERRORS_ALIGNMENT |
5453 L2_FHDR_ERRORS_TOO_SHORT |
5454 L2_FHDR_ERRORS_GIANT_FRAME)) {
5455
5456 goto loopback_test_done;
5457 }
5458
5459 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5460 goto loopback_test_done;
5461 }
5462
5463 for (i = 14; i < pkt_size; i++) {
5464 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5465 goto loopback_test_done;
5466 }
5467 }
5468
5469 ret = 0;
5470
5471 loopback_test_done:
5472 bp->loopback = 0;
5473 return ret;
5474 }
5475
5476 #define BNX2_MAC_LOOPBACK_FAILED 1
5477 #define BNX2_PHY_LOOPBACK_FAILED 2
5478 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5479 BNX2_PHY_LOOPBACK_FAILED)
5480
5481 static int
5482 bnx2_test_loopback(struct bnx2 *bp)
5483 {
5484 int rc = 0;
5485
5486 if (!netif_running(bp->dev))
5487 return BNX2_LOOPBACK_FAILED;
5488
5489 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5490 spin_lock_bh(&bp->phy_lock);
5491 bnx2_init_phy(bp, 1);
5492 spin_unlock_bh(&bp->phy_lock);
5493 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5494 rc |= BNX2_MAC_LOOPBACK_FAILED;
5495 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5496 rc |= BNX2_PHY_LOOPBACK_FAILED;
5497 return rc;
5498 }
5499
5500 #define NVRAM_SIZE 0x200
5501 #define CRC32_RESIDUAL 0xdebb20e3
5502
5503 static int
5504 bnx2_test_nvram(struct bnx2 *bp)
5505 {
5506 __be32 buf[NVRAM_SIZE / 4];
5507 u8 *data = (u8 *) buf;
5508 int rc = 0;
5509 u32 magic, csum;
5510
5511 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5512 goto test_nvram_done;
5513
5514 magic = be32_to_cpu(buf[0]);
5515 if (magic != 0x669955aa) {
5516 rc = -ENODEV;
5517 goto test_nvram_done;
5518 }
5519
5520 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5521 goto test_nvram_done;
5522
5523 csum = ether_crc_le(0x100, data);
5524 if (csum != CRC32_RESIDUAL) {
5525 rc = -ENODEV;
5526 goto test_nvram_done;
5527 }
5528
5529 csum = ether_crc_le(0x100, data + 0x100);
5530 if (csum != CRC32_RESIDUAL) {
5531 rc = -ENODEV;
5532 }
5533
5534 test_nvram_done:
5535 return rc;
5536 }
5537
5538 static int
5539 bnx2_test_link(struct bnx2 *bp)
5540 {
5541 u32 bmsr;
5542
5543 if (!netif_running(bp->dev))
5544 return -ENODEV;
5545
5546 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5547 if (bp->link_up)
5548 return 0;
5549 return -ENODEV;
5550 }
5551 spin_lock_bh(&bp->phy_lock);
5552 bnx2_enable_bmsr1(bp);
5553 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5554 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5555 bnx2_disable_bmsr1(bp);
5556 spin_unlock_bh(&bp->phy_lock);
5557
5558 if (bmsr & BMSR_LSTATUS) {
5559 return 0;
5560 }
5561 return -ENODEV;
5562 }
5563
5564 static int
5565 bnx2_test_intr(struct bnx2 *bp)
5566 {
5567 int i;
5568 u16 status_idx;
5569
5570 if (!netif_running(bp->dev))
5571 return -ENODEV;
5572
5573 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5574
5575 /* This register is not touched during run-time. */
5576 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5577 REG_RD(bp, BNX2_HC_COMMAND);
5578
5579 for (i = 0; i < 10; i++) {
5580 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5581 status_idx) {
5582
5583 break;
5584 }
5585
5586 msleep_interruptible(10);
5587 }
5588 if (i < 10)
5589 return 0;
5590
5591 return -ENODEV;
5592 }
5593
5594 /* Determining link for parallel detection. */
5595 static int
5596 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5597 {
5598 u32 mode_ctl, an_dbg, exp;
5599
5600 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5601 return 0;
5602
5603 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5604 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5605
5606 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5607 return 0;
5608
5609 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5610 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5611 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5612
5613 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5614 return 0;
5615
5616 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5617 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5618 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5619
5620 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5621 return 0;
5622
5623 return 1;
5624 }
5625
5626 static void
5627 bnx2_5706_serdes_timer(struct bnx2 *bp)
5628 {
5629 int check_link = 1;
5630
5631 spin_lock(&bp->phy_lock);
5632 if (bp->serdes_an_pending) {
5633 bp->serdes_an_pending--;
5634 check_link = 0;
5635 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5636 u32 bmcr;
5637
5638 bp->current_interval = BNX2_TIMER_INTERVAL;
5639
5640 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5641
5642 if (bmcr & BMCR_ANENABLE) {
5643 if (bnx2_5706_serdes_has_link(bp)) {
5644 bmcr &= ~BMCR_ANENABLE;
5645 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5646 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5647 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5648 }
5649 }
5650 }
5651 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5652 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5653 u32 phy2;
5654
5655 bnx2_write_phy(bp, 0x17, 0x0f01);
5656 bnx2_read_phy(bp, 0x15, &phy2);
5657 if (phy2 & 0x20) {
5658 u32 bmcr;
5659
5660 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5661 bmcr |= BMCR_ANENABLE;
5662 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5663
5664 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5665 }
5666 } else
5667 bp->current_interval = BNX2_TIMER_INTERVAL;
5668
5669 if (check_link) {
5670 u32 val;
5671
5672 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5673 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5674 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5675
5676 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5677 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5678 bnx2_5706s_force_link_dn(bp, 1);
5679 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5680 } else
5681 bnx2_set_link(bp);
5682 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
5683 bnx2_set_link(bp);
5684 }
5685 spin_unlock(&bp->phy_lock);
5686 }
5687
5688 static void
5689 bnx2_5708_serdes_timer(struct bnx2 *bp)
5690 {
5691 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5692 return;
5693
5694 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
5695 bp->serdes_an_pending = 0;
5696 return;
5697 }
5698
5699 spin_lock(&bp->phy_lock);
5700 if (bp->serdes_an_pending)
5701 bp->serdes_an_pending--;
5702 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5703 u32 bmcr;
5704
5705 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5706 if (bmcr & BMCR_ANENABLE) {
5707 bnx2_enable_forced_2g5(bp);
5708 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
5709 } else {
5710 bnx2_disable_forced_2g5(bp);
5711 bp->serdes_an_pending = 2;
5712 bp->current_interval = BNX2_TIMER_INTERVAL;
5713 }
5714
5715 } else
5716 bp->current_interval = BNX2_TIMER_INTERVAL;
5717
5718 spin_unlock(&bp->phy_lock);
5719 }
5720
5721 static void
5722 bnx2_timer(unsigned long data)
5723 {
5724 struct bnx2 *bp = (struct bnx2 *) data;
5725
5726 if (!netif_running(bp->dev))
5727 return;
5728
5729 if (atomic_read(&bp->intr_sem) != 0)
5730 goto bnx2_restart_timer;
5731
5732 bnx2_send_heart_beat(bp);
5733
5734 bp->stats_blk->stat_FwRxDrop =
5735 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
5736
5737 /* workaround occasional corrupted counters */
5738 if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
5739 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
5740 BNX2_HC_COMMAND_STATS_NOW);
5741
5742 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
5743 if (CHIP_NUM(bp) == CHIP_NUM_5706)
5744 bnx2_5706_serdes_timer(bp);
5745 else
5746 bnx2_5708_serdes_timer(bp);
5747 }
5748
5749 bnx2_restart_timer:
5750 mod_timer(&bp->timer, jiffies + bp->current_interval);
5751 }
5752
5753 static int
5754 bnx2_request_irq(struct bnx2 *bp)
5755 {
5756 unsigned long flags;
5757 struct bnx2_irq *irq;
5758 int rc = 0, i;
5759
5760 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
5761 flags = 0;
5762 else
5763 flags = IRQF_SHARED;
5764
5765 for (i = 0; i < bp->irq_nvecs; i++) {
5766 irq = &bp->irq_tbl[i];
5767 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5768 &bp->bnx2_napi[i]);
5769 if (rc)
5770 break;
5771 irq->requested = 1;
5772 }
5773 return rc;
5774 }
5775
5776 static void
5777 bnx2_free_irq(struct bnx2 *bp)
5778 {
5779 struct bnx2_irq *irq;
