ath5k: clean up base.h and its use
[deliverable/linux.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
31 #include <asm/io.h>
32 #include <asm/irq.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if_vlan.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/checksum.h>
43 #include <linux/workqueue.h>
44 #include <linux/crc32.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/firmware.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50
51 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
52 #define BCM_CNIC 1
53 #include "cnic_if.h"
54 #endif
55 #include "bnx2.h"
56 #include "bnx2_fw.h"
57
58 #define DRV_MODULE_NAME "bnx2"
59 #define DRV_MODULE_VERSION "2.1.11"
60 #define DRV_MODULE_RELDATE "July 20, 2011"
61 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.1.fw"
62 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
63 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1a.fw"
64 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
65 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
66
67 #define RUN_AT(x) (jiffies + (x))
68
69 /* Time in jiffies before concluding the transmitter is hung. */
70 #define TX_TIMEOUT (5*HZ)
71
72 static char version[] __devinitdata =
73 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
74
75 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
76 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
77 MODULE_LICENSE("GPL");
78 MODULE_VERSION(DRV_MODULE_VERSION);
79 MODULE_FIRMWARE(FW_MIPS_FILE_06);
80 MODULE_FIRMWARE(FW_RV2P_FILE_06);
81 MODULE_FIRMWARE(FW_MIPS_FILE_09);
82 MODULE_FIRMWARE(FW_RV2P_FILE_09);
83 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
84
85 static int disable_msi = 0;
86
87 module_param(disable_msi, int, 0);
88 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
89
90 typedef enum {
91 BCM5706 = 0,
92 NC370T,
93 NC370I,
94 BCM5706S,
95 NC370F,
96 BCM5708,
97 BCM5708S,
98 BCM5709,
99 BCM5709S,
100 BCM5716,
101 BCM5716S,
102 } board_t;
103
104 /* indexed by board_t, above */
105 static struct {
106 char *name;
107 } board_info[] __devinitdata = {
108 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
109 { "HP NC370T Multifunction Gigabit Server Adapter" },
110 { "HP NC370i Multifunction Gigabit Server Adapter" },
111 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
112 { "HP NC370F Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
115 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
119 };
120
121 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
122 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
123 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
124 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
125 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
126 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
127 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
128 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
130 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
131 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
132 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
134 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
135 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
136 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
137 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
138 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
139 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
140 { PCI_VENDOR_ID_BROADCOM, 0x163b,
141 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
142 { PCI_VENDOR_ID_BROADCOM, 0x163c,
143 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
144 { 0, }
145 };
146
147 static const struct flash_spec flash_table[] =
148 {
149 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
150 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
151 /* Slow EEPROM */
152 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
153 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
154 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
155 "EEPROM - slow"},
156 /* Expansion entry 0001 */
157 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
158 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
159 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
160 "Entry 0001"},
161 /* Saifun SA25F010 (non-buffered flash) */
162 /* strap, cfg1, & write1 need updates */
163 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
164 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
165 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
166 "Non-buffered flash (128kB)"},
167 /* Saifun SA25F020 (non-buffered flash) */
168 /* strap, cfg1, & write1 need updates */
169 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
170 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
171 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
172 "Non-buffered flash (256kB)"},
173 /* Expansion entry 0100 */
174 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
175 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
177 "Entry 0100"},
178 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
179 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
180 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
181 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
182 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
183 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
184 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
185 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
187 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
188 /* Saifun SA25F005 (non-buffered flash) */
189 /* strap, cfg1, & write1 need updates */
190 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
191 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
192 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
193 "Non-buffered flash (64kB)"},
194 /* Fast EEPROM */
195 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
196 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
197 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
198 "EEPROM - fast"},
199 /* Expansion entry 1001 */
200 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
203 "Entry 1001"},
204 /* Expansion entry 1010 */
205 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 "Entry 1010"},
209 /* ATMEL AT45DB011B (buffered flash) */
210 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
211 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
212 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
213 "Buffered flash (128kB)"},
214 /* Expansion entry 1100 */
215 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
217 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
218 "Entry 1100"},
219 /* Expansion entry 1101 */
220 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 "Entry 1101"},
224 /* Ateml Expansion entry 1110 */
225 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
226 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
227 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
228 "Entry 1110 (Atmel)"},
229 /* ATMEL AT45DB021B (buffered flash) */
230 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
231 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
233 "Buffered flash (256kB)"},
234 };
235
236 static const struct flash_spec flash_5709 = {
237 .flags = BNX2_NV_BUFFERED,
238 .page_bits = BCM5709_FLASH_PAGE_BITS,
239 .page_size = BCM5709_FLASH_PAGE_SIZE,
240 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
241 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
242 .name = "5709 Buffered flash (256kB)",
243 };
244
245 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
246
247 static void bnx2_init_napi(struct bnx2 *bp);
248 static void bnx2_del_napi(struct bnx2 *bp);
249
250 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
251 {
252 u32 diff;
253
254 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
255 barrier();
256
257 /* The ring uses 256 indices for 255 entries, one of them
258 * needs to be skipped.
259 */
260 diff = txr->tx_prod - txr->tx_cons;
261 if (unlikely(diff >= TX_DESC_CNT)) {
262 diff &= 0xffff;
263 if (diff == TX_DESC_CNT)
264 diff = MAX_TX_DESC_CNT;
265 }
266 return bp->tx_ring_size - diff;
267 }
268
269 static u32
270 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
271 {
272 u32 val;
273
274 spin_lock_bh(&bp->indirect_lock);
275 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
276 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
277 spin_unlock_bh(&bp->indirect_lock);
278 return val;
279 }
280
281 static void
282 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
283 {
284 spin_lock_bh(&bp->indirect_lock);
285 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
286 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
287 spin_unlock_bh(&bp->indirect_lock);
288 }
289
290 static void
291 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
292 {
293 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
294 }
295
296 static u32
297 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
298 {
299 return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
300 }
301
302 static void
303 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
304 {
305 offset += cid_addr;
306 spin_lock_bh(&bp->indirect_lock);
307 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
308 int i;
309
310 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
311 REG_WR(bp, BNX2_CTX_CTX_CTRL,
312 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
313 for (i = 0; i < 5; i++) {
314 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
315 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
316 break;
317 udelay(5);
318 }
319 } else {
320 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
321 REG_WR(bp, BNX2_CTX_DATA, val);
322 }
323 spin_unlock_bh(&bp->indirect_lock);
324 }
325
326 #ifdef BCM_CNIC
327 static int
328 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
329 {
330 struct bnx2 *bp = netdev_priv(dev);
331 struct drv_ctl_io *io = &info->data.io;
332
333 switch (info->cmd) {
334 case DRV_CTL_IO_WR_CMD:
335 bnx2_reg_wr_ind(bp, io->offset, io->data);
336 break;
337 case DRV_CTL_IO_RD_CMD:
338 io->data = bnx2_reg_rd_ind(bp, io->offset);
339 break;
340 case DRV_CTL_CTX_WR_CMD:
341 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
342 break;
343 default:
344 return -EINVAL;
345 }
346 return 0;
347 }
348
349 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
350 {
351 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
352 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
353 int sb_id;
354
355 if (bp->flags & BNX2_FLAG_USING_MSIX) {
356 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
357 bnapi->cnic_present = 0;
358 sb_id = bp->irq_nvecs;
359 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
360 } else {
361 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
362 bnapi->cnic_tag = bnapi->last_status_idx;
363 bnapi->cnic_present = 1;
364 sb_id = 0;
365 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
366 }
367
368 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
369 cp->irq_arr[0].status_blk = (void *)
370 ((unsigned long) bnapi->status_blk.msi +
371 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
372 cp->irq_arr[0].status_blk_num = sb_id;
373 cp->num_irq = 1;
374 }
375
376 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
377 void *data)
378 {
379 struct bnx2 *bp = netdev_priv(dev);
380 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
381
382 if (ops == NULL)
383 return -EINVAL;
384
385 if (cp->drv_state & CNIC_DRV_STATE_REGD)
386 return -EBUSY;
387
388 if (!bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN))
389 return -ENODEV;
390
391 bp->cnic_data = data;
392 rcu_assign_pointer(bp->cnic_ops, ops);
393
394 cp->num_irq = 0;
395 cp->drv_state = CNIC_DRV_STATE_REGD;
396
397 bnx2_setup_cnic_irq_info(bp);
398
399 return 0;
400 }
401
402 static int bnx2_unregister_cnic(struct net_device *dev)
403 {
404 struct bnx2 *bp = netdev_priv(dev);
405 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
406 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
407
408 mutex_lock(&bp->cnic_lock);
409 cp->drv_state = 0;
410 bnapi->cnic_present = 0;
411 rcu_assign_pointer(bp->cnic_ops, NULL);
412 mutex_unlock(&bp->cnic_lock);
413 synchronize_rcu();
414 return 0;
415 }
416
417 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
418 {
419 struct bnx2 *bp = netdev_priv(dev);
420 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
421
422 if (!cp->max_iscsi_conn)
423 return NULL;
424
425 cp->drv_owner = THIS_MODULE;
426 cp->chip_id = bp->chip_id;
427 cp->pdev = bp->pdev;
428 cp->io_base = bp->regview;
429 cp->drv_ctl = bnx2_drv_ctl;
430 cp->drv_register_cnic = bnx2_register_cnic;
431 cp->drv_unregister_cnic = bnx2_unregister_cnic;
432
433 return cp;
434 }
435 EXPORT_SYMBOL(bnx2_cnic_probe);
436
437 static void
438 bnx2_cnic_stop(struct bnx2 *bp)
439 {
440 struct cnic_ops *c_ops;
441 struct cnic_ctl_info info;
442
443 mutex_lock(&bp->cnic_lock);
444 c_ops = rcu_dereference_protected(bp->cnic_ops,
445 lockdep_is_held(&bp->cnic_lock));
446 if (c_ops) {
447 info.cmd = CNIC_CTL_STOP_CMD;
448 c_ops->cnic_ctl(bp->cnic_data, &info);
449 }
450 mutex_unlock(&bp->cnic_lock);
451 }
452
453 static void
454 bnx2_cnic_start(struct bnx2 *bp)
455 {
456 struct cnic_ops *c_ops;
457 struct cnic_ctl_info info;
458
459 mutex_lock(&bp->cnic_lock);
460 c_ops = rcu_dereference_protected(bp->cnic_ops,
461 lockdep_is_held(&bp->cnic_lock));
462 if (c_ops) {
463 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
464 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
465
466 bnapi->cnic_tag = bnapi->last_status_idx;
467 }
468 info.cmd = CNIC_CTL_START_CMD;
469 c_ops->cnic_ctl(bp->cnic_data, &info);
470 }
471 mutex_unlock(&bp->cnic_lock);
472 }
473
474 #else
475
476 static void
477 bnx2_cnic_stop(struct bnx2 *bp)
478 {
479 }
480
481 static void
482 bnx2_cnic_start(struct bnx2 *bp)
483 {
484 }
485
486 #endif
487
488 static int
489 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
490 {
491 u32 val1;
492 int i, ret;
493
494 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
495 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
496 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
497
498 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
499 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
500
501 udelay(40);
502 }
503
504 val1 = (bp->phy_addr << 21) | (reg << 16) |
505 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
506 BNX2_EMAC_MDIO_COMM_START_BUSY;
507 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
508
509 for (i = 0; i < 50; i++) {
510 udelay(10);
511
512 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
513 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
514 udelay(5);
515
516 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
517 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
518
519 break;
520 }
521 }
522
523 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
524 *val = 0x0;
525 ret = -EBUSY;
526 }
527 else {
528 *val = val1;
529 ret = 0;
530 }
531
532 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
533 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
534 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
535
536 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
537 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
538
539 udelay(40);
540 }
541
542 return ret;
543 }
544
545 static int
546 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
547 {
548 u32 val1;
549 int i, ret;
550
551 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
552 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
553 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
554
555 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
556 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
557
558 udelay(40);
559 }
560
561 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
562 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
563 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
564 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
565
566 for (i = 0; i < 50; i++) {
567 udelay(10);
568
569 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
570 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
571 udelay(5);
572 break;
573 }
574 }
575
576 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
577 ret = -EBUSY;
578 else
579 ret = 0;
580
581 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
582 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
583 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
584
585 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
586 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
587
588 udelay(40);
589 }
590
591 return ret;
592 }
593
594 static void
595 bnx2_disable_int(struct bnx2 *bp)
596 {
597 int i;
598 struct bnx2_napi *bnapi;
599
600 for (i = 0; i < bp->irq_nvecs; i++) {
601 bnapi = &bp->bnx2_napi[i];
602 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
603 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
604 }
605 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
606 }
607
608 static void
609 bnx2_enable_int(struct bnx2 *bp)
610 {
611 int i;
612 struct bnx2_napi *bnapi;
613
614 for (i = 0; i < bp->irq_nvecs; i++) {
615 bnapi = &bp->bnx2_napi[i];
616
617 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
618 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
619 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
620 bnapi->last_status_idx);
621
622 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
623 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
624 bnapi->last_status_idx);
625 }
626 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
627 }
628
629 static void
630 bnx2_disable_int_sync(struct bnx2 *bp)
631 {
632 int i;
633
634 atomic_inc(&bp->intr_sem);
635 if (!netif_running(bp->dev))
636 return;
637
638 bnx2_disable_int(bp);
639 for (i = 0; i < bp->irq_nvecs; i++)
640 synchronize_irq(bp->irq_tbl[i].vector);
641 }
642
643 static void
644 bnx2_napi_disable(struct bnx2 *bp)
645 {
646 int i;
647
648 for (i = 0; i < bp->irq_nvecs; i++)
649 napi_disable(&bp->bnx2_napi[i].napi);
650 }
651
652 static void
653 bnx2_napi_enable(struct bnx2 *bp)
654 {
655 int i;
656
657 for (i = 0; i < bp->irq_nvecs; i++)
658 napi_enable(&bp->bnx2_napi[i].napi);
659 }
660
661 static void
662 bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
663 {
664 if (stop_cnic)
665 bnx2_cnic_stop(bp);
666 if (netif_running(bp->dev)) {
667 bnx2_napi_disable(bp);
668 netif_tx_disable(bp->dev);
669 }
670 bnx2_disable_int_sync(bp);
671 netif_carrier_off(bp->dev); /* prevent tx timeout */
672 }
673
674 static void
675 bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
676 {
677 if (atomic_dec_and_test(&bp->intr_sem)) {
678 if (netif_running(bp->dev)) {
679 netif_tx_wake_all_queues(bp->dev);
680 spin_lock_bh(&bp->phy_lock);
681 if (bp->link_up)
682 netif_carrier_on(bp->dev);
683 spin_unlock_bh(&bp->phy_lock);
684 bnx2_napi_enable(bp);
685 bnx2_enable_int(bp);
686 if (start_cnic)
687 bnx2_cnic_start(bp);
688 }
689 }
690 }
691
692 static void
693 bnx2_free_tx_mem(struct bnx2 *bp)
694 {
695 int i;
696
697 for (i = 0; i < bp->num_tx_rings; i++) {
698 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
699 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
700
701 if (txr->tx_desc_ring) {
702 dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
703 txr->tx_desc_ring,
704 txr->tx_desc_mapping);
705 txr->tx_desc_ring = NULL;
706 }
707 kfree(txr->tx_buf_ring);
708 txr->tx_buf_ring = NULL;
709 }
710 }
711
712 static void
713 bnx2_free_rx_mem(struct bnx2 *bp)
714 {
715 int i;
716
717 for (i = 0; i < bp->num_rx_rings; i++) {
718 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
719 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
720 int j;
721
722 for (j = 0; j < bp->rx_max_ring; j++) {
723 if (rxr->rx_desc_ring[j])
724 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
725 rxr->rx_desc_ring[j],
726 rxr->rx_desc_mapping[j]);
727 rxr->rx_desc_ring[j] = NULL;
728 }
729 vfree(rxr->rx_buf_ring);
730 rxr->rx_buf_ring = NULL;
731
732 for (j = 0; j < bp->rx_max_pg_ring; j++) {
733 if (rxr->rx_pg_desc_ring[j])
734 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
735 rxr->rx_pg_desc_ring[j],
736 rxr->rx_pg_desc_mapping[j]);
737 rxr->rx_pg_desc_ring[j] = NULL;
738 }
739 vfree(rxr->rx_pg_ring);
740 rxr->rx_pg_ring = NULL;
741 }
742 }
743
744 static int
745 bnx2_alloc_tx_mem(struct bnx2 *bp)
746 {
747 int i;
748
749 for (i = 0; i < bp->num_tx_rings; i++) {
750 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
751 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
752
753 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
754 if (txr->tx_buf_ring == NULL)
755 return -ENOMEM;
756
757 txr->tx_desc_ring =
758 dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
759 &txr->tx_desc_mapping, GFP_KERNEL);
760 if (txr->tx_desc_ring == NULL)
761 return -ENOMEM;
762 }
763 return 0;
764 }
765
766 static int
767 bnx2_alloc_rx_mem(struct bnx2 *bp)
768 {
769 int i;
770
771 for (i = 0; i < bp->num_rx_rings; i++) {
772 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
773 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
774 int j;
775
776 rxr->rx_buf_ring =
777 vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
778 if (rxr->rx_buf_ring == NULL)
779 return -ENOMEM;
780
781 for (j = 0; j < bp->rx_max_ring; j++) {
782 rxr->rx_desc_ring[j] =
783 dma_alloc_coherent(&bp->pdev->dev,
784 RXBD_RING_SIZE,
785 &rxr->rx_desc_mapping[j],
786 GFP_KERNEL);
787 if (rxr->rx_desc_ring[j] == NULL)
788 return -ENOMEM;
789
790 }
791
792 if (bp->rx_pg_ring_size) {
793 rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
794 bp->rx_max_pg_ring);
795 if (rxr->rx_pg_ring == NULL)
796 return -ENOMEM;
797
798 }
799
800 for (j = 0; j < bp->rx_max_pg_ring; j++) {
801 rxr->rx_pg_desc_ring[j] =
802 dma_alloc_coherent(&bp->pdev->dev,
803 RXBD_RING_SIZE,
804 &rxr->rx_pg_desc_mapping[j],
805 GFP_KERNEL);
806 if (rxr->rx_pg_desc_ring[j] == NULL)
807 return -ENOMEM;
808
809 }
810 }
811 return 0;
812 }
813
814 static void
815 bnx2_free_mem(struct bnx2 *bp)
816 {
817 int i;
818 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
819
820 bnx2_free_tx_mem(bp);
821 bnx2_free_rx_mem(bp);
822
823 for (i = 0; i < bp->ctx_pages; i++) {
824 if (bp->ctx_blk[i]) {
825 dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE,
826 bp->ctx_blk[i],
827 bp->ctx_blk_mapping[i]);
828 bp->ctx_blk[i] = NULL;
829 }
830 }
831 if (bnapi->status_blk.msi) {
832 dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
833 bnapi->status_blk.msi,
834 bp->status_blk_mapping);
835 bnapi->status_blk.msi = NULL;
836 bp->stats_blk = NULL;
837 }
838 }
839
840 static int
841 bnx2_alloc_mem(struct bnx2 *bp)
842 {
843 int i, status_blk_size, err;
844 struct bnx2_napi *bnapi;
845 void *status_blk;
846
847 /* Combine status and statistics blocks into one allocation. */
848 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
849 if (bp->flags & BNX2_FLAG_MSIX_CAP)
850 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
851 BNX2_SBLK_MSIX_ALIGN_SIZE);
852 bp->status_stats_size = status_blk_size +
853 sizeof(struct statistics_block);
854
855 status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
856 &bp->status_blk_mapping, GFP_KERNEL);
857 if (status_blk == NULL)
858 goto alloc_mem_err;
859
860 memset(status_blk, 0, bp->status_stats_size);
861
862 bnapi = &bp->bnx2_napi[0];
863 bnapi->status_blk.msi = status_blk;
864 bnapi->hw_tx_cons_ptr =
865 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
866 bnapi->hw_rx_cons_ptr =
867 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
868 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
869 for (i = 1; i < bp->irq_nvecs; i++) {
870 struct status_block_msix *sblk;
871
872 bnapi = &bp->bnx2_napi[i];
873
874 sblk = (void *) (status_blk +
875 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
876 bnapi->status_blk.msix = sblk;
877 bnapi->hw_tx_cons_ptr =
878 &sblk->status_tx_quick_consumer_index;
879 bnapi->hw_rx_cons_ptr =
880 &sblk->status_rx_quick_consumer_index;
881 bnapi->int_num = i << 24;
882 }
883 }
884
885 bp->stats_blk = status_blk + status_blk_size;
886
887 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
888
889 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
890 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
891 if (bp->ctx_pages == 0)
892 bp->ctx_pages = 1;
893 for (i = 0; i < bp->ctx_pages; i++) {
894 bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
895 BCM_PAGE_SIZE,
896 &bp->ctx_blk_mapping[i],
897 GFP_KERNEL);
898 if (bp->ctx_blk[i] == NULL)
899 goto alloc_mem_err;
900 }
901 }
902
903 err = bnx2_alloc_rx_mem(bp);
904 if (err)
905 goto alloc_mem_err;
906
907 err = bnx2_alloc_tx_mem(bp);
908 if (err)
909 goto alloc_mem_err;
910
911 return 0;
912
913 alloc_mem_err:
914 bnx2_free_mem(bp);
915 return -ENOMEM;
916 }
917
918 static void
919 bnx2_report_fw_link(struct bnx2 *bp)
920 {
921 u32 fw_link_status = 0;
922
923 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
924 return;
925
926 if (bp->link_up) {
927 u32 bmsr;
928
929 switch (bp->line_speed) {
930 case SPEED_10:
931 if (bp->duplex == DUPLEX_HALF)
932 fw_link_status = BNX2_LINK_STATUS_10HALF;
933 else
934 fw_link_status = BNX2_LINK_STATUS_10FULL;
935 break;
936 case SPEED_100:
937 if (bp->duplex == DUPLEX_HALF)
938 fw_link_status = BNX2_LINK_STATUS_100HALF;
939 else
940 fw_link_status = BNX2_LINK_STATUS_100FULL;
941 break;
942 case SPEED_1000:
943 if (bp->duplex == DUPLEX_HALF)
944 fw_link_status = BNX2_LINK_STATUS_1000HALF;
945 else
946 fw_link_status = BNX2_LINK_STATUS_1000FULL;
947 break;
948 case SPEED_2500:
949 if (bp->duplex == DUPLEX_HALF)
950 fw_link_status = BNX2_LINK_STATUS_2500HALF;
951 else
952 fw_link_status = BNX2_LINK_STATUS_2500FULL;
953 break;
954 }
955
956 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
957
958 if (bp->autoneg) {
959 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
960
961 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
962 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
963
964 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
965 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
966 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
967 else
968 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
969 }
970 }
971 else
972 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
973
974 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
975 }
976
977 static char *
978 bnx2_xceiver_str(struct bnx2 *bp)
979 {
980 return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
981 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
982 "Copper");
983 }
984
985 static void
986 bnx2_report_link(struct bnx2 *bp)
987 {
988 if (bp->link_up) {
989 netif_carrier_on(bp->dev);
990 netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
991 bnx2_xceiver_str(bp),
992 bp->line_speed,
993 bp->duplex == DUPLEX_FULL ? "full" : "half");
994
995 if (bp->flow_ctrl) {
996 if (bp->flow_ctrl & FLOW_CTRL_RX) {
997 pr_cont(", receive ");
998 if (bp->flow_ctrl & FLOW_CTRL_TX)
999 pr_cont("& transmit ");
1000 }
1001 else {
1002 pr_cont(", transmit ");
1003 }
1004 pr_cont("flow control ON");
1005 }
1006 pr_cont("\n");
1007 } else {
1008 netif_carrier_off(bp->dev);
1009 netdev_err(bp->dev, "NIC %s Link is Down\n",
1010 bnx2_xceiver_str(bp));
1011 }
1012
1013 bnx2_report_fw_link(bp);
1014 }
1015
1016 static void
1017 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1018 {
1019 u32 local_adv, remote_adv;
1020
1021 bp->flow_ctrl = 0;
1022 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1023 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1024
1025 if (bp->duplex == DUPLEX_FULL) {
1026 bp->flow_ctrl = bp->req_flow_ctrl;
1027 }
1028 return;
1029 }
1030
1031 if (bp->duplex != DUPLEX_FULL) {
1032 return;
1033 }
1034
1035 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1036 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1037 u32 val;
1038
1039 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1040 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1041 bp->flow_ctrl |= FLOW_CTRL_TX;
1042 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1043 bp->flow_ctrl |= FLOW_CTRL_RX;
1044 return;
1045 }
1046
1047 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1048 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1049
1050 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1051 u32 new_local_adv = 0;
1052 u32 new_remote_adv = 0;
1053
1054 if (local_adv & ADVERTISE_1000XPAUSE)
1055 new_local_adv |= ADVERTISE_PAUSE_CAP;
1056 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1057 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1058 if (remote_adv & ADVERTISE_1000XPAUSE)
1059 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1060 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1061 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1062
1063 local_adv = new_local_adv;
1064 remote_adv = new_remote_adv;
1065 }
1066
1067 /* See Table 28B-3 of 802.3ab-1999 spec. */
1068 if (local_adv & ADVERTISE_PAUSE_CAP) {
1069 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1070 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1071 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1072 }
1073 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1074 bp->flow_ctrl = FLOW_CTRL_RX;
1075 }
1076 }
1077 else {
1078 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1079 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1080 }
1081 }
1082 }
1083 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1084 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1085 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1086
1087 bp->flow_ctrl = FLOW_CTRL_TX;
1088 }
1089 }
1090 }
1091
1092 static int
1093 bnx2_5709s_linkup(struct bnx2 *bp)
1094 {
1095 u32 val, speed;
1096
1097 bp->link_up = 1;
1098
