bnx2: Add MCP dump
[deliverable/linux.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
31 #include <asm/io.h>
32 #include <asm/irq.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if_vlan.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/checksum.h>
43 #include <linux/workqueue.h>
44 #include <linux/crc32.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/firmware.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50
51 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
52 #define BCM_CNIC 1
53 #include "cnic_if.h"
54 #endif
55 #include "bnx2.h"
56 #include "bnx2_fw.h"
57
58 #define DRV_MODULE_NAME "bnx2"
59 #define DRV_MODULE_VERSION "2.1.6"
60 #define DRV_MODULE_RELDATE "Mar 7, 2011"
61 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.1.fw"
62 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
63 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1a.fw"
64 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
65 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
66
67 #define RUN_AT(x) (jiffies + (x))
68
69 /* Time in jiffies before concluding the transmitter is hung. */
70 #define TX_TIMEOUT (5*HZ)
71
72 static char version[] __devinitdata =
73 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
74
75 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
76 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
77 MODULE_LICENSE("GPL");
78 MODULE_VERSION(DRV_MODULE_VERSION);
79 MODULE_FIRMWARE(FW_MIPS_FILE_06);
80 MODULE_FIRMWARE(FW_RV2P_FILE_06);
81 MODULE_FIRMWARE(FW_MIPS_FILE_09);
82 MODULE_FIRMWARE(FW_RV2P_FILE_09);
83 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
84
85 static int disable_msi = 0;
86
87 module_param(disable_msi, int, 0);
88 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
89
90 typedef enum {
91 BCM5706 = 0,
92 NC370T,
93 NC370I,
94 BCM5706S,
95 NC370F,
96 BCM5708,
97 BCM5708S,
98 BCM5709,
99 BCM5709S,
100 BCM5716,
101 BCM5716S,
102 } board_t;
103
104 /* indexed by board_t, above */
105 static struct {
106 char *name;
107 } board_info[] __devinitdata = {
108 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
109 { "HP NC370T Multifunction Gigabit Server Adapter" },
110 { "HP NC370i Multifunction Gigabit Server Adapter" },
111 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
112 { "HP NC370F Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
115 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
119 };
120
121 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
122 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
123 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
124 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
125 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
126 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
127 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
128 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
130 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
131 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
132 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
134 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
135 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
136 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
137 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
138 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
139 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
140 { PCI_VENDOR_ID_BROADCOM, 0x163b,
141 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
142 { PCI_VENDOR_ID_BROADCOM, 0x163c,
143 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
144 { 0, }
145 };
146
147 static const struct flash_spec flash_table[] =
148 {
149 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
150 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
151 /* Slow EEPROM */
152 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
153 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
154 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
155 "EEPROM - slow"},
156 /* Expansion entry 0001 */
157 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
158 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
159 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
160 "Entry 0001"},
161 /* Saifun SA25F010 (non-buffered flash) */
162 /* strap, cfg1, & write1 need updates */
163 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
164 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
165 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
166 "Non-buffered flash (128kB)"},
167 /* Saifun SA25F020 (non-buffered flash) */
168 /* strap, cfg1, & write1 need updates */
169 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
170 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
171 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
172 "Non-buffered flash (256kB)"},
173 /* Expansion entry 0100 */
174 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
175 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
177 "Entry 0100"},
178 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
179 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
180 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
181 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
182 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
183 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
184 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
185 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
187 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
188 /* Saifun SA25F005 (non-buffered flash) */
189 /* strap, cfg1, & write1 need updates */
190 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
191 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
192 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
193 "Non-buffered flash (64kB)"},
194 /* Fast EEPROM */
195 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
196 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
197 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
198 "EEPROM - fast"},
199 /* Expansion entry 1001 */
200 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
203 "Entry 1001"},
204 /* Expansion entry 1010 */
205 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 "Entry 1010"},
209 /* ATMEL AT45DB011B (buffered flash) */
210 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
211 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
212 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
213 "Buffered flash (128kB)"},
214 /* Expansion entry 1100 */
215 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
217 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
218 "Entry 1100"},
219 /* Expansion entry 1101 */
220 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 "Entry 1101"},
224 /* Ateml Expansion entry 1110 */
225 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
226 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
227 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
228 "Entry 1110 (Atmel)"},
229 /* ATMEL AT45DB021B (buffered flash) */
230 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
231 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
233 "Buffered flash (256kB)"},
234 };
235
236 static const struct flash_spec flash_5709 = {
237 .flags = BNX2_NV_BUFFERED,
238 .page_bits = BCM5709_FLASH_PAGE_BITS,
239 .page_size = BCM5709_FLASH_PAGE_SIZE,
240 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
241 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
242 .name = "5709 Buffered flash (256kB)",
243 };
244
245 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
246
247 static void bnx2_init_napi(struct bnx2 *bp);
248 static void bnx2_del_napi(struct bnx2 *bp);
249
250 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
251 {
252 u32 diff;
253
254 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
255 barrier();
256
257 /* The ring uses 256 indices for 255 entries, one of them
258 * needs to be skipped.
259 */
260 diff = txr->tx_prod - txr->tx_cons;
261 if (unlikely(diff >= TX_DESC_CNT)) {
262 diff &= 0xffff;
263 if (diff == TX_DESC_CNT)
264 diff = MAX_TX_DESC_CNT;
265 }
266 return bp->tx_ring_size - diff;
267 }
268
269 static u32
270 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
271 {
272 u32 val;
273
274 spin_lock_bh(&bp->indirect_lock);
275 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
276 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
277 spin_unlock_bh(&bp->indirect_lock);
278 return val;
279 }
280
281 static void
282 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
283 {
284 spin_lock_bh(&bp->indirect_lock);
285 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
286 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
287 spin_unlock_bh(&bp->indirect_lock);
288 }
289
290 static void
291 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
292 {
293 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
294 }
295
296 static u32
297 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
298 {
299 return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
300 }
301
302 static void
303 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
304 {
305 offset += cid_addr;
306 spin_lock_bh(&bp->indirect_lock);
307 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
308 int i;
309
310 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
311 REG_WR(bp, BNX2_CTX_CTX_CTRL,
312 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
313 for (i = 0; i < 5; i++) {
314 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
315 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
316 break;
317 udelay(5);
318 }
319 } else {
320 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
321 REG_WR(bp, BNX2_CTX_DATA, val);
322 }
323 spin_unlock_bh(&bp->indirect_lock);
324 }
325
326 #ifdef BCM_CNIC
327 static int
328 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
329 {
330 struct bnx2 *bp = netdev_priv(dev);
331 struct drv_ctl_io *io = &info->data.io;
332
333 switch (info->cmd) {
334 case DRV_CTL_IO_WR_CMD:
335 bnx2_reg_wr_ind(bp, io->offset, io->data);
336 break;
337 case DRV_CTL_IO_RD_CMD:
338 io->data = bnx2_reg_rd_ind(bp, io->offset);
339 break;
340 case DRV_CTL_CTX_WR_CMD:
341 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
342 break;
343 default:
344 return -EINVAL;
345 }
346 return 0;
347 }
348
349 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
350 {
351 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
352 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
353 int sb_id;
354
355 if (bp->flags & BNX2_FLAG_USING_MSIX) {
356 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
357 bnapi->cnic_present = 0;
358 sb_id = bp->irq_nvecs;
359 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
360 } else {
361 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
362 bnapi->cnic_tag = bnapi->last_status_idx;
363 bnapi->cnic_present = 1;
364 sb_id = 0;
365 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
366 }
367
368 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
369 cp->irq_arr[0].status_blk = (void *)
370 ((unsigned long) bnapi->status_blk.msi +
371 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
372 cp->irq_arr[0].status_blk_num = sb_id;
373 cp->num_irq = 1;
374 }
375
376 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
377 void *data)
378 {
379 struct bnx2 *bp = netdev_priv(dev);
380 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
381
382 if (ops == NULL)
383 return -EINVAL;
384
385 if (cp->drv_state & CNIC_DRV_STATE_REGD)
386 return -EBUSY;
387
388 bp->cnic_data = data;
389 rcu_assign_pointer(bp->cnic_ops, ops);
390
391 cp->num_irq = 0;
392 cp->drv_state = CNIC_DRV_STATE_REGD;
393
394 bnx2_setup_cnic_irq_info(bp);
395
396 return 0;
397 }
398
399 static int bnx2_unregister_cnic(struct net_device *dev)
400 {
401 struct bnx2 *bp = netdev_priv(dev);
402 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
403 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
404
405 mutex_lock(&bp->cnic_lock);
406 cp->drv_state = 0;
407 bnapi->cnic_present = 0;
408 rcu_assign_pointer(bp->cnic_ops, NULL);
409 mutex_unlock(&bp->cnic_lock);
410 synchronize_rcu();
411 return 0;
412 }
413
414 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
415 {
416 struct bnx2 *bp = netdev_priv(dev);
417 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
418
419 if (!cp->max_iscsi_conn)
420 return NULL;
421
422 cp->drv_owner = THIS_MODULE;
423 cp->chip_id = bp->chip_id;
424 cp->pdev = bp->pdev;
425 cp->io_base = bp->regview;
426 cp->drv_ctl = bnx2_drv_ctl;
427 cp->drv_register_cnic = bnx2_register_cnic;
428 cp->drv_unregister_cnic = bnx2_unregister_cnic;
429
430 return cp;
431 }
432 EXPORT_SYMBOL(bnx2_cnic_probe);
433
434 static void
435 bnx2_cnic_stop(struct bnx2 *bp)
436 {
437 struct cnic_ops *c_ops;
438 struct cnic_ctl_info info;
439
440 mutex_lock(&bp->cnic_lock);
441 c_ops = rcu_dereference_protected(bp->cnic_ops,
442 lockdep_is_held(&bp->cnic_lock));
443 if (c_ops) {
444 info.cmd = CNIC_CTL_STOP_CMD;
445 c_ops->cnic_ctl(bp->cnic_data, &info);
446 }
447 mutex_unlock(&bp->cnic_lock);
448 }
449
450 static void
451 bnx2_cnic_start(struct bnx2 *bp)
452 {
453 struct cnic_ops *c_ops;
454 struct cnic_ctl_info info;
455
456 mutex_lock(&bp->cnic_lock);
457 c_ops = rcu_dereference_protected(bp->cnic_ops,
458 lockdep_is_held(&bp->cnic_lock));
459 if (c_ops) {
460 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
461 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
462
463 bnapi->cnic_tag = bnapi->last_status_idx;
464 }
465 info.cmd = CNIC_CTL_START_CMD;
466 c_ops->cnic_ctl(bp->cnic_data, &info);
467 }
468 mutex_unlock(&bp->cnic_lock);
469 }
470
471 #else
472
473 static void
474 bnx2_cnic_stop(struct bnx2 *bp)
475 {
476 }
477
478 static void
479 bnx2_cnic_start(struct bnx2 *bp)
480 {
481 }
482
483 #endif
484
485 static int
486 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
487 {
488 u32 val1;
489 int i, ret;
490
491 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
492 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
493 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
494
495 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
496 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
497
498 udelay(40);
499 }
500
501 val1 = (bp->phy_addr << 21) | (reg << 16) |
502 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
503 BNX2_EMAC_MDIO_COMM_START_BUSY;
504 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
505
506 for (i = 0; i < 50; i++) {
507 udelay(10);
508
509 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
510 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
511 udelay(5);
512
513 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
514 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
515
516 break;
517 }
518 }
519
520 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
521 *val = 0x0;
522 ret = -EBUSY;
523 }
524 else {
525 *val = val1;
526 ret = 0;
527 }
528
529 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
530 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
531 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
532
533 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
534 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
535
536 udelay(40);
537 }
538
539 return ret;
540 }
541
542 static int
543 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
544 {
545 u32 val1;
546 int i, ret;
547
548 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
549 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
550 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
551
552 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
553 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
554
555 udelay(40);
556 }
557
558 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
559 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
560 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
561 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
562
563 for (i = 0; i < 50; i++) {
564 udelay(10);
565
566 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
567 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
568 udelay(5);
569 break;
570 }
571 }
572
573 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
574 ret = -EBUSY;
575 else
576 ret = 0;
577
578 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
579 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
580 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
581
582 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
583 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
584
585 udelay(40);
586 }
587
588 return ret;
589 }
590
591 static void
592 bnx2_disable_int(struct bnx2 *bp)
593 {
594 int i;
595 struct bnx2_napi *bnapi;
596
597 for (i = 0; i < bp->irq_nvecs; i++) {
598 bnapi = &bp->bnx2_napi[i];
599 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
600 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
601 }
602 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
603 }
604
605 static void
606 bnx2_enable_int(struct bnx2 *bp)
607 {
608 int i;
609 struct bnx2_napi *bnapi;
610
611 for (i = 0; i < bp->irq_nvecs; i++) {
612 bnapi = &bp->bnx2_napi[i];
613
614 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
615 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
616 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
617 bnapi->last_status_idx);
618
619 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
620 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
621 bnapi->last_status_idx);
622 }
623 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
624 }
625
626 static void
627 bnx2_disable_int_sync(struct bnx2 *bp)
628 {
629 int i;
630
631 atomic_inc(&bp->intr_sem);
632 if (!netif_running(bp->dev))
633 return;
634
635 bnx2_disable_int(bp);
636 for (i = 0; i < bp->irq_nvecs; i++)
637 synchronize_irq(bp->irq_tbl[i].vector);
638 }
639
640 static void
641 bnx2_napi_disable(struct bnx2 *bp)
642 {
643 int i;
644
645 for (i = 0; i < bp->irq_nvecs; i++)
646 napi_disable(&bp->bnx2_napi[i].napi);
647 }
648
649 static void
650 bnx2_napi_enable(struct bnx2 *bp)
651 {
652 int i;
653
654 for (i = 0; i < bp->irq_nvecs; i++)
655 napi_enable(&bp->bnx2_napi[i].napi);
656 }
657
658 static void
659 bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
660 {
661 if (stop_cnic)
662 bnx2_cnic_stop(bp);
663 if (netif_running(bp->dev)) {
664 bnx2_napi_disable(bp);
665 netif_tx_disable(bp->dev);
666 }
667 bnx2_disable_int_sync(bp);
668 netif_carrier_off(bp->dev); /* prevent tx timeout */
669 }
670
671 static void
672 bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
673 {
674 if (atomic_dec_and_test(&bp->intr_sem)) {
675 if (netif_running(bp->dev)) {
676 netif_tx_wake_all_queues(bp->dev);
677 spin_lock_bh(&bp->phy_lock);
678 if (bp->link_up)
679 netif_carrier_on(bp->dev);
680 spin_unlock_bh(&bp->phy_lock);
681 bnx2_napi_enable(bp);
682 bnx2_enable_int(bp);
683 if (start_cnic)
684 bnx2_cnic_start(bp);
685 }
686 }
687 }
688
689 static void
690 bnx2_free_tx_mem(struct bnx2 *bp)
691 {
692 int i;
693
694 for (i = 0; i < bp->num_tx_rings; i++) {
695 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
696 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
697
698 if (txr->tx_desc_ring) {
699 dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
700 txr->tx_desc_ring,
701 txr->tx_desc_mapping);
702 txr->tx_desc_ring = NULL;
703 }
704 kfree(txr->tx_buf_ring);
705 txr->tx_buf_ring = NULL;
706 }
707 }
708
709 static void
710 bnx2_free_rx_mem(struct bnx2 *bp)
711 {
712 int i;
713
714 for (i = 0; i < bp->num_rx_rings; i++) {
715 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
716 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
717 int j;
718
719 for (j = 0; j < bp->rx_max_ring; j++) {
720 if (rxr->rx_desc_ring[j])
721 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
722 rxr->rx_desc_ring[j],
723 rxr->rx_desc_mapping[j]);
724 rxr->rx_desc_ring[j] = NULL;
725 }
726 vfree(rxr->rx_buf_ring);
727 rxr->rx_buf_ring = NULL;
728
729 for (j = 0; j < bp->rx_max_pg_ring; j++) {
730 if (rxr->rx_pg_desc_ring[j])
731 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
732 rxr->rx_pg_desc_ring[j],
733 rxr->rx_pg_desc_mapping[j]);
734 rxr->rx_pg_desc_ring[j] = NULL;
735 }
736 vfree(rxr->rx_pg_ring);
737 rxr->rx_pg_ring = NULL;
738 }
739 }
740
741 static int
742 bnx2_alloc_tx_mem(struct bnx2 *bp)
743 {
744 int i;
745
746 for (i = 0; i < bp->num_tx_rings; i++) {
747 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
748 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
749
750 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
751 if (txr->tx_buf_ring == NULL)
752 return -ENOMEM;
753
754 txr->tx_desc_ring =
755 dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
756 &txr->tx_desc_mapping, GFP_KERNEL);
757 if (txr->tx_desc_ring == NULL)
758 return -ENOMEM;
759 }
760 return 0;
761 }
762
763 static int
764 bnx2_alloc_rx_mem(struct bnx2 *bp)
765 {
766 int i;
767
768 for (i = 0; i < bp->num_rx_rings; i++) {
769 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
770 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
771 int j;
772
773 rxr->rx_buf_ring =
774 vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
775 if (rxr->rx_buf_ring == NULL)
776 return -ENOMEM;
777
778 for (j = 0; j < bp->rx_max_ring; j++) {
779 rxr->rx_desc_ring[j] =
780 dma_alloc_coherent(&bp->pdev->dev,
781 RXBD_RING_SIZE,
782 &rxr->rx_desc_mapping[j],
783 GFP_KERNEL);
784 if (rxr->rx_desc_ring[j] == NULL)
785 return -ENOMEM;
786
787 }
788
789 if (bp->rx_pg_ring_size) {
790 rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
791 bp->rx_max_pg_ring);
792 if (rxr->rx_pg_ring == NULL)
793 return -ENOMEM;
794
795 }
796
797 for (j = 0; j < bp->rx_max_pg_ring; j++) {
798 rxr->rx_pg_desc_ring[j] =
799 dma_alloc_coherent(&bp->pdev->dev,
800 RXBD_RING_SIZE,
801 &rxr->rx_pg_desc_mapping[j],
802 GFP_KERNEL);
803 if (rxr->rx_pg_desc_ring[j] == NULL)
804 return -ENOMEM;
805
806 }
807 }
808 return 0;
809 }
810
811 static void
812 bnx2_free_mem(struct bnx2 *bp)
813 {
814 int i;
815 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
816
817 bnx2_free_tx_mem(bp);
818 bnx2_free_rx_mem(bp);
819
820 for (i = 0; i < bp->ctx_pages; i++) {
821 if (bp->ctx_blk[i]) {
822 dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE,
823 bp->ctx_blk[i],
824 bp->ctx_blk_mapping[i]);
825 bp->ctx_blk[i] = NULL;
826 }
827 }
828 if (bnapi->status_blk.msi) {
829 dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
830 bnapi->status_blk.msi,
831 bp->status_blk_mapping);
832 bnapi->status_blk.msi = NULL;
833 bp->stats_blk = NULL;
834 }
835 }
836
837 static int
838 bnx2_alloc_mem(struct bnx2 *bp)
839 {
840 int i, status_blk_size, err;
841 struct bnx2_napi *bnapi;
842 void *status_blk;
843
844 /* Combine status and statistics blocks into one allocation. */
845 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
846 if (bp->flags & BNX2_FLAG_MSIX_CAP)
847 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
848 BNX2_SBLK_MSIX_ALIGN_SIZE);
849 bp->status_stats_size = status_blk_size +
850 sizeof(struct statistics_block);
851
852 status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
853 &bp->status_blk_mapping, GFP_KERNEL);
854 if (status_blk == NULL)
855 goto alloc_mem_err;
856
857 memset(status_blk, 0, bp->status_stats_size);
858
859 bnapi = &bp->bnx2_napi[0];
860 bnapi->status_blk.msi = status_blk;
861 bnapi->hw_tx_cons_ptr =
862 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
863 bnapi->hw_rx_cons_ptr =
864 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
865 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
866 for (i = 1; i < bp->irq_nvecs; i++) {
867 struct status_block_msix *sblk;
868
869 bnapi = &bp->bnx2_napi[i];
870
871 sblk = (void *) (status_blk +
872 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
873 bnapi->status_blk.msix = sblk;
874 bnapi->hw_tx_cons_ptr =
875 &sblk->status_tx_quick_consumer_index;
876 bnapi->hw_rx_cons_ptr =
877 &sblk->status_rx_quick_consumer_index;
878 bnapi->int_num = i << 24;
879 }
880 }
881
882 bp->stats_blk = status_blk + status_blk_size;
883
884 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
885
886 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
887 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
888 if (bp->ctx_pages == 0)
889 bp->ctx_pages = 1;
890 for (i = 0; i < bp->ctx_pages; i++) {
891 bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
892 BCM_PAGE_SIZE,
893 &bp->ctx_blk_mapping[i],
894 GFP_KERNEL);
895 if (bp->ctx_blk[i] == NULL)
896 goto alloc_mem_err;
897 }
898 }
899
900 err = bnx2_alloc_rx_mem(bp);
901 if (err)
902 goto alloc_mem_err;
903
904 err = bnx2_alloc_tx_mem(bp);
905 if (err)
906 goto alloc_mem_err;
907
908 return 0;
909
910 alloc_mem_err:
911 bnx2_free_mem(bp);
912 return -ENOMEM;
913 }
914
915 static void
916 bnx2_report_fw_link(struct bnx2 *bp)
917 {
918 u32 fw_link_status = 0;
919
920 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
921 return;
922
923 if (bp->link_up) {
924 u32 bmsr;
925
926 switch (bp->line_speed) {
927 case SPEED_10:
928 if (bp->duplex == DUPLEX_HALF)
929 fw_link_status = BNX2_LINK_STATUS_10HALF;
930 else
931 fw_link_status = BNX2_LINK_STATUS_10FULL;
932 break;
933 case SPEED_100:
934 if (bp->duplex == DUPLEX_HALF)
935 fw_link_status = BNX2_LINK_STATUS_100HALF;
936 else
937 fw_link_status = BNX2_LINK_STATUS_100FULL;
938 break;
939 case SPEED_1000:
940 if (bp->duplex == DUPLEX_HALF)