5780 int i;
5781
5782 for (i = 0; i < bp->irq_nvecs; i++) {
5783 irq = &bp->irq_tbl[i];
5784 if (irq->requested)
5785 free_irq(irq->vector, &bp->bnx2_napi[i]);
5786 irq->requested = 0;
5787 }
5788 if (bp->flags & BNX2_FLAG_USING_MSI)
5789 pci_disable_msi(bp->pdev);
5790 else if (bp->flags & BNX2_FLAG_USING_MSIX)
5791 pci_disable_msix(bp->pdev);
5792
5793 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
5794 }
5795
5796 static void
5797 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
5798 {
5799 int i, rc;
5800 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
5801
5802 bnx2_setup_msix_tbl(bp);
5803 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
5804 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
5805 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
5806
5807 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5808 msix_ent[i].entry = i;
5809 msix_ent[i].vector = 0;
5810
5811 strcpy(bp->irq_tbl[i].name, bp->dev->name);
5812 bp->irq_tbl[i].handler = bnx2_msi_1shot;
5813 }
5814
5815 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
5816 if (rc != 0)
5817 return;
5818
5819 bp->irq_nvecs = msix_vecs;
5820 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
5821 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
5822 bp->irq_tbl[i].vector = msix_ent[i].vector;
5823 }
5824
5825 static void
5826 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
5827 {
5828 int cpus = num_online_cpus();
5829 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
5830
5831 bp->irq_tbl[0].handler = bnx2_interrupt;
5832 strcpy(bp->irq_tbl[0].name, bp->dev->name);
5833 bp->irq_nvecs = 1;
5834 bp->irq_tbl[0].vector = bp->pdev->irq;
5835
5836 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
5837 bnx2_enable_msix(bp, msix_vecs);
5838
5839 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
5840 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
5841 if (pci_enable_msi(bp->pdev) == 0) {
5842 bp->flags |= BNX2_FLAG_USING_MSI;
5843 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5844 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
5845 bp->irq_tbl[0].handler = bnx2_msi_1shot;
5846 } else
5847 bp->irq_tbl[0].handler = bnx2_msi;
5848
5849 bp->irq_tbl[0].vector = bp->pdev->irq;
5850 }
5851 }
5852
5853 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
5854 bp->dev->real_num_tx_queues = bp->num_tx_rings;
5855
5856 bp->num_rx_rings = bp->irq_nvecs;
5857 }
5858
5859 /* Called with rtnl_lock */
5860 static int
5861 bnx2_open(struct net_device *dev)
5862 {
5863 struct bnx2 *bp = netdev_priv(dev);
5864 int rc;
5865
5866 netif_carrier_off(dev);
5867
5868 bnx2_set_power_state(bp, PCI_D0);
5869 bnx2_disable_int(bp);
5870
5871 bnx2_setup_int_mode(bp, disable_msi);
5872 bnx2_napi_enable(bp);
5873 rc = bnx2_alloc_mem(bp);
5874 if (rc)
5875 goto open_err;
5876
5877 rc = bnx2_request_irq(bp);
5878 if (rc)
5879 goto open_err;
5880
5881 rc = bnx2_init_nic(bp, 1);
5882 if (rc)
5883 goto open_err;
5884
5885 mod_timer(&bp->timer, jiffies + bp->current_interval);
5886
5887 atomic_set(&bp->intr_sem, 0);
5888
5889 bnx2_enable_int(bp);
5890
5891 if (bp->flags & BNX2_FLAG_USING_MSI) {
5892 /* Test MSI to make sure it is working
5893 * If MSI test fails, go back to INTx mode
5894 */
5895 if (bnx2_test_intr(bp) != 0) {
5896 printk(KERN_WARNING PFX "%s: No interrupt was generated"
5897 " using MSI, switching to INTx mode. Please"
5898 " report this failure to the PCI maintainer"
5899 " and include system chipset information.\n",
5900 bp->dev->name);
5901
5902 bnx2_disable_int(bp);
5903 bnx2_free_irq(bp);
5904
5905 bnx2_setup_int_mode(bp, 1);
5906
5907 rc = bnx2_init_nic(bp, 0);
5908
5909 if (!rc)
5910 rc = bnx2_request_irq(bp);
5911
5912 if (rc) {
5913 del_timer_sync(&bp->timer);
5914 goto open_err;
5915 }
5916 bnx2_enable_int(bp);
5917 }
5918 }
5919 if (bp->flags & BNX2_FLAG_USING_MSI)
5920 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
5921 else if (bp->flags & BNX2_FLAG_USING_MSIX)
5922 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
5923
5924 netif_tx_start_all_queues(dev);
5925
5926 return 0;
5927
5928 open_err:
5929 bnx2_napi_disable(bp);
5930 bnx2_free_skbs(bp);
5931 bnx2_free_irq(bp);
5932 bnx2_free_mem(bp);
5933 return rc;
5934 }
5935
5936 static void
5937 bnx2_reset_task(struct work_struct *work)
5938 {
5939 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
5940
5941 if (!netif_running(bp->dev))
5942 return;
5943
5944 bnx2_netif_stop(bp);
5945
5946 bnx2_init_nic(bp, 1);
5947
5948 atomic_set(&bp->intr_sem, 1);
5949 bnx2_netif_start(bp);
5950 }
5951
5952 static void
5953 bnx2_tx_timeout(struct net_device *dev)
5954 {
5955 struct bnx2 *bp = netdev_priv(dev);
5956
5957 /* This allows the netif to be shutdown gracefully before resetting */
5958 schedule_work(&bp->reset_task);
5959 }
5960
5961 #ifdef BCM_VLAN
5962 /* Called with rtnl_lock */
5963 static void
5964 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
5965 {
5966 struct bnx2 *bp = netdev_priv(dev);
5967
5968 bnx2_netif_stop(bp);
5969
5970 bp->vlgrp = vlgrp;
5971 bnx2_set_rx_mode(dev);
5972 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
5973 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
5974
5975 bnx2_netif_start(bp);
5976 }
5977 #endif
5978
5979 /* Called with netif_tx_lock.
5980 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
5981 * netif_wake_queue().
5982 */
5983 static int
5984 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
5985 {
5986 struct bnx2 *bp = netdev_priv(dev);
5987 dma_addr_t mapping;
5988 struct tx_bd *txbd;
5989 struct sw_tx_bd *tx_buf;
5990 u32 len, vlan_tag_flags, last_frag, mss;
5991 u16 prod, ring_prod;
5992 int i;
5993 struct bnx2_napi *bnapi;
5994 struct bnx2_tx_ring_info *txr;
5995 struct netdev_queue *txq;
5996 struct skb_shared_info *sp;
5997
5998 /* Determine which tx ring we will be placed on */
5999 i = skb_get_queue_mapping(skb);
6000 bnapi = &bp->bnx2_napi[i];
6001 txr = &bnapi->tx_ring;
6002 txq = netdev_get_tx_queue(dev, i);
6003
6004 if (unlikely(bnx2_tx_avail(bp, txr) <
6005 (skb_shinfo(skb)->nr_frags + 1))) {
6006 netif_tx_stop_queue(txq);
6007 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6008 dev->name);
6009
6010 return NETDEV_TX_BUSY;
6011 }
6012 len = skb_headlen(skb);
6013 prod = txr->tx_prod;
6014 ring_prod = TX_RING_IDX(prod);
6015
6016 vlan_tag_flags = 0;
6017 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6018 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6019 }
6020
6021 #ifdef BCM_VLAN
6022 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6023 vlan_tag_flags |=
6024 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6025 }
6026 #endif
6027 if ((mss = skb_shinfo(skb)->gso_size)) {
6028 u32 tcp_opt_len;
6029 struct iphdr *iph;
6030
6031 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6032
6033 tcp_opt_len = tcp_optlen(skb);
6034
6035 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6036 u32 tcp_off = skb_transport_offset(skb) -
6037 sizeof(struct ipv6hdr) - ETH_HLEN;
6038
6039 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6040 TX_BD_FLAGS_SW_FLAGS;
6041 if (likely(tcp_off == 0))
6042 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6043 else {
6044 tcp_off >>= 3;
6045 vlan_tag_flags |= ((tcp_off & 0x3) <<
6046 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6047 ((tcp_off & 0x10) <<
6048 TX_BD_FLAGS_TCP6_OFF4_SHL);
6049 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6050 }
6051 } else {
6052 iph = ip_hdr(skb);
6053 if (tcp_opt_len || (iph->ihl > 5)) {
6054 vlan_tag_flags |= ((iph->ihl - 5) +
6055 (tcp_opt_len >> 2)) << 8;
6056 }
6057 }
6058 } else
6059 mss = 0;
6060
6061 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
6062 dev_kfree_skb(skb);
6063 return NETDEV_TX_OK;
6064 }
6065
6066 sp = skb_shinfo(skb);
6067 mapping = sp->dma_maps[0];
6068
6069 tx_buf = &txr->tx_buf_ring[ring_prod];
6070 tx_buf->skb = skb;
6071
6072 txbd = &txr->tx_desc_ring[ring_prod];
6073
6074 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6075 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6076 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6077 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6078
6079 last_frag = skb_shinfo(skb)->nr_frags;
6080
6081 for (i = 0; i < last_frag; i++) {
6082 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6083
6084 prod = NEXT_TX_BD(prod);
6085 ring_prod = TX_RING_IDX(prod);