1099 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1100 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1101 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1102
1103 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1104 bp->line_speed = bp->req_line_speed;
1105 bp->duplex = bp->req_duplex;
1106 return 0;
1107 }
1108 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1109 switch (speed) {
1110 case MII_BNX2_GP_TOP_AN_SPEED_10:
1111 bp->line_speed = SPEED_10;
1112 break;
1113 case MII_BNX2_GP_TOP_AN_SPEED_100:
1114 bp->line_speed = SPEED_100;
1115 break;
1116 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1117 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1118 bp->line_speed = SPEED_1000;
1119 break;
1120 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1121 bp->line_speed = SPEED_2500;
1122 break;
1123 }
1124 if (val & MII_BNX2_GP_TOP_AN_FD)
1125 bp->duplex = DUPLEX_FULL;
1126 else
1127 bp->duplex = DUPLEX_HALF;
1128 return 0;
1129 }
1130
1131 static int
1132 bnx2_5708s_linkup(struct bnx2 *bp)
1133 {
1134 u32 val;
1135
1136 bp->link_up = 1;
1137 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1138 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1139 case BCM5708S_1000X_STAT1_SPEED_10:
1140 bp->line_speed = SPEED_10;
1141 break;
1142 case BCM5708S_1000X_STAT1_SPEED_100:
1143 bp->line_speed = SPEED_100;
1144 break;
1145 case BCM5708S_1000X_STAT1_SPEED_1G:
1146 bp->line_speed = SPEED_1000;
1147 break;
1148 case BCM5708S_1000X_STAT1_SPEED_2G5:
1149 bp->line_speed = SPEED_2500;
1150 break;
1151 }
1152 if (val & BCM5708S_1000X_STAT1_FD)
1153 bp->duplex = DUPLEX_FULL;
1154 else
1155 bp->duplex = DUPLEX_HALF;
1156
1157 return 0;
1158 }
1159
1160 static int
1161 bnx2_5706s_linkup(struct bnx2 *bp)
1162 {
1163 u32 bmcr, local_adv, remote_adv, common;
1164
1165 bp->link_up = 1;
1166 bp->line_speed = SPEED_1000;
1167
1168 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1169 if (bmcr & BMCR_FULLDPLX) {
1170 bp->duplex = DUPLEX_FULL;
1171 }
1172 else {
1173 bp->duplex = DUPLEX_HALF;
1174 }
1175
1176 if (!(bmcr & BMCR_ANENABLE)) {
1177 return 0;
1178 }
1179
1180 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1181 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1182
1183 common = local_adv & remote_adv;
1184 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1185
1186 if (common & ADVERTISE_1000XFULL) {
1187 bp->duplex = DUPLEX_FULL;
1188 }
1189 else {
1190 bp->duplex = DUPLEX_HALF;
1191 }
1192 }
1193
1194 return 0;
1195 }
1196
1197 static int
1198 bnx2_copper_linkup(struct bnx2 *bp)
1199 {
1200 u32 bmcr;
1201
1202 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1203 if (bmcr & BMCR_ANENABLE) {
1204 u32 local_adv, remote_adv, common;
1205
1206 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1207 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1208
1209 common = local_adv & (remote_adv >> 2);
1210 if (common & ADVERTISE_1000FULL) {
1211 bp->line_speed = SPEED_1000;
1212 bp->duplex = DUPLEX_FULL;
1213 }
1214 else if (common & ADVERTISE_1000HALF) {
1215 bp->line_speed = SPEED_1000;
1216 bp->duplex = DUPLEX_HALF;
1217 }
1218 else {
1219 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1220 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1221
1222 common = local_adv & remote_adv;
1223 if (common & ADVERTISE_100FULL) {
1224 bp->line_speed = SPEED_100;
1225 bp->duplex = DUPLEX_FULL;
1226 }
1227 else if (common & ADVERTISE_100HALF) {
1228 bp->line_speed = SPEED_100;
1229 bp->duplex = DUPLEX_HALF;
1230 }
1231 else if (common & ADVERTISE_10FULL) {
1232 bp->line_speed = SPEED_10;
1233 bp->duplex = DUPLEX_FULL;
1234 }
1235 else if (common & ADVERTISE_10HALF) {
1236 bp->line_speed = SPEED_10;
1237 bp->duplex = DUPLEX_HALF;
1238 }
1239 else {
1240 bp->line_speed = 0;
1241 bp->link_up = 0;
1242 }
1243 }
1244 }
1245 else {
1246 if (bmcr & BMCR_SPEED100) {
1247 bp->line_speed = SPEED_100;
1248 }
1249 else {
1250 bp->line_speed = SPEED_10;
1251 }
1252 if (bmcr & BMCR_FULLDPLX) {
1253 bp->duplex = DUPLEX_FULL;
1254 }
1255 else {
1256 bp->duplex = DUPLEX_HALF;
1257 }
1258 }
1259
1260 return 0;
1261 }
1262
1263 static void
1264 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1265 {
1266 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1267
1268 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1269 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1270 val |= 0x02 << 8;
1271
1272 if (bp->flow_ctrl & FLOW_CTRL_TX)
1273 val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
1274
1275 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1276 }
1277
1278 static void
1279 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1280 {
1281 int i;
1282 u32 cid;
1283
1284 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1285 if (i == 1)
1286 cid = RX_RSS_CID;
1287 bnx2_init_rx_context(bp, cid);
1288 }
1289 }
1290
1291 static void
1292 bnx2_set_mac_link(struct bnx2 *bp)
1293 {
1294 u32 val;
1295
1296 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1297 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1298 (bp->duplex == DUPLEX_HALF)) {
1299 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1300 }
1301
1302 /* Configure the EMAC mode register. */
1303 val = REG_RD(bp, BNX2_EMAC_MODE);
1304
1305 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1306 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1307 BNX2_EMAC_MODE_25G_MODE);
1308
1309 if (bp->link_up) {
1310 switch (bp->line_speed) {
1311 case SPEED_10:
1312 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1313 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1314 break;
1315 }
1316 /* fall through */
1317 case SPEED_100:
1318 val |= BNX2_EMAC_MODE_PORT_MII;
1319 break;
1320 case SPEED_2500:
1321 val |= BNX2_EMAC_MODE_25G_MODE;
1322 /* fall through */
1323 case SPEED_1000:
1324 val |= BNX2_EMAC_MODE_PORT_GMII;
1325 break;
1326 }
1327 }
1328 else {
1329 val |= BNX2_EMAC_MODE_PORT_GMII;
1330 }
1331
1332 /* Set the MAC to operate in the appropriate duplex mode. */
1333 if (bp->duplex == DUPLEX_HALF)
1334 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1335 REG_WR(bp, BNX2_EMAC_MODE, val);
1336
1337 /* Enable/disable rx PAUSE. */
1338 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1339
1340 if (bp->flow_ctrl & FLOW_CTRL_RX)
1341 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1342 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1343
1344 /* Enable/disable tx PAUSE. */
1345 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1346 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1347
1348 if (bp->flow_ctrl & FLOW_CTRL_TX)
1349 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1350 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1351
1352 /* Acknowledge the interrupt. */
1353 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1354
1355 bnx2_init_all_rx_contexts(bp);
1356 }
1357
1358 static void
1359 bnx2_enable_bmsr1(struct bnx2 *bp)
1360 {
1361 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1362 (CHIP_NUM(bp) == CHIP_NUM_5709))
1363 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1364 MII_BNX2_BLK_ADDR_GP_STATUS);
1365 }
1366
1367 static void
1368 bnx2_disable_bmsr1(struct bnx2 *bp)
1369 {
1370 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1371 (CHIP_NUM(bp) == CHIP_NUM_5709))
1372 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1373 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1374 }
1375
1376 static int
1377 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1378 {
1379 u32 up1;
1380 int ret = 1;
1381
1382 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1383 return 0;
1384
1385 if (bp->autoneg & AUTONEG_SPEED)
1386 bp->advertising |= ADVERTISED_2500baseX_Full;
1387
1388 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1389 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1390
1391 bnx2_read_phy(bp, bp->mii_up1, &up1);
1392 if (!(up1 & BCM5708S_UP1_2G5)) {
1393 up1 |= BCM5708S_UP1_2G5;
1394 bnx2_write_phy(bp, bp->mii_up1, up1);
1395 ret = 0;
1396 }
1397
1398 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1399 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1400 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1401
1402 return ret;
1403 }
1404
1405 static int
1406 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1407 {
1408 u32 up1;
1409 int ret = 0;
1410
1411 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1412 return 0;
1413
1414 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1415 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1416
1417 bnx2_read_phy(bp, bp->mii_up1, &up1);
1418 if (up1 & BCM5708S_UP1_2G5) {
1419 up1 &= ~BCM5708S_UP1_2G5;
1420 bnx2_write_phy(bp, bp->mii_up1, up1);
1421 ret = 1;
1422 }
1423
1424 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1425 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1426 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1427
1428 return ret;
1429 }
1430
1431 static void
1432 bnx2_enable_forced_2g5(struct bnx2 *bp)
1433 {
1434 u32 uninitialized_var(bmcr);
1435 int err;
1436
1437 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1438 return;
1439
1440 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1441 u32 val;
1442
1443 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1444 MII_BNX2_BLK_ADDR_SERDES_DIG);
1445 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1446 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1447 val |= MII_BNX2_SD_MISC1_FORCE |
1448 MII_BNX2_SD_MISC1_FORCE_2_5G;
1449 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1450 }
1451
1452 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1453 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1454 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1455
1456 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1457 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1458 if (!err)
1459 bmcr |= BCM5708S_BMCR_FORCE_2500;
1460 } else {
1461 return;
1462 }
1463
1464 if (err)
1465 return;
1466
1467 if (bp->autoneg & AUTONEG_SPEED) {
1468 bmcr &= ~BMCR_ANENABLE;
1469 if (bp->req_duplex == DUPLEX_FULL)
1470 bmcr |= BMCR_FULLDPLX;
1471 }
1472 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1473 }
1474
1475 static void
1476 bnx2_disable_forced_2g5(struct bnx2 *bp)
1477 {
1478 u32 uninitialized_var(bmcr);
1479 int err;
1480
1481 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1482 return;
1483
1484 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1485 u32 val;
1486
1487 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1488 MII_BNX2_BLK_ADDR_SERDES_DIG);
1489 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1490 val &= ~MII_BNX2_SD_MISC1_FORCE;
1491 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1492 }
1493
1494 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1495 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1496 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1497
1498 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1499 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1500 if (!err)
1501 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1502 } else {
1503 return;
1504 }
1505
1506 if (err)
1507 return;
1508
1509 if (bp->autoneg & AUTONEG_SPEED)
1510 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1511 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1512 }
1513
1514 static void
1515 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1516 {
1517 u32 val;
1518
1519 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1520 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1521 if (start)
1522 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1523 else
1524 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1525 }
1526
1527 static int
1528 bnx2_set_link(struct bnx2 *bp)
1529 {
1530 u32 bmsr;
1531 u8 link_up;
1532
1533 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1534 bp->link_up = 1;
1535 return 0;
1536 }
1537
1538 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1539 return 0;
1540
1541 link_up = bp->link_up;
1542
1543 bnx2_enable_bmsr1(bp);
1544 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1545 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1546 bnx2_disable_bmsr1(bp);
1547
1548 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1549 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1550 u32 val, an_dbg;
1551
1552 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1553 bnx2_5706s_force_link_dn(bp, 0);
1554 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1555 }
1556 val = REG_RD(bp, BNX2_EMAC_STATUS);
1557
1558 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1559 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1560 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1561
1562 if ((val & BNX2_EMAC_STATUS_LINK) &&
1563 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1564 bmsr |= BMSR_LSTATUS;
1565 else
1566 bmsr &= ~BMSR_LSTATUS;
1567 }
1568
1569 if (bmsr & BMSR_LSTATUS) {
1570 bp->link_up = 1;
1571
1572 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1573 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1574 bnx2_5706s_linkup(bp);
1575 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1576 bnx2_5708s_linkup(bp);
1577 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1578 bnx2_5709s_linkup(bp);
1579 }
1580 else {
1581 bnx2_copper_linkup(bp);
1582 }
1583 bnx2_resolve_flow_ctrl(bp);
1584 }
1585 else {
1586 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1587 (bp->autoneg & AUTONEG_SPEED))
1588 bnx2_disable_forced_2g5(bp);
1589
1590 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1591 u32 bmcr;
1592
1593 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1594 bmcr |= BMCR_ANENABLE;
1595 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1596
1597 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1598 }
1599 bp->link_up = 0;
1600 }
1601
1602 if (bp->link_up != link_up) {
1603 bnx2_report_link(bp);
1604 }
1605
1606 bnx2_set_mac_link(bp);
1607
1608 return 0;
1609 }
1610
1611 static int
1612 bnx2_reset_phy(struct bnx2 *bp)
1613 {
1614 int i;
1615 u32 reg;
1616
1617 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1618
1619 #define PHY_RESET_MAX_WAIT 100
1620 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1621 udelay(10);
1622
1623 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1624 if (!(reg & BMCR_RESET)) {
1625 udelay(20);
1626 break;
1627 }
1628 }
1629 if (i == PHY_RESET_MAX_WAIT) {
1630 return -EBUSY;
1631 }
1632 return 0;
1633 }
1634
1635 static u32
1636 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1637 {
1638 u32 adv = 0;
1639
1640 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1641 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1642
1643 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1644 adv = ADVERTISE_1000XPAUSE;
1645 }
1646 else {
1647 adv = ADVERTISE_PAUSE_CAP;
1648 }
1649 }
1650 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1651 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1652 adv = ADVERTISE_1000XPSE_ASYM;
1653 }
1654 else {
1655 adv = ADVERTISE_PAUSE_ASYM;
1656 }
1657 }
1658 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1659 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1660 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1661 }
1662 else {
1663 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1664 }
1665 }
1666 return adv;
1667 }
1668
1669 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1670
1671 static int
1672 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1673 __releases(&bp->phy_lock)
1674 __acquires(&bp->phy_lock)
1675 {
1676 u32 speed_arg = 0, pause_adv;
1677
1678 pause_adv = bnx2_phy_get_pause_adv(bp);
1679
1680 if (bp->autoneg & AUTONEG_SPEED) {
1681 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1682 if (bp->advertising & ADVERTISED_10baseT_Half)
1683 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1684 if (bp->advertising & ADVERTISED_10baseT_Full)
1685 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1686 if (bp->advertising & ADVERTISED_100baseT_Half)
1687 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1688 if (bp->advertising & ADVERTISED_100baseT_Full)
1689 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1690 if (bp->advertising & ADVERTISED_1000baseT_Full)
1691 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1692 if (bp->advertising & ADVERTISED_2500baseX_Full)
1693 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1694 } else {
1695 if (bp->req_line_speed == SPEED_2500)
1696 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1697 else if (bp->req_line_speed == SPEED_1000)
1698 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1699 else if (bp->req_line_speed == SPEED_100) {
1700 if (bp->req_duplex == DUPLEX_FULL)
1701 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1702 else
1703 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1704 } else if (bp->req_line_speed == SPEED_10) {
1705 if (bp->req_duplex == DUPLEX_FULL)
1706 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1707 else
1708 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1709 }
1710 }
1711
1712 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1713 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1714 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1715 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1716
1717 if (port == PORT_TP)
1718 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1719 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1720
1721 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1722
1723 spin_unlock_bh(&bp->phy_lock);
1724 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1725 spin_lock_bh(&bp->phy_lock);
1726
1727 return 0;
1728 }
1729
1730 static int
1731 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1732 __releases(&bp->phy_lock)
1733 __acquires(&bp->phy_lock)
1734 {
1735 u32 adv, bmcr;
1736 u32 new_adv = 0;
1737
1738 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1739 return bnx2_setup_remote_phy(bp, port);
1740
1741 if (!(bp->autoneg & AUTONEG_SPEED)) {
1742 u32 new_bmcr;
1743 int force_link_down = 0;
1744
1745 if (bp->req_line_speed == SPEED_2500) {
1746 if (!bnx2_test_and_enable_2g5(bp))
1747 force_link_down = 1;
1748 } else if (bp->req_line_speed == SPEED_1000) {
1749 if (bnx2_test_and_disable_2g5(bp))
1750 force_link_down = 1;
1751 }
1752 bnx2_read_phy(bp, bp->mii_adv, &adv);
1753 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1754
1755 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1756 new_bmcr = bmcr & ~BMCR_ANENABLE;
1757 new_bmcr |= BMCR_SPEED1000;
1758
1759 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1760 if (bp->req_line_speed == SPEED_2500)
1761 bnx2_enable_forced_2g5(bp);
1762 else if (bp->req_line_speed == SPEED_1000) {
1763 bnx2_disable_forced_2g5(bp);
1764 new_bmcr &= ~0x2000;
1765 }
1766
1767 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1768 if (bp->req_line_speed == SPEED_2500)
1769 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1770 else
1771 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1772 }
1773
1774 if (bp->req_duplex == DUPLEX_FULL) {
1775 adv |= ADVERTISE_1000XFULL;
1776 new_bmcr |= BMCR_FULLDPLX;
1777 }
1778 else {
1779 adv |= ADVERTISE_1000XHALF;
1780 new_bmcr &= ~BMCR_FULLDPLX;
1781 }
1782 if ((new_bmcr != bmcr) || (force_link_down)) {
1783 /* Force a link down visible on the other side */
1784 if (bp->link_up) {
1785 bnx2_write_phy(bp, bp->mii_adv, adv &
1786 ~(ADVERTISE_1000XFULL |
1787 ADVERTISE_1000XHALF));
1788 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1789 BMCR_ANRESTART | BMCR_ANENABLE);
1790
1791 bp->link_up = 0;
1792 netif_carrier_off(bp->dev);
1793 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1794 bnx2_report_link(bp);
1795 }
1796 bnx2_write_phy(bp, bp->mii_adv, adv);
1797 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1798 } else {
1799 bnx2_resolve_flow_ctrl(bp);
1800 bnx2_set_mac_link(bp);
1801 }
1802 return 0;
1803 }
1804
1805 bnx2_test_and_enable_2g5(bp);
1806
1807 if (bp->advertising & ADVERTISED_1000baseT_Full)
1808 new_adv |= ADVERTISE_1000XFULL;
1809
1810 new_adv |= bnx2_phy_get_pause_adv(bp);
1811
1812 bnx2_read_phy(bp, bp->mii_adv, &adv);
1813 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1814
1815 bp->serdes_an_pending = 0;
1816 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1817 /* Force a link down visible on the other side */
1818 if (bp->link_up) {
1819 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1820 spin_unlock_bh(&bp->phy_lock);
1821 msleep(20);
1822 spin_lock_bh(&bp->phy_lock);
1823 }
1824
1825 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1826 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1827 BMCR_ANENABLE);
1828 /* Speed up link-up time when the link partner
1829 * does not autonegotiate which is very common
1830 * in blade servers. Some blade servers use
1831 * IPMI for kerboard input and it's important
1832 * to minimize link disruptions. Autoneg. involves
1833 * exchanging base pages plus 3 next pages and
1834 * normally completes in about 120 msec.
1835 */
1836 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1837 bp->serdes_an_pending = 1;
1838 mod_timer(&bp->timer, jiffies + bp->current_interval);
1839 } else {
1840 bnx2_resolve_flow_ctrl(bp);
1841 bnx2_set_mac_link(bp);
1842 }
1843
1844 return 0;
1845 }
1846
1847 #define ETHTOOL_ALL_FIBRE_SPEED \
1848 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1849 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1850 (ADVERTISED_1000baseT_Full)
1851
1852 #define ETHTOOL_ALL_COPPER_SPEED \
1853 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1854 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1855 ADVERTISED_1000baseT_Full)
1856
1857 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1858 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1859
1860 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1861
1862 static void
1863 bnx2_set_default_remote_link(struct bnx2 *bp)
1864 {
1865 u32 link;
1866
1867 if (bp->phy_port == PORT_TP)
1868 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1869 else
1870 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1871
1872 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1873 bp->req_line_speed = 0;
1874 bp->autoneg |= AUTONEG_SPEED;
1875 bp->advertising = ADVERTISED_Autoneg;
1876 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1877 bp->advertising |= ADVERTISED_10baseT_Half;
1878 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1879 bp->advertising |= ADVERTISED_10baseT_Full;
1880 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1881 bp->advertising |= ADVERTISED_100baseT_Half;
1882 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1883 bp->advertising |= ADVERTISED_100baseT_Full;
1884 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1885 bp->advertising |= ADVERTISED_1000baseT_Full;
1886 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1887 bp->advertising |= ADVERTISED_2500baseX_Full;
1888 } else {
1889 bp->autoneg = 0;
1890 bp->advertising = 0;
1891 bp->req_duplex = DUPLEX_FULL;
1892 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1893 bp->req_line_speed = SPEED_10;
1894 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1895 bp->req_duplex = DUPLEX_HALF;
1896 }
1897 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1898 bp->req_line_speed = SPEED_100;
1899 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1900 bp->req_duplex = DUPLEX_HALF;
1901 }
1902 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1903 bp->req_line_speed = SPEED_1000;
1904 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1905 bp->req_line_speed = SPEED_2500;
1906 }
1907 }
1908
1909 static void
1910 bnx2_set_default_link(struct bnx2 *bp)
1911 {
1912 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1913 bnx2_set_default_remote_link(bp);
1914 return;
1915 }
1916
1917 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1918 bp->req_line_speed = 0;
1919 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1920 u32 reg;
1921
1922 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1923
1924 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1925 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1926 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1927 bp->autoneg = 0;
1928 bp->req_line_speed = bp->line_speed = SPEED_1000;
1929 bp->req_duplex = DUPLEX_FULL;
1930 }
1931 } else
1932 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1933 }
1934
1935 static void
1936 bnx2_send_heart_beat(struct bnx2 *bp)
1937 {
1938 u32 msg;
1939 u32 addr;
1940
1941 spin_lock(&bp->indirect_lock);
1942 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1943 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1944 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1945 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1946 spin_unlock(&bp->indirect_lock);
1947 }
1948
1949 static void
1950 bnx2_remote_phy_event(struct bnx2 *bp)
1951 {
1952 u32 msg;
1953 u8 link_up = bp->link_up;
1954 u8 old_port;
1955
1956 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1957
1958 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1959 bnx2_send_heart_beat(bp);
1960
1961 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1962
1963 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1964 bp->link_up = 0;
1965 else {
1966 u32 speed;
1967
1968 bp->link_up = 1;
1969 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1970 bp->duplex = DUPLEX_FULL;
1971 switch (speed) {
1972 case BNX2_LINK_STATUS_10HALF:
1973 bp->duplex = DUPLEX_HALF;
1974 case BNX2_LINK_STATUS_10FULL:
1975 bp->line_speed = SPEED_10;
1976 break;
1977 case BNX2_LINK_STATUS_100HALF:
1978 bp->duplex = DUPLEX_HALF;
1979 case BNX2_LINK_STATUS_100BASE_T4:
1980 case BNX2_LINK_STATUS_100FULL:
1981 bp->line_speed = SPEED_100;
1982 break;
1983 case BNX2_LINK_STATUS_1000HALF:
1984 bp->duplex = DUPLEX_HALF;
1985 case BNX2_LINK_STATUS_1000FULL:
1986 bp->line_speed = SPEED_1000;
1987 break;
1988 case BNX2_LINK_STATUS_2500HALF:
1989 bp->duplex = DUPLEX_HALF;
1990 case BNX2_LINK_STATUS_2500FULL:
1991 bp->line_speed = SPEED_2500;
1992 break;
1993 default:
1994 bp->line_speed = 0;
1995 break;
1996 }
1997
1998 bp->flow_ctrl = 0;
1999 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
2000 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
2001 if (bp->duplex == DUPLEX_FULL)
2002 bp->flow_ctrl = bp->req_flow_ctrl;
2003 } else {
2004 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
2005 bp->flow_ctrl |= FLOW_CTRL_TX;
2006 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2007 bp->flow_ctrl |= FLOW_CTRL_RX;
2008 }
2009
2010 old_port = bp->phy_port;
2011 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2012 bp->phy_port = PORT_FIBRE;
2013 else
2014 bp->phy_port = PORT_TP;
2015
2016 if (old_port != bp->phy_port)
2017 bnx2_set_default_link(bp);
2018
2019 }
2020 if (bp->link_up != link_up)
2021 bnx2_report_link(bp);
2022
2023 bnx2_set_mac_link(bp);
2024 }
2025
2026 static int
2027 bnx2_set_remote_link(struct bnx2 *bp)
2028 {
2029 u32 evt_code;
2030
2031 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2032 switch (evt_code) {
2033 case BNX2_FW_EVT_CODE_LINK_EVENT:
2034 bnx2_remote_phy_event(bp);
2035 break;
2036 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2037 default:
2038 bnx2_send_heart_beat(bp);
2039 break;
2040 }
2041 return 0;
2042 }
2043
2044 static int
2045 bnx2_setup_copper_phy(struct bnx2 *bp)
2046 __releases(&bp->phy_lock)
2047 __acquires(&bp->phy_lock)
2048 {
2049 u32 bmcr;
2050 u32 new_bmcr;
2051
2052 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2053
2054 if (bp->autoneg & AUTONEG_SPEED) {
2055 u32 adv_reg, adv1000_reg;
2056 u32 new_adv_reg = 0;
2057 u32 new_adv1000_reg = 0;
2058
2059 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2060 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2061 ADVERTISE_PAUSE_ASYM);
2062
2063 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2064 adv1000_reg &= PHY_ALL_1000_SPEED;
2065
2066 if (bp->advertising & ADVERTISED_10baseT_Half)
2067 new_adv_reg |= ADVERTISE_10HALF;
2068 if (bp->advertising & ADVERTISED_10baseT_Full)
2069 new_adv_reg |= ADVERTISE_10FULL;
2070 if (bp->advertising & ADVERTISED_100baseT_Half)
2071 new_adv_reg |= ADVERTISE_100HALF;
2072 if (bp->advertising & ADVERTISED_100baseT_Full)
2073 new_adv_reg |= ADVERTISE_100FULL;
2074 if (bp->advertising & ADVERTISED_1000baseT_Full)
2075 new_adv1000_reg |= ADVERTISE_1000FULL;
2076
2077 new_adv_reg |= ADVERTISE_CSMA;
2078
2079 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2080
2081 if ((adv1000_reg != new_adv1000_reg) ||
2082 (adv_reg != new_adv_reg) ||
2083 ((bmcr & BMCR_ANENABLE) == 0)) {
2084
2085 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2086 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2087 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2088 BMCR_ANENABLE);
2089 }
2090 else if (bp->link_up) {
2091 /* Flow ctrl may have changed from auto to forced */
2092 /* or vice-versa. */
2093
2094 bnx2_resolve_flow_ctrl(bp);
2095 bnx2_set_mac_link(bp);
2096 }
2097 return 0;
2098 }
2099
2100 new_bmcr = 0;
2101 if (bp->req_line_speed == SPEED_100) {
2102 new_bmcr |= BMCR_SPEED100;
2103 }
2104 if (bp->req_duplex == DUPLEX_FULL) {
2105 new_bmcr |= BMCR_FULLDPLX;
2106 }
2107 if (new_bmcr != bmcr) {
2108 u32 bmsr;
2109
2110 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2111 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2112
2113 if (bmsr & BMSR_LSTATUS) {
2114 /* Force link down */
2115 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2116 spin_unlock_bh(&bp->phy_lock);
2117 msleep(50);
2118 spin_lock_bh(&bp->phy_lock);
2119
2120 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2121 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2122 }
2123
2124 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2125
2126 /* Normally, the new speed is setup after the link has
2127 * gone down and up again. In some cases, link will not go
2128 * down so we need to set up the new speed here.