941 fw_link_status = BNX2_LINK_STATUS_1000HALF;
942 else
943 fw_link_status = BNX2_LINK_STATUS_1000FULL;
944 break;
945 case SPEED_2500:
946 if (bp->duplex == DUPLEX_HALF)
947 fw_link_status = BNX2_LINK_STATUS_2500HALF;
948 else
949 fw_link_status = BNX2_LINK_STATUS_2500FULL;
950 break;
951 }
952
953 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
954
955 if (bp->autoneg) {
956 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
957
958 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
959 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
960
961 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
962 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
963 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
964 else
965 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
966 }
967 }
968 else
969 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
970
971 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
972 }
973
974 static char *
975 bnx2_xceiver_str(struct bnx2 *bp)
976 {
977 return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
978 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
979 "Copper");
980 }
981
982 static void
983 bnx2_report_link(struct bnx2 *bp)
984 {
985 if (bp->link_up) {
986 netif_carrier_on(bp->dev);
987 netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
988 bnx2_xceiver_str(bp),
989 bp->line_speed,
990 bp->duplex == DUPLEX_FULL ? "full" : "half");
991
992 if (bp->flow_ctrl) {
993 if (bp->flow_ctrl & FLOW_CTRL_RX) {
994 pr_cont(", receive ");
995 if (bp->flow_ctrl & FLOW_CTRL_TX)
996 pr_cont("& transmit ");
997 }
998 else {
999 pr_cont(", transmit ");
1000 }
1001 pr_cont("flow control ON");
1002 }
1003 pr_cont("\n");
1004 } else {
1005 netif_carrier_off(bp->dev);
1006 netdev_err(bp->dev, "NIC %s Link is Down\n",
1007 bnx2_xceiver_str(bp));
1008 }
1009
1010 bnx2_report_fw_link(bp);
1011 }
1012
1013 static void
1014 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1015 {
1016 u32 local_adv, remote_adv;
1017
1018 bp->flow_ctrl = 0;
1019 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1020 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1021
1022 if (bp->duplex == DUPLEX_FULL) {
1023 bp->flow_ctrl = bp->req_flow_ctrl;
1024 }
1025 return;
1026 }
1027
1028 if (bp->duplex != DUPLEX_FULL) {
1029 return;
1030 }
1031
1032 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1033 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1034 u32 val;
1035
1036 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1037 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1038 bp->flow_ctrl |= FLOW_CTRL_TX;
1039 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1040 bp->flow_ctrl |= FLOW_CTRL_RX;
1041 return;
1042 }
1043
1044 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1045 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1046
1047 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1048 u32 new_local_adv = 0;
1049 u32 new_remote_adv = 0;
1050
1051 if (local_adv & ADVERTISE_1000XPAUSE)
1052 new_local_adv |= ADVERTISE_PAUSE_CAP;
1053 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1054 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1055 if (remote_adv & ADVERTISE_1000XPAUSE)
1056 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1057 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1058 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1059
1060 local_adv = new_local_adv;
1061 remote_adv = new_remote_adv;
1062 }
1063
1064 /* See Table 28B-3 of 802.3ab-1999 spec. */
1065 if (local_adv & ADVERTISE_PAUSE_CAP) {
1066 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1067 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1068 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1069 }
1070 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1071 bp->flow_ctrl = FLOW_CTRL_RX;
1072 }
1073 }
1074 else {
1075 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1076 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1077 }
1078 }
1079 }
1080 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1081 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1082 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1083
1084 bp->flow_ctrl = FLOW_CTRL_TX;
1085 }
1086 }
1087 }
1088
1089 static int
1090 bnx2_5709s_linkup(struct bnx2 *bp)
1091 {
1092 u32 val, speed;
1093
1094 bp->link_up = 1;
1095
1096 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1097 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1098 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1099
1100 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1101 bp->line_speed = bp->req_line_speed;
1102 bp->duplex = bp->req_duplex;
1103 return 0;
1104 }
1105 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1106 switch (speed) {
1107 case MII_BNX2_GP_TOP_AN_SPEED_10:
1108 bp->line_speed = SPEED_10;
1109 break;
1110 case MII_BNX2_GP_TOP_AN_SPEED_100:
1111 bp->line_speed = SPEED_100;
1112 break;
1113 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1114 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1115 bp->line_speed = SPEED_1000;
1116 break;
1117 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1118 bp->line_speed = SPEED_2500;
1119 break;
1120 }
1121 if (val & MII_BNX2_GP_TOP_AN_FD)
1122 bp->duplex = DUPLEX_FULL;
1123 else
1124 bp->duplex = DUPLEX_HALF;
1125 return 0;
1126 }
1127
1128 static int
1129 bnx2_5708s_linkup(struct bnx2 *bp)
1130 {
1131 u32 val;
1132
1133 bp->link_up = 1;
1134 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1135 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1136 case BCM5708S_1000X_STAT1_SPEED_10:
1137 bp->line_speed = SPEED_10;
1138 break;
1139 case BCM5708S_1000X_STAT1_SPEED_100:
1140 bp->line_speed = SPEED_100;
1141 break;
1142 case BCM5708S_1000X_STAT1_SPEED_1G:
1143 bp->line_speed = SPEED_1000;
1144 break;
1145 case BCM5708S_1000X_STAT1_SPEED_2G5:
1146 bp->line_speed = SPEED_2500;
1147 break;
1148 }
1149 if (val & BCM5708S_1000X_STAT1_FD)
1150 bp->duplex = DUPLEX_FULL;
1151 else
1152 bp->duplex = DUPLEX_HALF;
1153
1154 return 0;
1155 }
1156
1157 static int
1158 bnx2_5706s_linkup(struct bnx2 *bp)
1159 {
1160 u32 bmcr, local_adv, remote_adv, common;
1161
1162 bp->link_up = 1;
1163 bp->line_speed = SPEED_1000;
1164
1165 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1166 if (bmcr & BMCR_FULLDPLX) {
1167 bp->duplex = DUPLEX_FULL;
1168 }
1169 else {
1170 bp->duplex = DUPLEX_HALF;
1171 }
1172
1173 if (!(bmcr & BMCR_ANENABLE)) {
1174 return 0;
1175 }
1176
1177 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1178 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1179
1180 common = local_adv & remote_adv;
1181 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1182
1183 if (common & ADVERTISE_1000XFULL) {
1184 bp->duplex = DUPLEX_FULL;
1185 }
1186 else {
1187 bp->duplex = DUPLEX_HALF;
1188 }
1189 }
1190
1191 return 0;
1192 }
1193
1194 static int
1195 bnx2_copper_linkup(struct bnx2 *bp)
1196 {
1197 u32 bmcr;
1198
1199 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1200 if (bmcr & BMCR_ANENABLE) {
1201 u32 local_adv, remote_adv, common;
1202
1203 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1204 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1205
1206 common = local_adv & (remote_adv >> 2);
1207 if (common & ADVERTISE_1000FULL) {
1208 bp->line_speed = SPEED_1000;
1209 bp->duplex = DUPLEX_FULL;
1210 }
1211 else if (common & ADVERTISE_1000HALF) {
1212 bp->line_speed = SPEED_1000;
1213 bp->duplex = DUPLEX_HALF;
1214 }
1215 else {
1216 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1217 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1218
1219 common = local_adv & remote_adv;
1220 if (common & ADVERTISE_100FULL) {
1221 bp->line_speed = SPEED_100;
1222 bp->duplex = DUPLEX_FULL;
1223 }
1224 else if (common & ADVERTISE_100HALF) {
1225 bp->line_speed = SPEED_100;
1226 bp->duplex = DUPLEX_HALF;
1227 }
1228 else if (common & ADVERTISE_10FULL) {
1229 bp->line_speed = SPEED_10;
1230 bp->duplex = DUPLEX_FULL;
1231 }
1232 else if (common & ADVERTISE_10HALF) {
1233 bp->line_speed = SPEED_10;
1234 bp->duplex = DUPLEX_HALF;
1235 }
1236 else {
1237 bp->line_speed = 0;
1238 bp->link_up = 0;
1239 }
1240 }
1241 }
1242 else {
1243 if (bmcr & BMCR_SPEED100) {
1244 bp->line_speed = SPEED_100;
1245 }
1246 else {
1247 bp->line_speed = SPEED_10;
1248 }
1249 if (bmcr & BMCR_FULLDPLX) {
1250 bp->duplex = DUPLEX_FULL;
1251 }
1252 else {
1253 bp->duplex = DUPLEX_HALF;
1254 }
1255 }
1256
1257 return 0;
1258 }
1259
1260 static void
1261 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1262 {
1263 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1264
1265 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1266 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1267 val |= 0x02 << 8;
1268
1269 if (bp->flow_ctrl & FLOW_CTRL_TX)
1270 val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
1271
1272 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1273 }
1274
1275 static void
1276 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1277 {
1278 int i;
1279 u32 cid;
1280
1281 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1282 if (i == 1)
1283 cid = RX_RSS_CID;
1284 bnx2_init_rx_context(bp, cid);
1285 }
1286 }
1287
1288 static void
1289 bnx2_set_mac_link(struct bnx2 *bp)
1290 {
1291 u32 val;
1292
1293 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1294 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1295 (bp->duplex == DUPLEX_HALF)) {
1296 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1297 }
1298
1299 /* Configure the EMAC mode register. */
1300 val = REG_RD(bp, BNX2_EMAC_MODE);
1301
1302 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1303 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1304 BNX2_EMAC_MODE_25G_MODE);
1305
1306 if (bp->link_up) {
1307 switch (bp->line_speed) {
1308 case SPEED_10:
1309 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1310 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1311 break;
1312 }
1313 /* fall through */
1314 case SPEED_100:
1315 val |= BNX2_EMAC_MODE_PORT_MII;
1316 break;
1317 case SPEED_2500:
1318 val |= BNX2_EMAC_MODE_25G_MODE;
1319 /* fall through */
1320 case SPEED_1000:
1321 val |= BNX2_EMAC_MODE_PORT_GMII;
1322 break;
1323 }
1324 }
1325 else {
1326 val |= BNX2_EMAC_MODE_PORT_GMII;
1327 }
1328
1329 /* Set the MAC to operate in the appropriate duplex mode. */
1330 if (bp->duplex == DUPLEX_HALF)
1331 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1332 REG_WR(bp, BNX2_EMAC_MODE, val);
1333
1334 /* Enable/disable rx PAUSE. */
1335 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1336
1337 if (bp->flow_ctrl & FLOW_CTRL_RX)
1338 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1339 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1340
1341 /* Enable/disable tx PAUSE. */
1342 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1343 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1344
1345 if (bp->flow_ctrl & FLOW_CTRL_TX)
1346 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1347 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1348
1349 /* Acknowledge the interrupt. */
1350 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1351
1352 bnx2_init_all_rx_contexts(bp);
1353 }
1354
1355 static void
1356 bnx2_enable_bmsr1(struct bnx2 *bp)
1357 {
1358 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1359 (CHIP_NUM(bp) == CHIP_NUM_5709))
1360 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1361 MII_BNX2_BLK_ADDR_GP_STATUS);
1362 }
1363
1364 static void
1365 bnx2_disable_bmsr1(struct bnx2 *bp)
1366 {
1367 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1368 (CHIP_NUM(bp) == CHIP_NUM_5709))
1369 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1370 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1371 }
1372
1373 static int
1374 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1375 {
1376 u32 up1;
1377 int ret = 1;
1378
1379 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1380 return 0;
1381
1382 if (bp->autoneg & AUTONEG_SPEED)
1383 bp->advertising |= ADVERTISED_2500baseX_Full;
1384
1385 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1386 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1387
1388 bnx2_read_phy(bp, bp->mii_up1, &up1);
1389 if (!(up1 & BCM5708S_UP1_2G5)) {
1390 up1 |= BCM5708S_UP1_2G5;
1391 bnx2_write_phy(bp, bp->mii_up1, up1);
1392 ret = 0;
1393 }
1394
1395 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1396 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1397 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1398
1399 return ret;
1400 }
1401
1402 static int
1403 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1404 {
1405 u32 up1;
1406 int ret = 0;
1407
1408 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1409 return 0;
1410
1411 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1412 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1413
1414 bnx2_read_phy(bp, bp->mii_up1, &up1);
1415 if (up1 & BCM5708S_UP1_2G5) {
1416 up1 &= ~BCM5708S_UP1_2G5;
1417 bnx2_write_phy(bp, bp->mii_up1, up1);
1418 ret = 1;
1419 }
1420
1421 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1422 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1423 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1424
1425 return ret;
1426 }
1427
1428 static void
1429 bnx2_enable_forced_2g5(struct bnx2 *bp)
1430 {
1431 u32 uninitialized_var(bmcr);
1432 int err;
1433
1434 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1435 return;
1436
1437 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1438 u32 val;
1439
1440 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1441 MII_BNX2_BLK_ADDR_SERDES_DIG);
1442 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1443 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1444 val |= MII_BNX2_SD_MISC1_FORCE |
1445 MII_BNX2_SD_MISC1_FORCE_2_5G;
1446 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1447 }
1448
1449 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1450 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1451 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1452
1453 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1454 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1455 if (!err)
1456 bmcr |= BCM5708S_BMCR_FORCE_2500;
1457 } else {
1458 return;
1459 }
1460
1461 if (err)
1462 return;
1463
1464 if (bp->autoneg & AUTONEG_SPEED) {
1465 bmcr &= ~BMCR_ANENABLE;
1466 if (bp->req_duplex == DUPLEX_FULL)
1467 bmcr |= BMCR_FULLDPLX;
1468 }
1469 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1470 }
1471
1472 static void
1473 bnx2_disable_forced_2g5(struct bnx2 *bp)
1474 {
1475 u32 uninitialized_var(bmcr);
1476 int err;
1477
1478 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1479 return;
1480
1481 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1482 u32 val;
1483
1484 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1485 MII_BNX2_BLK_ADDR_SERDES_DIG);
1486 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1487 val &= ~MII_BNX2_SD_MISC1_FORCE;
1488 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1489 }
1490
1491 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1492 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1493 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1494
1495 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1496 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1497 if (!err)
1498 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1499 } else {
1500 return;
1501 }
1502
1503 if (err)
1504 return;
1505
1506 if (bp->autoneg & AUTONEG_SPEED)
1507 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1508 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1509 }
1510
1511 static void
1512 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1513 {
1514 u32 val;
1515
1516 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1517 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1518 if (start)
1519 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1520 else
1521 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1522 }
1523
1524 static int
1525 bnx2_set_link(struct bnx2 *bp)
1526 {
1527 u32 bmsr;
1528 u8 link_up;
1529
1530 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1531 bp->link_up = 1;
1532 return 0;
1533 }
1534
1535 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1536 return 0;
1537
1538 link_up = bp->link_up;
1539
1540 bnx2_enable_bmsr1(bp);
1541 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1542 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1543 bnx2_disable_bmsr1(bp);
1544
1545 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1546 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1547 u32 val, an_dbg;
1548
1549 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1550 bnx2_5706s_force_link_dn(bp, 0);
1551 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1552 }
1553 val = REG_RD(bp, BNX2_EMAC_STATUS);
1554
1555 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1556 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1557 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1558
1559 if ((val & BNX2_EMAC_STATUS_LINK) &&
1560 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1561 bmsr |= BMSR_LSTATUS;
1562 else
1563 bmsr &= ~BMSR_LSTATUS;
1564 }
1565
1566 if (bmsr & BMSR_LSTATUS) {
1567 bp->link_up = 1;
1568
1569 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1570 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1571 bnx2_5706s_linkup(bp);
1572 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1573 bnx2_5708s_linkup(bp);
1574 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1575 bnx2_5709s_linkup(bp);
1576 }
1577 else {
1578 bnx2_copper_linkup(bp);
1579 }
1580 bnx2_resolve_flow_ctrl(bp);
1581 }
1582 else {
1583 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1584 (bp->autoneg & AUTONEG_SPEED))
1585 bnx2_disable_forced_2g5(bp);
1586
1587 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1588 u32 bmcr;
1589
1590 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1591 bmcr |= BMCR_ANENABLE;
1592 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1593
1594 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1595 }
1596 bp->link_up = 0;
1597 }
1598
1599 if (bp->link_up != link_up) {
1600 bnx2_report_link(bp);
1601 }
1602
1603 bnx2_set_mac_link(bp);
1604
1605 return 0;
1606 }
1607
1608 static int
1609 bnx2_reset_phy(struct bnx2 *bp)
1610 {
1611 int i;
1612 u32 reg;
1613
1614 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1615
1616 #define PHY_RESET_MAX_WAIT 100
1617 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1618 udelay(10);
1619
1620 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1621 if (!(reg & BMCR_RESET)) {
1622 udelay(20);
1623 break;
1624 }
1625 }
1626 if (i == PHY_RESET_MAX_WAIT) {
1627 return -EBUSY;
1628 }
1629 return 0;
1630 }
1631
1632 static u32
1633 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1634 {
1635 u32 adv = 0;
1636
1637 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1638 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1639
1640 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1641 adv = ADVERTISE_1000XPAUSE;
1642 }
1643 else {
1644 adv = ADVERTISE_PAUSE_CAP;
1645 }
1646 }
1647 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1648 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1649 adv = ADVERTISE_1000XPSE_ASYM;
1650 }
1651 else {
1652 adv = ADVERTISE_PAUSE_ASYM;
1653 }
1654 }
1655 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1656 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1657 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1658 }
1659 else {
1660 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1661 }
1662 }
1663 return adv;
1664 }
1665
1666 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1667
1668 static int
1669 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1670 __releases(&bp->phy_lock)
1671 __acquires(&bp->phy_lock)
1672 {
1673 u32 speed_arg = 0, pause_adv;
1674
1675 pause_adv = bnx2_phy_get_pause_adv(bp);
1676
1677 if (bp->autoneg & AUTONEG_SPEED) {
1678 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1679 if (bp->advertising & ADVERTISED_10baseT_Half)
1680 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1681 if (bp->advertising & ADVERTISED_10baseT_Full)
1682 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1683 if (bp->advertising & ADVERTISED_100baseT_Half)
1684 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1685 if (bp->advertising & ADVERTISED_100baseT_Full)
1686 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1687 if (bp->advertising & ADVERTISED_1000baseT_Full)
1688 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1689 if (bp->advertising & ADVERTISED_2500baseX_Full)
1690 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1691 } else {
1692 if (bp->req_line_speed == SPEED_2500)
1693 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1694 else if (bp->req_line_speed == SPEED_1000)
1695 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1696 else if (bp->req_line_speed == SPEED_100) {
1697 if (bp->req_duplex == DUPLEX_FULL)
1698 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1699 else
1700 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1701 } else if (bp->req_line_speed == SPEED_10) {
1702 if (bp->req_duplex == DUPLEX_FULL)
1703 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1704 else
1705 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1706 }
1707 }
1708
1709 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1710 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1711 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1712 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1713
1714 if (port == PORT_TP)
1715 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1716 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1717
1718 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1719
1720 spin_unlock_bh(&bp->phy_lock);
1721 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1722 spin_lock_bh(&bp->phy_lock);
1723
1724 return 0;
1725 }
1726
1727 static int
1728 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1729 __releases(&bp->phy_lock)
1730 __acquires(&bp->phy_lock)
1731 {
1732 u32 adv, bmcr;
1733 u32 new_adv = 0;
1734
1735 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1736 return bnx2_setup_remote_phy(bp, port);
1737
1738 if (!(bp->autoneg & AUTONEG_SPEED)) {
1739 u32 new_bmcr;
1740 int force_link_down = 0;
1741
1742 if (bp->req_line_speed == SPEED_2500) {
1743 if (!bnx2_test_and_enable_2g5(bp))
1744 force_link_down = 1;
1745 } else if (bp->req_line_speed == SPEED_1000) {
1746 if (bnx2_test_and_disable_2g5(bp))
1747 force_link_down = 1;
1748 }
1749 bnx2_read_phy(bp, bp->mii_adv, &adv);
1750 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1751
1752 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1753 new_bmcr = bmcr & ~BMCR_ANENABLE;
1754 new_bmcr |= BMCR_SPEED1000;
1755
1756 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1757 if (bp->req_line_speed == SPEED_2500)
1758 bnx2_enable_forced_2g5(bp);
1759 else if (bp->req_line_speed == SPEED_1000) {
1760 bnx2_disable_forced_2g5(bp);
1761 new_bmcr &= ~0x2000;
1762 }
1763
1764 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1765 if (bp->req_line_speed == SPEED_2500)
1766 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1767 else
1768 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1769 }
1770
1771 if (bp->req_duplex == DUPLEX_FULL) {
1772 adv |= ADVERTISE_1000XFULL;
1773 new_bmcr |= BMCR_FULLDPLX;
1774 }
1775 else {
1776 adv |= ADVERTISE_1000XHALF;
1777 new_bmcr &= ~BMCR_FULLDPLX;
1778 }
1779 if ((new_bmcr != bmcr) || (force_link_down)) {
1780 /* Force a link down visible on the other side */
1781 if (bp->link_up) {
1782 bnx2_write_phy(bp, bp->mii_adv, adv &
1783 ~(ADVERTISE_1000XFULL |
1784 ADVERTISE_1000XHALF));
1785 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1786 BMCR_ANRESTART | BMCR_ANENABLE);
1787
1788 bp->link_up = 0;
1789 netif_carrier_off(bp->dev);
1790 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1791 bnx2_report_link(bp);
1792 }
1793 bnx2_write_phy(bp, bp->mii_adv, adv);
1794 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1795 } else {
1796 bnx2_resolve_flow_ctrl(bp);
1797 bnx2_set_mac_link(bp);
1798 }
1799 return 0;
1800 }
1801
1802 bnx2_test_and_enable_2g5(bp);
1803
1804 if (bp->advertising & ADVERTISED_1000baseT_Full)
1805 new_adv |= ADVERTISE_1000XFULL;
1806
1807 new_adv |= bnx2_phy_get_pause_adv(bp);
1808
1809 bnx2_read_phy(bp, bp->mii_adv, &adv);
1810 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1811
1812 bp->serdes_an_pending = 0;
1813 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1814 /* Force a link down visible on the other side */
1815 if (bp->link_up) {
1816 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1817 spin_unlock_bh(&bp->phy_lock);
1818 msleep(20);
1819 spin_lock_bh(&bp->phy_lock);
1820 }
1821
1822 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1823 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1824 BMCR_ANENABLE);
1825 /* Speed up link-up time when the link partner
1826 * does not autonegotiate which is very common
1827 * in blade servers. Some blade servers use
1828 * IPMI for kerboard input and it's important
1829 * to minimize link disruptions. Autoneg. involves
1830 * exchanging base pages plus 3 next pages and
1831 * normally completes in about 120 msec.