6086 txbd = &txr->tx_desc_ring[ring_prod];
6087
6088 len = frag->size;
6089 mapping = sp->dma_maps[i + 1];
6090
6091 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6092 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6093 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6094 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6095
6096 }
6097 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6098
6099 prod = NEXT_TX_BD(prod);
6100 txr->tx_prod_bseq += skb->len;
6101
6102 REG_WR16(bp, txr->tx_bidx_addr, prod);
6103 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6104
6105 mmiowb();
6106
6107 txr->tx_prod = prod;
6108 dev->trans_start = jiffies;
6109
6110 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6111 netif_tx_stop_queue(txq);
6112 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6113 netif_tx_wake_queue(txq);
6114 }
6115
6116 return NETDEV_TX_OK;
6117 }
6118
6119 /* Called with rtnl_lock */
6120 static int
6121 bnx2_close(struct net_device *dev)
6122 {
6123 struct bnx2 *bp = netdev_priv(dev);
6124
6125 cancel_work_sync(&bp->reset_task);
6126
6127 bnx2_disable_int_sync(bp);
6128 bnx2_napi_disable(bp);
6129 del_timer_sync(&bp->timer);
6130 bnx2_shutdown_chip(bp);
6131 bnx2_free_irq(bp);
6132 bnx2_free_skbs(bp);
6133 bnx2_free_mem(bp);
6134 bp->link_up = 0;
6135 netif_carrier_off(bp->dev);
6136 bnx2_set_power_state(bp, PCI_D3hot);
6137 return 0;
6138 }
6139
6140 #define GET_NET_STATS64(ctr) \
6141 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6142 (unsigned long) (ctr##_lo)
6143
6144 #define GET_NET_STATS32(ctr) \
6145 (ctr##_lo)
6146
6147 #if (BITS_PER_LONG == 64)
6148 #define GET_NET_STATS GET_NET_STATS64
6149 #else
6150 #define GET_NET_STATS GET_NET_STATS32
6151 #endif
6152
6153 static struct net_device_stats *
6154 bnx2_get_stats(struct net_device *dev)
6155 {
6156 struct bnx2 *bp = netdev_priv(dev);
6157 struct statistics_block *stats_blk = bp->stats_blk;
6158 struct net_device_stats *net_stats = &bp->net_stats;
6159
6160 if (bp->stats_blk == NULL) {
6161 return net_stats;
6162 }
6163 net_stats->rx_packets =
6164 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6165 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6166 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6167
6168 net_stats->tx_packets =
6169 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6170 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6171 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6172
6173 net_stats->rx_bytes =
6174 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6175
6176 net_stats->tx_bytes =
6177 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6178
6179 net_stats->multicast =
6180 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6181
6182 net_stats->collisions =
6183 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6184
6185 net_stats->rx_length_errors =
6186 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6187 stats_blk->stat_EtherStatsOverrsizePkts);
6188
6189 net_stats->rx_over_errors =
6190 (unsigned long) stats_blk->stat_IfInMBUFDiscards;
6191
6192 net_stats->rx_frame_errors =
6193 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6194
6195 net_stats->rx_crc_errors =
6196 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6197
6198 net_stats->rx_errors = net_stats->rx_length_errors +
6199 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6200 net_stats->rx_crc_errors;
6201
6202 net_stats->tx_aborted_errors =
6203 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6204 stats_blk->stat_Dot3StatsLateCollisions);
6205
6206 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6207 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6208 net_stats->tx_carrier_errors = 0;
6209 else {
6210 net_stats->tx_carrier_errors =
6211 (unsigned long)
6212 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6213 }
6214
6215 net_stats->tx_errors =
6216 (unsigned long)
6217 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6218 +
6219 net_stats->tx_aborted_errors +
6220 net_stats->tx_carrier_errors;
6221
6222 net_stats->rx_missed_errors =
6223 (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
6224 stats_blk->stat_FwRxDrop);
6225
6226 return net_stats;
6227 }
6228
6229 /* All ethtool functions called with rtnl_lock */
6230
6231 static int
6232 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6233 {
6234 struct bnx2 *bp = netdev_priv(dev);
6235 int support_serdes = 0, support_copper = 0;
6236
6237 cmd->supported = SUPPORTED_Autoneg;
6238 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6239 support_serdes = 1;
6240 support_copper = 1;
6241 } else if (bp->phy_port == PORT_FIBRE)
6242 support_serdes = 1;
6243 else
6244 support_copper = 1;
6245
6246 if (support_serdes) {
6247 cmd->supported |= SUPPORTED_1000baseT_Full |
6248 SUPPORTED_FIBRE;
6249 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6250 cmd->supported |= SUPPORTED_2500baseX_Full;
6251
6252 }
6253 if (support_copper) {
6254 cmd->supported |= SUPPORTED_10baseT_Half |
6255 SUPPORTED_10baseT_Full |
6256 SUPPORTED_100baseT_Half |
6257 SUPPORTED_100baseT_Full |
6258 SUPPORTED_1000baseT_Full |
6259 SUPPORTED_TP;
6260
6261 }
6262
6263 spin_lock_bh(&bp->phy_lock);
6264 cmd->port = bp->phy_port;
6265 cmd->advertising = bp->advertising;
6266
6267 if (bp->autoneg & AUTONEG_SPEED) {
6268 cmd->autoneg = AUTONEG_ENABLE;
6269 }
6270 else {
6271 cmd->autoneg = AUTONEG_DISABLE;
6272 }
6273
6274 if (netif_carrier_ok(dev)) {
6275 cmd->speed = bp->line_speed;
6276 cmd->duplex = bp->duplex;
6277 }
6278 else {
6279 cmd->speed = -1;
6280 cmd->duplex = -1;
6281 }
6282 spin_unlock_bh(&bp->phy_lock);
6283
6284 cmd->transceiver = XCVR_INTERNAL;
6285 cmd->phy_address = bp->phy_addr;
6286
6287 return 0;
6288 }
6289
6290 static int
6291 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6292 {
6293 struct bnx2 *bp = netdev_priv(dev);
6294 u8 autoneg = bp->autoneg;
6295 u8 req_duplex = bp->req_duplex;
6296 u16 req_line_speed = bp->req_line_speed;
6297 u32 advertising = bp->advertising;
6298 int err = -EINVAL;
6299
6300 spin_lock_bh(&bp->phy_lock);
6301
6302 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6303 goto err_out_unlock;
6304
6305 if (cmd->port != bp->phy_port &&
6306 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6307 goto err_out_unlock;
6308
6309 /* If device is down, we can store the settings only if the user
6310 * is setting the currently active port.
6311 */
6312 if (!netif_running(dev) && cmd->port != bp->phy_port)
6313 goto err_out_unlock;
6314
6315 if (cmd->autoneg == AUTONEG_ENABLE) {
6316 autoneg |= AUTONEG_SPEED;
6317
6318 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6319
6320 /* allow advertising 1 speed */
6321 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6322 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6323 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6324 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6325
6326 if (cmd->port == PORT_FIBRE)
6327 goto err_out_unlock;
6328
6329 advertising = cmd->advertising;
6330
6331 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6332 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6333 (cmd->port == PORT_TP))
6334 goto err_out_unlock;
6335 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6336 advertising = cmd->advertising;
6337 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6338 goto err_out_unlock;
6339 else {
6340 if (cmd->port == PORT_FIBRE)
6341 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6342 else
6343 advertising = ETHTOOL_ALL_COPPER_SPEED;
6344 }
6345 advertising |= ADVERTISED_Autoneg;
6346 }
6347 else {
6348 if (cmd->port == PORT_FIBRE) {
6349 if ((cmd->speed != SPEED_1000 &&
6350 cmd->speed != SPEED_2500) ||
6351 (cmd->duplex != DUPLEX_FULL))
6352 goto err_out_unlock;
6353
6354 if (cmd->speed == SPEED_2500 &&
6355 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6356 goto err_out_unlock;
6357 }
6358 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6359 goto err_out_unlock;
6360
6361 autoneg &= ~AUTONEG_SPEED;
6362 req_line_speed = cmd->speed;
6363 req_duplex = cmd->duplex;
6364 advertising = 0;
6365 }
6366
6367 bp->autoneg = autoneg;
6368 bp->advertising = advertising;
6369 bp->req_line_speed = req_line_speed;
6370 bp->req_duplex = req_duplex;
6371
6372 err = 0;
6373 /* If device is down, the new settings will be picked up when it is
6374 * brought up.