2129 */
2130 if (bmsr & BMSR_LSTATUS) {
2131 bp->line_speed = bp->req_line_speed;
2132 bp->duplex = bp->req_duplex;
2133 bnx2_resolve_flow_ctrl(bp);
2134 bnx2_set_mac_link(bp);
2135 }
2136 } else {
2137 bnx2_resolve_flow_ctrl(bp);
2138 bnx2_set_mac_link(bp);
2139 }
2140 return 0;
2141 }
2142
2143 static int
2144 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2145 __releases(&bp->phy_lock)
2146 __acquires(&bp->phy_lock)
2147 {
2148 if (bp->loopback == MAC_LOOPBACK)
2149 return 0;
2150
2151 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2152 return bnx2_setup_serdes_phy(bp, port);
2153 }
2154 else {
2155 return bnx2_setup_copper_phy(bp);
2156 }
2157 }
2158
2159 static int
2160 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2161 {
2162 u32 val;
2163
2164 bp->mii_bmcr = MII_BMCR + 0x10;
2165 bp->mii_bmsr = MII_BMSR + 0x10;
2166 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2167 bp->mii_adv = MII_ADVERTISE + 0x10;
2168 bp->mii_lpa = MII_LPA + 0x10;
2169 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2170
2171 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2172 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2173
2174 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2175 if (reset_phy)
2176 bnx2_reset_phy(bp);
2177
2178 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2179
2180 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2181 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2182 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2183 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2184
2185 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2186 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2187 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2188 val |= BCM5708S_UP1_2G5;
2189 else
2190 val &= ~BCM5708S_UP1_2G5;
2191 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2192
2193 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2194 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2195 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2196 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2197
2198 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2199
2200 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2201 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2202 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2203
2204 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2205
2206 return 0;
2207 }
2208
2209 static int
2210 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2211 {
2212 u32 val;
2213
2214 if (reset_phy)
2215 bnx2_reset_phy(bp);
2216
2217 bp->mii_up1 = BCM5708S_UP1;
2218
2219 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2220 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2221 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2222
2223 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2224 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2225 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2226
2227 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2228 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2229 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2230
2231 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2232 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2233 val |= BCM5708S_UP1_2G5;
2234 bnx2_write_phy(bp, BCM5708S_UP1, val);
2235 }
2236
2237 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2238 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2239 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2240 /* increase tx signal amplitude */
2241 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2242 BCM5708S_BLK_ADDR_TX_MISC);
2243 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2244 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2245 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2246 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2247 }
2248
2249 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2250 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2251
2252 if (val) {
2253 u32 is_backplane;
2254
2255 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2256 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2257 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2258 BCM5708S_BLK_ADDR_TX_MISC);
2259 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2260 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2261 BCM5708S_BLK_ADDR_DIG);
2262 }
2263 }
2264 return 0;
2265 }
2266
2267 static int
2268 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2269 {
2270 if (reset_phy)
2271 bnx2_reset_phy(bp);
2272
2273 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2274
2275 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2276 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2277
2278 if (bp->dev->mtu > 1500) {
2279 u32 val;
2280
2281 /* Set extended packet length bit */
2282 bnx2_write_phy(bp, 0x18, 0x7);
2283 bnx2_read_phy(bp, 0x18, &val);
2284 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2285
2286 bnx2_write_phy(bp, 0x1c, 0x6c00);
2287 bnx2_read_phy(bp, 0x1c, &val);
2288 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2289 }
2290 else {
2291 u32 val;
2292
2293 bnx2_write_phy(bp, 0x18, 0x7);
2294 bnx2_read_phy(bp, 0x18, &val);
2295 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2296
2297 bnx2_write_phy(bp, 0x1c, 0x6c00);
2298 bnx2_read_phy(bp, 0x1c, &val);
2299 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2300 }
2301
2302 return 0;
2303 }
2304
2305 static int
2306 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2307 {
2308 u32 val;
2309
2310 if (reset_phy)
2311 bnx2_reset_phy(bp);
2312
2313 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2314 bnx2_write_phy(bp, 0x18, 0x0c00);
2315 bnx2_write_phy(bp, 0x17, 0x000a);
2316 bnx2_write_phy(bp, 0x15, 0x310b);
2317 bnx2_write_phy(bp, 0x17, 0x201f);
2318 bnx2_write_phy(bp, 0x15, 0x9506);
2319 bnx2_write_phy(bp, 0x17, 0x401f);
2320 bnx2_write_phy(bp, 0x15, 0x14e2);
2321 bnx2_write_phy(bp, 0x18, 0x0400);
2322 }
2323
2324 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2325 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2326 MII_BNX2_DSP_EXPAND_REG | 0x8);
2327 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2328 val &= ~(1 << 8);
2329 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2330 }
2331
2332 if (bp->dev->mtu > 1500) {
2333 /* Set extended packet length bit */
2334 bnx2_write_phy(bp, 0x18, 0x7);
2335 bnx2_read_phy(bp, 0x18, &val);
2336 bnx2_write_phy(bp, 0x18, val | 0x4000);
2337
2338 bnx2_read_phy(bp, 0x10, &val);
2339 bnx2_write_phy(bp, 0x10, val | 0x1);
2340 }
2341 else {
2342 bnx2_write_phy(bp, 0x18, 0x7);
2343 bnx2_read_phy(bp, 0x18, &val);
2344 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2345
2346 bnx2_read_phy(bp, 0x10, &val);
2347 bnx2_write_phy(bp, 0x10, val & ~0x1);
2348 }
2349
2350 /* ethernet@wirespeed */
2351 bnx2_write_phy(bp, 0x18, 0x7007);
2352 bnx2_read_phy(bp, 0x18, &val);
2353 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2354 return 0;
2355 }
2356
2357
2358 static int
2359 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2360 __releases(&bp->phy_lock)
2361 __acquires(&bp->phy_lock)
2362 {
2363 u32 val;
2364 int rc = 0;
2365
2366 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2367 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2368
2369 bp->mii_bmcr = MII_BMCR;
2370 bp->mii_bmsr = MII_BMSR;
2371 bp->mii_bmsr1 = MII_BMSR;
2372 bp->mii_adv = MII_ADVERTISE;
2373 bp->mii_lpa = MII_LPA;
2374
2375 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2376
2377 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2378 goto setup_phy;
2379
2380 bnx2_read_phy(bp, MII_PHYSID1, &val);
2381 bp->phy_id = val << 16;
2382 bnx2_read_phy(bp, MII_PHYSID2, &val);
2383 bp->phy_id |= val & 0xffff;
2384
2385 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2386 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2387 rc = bnx2_init_5706s_phy(bp, reset_phy);
2388 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2389 rc = bnx2_init_5708s_phy(bp, reset_phy);
2390 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2391 rc = bnx2_init_5709s_phy(bp, reset_phy);
2392 }
2393 else {
2394 rc = bnx2_init_copper_phy(bp, reset_phy);
2395 }
2396
2397 setup_phy:
2398 if (!rc)
2399 rc = bnx2_setup_phy(bp, bp->phy_port);
2400
2401 return rc;
2402 }
2403
2404 static int
2405 bnx2_set_mac_loopback(struct bnx2 *bp)
2406 {
2407 u32 mac_mode;
2408
2409 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2410 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2411 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2412 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2413 bp->link_up = 1;
2414 return 0;
2415 }
2416
2417 static int bnx2_test_link(struct bnx2 *);
2418
2419 static int
2420 bnx2_set_phy_loopback(struct bnx2 *bp)
2421 {
2422 u32 mac_mode;
2423 int rc, i;
2424
2425 spin_lock_bh(&bp->phy_lock);
2426 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2427 BMCR_SPEED1000);
2428 spin_unlock_bh(&bp->phy_lock);
2429 if (rc)
2430 return rc;
2431
2432 for (i = 0; i < 10; i++) {
2433 if (bnx2_test_link(bp) == 0)
2434 break;
2435 msleep(100);
2436 }
2437
2438 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2439 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2440 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2441 BNX2_EMAC_MODE_25G_MODE);
2442
2443 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2444 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2445 bp->link_up = 1;
2446 return 0;
2447 }
2448
2449 static void
2450 bnx2_dump_mcp_state(struct bnx2 *bp)
2451 {
2452 struct net_device *dev = bp->dev;
2453 u32 mcp_p0, mcp_p1;
2454
2455 netdev_err(dev, "<--- start MCP states dump --->\n");
2456 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
2457 mcp_p0 = BNX2_MCP_STATE_P0;
2458 mcp_p1 = BNX2_MCP_STATE_P1;
2459 } else {
2460 mcp_p0 = BNX2_MCP_STATE_P0_5708;
2461 mcp_p1 = BNX2_MCP_STATE_P1_5708;
2462 }
2463 netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
2464 bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
2465 netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
2466 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE),
2467 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE),
2468 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK));
2469 netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
2470 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
2471 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
2472 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION));
2473 netdev_err(dev, "DEBUG: shmem states:\n");
2474 netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
2475 bnx2_shmem_rd(bp, BNX2_DRV_MB),
2476 bnx2_shmem_rd(bp, BNX2_FW_MB),
2477 bnx2_shmem_rd(bp, BNX2_LINK_STATUS));
2478 pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB));
2479 netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
2480 bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE),
2481 bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE));
2482 pr_cont(" condition[%08x]\n",
2483 bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION));
2484 DP_SHMEM_LINE(bp, 0x3cc);
2485 DP_SHMEM_LINE(bp, 0x3dc);
2486 DP_SHMEM_LINE(bp, 0x3ec);
2487 netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc));
2488 netdev_err(dev, "<--- end MCP states dump --->\n");
2489 }
2490
2491 static int
2492 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2493 {
2494 int i;
2495 u32 val;
2496
2497 bp->fw_wr_seq++;
2498 msg_data |= bp->fw_wr_seq;
2499
2500 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2501
2502 if (!ack)
2503 return 0;
2504
2505 /* wait for an acknowledgement. */
2506 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2507 msleep(10);
2508
2509 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2510
2511 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2512 break;
2513 }
2514 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2515 return 0;
2516
2517 /* If we timed out, inform the firmware that this is the case. */
2518 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2519 msg_data &= ~BNX2_DRV_MSG_CODE;
2520 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2521
2522 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2523 if (!silent) {
2524 pr_err("fw sync timeout, reset code = %x\n", msg_data);
2525 bnx2_dump_mcp_state(bp);
2526 }
2527
2528 return -EBUSY;
2529 }
2530
2531 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2532 return -EIO;
2533
2534 return 0;
2535 }
2536
2537 static int
2538 bnx2_init_5709_context(struct bnx2 *bp)
2539 {
2540 int i, ret = 0;
2541 u32 val;
2542
2543 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2544 val |= (BCM_PAGE_BITS - 8) << 16;
2545 REG_WR(bp, BNX2_CTX_COMMAND, val);
2546 for (i = 0; i < 10; i++) {
2547 val = REG_RD(bp, BNX2_CTX_COMMAND);
2548 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2549 break;
2550 udelay(2);
2551 }
2552 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2553 return -EBUSY;
2554
2555 for (i = 0; i < bp->ctx_pages; i++) {
2556 int j;
2557
2558 if (bp->ctx_blk[i])
2559 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2560 else
2561 return -ENOMEM;
2562
2563 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2564 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2565 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2566 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2567 (u64) bp->ctx_blk_mapping[i] >> 32);
2568 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2569 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2570 for (j = 0; j < 10; j++) {
2571
2572 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2573 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2574 break;
2575 udelay(5);
2576 }
2577 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2578 ret = -EBUSY;
2579 break;
2580 }
2581 }
2582 return ret;
2583 }
2584
2585 static void
2586 bnx2_init_context(struct bnx2 *bp)
2587 {
2588 u32 vcid;
2589
2590 vcid = 96;
2591 while (vcid) {
2592 u32 vcid_addr, pcid_addr, offset;
2593 int i;
2594
2595 vcid--;
2596
2597 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2598 u32 new_vcid;
2599
2600 vcid_addr = GET_PCID_ADDR(vcid);
2601 if (vcid & 0x8) {
2602 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2603 }
2604 else {
2605 new_vcid = vcid;
2606 }
2607 pcid_addr = GET_PCID_ADDR(new_vcid);
2608 }
2609 else {
2610 vcid_addr = GET_CID_ADDR(vcid);
2611 pcid_addr = vcid_addr;
2612 }
2613
2614 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2615 vcid_addr += (i << PHY_CTX_SHIFT);
2616 pcid_addr += (i << PHY_CTX_SHIFT);
2617
2618 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2619 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2620
2621 /* Zero out the context. */
2622 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2623 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2624 }
2625 }
2626 }
2627
2628 static int
2629 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2630 {
2631 u16 *good_mbuf;
2632 u32 good_mbuf_cnt;
2633 u32 val;
2634
2635 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2636 if (good_mbuf == NULL) {
2637 pr_err("Failed to allocate memory in %s\n", __func__);
2638 return -ENOMEM;
2639 }
2640
2641 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2642 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2643
2644 good_mbuf_cnt = 0;
2645
2646 /* Allocate a bunch of mbufs and save the good ones in an array. */
2647 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2648 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2649 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2650 BNX2_RBUF_COMMAND_ALLOC_REQ);
2651
2652 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2653
2654 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2655
2656 /* The addresses with Bit 9 set are bad memory blocks. */
2657 if (!(val & (1 << 9))) {
2658 good_mbuf[good_mbuf_cnt] = (u16) val;
2659 good_mbuf_cnt++;
2660 }
2661
2662 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2663 }
2664
2665 /* Free the good ones back to the mbuf pool thus discarding
2666 * all the bad ones. */
2667 while (good_mbuf_cnt) {
2668 good_mbuf_cnt--;
2669
2670 val = good_mbuf[good_mbuf_cnt];
2671 val = (val << 9) | val | 1;
2672
2673 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2674 }
2675 kfree(good_mbuf);
2676 return 0;
2677 }
2678
2679 static void
2680 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2681 {
2682 u32 val;
2683
2684 val = (mac_addr[0] << 8) | mac_addr[1];
2685
2686 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2687
2688 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2689 (mac_addr[4] << 8) | mac_addr[5];
2690
2691 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2692 }
2693
2694 static inline int
2695 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
2696 {
2697 dma_addr_t mapping;
2698 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2699 struct rx_bd *rxbd =
2700 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2701 struct page *page = alloc_page(gfp);
2702
2703 if (!page)
2704 return -ENOMEM;
2705 mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
2706 PCI_DMA_FROMDEVICE);
2707 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
2708 __free_page(page);
2709 return -EIO;
2710 }
2711
2712 rx_pg->page = page;
2713 dma_unmap_addr_set(rx_pg, mapping, mapping);
2714 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2715 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2716 return 0;
2717 }
2718
2719 static void
2720 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2721 {
2722 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2723 struct page *page = rx_pg->page;
2724
2725 if (!page)
2726 return;
2727
2728 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
2729 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2730
2731 __free_page(page);
2732 rx_pg->page = NULL;
2733 }
2734
2735 static inline int
2736 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
2737 {
2738 struct sk_buff *skb;
2739 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2740 dma_addr_t mapping;
2741 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2742 unsigned long align;
2743
2744 skb = __netdev_alloc_skb(bp->dev, bp->rx_buf_size, gfp);
2745 if (skb == NULL) {
2746 return -ENOMEM;
2747 }
2748
2749 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2750 skb_reserve(skb, BNX2_RX_ALIGN - align);
2751
2752 mapping = dma_map_single(&bp->pdev->dev, skb->data, bp->rx_buf_use_size,
2753 PCI_DMA_FROMDEVICE);
2754 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
2755 dev_kfree_skb(skb);
2756 return -EIO;
2757 }
2758
2759 rx_buf->skb = skb;
2760 rx_buf->desc = (struct l2_fhdr *) skb->data;
2761 dma_unmap_addr_set(rx_buf, mapping, mapping);
2762
2763 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2764 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2765
2766 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2767
2768 return 0;
2769 }
2770
2771 static int
2772 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2773 {
2774 struct status_block *sblk = bnapi->status_blk.msi;
2775 u32 new_link_state, old_link_state;
2776 int is_set = 1;
2777
2778 new_link_state = sblk->status_attn_bits & event;
2779 old_link_state = sblk->status_attn_bits_ack & event;
2780 if (new_link_state != old_link_state) {
2781 if (new_link_state)
2782 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2783 else
2784 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2785 } else
2786 is_set = 0;
2787
2788 return is_set;
2789 }
2790
2791 static void
2792 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2793 {
2794 spin_lock(&bp->phy_lock);
2795
2796 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2797 bnx2_set_link(bp);
2798 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2799 bnx2_set_remote_link(bp);
2800
2801 spin_unlock(&bp->phy_lock);
2802
2803 }
2804
2805 static inline u16
2806 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2807 {
2808 u16 cons;
2809
2810 /* Tell compiler that status block fields can change. */
2811 barrier();
2812 cons = *bnapi->hw_tx_cons_ptr;
2813 barrier();
2814 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2815 cons++;
2816 return cons;
2817 }
2818
2819 static int
2820 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2821 {
2822 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2823 u16 hw_cons, sw_cons, sw_ring_cons;
2824 int tx_pkt = 0, index;
2825 struct netdev_queue *txq;
2826
2827 index = (bnapi - bp->bnx2_napi);
2828 txq = netdev_get_tx_queue(bp->dev, index);
2829
2830 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2831 sw_cons = txr->tx_cons;
2832
2833 while (sw_cons != hw_cons) {
2834 struct sw_tx_bd *tx_buf;
2835 struct sk_buff *skb;
2836 int i, last;
2837
2838 sw_ring_cons = TX_RING_IDX(sw_cons);
2839
2840 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2841 skb = tx_buf->skb;
2842
2843 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2844 prefetch(&skb->end);
2845
2846 /* partial BD completions possible with TSO packets */
2847 if (tx_buf->is_gso) {
2848 u16 last_idx, last_ring_idx;
2849
2850 last_idx = sw_cons + tx_buf->nr_frags + 1;
2851 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2852 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2853 last_idx++;
2854 }
2855 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2856 break;
2857 }
2858 }
2859
2860 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
2861 skb_headlen(skb), PCI_DMA_TODEVICE);
2862
2863 tx_buf->skb = NULL;
2864 last = tx_buf->nr_frags;
2865
2866 for (i = 0; i < last; i++) {
2867 sw_cons = NEXT_TX_BD(sw_cons);
2868
2869 dma_unmap_page(&bp->pdev->dev,
2870 dma_unmap_addr(
2871 &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
2872 mapping),
2873 skb_shinfo(skb)->frags[i].size,
2874 PCI_DMA_TODEVICE);
2875 }
2876
2877 sw_cons = NEXT_TX_BD(sw_cons);
2878
2879 dev_kfree_skb(skb);
2880 tx_pkt++;
2881 if (tx_pkt == budget)
2882 break;
2883
2884 if (hw_cons == sw_cons)
2885 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2886 }
2887
2888 txr->hw_tx_cons = hw_cons;
2889 txr->tx_cons = sw_cons;
2890
2891 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2892 * before checking for netif_tx_queue_stopped(). Without the
2893 * memory barrier, there is a small possibility that bnx2_start_xmit()
2894 * will miss it and cause the queue to be stopped forever.
2895 */
2896 smp_mb();
2897
2898 if (unlikely(netif_tx_queue_stopped(txq)) &&
2899 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2900 __netif_tx_lock(txq, smp_processor_id());
2901 if ((netif_tx_queue_stopped(txq)) &&
2902 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2903 netif_tx_wake_queue(txq);
2904 __netif_tx_unlock(txq);
2905 }
2906
2907 return tx_pkt;
2908 }
2909
2910 static void
2911 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2912 struct sk_buff *skb, int count)
2913 {
2914 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2915 struct rx_bd *cons_bd, *prod_bd;
2916 int i;
2917 u16 hw_prod, prod;
2918 u16 cons = rxr->rx_pg_cons;
2919
2920 cons_rx_pg = &rxr->rx_pg_ring[cons];
2921
2922 /* The caller was unable to allocate a new page to replace the
2923 * last one in the frags array, so we need to recycle that page
2924 * and then free the skb.
2925 */
2926 if (skb) {
2927 struct page *page;
2928 struct skb_shared_info *shinfo;
2929
2930 shinfo = skb_shinfo(skb);
2931 shinfo->nr_frags--;
2932 page = shinfo->frags[shinfo->nr_frags].page;
2933 shinfo->frags[shinfo->nr_frags].page = NULL;
2934
2935 cons_rx_pg->page = page;
2936 dev_kfree_skb(skb);
2937 }
2938
2939 hw_prod = rxr->rx_pg_prod;
2940
2941 for (i = 0; i < count; i++) {
2942 prod = RX_PG_RING_IDX(hw_prod);
2943
2944 prod_rx_pg = &rxr->rx_pg_ring[prod];
2945 cons_rx_pg = &rxr->rx_pg_ring[cons];
2946 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2947 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2948
2949 if (prod != cons) {
2950 prod_rx_pg->page = cons_rx_pg->page;
2951 cons_rx_pg->page = NULL;
2952 dma_unmap_addr_set(prod_rx_pg, mapping,
2953 dma_unmap_addr(cons_rx_pg, mapping));
2954
2955 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2956 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2957
2958 }
2959 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2960 hw_prod = NEXT_RX_BD(hw_prod);
2961 }
2962 rxr->rx_pg_prod = hw_prod;
2963 rxr->rx_pg_cons = cons;
2964 }
2965
2966 static inline void
2967 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2968 struct sk_buff *skb, u16 cons, u16 prod)
2969 {
2970 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2971 struct rx_bd *cons_bd, *prod_bd;
2972
2973 cons_rx_buf = &rxr->rx_buf_ring[cons];
2974 prod_rx_buf = &rxr->rx_buf_ring[prod];
2975
2976 dma_sync_single_for_device(&bp->pdev->dev,
2977 dma_unmap_addr(cons_rx_buf, mapping),
2978 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2979
2980 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2981
2982 prod_rx_buf->skb = skb;
2983 prod_rx_buf->desc = (struct l2_fhdr *) skb->data;
2984
2985 if (cons == prod)
2986 return;
2987
2988 dma_unmap_addr_set(prod_rx_buf, mapping,
2989 dma_unmap_addr(cons_rx_buf, mapping));
2990
2991 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2992 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2993 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2994 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2995 }
2996
2997 static int
2998 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2999 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
3000 u32 ring_idx)
3001 {
3002 int err;
3003 u16 prod = ring_idx & 0xffff;
3004
3005 err = bnx2_alloc_rx_skb(bp, rxr, prod, GFP_ATOMIC);
3006 if (unlikely(err)) {
3007 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
3008 if (hdr_len) {
3009 unsigned int raw_len = len + 4;
3010 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
3011
3012 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3013 }
3014 return err;
3015 }
3016
3017 skb_reserve(skb, BNX2_RX_OFFSET);
3018 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
3019 PCI_DMA_FROMDEVICE);
3020
3021 if (hdr_len == 0) {
3022 skb_put(skb, len);
3023 return 0;
3024 } else {
3025 unsigned int i, frag_len, frag_size, pages;
3026 struct sw_pg *rx_pg;
3027 u16 pg_cons = rxr->rx_pg_cons;
3028 u16 pg_prod = rxr->rx_pg_prod;
3029
3030 frag_size = len + 4 - hdr_len;
3031 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
3032 skb_put(skb, hdr_len);
3033
3034 for (i = 0; i < pages; i++) {
3035 dma_addr_t mapping_old;
3036
3037 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
3038 if (unlikely(frag_len <= 4)) {
3039 unsigned int tail = 4 - frag_len;
3040
3041 rxr->rx_pg_cons = pg_cons;
3042 rxr->rx_pg_prod = pg_prod;
3043 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
3044 pages - i);
3045 skb->len -= tail;
3046 if (i == 0) {
3047 skb->tail -= tail;
3048 } else {
3049 skb_frag_t *frag =
3050 &skb_shinfo(skb)->frags[i - 1];
3051 frag->size -= tail;
3052 skb->data_len -= tail;
3053 skb->truesize -= tail;
3054 }
3055 return 0;
3056 }
3057 rx_pg = &rxr->rx_pg_ring[pg_cons];
3058
3059 /* Don't unmap yet. If we're unable to allocate a new
3060 * page, we need to recycle the page and the DMA addr.
3061 */
3062 mapping_old = dma_unmap_addr(rx_pg, mapping);
3063 if (i == pages - 1)
3064 frag_len -= 4;
3065
3066 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3067 rx_pg->page = NULL;
3068
3069 err = bnx2_alloc_rx_page(bp, rxr,
3070 RX_PG_RING_IDX(pg_prod),
3071 GFP_ATOMIC);
3072 if (unlikely(err)) {
3073 rxr->rx_pg_cons = pg_cons;
3074 rxr->rx_pg_prod = pg_prod;
3075 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3076 pages - i);
3077 return err;
3078 }
3079
3080 dma_unmap_page(&bp->pdev->dev, mapping_old,
3081 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3082
3083 frag_size -= frag_len;
3084 skb->data_len += frag_len;
3085 skb->truesize += frag_len;
3086 skb->len += frag_len;
3087
3088 pg_prod = NEXT_RX_BD(pg_prod);
3089 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3090 }
3091 rxr->rx_pg_prod = pg_prod;
3092 rxr->rx_pg_cons = pg_cons;
3093 }
3094 return 0;
3095 }
3096
3097 static inline u16
3098 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3099 {
3100 u16 cons;
3101
3102 /* Tell compiler that status block fields can change. */
3103 barrier();
3104 cons = *bnapi->hw_rx_cons_ptr;
3105 barrier();
3106 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3107 cons++;
3108 return cons;
3109 }
3110
3111 static int
3112 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3113 {
3114 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3115 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3116 struct l2_fhdr *rx_hdr;
3117 int rx_pkt = 0, pg_ring_used = 0;
3118
3119 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3120 sw_cons = rxr->rx_cons;
3121 sw_prod = rxr->rx_prod;
3122
3123 /* Memory barrier necessary as speculative reads of the rx
3124 * buffer can be ahead of the index in the status block
3125 */
3126 rmb();
3127 while (sw_cons != hw_cons) {
3128 unsigned int len, hdr_len;
3129 u32 status;
3130 struct sw_bd *rx_buf, *next_rx_buf;
3131 struct sk_buff *skb;
3132 dma_addr_t dma_addr;
3133
3134 sw_ring_cons = RX_RING_IDX(sw_cons);
3135 sw_ring_prod = RX_RING_IDX(sw_prod);
3136
3137 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3138 skb = rx_buf->skb;
3139 prefetchw(skb);
3140
3141 next_rx_buf =
3142 &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
3143 prefetch(next_rx_buf->desc);
3144
3145 rx_buf->skb = NULL;
3146
3147 dma_addr = dma_unmap_addr(rx_buf, mapping);
3148
3149 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
3150 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3151 PCI_DMA_FROMDEVICE);
3152
3153 rx_hdr = rx_buf->desc;
3154 len = rx_hdr->l2_fhdr_pkt_len;
3155 status = rx_hdr->l2_fhdr_status;
3156
3157 hdr_len = 0;
3158 if (status & L2_FHDR_STATUS_SPLIT) {
3159 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3160 pg_ring_used = 1;
3161 } else if (len > bp->rx_jumbo_thresh) {
3162 hdr_len = bp->rx_jumbo_thresh;
3163 pg_ring_used = 1;
3164 }
3165
3166 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3167 L2_FHDR_ERRORS_PHY_DECODE |
3168 L2_FHDR_ERRORS_ALIGNMENT |
3169 L2_FHDR_ERRORS_TOO_SHORT |
3170 L2_FHDR_ERRORS_GIANT_FRAME))) {
3171
3172 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3173 sw_ring_prod);
3174 if (pg_ring_used) {
3175 int pages;
3176
3177 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3178
3179 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3180 }
3181 goto next_rx;
3182 }
3183
3184 len -= 4;
3185
3186 if (len <= bp->rx_copy_thresh) {
3187 struct sk_buff *new_skb;
3188
3189 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3190 if (new_skb == NULL) {
3191 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3192 sw_ring_prod);
3193 goto next_rx;
3194 }
3195
3196 /* aligned copy */
3197 skb_copy_from_linear_data_offset(skb,
3198 BNX2_RX_OFFSET - 6,
3199 new_skb->data, len + 6);
3200 skb_reserve(new_skb, 6);
3201 skb_put(new_skb, len);
3202
3203 bnx2_reuse_rx_skb(bp, rxr, skb,
3204 sw_ring_cons, sw_ring_prod);
3205
3206 skb = new_skb;
3207 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3208 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3209 goto next_rx;
3210
3211 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3212 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
3213 __vlan_hwaccel_put_tag(skb, rx_hdr->l2_fhdr_vlan_tag);
3214
3215 skb->protocol = eth_type_trans(skb, bp->dev);
3216
3217 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3218 (ntohs(skb->protocol) != 0x8100)) {
3219
3220 dev_kfree_skb(skb);
3221 goto next_rx;
3222
3223 }
3224
3225 skb_checksum_none_assert(skb);
3226 if ((bp->dev->features & NETIF_F_RXCSUM) &&
3227 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3228 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3229
3230 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3231 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3232 skb->ip_summed = CHECKSUM_UNNECESSARY;
3233 }
3234 if ((bp->dev->features & NETIF_F_RXHASH) &&
3235 ((status & L2_FHDR_STATUS_USE_RXHASH) ==
3236 L2_FHDR_STATUS_USE_RXHASH))
3237 skb->rxhash = rx_hdr->l2_fhdr_hash;
3238
3239 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3240 napi_gro_receive(&bnapi->napi, skb);
3241 rx_pkt++;
3242
3243 next_rx:
3244 sw_cons = NEXT_RX_BD(sw_cons);
3245 sw_prod = NEXT_RX_BD(sw_prod);
3246
3247 if ((rx_pkt == budget))
3248 break;
3249
3250 /* Refresh hw_cons to see if there is new work */
3251 if (sw_cons == hw_cons) {
3252 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3253 rmb();
3254 }
3255 }
3256 rxr->rx_cons = sw_cons;
3257 rxr->rx_prod = sw_prod;
3258
3259 if (pg_ring_used)
3260 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3261
3262 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3263
3264 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3265
3266 mmiowb();
3267
3268 return rx_pkt;
3269
3270 }
3271
3272 /* MSI ISR - The only difference between this and the INTx ISR
3273 * is that the MSI interrupt is always serviced.
3274 */
3275 static irqreturn_t
3276 bnx2_msi(int irq, void *dev_instance)
3277 {
3278 struct bnx2_napi *bnapi = dev_instance;
3279 struct bnx2 *bp = bnapi->bp;
3280
3281 prefetch(bnapi->status_blk.msi);
3282 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3283 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3284 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3285
3286 /* Return here if interrupt is disabled. */
3287 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3288 return IRQ_HANDLED;
3289
3290 napi_schedule(&bnapi->napi);
3291
3292 return IRQ_HANDLED;
3293 }
3294
3295 static irqreturn_t
3296 bnx2_msi_1shot(int irq, void *dev_instance)
3297 {
3298 struct bnx2_napi *bnapi = dev_instance;
3299 struct bnx2 *bp = bnapi->bp;
3300
3301 prefetch(bnapi->status_blk.msi);
3302
3303 /* Return here if interrupt is disabled. */
3304 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3305 return IRQ_HANDLED;
3306
3307 napi_schedule(&bnapi->napi);
3308
3309 return IRQ_HANDLED;
3310 }
3311
3312 static irqreturn_t
3313 bnx2_interrupt(int irq, void *dev_instance)
3314 {
3315 struct bnx2_napi *bnapi = dev_instance;
3316 struct bnx2 *bp = bnapi->bp;
3317 struct status_block *sblk = bnapi->status_blk.msi;
3318
3319 /* When using INTx, it is possible for the interrupt to arrive
3320 * at the CPU before the status block posted prior to the
3321 * interrupt. Reading a register will flush the status block.
3322 * When using MSI, the MSI message will always complete after
3323 * the status block write.
3324 */
3325 if ((sblk->status_idx == bnapi->last_status_idx) &&
3326 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3327 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3328 return IRQ_NONE;
3329
3330 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3331 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3332 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3333
3334 /* Read back to deassert IRQ immediately to avoid too many
3335 * spurious interrupts.