1832 */
1833 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1834 bp->serdes_an_pending = 1;
1835 mod_timer(&bp->timer, jiffies + bp->current_interval);
1836 } else {
1837 bnx2_resolve_flow_ctrl(bp);
1838 bnx2_set_mac_link(bp);
1839 }
1840
1841 return 0;
1842 }
1843
1844 #define ETHTOOL_ALL_FIBRE_SPEED \
1845 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1846 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1847 (ADVERTISED_1000baseT_Full)
1848
1849 #define ETHTOOL_ALL_COPPER_SPEED \
1850 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1851 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1852 ADVERTISED_1000baseT_Full)
1853
1854 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1855 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1856
1857 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1858
1859 static void
1860 bnx2_set_default_remote_link(struct bnx2 *bp)
1861 {
1862 u32 link;
1863
1864 if (bp->phy_port == PORT_TP)
1865 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1866 else
1867 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1868
1869 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1870 bp->req_line_speed = 0;
1871 bp->autoneg |= AUTONEG_SPEED;
1872 bp->advertising = ADVERTISED_Autoneg;
1873 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1874 bp->advertising |= ADVERTISED_10baseT_Half;
1875 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1876 bp->advertising |= ADVERTISED_10baseT_Full;
1877 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1878 bp->advertising |= ADVERTISED_100baseT_Half;
1879 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1880 bp->advertising |= ADVERTISED_100baseT_Full;
1881 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1882 bp->advertising |= ADVERTISED_1000baseT_Full;
1883 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1884 bp->advertising |= ADVERTISED_2500baseX_Full;
1885 } else {
1886 bp->autoneg = 0;
1887 bp->advertising = 0;
1888 bp->req_duplex = DUPLEX_FULL;
1889 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1890 bp->req_line_speed = SPEED_10;
1891 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1892 bp->req_duplex = DUPLEX_HALF;
1893 }
1894 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1895 bp->req_line_speed = SPEED_100;
1896 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1897 bp->req_duplex = DUPLEX_HALF;
1898 }
1899 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1900 bp->req_line_speed = SPEED_1000;
1901 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1902 bp->req_line_speed = SPEED_2500;
1903 }
1904 }
1905
1906 static void
1907 bnx2_set_default_link(struct bnx2 *bp)
1908 {
1909 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1910 bnx2_set_default_remote_link(bp);
1911 return;
1912 }
1913
1914 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1915 bp->req_line_speed = 0;
1916 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1917 u32 reg;
1918
1919 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1920
1921 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1922 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1923 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1924 bp->autoneg = 0;
1925 bp->req_line_speed = bp->line_speed = SPEED_1000;
1926 bp->req_duplex = DUPLEX_FULL;
1927 }
1928 } else
1929 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1930 }
1931
1932 static void
1933 bnx2_send_heart_beat(struct bnx2 *bp)
1934 {
1935 u32 msg;
1936 u32 addr;
1937
1938 spin_lock(&bp->indirect_lock);
1939 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1940 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1941 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1942 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1943 spin_unlock(&bp->indirect_lock);
1944 }
1945
1946 static void
1947 bnx2_remote_phy_event(struct bnx2 *bp)
1948 {
1949 u32 msg;
1950 u8 link_up = bp->link_up;
1951 u8 old_port;
1952
1953 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1954
1955 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1956 bnx2_send_heart_beat(bp);
1957
1958 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1959
1960 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1961 bp->link_up = 0;
1962 else {
1963 u32 speed;
1964
1965 bp->link_up = 1;
1966 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1967 bp->duplex = DUPLEX_FULL;
1968 switch (speed) {
1969 case BNX2_LINK_STATUS_10HALF:
1970 bp->duplex = DUPLEX_HALF;
1971 case BNX2_LINK_STATUS_10FULL:
1972 bp->line_speed = SPEED_10;
1973 break;
1974 case BNX2_LINK_STATUS_100HALF:
1975 bp->duplex = DUPLEX_HALF;
1976 case BNX2_LINK_STATUS_100BASE_T4:
1977 case BNX2_LINK_STATUS_100FULL:
1978 bp->line_speed = SPEED_100;
1979 break;
1980 case BNX2_LINK_STATUS_1000HALF:
1981 bp->duplex = DUPLEX_HALF;
1982 case BNX2_LINK_STATUS_1000FULL:
1983 bp->line_speed = SPEED_1000;
1984 break;
1985 case BNX2_LINK_STATUS_2500HALF:
1986 bp->duplex = DUPLEX_HALF;
1987 case BNX2_LINK_STATUS_2500FULL:
1988 bp->line_speed = SPEED_2500;
1989 break;
1990 default:
1991 bp->line_speed = 0;
1992 break;
1993 }
1994
1995 bp->flow_ctrl = 0;
1996 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1997 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1998 if (bp->duplex == DUPLEX_FULL)
1999 bp->flow_ctrl = bp->req_flow_ctrl;
2000 } else {
2001 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
2002 bp->flow_ctrl |= FLOW_CTRL_TX;
2003 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2004 bp->flow_ctrl |= FLOW_CTRL_RX;
2005 }
2006
2007 old_port = bp->phy_port;
2008 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2009 bp->phy_port = PORT_FIBRE;
2010 else
2011 bp->phy_port = PORT_TP;
2012
2013 if (old_port != bp->phy_port)
2014 bnx2_set_default_link(bp);
2015
2016 }
2017 if (bp->link_up != link_up)
2018 bnx2_report_link(bp);
2019
2020 bnx2_set_mac_link(bp);
2021 }
2022
2023 static int
2024 bnx2_set_remote_link(struct bnx2 *bp)
2025 {
2026 u32 evt_code;
2027
2028 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2029 switch (evt_code) {
2030 case BNX2_FW_EVT_CODE_LINK_EVENT:
2031 bnx2_remote_phy_event(bp);
2032 break;
2033 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2034 default:
2035 bnx2_send_heart_beat(bp);
2036 break;
2037 }
2038 return 0;
2039 }
2040
2041 static int
2042 bnx2_setup_copper_phy(struct bnx2 *bp)
2043 __releases(&bp->phy_lock)
2044 __acquires(&bp->phy_lock)
2045 {
2046 u32 bmcr;
2047 u32 new_bmcr;
2048
2049 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2050
2051 if (bp->autoneg & AUTONEG_SPEED) {
2052 u32 adv_reg, adv1000_reg;
2053 u32 new_adv_reg = 0;
2054 u32 new_adv1000_reg = 0;
2055
2056 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2057 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2058 ADVERTISE_PAUSE_ASYM);
2059
2060 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2061 adv1000_reg &= PHY_ALL_1000_SPEED;
2062
2063 if (bp->advertising & ADVERTISED_10baseT_Half)
2064 new_adv_reg |= ADVERTISE_10HALF;
2065 if (bp->advertising & ADVERTISED_10baseT_Full)
2066 new_adv_reg |= ADVERTISE_10FULL;
2067 if (bp->advertising & ADVERTISED_100baseT_Half)
2068 new_adv_reg |= ADVERTISE_100HALF;
2069 if (bp->advertising & ADVERTISED_100baseT_Full)
2070 new_adv_reg |= ADVERTISE_100FULL;
2071 if (bp->advertising & ADVERTISED_1000baseT_Full)
2072 new_adv1000_reg |= ADVERTISE_1000FULL;
2073
2074 new_adv_reg |= ADVERTISE_CSMA;
2075
2076 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2077
2078 if ((adv1000_reg != new_adv1000_reg) ||
2079 (adv_reg != new_adv_reg) ||
2080 ((bmcr & BMCR_ANENABLE) == 0)) {
2081
2082 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2083 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2084 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2085 BMCR_ANENABLE);
2086 }
2087 else if (bp->link_up) {
2088 /* Flow ctrl may have changed from auto to forced */
2089 /* or vice-versa. */
2090
2091 bnx2_resolve_flow_ctrl(bp);
2092 bnx2_set_mac_link(bp);
2093 }
2094 return 0;
2095 }
2096
2097 new_bmcr = 0;
2098 if (bp->req_line_speed == SPEED_100) {
2099 new_bmcr |= BMCR_SPEED100;
2100 }
2101 if (bp->req_duplex == DUPLEX_FULL) {
2102 new_bmcr |= BMCR_FULLDPLX;
2103 }
2104 if (new_bmcr != bmcr) {
2105 u32 bmsr;
2106
2107 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2108 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2109
2110 if (bmsr & BMSR_LSTATUS) {
2111 /* Force link down */
2112 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2113 spin_unlock_bh(&bp->phy_lock);
2114 msleep(50);
2115 spin_lock_bh(&bp->phy_lock);
2116
2117 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2118 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2119 }
2120
2121 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2122
2123 /* Normally, the new speed is setup after the link has
2124 * gone down and up again. In some cases, link will not go
2125 * down so we need to set up the new speed here.
2126 */
2127 if (bmsr & BMSR_LSTATUS) {
2128 bp->line_speed = bp->req_line_speed;
2129 bp->duplex = bp->req_duplex;
2130 bnx2_resolve_flow_ctrl(bp);
2131 bnx2_set_mac_link(bp);
2132 }
2133 } else {
2134 bnx2_resolve_flow_ctrl(bp);
2135 bnx2_set_mac_link(bp);
2136 }
2137 return 0;
2138 }
2139
2140 static int
2141 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2142 __releases(&bp->phy_lock)
2143 __acquires(&bp->phy_lock)
2144 {
2145 if (bp->loopback == MAC_LOOPBACK)
2146 return 0;
2147
2148 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2149 return bnx2_setup_serdes_phy(bp, port);
2150 }
2151 else {
2152 return bnx2_setup_copper_phy(bp);
2153 }
2154 }
2155
2156 static int
2157 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2158 {
2159 u32 val;
2160
2161 bp->mii_bmcr = MII_BMCR + 0x10;
2162 bp->mii_bmsr = MII_BMSR + 0x10;
2163 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2164 bp->mii_adv = MII_ADVERTISE + 0x10;
2165 bp->mii_lpa = MII_LPA + 0x10;
2166 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2167
2168 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2169 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2170
2171 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2172 if (reset_phy)
2173 bnx2_reset_phy(bp);
2174
2175 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2176
2177 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2178 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2179 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2180 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2181
2182 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2183 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2184 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2185 val |= BCM5708S_UP1_2G5;
2186 else
2187 val &= ~BCM5708S_UP1_2G5;
2188 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2189
2190 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2191 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2192 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2193 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2194
2195 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2196
2197 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2198 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2199 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2200
2201 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2202
2203 return 0;
2204 }
2205
2206 static int
2207 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2208 {
2209 u32 val;
2210
2211 if (reset_phy)
2212 bnx2_reset_phy(bp);
2213
2214 bp->mii_up1 = BCM5708S_UP1;
2215
2216 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2217 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2218 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2219
2220 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2221 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2222 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2223
2224 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2225 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2226 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2227
2228 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2229 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2230 val |= BCM5708S_UP1_2G5;
2231 bnx2_write_phy(bp, BCM5708S_UP1, val);
2232 }
2233
2234 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2235 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2236 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2237 /* increase tx signal amplitude */
2238 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2239 BCM5708S_BLK_ADDR_TX_MISC);
2240 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2241 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2242 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2243 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2244 }
2245
2246 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2247 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2248
2249 if (val) {
2250 u32 is_backplane;
2251
2252 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2253 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2254 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2255 BCM5708S_BLK_ADDR_TX_MISC);
2256 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2257 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2258 BCM5708S_BLK_ADDR_DIG);
2259 }
2260 }
2261 return 0;
2262 }
2263
2264 static int
2265 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2266 {
2267 if (reset_phy)
2268 bnx2_reset_phy(bp);
2269
2270 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2271
2272 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2273 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2274
2275 if (bp->dev->mtu > 1500) {
2276 u32 val;
2277
2278 /* Set extended packet length bit */
2279 bnx2_write_phy(bp, 0x18, 0x7);
2280 bnx2_read_phy(bp, 0x18, &val);
2281 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2282
2283 bnx2_write_phy(bp, 0x1c, 0x6c00);
2284 bnx2_read_phy(bp, 0x1c, &val);
2285 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2286 }
2287 else {
2288 u32 val;
2289
2290 bnx2_write_phy(bp, 0x18, 0x7);
2291 bnx2_read_phy(bp, 0x18, &val);
2292 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2293
2294 bnx2_write_phy(bp, 0x1c, 0x6c00);
2295 bnx2_read_phy(bp, 0x1c, &val);
2296 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2297 }
2298
2299 return 0;
2300 }
2301
2302 static int
2303 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2304 {
2305 u32 val;
2306
2307 if (reset_phy)
2308 bnx2_reset_phy(bp);
2309
2310 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2311 bnx2_write_phy(bp, 0x18, 0x0c00);
2312 bnx2_write_phy(bp, 0x17, 0x000a);
2313 bnx2_write_phy(bp, 0x15, 0x310b);
2314 bnx2_write_phy(bp, 0x17, 0x201f);
2315 bnx2_write_phy(bp, 0x15, 0x9506);
2316 bnx2_write_phy(bp, 0x17, 0x401f);
2317 bnx2_write_phy(bp, 0x15, 0x14e2);
2318 bnx2_write_phy(bp, 0x18, 0x0400);
2319 }
2320
2321 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2322 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2323 MII_BNX2_DSP_EXPAND_REG | 0x8);
2324 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2325 val &= ~(1 << 8);
2326 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2327 }
2328
2329 if (bp->dev->mtu > 1500) {
2330 /* Set extended packet length bit */
2331 bnx2_write_phy(bp, 0x18, 0x7);
2332 bnx2_read_phy(bp, 0x18, &val);
2333 bnx2_write_phy(bp, 0x18, val | 0x4000);
2334
2335 bnx2_read_phy(bp, 0x10, &val);
2336 bnx2_write_phy(bp, 0x10, val | 0x1);
2337 }
2338 else {
2339 bnx2_write_phy(bp, 0x18, 0x7);
2340 bnx2_read_phy(bp, 0x18, &val);
2341 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2342
2343 bnx2_read_phy(bp, 0x10, &val);
2344 bnx2_write_phy(bp, 0x10, val & ~0x1);
2345 }
2346
2347 /* ethernet@wirespeed */
2348 bnx2_write_phy(bp, 0x18, 0x7007);
2349 bnx2_read_phy(bp, 0x18, &val);
2350 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2351 return 0;
2352 }
2353
2354
2355 static int
2356 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2357 __releases(&bp->phy_lock)
2358 __acquires(&bp->phy_lock)
2359 {
2360 u32 val;
2361 int rc = 0;
2362
2363 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2364 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2365
2366 bp->mii_bmcr = MII_BMCR;
2367 bp->mii_bmsr = MII_BMSR;
2368 bp->mii_bmsr1 = MII_BMSR;
2369 bp->mii_adv = MII_ADVERTISE;
2370 bp->mii_lpa = MII_LPA;
2371
2372 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2373
2374 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2375 goto setup_phy;
2376
2377 bnx2_read_phy(bp, MII_PHYSID1, &val);
2378 bp->phy_id = val << 16;
2379 bnx2_read_phy(bp, MII_PHYSID2, &val);
2380 bp->phy_id |= val & 0xffff;
2381
2382 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2383 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2384 rc = bnx2_init_5706s_phy(bp, reset_phy);
2385 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2386 rc = bnx2_init_5708s_phy(bp, reset_phy);
2387 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2388 rc = bnx2_init_5709s_phy(bp, reset_phy);
2389 }
2390 else {
2391 rc = bnx2_init_copper_phy(bp, reset_phy);
2392 }
2393
2394 setup_phy:
2395 if (!rc)
2396 rc = bnx2_setup_phy(bp, bp->phy_port);
2397
2398 return rc;
2399 }
2400
2401 static int
2402 bnx2_set_mac_loopback(struct bnx2 *bp)
2403 {
2404 u32 mac_mode;
2405
2406 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2407 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2408 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2409 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2410 bp->link_up = 1;
2411 return 0;
2412 }
2413
2414 static int bnx2_test_link(struct bnx2 *);
2415
2416 static int
2417 bnx2_set_phy_loopback(struct bnx2 *bp)
2418 {
2419 u32 mac_mode;
2420 int rc, i;
2421
2422 spin_lock_bh(&bp->phy_lock);
2423 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2424 BMCR_SPEED1000);
2425 spin_unlock_bh(&bp->phy_lock);
2426 if (rc)
2427 return rc;
2428
2429 for (i = 0; i < 10; i++) {
2430 if (bnx2_test_link(bp) == 0)
2431 break;
2432 msleep(100);
2433 }
2434
2435 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2436 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2437 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2438 BNX2_EMAC_MODE_25G_MODE);
2439
2440 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2441 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2442 bp->link_up = 1;
2443 return 0;
2444 }
2445
2446 static void
2447 bnx2_dump_mcp_state(struct bnx2 *bp)
2448 {
2449 struct net_device *dev = bp->dev;
2450 u32 mcp_p0, mcp_p1;
2451
2452 netdev_err(dev, "<--- start MCP states dump --->\n");
2453 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
2454 mcp_p0 = BNX2_MCP_STATE_P0;
2455 mcp_p1 = BNX2_MCP_STATE_P1;
2456 } else {
2457 mcp_p0 = BNX2_MCP_STATE_P0_5708;
2458 mcp_p1 = BNX2_MCP_STATE_P1_5708;
2459 }
2460 netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
2461 bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
2462 netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
2463 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE),
2464 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE),
2465 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK));
2466 netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
2467 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
2468 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
2469 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION));
2470 netdev_err(dev, "DEBUG: shmem states:\n");
2471 netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
2472 bnx2_shmem_rd(bp, BNX2_DRV_MB),
2473 bnx2_shmem_rd(bp, BNX2_FW_MB),
2474 bnx2_shmem_rd(bp, BNX2_LINK_STATUS));
2475 pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB));
2476 netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
2477 bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE),
2478 bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE));
2479 pr_cont(" condition[%08x]\n",
2480 bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION));
2481 DP_SHMEM_LINE(bp, 0x3cc);
2482 DP_SHMEM_LINE(bp, 0x3dc);
2483 DP_SHMEM_LINE(bp, 0x3ec);
2484 netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc));
2485 netdev_err(dev, "<--- end MCP states dump --->\n");
2486 }
2487
2488 static int
2489 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2490 {
2491 int i;
2492 u32 val;
2493
2494 bp->fw_wr_seq++;
2495 msg_data |= bp->fw_wr_seq;
2496
2497 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2498
2499 if (!ack)
2500 return 0;
2501
2502 /* wait for an acknowledgement. */
2503 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2504 msleep(10);
2505
2506 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2507
2508 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2509 break;
2510 }
2511 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2512 return 0;
2513
2514 /* If we timed out, inform the firmware that this is the case. */
2515 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2516 msg_data &= ~BNX2_DRV_MSG_CODE;
2517 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2518
2519 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2520 if (!silent) {
2521 pr_err("fw sync timeout, reset code = %x\n", msg_data);
2522 bnx2_dump_mcp_state(bp);
2523 }
2524
2525 return -EBUSY;
2526 }
2527
2528 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2529 return -EIO;
2530
2531 return 0;
2532 }
2533
2534 static int
2535 bnx2_init_5709_context(struct bnx2 *bp)
2536 {
2537 int i, ret = 0;
2538 u32 val;
2539
2540 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2541 val |= (BCM_PAGE_BITS - 8) << 16;
2542 REG_WR(bp, BNX2_CTX_COMMAND, val);
2543 for (i = 0; i < 10; i++) {
2544 val = REG_RD(bp, BNX2_CTX_COMMAND);
2545 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2546 break;
2547 udelay(2);
2548 }
2549 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2550 return -EBUSY;
2551
2552 for (i = 0; i < bp->ctx_pages; i++) {
2553 int j;
2554
2555 if (bp->ctx_blk[i])
2556 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2557 else
2558 return -ENOMEM;
2559
2560 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2561 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2562 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2563 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2564 (u64) bp->ctx_blk_mapping[i] >> 32);
2565 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2566 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2567 for (j = 0; j < 10; j++) {
2568
2569 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2570 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2571 break;
2572 udelay(5);
2573 }
2574 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2575 ret = -EBUSY;
2576 break;
2577 }
2578 }
2579 return ret;
2580 }
2581
2582 static void
2583 bnx2_init_context(struct bnx2 *bp)
2584 {
2585 u32 vcid;
2586
2587 vcid = 96;
2588 while (vcid) {
2589 u32 vcid_addr, pcid_addr, offset;
2590 int i;
2591
2592 vcid--;
2593
2594 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2595 u32 new_vcid;
2596
2597 vcid_addr = GET_PCID_ADDR(vcid);
2598 if (vcid & 0x8) {
2599 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2600 }
2601 else {
2602 new_vcid = vcid;
2603 }
2604 pcid_addr = GET_PCID_ADDR(new_vcid);
2605 }
2606 else {
2607 vcid_addr = GET_CID_ADDR(vcid);
2608 pcid_addr = vcid_addr;
2609 }
2610
2611 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2612 vcid_addr += (i << PHY_CTX_SHIFT);
2613 pcid_addr += (i << PHY_CTX_SHIFT);
2614
2615 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2616 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2617
2618 /* Zero out the context. */
2619 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2620 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2621 }
2622 }
2623 }
2624
2625 static int
2626 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2627 {
2628 u16 *good_mbuf;
2629 u32 good_mbuf_cnt;
2630 u32 val;
2631
2632 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2633 if (good_mbuf == NULL) {
2634 pr_err("Failed to allocate memory in %s\n", __func__);
2635 return -ENOMEM;
2636 }
2637
2638 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2639 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2640
2641 good_mbuf_cnt = 0;
2642
2643 /* Allocate a bunch of mbufs and save the good ones in an array. */
2644 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2645 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2646 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2647 BNX2_RBUF_COMMAND_ALLOC_REQ);
2648
2649 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2650
2651 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2652
2653 /* The addresses with Bit 9 set are bad memory blocks. */
2654 if (!(val & (1 << 9))) {
2655 good_mbuf[good_mbuf_cnt] = (u16) val;
2656 good_mbuf_cnt++;
2657 }
2658
2659 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2660 }
2661
2662 /* Free the good ones back to the mbuf pool thus discarding
2663 * all the bad ones. */
2664 while (good_mbuf_cnt) {
2665 good_mbuf_cnt--;
2666
2667 val = good_mbuf[good_mbuf_cnt];
2668 val = (val << 9) | val | 1;
2669
2670 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2671 }
2672 kfree(good_mbuf);
2673 return 0;
2674 }
2675
2676 static void
2677 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2678 {
2679 u32 val;
2680
2681 val = (mac_addr[0] << 8) | mac_addr[1];
2682
2683 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2684
2685 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2686 (mac_addr[4] << 8) | mac_addr[5];
2687
2688 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2689 }
2690
2691 static inline int
2692 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
2693 {
2694 dma_addr_t mapping;
2695 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2696 struct rx_bd *rxbd =
2697 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2698 struct page *page = alloc_page(gfp);
2699
2700 if (!page)
2701 return -ENOMEM;
2702 mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
2703 PCI_DMA_FROMDEVICE);
2704 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
2705 __free_page(page);
2706 return -EIO;
2707 }
2708
2709 rx_pg->page = page;
2710 dma_unmap_addr_set(rx_pg, mapping, mapping);
2711 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2712 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2713 return 0;
2714 }
2715
2716 static void
2717 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2718 {
2719 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2720 struct page *page = rx_pg->page;
2721
2722 if (!page)
2723 return;
2724
2725 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
2726 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2727
2728 __free_page(page);
2729 rx_pg->page = NULL;
2730 }
2731
2732 static inline int
2733 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
2734 {
2735 struct sk_buff *skb;
2736 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2737 dma_addr_t mapping;
2738 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2739 unsigned long align;
2740
2741 skb = __netdev_alloc_skb(bp->dev, bp->rx_buf_size, gfp);
2742 if (skb == NULL) {
2743 return -ENOMEM;
2744 }
2745
2746 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2747 skb_reserve(skb, BNX2_RX_ALIGN - align);
2748
2749 mapping = dma_map_single(&bp->pdev->dev, skb->data, bp->rx_buf_use_size,
2750 PCI_DMA_FROMDEVICE);
2751 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
2752 dev_kfree_skb(skb);
2753 return -EIO;
2754 }
2755
2756 rx_buf->skb = skb;
2757 rx_buf->desc = (struct l2_fhdr *) skb->data;
2758 dma_unmap_addr_set(rx_buf, mapping, mapping);
2759
2760 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2761 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2762
2763 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2764
2765 return 0;
2766 }
2767
2768 static int
2769 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2770 {
2771 struct status_block *sblk = bnapi->status_blk.msi;
2772 u32 new_link_state, old_link_state;
2773 int is_set = 1;
2774
2775 new_link_state = sblk->status_attn_bits & event;
2776 old_link_state = sblk->status_attn_bits_ack & event;
2777 if (new_link_state != old_link_state) {
2778 if (new_link_state)
2779 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2780 else
2781 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2782 } else
2783 is_set = 0;
2784
2785 return is_set;
2786 }
2787
2788 static void
2789 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2790 {
2791 spin_lock(&bp->phy_lock);
2792
2793 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2794 bnx2_set_link(bp);
2795 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2796 bnx2_set_remote_link(bp);
2797
2798 spin_unlock(&bp->phy_lock);
2799
2800 }
2801
2802 static inline u16
2803 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2804 {
2805 u16 cons;
2806
2807 /* Tell compiler that status block fields can change. */
2808 barrier();
2809 cons = *bnapi->hw_tx_cons_ptr;
2810 barrier();
2811 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2812 cons++;
2813 return cons;
2814 }
2815
2816 static int
2817 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2818 {
2819 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2820 u16 hw_cons, sw_cons, sw_ring_cons;
2821 int tx_pkt = 0, index;
2822 struct netdev_queue *txq;
2823
2824 index = (bnapi - bp->bnx2_napi);
2825 txq = netdev_get_tx_queue(bp->dev, index);
2826
2827 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2828 sw_cons = txr->tx_cons;
2829
2830 while (sw_cons != hw_cons) {
2831 struct sw_tx_bd *tx_buf;
2832 struct sk_buff *skb;
2833 int i, last;
2834
2835 sw_ring_cons = TX_RING_IDX(sw_cons);
2836
2837 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2838 skb = tx_buf->skb;
2839
2840 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2841 prefetch(&skb->end);
2842
2843 /* partial BD completions possible with TSO packets */
2844 if (tx_buf->is_gso) {
2845 u16 last_idx, last_ring_idx;
2846
2847 last_idx = sw_cons + tx_buf->nr_frags + 1;
2848 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2849 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2850 last_idx++;
2851 }
2852 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2853 break;
2854 }
2855 }
2856
2857 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
2858 skb_headlen(skb), PCI_DMA_TODEVICE);
2859
2860 tx_buf->skb = NULL;
2861 last = tx_buf->nr_frags;
2862
2863 for (i = 0; i < last; i++) {
2864 sw_cons = NEXT_TX_BD(sw_cons);
2865
2866 dma_unmap_page(&bp->pdev->dev,
2867 dma_unmap_addr(
2868 &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
2869 mapping),
2870 skb_shinfo(skb)->frags[i].size,
2871 PCI_DMA_TODEVICE);
2872 }
2873
2874 sw_cons = NEXT_TX_BD(sw_cons);
2875
2876 dev_kfree_skb(skb);
2877 tx_pkt++;
2878 if (tx_pkt == budget)
2879 break;
2880
2881 if (hw_cons == sw_cons)
2882 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2883 }
2884
2885 txr->hw_tx_cons = hw_cons;
2886 txr->tx_cons = sw_cons;
2887
2888 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2889 * before checking for netif_tx_queue_stopped(). Without the
2890 * memory barrier, there is a small possibility that bnx2_start_xmit()
2891 * will miss it and cause the queue to be stopped forever.