6375 */
6376 if (netif_running(dev))
6377 err = bnx2_setup_phy(bp, cmd->port);
6378
6379 err_out_unlock:
6380 spin_unlock_bh(&bp->phy_lock);
6381
6382 return err;
6383 }
6384
6385 static void
6386 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6387 {
6388 struct bnx2 *bp = netdev_priv(dev);
6389
6390 strcpy(info->driver, DRV_MODULE_NAME);
6391 strcpy(info->version, DRV_MODULE_VERSION);
6392 strcpy(info->bus_info, pci_name(bp->pdev));
6393 strcpy(info->fw_version, bp->fw_version);
6394 }
6395
6396 #define BNX2_REGDUMP_LEN (32 * 1024)
6397
6398 static int
6399 bnx2_get_regs_len(struct net_device *dev)
6400 {
6401 return BNX2_REGDUMP_LEN;
6402 }
6403
6404 static void
6405 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6406 {
6407 u32 *p = _p, i, offset;
6408 u8 *orig_p = _p;
6409 struct bnx2 *bp = netdev_priv(dev);
6410 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6411 0x0800, 0x0880, 0x0c00, 0x0c10,
6412 0x0c30, 0x0d08, 0x1000, 0x101c,
6413 0x1040, 0x1048, 0x1080, 0x10a4,
6414 0x1400, 0x1490, 0x1498, 0x14f0,
6415 0x1500, 0x155c, 0x1580, 0x15dc,
6416 0x1600, 0x1658, 0x1680, 0x16d8,
6417 0x1800, 0x1820, 0x1840, 0x1854,
6418 0x1880, 0x1894, 0x1900, 0x1984,
6419 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6420 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6421 0x2000, 0x2030, 0x23c0, 0x2400,
6422 0x2800, 0x2820, 0x2830, 0x2850,
6423 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6424 0x3c00, 0x3c94, 0x4000, 0x4010,
6425 0x4080, 0x4090, 0x43c0, 0x4458,
6426 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6427 0x4fc0, 0x5010, 0x53c0, 0x5444,
6428 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6429 0x5fc0, 0x6000, 0x6400, 0x6428,
6430 0x6800, 0x6848, 0x684c, 0x6860,
6431 0x6888, 0x6910, 0x8000 };
6432
6433 regs->version = 0;
6434
6435 memset(p, 0, BNX2_REGDUMP_LEN);
6436
6437 if (!netif_running(bp->dev))
6438 return;
6439
6440 i = 0;
6441 offset = reg_boundaries[0];
6442 p += offset;
6443 while (offset < BNX2_REGDUMP_LEN) {
6444 *p++ = REG_RD(bp, offset);
6445 offset += 4;
6446 if (offset == reg_boundaries[i + 1]) {
6447 offset = reg_boundaries[i + 2];
6448 p = (u32 *) (orig_p + offset);
6449 i += 2;
6450 }
6451 }
6452 }
6453
6454 static void
6455 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6456 {
6457 struct bnx2 *bp = netdev_priv(dev);
6458
6459 if (bp->flags & BNX2_FLAG_NO_WOL) {
6460 wol->supported = 0;
6461 wol->wolopts = 0;
6462 }
6463 else {
6464 wol->supported = WAKE_MAGIC;
6465 if (bp->wol)
6466 wol->wolopts = WAKE_MAGIC;
6467 else
6468 wol->wolopts = 0;
6469 }
6470 memset(&wol->sopass, 0, sizeof(wol->sopass));
6471 }
6472
6473 static int
6474 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6475 {
6476 struct bnx2 *bp = netdev_priv(dev);
6477
6478 if (wol->wolopts & ~WAKE_MAGIC)
6479 return -EINVAL;
6480
6481 if (wol->wolopts & WAKE_MAGIC) {
6482 if (bp->flags & BNX2_FLAG_NO_WOL)
6483 return -EINVAL;
6484
6485 bp->wol = 1;
6486 }
6487 else {
6488 bp->wol = 0;
6489 }
6490 return 0;
6491 }
6492
6493 static int
6494 bnx2_nway_reset(struct net_device *dev)
6495 {
6496 struct bnx2 *bp = netdev_priv(dev);
6497 u32 bmcr;
6498
6499 if (!netif_running(dev))
6500 return -EAGAIN;
6501
6502 if (!(bp->autoneg & AUTONEG_SPEED)) {
6503 return -EINVAL;
6504 }
6505
6506 spin_lock_bh(&bp->phy_lock);
6507
6508 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6509 int rc;
6510
6511 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6512 spin_unlock_bh(&bp->phy_lock);
6513 return rc;
6514 }
6515
6516 /* Force a link down visible on the other side */
6517 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6518 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6519 spin_unlock_bh(&bp->phy_lock);
6520
6521 msleep(20);
6522
6523 spin_lock_bh(&bp->phy_lock);
6524
6525 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6526 bp->serdes_an_pending = 1;
6527 mod_timer(&bp->timer, jiffies + bp->current_interval);
6528 }
6529
6530 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6531 bmcr &= ~BMCR_LOOPBACK;
6532 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6533
6534 spin_unlock_bh(&bp->phy_lock);
6535
6536 return 0;
6537 }
6538
6539 static int
6540 bnx2_get_eeprom_len(struct net_device *dev)
6541 {
6542 struct bnx2 *bp = netdev_priv(dev);
6543
6544 if (bp->flash_info == NULL)
6545 return 0;
6546
6547 return (int) bp->flash_size;
6548 }
6549
6550 static int
6551 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6552 u8 *eebuf)
6553 {
6554 struct bnx2 *bp = netdev_priv(dev);
6555 int rc;
6556
6557 if (!netif_running(dev))
6558 return -EAGAIN;
6559
6560 /* parameters already validated in ethtool_get_eeprom */
6561
6562 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6563
6564 return rc;
6565 }
6566
6567 static int
6568 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6569 u8 *eebuf)
6570 {
6571 struct bnx2 *bp = netdev_priv(dev);
6572 int rc;
6573
6574 if (!netif_running(dev))
6575 return -EAGAIN;
6576
6577 /* parameters already validated in ethtool_set_eeprom */
6578
6579 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6580
6581 return rc;
6582 }
6583
6584 static int
6585 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6586 {
6587 struct bnx2 *bp = netdev_priv(dev);
6588
6589 memset(coal, 0, sizeof(struct ethtool_coalesce));
6590
6591 coal->rx_coalesce_usecs = bp->rx_ticks;
6592 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6593 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6594 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6595
6596 coal->tx_coalesce_usecs = bp->tx_ticks;
6597 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
6598 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
6599 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
6600
6601 coal->stats_block_coalesce_usecs = bp->stats_ticks;
6602
6603 return 0;
6604 }
6605
6606 static int
6607 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6608 {
6609 struct bnx2 *bp = netdev_priv(dev);
6610
6611 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
6612 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
6613
6614 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
6615 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
6616
6617 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
6618 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
6619
6620 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
6621 if (bp->rx_quick_cons_trip_int > 0xff)
6622 bp->rx_quick_cons_trip_int = 0xff;
6623
6624 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
6625 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
6626
6627 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
6628 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
6629
6630 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
6631 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
6632
6633 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
6634 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
6635 0xff;
6636
6637 bp->stats_ticks = coal->stats_block_coalesce_usecs;
6638 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
6639 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
6640 bp->stats_ticks = USEC_PER_SEC;
6641 }
6642 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
6643 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6644 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6645
6646 if (netif_running(bp->dev)) {
6647 bnx2_netif_stop(bp);
6648 bnx2_init_nic(bp, 0);
6649 bnx2_netif_start(bp);
6650 }
6651
6652 return 0;
6653 }
6654
6655 static void
6656 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6657 {
6658 struct bnx2 *bp = netdev_priv(dev);
6659
6660 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
6661 ering->rx_mini_max_pending = 0;
6662 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
6663
6664 ering->rx_pending = bp->rx_ring_size;
6665 ering->rx_mini_pending = 0;
6666 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
6667
6668 ering->tx_max_pending = MAX_TX_DESC_CNT;
6669 ering->tx_pending = bp->tx_ring_size;
6670 }
6671
6672 static int
6673 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
6674 {
6675 if (netif_running(bp->dev)) {
6676 bnx2_netif_stop(bp);
6677 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6678 bnx2_free_skbs(bp);
6679 bnx2_free_mem(bp);
6680 }
6681
6682 bnx2_set_rx_ring_size(bp, rx);
6683 bp->tx_ring_size = tx;
6684
6685 if (netif_running(bp->dev)) {
6686 int rc;
6687
6688 rc = bnx2_alloc_mem(bp);
6689 if (rc)
6690 return rc;
6691 bnx2_init_nic(bp, 0);
6692 bnx2_netif_start(bp);
6693 }
6694 return 0;
6695 }
6696
6697 static int
6698 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6699 {
6700 struct bnx2 *bp = netdev_priv(dev);
6701 int rc;
6702
6703 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
6704 (ering->tx_pending > MAX_TX_DESC_CNT) ||
6705 (ering->tx_pending <= MAX_SKB_FRAGS)) {
6706
6707 return -EINVAL;
6708 }
6709 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
6710 return rc;
6711 }
6712
6713 static void
6714 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
6715 {
6716 struct bnx2 *bp = netdev_priv(dev);
6717
6718 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
6719 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
6720 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
6721 }
6722
6723 static int