3336 */
3337 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3338
3339 /* Return here if interrupt is shared and is disabled. */
3340 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3341 return IRQ_HANDLED;
3342
3343 if (napi_schedule_prep(&bnapi->napi)) {
3344 bnapi->last_status_idx = sblk->status_idx;
3345 __napi_schedule(&bnapi->napi);
3346 }
3347
3348 return IRQ_HANDLED;
3349 }
3350
3351 static inline int
3352 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3353 {
3354 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3355 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3356
3357 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3358 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3359 return 1;
3360 return 0;
3361 }
3362
3363 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3364 STATUS_ATTN_BITS_TIMER_ABORT)
3365
3366 static inline int
3367 bnx2_has_work(struct bnx2_napi *bnapi)
3368 {
3369 struct status_block *sblk = bnapi->status_blk.msi;
3370
3371 if (bnx2_has_fast_work(bnapi))
3372 return 1;
3373
3374 #ifdef BCM_CNIC
3375 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3376 return 1;
3377 #endif
3378
3379 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3380 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3381 return 1;
3382
3383 return 0;
3384 }
3385
3386 static void
3387 bnx2_chk_missed_msi(struct bnx2 *bp)
3388 {
3389 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3390 u32 msi_ctrl;
3391
3392 if (bnx2_has_work(bnapi)) {
3393 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3394 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3395 return;
3396
3397 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3398 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3399 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3400 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3401 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3402 }
3403 }
3404
3405 bp->idle_chk_status_idx = bnapi->last_status_idx;
3406 }
3407
3408 #ifdef BCM_CNIC
3409 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3410 {
3411 struct cnic_ops *c_ops;
3412
3413 if (!bnapi->cnic_present)
3414 return;
3415
3416 rcu_read_lock();
3417 c_ops = rcu_dereference(bp->cnic_ops);
3418 if (c_ops)
3419 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3420 bnapi->status_blk.msi);
3421 rcu_read_unlock();
3422 }
3423 #endif
3424
3425 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3426 {
3427 struct status_block *sblk = bnapi->status_blk.msi;
3428 u32 status_attn_bits = sblk->status_attn_bits;
3429 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3430
3431 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3432 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3433
3434 bnx2_phy_int(bp, bnapi);
3435
3436 /* This is needed to take care of transient status
3437 * during link changes.
3438 */
3439 REG_WR(bp, BNX2_HC_COMMAND,
3440 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3441 REG_RD(bp, BNX2_HC_COMMAND);
3442 }
3443 }
3444
3445 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3446 int work_done, int budget)
3447 {
3448 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3449 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3450
3451 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3452 bnx2_tx_int(bp, bnapi, 0);
3453
3454 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3455 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3456
3457 return work_done;
3458 }
3459
3460 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3461 {
3462 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3463 struct bnx2 *bp = bnapi->bp;
3464 int work_done = 0;
3465 struct status_block_msix *sblk = bnapi->status_blk.msix;
3466
3467 while (1) {
3468 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3469 if (unlikely(work_done >= budget))
3470 break;
3471
3472 bnapi->last_status_idx = sblk->status_idx;
3473 /* status idx must be read before checking for more work. */
3474 rmb();
3475 if (likely(!bnx2_has_fast_work(bnapi))) {
3476
3477 napi_complete(napi);
3478 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3479 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3480 bnapi->last_status_idx);
3481 break;
3482 }
3483 }
3484 return work_done;
3485 }
3486
3487 static int bnx2_poll(struct napi_struct *napi, int budget)
3488 {
3489 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3490 struct bnx2 *bp = bnapi->bp;
3491 int work_done = 0;
3492 struct status_block *sblk = bnapi->status_blk.msi;
3493
3494 while (1) {
3495 bnx2_poll_link(bp, bnapi);
3496
3497 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3498
3499 #ifdef BCM_CNIC
3500 bnx2_poll_cnic(bp, bnapi);
3501 #endif
3502
3503 /* bnapi->last_status_idx is used below to tell the hw how
3504 * much work has been processed, so we must read it before
3505 * checking for more work.
3506 */
3507 bnapi->last_status_idx = sblk->status_idx;
3508
3509 if (unlikely(work_done >= budget))
3510 break;
3511
3512 rmb();
3513 if (likely(!bnx2_has_work(bnapi))) {
3514 napi_complete(napi);
3515 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3516 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3517 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3518 bnapi->last_status_idx);
3519 break;
3520 }
3521 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3522 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3523 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3524 bnapi->last_status_idx);
3525
3526 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3527 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3528 bnapi->last_status_idx);
3529 break;
3530 }
3531 }
3532
3533 return work_done;
3534 }
3535
3536 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3537 * from set_multicast.
3538 */
3539 static void
3540 bnx2_set_rx_mode(struct net_device *dev)
3541 {
3542 struct bnx2 *bp = netdev_priv(dev);
3543 u32 rx_mode, sort_mode;
3544 struct netdev_hw_addr *ha;
3545 int i;
3546
3547 if (!netif_running(dev))
3548 return;
3549
3550 spin_lock_bh(&bp->phy_lock);
3551
3552 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3553 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3554 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3555 if (!(dev->features & NETIF_F_HW_VLAN_RX) &&
3556 (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3557 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3558 if (dev->flags & IFF_PROMISC) {
3559 /* Promiscuous mode. */
3560 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3561 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3562 BNX2_RPM_SORT_USER0_PROM_VLAN;
3563 }
3564 else if (dev->flags & IFF_ALLMULTI) {
3565 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3566 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3567 0xffffffff);
3568 }
3569 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3570 }
3571 else {
3572 /* Accept one or more multicast(s). */
3573 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3574 u32 regidx;
3575 u32 bit;
3576 u32 crc;
3577
3578 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3579
3580 netdev_for_each_mc_addr(ha, dev) {
3581 crc = ether_crc_le(ETH_ALEN, ha->addr);
3582 bit = crc & 0xff;
3583 regidx = (bit & 0xe0) >> 5;
3584 bit &= 0x1f;
3585 mc_filter[regidx] |= (1 << bit);
3586 }
3587
3588 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3589 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3590 mc_filter[i]);
3591 }
3592
3593 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3594 }
3595
3596 if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
3597 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3598 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3599 BNX2_RPM_SORT_USER0_PROM_VLAN;
3600 } else if (!(dev->flags & IFF_PROMISC)) {
3601 /* Add all entries into to the match filter list */
3602 i = 0;
3603 netdev_for_each_uc_addr(ha, dev) {
3604 bnx2_set_mac_addr(bp, ha->addr,
3605 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3606 sort_mode |= (1 <<
3607 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3608 i++;
3609 }
3610
3611 }
3612
3613 if (rx_mode != bp->rx_mode) {
3614 bp->rx_mode = rx_mode;
3615 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3616 }
3617
3618 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3619 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3620 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3621
3622 spin_unlock_bh(&bp->phy_lock);
3623 }
3624
3625 static int __devinit
3626 check_fw_section(const struct firmware *fw,
3627 const struct bnx2_fw_file_section *section,
3628 u32 alignment, bool non_empty)
3629 {
3630 u32 offset = be32_to_cpu(section->offset);
3631 u32 len = be32_to_cpu(section->len);
3632
3633 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3634 return -EINVAL;
3635 if ((non_empty && len == 0) || len > fw->size - offset ||
3636 len & (alignment - 1))
3637 return -EINVAL;
3638 return 0;
3639 }
3640
3641 static int __devinit
3642 check_mips_fw_entry(const struct firmware *fw,
3643 const struct bnx2_mips_fw_file_entry *entry)
3644 {
3645 if (check_fw_section(fw, &entry->text, 4, true) ||
3646 check_fw_section(fw, &entry->data, 4, false) ||
3647 check_fw_section(fw, &entry->rodata, 4, false))
3648 return -EINVAL;
3649 return 0;
3650 }
3651
3652 static int __devinit
3653 bnx2_request_firmware(struct bnx2 *bp)
3654 {
3655 const char *mips_fw_file, *rv2p_fw_file;
3656 const struct bnx2_mips_fw_file *mips_fw;
3657 const struct bnx2_rv2p_fw_file *rv2p_fw;
3658 int rc;
3659
3660 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3661 mips_fw_file = FW_MIPS_FILE_09;
3662 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3663 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3664 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3665 else
3666 rv2p_fw_file = FW_RV2P_FILE_09;
3667 } else {
3668 mips_fw_file = FW_MIPS_FILE_06;
3669 rv2p_fw_file = FW_RV2P_FILE_06;
3670 }
3671
3672 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3673 if (rc) {
3674 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
3675 return rc;
3676 }
3677
3678 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3679 if (rc) {
3680 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
3681 return rc;
3682 }
3683 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3684 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3685 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3686 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3687 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3688 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3689 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3690 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3691 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
3692 return -EINVAL;
3693 }
3694 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3695 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3696 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3697 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
3698 return -EINVAL;
3699 }
3700
3701 return 0;
3702 }
3703
3704 static u32
3705 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3706 {
3707 switch (idx) {
3708 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3709 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3710 rv2p_code |= RV2P_BD_PAGE_SIZE;
3711 break;
3712 }
3713 return rv2p_code;
3714 }
3715
3716 static int
3717 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3718 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3719 {
3720 u32 rv2p_code_len, file_offset;
3721 __be32 *rv2p_code;
3722 int i;
3723 u32 val, cmd, addr;
3724
3725 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3726 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3727
3728 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3729
3730 if (rv2p_proc == RV2P_PROC1) {
3731 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3732 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3733 } else {
3734 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3735 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3736 }
3737
3738 for (i = 0; i < rv2p_code_len; i += 8) {
3739 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3740 rv2p_code++;
3741 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3742 rv2p_code++;
3743
3744 val = (i / 8) | cmd;
3745 REG_WR(bp, addr, val);
3746 }
3747
3748 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3749 for (i = 0; i < 8; i++) {
3750 u32 loc, code;
3751
3752 loc = be32_to_cpu(fw_entry->fixup[i]);
3753 if (loc && ((loc * 4) < rv2p_code_len)) {
3754 code = be32_to_cpu(*(rv2p_code + loc - 1));
3755 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3756 code = be32_to_cpu(*(rv2p_code + loc));
3757 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3758 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3759
3760 val = (loc / 2) | cmd;
3761 REG_WR(bp, addr, val);
3762 }
3763 }
3764
3765 /* Reset the processor, un-stall is done later. */
3766 if (rv2p_proc == RV2P_PROC1) {
3767 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3768 }
3769 else {
3770 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3771 }
3772
3773 return 0;
3774 }
3775
3776 static int
3777 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3778 const struct bnx2_mips_fw_file_entry *fw_entry)
3779 {
3780 u32 addr, len, file_offset;
3781 __be32 *data;
3782 u32 offset;
3783 u32 val;
3784
3785 /* Halt the CPU. */
3786 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3787 val |= cpu_reg->mode_value_halt;
3788 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3789 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3790
3791 /* Load the Text area. */
3792 addr = be32_to_cpu(fw_entry->text.addr);
3793 len = be32_to_cpu(fw_entry->text.len);
3794 file_offset = be32_to_cpu(fw_entry->text.offset);
3795 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3796
3797 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3798 if (len) {
3799 int j;
3800
3801 for (j = 0; j < (len / 4); j++, offset += 4)
3802 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3803 }
3804
3805 /* Load the Data area. */
3806 addr = be32_to_cpu(fw_entry->data.addr);
3807 len = be32_to_cpu(fw_entry->data.len);
3808 file_offset = be32_to_cpu(fw_entry->data.offset);
3809 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3810
3811 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3812 if (len) {
3813 int j;
3814
3815 for (j = 0; j < (len / 4); j++, offset += 4)
3816 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3817 }
3818
3819 /* Load the Read-Only area. */
3820 addr = be32_to_cpu(fw_entry->rodata.addr);
3821 len = be32_to_cpu(fw_entry->rodata.len);
3822 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3823 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3824
3825 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3826 if (len) {
3827 int j;
3828
3829 for (j = 0; j < (len / 4); j++, offset += 4)
3830 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3831 }
3832
3833 /* Clear the pre-fetch instruction. */
3834 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3835
3836 val = be32_to_cpu(fw_entry->start_addr);
3837 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3838
3839 /* Start the CPU. */
3840 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3841 val &= ~cpu_reg->mode_value_halt;
3842 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3843 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3844
3845 return 0;
3846 }
3847
3848 static int
3849 bnx2_init_cpus(struct bnx2 *bp)
3850 {
3851 const struct bnx2_mips_fw_file *mips_fw =
3852 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3853 const struct bnx2_rv2p_fw_file *rv2p_fw =
3854 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3855 int rc;
3856
3857 /* Initialize the RV2P processor. */
3858 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3859 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3860
3861 /* Initialize the RX Processor. */
3862 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3863 if (rc)
3864 goto init_cpu_err;
3865
3866 /* Initialize the TX Processor. */
3867 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3868 if (rc)
3869 goto init_cpu_err;
3870
3871 /* Initialize the TX Patch-up Processor. */
3872 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3873 if (rc)
3874 goto init_cpu_err;
3875
3876 /* Initialize the Completion Processor. */
3877 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3878 if (rc)
3879 goto init_cpu_err;
3880
3881 /* Initialize the Command Processor. */
3882 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3883
3884 init_cpu_err:
3885 return rc;
3886 }
3887
3888 static int
3889 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3890 {
3891 u16 pmcsr;
3892
3893 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3894
3895 switch (state) {
3896 case PCI_D0: {
3897 u32 val;
3898
3899 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3900 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3901 PCI_PM_CTRL_PME_STATUS);
3902
3903 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3904 /* delay required during transition out of D3hot */
3905 msleep(20);
3906
3907 val = REG_RD(bp, BNX2_EMAC_MODE);
3908 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3909 val &= ~BNX2_EMAC_MODE_MPKT;
3910 REG_WR(bp, BNX2_EMAC_MODE, val);
3911
3912 val = REG_RD(bp, BNX2_RPM_CONFIG);
3913 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3914 REG_WR(bp, BNX2_RPM_CONFIG, val);
3915 break;
3916 }
3917 case PCI_D3hot: {
3918 int i;
3919 u32 val, wol_msg;
3920
3921 if (bp->wol) {
3922 u32 advertising;
3923 u8 autoneg;
3924
3925 autoneg = bp->autoneg;
3926 advertising = bp->advertising;
3927
3928 if (bp->phy_port == PORT_TP) {
3929 bp->autoneg = AUTONEG_SPEED;
3930 bp->advertising = ADVERTISED_10baseT_Half |
3931 ADVERTISED_10baseT_Full |
3932 ADVERTISED_100baseT_Half |
3933 ADVERTISED_100baseT_Full |
3934 ADVERTISED_Autoneg;
3935 }
3936
3937 spin_lock_bh(&bp->phy_lock);
3938 bnx2_setup_phy(bp, bp->phy_port);
3939 spin_unlock_bh(&bp->phy_lock);
3940
3941 bp->autoneg = autoneg;
3942 bp->advertising = advertising;
3943
3944 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3945
3946 val = REG_RD(bp, BNX2_EMAC_MODE);
3947
3948 /* Enable port mode. */
3949 val &= ~BNX2_EMAC_MODE_PORT;
3950 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3951 BNX2_EMAC_MODE_ACPI_RCVD |
3952 BNX2_EMAC_MODE_MPKT;
3953 if (bp->phy_port == PORT_TP)
3954 val |= BNX2_EMAC_MODE_PORT_MII;
3955 else {
3956 val |= BNX2_EMAC_MODE_PORT_GMII;
3957 if (bp->line_speed == SPEED_2500)
3958 val |= BNX2_EMAC_MODE_25G_MODE;
3959 }
3960
3961 REG_WR(bp, BNX2_EMAC_MODE, val);
3962
3963 /* receive all multicast */
3964 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3965 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3966 0xffffffff);
3967 }
3968 REG_WR(bp, BNX2_EMAC_RX_MODE,
3969 BNX2_EMAC_RX_MODE_SORT_MODE);
3970
3971 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3972 BNX2_RPM_SORT_USER0_MC_EN;
3973 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3974 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3975 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3976 BNX2_RPM_SORT_USER0_ENA);
3977
3978 /* Need to enable EMAC and RPM for WOL. */
3979 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3980 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3981 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3982 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3983
3984 val = REG_RD(bp, BNX2_RPM_CONFIG);
3985 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3986 REG_WR(bp, BNX2_RPM_CONFIG, val);
3987
3988 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3989 }
3990 else {
3991 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3992 }
3993
3994 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3995 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3996 1, 0);
3997
3998 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3999 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4000 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
4001
4002 if (bp->wol)
4003 pmcsr |= 3;
4004 }
4005 else {
4006 pmcsr |= 3;
4007 }
4008 if (bp->wol) {
4009 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
4010 }
4011 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
4012 pmcsr);
4013
4014 /* No more memory access after this point until
4015 * device is brought back to D0.
4016 */
4017 udelay(50);
4018 break;
4019 }
4020 default:
4021 return -EINVAL;
4022 }
4023 return 0;
4024 }
4025
4026 static int
4027 bnx2_acquire_nvram_lock(struct bnx2 *bp)
4028 {
4029 u32 val;
4030 int j;
4031
4032 /* Request access to the flash interface. */
4033 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
4034 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4035 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4036 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
4037 break;
4038
4039 udelay(5);
4040 }
4041
4042 if (j >= NVRAM_TIMEOUT_COUNT)
4043 return -EBUSY;
4044
4045 return 0;
4046 }
4047
4048 static int
4049 bnx2_release_nvram_lock(struct bnx2 *bp)
4050 {
4051 int j;
4052 u32 val;
4053
4054 /* Relinquish nvram interface. */
4055 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4056
4057 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4058 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4059 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4060 break;
4061
4062 udelay(5);
4063 }
4064
4065 if (j >= NVRAM_TIMEOUT_COUNT)
4066 return -EBUSY;
4067
4068 return 0;
4069 }
4070
4071
4072 static int
4073 bnx2_enable_nvram_write(struct bnx2 *bp)
4074 {
4075 u32 val;
4076
4077 val = REG_RD(bp, BNX2_MISC_CFG);
4078 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4079
4080 if (bp->flash_info->flags & BNX2_NV_WREN) {
4081 int j;
4082
4083 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4084 REG_WR(bp, BNX2_NVM_COMMAND,
4085 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4086
4087 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4088 udelay(5);
4089
4090 val = REG_RD(bp, BNX2_NVM_COMMAND);
4091 if (val & BNX2_NVM_COMMAND_DONE)
4092 break;
4093 }
4094
4095 if (j >= NVRAM_TIMEOUT_COUNT)
4096 return -EBUSY;
4097 }
4098 return 0;
4099 }
4100
4101 static void
4102 bnx2_disable_nvram_write(struct bnx2 *bp)
4103 {
4104 u32 val;
4105
4106 val = REG_RD(bp, BNX2_MISC_CFG);
4107 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4108 }
4109
4110
4111 static void
4112 bnx2_enable_nvram_access(struct bnx2 *bp)
4113 {
4114 u32 val;
4115
4116 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4117 /* Enable both bits, even on read. */
4118 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4119 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4120 }
4121
4122 static void
4123 bnx2_disable_nvram_access(struct bnx2 *bp)
4124 {
4125 u32 val;
4126
4127 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4128 /* Disable both bits, even after read. */
4129 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4130 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4131 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4132 }
4133
4134 static int
4135 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4136 {
4137 u32 cmd;
4138 int j;
4139
4140 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4141 /* Buffered flash, no erase needed */
4142 return 0;
4143
4144 /* Build an erase command */
4145 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4146 BNX2_NVM_COMMAND_DOIT;
4147
4148 /* Need to clear DONE bit separately. */
4149 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4150
4151 /* Address of the NVRAM to read from. */
4152 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4153
4154 /* Issue an erase command. */
4155 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4156
4157 /* Wait for completion. */
4158 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4159 u32 val;
4160
4161 udelay(5);
4162
4163 val = REG_RD(bp, BNX2_NVM_COMMAND);
4164 if (val & BNX2_NVM_COMMAND_DONE)
4165 break;
4166 }
4167
4168 if (j >= NVRAM_TIMEOUT_COUNT)
4169 return -EBUSY;
4170
4171 return 0;
4172 }
4173
4174 static int
4175 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4176 {
4177 u32 cmd;
4178 int j;
4179
4180 /* Build the command word. */
4181 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4182
4183 /* Calculate an offset of a buffered flash, not needed for 5709. */
4184 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4185 offset = ((offset / bp->flash_info->page_size) <<
4186 bp->flash_info->page_bits) +
4187 (offset % bp->flash_info->page_size);
4188 }
4189
4190 /* Need to clear DONE bit separately. */
4191 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4192
4193 /* Address of the NVRAM to read from. */
4194 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4195
4196 /* Issue a read command. */
4197 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4198
4199 /* Wait for completion. */
4200 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4201 u32 val;
4202
4203 udelay(5);
4204
4205 val = REG_RD(bp, BNX2_NVM_COMMAND);
4206 if (val & BNX2_NVM_COMMAND_DONE) {
4207 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4208 memcpy(ret_val, &v, 4);
4209 break;
4210 }
4211 }
4212 if (j >= NVRAM_TIMEOUT_COUNT)
4213 return -EBUSY;
4214
4215 return 0;
4216 }
4217
4218
4219 static int
4220 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4221 {
4222 u32 cmd;
4223 __be32 val32;
4224 int j;
4225
4226 /* Build the command word. */
4227 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4228
4229 /* Calculate an offset of a buffered flash, not needed for 5709. */
4230 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4231 offset = ((offset / bp->flash_info->page_size) <<
4232 bp->flash_info->page_bits) +
4233 (offset % bp->flash_info->page_size);
4234 }
4235
4236 /* Need to clear DONE bit separately. */
4237 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4238
4239 memcpy(&val32, val, 4);
4240
4241 /* Write the data. */
4242 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4243
4244 /* Address of the NVRAM to write to. */
4245 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4246
4247 /* Issue the write command. */
4248 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4249
4250 /* Wait for completion. */
4251 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4252 udelay(5);
4253
4254 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4255 break;
4256 }
4257 if (j >= NVRAM_TIMEOUT_COUNT)
4258 return -EBUSY;
4259
4260 return 0;
4261 }
4262
4263 static int
4264 bnx2_init_nvram(struct bnx2 *bp)
4265 {
4266 u32 val;
4267 int j, entry_count, rc = 0;
4268 const struct flash_spec *flash;
4269
4270 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4271 bp->flash_info = &flash_5709;
4272 goto get_flash_size;
4273 }
4274
4275 /* Determine the selected interface. */
4276 val = REG_RD(bp, BNX2_NVM_CFG1);
4277
4278 entry_count = ARRAY_SIZE(flash_table);
4279
4280 if (val & 0x40000000) {
4281
4282 /* Flash interface has been reconfigured */
4283 for (j = 0, flash = &flash_table[0]; j < entry_count;
4284 j++, flash++) {
4285 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4286 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4287 bp->flash_info = flash;
4288 break;
4289 }
4290 }
4291 }
4292 else {
4293 u32 mask;
4294 /* Not yet been reconfigured */
4295
4296 if (val & (1 << 23))
4297 mask = FLASH_BACKUP_STRAP_MASK;
4298 else
4299 mask = FLASH_STRAP_MASK;
4300
4301 for (j = 0, flash = &flash_table[0]; j < entry_count;
4302 j++, flash++) {
4303
4304 if ((val & mask) == (flash->strapping & mask)) {
4305 bp->flash_info = flash;
4306
4307 /* Request access to the flash interface. */
4308 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4309 return rc;
4310
4311 /* Enable access to flash interface */
4312 bnx2_enable_nvram_access(bp);
4313
4314 /* Reconfigure the flash interface */
4315 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4316 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4317 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4318 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4319
4320 /* Disable access to flash interface */
4321 bnx2_disable_nvram_access(bp);
4322 bnx2_release_nvram_lock(bp);
4323
4324 break;
4325 }
4326 }
4327 } /* if (val & 0x40000000) */
4328
4329 if (j == entry_count) {
4330 bp->flash_info = NULL;
4331 pr_alert("Unknown flash/EEPROM type\n");
4332 return -ENODEV;
4333 }
4334
4335 get_flash_size:
4336 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4337 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4338 if (val)
4339 bp->flash_size = val;
4340 else
4341 bp->flash_size = bp->flash_info->total_size;
4342
4343 return rc;
4344 }
4345
4346 static int
4347 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4348 int buf_size)
4349 {
4350 int rc = 0;
4351 u32 cmd_flags, offset32, len32, extra;
4352
4353 if (buf_size == 0)
4354 return 0;
4355
4356 /* Request access to the flash interface. */
4357 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4358 return rc;
4359
4360 /* Enable access to flash interface */
4361 bnx2_enable_nvram_access(bp);
4362
4363 len32 = buf_size;
4364 offset32 = offset;
4365 extra = 0;
4366
4367 cmd_flags = 0;
4368
4369 if (offset32 & 3) {
4370 u8 buf[4];
4371 u32 pre_len;
4372
4373 offset32 &= ~3;
4374 pre_len = 4 - (offset & 3);
4375
4376 if (pre_len >= len32) {
4377 pre_len = len32;
4378 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4379 BNX2_NVM_COMMAND_LAST;
4380 }
4381 else {
4382 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4383 }
4384
4385 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4386
4387 if (rc)
4388 return rc;
4389
4390 memcpy(ret_buf, buf + (offset & 3), pre_len);
4391
4392 offset32 += 4;
4393 ret_buf += pre_len;
4394 len32 -= pre_len;
4395 }
4396 if (len32 & 3) {
4397 extra = 4 - (len32 & 3);
4398 len32 = (len32 + 4) & ~3;
4399 }
4400
4401 if (len32 == 4) {
4402 u8 buf[4];
4403
4404 if (cmd_flags)
4405 cmd_flags = BNX2_NVM_COMMAND_LAST;
4406 else
4407 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4408 BNX2_NVM_COMMAND_LAST;
4409
4410 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4411
4412 memcpy(ret_buf, buf, 4 - extra);
4413 }
4414 else if (len32 > 0) {
4415 u8 buf[4];
4416
4417 /* Read the first word. */
4418 if (cmd_flags)
4419 cmd_flags = 0;
4420 else
4421 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4422
4423 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4424
4425 /* Advance to the next dword. */
4426 offset32 += 4;
4427 ret_buf += 4;
4428 len32 -= 4;
4429
4430 while (len32 > 4 && rc == 0) {
4431 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4432
4433 /* Advance to the next dword. */
4434 offset32 += 4;
4435 ret_buf += 4;
4436 len32 -= 4;
4437 }
4438
4439 if (rc)
4440 return rc;
4441
4442 cmd_flags = BNX2_NVM_COMMAND_LAST;
4443 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4444
4445 memcpy(ret_buf, buf, 4 - extra);
4446 }
4447
4448 /* Disable access to flash interface */
4449 bnx2_disable_nvram_access(bp);
4450
4451 bnx2_release_nvram_lock(bp);
4452
4453 return rc;
4454 }
4455
4456 static int
4457 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4458 int buf_size)
4459 {
4460 u32 written, offset32, len32;
4461 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4462 int rc = 0;
4463 int align_start, align_end;
4464
4465 buf = data_buf;
4466 offset32 = offset;
4467 len32 = buf_size;
4468 align_start = align_end = 0;
4469
4470 if ((align_start = (offset32 & 3))) {
4471 offset32 &= ~3;
4472 len32 += align_start;
4473 if (len32 < 4)
4474 len32 = 4;
4475 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4476 return rc;
4477 }
4478
4479 if (len32 & 3) {
4480 align_end = 4 - (len32 & 3);
4481 len32 += align_end;
4482 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4483 return rc;
4484 }
4485
4486 if (align_start || align_end) {
4487 align_buf = kmalloc(len32, GFP_KERNEL);
4488 if (align_buf == NULL)
4489 return -ENOMEM;
4490 if (align_start) {
4491 memcpy(align_buf, start, 4);
4492 }
4493 if (align_end) {
4494 memcpy(align_buf + len32 - 4, end, 4);
4495 }
4496 memcpy(align_buf + align_start, data_buf, buf_size);
4497 buf = align_buf;
4498 }
4499
4500 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4501 flash_buffer = kmalloc(264, GFP_KERNEL);
4502 if (flash_buffer == NULL) {
4503 rc = -ENOMEM;
4504 goto nvram_write_end;
4505 }
4506 }
4507
4508 written = 0;
4509 while ((written < len32) && (rc == 0)) {
4510 u32 page_start, page_end, data_start, data_end;
4511 u32 addr, cmd_flags;
4512 int i;
4513
4514 /* Find the page_start addr */
4515 page_start = offset32 + written;
4516 page_start -= (page_start % bp->flash_info->page_size);
4517 /* Find the page_end addr */
4518 page_end = page_start + bp->flash_info->page_size;
4519 /* Find the data_start addr */
4520 data_start = (written == 0) ? offset32 : page_start;
4521 /* Find the data_end addr */
4522 data_end = (page_end > offset32 + len32) ?