2892 */
2893 smp_mb();
2894
2895 if (unlikely(netif_tx_queue_stopped(txq)) &&
2896 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2897 __netif_tx_lock(txq, smp_processor_id());
2898 if ((netif_tx_queue_stopped(txq)) &&
2899 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2900 netif_tx_wake_queue(txq);
2901 __netif_tx_unlock(txq);
2902 }
2903
2904 return tx_pkt;
2905 }
2906
2907 static void
2908 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2909 struct sk_buff *skb, int count)
2910 {
2911 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2912 struct rx_bd *cons_bd, *prod_bd;
2913 int i;
2914 u16 hw_prod, prod;
2915 u16 cons = rxr->rx_pg_cons;
2916
2917 cons_rx_pg = &rxr->rx_pg_ring[cons];
2918
2919 /* The caller was unable to allocate a new page to replace the
2920 * last one in the frags array, so we need to recycle that page
2921 * and then free the skb.
2922 */
2923 if (skb) {
2924 struct page *page;
2925 struct skb_shared_info *shinfo;
2926
2927 shinfo = skb_shinfo(skb);
2928 shinfo->nr_frags--;
2929 page = shinfo->frags[shinfo->nr_frags].page;
2930 shinfo->frags[shinfo->nr_frags].page = NULL;
2931
2932 cons_rx_pg->page = page;
2933 dev_kfree_skb(skb);
2934 }
2935
2936 hw_prod = rxr->rx_pg_prod;
2937
2938 for (i = 0; i < count; i++) {
2939 prod = RX_PG_RING_IDX(hw_prod);
2940
2941 prod_rx_pg = &rxr->rx_pg_ring[prod];
2942 cons_rx_pg = &rxr->rx_pg_ring[cons];
2943 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2944 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2945
2946 if (prod != cons) {
2947 prod_rx_pg->page = cons_rx_pg->page;
2948 cons_rx_pg->page = NULL;
2949 dma_unmap_addr_set(prod_rx_pg, mapping,
2950 dma_unmap_addr(cons_rx_pg, mapping));
2951
2952 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2953 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2954
2955 }
2956 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2957 hw_prod = NEXT_RX_BD(hw_prod);
2958 }
2959 rxr->rx_pg_prod = hw_prod;
2960 rxr->rx_pg_cons = cons;
2961 }
2962
2963 static inline void
2964 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2965 struct sk_buff *skb, u16 cons, u16 prod)
2966 {
2967 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2968 struct rx_bd *cons_bd, *prod_bd;
2969
2970 cons_rx_buf = &rxr->rx_buf_ring[cons];
2971 prod_rx_buf = &rxr->rx_buf_ring[prod];
2972
2973 dma_sync_single_for_device(&bp->pdev->dev,
2974 dma_unmap_addr(cons_rx_buf, mapping),
2975 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2976
2977 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2978
2979 prod_rx_buf->skb = skb;
2980 prod_rx_buf->desc = (struct l2_fhdr *) skb->data;
2981
2982 if (cons == prod)
2983 return;
2984
2985 dma_unmap_addr_set(prod_rx_buf, mapping,
2986 dma_unmap_addr(cons_rx_buf, mapping));
2987
2988 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2989 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2990 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2991 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2992 }
2993
2994 static int
2995 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2996 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2997 u32 ring_idx)
2998 {
2999 int err;
3000 u16 prod = ring_idx & 0xffff;
3001
3002 err = bnx2_alloc_rx_skb(bp, rxr, prod, GFP_ATOMIC);
3003 if (unlikely(err)) {
3004 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
3005 if (hdr_len) {
3006 unsigned int raw_len = len + 4;
3007 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
3008
3009 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3010 }
3011 return err;
3012 }
3013
3014 skb_reserve(skb, BNX2_RX_OFFSET);
3015 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
3016 PCI_DMA_FROMDEVICE);
3017
3018 if (hdr_len == 0) {
3019 skb_put(skb, len);
3020 return 0;
3021 } else {
3022 unsigned int i, frag_len, frag_size, pages;
3023 struct sw_pg *rx_pg;
3024 u16 pg_cons = rxr->rx_pg_cons;
3025 u16 pg_prod = rxr->rx_pg_prod;
3026
3027 frag_size = len + 4 - hdr_len;
3028 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
3029 skb_put(skb, hdr_len);
3030
3031 for (i = 0; i < pages; i++) {
3032 dma_addr_t mapping_old;
3033
3034 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
3035 if (unlikely(frag_len <= 4)) {
3036 unsigned int tail = 4 - frag_len;
3037
3038 rxr->rx_pg_cons = pg_cons;
3039 rxr->rx_pg_prod = pg_prod;
3040 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
3041 pages - i);
3042 skb->len -= tail;
3043 if (i == 0) {
3044 skb->tail -= tail;
3045 } else {
3046 skb_frag_t *frag =
3047 &skb_shinfo(skb)->frags[i - 1];
3048 frag->size -= tail;
3049 skb->data_len -= tail;
3050 skb->truesize -= tail;
3051 }
3052 return 0;
3053 }
3054 rx_pg = &rxr->rx_pg_ring[pg_cons];
3055
3056 /* Don't unmap yet. If we're unable to allocate a new
3057 * page, we need to recycle the page and the DMA addr.
3058 */
3059 mapping_old = dma_unmap_addr(rx_pg, mapping);
3060 if (i == pages - 1)
3061 frag_len -= 4;
3062
3063 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3064 rx_pg->page = NULL;
3065
3066 err = bnx2_alloc_rx_page(bp, rxr,
3067 RX_PG_RING_IDX(pg_prod),
3068 GFP_ATOMIC);
3069 if (unlikely(err)) {
3070 rxr->rx_pg_cons = pg_cons;
3071 rxr->rx_pg_prod = pg_prod;
3072 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3073 pages - i);
3074 return err;
3075 }
3076
3077 dma_unmap_page(&bp->pdev->dev, mapping_old,
3078 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3079
3080 frag_size -= frag_len;
3081 skb->data_len += frag_len;
3082 skb->truesize += frag_len;
3083 skb->len += frag_len;
3084
3085 pg_prod = NEXT_RX_BD(pg_prod);
3086 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3087 }
3088 rxr->rx_pg_prod = pg_prod;
3089 rxr->rx_pg_cons = pg_cons;
3090 }
3091 return 0;
3092 }
3093
3094 static inline u16
3095 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3096 {
3097 u16 cons;
3098
3099 /* Tell compiler that status block fields can change. */
3100 barrier();
3101 cons = *bnapi->hw_rx_cons_ptr;
3102 barrier();
3103 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3104 cons++;
3105 return cons;
3106 }
3107
3108 static int
3109 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3110 {
3111 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3112 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3113 struct l2_fhdr *rx_hdr;
3114 int rx_pkt = 0, pg_ring_used = 0;
3115
3116 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3117 sw_cons = rxr->rx_cons;
3118 sw_prod = rxr->rx_prod;
3119
3120 /* Memory barrier necessary as speculative reads of the rx
3121 * buffer can be ahead of the index in the status block
3122 */
3123 rmb();
3124 while (sw_cons != hw_cons) {
3125 unsigned int len, hdr_len;
3126 u32 status;
3127 struct sw_bd *rx_buf, *next_rx_buf;
3128 struct sk_buff *skb;
3129 dma_addr_t dma_addr;
3130
3131 sw_ring_cons = RX_RING_IDX(sw_cons);
3132 sw_ring_prod = RX_RING_IDX(sw_prod);
3133
3134 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3135 skb = rx_buf->skb;
3136 prefetchw(skb);
3137
3138 next_rx_buf =
3139 &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
3140 prefetch(next_rx_buf->desc);
3141
3142 rx_buf->skb = NULL;
3143
3144 dma_addr = dma_unmap_addr(rx_buf, mapping);
3145
3146 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
3147 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3148 PCI_DMA_FROMDEVICE);
3149
3150 rx_hdr = rx_buf->desc;
3151 len = rx_hdr->l2_fhdr_pkt_len;
3152 status = rx_hdr->l2_fhdr_status;
3153
3154 hdr_len = 0;
3155 if (status & L2_FHDR_STATUS_SPLIT) {
3156 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3157 pg_ring_used = 1;
3158 } else if (len > bp->rx_jumbo_thresh) {
3159 hdr_len = bp->rx_jumbo_thresh;
3160 pg_ring_used = 1;
3161 }
3162
3163 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3164 L2_FHDR_ERRORS_PHY_DECODE |
3165 L2_FHDR_ERRORS_ALIGNMENT |
3166 L2_FHDR_ERRORS_TOO_SHORT |
3167 L2_FHDR_ERRORS_GIANT_FRAME))) {
3168
3169 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3170 sw_ring_prod);
3171 if (pg_ring_used) {
3172 int pages;
3173
3174 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3175
3176 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3177 }
3178 goto next_rx;
3179 }
3180
3181 len -= 4;
3182
3183 if (len <= bp->rx_copy_thresh) {
3184 struct sk_buff *new_skb;
3185
3186 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3187 if (new_skb == NULL) {
3188 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3189 sw_ring_prod);
3190 goto next_rx;
3191 }
3192
3193 /* aligned copy */
3194 skb_copy_from_linear_data_offset(skb,
3195 BNX2_RX_OFFSET - 6,
3196 new_skb->data, len + 6);
3197 skb_reserve(new_skb, 6);
3198 skb_put(new_skb, len);
3199
3200 bnx2_reuse_rx_skb(bp, rxr, skb,
3201 sw_ring_cons, sw_ring_prod);
3202
3203 skb = new_skb;
3204 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3205 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3206 goto next_rx;
3207
3208 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3209 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
3210 __vlan_hwaccel_put_tag(skb, rx_hdr->l2_fhdr_vlan_tag);
3211
3212 skb->protocol = eth_type_trans(skb, bp->dev);
3213
3214 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3215 (ntohs(skb->protocol) != 0x8100)) {
3216
3217 dev_kfree_skb(skb);
3218 goto next_rx;
3219
3220 }
3221
3222 skb_checksum_none_assert(skb);
3223 if ((bp->dev->features & NETIF_F_RXCSUM) &&
3224 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3225 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3226
3227 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3228 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3229 skb->ip_summed = CHECKSUM_UNNECESSARY;
3230 }
3231 if ((bp->dev->features & NETIF_F_RXHASH) &&
3232 ((status & L2_FHDR_STATUS_USE_RXHASH) ==
3233 L2_FHDR_STATUS_USE_RXHASH))
3234 skb->rxhash = rx_hdr->l2_fhdr_hash;
3235
3236 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3237 napi_gro_receive(&bnapi->napi, skb);
3238 rx_pkt++;
3239
3240 next_rx:
3241 sw_cons = NEXT_RX_BD(sw_cons);
3242 sw_prod = NEXT_RX_BD(sw_prod);
3243
3244 if ((rx_pkt == budget))
3245 break;
3246
3247 /* Refresh hw_cons to see if there is new work */
3248 if (sw_cons == hw_cons) {
3249 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3250 rmb();
3251 }
3252 }
3253 rxr->rx_cons = sw_cons;
3254 rxr->rx_prod = sw_prod;
3255
3256 if (pg_ring_used)
3257 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3258
3259 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3260
3261 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3262
3263 mmiowb();
3264
3265 return rx_pkt;
3266
3267 }
3268
3269 /* MSI ISR - The only difference between this and the INTx ISR
3270 * is that the MSI interrupt is always serviced.
3271 */
3272 static irqreturn_t
3273 bnx2_msi(int irq, void *dev_instance)
3274 {
3275 struct bnx2_napi *bnapi = dev_instance;
3276 struct bnx2 *bp = bnapi->bp;
3277
3278 prefetch(bnapi->status_blk.msi);
3279 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3280 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3281 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3282
3283 /* Return here if interrupt is disabled. */
3284 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3285 return IRQ_HANDLED;
3286
3287 napi_schedule(&bnapi->napi);
3288
3289 return IRQ_HANDLED;
3290 }
3291
3292 static irqreturn_t
3293 bnx2_msi_1shot(int irq, void *dev_instance)
3294 {
3295 struct bnx2_napi *bnapi = dev_instance;
3296 struct bnx2 *bp = bnapi->bp;
3297
3298 prefetch(bnapi->status_blk.msi);
3299
3300 /* Return here if interrupt is disabled. */
3301 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3302 return IRQ_HANDLED;
3303
3304 napi_schedule(&bnapi->napi);
3305
3306 return IRQ_HANDLED;
3307 }
3308
3309 static irqreturn_t
3310 bnx2_interrupt(int irq, void *dev_instance)
3311 {
3312 struct bnx2_napi *bnapi = dev_instance;
3313 struct bnx2 *bp = bnapi->bp;
3314 struct status_block *sblk = bnapi->status_blk.msi;
3315
3316 /* When using INTx, it is possible for the interrupt to arrive
3317 * at the CPU before the status block posted prior to the
3318 * interrupt. Reading a register will flush the status block.
3319 * When using MSI, the MSI message will always complete after
3320 * the status block write.
3321 */
3322 if ((sblk->status_idx == bnapi->last_status_idx) &&
3323 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3324 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3325 return IRQ_NONE;
3326
3327 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3328 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3329 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3330
3331 /* Read back to deassert IRQ immediately to avoid too many
3332 * spurious interrupts.
3333 */
3334 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3335
3336 /* Return here if interrupt is shared and is disabled. */
3337 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3338 return IRQ_HANDLED;
3339
3340 if (napi_schedule_prep(&bnapi->napi)) {
3341 bnapi->last_status_idx = sblk->status_idx;
3342 __napi_schedule(&bnapi->napi);
3343 }
3344
3345 return IRQ_HANDLED;
3346 }
3347
3348 static inline int
3349 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3350 {
3351 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3352 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3353
3354 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3355 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3356 return 1;
3357 return 0;
3358 }
3359
3360 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3361 STATUS_ATTN_BITS_TIMER_ABORT)
3362
3363 static inline int
3364 bnx2_has_work(struct bnx2_napi *bnapi)
3365 {
3366 struct status_block *sblk = bnapi->status_blk.msi;
3367
3368 if (bnx2_has_fast_work(bnapi))
3369 return 1;
3370
3371 #ifdef BCM_CNIC
3372 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3373 return 1;
3374 #endif
3375
3376 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3377 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3378 return 1;
3379
3380 return 0;
3381 }
3382
3383 static void
3384 bnx2_chk_missed_msi(struct bnx2 *bp)
3385 {
3386 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3387 u32 msi_ctrl;
3388
3389 if (bnx2_has_work(bnapi)) {
3390 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3391 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3392 return;
3393
3394 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3395 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3396 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3397 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3398 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3399 }
3400 }
3401
3402 bp->idle_chk_status_idx = bnapi->last_status_idx;
3403 }
3404
3405 #ifdef BCM_CNIC
3406 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3407 {
3408 struct cnic_ops *c_ops;
3409
3410 if (!bnapi->cnic_present)
3411 return;
3412
3413 rcu_read_lock();
3414 c_ops = rcu_dereference(bp->cnic_ops);
3415 if (c_ops)
3416 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3417 bnapi->status_blk.msi);
3418 rcu_read_unlock();
3419 }
3420 #endif
3421
3422 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3423 {
3424 struct status_block *sblk = bnapi->status_blk.msi;
3425 u32 status_attn_bits = sblk->status_attn_bits;
3426 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3427
3428 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3429 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3430
3431 bnx2_phy_int(bp, bnapi);
3432
3433 /* This is needed to take care of transient status
3434 * during link changes.
3435 */
3436 REG_WR(bp, BNX2_HC_COMMAND,
3437 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3438 REG_RD(bp, BNX2_HC_COMMAND);
3439 }
3440 }
3441
3442 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3443 int work_done, int budget)
3444 {
3445 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3446 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3447
3448 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3449 bnx2_tx_int(bp, bnapi, 0);
3450
3451 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3452 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3453
3454 return work_done;
3455 }
3456
3457 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3458 {
3459 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3460 struct bnx2 *bp = bnapi->bp;
3461 int work_done = 0;
3462 struct status_block_msix *sblk = bnapi->status_blk.msix;
3463
3464 while (1) {
3465 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3466 if (unlikely(work_done >= budget))
3467 break;
3468
3469 bnapi->last_status_idx = sblk->status_idx;
3470 /* status idx must be read before checking for more work. */
3471 rmb();
3472 if (likely(!bnx2_has_fast_work(bnapi))) {
3473
3474 napi_complete(napi);
3475 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3476 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3477 bnapi->last_status_idx);
3478 break;
3479 }
3480 }
3481 return work_done;
3482 }
3483
3484 static int bnx2_poll(struct napi_struct *napi, int budget)
3485 {
3486 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3487 struct bnx2 *bp = bnapi->bp;
3488 int work_done = 0;
3489 struct status_block *sblk = bnapi->status_blk.msi;
3490
3491 while (1) {
3492 bnx2_poll_link(bp, bnapi);
3493
3494 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3495
3496 #ifdef BCM_CNIC
3497 bnx2_poll_cnic(bp, bnapi);
3498 #endif
3499
3500 /* bnapi->last_status_idx is used below to tell the hw how
3501 * much work has been processed, so we must read it before
3502 * checking for more work.
3503 */
3504 bnapi->last_status_idx = sblk->status_idx;
3505
3506 if (unlikely(work_done >= budget))
3507 break;
3508
3509 rmb();
3510 if (likely(!bnx2_has_work(bnapi))) {
3511 napi_complete(napi);
3512 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3513 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3514 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3515 bnapi->last_status_idx);
3516 break;
3517 }
3518 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3519 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3520 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3521 bnapi->last_status_idx);
3522
3523 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3524 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3525 bnapi->last_status_idx);
3526 break;
3527 }
3528 }
3529
3530 return work_done;
3531 }
3532
3533 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3534 * from set_multicast.