6724 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
6725 {
6726 struct bnx2 *bp = netdev_priv(dev);
6727
6728 bp->req_flow_ctrl = 0;
6729 if (epause->rx_pause)
6730 bp->req_flow_ctrl |= FLOW_CTRL_RX;
6731 if (epause->tx_pause)
6732 bp->req_flow_ctrl |= FLOW_CTRL_TX;
6733
6734 if (epause->autoneg) {
6735 bp->autoneg |= AUTONEG_FLOW_CTRL;
6736 }
6737 else {
6738 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
6739 }
6740
6741 if (netif_running(dev)) {
6742 spin_lock_bh(&bp->phy_lock);
6743 bnx2_setup_phy(bp, bp->phy_port);
6744 spin_unlock_bh(&bp->phy_lock);
6745 }
6746
6747 return 0;
6748 }
6749
6750 static u32
6751 bnx2_get_rx_csum(struct net_device *dev)
6752 {
6753 struct bnx2 *bp = netdev_priv(dev);
6754
6755 return bp->rx_csum;
6756 }
6757
6758 static int
6759 bnx2_set_rx_csum(struct net_device *dev, u32 data)
6760 {
6761 struct bnx2 *bp = netdev_priv(dev);
6762
6763 bp->rx_csum = data;
6764 return 0;
6765 }
6766
6767 static int
6768 bnx2_set_tso(struct net_device *dev, u32 data)
6769 {
6770 struct bnx2 *bp = netdev_priv(dev);
6771
6772 if (data) {
6773 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
6774 if (CHIP_NUM(bp) == CHIP_NUM_5709)
6775 dev->features |= NETIF_F_TSO6;
6776 } else
6777 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
6778 NETIF_F_TSO_ECN);
6779 return 0;
6780 }
6781
6782 #define BNX2_NUM_STATS 46
6783
6784 static struct {
6785 char string[ETH_GSTRING_LEN];
6786 } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
6787 { "rx_bytes" },
6788 { "rx_error_bytes" },
6789 { "tx_bytes" },
6790 { "tx_error_bytes" },
6791 { "rx_ucast_packets" },
6792 { "rx_mcast_packets" },
6793 { "rx_bcast_packets" },
6794 { "tx_ucast_packets" },
6795 { "tx_mcast_packets" },
6796 { "tx_bcast_packets" },
6797 { "tx_mac_errors" },
6798 { "tx_carrier_errors" },
6799 { "rx_crc_errors" },
6800 { "rx_align_errors" },
6801 { "tx_single_collisions" },
6802 { "tx_multi_collisions" },
6803 { "tx_deferred" },
6804 { "tx_excess_collisions" },
6805 { "tx_late_collisions" },
6806 { "tx_total_collisions" },
6807 { "rx_fragments" },
6808 { "rx_jabbers" },
6809 { "rx_undersize_packets" },
6810 { "rx_oversize_packets" },
6811 { "rx_64_byte_packets" },
6812 { "rx_65_to_127_byte_packets" },
6813 { "rx_128_to_255_byte_packets" },
6814 { "rx_256_to_511_byte_packets" },
6815 { "rx_512_to_1023_byte_packets" },
6816 { "rx_1024_to_1522_byte_packets" },
6817 { "rx_1523_to_9022_byte_packets" },
6818 { "tx_64_byte_packets" },
6819 { "tx_65_to_127_byte_packets" },
6820 { "tx_128_to_255_byte_packets" },
6821 { "tx_256_to_511_byte_packets" },
6822 { "tx_512_to_1023_byte_packets" },
6823 { "tx_1024_to_1522_byte_packets" },
6824 { "tx_1523_to_9022_byte_packets" },
6825 { "rx_xon_frames" },
6826 { "rx_xoff_frames" },
6827 { "tx_xon_frames" },
6828 { "tx_xoff_frames" },
6829 { "rx_mac_ctrl_frames" },
6830 { "rx_filtered_packets" },
6831 { "rx_discards" },
6832 { "rx_fw_discards" },
6833 };
6834
6835 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
6836
6837 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
6838 STATS_OFFSET32(stat_IfHCInOctets_hi),
6839 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
6840 STATS_OFFSET32(stat_IfHCOutOctets_hi),
6841 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
6842 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
6843 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
6844 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
6845 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
6846 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
6847 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
6848 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
6849 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
6850 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
6851 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
6852 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
6853 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
6854 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
6855 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
6856 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
6857 STATS_OFFSET32(stat_EtherStatsCollisions),
6858 STATS_OFFSET32(stat_EtherStatsFragments),
6859 STATS_OFFSET32(stat_EtherStatsJabbers),
6860 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
6861 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
6862 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
6863 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
6864 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
6865 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
6866 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
6867 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
6868 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
6869 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
6870 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
6871 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
6872 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
6873 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
6874 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
6875 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
6876 STATS_OFFSET32(stat_XonPauseFramesReceived),
6877 STATS_OFFSET32(stat_XoffPauseFramesReceived),
6878 STATS_OFFSET32(stat_OutXonSent),
6879 STATS_OFFSET32(stat_OutXoffSent),
6880 STATS_OFFSET32(stat_MacControlFramesReceived),
6881 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
6882 STATS_OFFSET32(stat_IfInMBUFDiscards),
6883 STATS_OFFSET32(stat_FwRxDrop),
6884 };
6885
6886 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
6887 * skipped because of errata.
6888 */
6889 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
6890 8,0,8,8,8,8,8,8,8,8,
6891 4,0,4,4,4,4,4,4,4,4,
6892 4,4,4,4,4,4,4,4,4,4,
6893 4,4,4,4,4,4,4,4,4,4,
6894 4,4,4,4,4,4,
6895 };
6896
6897 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
6898 8,0,8,8,8,8,8,8,8,8,
6899 4,4,4,4,4,4,4,4,4,4,
6900 4,4,4,4,4,4,4,4,4,4,
6901 4,4,4,4,4,4,4,4,4,4,
6902 4,4,4,4,4,4,
6903 };
6904
6905 #define BNX2_NUM_TESTS 6
6906
6907 static struct {
6908 char string[ETH_GSTRING_LEN];
6909 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
6910 { "register_test (offline)" },
6911 { "memory_test (offline)" },
6912 { "loopback_test (offline)" },
6913 { "nvram_test (online)" },
6914 { "interrupt_test (online)" },
6915 { "link_test (online)" },
6916 };
6917
6918 static int
6919 bnx2_get_sset_count(struct net_device *dev, int sset)
6920 {
6921 switch (sset) {
6922 case ETH_SS_TEST:
6923 return BNX2_NUM_TESTS;
6924 case ETH_SS_STATS:
6925 return BNX2_NUM_STATS;
6926 default:
6927 return -EOPNOTSUPP;
6928 }
6929 }
6930
6931 static void
6932 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
6933 {
6934 struct bnx2 *bp = netdev_priv(dev);
6935
6936 bnx2_set_power_state(bp, PCI_D0);
6937
6938 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
6939 if (etest->flags & ETH_TEST_FL_OFFLINE) {
6940 int i;
6941
6942 bnx2_netif_stop(bp);
6943 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
6944 bnx2_free_skbs(bp);
6945
6946 if (bnx2_test_registers(bp) != 0) {
6947 buf[0] = 1;
6948 etest->flags |= ETH_TEST_FL_FAILED;
6949 }
6950 if (bnx2_test_memory(bp) != 0) {
6951 buf[1] = 1;
6952 etest->flags |= ETH_TEST_FL_FAILED;
6953 }
6954 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
6955 etest->flags |= ETH_TEST_FL_FAILED;
6956
6957 if (!netif_running(bp->dev))
6958 bnx2_shutdown_chip(bp);
6959 else {
6960 bnx2_init_nic(bp, 1);
6961 bnx2_netif_start(bp);
6962 }
6963
6964 /* wait for link up */
6965 for (i = 0; i < 7; i++) {
6966 if (bp->link_up)
6967 break;
6968 msleep_interruptible(1000);
6969 }
6970 }
6971
6972 if (bnx2_test_nvram(bp) != 0) {
6973 buf[3] = 1;
6974 etest->flags |= ETH_TEST_FL_FAILED;
6975 }
6976 if (bnx2_test_intr(bp) != 0) {
6977 buf[4] = 1;
6978 etest->flags |= ETH_TEST_FL_FAILED;
6979 }
6980
6981 if (bnx2_test_link(bp) != 0) {
6982 buf[5] = 1;
6983 etest->flags |= ETH_TEST_FL_FAILED;
6984
6985 }
6986 if (!netif_running(bp->dev))
6987 bnx2_set_power_state(bp, PCI_D3hot);
6988 }
6989
6990 static void
6991 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6992 {
6993 switch (stringset) {
6994 case ETH_SS_STATS:
6995 memcpy(buf, bnx2_stats_str_arr,
6996 sizeof(bnx2_stats_str_arr));
6997 break;
6998 case ETH_SS_TEST:
6999 memcpy(buf, bnx2_tests_str_arr,
7000 sizeof(bnx2_tests_str_arr));
7001 break;
7002 }
7003 }
7004
7005 static void
7006 bnx2_get_ethtool_stats(struct net_device *dev,
7007 struct ethtool_stats *stats, u64 *buf)
7008 {
7009 struct bnx2 *bp = netdev_priv(dev);
7010 int i;
7011 u32 *hw_stats = (u32 *) bp->stats_blk;
7012 u8 *stats_len_arr = NULL;
7013
7014 if (hw_stats == NULL) {
7015 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7016 return;
7017 }
7018
7019 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7020 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7021 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7022 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7023 stats_len_arr = bnx2_5706_stats_len_arr;
7024 else
7025 stats_len_arr = bnx2_5708_stats_len_arr;
7026
7027 for (i = 0; i < BNX2_NUM_STATS; i++) {
7028 if (stats_len_arr[i] == 0) {
7029 /* skip this counter */
7030 buf[i] = 0;
7031 continue;
7032 }
7033 if (stats_len_arr[i] == 4) {