4523 (offset32 + len32) : page_end;
4524
4525 /* Request access to the flash interface. */
4526 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4527 goto nvram_write_end;
4528
4529 /* Enable access to flash interface */
4530 bnx2_enable_nvram_access(bp);
4531
4532 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4533 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4534 int j;
4535
4536 /* Read the whole page into the buffer
4537 * (non-buffer flash only) */
4538 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4539 if (j == (bp->flash_info->page_size - 4)) {
4540 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4541 }
4542 rc = bnx2_nvram_read_dword(bp,
4543 page_start + j,
4544 &flash_buffer[j],
4545 cmd_flags);
4546
4547 if (rc)
4548 goto nvram_write_end;
4549
4550 cmd_flags = 0;
4551 }
4552 }
4553
4554 /* Enable writes to flash interface (unlock write-protect) */
4555 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4556 goto nvram_write_end;
4557
4558 /* Loop to write back the buffer data from page_start to
4559 * data_start */
4560 i = 0;
4561 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4562 /* Erase the page */
4563 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4564 goto nvram_write_end;
4565
4566 /* Re-enable the write again for the actual write */
4567 bnx2_enable_nvram_write(bp);
4568
4569 for (addr = page_start; addr < data_start;
4570 addr += 4, i += 4) {
4571
4572 rc = bnx2_nvram_write_dword(bp, addr,
4573 &flash_buffer[i], cmd_flags);
4574
4575 if (rc != 0)
4576 goto nvram_write_end;
4577
4578 cmd_flags = 0;
4579 }
4580 }
4581
4582 /* Loop to write the new data from data_start to data_end */
4583 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4584 if ((addr == page_end - 4) ||
4585 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4586 (addr == data_end - 4))) {
4587
4588 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4589 }
4590 rc = bnx2_nvram_write_dword(bp, addr, buf,
4591 cmd_flags);
4592
4593 if (rc != 0)
4594 goto nvram_write_end;
4595
4596 cmd_flags = 0;
4597 buf += 4;
4598 }
4599
4600 /* Loop to write back the buffer data from data_end
4601 * to page_end */
4602 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4603 for (addr = data_end; addr < page_end;
4604 addr += 4, i += 4) {
4605
4606 if (addr == page_end-4) {
4607 cmd_flags = BNX2_NVM_COMMAND_LAST;
4608 }
4609 rc = bnx2_nvram_write_dword(bp, addr,
4610 &flash_buffer[i], cmd_flags);
4611
4612 if (rc != 0)
4613 goto nvram_write_end;
4614
4615 cmd_flags = 0;
4616 }
4617 }
4618
4619 /* Disable writes to flash interface (lock write-protect) */
4620 bnx2_disable_nvram_write(bp);
4621
4622 /* Disable access to flash interface */
4623 bnx2_disable_nvram_access(bp);
4624 bnx2_release_nvram_lock(bp);
4625
4626 /* Increment written */
4627 written += data_end - data_start;
4628 }
4629
4630 nvram_write_end:
4631 kfree(flash_buffer);
4632 kfree(align_buf);
4633 return rc;
4634 }
4635
4636 static void
4637 bnx2_init_fw_cap(struct bnx2 *bp)
4638 {
4639 u32 val, sig = 0;
4640
4641 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4642 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4643
4644 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4645 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4646
4647 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4648 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4649 return;
4650
4651 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4652 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4653 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4654 }
4655
4656 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4657 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4658 u32 link;
4659
4660 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4661
4662 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4663 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4664 bp->phy_port = PORT_FIBRE;
4665 else
4666 bp->phy_port = PORT_TP;
4667
4668 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4669 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4670 }
4671
4672 if (netif_running(bp->dev) && sig)
4673 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4674 }
4675
4676 static void
4677 bnx2_setup_msix_tbl(struct bnx2 *bp)
4678 {
4679 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4680
4681 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4682 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4683 }
4684
4685 static int
4686 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4687 {
4688 u32 val;
4689 int i, rc = 0;
4690 u8 old_port;
4691
4692 /* Wait for the current PCI transaction to complete before
4693 * issuing a reset. */
4694 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
4695 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
4696 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4697 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4698 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4699 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4700 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4701 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4702 udelay(5);
4703 } else { /* 5709 */
4704 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4705 val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4706 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4707 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4708
4709 for (i = 0; i < 100; i++) {
4710 msleep(1);
4711 val = REG_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
4712 if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
4713 break;
4714 }
4715 }
4716
4717 /* Wait for the firmware to tell us it is ok to issue a reset. */
4718 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4719
4720 /* Deposit a driver reset signature so the firmware knows that
4721 * this is a soft reset. */
4722 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4723 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4724
4725 /* Do a dummy read to force the chip to complete all current transaction
4726 * before we issue a reset. */
4727 val = REG_RD(bp, BNX2_MISC_ID);
4728
4729 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4730 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4731 REG_RD(bp, BNX2_MISC_COMMAND);
4732 udelay(5);
4733
4734 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4735 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4736
4737 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4738
4739 } else {
4740 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4741 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4742 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4743
4744 /* Chip reset. */
4745 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4746
4747 /* Reading back any register after chip reset will hang the
4748 * bus on 5706 A0 and A1. The msleep below provides plenty
4749 * of margin for write posting.
4750 */
4751 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4752 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4753 msleep(20);
4754
4755 /* Reset takes approximate 30 usec */
4756 for (i = 0; i < 10; i++) {
4757 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4758 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4759 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4760 break;
4761 udelay(10);
4762 }
4763
4764 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4765 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4766 pr_err("Chip reset did not complete\n");
4767 return -EBUSY;
4768 }
4769 }
4770
4771 /* Make sure byte swapping is properly configured. */
4772 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4773 if (val != 0x01020304) {
4774 pr_err("Chip not in correct endian mode\n");
4775 return -ENODEV;
4776 }
4777
4778 /* Wait for the firmware to finish its initialization. */
4779 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4780 if (rc)
4781 return rc;
4782
4783 spin_lock_bh(&bp->phy_lock);
4784 old_port = bp->phy_port;
4785 bnx2_init_fw_cap(bp);
4786 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4787 old_port != bp->phy_port)
4788 bnx2_set_default_remote_link(bp);
4789 spin_unlock_bh(&bp->phy_lock);
4790
4791 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4792 /* Adjust the voltage regular to two steps lower. The default
4793 * of this register is 0x0000000e. */
4794 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4795
4796 /* Remove bad rbuf memory from the free pool. */
4797 rc = bnx2_alloc_bad_rbuf(bp);
4798 }
4799
4800 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4801 bnx2_setup_msix_tbl(bp);
4802 /* Prevent MSIX table reads and write from timing out */
4803 REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
4804 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
4805 }
4806
4807 return rc;
4808 }
4809
4810 static int
4811 bnx2_init_chip(struct bnx2 *bp)
4812 {
4813 u32 val, mtu;
4814 int rc, i;
4815
4816 /* Make sure the interrupt is not active. */
4817 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4818
4819 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4820 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4821 #ifdef __BIG_ENDIAN
4822 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4823 #endif
4824 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4825 DMA_READ_CHANS << 12 |
4826 DMA_WRITE_CHANS << 16;
4827
4828 val |= (0x2 << 20) | (1 << 11);
4829
4830 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4831 val |= (1 << 23);
4832
4833 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4834 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4835 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4836
4837 REG_WR(bp, BNX2_DMA_CONFIG, val);
4838
4839 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4840 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4841 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4842 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4843 }
4844
4845 if (bp->flags & BNX2_FLAG_PCIX) {
4846 u16 val16;
4847
4848 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4849 &val16);
4850 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4851 val16 & ~PCI_X_CMD_ERO);
4852 }
4853
4854 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4855 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4856 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4857 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4858
4859 /* Initialize context mapping and zero out the quick contexts. The
4860 * context block must have already been enabled. */
4861 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4862 rc = bnx2_init_5709_context(bp);
4863 if (rc)
4864 return rc;
4865 } else
4866 bnx2_init_context(bp);
4867
4868 if ((rc = bnx2_init_cpus(bp)) != 0)
4869 return rc;
4870
4871 bnx2_init_nvram(bp);
4872
4873 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4874
4875 val = REG_RD(bp, BNX2_MQ_CONFIG);
4876 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4877 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4878 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4879 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4880 if (CHIP_REV(bp) == CHIP_REV_Ax)
4881 val |= BNX2_MQ_CONFIG_HALT_DIS;
4882 }
4883
4884 REG_WR(bp, BNX2_MQ_CONFIG, val);
4885
4886 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4887 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4888 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4889
4890 val = (BCM_PAGE_BITS - 8) << 24;
4891 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4892
4893 /* Configure page size. */
4894 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4895 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4896 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4897 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4898
4899 val = bp->mac_addr[0] +
4900 (bp->mac_addr[1] << 8) +
4901 (bp->mac_addr[2] << 16) +
4902 bp->mac_addr[3] +
4903 (bp->mac_addr[4] << 8) +
4904 (bp->mac_addr[5] << 16);
4905 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4906
4907 /* Program the MTU. Also include 4 bytes for CRC32. */
4908 mtu = bp->dev->mtu;
4909 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4910 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4911 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4912 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4913
4914 if (mtu < 1500)
4915 mtu = 1500;
4916
4917 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4918 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4919 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4920
4921 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4922 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4923 bp->bnx2_napi[i].last_status_idx = 0;
4924
4925 bp->idle_chk_status_idx = 0xffff;
4926
4927 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4928
4929 /* Set up how to generate a link change interrupt. */
4930 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4931
4932 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4933 (u64) bp->status_blk_mapping & 0xffffffff);
4934 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4935
4936 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4937 (u64) bp->stats_blk_mapping & 0xffffffff);
4938 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4939 (u64) bp->stats_blk_mapping >> 32);
4940
4941 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4942 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4943
4944 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4945 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4946
4947 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4948 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4949
4950 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4951
4952 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4953
4954 REG_WR(bp, BNX2_HC_COM_TICKS,
4955 (bp->com_ticks_int << 16) | bp->com_ticks);
4956
4957 REG_WR(bp, BNX2_HC_CMD_TICKS,
4958 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4959
4960 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4961 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4962 else
4963 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4964 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4965
4966 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4967 val = BNX2_HC_CONFIG_COLLECT_STATS;
4968 else {
4969 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4970 BNX2_HC_CONFIG_COLLECT_STATS;
4971 }
4972
4973 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4974 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4975 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4976
4977 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4978 }
4979
4980 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4981 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4982
4983 REG_WR(bp, BNX2_HC_CONFIG, val);
4984
4985 if (bp->rx_ticks < 25)
4986 bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
4987 else
4988 bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
4989
4990 for (i = 1; i < bp->irq_nvecs; i++) {
4991 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4992 BNX2_HC_SB_CONFIG_1;
4993
4994 REG_WR(bp, base,
4995 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4996 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4997 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4998
4999 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
5000 (bp->tx_quick_cons_trip_int << 16) |
5001 bp->tx_quick_cons_trip);
5002
5003 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
5004 (bp->tx_ticks_int << 16) | bp->tx_ticks);
5005
5006 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
5007 (bp->rx_quick_cons_trip_int << 16) |
5008 bp->rx_quick_cons_trip);
5009
5010 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
5011 (bp->rx_ticks_int << 16) | bp->rx_ticks);
5012 }
5013
5014 /* Clear internal stats counters. */
5015 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
5016
5017 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
5018
5019 /* Initialize the receive filter. */
5020 bnx2_set_rx_mode(bp->dev);
5021
5022 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5023 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
5024 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
5025 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
5026 }
5027 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
5028 1, 0);
5029
5030 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
5031 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
5032
5033 udelay(20);
5034
5035 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
5036
5037 return rc;
5038 }
5039
5040 static void
5041 bnx2_clear_ring_states(struct bnx2 *bp)
5042 {
5043 struct bnx2_napi *bnapi;
5044 struct bnx2_tx_ring_info *txr;
5045 struct bnx2_rx_ring_info *rxr;
5046 int i;
5047
5048 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5049 bnapi = &bp->bnx2_napi[i];
5050 txr = &bnapi->tx_ring;
5051 rxr = &bnapi->rx_ring;
5052
5053 txr->tx_cons = 0;
5054 txr->hw_tx_cons = 0;
5055 rxr->rx_prod_bseq = 0;
5056 rxr->rx_prod = 0;
5057 rxr->rx_cons = 0;
5058 rxr->rx_pg_prod = 0;
5059 rxr->rx_pg_cons = 0;
5060 }
5061 }
5062
5063 static void
5064 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5065 {
5066 u32 val, offset0, offset1, offset2, offset3;
5067 u32 cid_addr = GET_CID_ADDR(cid);
5068
5069 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5070 offset0 = BNX2_L2CTX_TYPE_XI;
5071 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5072 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5073 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5074 } else {
5075 offset0 = BNX2_L2CTX_TYPE;
5076 offset1 = BNX2_L2CTX_CMD_TYPE;
5077 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5078 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5079 }
5080 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5081 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5082
5083 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5084 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5085
5086 val = (u64) txr->tx_desc_mapping >> 32;
5087 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5088
5089 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5090 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5091 }
5092
5093 static void
5094 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5095 {
5096 struct tx_bd *txbd;
5097 u32 cid = TX_CID;
5098 struct bnx2_napi *bnapi;
5099 struct bnx2_tx_ring_info *txr;
5100
5101 bnapi = &bp->bnx2_napi[ring_num];
5102 txr = &bnapi->tx_ring;
5103
5104 if (ring_num == 0)
5105 cid = TX_CID;
5106 else
5107 cid = TX_TSS_CID + ring_num - 1;
5108
5109 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5110
5111 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5112
5113 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5114 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5115
5116 txr->tx_prod = 0;
5117 txr->tx_prod_bseq = 0;
5118
5119 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5120 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5121
5122 bnx2_init_tx_context(bp, cid, txr);
5123 }
5124
5125 static void
5126 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5127 int num_rings)
5128 {
5129 int i;
5130 struct rx_bd *rxbd;
5131
5132 for (i = 0; i < num_rings; i++) {
5133 int j;
5134
5135 rxbd = &rx_ring[i][0];
5136 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5137 rxbd->rx_bd_len = buf_size;
5138 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5139 }
5140 if (i == (num_rings - 1))
5141 j = 0;
5142 else
5143 j = i + 1;
5144 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5145 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5146 }
5147 }
5148
5149 static void
5150 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5151 {
5152 int i;
5153 u16 prod, ring_prod;
5154 u32 cid, rx_cid_addr, val;
5155 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5156 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5157
5158 if (ring_num == 0)
5159 cid = RX_CID;
5160 else
5161 cid = RX_RSS_CID + ring_num - 1;
5162
5163 rx_cid_addr = GET_CID_ADDR(cid);
5164
5165 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5166 bp->rx_buf_use_size, bp->rx_max_ring);
5167
5168 bnx2_init_rx_context(bp, cid);
5169
5170 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5171 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5172 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5173 }
5174
5175 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5176 if (bp->rx_pg_ring_size) {
5177 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5178 rxr->rx_pg_desc_mapping,
5179 PAGE_SIZE, bp->rx_max_pg_ring);
5180 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5181 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5182 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5183 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5184
5185 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5186 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5187
5188 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5189 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5190
5191 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5192 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5193 }
5194
5195 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5196 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5197
5198 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5199 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5200
5201 ring_prod = prod = rxr->rx_pg_prod;
5202 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5203 if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
5204 netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
5205 ring_num, i, bp->rx_pg_ring_size);
5206 break;
5207 }
5208 prod = NEXT_RX_BD(prod);
5209 ring_prod = RX_PG_RING_IDX(prod);
5210 }
5211 rxr->rx_pg_prod = prod;
5212
5213 ring_prod = prod = rxr->rx_prod;
5214 for (i = 0; i < bp->rx_ring_size; i++) {
5215 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
5216 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
5217 ring_num, i, bp->rx_ring_size);
5218 break;
5219 }
5220 prod = NEXT_RX_BD(prod);
5221 ring_prod = RX_RING_IDX(prod);
5222 }
5223 rxr->rx_prod = prod;
5224
5225 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5226 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5227 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5228
5229 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5230 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5231
5232 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5233 }
5234
5235 static void
5236 bnx2_init_all_rings(struct bnx2 *bp)
5237 {
5238 int i;
5239 u32 val;
5240
5241 bnx2_clear_ring_states(bp);
5242
5243 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5244 for (i = 0; i < bp->num_tx_rings; i++)
5245 bnx2_init_tx_ring(bp, i);
5246
5247 if (bp->num_tx_rings > 1)
5248 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5249 (TX_TSS_CID << 7));
5250
5251 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5252 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5253
5254 for (i = 0; i < bp->num_rx_rings; i++)
5255 bnx2_init_rx_ring(bp, i);
5256
5257 if (bp->num_rx_rings > 1) {
5258 u32 tbl_32 = 0;
5259
5260 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5261 int shift = (i % 8) << 2;
5262
5263 tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
5264 if ((i % 8) == 7) {
5265 REG_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
5266 REG_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
5267 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
5268 BNX2_RLUP_RSS_COMMAND_WRITE |
5269 BNX2_RLUP_RSS_COMMAND_HASH_MASK);
5270 tbl_32 = 0;
5271 }
5272 }
5273
5274 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5275 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5276
5277 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5278
5279 }
5280 }
5281
5282 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5283 {
5284 u32 max, num_rings = 1;
5285
5286 while (ring_size > MAX_RX_DESC_CNT) {
5287 ring_size -= MAX_RX_DESC_CNT;
5288 num_rings++;
5289 }
5290 /* round to next power of 2 */
5291 max = max_size;
5292 while ((max & num_rings) == 0)
5293 max >>= 1;
5294
5295 if (num_rings != max)
5296 max <<= 1;
5297
5298 return max;
5299 }
5300
5301 static void
5302 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5303 {
5304 u32 rx_size, rx_space, jumbo_size;
5305
5306 /* 8 for CRC and VLAN */
5307 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5308
5309 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5310 sizeof(struct skb_shared_info);
5311
5312 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5313 bp->rx_pg_ring_size = 0;
5314 bp->rx_max_pg_ring = 0;
5315 bp->rx_max_pg_ring_idx = 0;
5316 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5317 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5318
5319 jumbo_size = size * pages;
5320 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5321 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5322
5323 bp->rx_pg_ring_size = jumbo_size;
5324 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5325 MAX_RX_PG_RINGS);
5326 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5327 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5328 bp->rx_copy_thresh = 0;
5329 }
5330
5331 bp->rx_buf_use_size = rx_size;
5332 /* hw alignment */
5333 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5334 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5335 bp->rx_ring_size = size;
5336 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5337 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5338 }
5339
5340 static void
5341 bnx2_free_tx_skbs(struct bnx2 *bp)
5342 {
5343 int i;
5344
5345 for (i = 0; i < bp->num_tx_rings; i++) {
5346 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5347 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5348 int j;
5349
5350 if (txr->tx_buf_ring == NULL)
5351 continue;
5352
5353 for (j = 0; j < TX_DESC_CNT; ) {
5354 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5355 struct sk_buff *skb = tx_buf->skb;
5356 int k, last;
5357
5358 if (skb == NULL) {
5359 j++;
5360 continue;
5361 }
5362
5363 dma_unmap_single(&bp->pdev->dev,
5364 dma_unmap_addr(tx_buf, mapping),
5365 skb_headlen(skb),
5366 PCI_DMA_TODEVICE);
5367
5368 tx_buf->skb = NULL;
5369
5370 last = tx_buf->nr_frags;
5371 j++;
5372 for (k = 0; k < last; k++, j++) {
5373 tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
5374 dma_unmap_page(&bp->pdev->dev,
5375 dma_unmap_addr(tx_buf, mapping),
5376 skb_shinfo(skb)->frags[k].size,
5377 PCI_DMA_TODEVICE);
5378 }
5379 dev_kfree_skb(skb);
5380 }
5381 }
5382 }
5383
5384 static void
5385 bnx2_free_rx_skbs(struct bnx2 *bp)
5386 {
5387 int i;
5388
5389 for (i = 0; i < bp->num_rx_rings; i++) {
5390 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5391 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5392 int j;
5393
5394 if (rxr->rx_buf_ring == NULL)
5395 return;
5396
5397 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5398 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5399 struct sk_buff *skb = rx_buf->skb;
5400
5401 if (skb == NULL)
5402 continue;
5403
5404 dma_unmap_single(&bp->pdev->dev,
5405 dma_unmap_addr(rx_buf, mapping),
5406 bp->rx_buf_use_size,
5407 PCI_DMA_FROMDEVICE);
5408
5409 rx_buf->skb = NULL;
5410
5411 dev_kfree_skb(skb);
5412 }
5413 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5414 bnx2_free_rx_page(bp, rxr, j);
5415 }
5416 }
5417
5418 static void
5419 bnx2_free_skbs(struct bnx2 *bp)
5420 {
5421 bnx2_free_tx_skbs(bp);
5422 bnx2_free_rx_skbs(bp);
5423 }
5424
5425 static int
5426 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5427 {
5428 int rc;
5429
5430 rc = bnx2_reset_chip(bp, reset_code);
5431 bnx2_free_skbs(bp);
5432 if (rc)
5433 return rc;
5434
5435 if ((rc = bnx2_init_chip(bp)) != 0)
5436 return rc;
5437
5438 bnx2_init_all_rings(bp);
5439 return 0;
5440 }
5441
5442 static int
5443 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5444 {
5445 int rc;
5446
5447 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5448 return rc;
5449
5450 spin_lock_bh(&bp->phy_lock);
5451 bnx2_init_phy(bp, reset_phy);
5452 bnx2_set_link(bp);
5453 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5454 bnx2_remote_phy_event(bp);
5455 spin_unlock_bh(&bp->phy_lock);
5456 return 0;
5457 }
5458
5459 static int
5460 bnx2_shutdown_chip(struct bnx2 *bp)
5461 {
5462 u32 reset_code;
5463
5464 if (bp->flags & BNX2_FLAG_NO_WOL)
5465 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5466 else if (bp->wol)
5467 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5468 else
5469 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5470
5471 return bnx2_reset_chip(bp, reset_code);
5472 }
5473
5474 static int
5475 bnx2_test_registers(struct bnx2 *bp)
5476 {
5477 int ret;
5478 int i, is_5709;
5479 static const struct {
5480 u16 offset;
5481 u16 flags;
5482 #define BNX2_FL_NOT_5709 1
5483 u32 rw_mask;
5484 u32 ro_mask;
5485 } reg_tbl[] = {
5486 { 0x006c, 0, 0x00000000, 0x0000003f },
5487 { 0x0090, 0, 0xffffffff, 0x00000000 },
5488 { 0x0094, 0, 0x00000000, 0x00000000 },
5489
5490 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5491 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5492 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5493 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5494 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5495 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5496 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5497 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5498 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5499
5500 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5501 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5502 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5503 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5504 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5505 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5506
5507 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5508 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5509 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5510
5511 { 0x1000, 0, 0x00000000, 0x00000001 },
5512 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5513
5514 { 0x1408, 0, 0x01c00800, 0x00000000 },
5515 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5516 { 0x14a8, 0, 0x00000000, 0x000001ff },
5517 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5518 { 0x14b0, 0, 0x00000002, 0x00000001 },
5519 { 0x14b8, 0, 0x00000000, 0x00000000 },
5520 { 0x14c0, 0, 0x00000000, 0x00000009 },
5521 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5522 { 0x14cc, 0, 0x00000000, 0x00000001 },
5523 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5524
5525 { 0x1800, 0, 0x00000000, 0x00000001 },
5526 { 0x1804, 0, 0x00000000, 0x00000003 },
5527
5528 { 0x2800, 0, 0x00000000, 0x00000001 },
5529 { 0x2804, 0, 0x00000000, 0x00003f01 },
5530 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5531 { 0x2810, 0, 0xffff0000, 0x00000000 },
5532 { 0x2814, 0, 0xffff0000, 0x00000000 },
5533 { 0x2818, 0, 0xffff0000, 0x00000000 },
5534 { 0x281c, 0, 0xffff0000, 0x00000000 },
5535 { 0x2834, 0, 0xffffffff, 0x00000000 },
5536 { 0x2840, 0, 0x00000000, 0xffffffff },
5537 { 0x2844, 0, 0x00000000, 0xffffffff },
5538 { 0x2848, 0, 0xffffffff, 0x00000000 },
5539 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5540
5541 { 0x2c00, 0, 0x00000000, 0x00000011 },
5542 { 0x2c04, 0, 0x00000000, 0x00030007 },
5543
5544 { 0x3c00, 0, 0x00000000, 0x00000001 },
5545 { 0x3c04, 0, 0x00000000, 0x00070000 },
5546 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5547 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5548 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5549 { 0x3c14, 0, 0x00000000, 0xffffffff },
5550 { 0x3c18, 0, 0x00000000, 0xffffffff },
5551 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5552 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5553
5554 { 0x5004, 0, 0x00000000, 0x0000007f },
5555 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5556
5557 { 0x5c00, 0, 0x00000000, 0x00000001 },
5558 { 0x5c04, 0, 0x00000000, 0x0003000f },
5559 { 0x5c08, 0, 0x00000003, 0x00000000 },
5560 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5561 { 0x5c10, 0, 0x00000000, 0xffffffff },
5562 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5563 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5564 { 0x5c88, 0, 0x00000000, 0x00077373 },
5565 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5566
5567 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5568 { 0x680c, 0, 0xffffffff, 0x00000000 },
5569 { 0x6810, 0, 0xffffffff, 0x00000000 },
5570 { 0x6814, 0, 0xffffffff, 0x00000000 },
5571 { 0x6818, 0, 0xffffffff, 0x00000000 },
5572 { 0x681c, 0, 0xffffffff, 0x00000000 },
5573 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5574 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5575 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5576 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5577 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5578 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5579 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5580 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5581 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5582 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5583 { 0x684c, 0, 0xffffffff, 0x00000000 },