3535 */
3536 static void
3537 bnx2_set_rx_mode(struct net_device *dev)
3538 {
3539 struct bnx2 *bp = netdev_priv(dev);
3540 u32 rx_mode, sort_mode;
3541 struct netdev_hw_addr *ha;
3542 int i;
3543
3544 if (!netif_running(dev))
3545 return;
3546
3547 spin_lock_bh(&bp->phy_lock);
3548
3549 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3550 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3551 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3552 if (!(dev->features & NETIF_F_HW_VLAN_RX) &&
3553 (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3554 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3555 if (dev->flags & IFF_PROMISC) {
3556 /* Promiscuous mode. */
3557 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3558 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3559 BNX2_RPM_SORT_USER0_PROM_VLAN;
3560 }
3561 else if (dev->flags & IFF_ALLMULTI) {
3562 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3563 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3564 0xffffffff);
3565 }
3566 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3567 }
3568 else {
3569 /* Accept one or more multicast(s). */
3570 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3571 u32 regidx;
3572 u32 bit;
3573 u32 crc;
3574
3575 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3576
3577 netdev_for_each_mc_addr(ha, dev) {
3578 crc = ether_crc_le(ETH_ALEN, ha->addr);
3579 bit = crc & 0xff;
3580 regidx = (bit & 0xe0) >> 5;
3581 bit &= 0x1f;
3582 mc_filter[regidx] |= (1 << bit);
3583 }
3584
3585 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3586 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3587 mc_filter[i]);
3588 }
3589
3590 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3591 }
3592
3593 if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
3594 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3595 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3596 BNX2_RPM_SORT_USER0_PROM_VLAN;
3597 } else if (!(dev->flags & IFF_PROMISC)) {
3598 /* Add all entries into to the match filter list */
3599 i = 0;
3600 netdev_for_each_uc_addr(ha, dev) {
3601 bnx2_set_mac_addr(bp, ha->addr,
3602 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3603 sort_mode |= (1 <<
3604 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3605 i++;
3606 }
3607
3608 }
3609
3610 if (rx_mode != bp->rx_mode) {
3611 bp->rx_mode = rx_mode;
3612 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3613 }
3614
3615 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3616 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3617 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3618
3619 spin_unlock_bh(&bp->phy_lock);
3620 }
3621
3622 static int __devinit
3623 check_fw_section(const struct firmware *fw,
3624 const struct bnx2_fw_file_section *section,
3625 u32 alignment, bool non_empty)
3626 {
3627 u32 offset = be32_to_cpu(section->offset);
3628 u32 len = be32_to_cpu(section->len);
3629
3630 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3631 return -EINVAL;
3632 if ((non_empty && len == 0) || len > fw->size - offset ||
3633 len & (alignment - 1))
3634 return -EINVAL;
3635 return 0;
3636 }
3637
3638 static int __devinit
3639 check_mips_fw_entry(const struct firmware *fw,
3640 const struct bnx2_mips_fw_file_entry *entry)
3641 {
3642 if (check_fw_section(fw, &entry->text, 4, true) ||
3643 check_fw_section(fw, &entry->data, 4, false) ||
3644 check_fw_section(fw, &entry->rodata, 4, false))
3645 return -EINVAL;
3646 return 0;
3647 }
3648
3649 static int __devinit
3650 bnx2_request_firmware(struct bnx2 *bp)
3651 {
3652 const char *mips_fw_file, *rv2p_fw_file;
3653 const struct bnx2_mips_fw_file *mips_fw;
3654 const struct bnx2_rv2p_fw_file *rv2p_fw;
3655 int rc;
3656
3657 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3658 mips_fw_file = FW_MIPS_FILE_09;
3659 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3660 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3661 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3662 else
3663 rv2p_fw_file = FW_RV2P_FILE_09;
3664 } else {
3665 mips_fw_file = FW_MIPS_FILE_06;
3666 rv2p_fw_file = FW_RV2P_FILE_06;
3667 }
3668
3669 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3670 if (rc) {
3671 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
3672 return rc;
3673 }
3674
3675 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3676 if (rc) {
3677 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
3678 return rc;
3679 }
3680 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3681 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3682 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3683 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3684 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3685 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3686 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3687 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3688 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
3689 return -EINVAL;
3690 }
3691 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3692 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3693 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3694 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
3695 return -EINVAL;
3696 }
3697
3698 return 0;
3699 }
3700
3701 static u32
3702 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3703 {
3704 switch (idx) {
3705 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3706 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3707 rv2p_code |= RV2P_BD_PAGE_SIZE;
3708 break;
3709 }
3710 return rv2p_code;
3711 }
3712
3713 static int
3714 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3715 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3716 {
3717 u32 rv2p_code_len, file_offset;
3718 __be32 *rv2p_code;
3719 int i;
3720 u32 val, cmd, addr;
3721
3722 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3723 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3724
3725 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3726
3727 if (rv2p_proc == RV2P_PROC1) {
3728 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3729 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3730 } else {
3731 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3732 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3733 }
3734
3735 for (i = 0; i < rv2p_code_len; i += 8) {
3736 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3737 rv2p_code++;
3738 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3739 rv2p_code++;
3740
3741 val = (i / 8) | cmd;
3742 REG_WR(bp, addr, val);
3743 }
3744
3745 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3746 for (i = 0; i < 8; i++) {
3747 u32 loc, code;
3748
3749 loc = be32_to_cpu(fw_entry->fixup[i]);
3750 if (loc && ((loc * 4) < rv2p_code_len)) {
3751 code = be32_to_cpu(*(rv2p_code + loc - 1));
3752 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3753 code = be32_to_cpu(*(rv2p_code + loc));
3754 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3755 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3756
3757 val = (loc / 2) | cmd;
3758 REG_WR(bp, addr, val);
3759 }
3760 }
3761
3762 /* Reset the processor, un-stall is done later. */
3763 if (rv2p_proc == RV2P_PROC1) {
3764 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3765 }
3766 else {
3767 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3768 }
3769
3770 return 0;
3771 }
3772
3773 static int
3774 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3775 const struct bnx2_mips_fw_file_entry *fw_entry)
3776 {
3777 u32 addr, len, file_offset;
3778 __be32 *data;
3779 u32 offset;
3780 u32 val;
3781
3782 /* Halt the CPU. */
3783 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3784 val |= cpu_reg->mode_value_halt;
3785 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3786 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3787
3788 /* Load the Text area. */
3789 addr = be32_to_cpu(fw_entry->text.addr);
3790 len = be32_to_cpu(fw_entry->text.len);
3791 file_offset = be32_to_cpu(fw_entry->text.offset);
3792 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3793
3794 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3795 if (len) {
3796 int j;
3797
3798 for (j = 0; j < (len / 4); j++, offset += 4)
3799 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3800 }
3801
3802 /* Load the Data area. */
3803 addr = be32_to_cpu(fw_entry->data.addr);
3804 len = be32_to_cpu(fw_entry->data.len);
3805 file_offset = be32_to_cpu(fw_entry->data.offset);
3806 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3807
3808 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3809 if (len) {
3810 int j;
3811
3812 for (j = 0; j < (len / 4); j++, offset += 4)
3813 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3814 }
3815
3816 /* Load the Read-Only area. */
3817 addr = be32_to_cpu(fw_entry->rodata.addr);
3818 len = be32_to_cpu(fw_entry->rodata.len);
3819 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3820 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3821
3822 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3823 if (len) {
3824 int j;
3825
3826 for (j = 0; j < (len / 4); j++, offset += 4)
3827 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3828 }
3829
3830 /* Clear the pre-fetch instruction. */
3831 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3832
3833 val = be32_to_cpu(fw_entry->start_addr);
3834 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3835
3836 /* Start the CPU. */
3837 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3838 val &= ~cpu_reg->mode_value_halt;
3839 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3840 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3841
3842 return 0;
3843 }
3844
3845 static int
3846 bnx2_init_cpus(struct bnx2 *bp)
3847 {
3848 const struct bnx2_mips_fw_file *mips_fw =
3849 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3850 const struct bnx2_rv2p_fw_file *rv2p_fw =
3851 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3852 int rc;
3853
3854 /* Initialize the RV2P processor. */
3855 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3856 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3857
3858 /* Initialize the RX Processor. */
3859 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3860 if (rc)
3861 goto init_cpu_err;
3862
3863 /* Initialize the TX Processor. */
3864 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3865 if (rc)
3866 goto init_cpu_err;
3867
3868 /* Initialize the TX Patch-up Processor. */
3869 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3870 if (rc)
3871 goto init_cpu_err;
3872
3873 /* Initialize the Completion Processor. */
3874 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3875 if (rc)
3876 goto init_cpu_err;
3877
3878 /* Initialize the Command Processor. */
3879 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3880
3881 init_cpu_err:
3882 return rc;
3883 }
3884
3885 static int
3886 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3887 {
3888 u16 pmcsr;
3889
3890 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3891
3892 switch (state) {
3893 case PCI_D0: {
3894 u32 val;
3895
3896 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3897 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3898 PCI_PM_CTRL_PME_STATUS);
3899
3900 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3901 /* delay required during transition out of D3hot */
3902 msleep(20);
3903
3904 val = REG_RD(bp, BNX2_EMAC_MODE);
3905 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3906 val &= ~BNX2_EMAC_MODE_MPKT;
3907 REG_WR(bp, BNX2_EMAC_MODE, val);
3908
3909 val = REG_RD(bp, BNX2_RPM_CONFIG);
3910 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3911 REG_WR(bp, BNX2_RPM_CONFIG, val);
3912 break;
3913 }
3914 case PCI_D3hot: {
3915 int i;
3916 u32 val, wol_msg;
3917
3918 if (bp->wol) {
3919 u32 advertising;
3920 u8 autoneg;
3921
3922 autoneg = bp->autoneg;
3923 advertising = bp->advertising;
3924
3925 if (bp->phy_port == PORT_TP) {
3926 bp->autoneg = AUTONEG_SPEED;
3927 bp->advertising = ADVERTISED_10baseT_Half |
3928 ADVERTISED_10baseT_Full |
3929 ADVERTISED_100baseT_Half |
3930 ADVERTISED_100baseT_Full |
3931 ADVERTISED_Autoneg;
3932 }
3933
3934 spin_lock_bh(&bp->phy_lock);
3935 bnx2_setup_phy(bp, bp->phy_port);
3936 spin_unlock_bh(&bp->phy_lock);
3937
3938 bp->autoneg = autoneg;
3939 bp->advertising = advertising;
3940
3941 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3942
3943 val = REG_RD(bp, BNX2_EMAC_MODE);
3944
3945 /* Enable port mode. */
3946 val &= ~BNX2_EMAC_MODE_PORT;
3947 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3948 BNX2_EMAC_MODE_ACPI_RCVD |
3949 BNX2_EMAC_MODE_MPKT;
3950 if (bp->phy_port == PORT_TP)
3951 val |= BNX2_EMAC_MODE_PORT_MII;
3952 else {
3953 val |= BNX2_EMAC_MODE_PORT_GMII;
3954 if (bp->line_speed == SPEED_2500)
3955 val |= BNX2_EMAC_MODE_25G_MODE;
3956 }
3957
3958 REG_WR(bp, BNX2_EMAC_MODE, val);
3959
3960 /* receive all multicast */
3961 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3962 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3963 0xffffffff);
3964 }
3965 REG_WR(bp, BNX2_EMAC_RX_MODE,
3966 BNX2_EMAC_RX_MODE_SORT_MODE);
3967
3968 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3969 BNX2_RPM_SORT_USER0_MC_EN;
3970 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3971 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3972 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3973 BNX2_RPM_SORT_USER0_ENA);
3974
3975 /* Need to enable EMAC and RPM for WOL. */
3976 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3977 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3978 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3979 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3980
3981 val = REG_RD(bp, BNX2_RPM_CONFIG);
3982 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3983 REG_WR(bp, BNX2_RPM_CONFIG, val);
3984
3985 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3986 }
3987 else {
3988 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3989 }
3990
3991 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3992 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3993 1, 0);
3994
3995 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3996 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3997 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3998
3999 if (bp->wol)
4000 pmcsr |= 3;
4001 }
4002 else {
4003 pmcsr |= 3;
4004 }
4005 if (bp->wol) {
4006 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
4007 }
4008 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
4009 pmcsr);
4010
4011 /* No more memory access after this point until
4012 * device is brought back to D0.
4013 */
4014 udelay(50);
4015 break;
4016 }
4017 default:
4018 return -EINVAL;
4019 }
4020 return 0;
4021 }
4022
4023 static int
4024 bnx2_acquire_nvram_lock(struct bnx2 *bp)
4025 {
4026 u32 val;
4027 int j;
4028
4029 /* Request access to the flash interface. */
4030 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
4031 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4032 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4033 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
4034 break;
4035
4036 udelay(5);
4037 }
4038
4039 if (j >= NVRAM_TIMEOUT_COUNT)
4040 return -EBUSY;
4041
4042 return 0;
4043 }
4044
4045 static int
4046 bnx2_release_nvram_lock(struct bnx2 *bp)
4047 {
4048 int j;
4049 u32 val;
4050
4051 /* Relinquish nvram interface. */
4052 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4053
4054 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4055 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4056 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4057 break;
4058
4059 udelay(5);
4060 }
4061
4062 if (j >= NVRAM_TIMEOUT_COUNT)
4063 return -EBUSY;
4064
4065 return 0;
4066 }
4067
4068
4069 static int
4070 bnx2_enable_nvram_write(struct bnx2 *bp)
4071 {
4072 u32 val;
4073
4074 val = REG_RD(bp, BNX2_MISC_CFG);
4075 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4076
4077 if (bp->flash_info->flags & BNX2_NV_WREN) {
4078 int j;
4079
4080 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4081 REG_WR(bp, BNX2_NVM_COMMAND,
4082 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4083
4084 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4085 udelay(5);
4086
4087 val = REG_RD(bp, BNX2_NVM_COMMAND);
4088 if (val & BNX2_NVM_COMMAND_DONE)
4089 break;
4090 }
4091
4092 if (j >= NVRAM_TIMEOUT_COUNT)
4093 return -EBUSY;
4094 }
4095 return 0;
4096 }
4097
4098 static void
4099 bnx2_disable_nvram_write(struct bnx2 *bp)
4100 {
4101 u32 val;
4102
4103 val = REG_RD(bp, BNX2_MISC_CFG);
4104 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4105 }
4106
4107
4108 static void
4109 bnx2_enable_nvram_access(struct bnx2 *bp)
4110 {
4111 u32 val;
4112
4113 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4114 /* Enable both bits, even on read. */
4115 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4116 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4117 }
4118
4119 static void
4120 bnx2_disable_nvram_access(struct bnx2 *bp)
4121 {
4122 u32 val;
4123
4124 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4125 /* Disable both bits, even after read. */
4126 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4127 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4128 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4129 }
4130
4131 static int
4132 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4133 {
4134 u32 cmd;
4135 int j;
4136
4137 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4138 /* Buffered flash, no erase needed */
4139 return 0;
4140
4141 /* Build an erase command */
4142 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4143 BNX2_NVM_COMMAND_DOIT;
4144
4145 /* Need to clear DONE bit separately. */
4146 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4147
4148 /* Address of the NVRAM to read from. */
4149 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4150
4151 /* Issue an erase command. */
4152 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4153
4154 /* Wait for completion. */
4155 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4156 u32 val;
4157
4158 udelay(5);
4159
4160 val = REG_RD(bp, BNX2_NVM_COMMAND);
4161 if (val & BNX2_NVM_COMMAND_DONE)
4162 break;
4163 }
4164
4165 if (j >= NVRAM_TIMEOUT_COUNT)
4166 return -EBUSY;
4167
4168 return 0;
4169 }
4170
4171 static int
4172 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4173 {
4174 u32 cmd;
4175 int j;
4176
4177 /* Build the command word. */
4178 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4179
4180 /* Calculate an offset of a buffered flash, not needed for 5709. */
4181 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4182 offset = ((offset / bp->flash_info->page_size) <<
4183 bp->flash_info->page_bits) +
4184 (offset % bp->flash_info->page_size);
4185 }
4186
4187 /* Need to clear DONE bit separately. */
4188 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4189
4190 /* Address of the NVRAM to read from. */
4191 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4192
4193 /* Issue a read command. */
4194 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4195
4196 /* Wait for completion. */
4197 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4198 u32 val;
4199
4200 udelay(5);
4201
4202 val = REG_RD(bp, BNX2_NVM_COMMAND);
4203 if (val & BNX2_NVM_COMMAND_DONE) {
4204 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4205 memcpy(ret_val, &v, 4);
4206 break;
4207 }
4208 }
4209 if (j >= NVRAM_TIMEOUT_COUNT)
4210 return -EBUSY;
4211
4212 return 0;
4213 }
4214
4215
4216 static int
4217 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4218 {
4219 u32 cmd;
4220 __be32 val32;
4221 int j;
4222
4223 /* Build the command word. */
4224 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4225
4226 /* Calculate an offset of a buffered flash, not needed for 5709. */
4227 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4228 offset = ((offset / bp->flash_info->page_size) <<
4229 bp->flash_info->page_bits) +
4230 (offset % bp->flash_info->page_size);
4231 }
4232
4233 /* Need to clear DONE bit separately. */
4234 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4235
4236 memcpy(&val32, val, 4);
4237
4238 /* Write the data. */
4239 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4240
4241 /* Address of the NVRAM to write to. */
4242 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4243
4244 /* Issue the write command. */
4245 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4246
4247 /* Wait for completion. */
4248 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4249 udelay(5);
4250
4251 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4252 break;
4253 }
4254 if (j >= NVRAM_TIMEOUT_COUNT)
4255 return -EBUSY;
4256
4257 return 0;
4258 }
4259
4260 static int
4261 bnx2_init_nvram(struct bnx2 *bp)
4262 {
4263 u32 val;
4264 int j, entry_count, rc = 0;
4265 const struct flash_spec *flash;
4266
4267 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4268 bp->flash_info = &flash_5709;
4269 goto get_flash_size;
4270 }
4271
4272 /* Determine the selected interface. */
4273 val = REG_RD(bp, BNX2_NVM_CFG1);
4274
4275 entry_count = ARRAY_SIZE(flash_table);
4276
4277 if (val & 0x40000000) {
4278
4279 /* Flash interface has been reconfigured */
4280 for (j = 0, flash = &flash_table[0]; j < entry_count;
4281 j++, flash++) {
4282 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4283 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4284 bp->flash_info = flash;
4285 break;
4286 }
4287 }
4288 }
4289 else {
4290 u32 mask;
4291 /* Not yet been reconfigured */
4292
4293 if (val & (1 << 23))
4294 mask = FLASH_BACKUP_STRAP_MASK;
4295 else
4296 mask = FLASH_STRAP_MASK;
4297
4298 for (j = 0, flash = &flash_table[0]; j < entry_count;
4299 j++, flash++) {
4300
4301 if ((val & mask) == (flash->strapping & mask)) {
4302 bp->flash_info = flash;
4303
4304 /* Request access to the flash interface. */
4305 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4306 return rc;
4307
4308 /* Enable access to flash interface */
4309 bnx2_enable_nvram_access(bp);
4310
4311 /* Reconfigure the flash interface */
4312 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4313 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4314 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4315 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4316
4317 /* Disable access to flash interface */
4318 bnx2_disable_nvram_access(bp);
4319 bnx2_release_nvram_lock(bp);
4320
4321 break;
4322 }
4323 }
4324 } /* if (val & 0x40000000) */
4325
4326 if (j == entry_count) {
4327 bp->flash_info = NULL;
4328 pr_alert("Unknown flash/EEPROM type\n");
4329 return -ENODEV;
4330 }
4331
4332 get_flash_size:
4333 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4334 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4335 if (val)
4336 bp->flash_size = val;
4337 else
4338 bp->flash_size = bp->flash_info->total_size;
4339
4340 return rc;
4341 }
4342
4343 static int
4344 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4345 int buf_size)
4346 {
4347 int rc = 0;
4348 u32 cmd_flags, offset32, len32, extra;
4349
4350 if (buf_size == 0)
4351 return 0;
4352
4353 /* Request access to the flash interface. */
4354 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4355 return rc;
4356
4357 /* Enable access to flash interface */
4358 bnx2_enable_nvram_access(bp);
4359
4360 len32 = buf_size;
4361 offset32 = offset;
4362 extra = 0;
4363
4364 cmd_flags = 0;
4365
4366 if (offset32 & 3) {
4367 u8 buf[4];
4368 u32 pre_len;
4369
4370 offset32 &= ~3;
4371 pre_len = 4 - (offset & 3);
4372
4373 if (pre_len >= len32) {
4374 pre_len = len32;
4375 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4376 BNX2_NVM_COMMAND_LAST;
4377 }
4378 else {
4379 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4380 }
4381
4382 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4383
4384 if (rc)
4385 return rc;
4386
4387 memcpy(ret_buf, buf + (offset & 3), pre_len);
4388
4389 offset32 += 4;
4390 ret_buf += pre_len;
4391 len32 -= pre_len;
4392 }
4393 if (len32 & 3) {
4394 extra = 4 - (len32 & 3);
4395 len32 = (len32 + 4) & ~3;
4396 }
4397
4398 if (len32 == 4) {
4399 u8 buf[4];
4400
4401 if (cmd_flags)
4402 cmd_flags = BNX2_NVM_COMMAND_LAST;
4403 else
4404 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4405 BNX2_NVM_COMMAND_LAST;
4406
4407 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4408
4409 memcpy(ret_buf, buf, 4 - extra);
4410 }
4411 else if (len32 > 0) {
4412 u8 buf[4];
4413
4414 /* Read the first word. */
4415 if (cmd_flags)
4416 cmd_flags = 0;
4417 else
4418 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4419
4420 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4421
4422 /* Advance to the next dword. */
4423 offset32 += 4;
4424 ret_buf += 4;
4425 len32 -= 4;
4426
4427 while (len32 > 4 && rc == 0) {
4428 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4429
4430 /* Advance to the next dword. */
4431 offset32 += 4;
4432 ret_buf += 4;
4433 len32 -= 4;
4434 }
4435
4436 if (rc)
4437 return rc;
4438
4439 cmd_flags = BNX2_NVM_COMMAND_LAST;
4440 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4441
4442 memcpy(ret_buf, buf, 4 - extra);
4443 }
4444
4445 /* Disable access to flash interface */
4446 bnx2_disable_nvram_access(bp);
4447
4448 bnx2_release_nvram_lock(bp);
4449
4450 return rc;
4451 }
4452
4453 static int
4454 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4455 int buf_size)
4456 {
4457 u32 written, offset32, len32;
4458 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4459 int rc = 0;
4460 int align_start, align_end;
4461
4462 buf = data_buf;
4463 offset32 = offset;
4464 len32 = buf_size;
4465 align_start = align_end = 0;
4466
4467 if ((align_start = (offset32 & 3))) {
4468 offset32 &= ~3;
4469 len32 += align_start;
4470 if (len32 < 4)
4471 len32 = 4;
4472 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4473 return rc;
4474 }
4475
4476 if (len32 & 3) {
4477 align_end = 4 - (len32 & 3);
4478 len32 += align_end;
4479 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4480 return rc;
4481 }
4482
4483 if (align_start || align_end) {
4484 align_buf = kmalloc(len32, GFP_KERNEL);
4485 if (align_buf == NULL)
4486 return -ENOMEM;
4487 if (align_start) {
4488 memcpy(align_buf, start, 4);
4489 }
4490 if (align_end) {
4491 memcpy(align_buf + len32 - 4, end, 4);
4492 }
4493 memcpy(align_buf + align_start, data_buf, buf_size);
4494 buf = align_buf;
4495 }
4496
4497 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4498 flash_buffer = kmalloc(264, GFP_KERNEL);
4499 if (flash_buffer == NULL) {
4500 rc = -ENOMEM;
4501 goto nvram_write_end;
4502 }
4503 }
4504
4505 written = 0;
4506 while ((written < len32) && (rc == 0)) {
4507 u32 page_start, page_end, data_start, data_end;
4508 u32 addr, cmd_flags;
4509 int i;
4510
4511 /* Find the page_start addr */
4512 page_start = offset32 + written;
4513 page_start -= (page_start % bp->flash_info->page_size);
4514 /* Find the page_end addr */
4515 page_end = page_start + bp->flash_info->page_size;
4516 /* Find the data_start addr */
4517 data_start = (written == 0) ? offset32 : page_start;
4518 /* Find the data_end addr */
4519 data_end = (page_end > offset32 + len32) ?
4520 (offset32 + len32) : page_end;
4521
4522 /* Request access to the flash interface. */
4523 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4524 goto nvram_write_end;
4525
4526 /* Enable access to flash interface */
4527 bnx2_enable_nvram_access(bp);
4528
4529 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4530 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4531 int j;
4532
4533 /* Read the whole page into the buffer
4534 * (non-buffer flash only) */
4535 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4536 if (j == (bp->flash_info->page_size - 4)) {
4537 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4538 }
4539 rc = bnx2_nvram_read_dword(bp,
4540 page_start + j,
4541 &flash_buffer[j],
4542 cmd_flags);
4543
4544 if (rc)
4545 goto nvram_write_end;
4546
4547 cmd_flags = 0;
4548 }
4549 }
4550
4551 /* Enable writes to flash interface (unlock write-protect) */
4552 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4553 goto nvram_write_end;
4554
4555 /* Loop to write back the buffer data from page_start to
4556 * data_start */
4557 i = 0;
4558 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4559 /* Erase the page */
4560 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4561 goto nvram_write_end;
4562
4563 /* Re-enable the write again for the actual write */
4564 bnx2_enable_nvram_write(bp);
4565
4566 for (addr = page_start; addr < data_start;
4567 addr += 4, i += 4) {
4568
4569 rc = bnx2_nvram_write_dword(bp, addr,
4570 &flash_buffer[i], cmd_flags);
4571
4572 if (rc != 0)
4573 goto nvram_write_end;
4574
4575 cmd_flags = 0;
4576 }
4577 }
4578
4579 /* Loop to write the new data from data_start to data_end */
4580 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4581 if ((addr == page_end - 4) ||
4582 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4583 (addr == data_end - 4))) {
4584
4585 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4586 }
4587 rc = bnx2_nvram_write_dword(bp, addr, buf,
4588 cmd_flags);
4589
4590 if (rc != 0)
4591 goto nvram_write_end;
4592
4593 cmd_flags = 0;
4594 buf += 4;
4595 }
4596
4597 /* Loop to write back the buffer data from data_end
4598 * to page_end */
4599 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4600 for (addr = data_end; addr < page_end;
4601 addr += 4, i += 4) {
4602
4603 if (addr == page_end-4) {
4604 cmd_flags = BNX2_NVM_COMMAND_LAST;
4605 }
4606 rc = bnx2_nvram_write_dword(bp, addr,
4607 &flash_buffer[i], cmd_flags);
4608
4609 if (rc != 0)
4610 goto nvram_write_end;
4611
4612 cmd_flags = 0;
4613 }
4614 }
4615
4616 /* Disable writes to flash interface (lock write-protect) */
4617 bnx2_disable_nvram_write(bp);
4618
4619 /* Disable access to flash interface */
4620 bnx2_disable_nvram_access(bp);
4621 bnx2_release_nvram_lock(bp);
4622
4623 /* Increment written */
4624 written += data_end - data_start;
4625 }
4626
4627 nvram_write_end:
4628 kfree(flash_buffer);
4629 kfree(align_buf);
4630 return rc;
4631 }
4632
4633 static void
4634 bnx2_init_fw_cap(struct bnx2 *bp)
4635 {
4636 u32 val, sig = 0;
4637
4638 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4639 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4640
4641 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4642 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4643
4644 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4645 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4646 return;
4647
4648 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4649 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4650 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4651 }
4652
4653 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4654 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4655 u32 link;
4656
4657 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4658
4659 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4660 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4661 bp->phy_port = PORT_FIBRE;
4662 else
4663 bp->phy_port = PORT_TP;
4664
4665 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4666 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4667 }
4668
4669 if (netif_running(bp->dev) && sig)
4670 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4671 }
4672
4673 static void
4674 bnx2_setup_msix_tbl(struct bnx2 *bp)
4675 {
4676 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4677
4678 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4679 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4680 }
4681
4682 static int
4683 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4684 {
4685 u32 val;
4686 int i, rc = 0;
4687 u8 old_port;
4688
4689 /* Wait for the current PCI transaction to complete before
4690 * issuing a reset. */
4691 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
4692 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
4693 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4694 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4695 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4696 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4697 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4698 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4699 udelay(5);
4700 } else { /* 5709 */
4701 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4702 val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4703 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4704 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4705
4706 for (i = 0; i < 100; i++) {
4707 msleep(1);
4708 val = REG_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
4709 if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
4710 break;
4711 }
4712 }
4713
4714 /* Wait for the firmware to tell us it is ok to issue a reset. */
4715 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4716
4717 /* Deposit a driver reset signature so the firmware knows that
4718 * this is a soft reset. */
4719 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4720 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4721
4722 /* Do a dummy read to force the chip to complete all current transaction
4723 * before we issue a reset. */
4724 val = REG_RD(bp, BNX2_MISC_ID);
4725
4726 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4727 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4728 REG_RD(bp, BNX2_MISC_COMMAND);
4729 udelay(5);
4730
4731 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4732 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4733
4734 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4735
4736 } else {
4737 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4738 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4739 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4740
4741 /* Chip reset. */
4742 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4743
4744 /* Reading back any register after chip reset will hang the
4745 * bus on 5706 A0 and A1. The msleep below provides plenty
4746 * of margin for write posting.