7034 /* 4-byte counter */
7035 buf[i] = (u64)
7036 *(hw_stats + bnx2_stats_offset_arr[i]);
7037 continue;
7038 }
7039 /* 8-byte counter */
7040 buf[i] = (((u64) *(hw_stats +
7041 bnx2_stats_offset_arr[i])) << 32) +
7042 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
7043 }
7044 }
7045
7046 static int
7047 bnx2_phys_id(struct net_device *dev, u32 data)
7048 {
7049 struct bnx2 *bp = netdev_priv(dev);
7050 int i;
7051 u32 save;
7052
7053 bnx2_set_power_state(bp, PCI_D0);
7054
7055 if (data == 0)
7056 data = 2;
7057
7058 save = REG_RD(bp, BNX2_MISC_CFG);
7059 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7060
7061 for (i = 0; i < (data * 2); i++) {
7062 if ((i % 2) == 0) {
7063 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7064 }
7065 else {
7066 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7067 BNX2_EMAC_LED_1000MB_OVERRIDE |
7068 BNX2_EMAC_LED_100MB_OVERRIDE |
7069 BNX2_EMAC_LED_10MB_OVERRIDE |
7070 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7071 BNX2_EMAC_LED_TRAFFIC);
7072 }
7073 msleep_interruptible(500);
7074 if (signal_pending(current))
7075 break;
7076 }
7077 REG_WR(bp, BNX2_EMAC_LED, 0);
7078 REG_WR(bp, BNX2_MISC_CFG, save);
7079
7080 if (!netif_running(dev))
7081 bnx2_set_power_state(bp, PCI_D3hot);
7082
7083 return 0;
7084 }
7085
7086 static int
7087 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7088 {
7089 struct bnx2 *bp = netdev_priv(dev);
7090
7091 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7092 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7093 else
7094 return (ethtool_op_set_tx_csum(dev, data));
7095 }
7096
7097 static const struct ethtool_ops bnx2_ethtool_ops = {
7098 .get_settings = bnx2_get_settings,
7099 .set_settings = bnx2_set_settings,
7100 .get_drvinfo = bnx2_get_drvinfo,
7101 .get_regs_len = bnx2_get_regs_len,
7102 .get_regs = bnx2_get_regs,
7103 .get_wol = bnx2_get_wol,
7104 .set_wol = bnx2_set_wol,
7105 .nway_reset = bnx2_nway_reset,
7106 .get_link = ethtool_op_get_link,
7107 .get_eeprom_len = bnx2_get_eeprom_len,
7108 .get_eeprom = bnx2_get_eeprom,
7109 .set_eeprom = bnx2_set_eeprom,
7110 .get_coalesce = bnx2_get_coalesce,
7111 .set_coalesce = bnx2_set_coalesce,
7112 .get_ringparam = bnx2_get_ringparam,
7113 .set_ringparam = bnx2_set_ringparam,
7114 .get_pauseparam = bnx2_get_pauseparam,
7115 .set_pauseparam = bnx2_set_pauseparam,
7116 .get_rx_csum = bnx2_get_rx_csum,
7117 .set_rx_csum = bnx2_set_rx_csum,
7118 .set_tx_csum = bnx2_set_tx_csum,
7119 .set_sg = ethtool_op_set_sg,
7120 .set_tso = bnx2_set_tso,
7121 .self_test = bnx2_self_test,
7122 .get_strings = bnx2_get_strings,
7123 .phys_id = bnx2_phys_id,
7124 .get_ethtool_stats = bnx2_get_ethtool_stats,
7125 .get_sset_count = bnx2_get_sset_count,
7126 };
7127
7128 /* Called with rtnl_lock */
7129 static int
7130 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7131 {
7132 struct mii_ioctl_data *data = if_mii(ifr);
7133 struct bnx2 *bp = netdev_priv(dev);
7134 int err;
7135
7136 switch(cmd) {
7137 case SIOCGMIIPHY:
7138 data->phy_id = bp->phy_addr;
7139
7140 /* fallthru */
7141 case SIOCGMIIREG: {
7142 u32 mii_regval;
7143
7144 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7145 return -EOPNOTSUPP;
7146
7147 if (!netif_running(dev))
7148 return -EAGAIN;
7149
7150 spin_lock_bh(&bp->phy_lock);
7151 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7152 spin_unlock_bh(&bp->phy_lock);
7153
7154 data->val_out = mii_regval;
7155
7156 return err;
7157 }
7158
7159 case SIOCSMIIREG:
7160 if (!capable(CAP_NET_ADMIN))
7161 return -EPERM;
7162
7163 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7164 return -EOPNOTSUPP;
7165
7166 if (!netif_running(dev))
7167 return -EAGAIN;
7168
7169 spin_lock_bh(&bp->phy_lock);
7170 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7171 spin_unlock_bh(&bp->phy_lock);
7172
7173 return err;
7174
7175 default:
7176 /* do nothing */
7177 break;
7178 }
7179 return -EOPNOTSUPP;
7180 }
7181
7182 /* Called with rtnl_lock */
7183 static int
7184 bnx2_change_mac_addr(struct net_device *dev, void *p)
7185 {
7186 struct sockaddr *addr = p;
7187 struct bnx2 *bp = netdev_priv(dev);
7188
7189 if (!is_valid_ether_addr(addr->sa_data))
7190 return -EINVAL;
7191
7192 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7193 if (netif_running(dev))
7194 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7195
7196 return 0;
7197 }
7198
7199 /* Called with rtnl_lock */
7200 static int
7201 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7202 {
7203 struct bnx2 *bp = netdev_priv(dev);
7204
7205 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7206 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7207 return -EINVAL;
7208
7209 dev->mtu = new_mtu;
7210 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7211 }
7212
7213 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7214 static void
7215 poll_bnx2(struct net_device *dev)
7216 {
7217 struct bnx2 *bp = netdev_priv(dev);
7218
7219 disable_irq(bp->pdev->irq);
7220 bnx2_interrupt(bp->pdev->irq, dev);
7221 enable_irq(bp->pdev->irq);
7222 }
7223 #endif
7224
7225 static void __devinit
7226 bnx2_get_5709_media(struct bnx2 *bp)
7227 {
7228 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7229 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7230 u32 strap;
7231
7232 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7233 return;
7234 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7235 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7236 return;
7237 }
7238
7239 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7240 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7241 else
7242 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7243
7244 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7245 switch (strap) {
7246 case 0x4:
7247 case 0x5:
7248 case 0x6:
7249 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7250 return;
7251 }
7252 } else {
7253 switch (strap) {
7254 case 0x1:
7255 case 0x2:
7256 case 0x4:
7257 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7258 return;
7259 }
7260 }
7261 }
7262
7263 static void __devinit
7264 bnx2_get_pci_speed(struct bnx2 *bp)
7265 {
7266 u32 reg;
7267
7268 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7269 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7270 u32 clkreg;
7271
7272 bp->flags |= BNX2_FLAG_PCIX;
7273
7274 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7275
7276 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7277 switch (clkreg) {
7278 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7279 bp->bus_speed_mhz = 133;
7280 break;
7281
7282 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7283 bp->bus_speed_mhz = 100;
7284 break;
7285
7286 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7287 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7288 bp->bus_speed_mhz = 66;
7289 break;
7290
7291 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7292 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7293 bp->bus_speed_mhz = 50;
7294 break;
7295
7296 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7297 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7298 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7299 bp->bus_speed_mhz = 33;
7300 break;
7301 }
7302 }
7303 else {
7304 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7305 bp->bus_speed_mhz = 66;
7306 else
7307 bp->bus_speed_mhz = 33;
7308 }
7309
7310 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7311 bp->flags |= BNX2_FLAG_PCI_32BIT;
7312
7313 }
7314
7315 static int __devinit
7316 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7317 {
7318 struct bnx2 *bp;
7319 unsigned long mem_len;
7320 int rc, i, j;
7321 u32 reg;
7322 u64 dma_mask, persist_dma_mask;
7323
7324 SET_NETDEV_DEV(dev, &pdev->dev);
7325 bp = netdev_priv(dev);
7326
7327 bp->flags = 0;
7328 bp->phy_flags = 0;
7329
7330 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7331 rc = pci_enable_device(pdev);
7332 if (rc) {
7333 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7334 goto err_out;
7335 }
7336
7337 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7338 dev_err(&pdev->dev,
7339 "Cannot find PCI device base address, aborting.\n");
7340 rc = -ENODEV;
7341 goto err_out_disable;
7342 }
7343
7344 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7345 if (rc) {
7346 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7347 goto err_out_disable;
7348 }
7349
7350 pci_set_master(pdev);
7351 pci_save_state(pdev);
7352
7353 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7354 if (bp->pm_cap == 0) {
7355 dev_err(&pdev->dev,
7356 "Cannot find power management capability, aborting.\n");
7357 rc = -EIO;
7358 goto err_out_release;
7359 }
7360
7361 bp->dev = dev;
7362 bp->pdev = pdev;
7363
7364 spin_lock_init(&bp->phy_lock);
7365 spin_lock_init(&bp->indirect_lock);
7366 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7367
7368 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7369 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS);
7370 dev->mem_end = dev->mem_start + mem_len;
7371 dev->irq = pdev->irq;
7372
7373 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7374
7375 if (!bp->regview) {
7376 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7377 rc = -ENOMEM;
7378 goto err_out_release;
7379 }
7380
7381 /* Configure byte swap and enable write to the reg_window registers.