5584 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5585 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5586 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5587 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5588 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5589 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5590
5591 { 0xffff, 0, 0x00000000, 0x00000000 },
5592 };
5593
5594 ret = 0;
5595 is_5709 = 0;
5596 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5597 is_5709 = 1;
5598
5599 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5600 u32 offset, rw_mask, ro_mask, save_val, val;
5601 u16 flags = reg_tbl[i].flags;
5602
5603 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5604 continue;
5605
5606 offset = (u32) reg_tbl[i].offset;
5607 rw_mask = reg_tbl[i].rw_mask;
5608 ro_mask = reg_tbl[i].ro_mask;
5609
5610 save_val = readl(bp->regview + offset);
5611
5612 writel(0, bp->regview + offset);
5613
5614 val = readl(bp->regview + offset);
5615 if ((val & rw_mask) != 0) {
5616 goto reg_test_err;
5617 }
5618
5619 if ((val & ro_mask) != (save_val & ro_mask)) {
5620 goto reg_test_err;
5621 }
5622
5623 writel(0xffffffff, bp->regview + offset);
5624
5625 val = readl(bp->regview + offset);
5626 if ((val & rw_mask) != rw_mask) {
5627 goto reg_test_err;
5628 }
5629
5630 if ((val & ro_mask) != (save_val & ro_mask)) {
5631 goto reg_test_err;
5632 }
5633
5634 writel(save_val, bp->regview + offset);
5635 continue;
5636
5637 reg_test_err:
5638 writel(save_val, bp->regview + offset);
5639 ret = -ENODEV;
5640 break;
5641 }
5642 return ret;
5643 }
5644
5645 static int
5646 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5647 {
5648 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5649 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5650 int i;
5651
5652 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5653 u32 offset;
5654
5655 for (offset = 0; offset < size; offset += 4) {
5656
5657 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5658
5659 if (bnx2_reg_rd_ind(bp, start + offset) !=
5660 test_pattern[i]) {
5661 return -ENODEV;
5662 }
5663 }
5664 }
5665 return 0;
5666 }
5667
5668 static int
5669 bnx2_test_memory(struct bnx2 *bp)
5670 {
5671 int ret = 0;
5672 int i;
5673 static struct mem_entry {
5674 u32 offset;
5675 u32 len;
5676 } mem_tbl_5706[] = {
5677 { 0x60000, 0x4000 },
5678 { 0xa0000, 0x3000 },
5679 { 0xe0000, 0x4000 },
5680 { 0x120000, 0x4000 },
5681 { 0x1a0000, 0x4000 },
5682 { 0x160000, 0x4000 },
5683 { 0xffffffff, 0 },
5684 },
5685 mem_tbl_5709[] = {
5686 { 0x60000, 0x4000 },
5687 { 0xa0000, 0x3000 },
5688 { 0xe0000, 0x4000 },
5689 { 0x120000, 0x4000 },
5690 { 0x1a0000, 0x4000 },
5691 { 0xffffffff, 0 },
5692 };
5693 struct mem_entry *mem_tbl;
5694
5695 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5696 mem_tbl = mem_tbl_5709;
5697 else
5698 mem_tbl = mem_tbl_5706;
5699
5700 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5701 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5702 mem_tbl[i].len)) != 0) {
5703 return ret;
5704 }
5705 }
5706
5707 return ret;
5708 }
5709
5710 #define BNX2_MAC_LOOPBACK 0
5711 #define BNX2_PHY_LOOPBACK 1
5712
5713 static int
5714 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5715 {
5716 unsigned int pkt_size, num_pkts, i;
5717 struct sk_buff *skb, *rx_skb;
5718 unsigned char *packet;
5719 u16 rx_start_idx, rx_idx;
5720 dma_addr_t map;
5721 struct tx_bd *txbd;
5722 struct sw_bd *rx_buf;
5723 struct l2_fhdr *rx_hdr;
5724 int ret = -ENODEV;
5725 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5726 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5727 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5728
5729 tx_napi = bnapi;
5730
5731 txr = &tx_napi->tx_ring;
5732 rxr = &bnapi->rx_ring;
5733 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5734 bp->loopback = MAC_LOOPBACK;
5735 bnx2_set_mac_loopback(bp);
5736 }
5737 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5738 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5739 return 0;
5740
5741 bp->loopback = PHY_LOOPBACK;
5742 bnx2_set_phy_loopback(bp);
5743 }
5744 else
5745 return -EINVAL;
5746
5747 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5748 skb = netdev_alloc_skb(bp->dev, pkt_size);
5749 if (!skb)
5750 return -ENOMEM;
5751 packet = skb_put(skb, pkt_size);
5752 memcpy(packet, bp->dev->dev_addr, 6);
5753 memset(packet + 6, 0x0, 8);
5754 for (i = 14; i < pkt_size; i++)
5755 packet[i] = (unsigned char) (i & 0xff);
5756
5757 map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
5758 PCI_DMA_TODEVICE);
5759 if (dma_mapping_error(&bp->pdev->dev, map)) {
5760 dev_kfree_skb(skb);
5761 return -EIO;
5762 }
5763
5764 REG_WR(bp, BNX2_HC_COMMAND,
5765 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5766
5767 REG_RD(bp, BNX2_HC_COMMAND);
5768
5769 udelay(5);
5770 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5771
5772 num_pkts = 0;
5773
5774 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5775
5776 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5777 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5778 txbd->tx_bd_mss_nbytes = pkt_size;
5779 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5780
5781 num_pkts++;
5782 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5783 txr->tx_prod_bseq += pkt_size;
5784
5785 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5786 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5787
5788 udelay(100);
5789
5790 REG_WR(bp, BNX2_HC_COMMAND,
5791 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5792
5793 REG_RD(bp, BNX2_HC_COMMAND);
5794
5795 udelay(5);
5796
5797 dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
5798 dev_kfree_skb(skb);
5799
5800 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5801 goto loopback_test_done;
5802
5803 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5804 if (rx_idx != rx_start_idx + num_pkts) {
5805 goto loopback_test_done;
5806 }
5807
5808 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5809 rx_skb = rx_buf->skb;
5810
5811 rx_hdr = rx_buf->desc;
5812 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5813
5814 dma_sync_single_for_cpu(&bp->pdev->dev,
5815 dma_unmap_addr(rx_buf, mapping),
5816 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5817
5818 if (rx_hdr->l2_fhdr_status &
5819 (L2_FHDR_ERRORS_BAD_CRC |
5820 L2_FHDR_ERRORS_PHY_DECODE |
5821 L2_FHDR_ERRORS_ALIGNMENT |
5822 L2_FHDR_ERRORS_TOO_SHORT |
5823 L2_FHDR_ERRORS_GIANT_FRAME)) {
5824
5825 goto loopback_test_done;
5826 }
5827
5828 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5829 goto loopback_test_done;
5830 }
5831
5832 for (i = 14; i < pkt_size; i++) {
5833 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5834 goto loopback_test_done;
5835 }
5836 }
5837
5838 ret = 0;
5839
5840 loopback_test_done:
5841 bp->loopback = 0;
5842 return ret;
5843 }
5844
5845 #define BNX2_MAC_LOOPBACK_FAILED 1
5846 #define BNX2_PHY_LOOPBACK_FAILED 2
5847 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5848 BNX2_PHY_LOOPBACK_FAILED)
5849
5850 static int
5851 bnx2_test_loopback(struct bnx2 *bp)
5852 {
5853 int rc = 0;
5854
5855 if (!netif_running(bp->dev))
5856 return BNX2_LOOPBACK_FAILED;
5857
5858 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5859 spin_lock_bh(&bp->phy_lock);
5860 bnx2_init_phy(bp, 1);
5861 spin_unlock_bh(&bp->phy_lock);
5862 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5863 rc |= BNX2_MAC_LOOPBACK_FAILED;
5864 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5865 rc |= BNX2_PHY_LOOPBACK_FAILED;
5866 return rc;
5867 }
5868
5869 #define NVRAM_SIZE 0x200
5870 #define CRC32_RESIDUAL 0xdebb20e3
5871
5872 static int
5873 bnx2_test_nvram(struct bnx2 *bp)
5874 {
5875 __be32 buf[NVRAM_SIZE / 4];
5876 u8 *data = (u8 *) buf;
5877 int rc = 0;
5878 u32 magic, csum;
5879
5880 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5881 goto test_nvram_done;
5882
5883 magic = be32_to_cpu(buf[0]);
5884 if (magic != 0x669955aa) {
5885 rc = -ENODEV;
5886 goto test_nvram_done;
5887 }
5888
5889 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5890 goto test_nvram_done;
5891
5892 csum = ether_crc_le(0x100, data);
5893 if (csum != CRC32_RESIDUAL) {
5894 rc = -ENODEV;
5895 goto test_nvram_done;
5896 }
5897
5898 csum = ether_crc_le(0x100, data + 0x100);
5899 if (csum != CRC32_RESIDUAL) {
5900 rc = -ENODEV;
5901 }
5902
5903 test_nvram_done:
5904 return rc;
5905 }
5906
5907 static int
5908 bnx2_test_link(struct bnx2 *bp)
5909 {
5910 u32 bmsr;
5911
5912 if (!netif_running(bp->dev))
5913 return -ENODEV;
5914
5915 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5916 if (bp->link_up)
5917 return 0;
5918 return -ENODEV;
5919 }
5920 spin_lock_bh(&bp->phy_lock);
5921 bnx2_enable_bmsr1(bp);
5922 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5923 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5924 bnx2_disable_bmsr1(bp);
5925 spin_unlock_bh(&bp->phy_lock);
5926
5927 if (bmsr & BMSR_LSTATUS) {
5928 return 0;
5929 }
5930 return -ENODEV;
5931 }
5932
5933 static int
5934 bnx2_test_intr(struct bnx2 *bp)
5935 {
5936 int i;
5937 u16 status_idx;
5938
5939 if (!netif_running(bp->dev))
5940 return -ENODEV;
5941
5942 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5943
5944 /* This register is not touched during run-time. */
5945 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5946 REG_RD(bp, BNX2_HC_COMMAND);
5947
5948 for (i = 0; i < 10; i++) {
5949 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5950 status_idx) {
5951
5952 break;
5953 }
5954
5955 msleep_interruptible(10);
5956 }
5957 if (i < 10)
5958 return 0;
5959
5960 return -ENODEV;
5961 }
5962
5963 /* Determining link for parallel detection. */
5964 static int
5965 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5966 {
5967 u32 mode_ctl, an_dbg, exp;
5968
5969 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5970 return 0;
5971
5972 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5973 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5974
5975 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5976 return 0;
5977
5978 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5979 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5980 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5981
5982 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5983 return 0;
5984
5985 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5986 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5987 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5988
5989 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5990 return 0;
5991
5992 return 1;
5993 }
5994
5995 static void
5996 bnx2_5706_serdes_timer(struct bnx2 *bp)
5997 {
5998 int check_link = 1;
5999
6000 spin_lock(&bp->phy_lock);
6001 if (bp->serdes_an_pending) {
6002 bp->serdes_an_pending--;
6003 check_link = 0;
6004 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6005 u32 bmcr;
6006
6007 bp->current_interval = BNX2_TIMER_INTERVAL;
6008
6009 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6010
6011 if (bmcr & BMCR_ANENABLE) {
6012 if (bnx2_5706_serdes_has_link(bp)) {
6013 bmcr &= ~BMCR_ANENABLE;
6014 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
6015 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
6016 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
6017 }
6018 }
6019 }
6020 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
6021 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
6022 u32 phy2;
6023
6024 bnx2_write_phy(bp, 0x17, 0x0f01);
6025 bnx2_read_phy(bp, 0x15, &phy2);
6026 if (phy2 & 0x20) {
6027 u32 bmcr;
6028
6029 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6030 bmcr |= BMCR_ANENABLE;
6031 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
6032
6033 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
6034 }
6035 } else
6036 bp->current_interval = BNX2_TIMER_INTERVAL;
6037
6038 if (check_link) {
6039 u32 val;
6040
6041 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
6042 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6043 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6044
6045 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
6046 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
6047 bnx2_5706s_force_link_dn(bp, 1);
6048 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
6049 } else
6050 bnx2_set_link(bp);
6051 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
6052 bnx2_set_link(bp);
6053 }
6054 spin_unlock(&bp->phy_lock);
6055 }
6056
6057 static void
6058 bnx2_5708_serdes_timer(struct bnx2 *bp)
6059 {
6060 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
6061 return;
6062
6063 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
6064 bp->serdes_an_pending = 0;
6065 return;
6066 }
6067
6068 spin_lock(&bp->phy_lock);
6069 if (bp->serdes_an_pending)
6070 bp->serdes_an_pending--;
6071 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6072 u32 bmcr;
6073
6074 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6075 if (bmcr & BMCR_ANENABLE) {
6076 bnx2_enable_forced_2g5(bp);
6077 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6078 } else {
6079 bnx2_disable_forced_2g5(bp);
6080 bp->serdes_an_pending = 2;
6081 bp->current_interval = BNX2_TIMER_INTERVAL;
6082 }
6083
6084 } else
6085 bp->current_interval = BNX2_TIMER_INTERVAL;
6086
6087 spin_unlock(&bp->phy_lock);
6088 }
6089
6090 static void
6091 bnx2_timer(unsigned long data)
6092 {
6093 struct bnx2 *bp = (struct bnx2 *) data;
6094
6095 if (!netif_running(bp->dev))
6096 return;
6097
6098 if (atomic_read(&bp->intr_sem) != 0)
6099 goto bnx2_restart_timer;
6100
6101 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6102 BNX2_FLAG_USING_MSI)
6103 bnx2_chk_missed_msi(bp);
6104
6105 bnx2_send_heart_beat(bp);
6106
6107 bp->stats_blk->stat_FwRxDrop =
6108 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6109
6110 /* workaround occasional corrupted counters */
6111 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6112 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6113 BNX2_HC_COMMAND_STATS_NOW);
6114
6115 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6116 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6117 bnx2_5706_serdes_timer(bp);
6118 else
6119 bnx2_5708_serdes_timer(bp);
6120 }
6121
6122 bnx2_restart_timer:
6123 mod_timer(&bp->timer, jiffies + bp->current_interval);
6124 }
6125
6126 static int
6127 bnx2_request_irq(struct bnx2 *bp)
6128 {
6129 unsigned long flags;
6130 struct bnx2_irq *irq;
6131 int rc = 0, i;
6132
6133 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6134 flags = 0;
6135 else
6136 flags = IRQF_SHARED;
6137
6138 for (i = 0; i < bp->irq_nvecs; i++) {
6139 irq = &bp->irq_tbl[i];
6140 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6141 &bp->bnx2_napi[i]);
6142 if (rc)
6143 break;
6144 irq->requested = 1;
6145 }
6146 return rc;
6147 }
6148
6149 static void
6150 __bnx2_free_irq(struct bnx2 *bp)
6151 {
6152 struct bnx2_irq *irq;
6153 int i;
6154
6155 for (i = 0; i < bp->irq_nvecs; i++) {
6156 irq = &bp->irq_tbl[i];
6157 if (irq->requested)
6158 free_irq(irq->vector, &bp->bnx2_napi[i]);
6159 irq->requested = 0;
6160 }
6161 }
6162
6163 static void
6164 bnx2_free_irq(struct bnx2 *bp)
6165 {
6166
6167 __bnx2_free_irq(bp);
6168 if (bp->flags & BNX2_FLAG_USING_MSI)
6169 pci_disable_msi(bp->pdev);
6170 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6171 pci_disable_msix(bp->pdev);
6172
6173 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6174 }
6175
6176 static void
6177 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6178 {
6179 int i, total_vecs, rc;
6180 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6181 struct net_device *dev = bp->dev;
6182 const int len = sizeof(bp->irq_tbl[0].name);
6183
6184 bnx2_setup_msix_tbl(bp);
6185 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6186 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6187 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6188
6189 /* Need to flush the previous three writes to ensure MSI-X
6190 * is setup properly */
6191 REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
6192
6193 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6194 msix_ent[i].entry = i;
6195 msix_ent[i].vector = 0;
6196 }
6197
6198 total_vecs = msix_vecs;
6199 #ifdef BCM_CNIC
6200 total_vecs++;
6201 #endif
6202 rc = -ENOSPC;
6203 while (total_vecs >= BNX2_MIN_MSIX_VEC) {
6204 rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
6205 if (rc <= 0)
6206 break;
6207 if (rc > 0)
6208 total_vecs = rc;
6209 }
6210
6211 if (rc != 0)
6212 return;
6213
6214 msix_vecs = total_vecs;
6215 #ifdef BCM_CNIC
6216 msix_vecs--;
6217 #endif
6218 bp->irq_nvecs = msix_vecs;
6219 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6220 for (i = 0; i < total_vecs; i++) {
6221 bp->irq_tbl[i].vector = msix_ent[i].vector;
6222 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6223 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6224 }
6225 }
6226
6227 static int
6228 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6229 {
6230 int cpus = num_online_cpus();
6231 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6232
6233 bp->irq_tbl[0].handler = bnx2_interrupt;
6234 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6235 bp->irq_nvecs = 1;
6236 bp->irq_tbl[0].vector = bp->pdev->irq;
6237
6238 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
6239 bnx2_enable_msix(bp, msix_vecs);
6240
6241 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6242 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6243 if (pci_enable_msi(bp->pdev) == 0) {
6244 bp->flags |= BNX2_FLAG_USING_MSI;
6245 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6246 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6247 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6248 } else
6249 bp->irq_tbl[0].handler = bnx2_msi;
6250
6251 bp->irq_tbl[0].vector = bp->pdev->irq;
6252 }
6253 }
6254
6255 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6256 netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
6257
6258 bp->num_rx_rings = bp->irq_nvecs;
6259 return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
6260 }
6261
6262 /* Called with rtnl_lock */
6263 static int
6264 bnx2_open(struct net_device *dev)
6265 {
6266 struct bnx2 *bp = netdev_priv(dev);
6267 int rc;
6268
6269 netif_carrier_off(dev);
6270
6271 bnx2_set_power_state(bp, PCI_D0);
6272 bnx2_disable_int(bp);
6273
6274 rc = bnx2_setup_int_mode(bp, disable_msi);
6275 if (rc)
6276 goto open_err;
6277 bnx2_init_napi(bp);
6278 bnx2_napi_enable(bp);
6279 rc = bnx2_alloc_mem(bp);
6280 if (rc)
6281 goto open_err;
6282
6283 rc = bnx2_request_irq(bp);
6284 if (rc)
6285 goto open_err;
6286
6287 rc = bnx2_init_nic(bp, 1);
6288 if (rc)
6289 goto open_err;
6290
6291 mod_timer(&bp->timer, jiffies + bp->current_interval);
6292
6293 atomic_set(&bp->intr_sem, 0);
6294
6295 memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
6296
6297 bnx2_enable_int(bp);
6298
6299 if (bp->flags & BNX2_FLAG_USING_MSI) {
6300 /* Test MSI to make sure it is working
6301 * If MSI test fails, go back to INTx mode
6302 */
6303 if (bnx2_test_intr(bp) != 0) {
6304 netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6305
6306 bnx2_disable_int(bp);
6307 bnx2_free_irq(bp);
6308
6309 bnx2_setup_int_mode(bp, 1);
6310
6311 rc = bnx2_init_nic(bp, 0);
6312
6313 if (!rc)
6314 rc = bnx2_request_irq(bp);
6315
6316 if (rc) {
6317 del_timer_sync(&bp->timer);
6318 goto open_err;
6319 }
6320 bnx2_enable_int(bp);
6321 }
6322 }
6323 if (bp->flags & BNX2_FLAG_USING_MSI)
6324 netdev_info(dev, "using MSI\n");
6325 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6326 netdev_info(dev, "using MSIX\n");
6327
6328 netif_tx_start_all_queues(dev);
6329
6330 return 0;
6331
6332 open_err:
6333 bnx2_napi_disable(bp);
6334 bnx2_free_skbs(bp);
6335 bnx2_free_irq(bp);
6336 bnx2_free_mem(bp);
6337 bnx2_del_napi(bp);
6338 return rc;
6339 }
6340
6341 static void
6342 bnx2_reset_task(struct work_struct *work)
6343 {
6344 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6345 int rc;
6346
6347 rtnl_lock();
6348 if (!netif_running(bp->dev)) {
6349 rtnl_unlock();
6350 return;
6351 }
6352
6353 bnx2_netif_stop(bp, true);
6354
6355 rc = bnx2_init_nic(bp, 1);
6356 if (rc) {
6357 netdev_err(bp->dev, "failed to reset NIC, closing\n");
6358 bnx2_napi_enable(bp);
6359 dev_close(bp->dev);
6360 rtnl_unlock();
6361 return;
6362 }
6363
6364 atomic_set(&bp->intr_sem, 1);
6365 bnx2_netif_start(bp, true);
6366 rtnl_unlock();
6367 }
6368
6369 static void
6370 bnx2_dump_state(struct bnx2 *bp)
6371 {
6372 struct net_device *dev = bp->dev;
6373 u32 val1, val2;
6374
6375 pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
6376 netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6377 atomic_read(&bp->intr_sem), val1);
6378 pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
6379 pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
6380 netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
6381 netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6382 REG_RD(bp, BNX2_EMAC_TX_STATUS),
6383 REG_RD(bp, BNX2_EMAC_RX_STATUS));
6384 netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6385 REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
6386 netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6387 REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
6388 if (bp->flags & BNX2_FLAG_USING_MSIX)
6389 netdev_err(dev, "DEBUG: PBA[%08x]\n",
6390 REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
6391 }
6392
6393 static void
6394 bnx2_tx_timeout(struct net_device *dev)
6395 {
6396 struct bnx2 *bp = netdev_priv(dev);
6397
6398 bnx2_dump_state(bp);
6399 bnx2_dump_mcp_state(bp);
6400
6401 /* This allows the netif to be shutdown gracefully before resetting */
6402 schedule_work(&bp->reset_task);
6403 }
6404
6405 /* Called with netif_tx_lock.
6406 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6407 * netif_wake_queue().
6408 */
6409 static netdev_tx_t
6410 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6411 {
6412 struct bnx2 *bp = netdev_priv(dev);
6413 dma_addr_t mapping;
6414 struct tx_bd *txbd;
6415 struct sw_tx_bd *tx_buf;
6416 u32 len, vlan_tag_flags, last_frag, mss;
6417 u16 prod, ring_prod;
6418 int i;
6419 struct bnx2_napi *bnapi;
6420 struct bnx2_tx_ring_info *txr;
6421 struct netdev_queue *txq;
6422
6423 /* Determine which tx ring we will be placed on */
6424 i = skb_get_queue_mapping(skb);
6425 bnapi = &bp->bnx2_napi[i];
6426 txr = &bnapi->tx_ring;
6427 txq = netdev_get_tx_queue(dev, i);
6428
6429 if (unlikely(bnx2_tx_avail(bp, txr) <
6430 (skb_shinfo(skb)->nr_frags + 1))) {
6431 netif_tx_stop_queue(txq);
6432 netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
6433
6434 return NETDEV_TX_BUSY;
6435 }
6436 len = skb_headlen(skb);
6437 prod = txr->tx_prod;
6438 ring_prod = TX_RING_IDX(prod);
6439
6440 vlan_tag_flags = 0;
6441 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6442 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6443 }
6444
6445 if (vlan_tx_tag_present(skb)) {
6446 vlan_tag_flags |=
6447 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6448 }
6449
6450 if ((mss = skb_shinfo(skb)->gso_size)) {
6451 u32 tcp_opt_len;
6452 struct iphdr *iph;
6453
6454 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6455
6456 tcp_opt_len = tcp_optlen(skb);
6457
6458 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6459 u32 tcp_off = skb_transport_offset(skb) -
6460 sizeof(struct ipv6hdr) - ETH_HLEN;
6461
6462 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6463 TX_BD_FLAGS_SW_FLAGS;
6464 if (likely(tcp_off == 0))
6465 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6466 else {
6467 tcp_off >>= 3;
6468 vlan_tag_flags |= ((tcp_off & 0x3) <<
6469 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6470 ((tcp_off & 0x10) <<
6471 TX_BD_FLAGS_TCP6_OFF4_SHL);
6472 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6473 }
6474 } else {
6475 iph = ip_hdr(skb);
6476 if (tcp_opt_len || (iph->ihl > 5)) {
6477 vlan_tag_flags |= ((iph->ihl - 5) +
6478 (tcp_opt_len >> 2)) << 8;
6479 }
6480 }
6481 } else
6482 mss = 0;
6483
6484 mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
6485 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
6486 dev_kfree_skb(skb);
6487 return NETDEV_TX_OK;
6488 }
6489
6490 tx_buf = &txr->tx_buf_ring[ring_prod];
6491 tx_buf->skb = skb;
6492 dma_unmap_addr_set(tx_buf, mapping, mapping);
6493
6494 txbd = &txr->tx_desc_ring[ring_prod];
6495
6496 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6497 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6498 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6499 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6500
6501 last_frag = skb_shinfo(skb)->nr_frags;
6502 tx_buf->nr_frags = last_frag;
6503 tx_buf->is_gso = skb_is_gso(skb);
6504
6505 for (i = 0; i < last_frag; i++) {
6506 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6507
6508 prod = NEXT_TX_BD(prod);
6509 ring_prod = TX_RING_IDX(prod);
6510 txbd = &txr->tx_desc_ring[ring_prod];
6511
6512 len = frag->size;
6513 mapping = dma_map_page(&bp->pdev->dev, frag->page, frag->page_offset,
6514 len, PCI_DMA_TODEVICE);
6515 if (dma_mapping_error(&bp->pdev->dev, mapping))
6516 goto dma_error;
6517 dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
6518 mapping);
6519
6520 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6521 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6522 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6523 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6524
6525 }
6526 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6527
6528 prod = NEXT_TX_BD(prod);
6529 txr->tx_prod_bseq += skb->len;
6530
6531 REG_WR16(bp, txr->tx_bidx_addr, prod);
6532 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6533
6534 mmiowb();
6535
6536 txr->tx_prod = prod;
6537
6538 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6539 netif_tx_stop_queue(txq);
6540
6541 /* netif_tx_stop_queue() must be done before checking
6542 * tx index in bnx2_tx_avail() below, because in
6543 * bnx2_tx_int(), we update tx index before checking for
6544 * netif_tx_queue_stopped().
6545 */
6546 smp_mb();
6547 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6548 netif_tx_wake_queue(txq);
6549 }
6550
6551 return NETDEV_TX_OK;
6552 dma_error:
6553 /* save value of frag that failed */
6554 last_frag = i;
6555
6556 /* start back at beginning and unmap skb */
6557 prod = txr->tx_prod;
6558 ring_prod = TX_RING_IDX(prod);
6559 tx_buf = &txr->tx_buf_ring[ring_prod];
6560 tx_buf->skb = NULL;
6561 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
6562 skb_headlen(skb), PCI_DMA_TODEVICE);
6563
6564 /* unmap remaining mapped pages */
6565 for (i = 0; i < last_frag; i++) {
6566 prod = NEXT_TX_BD(prod);
6567 ring_prod = TX_RING_IDX(prod);
6568 tx_buf = &txr->tx_buf_ring[ring_prod];
6569 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
6570 skb_shinfo(skb)->frags[i].size,
6571 PCI_DMA_TODEVICE);
6572 }
6573
6574 dev_kfree_skb(skb);
6575 return NETDEV_TX_OK;
6576 }
6577
6578 /* Called with rtnl_lock */
6579 static int
6580 bnx2_close(struct net_device *dev)
6581 {
6582 struct bnx2 *bp = netdev_priv(dev);
6583
6584 bnx2_disable_int_sync(bp);
6585 bnx2_napi_disable(bp);
6586 del_timer_sync(&bp->timer);
6587 bnx2_shutdown_chip(bp);
6588 bnx2_free_irq(bp);
6589 bnx2_free_skbs(bp);
6590 bnx2_free_mem(bp);
6591 bnx2_del_napi(bp);
6592 bp->link_up = 0;
6593 netif_carrier_off(bp->dev);
6594 bnx2_set_power_state(bp, PCI_D3hot);
6595 return 0;
6596 }
6597
6598 static void
6599 bnx2_save_stats(struct bnx2 *bp)
6600 {
6601 u32 *hw_stats = (u32 *) bp->stats_blk;
6602 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
6603 int i;
6604
6605 /* The 1st 10 counters are 64-bit counters */
6606 for (i = 0; i < 20; i += 2) {
6607 u32 hi;
6608 u64 lo;
6609
6610 hi = temp_stats[i] + hw_stats[i];
6611 lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
6612 if (lo > 0xffffffff)
6613 hi++;
6614 temp_stats[i] = hi;
6615 temp_stats[i + 1] = lo & 0xffffffff;
6616 }
6617
6618 for ( ; i < sizeof(struct statistics_block) / 4; i++)
6619 temp_stats[i] += hw_stats[i];
6620 }
6621
6622 #define GET_64BIT_NET_STATS64(ctr) \
6623 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6624
6625 #define GET_64BIT_NET_STATS(ctr) \
6626 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6627 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6628
6629 #define GET_32BIT_NET_STATS(ctr) \
6630 (unsigned long) (bp->stats_blk->ctr + \
6631 bp->temp_stats_blk->ctr)
6632
6633 static struct rtnl_link_stats64 *
6634 bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
6635 {
6636 struct bnx2 *bp = netdev_priv(dev);
6637
6638 if (bp->stats_blk == NULL)
6639 return net_stats;
6640
6641 net_stats->rx_packets =
6642 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
6643 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
6644 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
6645
6646 net_stats->tx_packets =
6647 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
6648 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
6649 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
6650
6651 net_stats->rx_bytes =
6652 GET_64BIT_NET_STATS(stat_IfHCInOctets);
6653
6654 net_stats->tx_bytes =
6655 GET_64BIT_NET_STATS(stat_IfHCOutOctets);
6656
6657 net_stats->multicast =
6658 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
6659
6660 net_stats->collisions =
6661 GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
6662
6663 net_stats->rx_length_errors =
6664 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
6665 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
6666
6667 net_stats->rx_over_errors =
6668 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6669 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
6670
6671 net_stats->rx_frame_errors =
6672 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
6673
6674 net_stats->rx_crc_errors =
6675 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
6676
6677 net_stats->rx_errors = net_stats->rx_length_errors +
6678 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6679 net_stats->rx_crc_errors;
6680
6681 net_stats->tx_aborted_errors =
6682 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
6683 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
6684
6685 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6686 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6687 net_stats->tx_carrier_errors = 0;
6688 else {
6689 net_stats->tx_carrier_errors =
6690 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
6691 }
6692
6693 net_stats->tx_errors =
6694 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
6695 net_stats->tx_aborted_errors +
6696 net_stats->tx_carrier_errors;
6697
6698 net_stats->rx_missed_errors =
6699 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6700 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
6701 GET_32BIT_NET_STATS(stat_FwRxDrop);
6702
6703 return net_stats;
6704 }
6705
6706 /* All ethtool functions called with rtnl_lock */
6707
6708 static int
6709 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6710 {
6711 struct bnx2 *bp = netdev_priv(dev);
6712 int support_serdes = 0, support_copper = 0;
6713
6714 cmd->supported = SUPPORTED_Autoneg;
6715 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6716 support_serdes = 1;
6717 support_copper = 1;
6718 } else if (bp->phy_port == PORT_FIBRE)
6719 support_serdes = 1;
6720 else
6721 support_copper = 1;
6722
6723 if (support_serdes) {
6724 cmd->supported |= SUPPORTED_1000baseT_Full |
6725 SUPPORTED_FIBRE;
6726 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6727 cmd->supported |= SUPPORTED_2500baseX_Full;
6728
6729 }
6730 if (support_copper) {
6731 cmd->supported |= SUPPORTED_10baseT_Half |
6732 SUPPORTED_10baseT_Full |
6733 SUPPORTED_100baseT_Half |
6734 SUPPORTED_100baseT_Full |
6735 SUPPORTED_1000baseT_Full |
6736 SUPPORTED_TP;
6737
6738 }
6739
6740 spin_lock_bh(&bp->phy_lock);
6741 cmd->port = bp->phy_port;
6742 cmd->advertising = bp->advertising;
6743
6744 if (bp->autoneg & AUTONEG_SPEED) {
6745 cmd->autoneg = AUTONEG_ENABLE;
6746 } else {
6747 cmd->autoneg = AUTONEG_DISABLE;
6748 }
6749
6750 if (netif_carrier_ok(dev)) {
6751 ethtool_cmd_speed_set(cmd, bp->line_speed);
6752 cmd->duplex = bp->duplex;
6753 }
6754 else {
6755 ethtool_cmd_speed_set(cmd, -1);
6756 cmd->duplex = -1;
6757 }
6758 spin_unlock_bh(&bp->phy_lock);
6759
6760 cmd->transceiver = XCVR_INTERNAL;
6761 cmd->phy_address = bp->phy_addr;
6762
6763 return 0;
6764 }
6765
6766 static int
6767 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6768 {
6769 struct bnx2 *bp = netdev_priv(dev);
6770 u8 autoneg = bp->autoneg;
6771 u8 req_duplex = bp->req_duplex;
6772 u16 req_line_speed = bp->req_line_speed;
6773 u32 advertising = bp->advertising;
6774 int err = -EINVAL;
6775
6776 spin_lock_bh(&bp->phy_lock);
6777
6778 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6779 goto err_out_unlock;
6780
6781 if (cmd->port != bp->phy_port &&
6782 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6783 goto err_out_unlock;
6784
6785 /* If device is down, we can store the settings only if the user
6786 * is setting the currently active port.