4747 */
4748 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4749 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4750 msleep(20);
4751
4752 /* Reset takes approximate 30 usec */
4753 for (i = 0; i < 10; i++) {
4754 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4755 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4756 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4757 break;
4758 udelay(10);
4759 }
4760
4761 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4762 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4763 pr_err("Chip reset did not complete\n");
4764 return -EBUSY;
4765 }
4766 }
4767
4768 /* Make sure byte swapping is properly configured. */
4769 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4770 if (val != 0x01020304) {
4771 pr_err("Chip not in correct endian mode\n");
4772 return -ENODEV;
4773 }
4774
4775 /* Wait for the firmware to finish its initialization. */
4776 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4777 if (rc)
4778 return rc;
4779
4780 spin_lock_bh(&bp->phy_lock);
4781 old_port = bp->phy_port;
4782 bnx2_init_fw_cap(bp);
4783 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4784 old_port != bp->phy_port)
4785 bnx2_set_default_remote_link(bp);
4786 spin_unlock_bh(&bp->phy_lock);
4787
4788 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4789 /* Adjust the voltage regular to two steps lower. The default
4790 * of this register is 0x0000000e. */
4791 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4792
4793 /* Remove bad rbuf memory from the free pool. */
4794 rc = bnx2_alloc_bad_rbuf(bp);
4795 }
4796
4797 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4798 bnx2_setup_msix_tbl(bp);
4799 /* Prevent MSIX table reads and write from timing out */
4800 REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
4801 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
4802 }
4803
4804 return rc;
4805 }
4806
4807 static int
4808 bnx2_init_chip(struct bnx2 *bp)
4809 {
4810 u32 val, mtu;
4811 int rc, i;
4812
4813 /* Make sure the interrupt is not active. */
4814 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4815
4816 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4817 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4818 #ifdef __BIG_ENDIAN
4819 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4820 #endif
4821 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4822 DMA_READ_CHANS << 12 |
4823 DMA_WRITE_CHANS << 16;
4824
4825 val |= (0x2 << 20) | (1 << 11);
4826
4827 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4828 val |= (1 << 23);
4829
4830 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4831 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4832 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4833
4834 REG_WR(bp, BNX2_DMA_CONFIG, val);
4835
4836 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4837 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4838 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4839 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4840 }
4841
4842 if (bp->flags & BNX2_FLAG_PCIX) {
4843 u16 val16;
4844
4845 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4846 &val16);
4847 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4848 val16 & ~PCI_X_CMD_ERO);
4849 }
4850
4851 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4852 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4853 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4854 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4855
4856 /* Initialize context mapping and zero out the quick contexts. The
4857 * context block must have already been enabled. */
4858 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4859 rc = bnx2_init_5709_context(bp);
4860 if (rc)
4861 return rc;
4862 } else
4863 bnx2_init_context(bp);
4864
4865 if ((rc = bnx2_init_cpus(bp)) != 0)
4866 return rc;
4867
4868 bnx2_init_nvram(bp);
4869
4870 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4871
4872 val = REG_RD(bp, BNX2_MQ_CONFIG);
4873 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4874 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4875 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4876 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4877 if (CHIP_REV(bp) == CHIP_REV_Ax)
4878 val |= BNX2_MQ_CONFIG_HALT_DIS;
4879 }
4880
4881 REG_WR(bp, BNX2_MQ_CONFIG, val);
4882
4883 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4884 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4885 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4886
4887 val = (BCM_PAGE_BITS - 8) << 24;
4888 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4889
4890 /* Configure page size. */
4891 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4892 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4893 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4894 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4895
4896 val = bp->mac_addr[0] +
4897 (bp->mac_addr[1] << 8) +
4898 (bp->mac_addr[2] << 16) +
4899 bp->mac_addr[3] +
4900 (bp->mac_addr[4] << 8) +
4901 (bp->mac_addr[5] << 16);
4902 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4903
4904 /* Program the MTU. Also include 4 bytes for CRC32. */
4905 mtu = bp->dev->mtu;
4906 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4907 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4908 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4909 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4910
4911 if (mtu < 1500)
4912 mtu = 1500;
4913
4914 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4915 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4916 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4917
4918 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4919 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4920 bp->bnx2_napi[i].last_status_idx = 0;
4921
4922 bp->idle_chk_status_idx = 0xffff;
4923
4924 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4925
4926 /* Set up how to generate a link change interrupt. */
4927 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4928
4929 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4930 (u64) bp->status_blk_mapping & 0xffffffff);
4931 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4932
4933 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4934 (u64) bp->stats_blk_mapping & 0xffffffff);
4935 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4936 (u64) bp->stats_blk_mapping >> 32);
4937
4938 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4939 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4940
4941 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4942 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4943
4944 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4945 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4946
4947 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4948
4949 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4950
4951 REG_WR(bp, BNX2_HC_COM_TICKS,
4952 (bp->com_ticks_int << 16) | bp->com_ticks);
4953
4954 REG_WR(bp, BNX2_HC_CMD_TICKS,
4955 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4956
4957 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4958 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4959 else
4960 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4961 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4962
4963 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4964 val = BNX2_HC_CONFIG_COLLECT_STATS;
4965 else {
4966 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4967 BNX2_HC_CONFIG_COLLECT_STATS;
4968 }
4969
4970 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4971 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4972 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4973
4974 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4975 }
4976
4977 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4978 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4979
4980 REG_WR(bp, BNX2_HC_CONFIG, val);
4981
4982 if (bp->rx_ticks < 25)
4983 bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
4984 else
4985 bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
4986
4987 for (i = 1; i < bp->irq_nvecs; i++) {
4988 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4989 BNX2_HC_SB_CONFIG_1;
4990
4991 REG_WR(bp, base,
4992 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4993 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4994 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4995
4996 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4997 (bp->tx_quick_cons_trip_int << 16) |
4998 bp->tx_quick_cons_trip);
4999
5000 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
5001 (bp->tx_ticks_int << 16) | bp->tx_ticks);
5002
5003 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
5004 (bp->rx_quick_cons_trip_int << 16) |
5005 bp->rx_quick_cons_trip);
5006
5007 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
5008 (bp->rx_ticks_int << 16) | bp->rx_ticks);
5009 }
5010
5011 /* Clear internal stats counters. */
5012 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
5013
5014 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
5015
5016 /* Initialize the receive filter. */
5017 bnx2_set_rx_mode(bp->dev);
5018
5019 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5020 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
5021 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
5022 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
5023 }
5024 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
5025 1, 0);
5026
5027 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
5028 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
5029
5030 udelay(20);
5031
5032 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
5033
5034 return rc;
5035 }
5036
5037 static void
5038 bnx2_clear_ring_states(struct bnx2 *bp)
5039 {
5040 struct bnx2_napi *bnapi;
5041 struct bnx2_tx_ring_info *txr;
5042 struct bnx2_rx_ring_info *rxr;
5043 int i;
5044
5045 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5046 bnapi = &bp->bnx2_napi[i];
5047 txr = &bnapi->tx_ring;
5048 rxr = &bnapi->rx_ring;
5049
5050 txr->tx_cons = 0;
5051 txr->hw_tx_cons = 0;
5052 rxr->rx_prod_bseq = 0;
5053 rxr->rx_prod = 0;
5054 rxr->rx_cons = 0;
5055 rxr->rx_pg_prod = 0;
5056 rxr->rx_pg_cons = 0;
5057 }
5058 }
5059
5060 static void
5061 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5062 {
5063 u32 val, offset0, offset1, offset2, offset3;
5064 u32 cid_addr = GET_CID_ADDR(cid);
5065
5066 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5067 offset0 = BNX2_L2CTX_TYPE_XI;
5068 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5069 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5070 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5071 } else {
5072 offset0 = BNX2_L2CTX_TYPE;
5073 offset1 = BNX2_L2CTX_CMD_TYPE;
5074 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5075 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5076 }
5077 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5078 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5079
5080 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5081 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5082
5083 val = (u64) txr->tx_desc_mapping >> 32;
5084 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5085
5086 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5087 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5088 }
5089
5090 static void
5091 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5092 {
5093 struct tx_bd *txbd;
5094 u32 cid = TX_CID;
5095 struct bnx2_napi *bnapi;
5096 struct bnx2_tx_ring_info *txr;
5097
5098 bnapi = &bp->bnx2_napi[ring_num];
5099 txr = &bnapi->tx_ring;
5100
5101 if (ring_num == 0)
5102 cid = TX_CID;
5103 else
5104 cid = TX_TSS_CID + ring_num - 1;
5105
5106 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5107
5108 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5109
5110 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5111 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5112
5113 txr->tx_prod = 0;
5114 txr->tx_prod_bseq = 0;
5115
5116 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5117 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5118
5119 bnx2_init_tx_context(bp, cid, txr);
5120 }
5121
5122 static void
5123 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5124 int num_rings)
5125 {
5126 int i;
5127 struct rx_bd *rxbd;
5128
5129 for (i = 0; i < num_rings; i++) {
5130 int j;
5131
5132 rxbd = &rx_ring[i][0];
5133 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5134 rxbd->rx_bd_len = buf_size;
5135 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5136 }
5137 if (i == (num_rings - 1))
5138 j = 0;
5139 else
5140 j = i + 1;
5141 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5142 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5143 }
5144 }
5145
5146 static void
5147 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5148 {
5149 int i;
5150 u16 prod, ring_prod;
5151 u32 cid, rx_cid_addr, val;
5152 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5153 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5154
5155 if (ring_num == 0)
5156 cid = RX_CID;
5157 else
5158 cid = RX_RSS_CID + ring_num - 1;
5159
5160 rx_cid_addr = GET_CID_ADDR(cid);
5161
5162 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5163 bp->rx_buf_use_size, bp->rx_max_ring);
5164
5165 bnx2_init_rx_context(bp, cid);
5166
5167 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5168 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5169 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5170 }
5171
5172 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5173 if (bp->rx_pg_ring_size) {
5174 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5175 rxr->rx_pg_desc_mapping,
5176 PAGE_SIZE, bp->rx_max_pg_ring);
5177 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5178 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5179 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5180 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5181
5182 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5183 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5184
5185 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5186 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5187
5188 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5189 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5190 }
5191
5192 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5193 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5194
5195 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5196 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5197
5198 ring_prod = prod = rxr->rx_pg_prod;
5199 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5200 if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
5201 netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
5202 ring_num, i, bp->rx_pg_ring_size);
5203 break;
5204 }
5205 prod = NEXT_RX_BD(prod);
5206 ring_prod = RX_PG_RING_IDX(prod);
5207 }
5208 rxr->rx_pg_prod = prod;
5209
5210 ring_prod = prod = rxr->rx_prod;
5211 for (i = 0; i < bp->rx_ring_size; i++) {
5212 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
5213 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
5214 ring_num, i, bp->rx_ring_size);
5215 break;
5216 }
5217 prod = NEXT_RX_BD(prod);
5218 ring_prod = RX_RING_IDX(prod);
5219 }
5220 rxr->rx_prod = prod;
5221
5222 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5223 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5224 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5225
5226 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5227 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5228
5229 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5230 }
5231
5232 static void
5233 bnx2_init_all_rings(struct bnx2 *bp)
5234 {
5235 int i;
5236 u32 val;
5237
5238 bnx2_clear_ring_states(bp);
5239
5240 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5241 for (i = 0; i < bp->num_tx_rings; i++)
5242 bnx2_init_tx_ring(bp, i);
5243
5244 if (bp->num_tx_rings > 1)
5245 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5246 (TX_TSS_CID << 7));
5247
5248 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5249 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5250
5251 for (i = 0; i < bp->num_rx_rings; i++)
5252 bnx2_init_rx_ring(bp, i);
5253
5254 if (bp->num_rx_rings > 1) {
5255 u32 tbl_32 = 0;
5256
5257 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5258 int shift = (i % 8) << 2;
5259
5260 tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
5261 if ((i % 8) == 7) {
5262 REG_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
5263 REG_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
5264 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
5265 BNX2_RLUP_RSS_COMMAND_WRITE |
5266 BNX2_RLUP_RSS_COMMAND_HASH_MASK);
5267 tbl_32 = 0;
5268 }
5269 }
5270
5271 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5272 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5273
5274 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5275
5276 }
5277 }
5278
5279 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5280 {
5281 u32 max, num_rings = 1;
5282
5283 while (ring_size > MAX_RX_DESC_CNT) {
5284 ring_size -= MAX_RX_DESC_CNT;
5285 num_rings++;
5286 }
5287 /* round to next power of 2 */
5288 max = max_size;
5289 while ((max & num_rings) == 0)
5290 max >>= 1;
5291
5292 if (num_rings != max)
5293 max <<= 1;
5294
5295 return max;
5296 }
5297
5298 static void
5299 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5300 {
5301 u32 rx_size, rx_space, jumbo_size;
5302
5303 /* 8 for CRC and VLAN */
5304 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5305
5306 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5307 sizeof(struct skb_shared_info);
5308
5309 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5310 bp->rx_pg_ring_size = 0;
5311 bp->rx_max_pg_ring = 0;
5312 bp->rx_max_pg_ring_idx = 0;
5313 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5314 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5315
5316 jumbo_size = size * pages;
5317 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5318 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5319
5320 bp->rx_pg_ring_size = jumbo_size;
5321 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5322 MAX_RX_PG_RINGS);
5323 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5324 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5325 bp->rx_copy_thresh = 0;
5326 }
5327
5328 bp->rx_buf_use_size = rx_size;
5329 /* hw alignment */
5330 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5331 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5332 bp->rx_ring_size = size;
5333 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5334 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5335 }
5336
5337 static void
5338 bnx2_free_tx_skbs(struct bnx2 *bp)
5339 {
5340 int i;
5341
5342 for (i = 0; i < bp->num_tx_rings; i++) {
5343 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5344 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5345 int j;
5346
5347 if (txr->tx_buf_ring == NULL)
5348 continue;
5349
5350 for (j = 0; j < TX_DESC_CNT; ) {
5351 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5352 struct sk_buff *skb = tx_buf->skb;
5353 int k, last;
5354
5355 if (skb == NULL) {
5356 j++;
5357 continue;
5358 }
5359
5360 dma_unmap_single(&bp->pdev->dev,
5361 dma_unmap_addr(tx_buf, mapping),
5362 skb_headlen(skb),
5363 PCI_DMA_TODEVICE);
5364
5365 tx_buf->skb = NULL;
5366
5367 last = tx_buf->nr_frags;
5368 j++;
5369 for (k = 0; k < last; k++, j++) {
5370 tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
5371 dma_unmap_page(&bp->pdev->dev,
5372 dma_unmap_addr(tx_buf, mapping),
5373 skb_shinfo(skb)->frags[k].size,
5374 PCI_DMA_TODEVICE);
5375 }
5376 dev_kfree_skb(skb);
5377 }
5378 }
5379 }
5380
5381 static void
5382 bnx2_free_rx_skbs(struct bnx2 *bp)
5383 {
5384 int i;
5385
5386 for (i = 0; i < bp->num_rx_rings; i++) {
5387 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5388 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5389 int j;
5390
5391 if (rxr->rx_buf_ring == NULL)
5392 return;
5393
5394 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5395 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5396 struct sk_buff *skb = rx_buf->skb;
5397
5398 if (skb == NULL)
5399 continue;
5400
5401 dma_unmap_single(&bp->pdev->dev,
5402 dma_unmap_addr(rx_buf, mapping),
5403 bp->rx_buf_use_size,
5404 PCI_DMA_FROMDEVICE);
5405
5406 rx_buf->skb = NULL;
5407
5408 dev_kfree_skb(skb);
5409 }
5410 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5411 bnx2_free_rx_page(bp, rxr, j);
5412 }
5413 }
5414
5415 static void
5416 bnx2_free_skbs(struct bnx2 *bp)
5417 {
5418 bnx2_free_tx_skbs(bp);
5419 bnx2_free_rx_skbs(bp);
5420 }
5421
5422 static int
5423 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5424 {
5425 int rc;
5426
5427 rc = bnx2_reset_chip(bp, reset_code);
5428 bnx2_free_skbs(bp);
5429 if (rc)
5430 return rc;
5431
5432 if ((rc = bnx2_init_chip(bp)) != 0)
5433 return rc;
5434
5435 bnx2_init_all_rings(bp);
5436 return 0;
5437 }
5438
5439 static int
5440 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5441 {
5442 int rc;
5443
5444 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5445 return rc;
5446
5447 spin_lock_bh(&bp->phy_lock);
5448 bnx2_init_phy(bp, reset_phy);
5449 bnx2_set_link(bp);
5450 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5451 bnx2_remote_phy_event(bp);
5452 spin_unlock_bh(&bp->phy_lock);
5453 return 0;
5454 }
5455
5456 static int
5457 bnx2_shutdown_chip(struct bnx2 *bp)
5458 {
5459 u32 reset_code;
5460
5461 if (bp->flags & BNX2_FLAG_NO_WOL)
5462 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5463 else if (bp->wol)
5464 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5465 else
5466 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5467
5468 return bnx2_reset_chip(bp, reset_code);
5469 }
5470
5471 static int
5472 bnx2_test_registers(struct bnx2 *bp)
5473 {
5474 int ret;
5475 int i, is_5709;
5476 static const struct {
5477 u16 offset;
5478 u16 flags;
5479 #define BNX2_FL_NOT_5709 1
5480 u32 rw_mask;
5481 u32 ro_mask;
5482 } reg_tbl[] = {
5483 { 0x006c, 0, 0x00000000, 0x0000003f },
5484 { 0x0090, 0, 0xffffffff, 0x00000000 },
5485 { 0x0094, 0, 0x00000000, 0x00000000 },
5486
5487 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5488 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5489 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5490 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5491 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5492 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5493 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5494 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5495 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5496
5497 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5498 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5499 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5500 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5501 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5502 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5503
5504 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5505 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5506 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5507
5508 { 0x1000, 0, 0x00000000, 0x00000001 },
5509 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5510
5511 { 0x1408, 0, 0x01c00800, 0x00000000 },
5512 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5513 { 0x14a8, 0, 0x00000000, 0x000001ff },
5514 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5515 { 0x14b0, 0, 0x00000002, 0x00000001 },
5516 { 0x14b8, 0, 0x00000000, 0x00000000 },
5517 { 0x14c0, 0, 0x00000000, 0x00000009 },
5518 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5519 { 0x14cc, 0, 0x00000000, 0x00000001 },
5520 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5521
5522 { 0x1800, 0, 0x00000000, 0x00000001 },
5523 { 0x1804, 0, 0x00000000, 0x00000003 },
5524
5525 { 0x2800, 0, 0x00000000, 0x00000001 },
5526 { 0x2804, 0, 0x00000000, 0x00003f01 },
5527 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5528 { 0x2810, 0, 0xffff0000, 0x00000000 },
5529 { 0x2814, 0, 0xffff0000, 0x00000000 },
5530 { 0x2818, 0, 0xffff0000, 0x00000000 },
5531 { 0x281c, 0, 0xffff0000, 0x00000000 },
5532 { 0x2834, 0, 0xffffffff, 0x00000000 },
5533 { 0x2840, 0, 0x00000000, 0xffffffff },
5534 { 0x2844, 0, 0x00000000, 0xffffffff },
5535 { 0x2848, 0, 0xffffffff, 0x00000000 },
5536 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5537
5538 { 0x2c00, 0, 0x00000000, 0x00000011 },
5539 { 0x2c04, 0, 0x00000000, 0x00030007 },
5540
5541 { 0x3c00, 0, 0x00000000, 0x00000001 },
5542 { 0x3c04, 0, 0x00000000, 0x00070000 },
5543 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5544 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5545 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5546 { 0x3c14, 0, 0x00000000, 0xffffffff },
5547 { 0x3c18, 0, 0x00000000, 0xffffffff },
5548 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5549 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5550
5551 { 0x5004, 0, 0x00000000, 0x0000007f },
5552 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5553
5554 { 0x5c00, 0, 0x00000000, 0x00000001 },
5555 { 0x5c04, 0, 0x00000000, 0x0003000f },
5556 { 0x5c08, 0, 0x00000003, 0x00000000 },
5557 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5558 { 0x5c10, 0, 0x00000000, 0xffffffff },
5559 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5560 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5561 { 0x5c88, 0, 0x00000000, 0x00077373 },
5562 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5563
5564 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5565 { 0x680c, 0, 0xffffffff, 0x00000000 },
5566 { 0x6810, 0, 0xffffffff, 0x00000000 },
5567 { 0x6814, 0, 0xffffffff, 0x00000000 },
5568 { 0x6818, 0, 0xffffffff, 0x00000000 },
5569 { 0x681c, 0, 0xffffffff, 0x00000000 },