7382 * Rely on CPU to do target byte swapping on big endian systems
7383 * The chip's target access swapping will not swap all accesses
7384 */
7385 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7386 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7387 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7388
7389 bnx2_set_power_state(bp, PCI_D0);
7390
7391 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7392
7393 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7394 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7395 dev_err(&pdev->dev,
7396 "Cannot find PCIE capability, aborting.\n");
7397 rc = -EIO;
7398 goto err_out_unmap;
7399 }
7400 bp->flags |= BNX2_FLAG_PCIE;
7401 if (CHIP_REV(bp) == CHIP_REV_Ax)
7402 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7403 } else {
7404 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7405 if (bp->pcix_cap == 0) {
7406 dev_err(&pdev->dev,
7407 "Cannot find PCIX capability, aborting.\n");
7408 rc = -EIO;
7409 goto err_out_unmap;
7410 }
7411 }
7412
7413 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7414 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7415 bp->flags |= BNX2_FLAG_MSIX_CAP;
7416 }
7417
7418 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7419 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7420 bp->flags |= BNX2_FLAG_MSI_CAP;
7421 }
7422
7423 /* 5708 cannot support DMA addresses > 40-bit. */
7424 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7425 persist_dma_mask = dma_mask = DMA_40BIT_MASK;
7426 else
7427 persist_dma_mask = dma_mask = DMA_64BIT_MASK;
7428
7429 /* Configure DMA attributes. */
7430 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7431 dev->features |= NETIF_F_HIGHDMA;
7432 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7433 if (rc) {
7434 dev_err(&pdev->dev,
7435 "pci_set_consistent_dma_mask failed, aborting.\n");
7436 goto err_out_unmap;
7437 }
7438 } else if ((rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
7439 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7440 goto err_out_unmap;
7441 }
7442
7443 if (!(bp->flags & BNX2_FLAG_PCIE))
7444 bnx2_get_pci_speed(bp);
7445
7446 /* 5706A0 may falsely detect SERR and PERR. */
7447 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7448 reg = REG_RD(bp, PCI_COMMAND);
7449 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7450 REG_WR(bp, PCI_COMMAND, reg);
7451 }
7452 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7453 !(bp->flags & BNX2_FLAG_PCIX)) {
7454
7455 dev_err(&pdev->dev,
7456 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7457 goto err_out_unmap;
7458 }
7459
7460 bnx2_init_nvram(bp);
7461
7462 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7463
7464 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7465 BNX2_SHM_HDR_SIGNATURE_SIG) {
7466 u32 off = PCI_FUNC(pdev->devfn) << 2;
7467
7468 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7469 } else
7470 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7471
7472 /* Get the permanent MAC address. First we need to make sure the
7473 * firmware is actually running.
7474 */
7475 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7476
7477 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7478 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7479 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7480 rc = -ENODEV;
7481 goto err_out_unmap;
7482 }
7483
7484 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7485 for (i = 0, j = 0; i < 3; i++) {
7486 u8 num, k, skip0;
7487
7488 num = (u8) (reg >> (24 - (i * 8)));
7489 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7490 if (num >= k || !skip0 || k == 1) {
7491 bp->fw_version[j++] = (num / k) + '0';
7492 skip0 = 0;
7493 }
7494 }
7495 if (i != 2)
7496 bp->fw_version[j++] = '.';
7497 }
7498 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
7499 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
7500 bp->wol = 1;
7501
7502 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
7503 bp->flags |= BNX2_FLAG_ASF_ENABLE;
7504
7505 for (i = 0; i < 30; i++) {
7506 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7507 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
7508 break;
7509 msleep(10);
7510 }
7511 }
7512 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7513 reg &= BNX2_CONDITION_MFW_RUN_MASK;
7514 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
7515 reg != BNX2_CONDITION_MFW_RUN_NONE) {
7516 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
7517
7518 bp->fw_version[j++] = ' ';
7519 for (i = 0; i < 3; i++) {
7520 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
7521 reg = swab32(reg);
7522 memcpy(&bp->fw_version[j], &reg, 4);
7523 j += 4;
7524 }
7525 }
7526
7527 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
7528 bp->mac_addr[0] = (u8) (reg >> 8);
7529 bp->mac_addr[1] = (u8) reg;
7530
7531 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
7532 bp->mac_addr[2] = (u8) (reg >> 24);
7533 bp->mac_addr[3] = (u8) (reg >> 16);
7534 bp->mac_addr[4] = (u8) (reg >> 8);
7535 bp->mac_addr[5] = (u8) reg;
7536
7537 bp->tx_ring_size = MAX_TX_DESC_CNT;
7538 bnx2_set_rx_ring_size(bp, 255);
7539
7540 bp->rx_csum = 1;
7541
7542 bp->tx_quick_cons_trip_int = 20;
7543 bp->tx_quick_cons_trip = 20;
7544 bp->tx_ticks_int = 80;
7545 bp->tx_ticks = 80;
7546
7547 bp->rx_quick_cons_trip_int = 6;
7548 bp->rx_quick_cons_trip = 6;
7549 bp->rx_ticks_int = 18;
7550 bp->rx_ticks = 18;
7551
7552 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7553
7554 bp->current_interval = BNX2_TIMER_INTERVAL;
7555
7556 bp->phy_addr = 1;
7557
7558 /* Disable WOL support if we are running on a SERDES chip. */
7559 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7560 bnx2_get_5709_media(bp);
7561 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
7562 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7563
7564 bp->phy_port = PORT_TP;
7565 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7566 bp->phy_port = PORT_FIBRE;
7567 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
7568 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
7569 bp->flags |= BNX2_FLAG_NO_WOL;
7570 bp->wol = 0;
7571 }
7572 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
7573 /* Don't do parallel detect on this board because of
7574 * some board problems. The link will not go down
7575 * if we do parallel detect.
7576 */
7577 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
7578 pdev->subsystem_device == 0x310c)
7579 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
7580 } else {
7581 bp->phy_addr = 2;
7582 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
7583 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
7584 }
7585 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
7586 CHIP_NUM(bp) == CHIP_NUM_5708)
7587 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
7588 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
7589 (CHIP_REV(bp) == CHIP_REV_Ax ||
7590 CHIP_REV(bp) == CHIP_REV_Bx))
7591 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
7592
7593 bnx2_init_fw_cap(bp);
7594
7595 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
7596 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
7597 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
7598 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
7599 bp->flags |= BNX2_FLAG_NO_WOL;
7600 bp->wol = 0;
7601 }
7602
7603 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7604 bp->tx_quick_cons_trip_int =
7605 bp->tx_quick_cons_trip;
7606 bp->tx_ticks_int = bp->tx_ticks;
7607 bp->rx_quick_cons_trip_int =
7608 bp->rx_quick_cons_trip;
7609 bp->rx_ticks_int = bp->rx_ticks;
7610 bp->comp_prod_trip_int = bp->comp_prod_trip;
7611 bp->com_ticks_int = bp->com_ticks;
7612 bp->cmd_ticks_int = bp->cmd_ticks;
7613 }
7614
7615 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7616 *
7617 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7618 * with byte enables disabled on the unused 32-bit word. This is legal
7619 * but causes problems on the AMD 8132 which will eventually stop
7620 * responding after a while.
7621 *
7622 * AMD believes this incompatibility is unique to the 5706, and
7623 * prefers to locally disable MSI rather than globally disabling it.