6787 */
6788 if (!netif_running(dev) && cmd->port != bp->phy_port)
6789 goto err_out_unlock;
6790
6791 if (cmd->autoneg == AUTONEG_ENABLE) {
6792 autoneg |= AUTONEG_SPEED;
6793
6794 advertising = cmd->advertising;
6795 if (cmd->port == PORT_TP) {
6796 advertising &= ETHTOOL_ALL_COPPER_SPEED;
6797 if (!advertising)
6798 advertising = ETHTOOL_ALL_COPPER_SPEED;
6799 } else {
6800 advertising &= ETHTOOL_ALL_FIBRE_SPEED;
6801 if (!advertising)
6802 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6803 }
6804 advertising |= ADVERTISED_Autoneg;
6805 }
6806 else {
6807 u32 speed = ethtool_cmd_speed(cmd);
6808 if (cmd->port == PORT_FIBRE) {
6809 if ((speed != SPEED_1000 &&
6810 speed != SPEED_2500) ||
6811 (cmd->duplex != DUPLEX_FULL))
6812 goto err_out_unlock;
6813
6814 if (speed == SPEED_2500 &&
6815 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6816 goto err_out_unlock;
6817 } else if (speed == SPEED_1000 || speed == SPEED_2500)
6818 goto err_out_unlock;
6819
6820 autoneg &= ~AUTONEG_SPEED;
6821 req_line_speed = speed;
6822 req_duplex = cmd->duplex;
6823 advertising = 0;
6824 }
6825
6826 bp->autoneg = autoneg;
6827 bp->advertising = advertising;
6828 bp->req_line_speed = req_line_speed;
6829 bp->req_duplex = req_duplex;
6830
6831 err = 0;
6832 /* If device is down, the new settings will be picked up when it is
6833 * brought up.
6834 */
6835 if (netif_running(dev))
6836 err = bnx2_setup_phy(bp, cmd->port);
6837
6838 err_out_unlock:
6839 spin_unlock_bh(&bp->phy_lock);
6840
6841 return err;
6842 }
6843
6844 static void
6845 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6846 {
6847 struct bnx2 *bp = netdev_priv(dev);
6848
6849 strcpy(info->driver, DRV_MODULE_NAME);
6850 strcpy(info->version, DRV_MODULE_VERSION);
6851 strcpy(info->bus_info, pci_name(bp->pdev));
6852 strcpy(info->fw_version, bp->fw_version);
6853 }
6854
6855 #define BNX2_REGDUMP_LEN (32 * 1024)
6856
6857 static int
6858 bnx2_get_regs_len(struct net_device *dev)
6859 {
6860 return BNX2_REGDUMP_LEN;
6861 }
6862
6863 static void
6864 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6865 {
6866 u32 *p = _p, i, offset;
6867 u8 *orig_p = _p;
6868 struct bnx2 *bp = netdev_priv(dev);
6869 static const u32 reg_boundaries[] = {
6870 0x0000, 0x0098, 0x0400, 0x045c,
6871 0x0800, 0x0880, 0x0c00, 0x0c10,
6872 0x0c30, 0x0d08, 0x1000, 0x101c,
6873 0x1040, 0x1048, 0x1080, 0x10a4,
6874 0x1400, 0x1490, 0x1498, 0x14f0,
6875 0x1500, 0x155c, 0x1580, 0x15dc,
6876 0x1600, 0x1658, 0x1680, 0x16d8,
6877 0x1800, 0x1820, 0x1840, 0x1854,
6878 0x1880, 0x1894, 0x1900, 0x1984,
6879 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6880 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6881 0x2000, 0x2030, 0x23c0, 0x2400,
6882 0x2800, 0x2820, 0x2830, 0x2850,
6883 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6884 0x3c00, 0x3c94, 0x4000, 0x4010,
6885 0x4080, 0x4090, 0x43c0, 0x4458,
6886 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6887 0x4fc0, 0x5010, 0x53c0, 0x5444,
6888 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6889 0x5fc0, 0x6000, 0x6400, 0x6428,
6890 0x6800, 0x6848, 0x684c, 0x6860,
6891 0x6888, 0x6910, 0x8000
6892 };
6893
6894 regs->version = 0;
6895
6896 memset(p, 0, BNX2_REGDUMP_LEN);
6897
6898 if (!netif_running(bp->dev))
6899 return;
6900
6901 i = 0;
6902 offset = reg_boundaries[0];
6903 p += offset;
6904 while (offset < BNX2_REGDUMP_LEN) {
6905 *p++ = REG_RD(bp, offset);
6906 offset += 4;
6907 if (offset == reg_boundaries[i + 1]) {
6908 offset = reg_boundaries[i + 2];
6909 p = (u32 *) (orig_p + offset);
6910 i += 2;
6911 }
6912 }
6913 }
6914
6915 static void
6916 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6917 {
6918 struct bnx2 *bp = netdev_priv(dev);
6919
6920 if (bp->flags & BNX2_FLAG_NO_WOL) {
6921 wol->supported = 0;
6922 wol->wolopts = 0;
6923 }
6924 else {
6925 wol->supported = WAKE_MAGIC;
6926 if (bp->wol)
6927 wol->wolopts = WAKE_MAGIC;
6928 else
6929 wol->wolopts = 0;
6930 }
6931 memset(&wol->sopass, 0, sizeof(wol->sopass));
6932 }
6933
6934 static int
6935 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6936 {
6937 struct bnx2 *bp = netdev_priv(dev);
6938
6939 if (wol->wolopts & ~WAKE_MAGIC)
6940 return -EINVAL;
6941
6942 if (wol->wolopts & WAKE_MAGIC) {
6943 if (bp->flags & BNX2_FLAG_NO_WOL)
6944 return -EINVAL;
6945
6946 bp->wol = 1;
6947 }
6948 else {
6949 bp->wol = 0;
6950 }
6951 return 0;
6952 }
6953
6954 static int
6955 bnx2_nway_reset(struct net_device *dev)
6956 {
6957 struct bnx2 *bp = netdev_priv(dev);
6958 u32 bmcr;
6959
6960 if (!netif_running(dev))
6961 return -EAGAIN;
6962
6963 if (!(bp->autoneg & AUTONEG_SPEED)) {
6964 return -EINVAL;
6965 }
6966
6967 spin_lock_bh(&bp->phy_lock);
6968
6969 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6970 int rc;
6971
6972 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6973 spin_unlock_bh(&bp->phy_lock);
6974 return rc;
6975 }
6976
6977 /* Force a link down visible on the other side */
6978 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6979 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6980 spin_unlock_bh(&bp->phy_lock);
6981
6982 msleep(20);
6983
6984 spin_lock_bh(&bp->phy_lock);
6985
6986 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6987 bp->serdes_an_pending = 1;
6988 mod_timer(&bp->timer, jiffies + bp->current_interval);
6989 }
6990
6991 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6992 bmcr &= ~BMCR_LOOPBACK;
6993 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6994
6995 spin_unlock_bh(&bp->phy_lock);
6996
6997 return 0;
6998 }
6999
7000 static u32
7001 bnx2_get_link(struct net_device *dev)
7002 {
7003 struct bnx2 *bp = netdev_priv(dev);
7004
7005 return bp->link_up;
7006 }
7007
7008 static int
7009 bnx2_get_eeprom_len(struct net_device *dev)
7010 {
7011 struct bnx2 *bp = netdev_priv(dev);
7012
7013 if (bp->flash_info == NULL)
7014 return 0;
7015
7016 return (int) bp->flash_size;
7017 }
7018
7019 static int
7020 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
7021 u8 *eebuf)
7022 {
7023 struct bnx2 *bp = netdev_priv(dev);
7024 int rc;
7025
7026 if (!netif_running(dev))
7027 return -EAGAIN;
7028
7029 /* parameters already validated in ethtool_get_eeprom */
7030
7031 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
7032
7033 return rc;
7034 }
7035
7036 static int
7037 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
7038 u8 *eebuf)
7039 {
7040 struct bnx2 *bp = netdev_priv(dev);
7041 int rc;
7042
7043 if (!netif_running(dev))
7044 return -EAGAIN;
7045
7046 /* parameters already validated in ethtool_set_eeprom */
7047
7048 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
7049
7050 return rc;
7051 }
7052
7053 static int
7054 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7055 {
7056 struct bnx2 *bp = netdev_priv(dev);
7057
7058 memset(coal, 0, sizeof(struct ethtool_coalesce));
7059
7060 coal->rx_coalesce_usecs = bp->rx_ticks;
7061 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
7062 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
7063 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
7064
7065 coal->tx_coalesce_usecs = bp->tx_ticks;
7066 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
7067 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
7068 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
7069
7070 coal->stats_block_coalesce_usecs = bp->stats_ticks;
7071
7072 return 0;
7073 }
7074
7075 static int
7076 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7077 {
7078 struct bnx2 *bp = netdev_priv(dev);
7079
7080 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
7081 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
7082
7083 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
7084 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
7085
7086 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
7087 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
7088
7089 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
7090 if (bp->rx_quick_cons_trip_int > 0xff)
7091 bp->rx_quick_cons_trip_int = 0xff;
7092
7093 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
7094 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
7095
7096 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
7097 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
7098
7099 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
7100 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
7101
7102 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
7103 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
7104 0xff;
7105
7106 bp->stats_ticks = coal->stats_block_coalesce_usecs;
7107 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
7108 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
7109 bp->stats_ticks = USEC_PER_SEC;
7110 }
7111 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
7112 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7113 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7114
7115 if (netif_running(bp->dev)) {
7116 bnx2_netif_stop(bp, true);
7117 bnx2_init_nic(bp, 0);
7118 bnx2_netif_start(bp, true);
7119 }
7120
7121 return 0;
7122 }
7123
7124 static void
7125 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7126 {
7127 struct bnx2 *bp = netdev_priv(dev);
7128
7129 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
7130 ering->rx_mini_max_pending = 0;
7131 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
7132
7133 ering->rx_pending = bp->rx_ring_size;
7134 ering->rx_mini_pending = 0;
7135 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
7136
7137 ering->tx_max_pending = MAX_TX_DESC_CNT;
7138 ering->tx_pending = bp->tx_ring_size;
7139 }
7140
7141 static int
7142 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
7143 {
7144 if (netif_running(bp->dev)) {
7145 /* Reset will erase chipset stats; save them */
7146 bnx2_save_stats(bp);
7147
7148 bnx2_netif_stop(bp, true);
7149 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
7150 __bnx2_free_irq(bp);
7151 bnx2_free_skbs(bp);
7152 bnx2_free_mem(bp);
7153 }
7154
7155 bnx2_set_rx_ring_size(bp, rx);
7156 bp->tx_ring_size = tx;
7157
7158 if (netif_running(bp->dev)) {
7159 int rc;
7160
7161 rc = bnx2_alloc_mem(bp);
7162 if (!rc)
7163 rc = bnx2_request_irq(bp);
7164
7165 if (!rc)
7166 rc = bnx2_init_nic(bp, 0);
7167
7168 if (rc) {
7169 bnx2_napi_enable(bp);
7170 dev_close(bp->dev);
7171 return rc;
7172 }
7173 #ifdef BCM_CNIC
7174 mutex_lock(&bp->cnic_lock);
7175 /* Let cnic know about the new status block. */
7176 if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
7177 bnx2_setup_cnic_irq_info(bp);
7178 mutex_unlock(&bp->cnic_lock);
7179 #endif
7180 bnx2_netif_start(bp, true);
7181 }
7182 return 0;
7183 }
7184
7185 static int
7186 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7187 {
7188 struct bnx2 *bp = netdev_priv(dev);
7189 int rc;
7190
7191 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7192 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7193 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7194
7195 return -EINVAL;
7196 }
7197 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7198 return rc;
7199 }
7200
7201 static void
7202 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7203 {
7204 struct bnx2 *bp = netdev_priv(dev);
7205
7206 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7207 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7208 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7209 }
7210
7211 static int
7212 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7213 {
7214 struct bnx2 *bp = netdev_priv(dev);
7215
7216 bp->req_flow_ctrl = 0;
7217 if (epause->rx_pause)
7218 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7219 if (epause->tx_pause)
7220 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7221
7222 if (epause->autoneg) {
7223 bp->autoneg |= AUTONEG_FLOW_CTRL;
7224 }
7225 else {
7226 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7227 }
7228
7229 if (netif_running(dev)) {
7230 spin_lock_bh(&bp->phy_lock);
7231 bnx2_setup_phy(bp, bp->phy_port);
7232 spin_unlock_bh(&bp->phy_lock);
7233 }
7234
7235 return 0;
7236 }
7237
7238 static struct {
7239 char string[ETH_GSTRING_LEN];
7240 } bnx2_stats_str_arr[] = {
7241 { "rx_bytes" },
7242 { "rx_error_bytes" },
7243 { "tx_bytes" },
7244 { "tx_error_bytes" },
7245 { "rx_ucast_packets" },
7246 { "rx_mcast_packets" },
7247 { "rx_bcast_packets" },
7248 { "tx_ucast_packets" },
7249 { "tx_mcast_packets" },
7250 { "tx_bcast_packets" },
7251 { "tx_mac_errors" },
7252 { "tx_carrier_errors" },
7253 { "rx_crc_errors" },
7254 { "rx_align_errors" },
7255 { "tx_single_collisions" },
7256 { "tx_multi_collisions" },
7257 { "tx_deferred" },
7258 { "tx_excess_collisions" },
7259 { "tx_late_collisions" },
7260 { "tx_total_collisions" },
7261 { "rx_fragments" },
7262 { "rx_jabbers" },
7263 { "rx_undersize_packets" },
7264 { "rx_oversize_packets" },
7265 { "rx_64_byte_packets" },
7266 { "rx_65_to_127_byte_packets" },
7267 { "rx_128_to_255_byte_packets" },
7268 { "rx_256_to_511_byte_packets" },
7269 { "rx_512_to_1023_byte_packets" },
7270 { "rx_1024_to_1522_byte_packets" },
7271 { "rx_1523_to_9022_byte_packets" },
7272 { "tx_64_byte_packets" },
7273 { "tx_65_to_127_byte_packets" },
7274 { "tx_128_to_255_byte_packets" },
7275 { "tx_256_to_511_byte_packets" },
7276 { "tx_512_to_1023_byte_packets" },
7277 { "tx_1024_to_1522_byte_packets" },
7278 { "tx_1523_to_9022_byte_packets" },
7279 { "rx_xon_frames" },
7280 { "rx_xoff_frames" },
7281 { "tx_xon_frames" },
7282 { "tx_xoff_frames" },
7283 { "rx_mac_ctrl_frames" },
7284 { "rx_filtered_packets" },
7285 { "rx_ftq_discards" },
7286 { "rx_discards" },
7287 { "rx_fw_discards" },
7288 };
7289
7290 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7291 sizeof(bnx2_stats_str_arr[0]))
7292
7293 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7294
7295 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7296 STATS_OFFSET32(stat_IfHCInOctets_hi),
7297 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7298 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7299 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7300 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7301 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7302 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7303 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7304 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7305 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7306 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7307 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7308 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7309 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7310 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7311 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7312 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7313 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7314 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7315 STATS_OFFSET32(stat_EtherStatsCollisions),
7316 STATS_OFFSET32(stat_EtherStatsFragments),
7317 STATS_OFFSET32(stat_EtherStatsJabbers),
7318 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7319 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7320 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7321 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7322 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7323 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7324 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7325 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7326 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7327 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7328 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7329 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7330 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7331 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7332 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7333 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7334 STATS_OFFSET32(stat_XonPauseFramesReceived),
7335 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7336 STATS_OFFSET32(stat_OutXonSent),
7337 STATS_OFFSET32(stat_OutXoffSent),
7338 STATS_OFFSET32(stat_MacControlFramesReceived),
7339 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7340 STATS_OFFSET32(stat_IfInFTQDiscards),
7341 STATS_OFFSET32(stat_IfInMBUFDiscards),
7342 STATS_OFFSET32(stat_FwRxDrop),
7343 };
7344
7345 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7346 * skipped because of errata.
7347 */
7348 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7349 8,0,8,8,8,8,8,8,8,8,
7350 4,0,4,4,4,4,4,4,4,4,
7351 4,4,4,4,4,4,4,4,4,4,
7352 4,4,4,4,4,4,4,4,4,4,
7353 4,4,4,4,4,4,4,
7354 };
7355
7356 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7357 8,0,8,8,8,8,8,8,8,8,
7358 4,4,4,4,4,4,4,4,4,4,
7359 4,4,4,4,4,4,4,4,4,4,
7360 4,4,4,4,4,4,4,4,4,4,
7361 4,4,4,4,4,4,4,
7362 };
7363
7364 #define BNX2_NUM_TESTS 6
7365
7366 static struct {
7367 char string[ETH_GSTRING_LEN];
7368 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7369 { "register_test (offline)" },
7370 { "memory_test (offline)" },
7371 { "loopback_test (offline)" },
7372 { "nvram_test (online)" },
7373 { "interrupt_test (online)" },
7374 { "link_test (online)" },
7375 };
7376
7377 static int
7378 bnx2_get_sset_count(struct net_device *dev, int sset)
7379 {
7380 switch (sset) {
7381 case ETH_SS_TEST:
7382 return BNX2_NUM_TESTS;
7383 case ETH_SS_STATS:
7384 return BNX2_NUM_STATS;
7385 default:
7386 return -EOPNOTSUPP;
7387 }
7388 }
7389
7390 static void
7391 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7392 {
7393 struct bnx2 *bp = netdev_priv(dev);
7394
7395 bnx2_set_power_state(bp, PCI_D0);
7396
7397 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7398 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7399 int i;
7400
7401 bnx2_netif_stop(bp, true);
7402 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7403 bnx2_free_skbs(bp);
7404
7405 if (bnx2_test_registers(bp) != 0) {
7406 buf[0] = 1;
7407 etest->flags |= ETH_TEST_FL_FAILED;
7408 }
7409 if (bnx2_test_memory(bp) != 0) {
7410 buf[1] = 1;
7411 etest->flags |= ETH_TEST_FL_FAILED;
7412 }
7413 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7414 etest->flags |= ETH_TEST_FL_FAILED;
7415
7416 if (!netif_running(bp->dev))
7417 bnx2_shutdown_chip(bp);
7418 else {
7419 bnx2_init_nic(bp, 1);
7420 bnx2_netif_start(bp, true);
7421 }
7422
7423 /* wait for link up */
7424 for (i = 0; i < 7; i++) {
7425 if (bp->link_up)
7426 break;
7427 msleep_interruptible(1000);
7428 }
7429 }
7430
7431 if (bnx2_test_nvram(bp) != 0) {
7432 buf[3] = 1;
7433 etest->flags |= ETH_TEST_FL_FAILED;
7434 }
7435 if (bnx2_test_intr(bp) != 0) {
7436 buf[4] = 1;
7437 etest->flags |= ETH_TEST_FL_FAILED;
7438 }
7439
7440 if (bnx2_test_link(bp) != 0) {
7441 buf[5] = 1;
7442 etest->flags |= ETH_TEST_FL_FAILED;
7443
7444 }
7445 if (!netif_running(bp->dev))
7446 bnx2_set_power_state(bp, PCI_D3hot);
7447 }
7448
7449 static void
7450 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7451 {
7452 switch (stringset) {
7453 case ETH_SS_STATS:
7454 memcpy(buf, bnx2_stats_str_arr,
7455 sizeof(bnx2_stats_str_arr));
7456 break;
7457 case ETH_SS_TEST:
7458 memcpy(buf, bnx2_tests_str_arr,
7459 sizeof(bnx2_tests_str_arr));
7460 break;
7461 }
7462 }
7463
7464 static void
7465 bnx2_get_ethtool_stats(struct net_device *dev,
7466 struct ethtool_stats *stats, u64 *buf)
7467 {
7468 struct bnx2 *bp = netdev_priv(dev);
7469 int i;
7470 u32 *hw_stats = (u32 *) bp->stats_blk;
7471 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
7472 u8 *stats_len_arr = NULL;
7473
7474 if (hw_stats == NULL) {
7475 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7476 return;
7477 }
7478
7479 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7480 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7481 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7482 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7483 stats_len_arr = bnx2_5706_stats_len_arr;
7484 else
7485 stats_len_arr = bnx2_5708_stats_len_arr;
7486
7487 for (i = 0; i < BNX2_NUM_STATS; i++) {
7488 unsigned long offset;
7489
7490 if (stats_len_arr[i] == 0) {
7491 /* skip this counter */
7492 buf[i] = 0;
7493 continue;
7494 }
7495
7496 offset = bnx2_stats_offset_arr[i];
7497 if (stats_len_arr[i] == 4) {
7498 /* 4-byte counter */
7499 buf[i] = (u64) *(hw_stats + offset) +
7500 *(temp_stats + offset);
7501 continue;
7502 }
7503 /* 8-byte counter */
7504 buf[i] = (((u64) *(hw_stats + offset)) << 32) +
7505 *(hw_stats + offset + 1) +
7506 (((u64) *(temp_stats + offset)) << 32) +
7507 *(temp_stats + offset + 1);
7508 }
7509 }
7510
7511 static int
7512 bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state)
7513 {
7514 struct bnx2 *bp = netdev_priv(dev);
7515
7516 switch (state) {
7517 case ETHTOOL_ID_ACTIVE:
7518 bnx2_set_power_state(bp, PCI_D0);
7519
7520 bp->leds_save = REG_RD(bp, BNX2_MISC_CFG);
7521 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7522 return 1; /* cycle on/off once per second */
7523
7524 case ETHTOOL_ID_ON:
7525 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7526 BNX2_EMAC_LED_1000MB_OVERRIDE |
7527 BNX2_EMAC_LED_100MB_OVERRIDE |
7528 BNX2_EMAC_LED_10MB_OVERRIDE |
7529 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7530 BNX2_EMAC_LED_TRAFFIC);
7531 break;
7532
7533 case ETHTOOL_ID_OFF:
7534 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7535 break;
7536
7537 case ETHTOOL_ID_INACTIVE:
7538 REG_WR(bp, BNX2_EMAC_LED, 0);
7539 REG_WR(bp, BNX2_MISC_CFG, bp->leds_save);
7540
7541 if (!netif_running(dev))
7542 bnx2_set_power_state(bp, PCI_D3hot);
7543 break;
7544 }
7545
7546 return 0;
7547 }
7548
7549 static u32
7550 bnx2_fix_features(struct net_device *dev, u32 features)
7551 {
7552 struct bnx2 *bp = netdev_priv(dev);
7553
7554 if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
7555 features |= NETIF_F_HW_VLAN_RX;
7556
7557 return features;
7558 }
7559
7560 static int
7561 bnx2_set_features(struct net_device *dev, u32 features)
7562 {
7563 struct bnx2 *bp = netdev_priv(dev);
7564
7565 /* TSO with VLAN tag won't work with current firmware */
7566 if (features & NETIF_F_HW_VLAN_TX)
7567 dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO);
7568 else
7569 dev->vlan_features &= ~NETIF_F_ALL_TSO;
7570
7571 if ((!!(features & NETIF_F_HW_VLAN_RX) !=
7572 !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
7573 netif_running(dev)) {
7574 bnx2_netif_stop(bp, false);
7575 dev->features = features;
7576 bnx2_set_rx_mode(dev);
7577 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
7578 bnx2_netif_start(bp, false);
7579 return 1;
7580 }
7581
7582 return 0;
7583 }
7584
7585 static const struct ethtool_ops bnx2_ethtool_ops = {
7586 .get_settings = bnx2_get_settings,
7587 .set_settings = bnx2_set_settings,
7588 .get_drvinfo = bnx2_get_drvinfo,
7589 .get_regs_len = bnx2_get_regs_len,
7590 .get_regs = bnx2_get_regs,
7591 .get_wol = bnx2_get_wol,
7592 .set_wol = bnx2_set_wol,
7593 .nway_reset = bnx2_nway_reset,
7594 .get_link = bnx2_get_link,
7595 .get_eeprom_len = bnx2_get_eeprom_len,
7596 .get_eeprom = bnx2_get_eeprom,
7597 .set_eeprom = bnx2_set_eeprom,
7598 .get_coalesce = bnx2_get_coalesce,
7599 .set_coalesce = bnx2_set_coalesce,
7600 .get_ringparam = bnx2_get_ringparam,
7601 .set_ringparam = bnx2_set_ringparam,
7602 .get_pauseparam = bnx2_get_pauseparam,
7603 .set_pauseparam = bnx2_set_pauseparam,
7604 .self_test = bnx2_self_test,
7605 .get_strings = bnx2_get_strings,
7606 .set_phys_id = bnx2_set_phys_id,
7607 .get_ethtool_stats = bnx2_get_ethtool_stats,
7608 .get_sset_count = bnx2_get_sset_count,
7609 };
7610
7611 /* Called with rtnl_lock */
7612 static int
7613 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7614 {
7615 struct mii_ioctl_data *data = if_mii(ifr);
7616 struct bnx2 *bp = netdev_priv(dev);
7617 int err;
7618
7619 switch(cmd) {
7620 case SIOCGMIIPHY:
7621 data->phy_id = bp->phy_addr;
7622
7623 /* fallthru */
7624 case SIOCGMIIREG: {
7625 u32 mii_regval;
7626
7627 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7628 return -EOPNOTSUPP;
7629
7630 if (!netif_running(dev))
7631 return -EAGAIN;
7632
7633 spin_lock_bh(&bp->phy_lock);
7634 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7635 spin_unlock_bh(&bp->phy_lock);
7636
7637 data->val_out = mii_regval;
7638
7639 return err;
7640 }
7641
7642 case SIOCSMIIREG:
7643 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7644 return -EOPNOTSUPP;
7645
7646 if (!netif_running(dev))
7647 return -EAGAIN;
7648
7649 spin_lock_bh(&bp->phy_lock);
7650 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7651 spin_unlock_bh(&bp->phy_lock);
7652
7653 return err;
7654
7655 default:
7656 /* do nothing */
7657 break;
7658 }
7659 return -EOPNOTSUPP;
7660 }
7661
7662 /* Called with rtnl_lock */
7663 static int
7664 bnx2_change_mac_addr(struct net_device *dev, void *p)
7665 {
7666 struct sockaddr *addr = p;
7667 struct bnx2 *bp = netdev_priv(dev);
7668
7669 if (!is_valid_ether_addr(addr->sa_data))
7670 return -EINVAL;
7671
7672 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7673 if (netif_running(dev))
7674 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7675
7676 return 0;
7677 }
7678
7679 /* Called with rtnl_lock */
7680 static int
7681 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7682 {
7683 struct bnx2 *bp = netdev_priv(dev);
7684
7685 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7686 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7687 return -EINVAL;
7688
7689 dev->mtu = new_mtu;
7690 return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size);
7691 }
7692
7693 #ifdef CONFIG_NET_POLL_CONTROLLER
7694 static void
7695 poll_bnx2(struct net_device *dev)
7696 {
7697 struct bnx2 *bp = netdev_priv(dev);
7698 int i;
7699
7700 for (i = 0; i < bp->irq_nvecs; i++) {
7701 struct bnx2_irq *irq = &bp->irq_tbl[i];
7702
7703 disable_irq(irq->vector);
7704 irq->handler(irq->vector, &bp->bnx2_napi[i]);
7705 enable_irq(irq->vector);
7706 }
7707 }
7708 #endif
7709
7710 static void __devinit
7711 bnx2_get_5709_media(struct bnx2 *bp)
7712 {
7713 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7714 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7715 u32 strap;
7716
7717 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7718 return;
7719 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7720 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7721 return;
7722 }
7723
7724 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7725 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7726 else
7727 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7728
7729 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7730 switch (strap) {
7731 case 0x4:
7732 case 0x5:
7733 case 0x6:
7734 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7735 return;
7736 }
7737 } else {
7738 switch (strap) {
7739 case 0x1:
7740 case 0x2:
7741 case 0x4:
7742 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7743 return;
7744 }
7745 }
7746 }
7747
7748 static void __devinit
7749 bnx2_get_pci_speed(struct bnx2 *bp)
7750 {
7751 u32 reg;
7752
7753 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7754 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7755 u32 clkreg;
7756
7757 bp->flags |= BNX2_FLAG_PCIX;
7758
7759 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7760
7761 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7762 switch (clkreg) {
7763 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7764 bp->bus_speed_mhz = 133;
7765 break;
7766
7767 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7768 bp->bus_speed_mhz = 100;
7769 break;
7770
7771 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7772 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7773 bp->bus_speed_mhz = 66;
7774 break;
7775
7776 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7777 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7778 bp->bus_speed_mhz = 50;
7779 break;
7780
7781 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7782 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7783 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7784 bp->bus_speed_mhz = 33;
7785 break;
7786 }
7787 }
7788 else {
7789 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7790 bp->bus_speed_mhz = 66;
7791 else
7792 bp->bus_speed_mhz = 33;
7793 }
7794
7795 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7796 bp->flags |= BNX2_FLAG_PCI_32BIT;
7797
7798 }
7799
7800 static void __devinit
7801 bnx2_read_vpd_fw_ver(struct bnx2 *bp)
7802 {
7803 int rc, i, j;
7804 u8 *data;
7805 unsigned int block_end, rosize, len;
7806
7807 #define BNX2_VPD_NVRAM_OFFSET 0x300
7808 #define BNX2_VPD_LEN 128
7809 #define BNX2_MAX_VER_SLEN 30
7810
7811 data = kmalloc(256, GFP_KERNEL);
7812 if (!data)
7813 return;
7814
7815 rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
7816 BNX2_VPD_LEN);
7817 if (rc)
7818 goto vpd_done;
7819
7820 for (i = 0; i < BNX2_VPD_LEN; i += 4) {
7821 data[i] = data[i + BNX2_VPD_LEN + 3];
7822 data[i + 1] = data[i + BNX2_VPD_LEN + 2];
7823 data[i + 2] = data[i + BNX2_VPD_LEN + 1];
7824 data[i + 3] = data[i + BNX2_VPD_LEN];
7825 }
7826
7827 i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
7828 if (i < 0)
7829 goto vpd_done;
7830
7831 rosize = pci_vpd_lrdt_size(&data[i]);
7832 i += PCI_VPD_LRDT_TAG_SIZE;
7833 block_end = i + rosize;
7834
7835 if (block_end > BNX2_VPD_LEN)
7836 goto vpd_done;
7837
7838 j = pci_vpd_find_info_keyword(data, i, rosize,
7839 PCI_VPD_RO_KEYWORD_MFR_ID);
7840 if (j < 0)
7841 goto vpd_done;
7842
7843 len = pci_vpd_info_field_size(&data[j]);
7844
7845 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7846 if (j + len > block_end || len != 4 ||
7847 memcmp(&data[j], "1028", 4))
7848 goto vpd_done;
7849
7850 j = pci_vpd_find_info_keyword(data, i, rosize,
7851 PCI_VPD_RO_KEYWORD_VENDOR0);
7852 if (j < 0)
7853 goto vpd_done;
7854
7855 len = pci_vpd_info_field_size(&data[j]);
7856
7857 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7858 if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
7859 goto vpd_done;
7860
7861 memcpy(bp->fw_version, &data[j], len);
7862 bp->fw_version[len] = ' ';
7863
7864 vpd_done:
7865 kfree(data);
7866 }
7867
7868 static int __devinit
7869 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7870 {
7871 struct bnx2 *bp;
7872 unsigned long mem_len;
7873 int rc, i, j;
7874 u32 reg;
7875 u64 dma_mask, persist_dma_mask;
7876 int err;
7877
7878 SET_NETDEV_DEV(dev, &pdev->dev);
7879 bp = netdev_priv(dev);
7880
7881 bp->flags = 0;
7882 bp->phy_flags = 0;
7883
7884 bp->temp_stats_blk =
7885 kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
7886
7887 if (bp->temp_stats_blk == NULL) {
7888 rc = -ENOMEM;
7889 goto err_out;
7890 }
7891
7892 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7893 rc = pci_enable_device(pdev);
7894 if (rc) {
7895 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7896 goto err_out;
7897 }
7898
7899 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7900 dev_err(&pdev->dev,
7901 "Cannot find PCI device base address, aborting\n");
7902 rc = -ENODEV;
7903 goto err_out_disable;
7904 }
7905
7906 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7907 if (rc) {
7908 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7909 goto err_out_disable;
7910 }
7911
7912 pci_set_master(pdev);
7913
7914 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7915 if (bp->pm_cap == 0) {
7916 dev_err(&pdev->dev,
7917 "Cannot find power management capability, aborting\n");
7918 rc = -EIO;
7919 goto err_out_release;
7920 }
7921
7922 bp->dev = dev;
7923 bp->pdev = pdev;
7924
7925 spin_lock_init(&bp->phy_lock);
7926 spin_lock_init(&bp->indirect_lock);
7927 #ifdef BCM_CNIC
7928 mutex_init(&bp->cnic_lock);
7929 #endif
7930 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7931
7932 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7933 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7934 dev->mem_end = dev->mem_start + mem_len;
7935 dev->irq = pdev->irq;
7936
7937 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7938
7939 if (!bp->regview) {
7940 dev_err(&pdev->dev, "Cannot map register space, aborting\n");
7941 rc = -ENOMEM;
7942 goto err_out_release;
7943 }
7944
7945 bnx2_set_power_state(bp, PCI_D0);
7946
7947 /* Configure byte swap and enable write to the reg_window registers.