5570 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5571 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5572 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5573 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5574 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5575 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5576 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5577 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5578 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5579 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5580 { 0x684c, 0, 0xffffffff, 0x00000000 },
5581 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5582 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5583 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5584 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5585 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5586 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5587
5588 { 0xffff, 0, 0x00000000, 0x00000000 },
5589 };
5590
5591 ret = 0;
5592 is_5709 = 0;
5593 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5594 is_5709 = 1;
5595
5596 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5597 u32 offset, rw_mask, ro_mask, save_val, val;
5598 u16 flags = reg_tbl[i].flags;
5599
5600 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5601 continue;
5602
5603 offset = (u32) reg_tbl[i].offset;
5604 rw_mask = reg_tbl[i].rw_mask;
5605 ro_mask = reg_tbl[i].ro_mask;
5606
5607 save_val = readl(bp->regview + offset);
5608
5609 writel(0, bp->regview + offset);
5610
5611 val = readl(bp->regview + offset);
5612 if ((val & rw_mask) != 0) {
5613 goto reg_test_err;
5614 }
5615
5616 if ((val & ro_mask) != (save_val & ro_mask)) {
5617 goto reg_test_err;
5618 }
5619
5620 writel(0xffffffff, bp->regview + offset);
5621
5622 val = readl(bp->regview + offset);
5623 if ((val & rw_mask) != rw_mask) {
5624 goto reg_test_err;
5625 }
5626
5627 if ((val & ro_mask) != (save_val & ro_mask)) {
5628 goto reg_test_err;
5629 }
5630
5631 writel(save_val, bp->regview + offset);
5632 continue;
5633
5634 reg_test_err:
5635 writel(save_val, bp->regview + offset);
5636 ret = -ENODEV;
5637 break;
5638 }
5639 return ret;
5640 }
5641
5642 static int
5643 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5644 {
5645 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5646 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5647 int i;
5648
5649 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5650 u32 offset;
5651
5652 for (offset = 0; offset < size; offset += 4) {
5653
5654 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5655
5656 if (bnx2_reg_rd_ind(bp, start + offset) !=
5657 test_pattern[i]) {
5658 return -ENODEV;
5659 }
5660 }
5661 }
5662 return 0;
5663 }
5664
5665 static int
5666 bnx2_test_memory(struct bnx2 *bp)
5667 {
5668 int ret = 0;
5669 int i;
5670 static struct mem_entry {
5671 u32 offset;
5672 u32 len;
5673 } mem_tbl_5706[] = {
5674 { 0x60000, 0x4000 },
5675 { 0xa0000, 0x3000 },
5676 { 0xe0000, 0x4000 },
5677 { 0x120000, 0x4000 },
5678 { 0x1a0000, 0x4000 },
5679 { 0x160000, 0x4000 },
5680 { 0xffffffff, 0 },
5681 },
5682 mem_tbl_5709[] = {
5683 { 0x60000, 0x4000 },
5684 { 0xa0000, 0x3000 },
5685 { 0xe0000, 0x4000 },
5686 { 0x120000, 0x4000 },
5687 { 0x1a0000, 0x4000 },
5688 { 0xffffffff, 0 },
5689 };
5690 struct mem_entry *mem_tbl;
5691
5692 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5693 mem_tbl = mem_tbl_5709;
5694 else
5695 mem_tbl = mem_tbl_5706;
5696
5697 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5698 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5699 mem_tbl[i].len)) != 0) {
5700 return ret;
5701 }
5702 }
5703
5704 return ret;
5705 }
5706
5707 #define BNX2_MAC_LOOPBACK 0
5708 #define BNX2_PHY_LOOPBACK 1
5709
5710 static int
5711 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5712 {
5713 unsigned int pkt_size, num_pkts, i;
5714 struct sk_buff *skb, *rx_skb;
5715 unsigned char *packet;
5716 u16 rx_start_idx, rx_idx;
5717 dma_addr_t map;
5718 struct tx_bd *txbd;
5719 struct sw_bd *rx_buf;
5720 struct l2_fhdr *rx_hdr;
5721 int ret = -ENODEV;
5722 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5723 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5724 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5725
5726 tx_napi = bnapi;
5727
5728 txr = &tx_napi->tx_ring;
5729 rxr = &bnapi->rx_ring;
5730 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5731 bp->loopback = MAC_LOOPBACK;
5732 bnx2_set_mac_loopback(bp);
5733 }
5734 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5735 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5736 return 0;
5737
5738 bp->loopback = PHY_LOOPBACK;
5739 bnx2_set_phy_loopback(bp);
5740 }
5741 else
5742 return -EINVAL;
5743
5744 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5745 skb = netdev_alloc_skb(bp->dev, pkt_size);
5746 if (!skb)
5747 return -ENOMEM;
5748 packet = skb_put(skb, pkt_size);
5749 memcpy(packet, bp->dev->dev_addr, 6);
5750 memset(packet + 6, 0x0, 8);
5751 for (i = 14; i < pkt_size; i++)
5752 packet[i] = (unsigned char) (i & 0xff);
5753
5754 map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
5755 PCI_DMA_TODEVICE);
5756 if (dma_mapping_error(&bp->pdev->dev, map)) {
5757 dev_kfree_skb(skb);
5758 return -EIO;
5759 }
5760
5761 REG_WR(bp, BNX2_HC_COMMAND,
5762 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5763
5764 REG_RD(bp, BNX2_HC_COMMAND);
5765
5766 udelay(5);
5767 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5768
5769 num_pkts = 0;
5770
5771 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5772
5773 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5774 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5775 txbd->tx_bd_mss_nbytes = pkt_size;
5776 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5777
5778 num_pkts++;
5779 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5780 txr->tx_prod_bseq += pkt_size;
5781
5782 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5783 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5784
5785 udelay(100);
5786
5787 REG_WR(bp, BNX2_HC_COMMAND,
5788 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5789
5790 REG_RD(bp, BNX2_HC_COMMAND);
5791
5792 udelay(5);
5793
5794 dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
5795 dev_kfree_skb(skb);
5796
5797 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5798 goto loopback_test_done;
5799
5800 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5801 if (rx_idx != rx_start_idx + num_pkts) {
5802 goto loopback_test_done;
5803 }
5804
5805 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5806 rx_skb = rx_buf->skb;
5807
5808 rx_hdr = rx_buf->desc;
5809 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5810
5811 dma_sync_single_for_cpu(&bp->pdev->dev,
5812 dma_unmap_addr(rx_buf, mapping),
5813 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5814
5815 if (rx_hdr->l2_fhdr_status &
5816 (L2_FHDR_ERRORS_BAD_CRC |
5817 L2_FHDR_ERRORS_PHY_DECODE |
5818 L2_FHDR_ERRORS_ALIGNMENT |
5819 L2_FHDR_ERRORS_TOO_SHORT |
5820 L2_FHDR_ERRORS_GIANT_FRAME)) {
5821
5822 goto loopback_test_done;
5823 }
5824
5825 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5826 goto loopback_test_done;
5827 }
5828
5829 for (i = 14; i < pkt_size; i++) {
5830 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5831 goto loopback_test_done;
5832 }
5833 }
5834
5835 ret = 0;
5836
5837 loopback_test_done:
5838 bp->loopback = 0;
5839 return ret;
5840 }
5841
5842 #define BNX2_MAC_LOOPBACK_FAILED 1
5843 #define BNX2_PHY_LOOPBACK_FAILED 2
5844 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5845 BNX2_PHY_LOOPBACK_FAILED)
5846
5847 static int
5848 bnx2_test_loopback(struct bnx2 *bp)
5849 {
5850 int rc = 0;
5851
5852 if (!netif_running(bp->dev))
5853 return BNX2_LOOPBACK_FAILED;
5854
5855 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5856 spin_lock_bh(&bp->phy_lock);
5857 bnx2_init_phy(bp, 1);
5858 spin_unlock_bh(&bp->phy_lock);
5859 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5860 rc |= BNX2_MAC_LOOPBACK_FAILED;
5861 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5862 rc |= BNX2_PHY_LOOPBACK_FAILED;
5863 return rc;
5864 }
5865
5866 #define NVRAM_SIZE 0x200
5867 #define CRC32_RESIDUAL 0xdebb20e3
5868
5869 static int
5870 bnx2_test_nvram(struct bnx2 *bp)
5871 {
5872 __be32 buf[NVRAM_SIZE / 4];
5873 u8 *data = (u8 *) buf;
5874 int rc = 0;
5875 u32 magic, csum;
5876
5877 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5878 goto test_nvram_done;
5879
5880 magic = be32_to_cpu(buf[0]);
5881 if (magic != 0x669955aa) {
5882 rc = -ENODEV;
5883 goto test_nvram_done;
5884 }
5885
5886 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5887 goto test_nvram_done;
5888
5889 csum = ether_crc_le(0x100, data);
5890 if (csum != CRC32_RESIDUAL) {
5891 rc = -ENODEV;
5892 goto test_nvram_done;
5893 }
5894
5895 csum = ether_crc_le(0x100, data + 0x100);
5896 if (csum != CRC32_RESIDUAL) {
5897 rc = -ENODEV;
5898 }
5899
5900 test_nvram_done:
5901 return rc;
5902 }
5903
5904 static int
5905 bnx2_test_link(struct bnx2 *bp)
5906 {
5907 u32 bmsr;
5908
5909 if (!netif_running(bp->dev))
5910 return -ENODEV;
5911
5912 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5913 if (bp->link_up)
5914 return 0;
5915 return -ENODEV;
5916 }
5917 spin_lock_bh(&bp->phy_lock);
5918 bnx2_enable_bmsr1(bp);
5919 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5920 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5921 bnx2_disable_bmsr1(bp);
5922 spin_unlock_bh(&bp->phy_lock);
5923
5924 if (bmsr & BMSR_LSTATUS) {
5925 return 0;
5926 }
5927 return -ENODEV;
5928 }
5929
5930 static int
5931 bnx2_test_intr(struct bnx2 *bp)
5932 {
5933 int i;
5934 u16 status_idx;
5935
5936 if (!netif_running(bp->dev))
5937 return -ENODEV;
5938
5939 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5940
5941 /* This register is not touched during run-time. */
5942 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5943 REG_RD(bp, BNX2_HC_COMMAND);
5944
5945 for (i = 0; i < 10; i++) {
5946 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5947 status_idx) {
5948
5949 break;
5950 }
5951
5952 msleep_interruptible(10);
5953 }
5954 if (i < 10)
5955 return 0;
5956
5957 return -ENODEV;
5958 }
5959
5960 /* Determining link for parallel detection. */
5961 static int
5962 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5963 {
5964 u32 mode_ctl, an_dbg, exp;
5965
5966 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5967 return 0;
5968
5969 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5970 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5971
5972 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5973 return 0;
5974
5975 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5976 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5977 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5978
5979 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5980 return 0;
5981
5982 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5983 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5984 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5985
5986 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5987 return 0;
5988
5989 return 1;
5990 }
5991
5992 static void
5993 bnx2_5706_serdes_timer(struct bnx2 *bp)
5994 {
5995 int check_link = 1;
5996
5997 spin_lock(&bp->phy_lock);
5998 if (bp->serdes_an_pending) {
5999 bp->serdes_an_pending--;
6000 check_link = 0;
6001 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6002 u32 bmcr;
6003
6004 bp->current_interval = BNX2_TIMER_INTERVAL;
6005
6006 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6007
6008 if (bmcr & BMCR_ANENABLE) {
6009 if (bnx2_5706_serdes_has_link(bp)) {
6010 bmcr &= ~BMCR_ANENABLE;
6011 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
6012 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
6013 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
6014 }
6015 }
6016 }
6017 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
6018 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
6019 u32 phy2;
6020
6021 bnx2_write_phy(bp, 0x17, 0x0f01);
6022 bnx2_read_phy(bp, 0x15, &phy2);
6023 if (phy2 & 0x20) {
6024 u32 bmcr;
6025
6026 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6027 bmcr |= BMCR_ANENABLE;
6028 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
6029
6030 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
6031 }
6032 } else
6033 bp->current_interval = BNX2_TIMER_INTERVAL;
6034
6035 if (check_link) {
6036 u32 val;
6037
6038 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
6039 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6040 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6041
6042 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
6043 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
6044 bnx2_5706s_force_link_dn(bp, 1);
6045 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
6046 } else
6047 bnx2_set_link(bp);
6048 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
6049 bnx2_set_link(bp);
6050 }
6051 spin_unlock(&bp->phy_lock);
6052 }
6053
6054 static void
6055 bnx2_5708_serdes_timer(struct bnx2 *bp)
6056 {
6057 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
6058 return;
6059
6060 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
6061 bp->serdes_an_pending = 0;
6062 return;
6063 }
6064
6065 spin_lock(&bp->phy_lock);
6066 if (bp->serdes_an_pending)
6067 bp->serdes_an_pending--;
6068 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6069 u32 bmcr;
6070
6071 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6072 if (bmcr & BMCR_ANENABLE) {
6073 bnx2_enable_forced_2g5(bp);
6074 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6075 } else {
6076 bnx2_disable_forced_2g5(bp);
6077 bp->serdes_an_pending = 2;
6078 bp->current_interval = BNX2_TIMER_INTERVAL;
6079 }
6080
6081 } else
6082 bp->current_interval = BNX2_TIMER_INTERVAL;
6083
6084 spin_unlock(&bp->phy_lock);
6085 }
6086
6087 static void
6088 bnx2_timer(unsigned long data)
6089 {
6090 struct bnx2 *bp = (struct bnx2 *) data;
6091
6092 if (!netif_running(bp->dev))
6093 return;
6094
6095 if (atomic_read(&bp->intr_sem) != 0)
6096 goto bnx2_restart_timer;
6097
6098 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6099 BNX2_FLAG_USING_MSI)
6100 bnx2_chk_missed_msi(bp);
6101
6102 bnx2_send_heart_beat(bp);
6103
6104 bp->stats_blk->stat_FwRxDrop =
6105 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6106
6107 /* workaround occasional corrupted counters */
6108 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6109 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6110 BNX2_HC_COMMAND_STATS_NOW);
6111
6112 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6113 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6114 bnx2_5706_serdes_timer(bp);
6115 else
6116 bnx2_5708_serdes_timer(bp);
6117 }
6118
6119 bnx2_restart_timer:
6120 mod_timer(&bp->timer, jiffies + bp->current_interval);
6121 }
6122
6123 static int
6124 bnx2_request_irq(struct bnx2 *bp)
6125 {
6126 unsigned long flags;
6127 struct bnx2_irq *irq;
6128 int rc = 0, i;
6129
6130 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6131 flags = 0;
6132 else
6133 flags = IRQF_SHARED;
6134
6135 for (i = 0; i < bp->irq_nvecs; i++) {
6136 irq = &bp->irq_tbl[i];
6137 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6138 &bp->bnx2_napi[i]);
6139 if (rc)
6140 break;
6141 irq->requested = 1;
6142 }
6143 return rc;
6144 }
6145
6146 static void
6147 __bnx2_free_irq(struct bnx2 *bp)
6148 {
6149 struct bnx2_irq *irq;
6150 int i;
6151
6152 for (i = 0; i < bp->irq_nvecs; i++) {
6153 irq = &bp->irq_tbl[i];
6154 if (irq->requested)
6155 free_irq(irq->vector, &bp->bnx2_napi[i]);
6156 irq->requested = 0;
6157 }
6158 }
6159
6160 static void
6161 bnx2_free_irq(struct bnx2 *bp)
6162 {
6163
6164 __bnx2_free_irq(bp);
6165 if (bp->flags & BNX2_FLAG_USING_MSI)
6166 pci_disable_msi(bp->pdev);
6167 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6168 pci_disable_msix(bp->pdev);
6169
6170 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6171 }
6172
6173 static void
6174 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6175 {
6176 int i, total_vecs, rc;
6177 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6178 struct net_device *dev = bp->dev;
6179 const int len = sizeof(bp->irq_tbl[0].name);
6180
6181 bnx2_setup_msix_tbl(bp);
6182 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6183 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6184 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6185
6186 /* Need to flush the previous three writes to ensure MSI-X
6187 * is setup properly */
6188 REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
6189
6190 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6191 msix_ent[i].entry = i;
6192 msix_ent[i].vector = 0;
6193 }
6194
6195 total_vecs = msix_vecs;
6196 #ifdef BCM_CNIC
6197 total_vecs++;
6198 #endif
6199 rc = -ENOSPC;
6200 while (total_vecs >= BNX2_MIN_MSIX_VEC) {
6201 rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
6202 if (rc <= 0)
6203 break;
6204 if (rc > 0)
6205 total_vecs = rc;
6206 }
6207
6208 if (rc != 0)
6209 return;
6210
6211 msix_vecs = total_vecs;
6212 #ifdef BCM_CNIC
6213 msix_vecs--;
6214 #endif
6215 bp->irq_nvecs = msix_vecs;
6216 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6217 for (i = 0; i < total_vecs; i++) {
6218 bp->irq_tbl[i].vector = msix_ent[i].vector;
6219 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6220 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6221 }
6222 }
6223
6224 static int
6225 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6226 {
6227 int cpus = num_online_cpus();
6228 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6229
6230 bp->irq_tbl[0].handler = bnx2_interrupt;
6231 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6232 bp->irq_nvecs = 1;
6233 bp->irq_tbl[0].vector = bp->pdev->irq;
6234
6235 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
6236 bnx2_enable_msix(bp, msix_vecs);
6237
6238 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6239 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6240 if (pci_enable_msi(bp->pdev) == 0) {
6241 bp->flags |= BNX2_FLAG_USING_MSI;
6242 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6243 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6244 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6245 } else
6246 bp->irq_tbl[0].handler = bnx2_msi;
6247
6248 bp->irq_tbl[0].vector = bp->pdev->irq;
6249 }
6250 }
6251
6252 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6253 netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
6254
6255 bp->num_rx_rings = bp->irq_nvecs;
6256 return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
6257 }
6258
6259 /* Called with rtnl_lock */
6260 static int
6261 bnx2_open(struct net_device *dev)
6262 {
6263 struct bnx2 *bp = netdev_priv(dev);
6264 int rc;
6265
6266 netif_carrier_off(dev);
6267
6268 bnx2_set_power_state(bp, PCI_D0);
6269 bnx2_disable_int(bp);
6270
6271 rc = bnx2_setup_int_mode(bp, disable_msi);
6272 if (rc)
6273 goto open_err;
6274 bnx2_init_napi(bp);
6275 bnx2_napi_enable(bp);
6276 rc = bnx2_alloc_mem(bp);
6277 if (rc)
6278 goto open_err;
6279
6280 rc = bnx2_request_irq(bp);
6281 if (rc)
6282 goto open_err;
6283
6284 rc = bnx2_init_nic(bp, 1);
6285 if (rc)
6286 goto open_err;
6287
6288 mod_timer(&bp->timer, jiffies + bp->current_interval);
6289
6290 atomic_set(&bp->intr_sem, 0);
6291
6292 memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
6293
6294 bnx2_enable_int(bp);
6295
6296 if (bp->flags & BNX2_FLAG_USING_MSI) {
6297 /* Test MSI to make sure it is working
6298 * If MSI test fails, go back to INTx mode
6299 */
6300 if (bnx2_test_intr(bp) != 0) {
6301 netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6302
6303 bnx2_disable_int(bp);
6304 bnx2_free_irq(bp);
6305
6306 bnx2_setup_int_mode(bp, 1);
6307
6308 rc = bnx2_init_nic(bp, 0);
6309
6310 if (!rc)
6311 rc = bnx2_request_irq(bp);
6312
6313 if (rc) {
6314 del_timer_sync(&bp->timer);
6315 goto open_err;
6316 }
6317 bnx2_enable_int(bp);
6318 }
6319 }
6320 if (bp->flags & BNX2_FLAG_USING_MSI)
6321 netdev_info(dev, "using MSI\n");
6322 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6323 netdev_info(dev, "using MSIX\n");
6324
6325 netif_tx_start_all_queues(dev);
6326
6327 return 0;
6328
6329 open_err:
6330 bnx2_napi_disable(bp);
6331 bnx2_free_skbs(bp);
6332 bnx2_free_irq(bp);
6333 bnx2_free_mem(bp);
6334 bnx2_del_napi(bp);
6335 return rc;
6336 }
6337
6338 static void
6339 bnx2_reset_task(struct work_struct *work)
6340 {
6341 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6342
6343 rtnl_lock();
6344 if (!netif_running(bp->dev)) {
6345 rtnl_unlock();
6346 return;
6347 }
6348
6349 bnx2_netif_stop(bp, true);
6350
6351 bnx2_init_nic(bp, 1);
6352
6353 atomic_set(&bp->intr_sem, 1);
6354 bnx2_netif_start(bp, true);
6355 rtnl_unlock();
6356 }
6357
6358 static void
6359 bnx2_dump_state(struct bnx2 *bp)
6360 {
6361 struct net_device *dev = bp->dev;
6362 u32 val1, val2;
6363
6364 pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
6365 netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6366 atomic_read(&bp->intr_sem), val1);
6367 pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
6368 pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
6369 netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
6370 netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6371 REG_RD(bp, BNX2_EMAC_TX_STATUS),
6372 REG_RD(bp, BNX2_EMAC_RX_STATUS));
6373 netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6374 REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
6375 netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6376 REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
6377 if (bp->flags & BNX2_FLAG_USING_MSIX)
6378 netdev_err(dev, "DEBUG: PBA[%08x]\n",
6379 REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
6380 }
6381
6382 static void
6383 bnx2_tx_timeout(struct net_device *dev)
6384 {
6385 struct bnx2 *bp = netdev_priv(dev);
6386
6387 bnx2_dump_state(bp);
6388 bnx2_dump_mcp_state(bp);
6389
6390 /* This allows the netif to be shutdown gracefully before resetting */
6391 schedule_work(&bp->reset_task);
6392 }
6393
6394 /* Called with netif_tx_lock.
6395 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6396 * netif_wake_queue().
6397 */
6398 static netdev_tx_t
6399 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6400 {
6401 struct bnx2 *bp = netdev_priv(dev);
6402 dma_addr_t mapping;
6403 struct tx_bd *txbd;
6404 struct sw_tx_bd *tx_buf;
6405 u32 len, vlan_tag_flags, last_frag, mss;
6406 u16 prod, ring_prod;
6407 int i;
6408 struct bnx2_napi *bnapi;
6409 struct bnx2_tx_ring_info *txr;
6410 struct netdev_queue *txq;
6411
6412 /* Determine which tx ring we will be placed on */
6413 i = skb_get_queue_mapping(skb);
6414 bnapi = &bp->bnx2_napi[i];
6415 txr = &bnapi->tx_ring;
6416 txq = netdev_get_tx_queue(dev, i);
6417
6418 if (unlikely(bnx2_tx_avail(bp, txr) <
6419 (skb_shinfo(skb)->nr_frags + 1))) {
6420 netif_tx_stop_queue(txq);
6421 netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
6422
6423 return NETDEV_TX_BUSY;
6424 }
6425 len = skb_headlen(skb);
6426 prod = txr->tx_prod;
6427 ring_prod = TX_RING_IDX(prod);
6428
6429 vlan_tag_flags = 0;
6430 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6431 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6432 }
6433
6434 if (vlan_tx_tag_present(skb)) {
6435 vlan_tag_flags |=
6436 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6437 }
6438
6439 if ((mss = skb_shinfo(skb)->gso_size)) {
6440 u32 tcp_opt_len;
6441 struct iphdr *iph;
6442
6443 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6444
6445 tcp_opt_len = tcp_optlen(skb);
6446
6447 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6448 u32 tcp_off = skb_transport_offset(skb) -
6449 sizeof(struct ipv6hdr) - ETH_HLEN;
6450
6451 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6452 TX_BD_FLAGS_SW_FLAGS;
6453 if (likely(tcp_off == 0))
6454 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6455 else {
6456 tcp_off >>= 3;
6457 vlan_tag_flags |= ((tcp_off & 0x3) <<
6458 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6459 ((tcp_off & 0x10) <<
6460 TX_BD_FLAGS_TCP6_OFF4_SHL);
6461 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6462 }
6463 } else {
6464 iph = ip_hdr(skb);
6465 if (tcp_opt_len || (iph->ihl > 5)) {
6466 vlan_tag_flags |= ((iph->ihl - 5) +
6467 (tcp_opt_len >> 2)) << 8;
6468 }
6469 }
6470 } else
6471 mss = 0;
6472
6473 mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
6474 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
6475 dev_kfree_skb(skb);
6476 return NETDEV_TX_OK;
6477 }
6478
6479 tx_buf = &txr->tx_buf_ring[ring_prod];
6480 tx_buf->skb = skb;
6481 dma_unmap_addr_set(tx_buf, mapping, mapping);
6482
6483 txbd = &txr->tx_desc_ring[ring_prod];
6484
6485 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6486 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6487 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6488 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6489
6490 last_frag = skb_shinfo(skb)->nr_frags;
6491 tx_buf->nr_frags = last_frag;
6492 tx_buf->is_gso = skb_is_gso(skb);
6493
6494 for (i = 0; i < last_frag; i++) {
6495 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6496
6497 prod = NEXT_TX_BD(prod);
6498 ring_prod = TX_RING_IDX(prod);
6499 txbd = &txr->tx_desc_ring[ring_prod];
6500
6501 len = frag->size;
6502 mapping = dma_map_page(&bp->pdev->dev, frag->page, frag->page_offset,
6503 len, PCI_DMA_TODEVICE);
6504 if (dma_mapping_error(&bp->pdev->dev, mapping))
6505 goto dma_error;
6506 dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
6507 mapping);
6508
6509 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6510 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6511 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6512 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6513
6514 }
6515 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6516
6517 prod = NEXT_TX_BD(prod);
6518 txr->tx_prod_bseq += skb->len;
6519
6520 REG_WR16(bp, txr->tx_bidx_addr, prod);
6521 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6522
6523 mmiowb();
6524
6525 txr->tx_prod = prod;
6526
6527 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6528 netif_tx_stop_queue(txq);
6529
6530 /* netif_tx_stop_queue() must be done before checking
6531 * tx index in bnx2_tx_avail() below, because in
6532 * bnx2_tx_int(), we update tx index before checking for
6533 * netif_tx_queue_stopped().