7624 */
7625 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
7626 struct pci_dev *amd_8132 = NULL;
7627
7628 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
7629 PCI_DEVICE_ID_AMD_8132_BRIDGE,
7630 amd_8132))) {
7631
7632 if (amd_8132->revision >= 0x10 &&
7633 amd_8132->revision <= 0x13) {
7634 disable_msi = 1;
7635 pci_dev_put(amd_8132);
7636 break;
7637 }
7638 }
7639 }
7640
7641 bnx2_set_default_link(bp);
7642 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
7643
7644 init_timer(&bp->timer);
7645 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
7646 bp->timer.data = (unsigned long) bp;
7647 bp->timer.function = bnx2_timer;
7648
7649 return 0;
7650
7651 err_out_unmap:
7652 if (bp->regview) {
7653 iounmap(bp->regview);
7654 bp->regview = NULL;
7655 }
7656
7657 err_out_release:
7658 pci_release_regions(pdev);
7659
7660 err_out_disable:
7661 pci_disable_device(pdev);
7662 pci_set_drvdata(pdev, NULL);
7663
7664 err_out:
7665 return rc;
7666 }
7667
7668 static char * __devinit
7669 bnx2_bus_string(struct bnx2 *bp, char *str)
7670 {
7671 char *s = str;
7672
7673 if (bp->flags & BNX2_FLAG_PCIE) {
7674 s += sprintf(s, "PCI Express");
7675 } else {
7676 s += sprintf(s, "PCI");
7677 if (bp->flags & BNX2_FLAG_PCIX)
7678 s += sprintf(s, "-X");
7679 if (bp->flags & BNX2_FLAG_PCI_32BIT)
7680 s += sprintf(s, " 32-bit");
7681 else
7682 s += sprintf(s, " 64-bit");
7683 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
7684 }
7685 return str;
7686 }
7687
7688 static void __devinit
7689 bnx2_init_napi(struct bnx2 *bp)
7690 {
7691 int i;
7692
7693 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
7694 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
7695 int (*poll)(struct napi_struct *, int);
7696
7697 if (i == 0)
7698 poll = bnx2_poll;
7699 else
7700 poll = bnx2_poll_msix;
7701
7702 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
7703 bnapi->bp = bp;
7704 }
7705 }
7706
7707 static int __devinit
7708 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7709 {
7710 static int version_printed = 0;
7711 struct net_device *dev = NULL;
7712 struct bnx2 *bp;
7713 int rc;
7714 char str[40];
7715
7716 if (version_printed++ == 0)
7717 printk(KERN_INFO "%s", version);
7718
7719 /* dev zeroed in init_etherdev */
7720 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
7721
7722 if (!dev)
7723 return -ENOMEM;
7724
7725 rc = bnx2_init_board(pdev, dev);
7726 if (rc < 0) {
7727 free_netdev(dev);
7728 return rc;
7729 }
7730
7731 dev->open = bnx2_open;
7732 dev->hard_start_xmit = bnx2_start_xmit;
7733 dev->stop = bnx2_close;
7734 dev->get_stats = bnx2_get_stats;
7735 dev->set_rx_mode = bnx2_set_rx_mode;
7736 dev->do_ioctl = bnx2_ioctl;
7737 dev->set_mac_address = bnx2_change_mac_addr;
7738 dev->change_mtu = bnx2_change_mtu;
7739 dev->tx_timeout = bnx2_tx_timeout;
7740 dev->watchdog_timeo = TX_TIMEOUT;
7741 #ifdef BCM_VLAN
7742 dev->vlan_rx_register = bnx2_vlan_rx_register;
7743 #endif
7744 dev->ethtool_ops = &bnx2_ethtool_ops;
7745
7746 bp = netdev_priv(dev);
7747 bnx2_init_napi(bp);
7748
7749 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7750 dev->poll_controller = poll_bnx2;
7751 #endif
7752
7753 pci_set_drvdata(pdev, dev);
7754
7755 memcpy(dev->dev_addr, bp->mac_addr, 6);
7756 memcpy(dev->perm_addr, bp->mac_addr, 6);
7757
7758 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
7759 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7760 dev->features |= NETIF_F_IPV6_CSUM;
7761
7762 #ifdef BCM_VLAN
7763 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7764 #endif
7765 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7766 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7767 dev->features |= NETIF_F_TSO6;
7768
7769 if ((rc = register_netdev(dev))) {
7770 dev_err(&pdev->dev, "Cannot register net device\n");
7771 if (bp->regview)
7772 iounmap(bp->regview);
7773 pci_release_regions(pdev);
7774 pci_disable_device(pdev);
7775 pci_set_drvdata(pdev, NULL);
7776 free_netdev(dev);
7777 return rc;
7778 }
7779
7780 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
7781 "IRQ %d, node addr %pM\n",
7782 dev->name,
7783 board_info[ent->driver_data].name,
7784 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
7785 ((CHIP_ID(bp) & 0x0ff0) >> 4),
7786 bnx2_bus_string(bp, str),
7787 dev->base_addr,
7788 bp->pdev->irq, dev->dev_addr);
7789
7790 return 0;
7791 }
7792
7793 static void __devexit
7794 bnx2_remove_one(struct pci_dev *pdev)
7795 {
7796 struct net_device *dev = pci_get_drvdata(pdev);
7797 struct bnx2 *bp = netdev_priv(dev);
7798
7799 flush_scheduled_work();
7800
7801 unregister_netdev(dev);
7802
7803 if (bp->regview)
7804 iounmap(bp->regview);
7805
7806 free_netdev(dev);
7807 pci_release_regions(pdev);
7808 pci_disable_device(pdev);
7809 pci_set_drvdata(pdev, NULL);
7810 }
7811
7812 static int
7813 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
7814 {
7815 struct net_device *dev = pci_get_drvdata(pdev);
7816 struct bnx2 *bp = netdev_priv(dev);
7817
7818 /* PCI register 4 needs to be saved whether netif_running() or not.
7819 * MSI address and data need to be saved if using MSI and
7820 * netif_running().
7821 */
7822 pci_save_state(pdev);
7823 if (!netif_running(dev))
7824 return 0;
7825
7826 flush_scheduled_work();
7827 bnx2_netif_stop(bp);
7828 netif_device_detach(dev);
7829 del_timer_sync(&bp->timer);
7830 bnx2_shutdown_chip(bp);
7831 bnx2_free_skbs(bp);
7832 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
7833 return 0;
7834 }
7835
7836 static int
7837 bnx2_resume(struct pci_dev *pdev)
7838 {
7839 struct net_device *dev = pci_get_drvdata(pdev);
7840 struct bnx2 *bp = netdev_priv(dev);
7841
7842 pci_restore_state(pdev);
7843 if (!netif_running(dev))
7844 return 0;
7845
7846 bnx2_set_power_state(bp, PCI_D0);
7847 netif_device_attach(dev);
7848 bnx2_init_nic(bp, 1);
7849 bnx2_netif_start(bp);
7850 return 0;
7851 }
7852
7853 /**
7854 * bnx2_io_error_detected - called when PCI error is detected
7855 * @pdev: Pointer to PCI device
7856 * @state: The current pci connection state
7857 *
7858 * This function is called after a PCI bus error affecting
7859 * this device has been detected.
7860 */
7861 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
7862 pci_channel_state_t state)
7863 {
7864 struct net_device *dev = pci_get_drvdata(pdev);
7865 struct bnx2 *bp = netdev_priv(dev);
7866
7867 rtnl_lock();
7868 netif_device_detach(dev);
7869
7870 if (netif_running(dev)) {
7871 bnx2_netif_stop(bp);
7872 del_timer_sync(&bp->timer);
7873 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
7874 }
7875
7876 pci_disable_device(pdev);
7877 rtnl_unlock();
7878
7879 /* Request a slot slot reset. */
7880 return PCI_ERS_RESULT_NEED_RESET;
7881 }
7882
7883 /**
7884 * bnx2_io_slot_reset - called after the pci bus has been reset.
7885 * @pdev: Pointer to PCI device
7886 *
7887 * Restart the card from scratch, as if from a cold-boot.
7888 */
7889 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
7890 {
7891 struct net_device *dev = pci_get_drvdata(pdev);
7892 struct bnx2 *bp = netdev_priv(dev);
7893
7894 rtnl_lock();
7895 if (pci_enable_device(pdev)) {
7896 dev_err(&pdev->dev,
7897 "Cannot re-enable PCI device after reset.\n");
7898 rtnl_unlock();
7899 return PCI_ERS_RESULT_DISCONNECT;
7900 }
7901 pci_set_master(pdev);
7902 pci_restore_state(pdev);
7903
7904 if (netif_running(dev)) {
7905 bnx2_set_power_state(bp, PCI_D0);
7906 bnx2_init_nic(bp, 1);
7907 }
7908
7909 rtnl_unlock();
7910 return PCI_ERS_RESULT_RECOVERED;
7911 }
7912
7913 /**
7914 * bnx2_io_resume - called when traffic can start flowing again.
7915 * @pdev: Pointer to PCI device
7916 *
7917 * This callback is called when the error recovery driver tells us that
7918 * its OK to resume normal operation.
7919 */
7920 static void bnx2_io_resume(struct pci_dev *pdev)
7921 {
7922 struct net_device *dev = pci_get_drvdata(pdev);
7923 struct bnx2 *bp = netdev_priv(dev);
7924
7925 rtnl_lock();
7926 if (netif_running(dev))
7927 bnx2_netif_start(bp);
7928
7929 netif_device_attach(dev);
7930 rtnl_unlock();
7931 }
7932
7933 static struct pci_error_handlers bnx2_err_handler = {
7934 .error_detected = bnx2_io_error_detected,
7935 .slot_reset = bnx2_io_slot_reset,
7936 .resume = bnx2_io_resume,
7937 };
7938
7939 static struct pci_driver bnx2_pci_driver = {
7940 .name = DRV_MODULE_NAME,
7941 .id_table = bnx2_pci_tbl,
7942 .probe = bnx2_init_one,
7943 .remove = __devexit_p(bnx2_remove_one),
7944 .suspend = bnx2_suspend,
7945 .resume = bnx2_resume,
7946 .err_handler = &bnx2_err_handler,
7947 };
7948
7949 static int __init bnx2_init(void)
7950 {
7951 return pci_register_driver(&bnx2_pci_driver);
7952 }
7953
7954 static void __exit bnx2_cleanup(void)
7955 {
7956 pci_unregister_driver(&bnx2_pci_driver);
7957 }
7958
7959 module_init(bnx2_init);
7960 module_exit(bnx2_cleanup);
7961
7962
7963
This page took 0.51629 seconds and 5 git commands to generate.