7948 * Rely on CPU to do target byte swapping on big endian systems
7949 * The chip's target access swapping will not swap all accesses
7950 */
7951 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG,
7952 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7953 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7954
7955 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7956
7957 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7958 if (!pci_is_pcie(pdev)) {
7959 dev_err(&pdev->dev, "Not PCIE, aborting\n");
7960 rc = -EIO;
7961 goto err_out_unmap;
7962 }
7963 bp->flags |= BNX2_FLAG_PCIE;
7964 if (CHIP_REV(bp) == CHIP_REV_Ax)
7965 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7966
7967 /* AER (Advanced Error Reporting) hooks */
7968 err = pci_enable_pcie_error_reporting(pdev);
7969 if (!err)
7970 bp->flags |= BNX2_FLAG_AER_ENABLED;
7971
7972 } else {
7973 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7974 if (bp->pcix_cap == 0) {
7975 dev_err(&pdev->dev,
7976 "Cannot find PCIX capability, aborting\n");
7977 rc = -EIO;
7978 goto err_out_unmap;
7979 }
7980 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7981 }
7982
7983 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7984 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7985 bp->flags |= BNX2_FLAG_MSIX_CAP;
7986 }
7987
7988 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7989 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7990 bp->flags |= BNX2_FLAG_MSI_CAP;
7991 }
7992
7993 /* 5708 cannot support DMA addresses > 40-bit. */
7994 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7995 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7996 else
7997 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7998
7999 /* Configure DMA attributes. */
8000 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
8001 dev->features |= NETIF_F_HIGHDMA;
8002 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
8003 if (rc) {
8004 dev_err(&pdev->dev,
8005 "pci_set_consistent_dma_mask failed, aborting\n");
8006 goto err_out_unmap;
8007 }
8008 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
8009 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
8010 goto err_out_unmap;
8011 }
8012
8013 if (!(bp->flags & BNX2_FLAG_PCIE))
8014 bnx2_get_pci_speed(bp);
8015
8016 /* 5706A0 may falsely detect SERR and PERR. */
8017 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8018 reg = REG_RD(bp, PCI_COMMAND);
8019 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
8020 REG_WR(bp, PCI_COMMAND, reg);
8021 }
8022 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
8023 !(bp->flags & BNX2_FLAG_PCIX)) {
8024
8025 dev_err(&pdev->dev,
8026 "5706 A1 can only be used in a PCIX bus, aborting\n");
8027 goto err_out_unmap;
8028 }
8029
8030 bnx2_init_nvram(bp);
8031
8032 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
8033
8034 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
8035 BNX2_SHM_HDR_SIGNATURE_SIG) {
8036 u32 off = PCI_FUNC(pdev->devfn) << 2;
8037
8038 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
8039 } else
8040 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
8041
8042 /* Get the permanent MAC address. First we need to make sure the
8043 * firmware is actually running.
8044 */
8045 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
8046
8047 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
8048 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
8049 dev_err(&pdev->dev, "Firmware not running, aborting\n");
8050 rc = -ENODEV;
8051 goto err_out_unmap;
8052 }
8053
8054 bnx2_read_vpd_fw_ver(bp);
8055
8056 j = strlen(bp->fw_version);
8057 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
8058 for (i = 0; i < 3 && j < 24; i++) {
8059 u8 num, k, skip0;
8060
8061 if (i == 0) {
8062 bp->fw_version[j++] = 'b';
8063 bp->fw_version[j++] = 'c';
8064 bp->fw_version[j++] = ' ';
8065 }
8066 num = (u8) (reg >> (24 - (i * 8)));
8067 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
8068 if (num >= k || !skip0 || k == 1) {
8069 bp->fw_version[j++] = (num / k) + '0';
8070 skip0 = 0;
8071 }
8072 }
8073 if (i != 2)
8074 bp->fw_version[j++] = '.';
8075 }
8076 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
8077 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
8078 bp->wol = 1;
8079
8080 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
8081 bp->flags |= BNX2_FLAG_ASF_ENABLE;
8082
8083 for (i = 0; i < 30; i++) {
8084 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8085 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
8086 break;
8087 msleep(10);
8088 }
8089 }
8090 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8091 reg &= BNX2_CONDITION_MFW_RUN_MASK;
8092 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
8093 reg != BNX2_CONDITION_MFW_RUN_NONE) {
8094 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
8095
8096 if (j < 32)
8097 bp->fw_version[j++] = ' ';
8098 for (i = 0; i < 3 && j < 28; i++) {
8099 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
8100 reg = be32_to_cpu(reg);
8101 memcpy(&bp->fw_version[j], &reg, 4);
8102 j += 4;
8103 }
8104 }
8105
8106 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
8107 bp->mac_addr[0] = (u8) (reg >> 8);
8108 bp->mac_addr[1] = (u8) reg;
8109
8110 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
8111 bp->mac_addr[2] = (u8) (reg >> 24);
8112 bp->mac_addr[3] = (u8) (reg >> 16);
8113 bp->mac_addr[4] = (u8) (reg >> 8);
8114 bp->mac_addr[5] = (u8) reg;
8115
8116 bp->tx_ring_size = MAX_TX_DESC_CNT;
8117 bnx2_set_rx_ring_size(bp, 255);
8118
8119 bp->tx_quick_cons_trip_int = 2;
8120 bp->tx_quick_cons_trip = 20;
8121 bp->tx_ticks_int = 18;
8122 bp->tx_ticks = 80;
8123
8124 bp->rx_quick_cons_trip_int = 2;
8125 bp->rx_quick_cons_trip = 12;
8126 bp->rx_ticks_int = 18;
8127 bp->rx_ticks = 18;
8128
8129 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
8130
8131 bp->current_interval = BNX2_TIMER_INTERVAL;
8132
8133 bp->phy_addr = 1;
8134
8135 /* Disable WOL support if we are running on a SERDES chip. */
8136 if (CHIP_NUM(bp) == CHIP_NUM_5709)
8137 bnx2_get_5709_media(bp);
8138 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
8139 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
8140
8141 bp->phy_port = PORT_TP;
8142 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
8143 bp->phy_port = PORT_FIBRE;
8144 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
8145 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
8146 bp->flags |= BNX2_FLAG_NO_WOL;
8147 bp->wol = 0;
8148 }
8149 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
8150 /* Don't do parallel detect on this board because of
8151 * some board problems. The link will not go down
8152 * if we do parallel detect.
8153 */
8154 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
8155 pdev->subsystem_device == 0x310c)
8156 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
8157 } else {
8158 bp->phy_addr = 2;
8159 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
8160 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
8161 }
8162 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
8163 CHIP_NUM(bp) == CHIP_NUM_5708)
8164 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
8165 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
8166 (CHIP_REV(bp) == CHIP_REV_Ax ||
8167 CHIP_REV(bp) == CHIP_REV_Bx))
8168 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
8169
8170 bnx2_init_fw_cap(bp);
8171
8172 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
8173 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
8174 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
8175 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
8176 bp->flags |= BNX2_FLAG_NO_WOL;
8177 bp->wol = 0;
8178 }
8179
8180 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8181 bp->tx_quick_cons_trip_int =
8182 bp->tx_quick_cons_trip;
8183 bp->tx_ticks_int = bp->tx_ticks;
8184 bp->rx_quick_cons_trip_int =
8185 bp->rx_quick_cons_trip;
8186 bp->rx_ticks_int = bp->rx_ticks;
8187 bp->comp_prod_trip_int = bp->comp_prod_trip;
8188 bp->com_ticks_int = bp->com_ticks;
8189 bp->cmd_ticks_int = bp->cmd_ticks;
8190 }
8191
8192 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8193 *
8194 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8195 * with byte enables disabled on the unused 32-bit word. This is legal
8196 * but causes problems on the AMD 8132 which will eventually stop
8197 * responding after a while.
8198 *
8199 * AMD believes this incompatibility is unique to the 5706, and
8200 * prefers to locally disable MSI rather than globally disabling it.
8201 */
8202 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
8203 struct pci_dev *amd_8132 = NULL;
8204
8205 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
8206 PCI_DEVICE_ID_AMD_8132_BRIDGE,
8207 amd_8132))) {
8208
8209 if (amd_8132->revision >= 0x10 &&
8210 amd_8132->revision <= 0x13) {
8211 disable_msi = 1;
8212 pci_dev_put(amd_8132);
8213 break;
8214 }
8215 }
8216 }
8217
8218 bnx2_set_default_link(bp);
8219 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
8220
8221 init_timer(&bp->timer);
8222 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
8223 bp->timer.data = (unsigned long) bp;
8224 bp->timer.function = bnx2_timer;
8225
8226 #ifdef BCM_CNIC
8227 if (bnx2_shmem_rd(bp, BNX2_ISCSI_INITIATOR) & BNX2_ISCSI_INITIATOR_EN)
8228 bp->cnic_eth_dev.max_iscsi_conn =
8229 (bnx2_shmem_rd(bp, BNX2_ISCSI_MAX_CONN) &
8230 BNX2_ISCSI_MAX_CONN_MASK) >> BNX2_ISCSI_MAX_CONN_SHIFT;
8231 #endif
8232 pci_save_state(pdev);
8233
8234 return 0;
8235
8236 err_out_unmap:
8237 if (bp->flags & BNX2_FLAG_AER_ENABLED) {
8238 pci_disable_pcie_error_reporting(pdev);
8239 bp->flags &= ~BNX2_FLAG_AER_ENABLED;
8240 }
8241
8242 if (bp->regview) {
8243 iounmap(bp->regview);
8244 bp->regview = NULL;
8245 }
8246
8247 err_out_release:
8248 pci_release_regions(pdev);
8249
8250 err_out_disable:
8251 pci_disable_device(pdev);
8252 pci_set_drvdata(pdev, NULL);
8253
8254 err_out:
8255 return rc;
8256 }
8257
8258 static char * __devinit
8259 bnx2_bus_string(struct bnx2 *bp, char *str)
8260 {
8261 char *s = str;
8262
8263 if (bp->flags & BNX2_FLAG_PCIE) {
8264 s += sprintf(s, "PCI Express");
8265 } else {
8266 s += sprintf(s, "PCI");
8267 if (bp->flags & BNX2_FLAG_PCIX)
8268 s += sprintf(s, "-X");
8269 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8270 s += sprintf(s, " 32-bit");
8271 else
8272 s += sprintf(s, " 64-bit");
8273 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8274 }
8275 return str;
8276 }
8277
8278 static void
8279 bnx2_del_napi(struct bnx2 *bp)
8280 {
8281 int i;
8282
8283 for (i = 0; i < bp->irq_nvecs; i++)
8284 netif_napi_del(&bp->bnx2_napi[i].napi);
8285 }
8286
8287 static void
8288 bnx2_init_napi(struct bnx2 *bp)
8289 {
8290 int i;
8291
8292 for (i = 0; i < bp->irq_nvecs; i++) {
8293 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8294 int (*poll)(struct napi_struct *, int);
8295
8296 if (i == 0)
8297 poll = bnx2_poll;
8298 else
8299 poll = bnx2_poll_msix;
8300
8301 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8302 bnapi->bp = bp;
8303 }
8304 }
8305
8306 static const struct net_device_ops bnx2_netdev_ops = {
8307 .ndo_open = bnx2_open,
8308 .ndo_start_xmit = bnx2_start_xmit,
8309 .ndo_stop = bnx2_close,
8310 .ndo_get_stats64 = bnx2_get_stats64,
8311 .ndo_set_rx_mode = bnx2_set_rx_mode,
8312 .ndo_do_ioctl = bnx2_ioctl,
8313 .ndo_validate_addr = eth_validate_addr,
8314 .ndo_set_mac_address = bnx2_change_mac_addr,
8315 .ndo_change_mtu = bnx2_change_mtu,
8316 .ndo_fix_features = bnx2_fix_features,
8317 .ndo_set_features = bnx2_set_features,
8318 .ndo_tx_timeout = bnx2_tx_timeout,
8319 #ifdef CONFIG_NET_POLL_CONTROLLER
8320 .ndo_poll_controller = poll_bnx2,
8321 #endif
8322 };
8323
8324 static int __devinit
8325 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8326 {
8327 static int version_printed = 0;
8328 struct net_device *dev = NULL;
8329 struct bnx2 *bp;
8330 int rc;
8331 char str[40];
8332
8333 if (version_printed++ == 0)
8334 pr_info("%s", version);
8335
8336 /* dev zeroed in init_etherdev */
8337 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8338
8339 if (!dev)
8340 return -ENOMEM;
8341
8342 rc = bnx2_init_board(pdev, dev);
8343 if (rc < 0) {
8344 free_netdev(dev);
8345 return rc;
8346 }
8347
8348 dev->netdev_ops = &bnx2_netdev_ops;
8349 dev->watchdog_timeo = TX_TIMEOUT;
8350 dev->ethtool_ops = &bnx2_ethtool_ops;
8351
8352 bp = netdev_priv(dev);
8353
8354 pci_set_drvdata(pdev, dev);
8355
8356 rc = bnx2_request_firmware(bp);
8357 if (rc)
8358 goto error;
8359
8360 memcpy(dev->dev_addr, bp->mac_addr, 6);
8361 memcpy(dev->perm_addr, bp->mac_addr, 6);
8362
8363 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
8364 NETIF_F_TSO | NETIF_F_TSO_ECN |
8365 NETIF_F_RXHASH | NETIF_F_RXCSUM;
8366
8367 if (CHIP_NUM(bp) == CHIP_NUM_5709)
8368 dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
8369
8370 dev->vlan_features = dev->hw_features;
8371 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8372 dev->features |= dev->hw_features;
8373
8374 if ((rc = register_netdev(dev))) {
8375 dev_err(&pdev->dev, "Cannot register net device\n");
8376 goto error;
8377 }
8378
8379 netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8380 board_info[ent->driver_data].name,
8381 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8382 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8383 bnx2_bus_string(bp, str),
8384 dev->base_addr,
8385 bp->pdev->irq, dev->dev_addr);
8386
8387 return 0;
8388
8389 error:
8390 if (bp->mips_firmware)
8391 release_firmware(bp->mips_firmware);
8392 if (bp->rv2p_firmware)
8393 release_firmware(bp->rv2p_firmware);
8394
8395 if (bp->regview)
8396 iounmap(bp->regview);
8397 pci_release_regions(pdev);
8398 pci_disable_device(pdev);
8399 pci_set_drvdata(pdev, NULL);
8400 free_netdev(dev);
8401 return rc;
8402 }
8403
8404 static void __devexit
8405 bnx2_remove_one(struct pci_dev *pdev)
8406 {
8407 struct net_device *dev = pci_get_drvdata(pdev);
8408 struct bnx2 *bp = netdev_priv(dev);
8409
8410 unregister_netdev(dev);
8411
8412 del_timer_sync(&bp->timer);
8413 cancel_work_sync(&bp->reset_task);
8414
8415 if (bp->mips_firmware)
8416 release_firmware(bp->mips_firmware);
8417 if (bp->rv2p_firmware)
8418 release_firmware(bp->rv2p_firmware);
8419
8420 if (bp->regview)
8421 iounmap(bp->regview);
8422
8423 kfree(bp->temp_stats_blk);
8424
8425 if (bp->flags & BNX2_FLAG_AER_ENABLED) {
8426 pci_disable_pcie_error_reporting(pdev);
8427 bp->flags &= ~BNX2_FLAG_AER_ENABLED;
8428 }
8429
8430 free_netdev(dev);
8431
8432 pci_release_regions(pdev);
8433 pci_disable_device(pdev);
8434 pci_set_drvdata(pdev, NULL);
8435 }
8436
8437 static int
8438 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8439 {
8440 struct net_device *dev = pci_get_drvdata(pdev);
8441 struct bnx2 *bp = netdev_priv(dev);
8442
8443 /* PCI register 4 needs to be saved whether netif_running() or not.
8444 * MSI address and data need to be saved if using MSI and
8445 * netif_running().
8446 */
8447 pci_save_state(pdev);
8448 if (!netif_running(dev))
8449 return 0;
8450
8451 cancel_work_sync(&bp->reset_task);
8452 bnx2_netif_stop(bp, true);
8453 netif_device_detach(dev);
8454 del_timer_sync(&bp->timer);
8455 bnx2_shutdown_chip(bp);
8456 bnx2_free_skbs(bp);
8457 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8458 return 0;
8459 }
8460
8461 static int
8462 bnx2_resume(struct pci_dev *pdev)
8463 {
8464 struct net_device *dev = pci_get_drvdata(pdev);
8465 struct bnx2 *bp = netdev_priv(dev);
8466
8467 pci_restore_state(pdev);
8468 if (!netif_running(dev))
8469 return 0;
8470
8471 bnx2_set_power_state(bp, PCI_D0);
8472 netif_device_attach(dev);
8473 bnx2_init_nic(bp, 1);
8474 bnx2_netif_start(bp, true);
8475 return 0;
8476 }
8477
8478 /**
8479 * bnx2_io_error_detected - called when PCI error is detected
8480 * @pdev: Pointer to PCI device
8481 * @state: The current pci connection state
8482 *
8483 * This function is called after a PCI bus error affecting
8484 * this device has been detected.
8485 */
8486 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8487 pci_channel_state_t state)
8488 {
8489 struct net_device *dev = pci_get_drvdata(pdev);
8490 struct bnx2 *bp = netdev_priv(dev);
8491
8492 rtnl_lock();
8493 netif_device_detach(dev);
8494
8495 if (state == pci_channel_io_perm_failure) {
8496 rtnl_unlock();
8497 return PCI_ERS_RESULT_DISCONNECT;
8498 }
8499
8500 if (netif_running(dev)) {
8501 bnx2_netif_stop(bp, true);
8502 del_timer_sync(&bp->timer);
8503 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8504 }
8505
8506 pci_disable_device(pdev);
8507 rtnl_unlock();
8508
8509 /* Request a slot slot reset. */
8510 return PCI_ERS_RESULT_NEED_RESET;
8511 }
8512
8513 /**
8514 * bnx2_io_slot_reset - called after the pci bus has been reset.
8515 * @pdev: Pointer to PCI device
8516 *
8517 * Restart the card from scratch, as if from a cold-boot.
8518 */
8519 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8520 {
8521 struct net_device *dev = pci_get_drvdata(pdev);
8522 struct bnx2 *bp = netdev_priv(dev);
8523 pci_ers_result_t result;
8524 int err;
8525
8526 rtnl_lock();
8527 if (pci_enable_device(pdev)) {
8528 dev_err(&pdev->dev,
8529 "Cannot re-enable PCI device after reset\n");
8530 result = PCI_ERS_RESULT_DISCONNECT;
8531 } else {
8532 pci_set_master(pdev);
8533 pci_restore_state(pdev);
8534 pci_save_state(pdev);
8535
8536 if (netif_running(dev)) {
8537 bnx2_set_power_state(bp, PCI_D0);
8538 bnx2_init_nic(bp, 1);
8539 }
8540 result = PCI_ERS_RESULT_RECOVERED;
8541 }
8542 rtnl_unlock();
8543
8544 if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
8545 return result;
8546
8547 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8548 if (err) {
8549 dev_err(&pdev->dev,
8550 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8551 err); /* non-fatal, continue */
8552 }
8553
8554 return result;
8555 }
8556
8557 /**
8558 * bnx2_io_resume - called when traffic can start flowing again.
8559 * @pdev: Pointer to PCI device
8560 *
8561 * This callback is called when the error recovery driver tells us that
8562 * its OK to resume normal operation.
8563 */
8564 static void bnx2_io_resume(struct pci_dev *pdev)
8565 {
8566 struct net_device *dev = pci_get_drvdata(pdev);
8567 struct bnx2 *bp = netdev_priv(dev);
8568
8569 rtnl_lock();
8570 if (netif_running(dev))
8571 bnx2_netif_start(bp, true);
8572
8573 netif_device_attach(dev);
8574 rtnl_unlock();
8575 }
8576
8577 static struct pci_error_handlers bnx2_err_handler = {
8578 .error_detected = bnx2_io_error_detected,
8579 .slot_reset = bnx2_io_slot_reset,
8580 .resume = bnx2_io_resume,
8581 };
8582
8583 static struct pci_driver bnx2_pci_driver = {
8584 .name = DRV_MODULE_NAME,
8585 .id_table = bnx2_pci_tbl,
8586 .probe = bnx2_init_one,
8587 .remove = __devexit_p(bnx2_remove_one),
8588 .suspend = bnx2_suspend,
8589 .resume = bnx2_resume,
8590 .err_handler = &bnx2_err_handler,
8591 };
8592
8593 static int __init bnx2_init(void)
8594 {
8595 return pci_register_driver(&bnx2_pci_driver);
8596 }
8597
8598 static void __exit bnx2_cleanup(void)
8599 {
8600 pci_unregister_driver(&bnx2_pci_driver);
8601 }
8602
8603 module_init(bnx2_init);
8604 module_exit(bnx2_cleanup);
8605
8606
8607
This page took 0.212685 seconds and 5 git commands to generate.