6534 */
6535 smp_mb();
6536 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6537 netif_tx_wake_queue(txq);
6538 }
6539
6540 return NETDEV_TX_OK;
6541 dma_error:
6542 /* save value of frag that failed */
6543 last_frag = i;
6544
6545 /* start back at beginning and unmap skb */
6546 prod = txr->tx_prod;
6547 ring_prod = TX_RING_IDX(prod);
6548 tx_buf = &txr->tx_buf_ring[ring_prod];
6549 tx_buf->skb = NULL;
6550 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
6551 skb_headlen(skb), PCI_DMA_TODEVICE);
6552
6553 /* unmap remaining mapped pages */
6554 for (i = 0; i < last_frag; i++) {
6555 prod = NEXT_TX_BD(prod);
6556 ring_prod = TX_RING_IDX(prod);
6557 tx_buf = &txr->tx_buf_ring[ring_prod];
6558 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
6559 skb_shinfo(skb)->frags[i].size,
6560 PCI_DMA_TODEVICE);
6561 }
6562
6563 dev_kfree_skb(skb);
6564 return NETDEV_TX_OK;
6565 }
6566
6567 /* Called with rtnl_lock */
6568 static int
6569 bnx2_close(struct net_device *dev)
6570 {
6571 struct bnx2 *bp = netdev_priv(dev);
6572
6573 cancel_work_sync(&bp->reset_task);
6574
6575 bnx2_disable_int_sync(bp);
6576 bnx2_napi_disable(bp);
6577 del_timer_sync(&bp->timer);
6578 bnx2_shutdown_chip(bp);
6579 bnx2_free_irq(bp);
6580 bnx2_free_skbs(bp);
6581 bnx2_free_mem(bp);
6582 bnx2_del_napi(bp);
6583 bp->link_up = 0;
6584 netif_carrier_off(bp->dev);
6585 bnx2_set_power_state(bp, PCI_D3hot);
6586 return 0;
6587 }
6588
6589 static void
6590 bnx2_save_stats(struct bnx2 *bp)
6591 {
6592 u32 *hw_stats = (u32 *) bp->stats_blk;
6593 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
6594 int i;
6595
6596 /* The 1st 10 counters are 64-bit counters */
6597 for (i = 0; i < 20; i += 2) {
6598 u32 hi;
6599 u64 lo;
6600
6601 hi = temp_stats[i] + hw_stats[i];
6602 lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
6603 if (lo > 0xffffffff)
6604 hi++;
6605 temp_stats[i] = hi;
6606 temp_stats[i + 1] = lo & 0xffffffff;
6607 }
6608
6609 for ( ; i < sizeof(struct statistics_block) / 4; i++)
6610 temp_stats[i] += hw_stats[i];
6611 }
6612
6613 #define GET_64BIT_NET_STATS64(ctr) \
6614 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6615
6616 #define GET_64BIT_NET_STATS(ctr) \
6617 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6618 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6619
6620 #define GET_32BIT_NET_STATS(ctr) \
6621 (unsigned long) (bp->stats_blk->ctr + \
6622 bp->temp_stats_blk->ctr)
6623
6624 static struct rtnl_link_stats64 *
6625 bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
6626 {
6627 struct bnx2 *bp = netdev_priv(dev);
6628
6629 if (bp->stats_blk == NULL)
6630 return net_stats;
6631
6632 net_stats->rx_packets =
6633 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
6634 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
6635 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
6636
6637 net_stats->tx_packets =
6638 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
6639 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
6640 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
6641
6642 net_stats->rx_bytes =
6643 GET_64BIT_NET_STATS(stat_IfHCInOctets);
6644
6645 net_stats->tx_bytes =
6646 GET_64BIT_NET_STATS(stat_IfHCOutOctets);
6647
6648 net_stats->multicast =
6649 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
6650
6651 net_stats->collisions =
6652 GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
6653
6654 net_stats->rx_length_errors =
6655 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
6656 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
6657
6658 net_stats->rx_over_errors =
6659 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6660 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
6661
6662 net_stats->rx_frame_errors =
6663 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
6664
6665 net_stats->rx_crc_errors =
6666 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
6667
6668 net_stats->rx_errors = net_stats->rx_length_errors +
6669 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6670 net_stats->rx_crc_errors;
6671
6672 net_stats->tx_aborted_errors =
6673 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
6674 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
6675
6676 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6677 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6678 net_stats->tx_carrier_errors = 0;
6679 else {
6680 net_stats->tx_carrier_errors =
6681 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
6682 }
6683
6684 net_stats->tx_errors =
6685 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
6686 net_stats->tx_aborted_errors +
6687 net_stats->tx_carrier_errors;
6688
6689 net_stats->rx_missed_errors =
6690 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6691 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
6692 GET_32BIT_NET_STATS(stat_FwRxDrop);
6693
6694 return net_stats;
6695 }
6696
6697 /* All ethtool functions called with rtnl_lock */
6698
6699 static int
6700 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6701 {
6702 struct bnx2 *bp = netdev_priv(dev);
6703 int support_serdes = 0, support_copper = 0;
6704
6705 cmd->supported = SUPPORTED_Autoneg;
6706 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6707 support_serdes = 1;
6708 support_copper = 1;
6709 } else if (bp->phy_port == PORT_FIBRE)
6710 support_serdes = 1;
6711 else
6712 support_copper = 1;
6713
6714 if (support_serdes) {
6715 cmd->supported |= SUPPORTED_1000baseT_Full |
6716 SUPPORTED_FIBRE;
6717 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6718 cmd->supported |= SUPPORTED_2500baseX_Full;
6719
6720 }
6721 if (support_copper) {
6722 cmd->supported |= SUPPORTED_10baseT_Half |
6723 SUPPORTED_10baseT_Full |
6724 SUPPORTED_100baseT_Half |
6725 SUPPORTED_100baseT_Full |
6726 SUPPORTED_1000baseT_Full |
6727 SUPPORTED_TP;
6728
6729 }
6730
6731 spin_lock_bh(&bp->phy_lock);
6732 cmd->port = bp->phy_port;
6733 cmd->advertising = bp->advertising;
6734
6735 if (bp->autoneg & AUTONEG_SPEED) {
6736 cmd->autoneg = AUTONEG_ENABLE;
6737 } else {
6738 cmd->autoneg = AUTONEG_DISABLE;
6739 }
6740
6741 if (netif_carrier_ok(dev)) {
6742 ethtool_cmd_speed_set(cmd, bp->line_speed);
6743 cmd->duplex = bp->duplex;
6744 }
6745 else {
6746 ethtool_cmd_speed_set(cmd, -1);
6747 cmd->duplex = -1;
6748 }
6749 spin_unlock_bh(&bp->phy_lock);
6750
6751 cmd->transceiver = XCVR_INTERNAL;
6752 cmd->phy_address = bp->phy_addr;
6753
6754 return 0;
6755 }
6756
6757 static int
6758 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6759 {
6760 struct bnx2 *bp = netdev_priv(dev);
6761 u8 autoneg = bp->autoneg;
6762 u8 req_duplex = bp->req_duplex;
6763 u16 req_line_speed = bp->req_line_speed;
6764 u32 advertising = bp->advertising;
6765 int err = -EINVAL;
6766
6767 spin_lock_bh(&bp->phy_lock);
6768
6769 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6770 goto err_out_unlock;
6771
6772 if (cmd->port != bp->phy_port &&
6773 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6774 goto err_out_unlock;
6775
6776 /* If device is down, we can store the settings only if the user
6777 * is setting the currently active port.
6778 */
6779 if (!netif_running(dev) && cmd->port != bp->phy_port)
6780 goto err_out_unlock;
6781
6782 if (cmd->autoneg == AUTONEG_ENABLE) {
6783 autoneg |= AUTONEG_SPEED;
6784
6785 advertising = cmd->advertising;
6786 if (cmd->port == PORT_TP) {
6787 advertising &= ETHTOOL_ALL_COPPER_SPEED;
6788 if (!advertising)
6789 advertising = ETHTOOL_ALL_COPPER_SPEED;
6790 } else {
6791 advertising &= ETHTOOL_ALL_FIBRE_SPEED;
6792 if (!advertising)
6793 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6794 }
6795 advertising |= ADVERTISED_Autoneg;
6796 }
6797 else {
6798 u32 speed = ethtool_cmd_speed(cmd);
6799 if (cmd->port == PORT_FIBRE) {
6800 if ((speed != SPEED_1000 &&
6801 speed != SPEED_2500) ||
6802 (cmd->duplex != DUPLEX_FULL))
6803 goto err_out_unlock;
6804
6805 if (speed == SPEED_2500 &&
6806 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6807 goto err_out_unlock;
6808 } else if (speed == SPEED_1000 || speed == SPEED_2500)
6809 goto err_out_unlock;
6810
6811 autoneg &= ~AUTONEG_SPEED;
6812 req_line_speed = speed;
6813 req_duplex = cmd->duplex;
6814 advertising = 0;
6815 }
6816
6817 bp->autoneg = autoneg;
6818 bp->advertising = advertising;
6819 bp->req_line_speed = req_line_speed;
6820 bp->req_duplex = req_duplex;
6821
6822 err = 0;
6823 /* If device is down, the new settings will be picked up when it is
6824 * brought up.
6825 */
6826 if (netif_running(dev))
6827 err = bnx2_setup_phy(bp, cmd->port);
6828
6829 err_out_unlock:
6830 spin_unlock_bh(&bp->phy_lock);
6831
6832 return err;
6833 }
6834
6835 static void
6836 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6837 {
6838 struct bnx2 *bp = netdev_priv(dev);
6839
6840 strcpy(info->driver, DRV_MODULE_NAME);
6841 strcpy(info->version, DRV_MODULE_VERSION);
6842 strcpy(info->bus_info, pci_name(bp->pdev));
6843 strcpy(info->fw_version, bp->fw_version);
6844 }
6845
6846 #define BNX2_REGDUMP_LEN (32 * 1024)
6847
6848 static int
6849 bnx2_get_regs_len(struct net_device *dev)
6850 {
6851 return BNX2_REGDUMP_LEN;
6852 }
6853
6854 static void
6855 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6856 {
6857 u32 *p = _p, i, offset;
6858 u8 *orig_p = _p;
6859 struct bnx2 *bp = netdev_priv(dev);
6860 static const u32 reg_boundaries[] = {
6861 0x0000, 0x0098, 0x0400, 0x045c,
6862 0x0800, 0x0880, 0x0c00, 0x0c10,
6863 0x0c30, 0x0d08, 0x1000, 0x101c,
6864 0x1040, 0x1048, 0x1080, 0x10a4,
6865 0x1400, 0x1490, 0x1498, 0x14f0,
6866 0x1500, 0x155c, 0x1580, 0x15dc,
6867 0x1600, 0x1658, 0x1680, 0x16d8,
6868 0x1800, 0x1820, 0x1840, 0x1854,
6869 0x1880, 0x1894, 0x1900, 0x1984,
6870 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6871 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6872 0x2000, 0x2030, 0x23c0, 0x2400,
6873 0x2800, 0x2820, 0x2830, 0x2850,
6874 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6875 0x3c00, 0x3c94, 0x4000, 0x4010,
6876 0x4080, 0x4090, 0x43c0, 0x4458,
6877 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6878 0x4fc0, 0x5010, 0x53c0, 0x5444,
6879 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6880 0x5fc0, 0x6000, 0x6400, 0x6428,
6881 0x6800, 0x6848, 0x684c, 0x6860,
6882 0x6888, 0x6910, 0x8000
6883 };
6884
6885 regs->version = 0;
6886
6887 memset(p, 0, BNX2_REGDUMP_LEN);
6888
6889 if (!netif_running(bp->dev))
6890 return;
6891
6892 i = 0;
6893 offset = reg_boundaries[0];
6894 p += offset;
6895 while (offset < BNX2_REGDUMP_LEN) {
6896 *p++ = REG_RD(bp, offset);
6897 offset += 4;
6898 if (offset == reg_boundaries[i + 1]) {
6899 offset = reg_boundaries[i + 2];
6900 p = (u32 *) (orig_p + offset);
6901 i += 2;
6902 }
6903 }
6904 }
6905
6906 static void
6907 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6908 {
6909 struct bnx2 *bp = netdev_priv(dev);
6910
6911 if (bp->flags & BNX2_FLAG_NO_WOL) {
6912 wol->supported = 0;
6913 wol->wolopts = 0;
6914 }
6915 else {
6916 wol->supported = WAKE_MAGIC;
6917 if (bp->wol)
6918 wol->wolopts = WAKE_MAGIC;
6919 else
6920 wol->wolopts = 0;
6921 }
6922 memset(&wol->sopass, 0, sizeof(wol->sopass));
6923 }
6924
6925 static int
6926 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6927 {
6928 struct bnx2 *bp = netdev_priv(dev);
6929
6930 if (wol->wolopts & ~WAKE_MAGIC)
6931 return -EINVAL;
6932
6933 if (wol->wolopts & WAKE_MAGIC) {
6934 if (bp->flags & BNX2_FLAG_NO_WOL)
6935 return -EINVAL;
6936
6937 bp->wol = 1;
6938 }
6939 else {
6940 bp->wol = 0;
6941 }
6942 return 0;
6943 }
6944
6945 static int
6946 bnx2_nway_reset(struct net_device *dev)
6947 {
6948 struct bnx2 *bp = netdev_priv(dev);
6949 u32 bmcr;
6950
6951 if (!netif_running(dev))
6952 return -EAGAIN;
6953
6954 if (!(bp->autoneg & AUTONEG_SPEED)) {
6955 return -EINVAL;
6956 }
6957
6958 spin_lock_bh(&bp->phy_lock);
6959
6960 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6961 int rc;
6962
6963 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6964 spin_unlock_bh(&bp->phy_lock);
6965 return rc;
6966 }
6967
6968 /* Force a link down visible on the other side */
6969 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6970 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6971 spin_unlock_bh(&bp->phy_lock);
6972
6973 msleep(20);
6974
6975 spin_lock_bh(&bp->phy_lock);
6976
6977 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6978 bp->serdes_an_pending = 1;
6979 mod_timer(&bp->timer, jiffies + bp->current_interval);
6980 }
6981
6982 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6983 bmcr &= ~BMCR_LOOPBACK;
6984 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6985
6986 spin_unlock_bh(&bp->phy_lock);
6987
6988 return 0;
6989 }
6990
6991 static u32
6992 bnx2_get_link(struct net_device *dev)
6993 {
6994 struct bnx2 *bp = netdev_priv(dev);
6995
6996 return bp->link_up;
6997 }
6998
6999 static int
7000 bnx2_get_eeprom_len(struct net_device *dev)
7001 {
7002 struct bnx2 *bp = netdev_priv(dev);
7003
7004 if (bp->flash_info == NULL)
7005 return 0;
7006
7007 return (int) bp->flash_size;
7008 }
7009
7010 static int
7011 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
7012 u8 *eebuf)
7013 {
7014 struct bnx2 *bp = netdev_priv(dev);
7015 int rc;
7016
7017 if (!netif_running(dev))
7018 return -EAGAIN;
7019
7020 /* parameters already validated in ethtool_get_eeprom */
7021
7022 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
7023
7024 return rc;
7025 }
7026
7027 static int
7028 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
7029 u8 *eebuf)
7030 {
7031 struct bnx2 *bp = netdev_priv(dev);
7032 int rc;
7033
7034 if (!netif_running(dev))
7035 return -EAGAIN;
7036
7037 /* parameters already validated in ethtool_set_eeprom */
7038
7039 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
7040
7041 return rc;
7042 }
7043
7044 static int
7045 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7046 {
7047 struct bnx2 *bp = netdev_priv(dev);
7048
7049 memset(coal, 0, sizeof(struct ethtool_coalesce));
7050
7051 coal->rx_coalesce_usecs = bp->rx_ticks;
7052 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
7053 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
7054 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
7055
7056 coal->tx_coalesce_usecs = bp->tx_ticks;
7057 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
7058 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
7059 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
7060
7061 coal->stats_block_coalesce_usecs = bp->stats_ticks;
7062
7063 return 0;
7064 }
7065
7066 static int
7067 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7068 {
7069 struct bnx2 *bp = netdev_priv(dev);
7070
7071 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
7072 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
7073
7074 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
7075 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
7076
7077 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
7078 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
7079
7080 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
7081 if (bp->rx_quick_cons_trip_int > 0xff)
7082 bp->rx_quick_cons_trip_int = 0xff;
7083
7084 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
7085 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
7086
7087 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
7088 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
7089
7090 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
7091 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
7092
7093 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
7094 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
7095 0xff;
7096
7097 bp->stats_ticks = coal->stats_block_coalesce_usecs;
7098 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
7099 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
7100 bp->stats_ticks = USEC_PER_SEC;
7101 }
7102 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
7103 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7104 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7105
7106 if (netif_running(bp->dev)) {
7107 bnx2_netif_stop(bp, true);
7108 bnx2_init_nic(bp, 0);
7109 bnx2_netif_start(bp, true);
7110 }
7111
7112 return 0;
7113 }
7114
7115 static void
7116 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7117 {
7118 struct bnx2 *bp = netdev_priv(dev);
7119
7120 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
7121 ering->rx_mini_max_pending = 0;
7122 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
7123
7124 ering->rx_pending = bp->rx_ring_size;
7125 ering->rx_mini_pending = 0;
7126 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
7127
7128 ering->tx_max_pending = MAX_TX_DESC_CNT;
7129 ering->tx_pending = bp->tx_ring_size;
7130 }
7131
7132 static int
7133 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
7134 {
7135 if (netif_running(bp->dev)) {
7136 /* Reset will erase chipset stats; save them */
7137 bnx2_save_stats(bp);
7138
7139 bnx2_netif_stop(bp, true);
7140 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
7141 __bnx2_free_irq(bp);
7142 bnx2_free_skbs(bp);
7143 bnx2_free_mem(bp);
7144 }
7145
7146 bnx2_set_rx_ring_size(bp, rx);
7147 bp->tx_ring_size = tx;
7148
7149 if (netif_running(bp->dev)) {
7150 int rc;
7151
7152 rc = bnx2_alloc_mem(bp);
7153 if (!rc)
7154 rc = bnx2_request_irq(bp);
7155
7156 if (!rc)
7157 rc = bnx2_init_nic(bp, 0);
7158
7159 if (rc) {
7160 bnx2_napi_enable(bp);
7161 dev_close(bp->dev);
7162 return rc;
7163 }
7164 #ifdef BCM_CNIC
7165 mutex_lock(&bp->cnic_lock);
7166 /* Let cnic know about the new status block. */
7167 if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
7168 bnx2_setup_cnic_irq_info(bp);
7169 mutex_unlock(&bp->cnic_lock);
7170 #endif
7171 bnx2_netif_start(bp, true);
7172 }
7173 return 0;
7174 }
7175
7176 static int
7177 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7178 {
7179 struct bnx2 *bp = netdev_priv(dev);
7180 int rc;
7181
7182 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7183 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7184 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7185
7186 return -EINVAL;
7187 }
7188 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7189 return rc;
7190 }
7191
7192 static void
7193 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7194 {
7195 struct bnx2 *bp = netdev_priv(dev);
7196
7197 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7198 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7199 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7200 }
7201
7202 static int
7203 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7204 {
7205 struct bnx2 *bp = netdev_priv(dev);
7206
7207 bp->req_flow_ctrl = 0;
7208 if (epause->rx_pause)
7209 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7210 if (epause->tx_pause)
7211 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7212
7213 if (epause->autoneg) {
7214 bp->autoneg |= AUTONEG_FLOW_CTRL;
7215 }
7216 else {
7217 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7218 }
7219
7220 if (netif_running(dev)) {
7221 spin_lock_bh(&bp->phy_lock);
7222 bnx2_setup_phy(bp, bp->phy_port);
7223 spin_unlock_bh(&bp->phy_lock);
7224 }
7225
7226 return 0;
7227 }
7228
7229 static struct {
7230 char string[ETH_GSTRING_LEN];
7231 } bnx2_stats_str_arr[] = {
7232 { "rx_bytes" },
7233 { "rx_error_bytes" },
7234 { "tx_bytes" },
7235 { "tx_error_bytes" },
7236 { "rx_ucast_packets" },
7237 { "rx_mcast_packets" },
7238 { "rx_bcast_packets" },
7239 { "tx_ucast_packets" },
7240 { "tx_mcast_packets" },
7241 { "tx_bcast_packets" },
7242 { "tx_mac_errors" },
7243 { "tx_carrier_errors" },
7244 { "rx_crc_errors" },
7245 { "rx_align_errors" },
7246 { "tx_single_collisions" },
7247 { "tx_multi_collisions" },
7248 { "tx_deferred" },
7249 { "tx_excess_collisions" },
7250 { "tx_late_collisions" },
7251 { "tx_total_collisions" },
7252 { "rx_fragments" },
7253 { "rx_jabbers" },
7254 { "rx_undersize_packets" },
7255 { "rx_oversize_packets" },
7256 { "rx_64_byte_packets" },
7257 { "rx_65_to_127_byte_packets" },
7258 { "rx_128_to_255_byte_packets" },
7259 { "rx_256_to_511_byte_packets" },
7260 { "rx_512_to_1023_byte_packets" },
7261 { "rx_1024_to_1522_byte_packets" },
7262 { "rx_1523_to_9022_byte_packets" },
7263 { "tx_64_byte_packets" },
7264 { "tx_65_to_127_byte_packets" },
7265 { "tx_128_to_255_byte_packets" },
7266 { "tx_256_to_511_byte_packets" },
7267 { "tx_512_to_1023_byte_packets" },
7268 { "tx_1024_to_1522_byte_packets" },
7269 { "tx_1523_to_9022_byte_packets" },
7270 { "rx_xon_frames" },
7271 { "rx_xoff_frames" },
7272 { "tx_xon_frames" },
7273 { "tx_xoff_frames" },
7274 { "rx_mac_ctrl_frames" },
7275 { "rx_filtered_packets" },
7276 { "rx_ftq_discards" },
7277 { "rx_discards" },
7278 { "rx_fw_discards" },
7279 };
7280
7281 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7282 sizeof(bnx2_stats_str_arr[0]))
7283
7284 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7285
7286 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7287 STATS_OFFSET32(stat_IfHCInOctets_hi),
7288 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7289 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7290 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7291 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7292 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7293 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7294 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7295 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7296 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7297 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7298 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7299 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7300 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7301 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7302 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7303 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7304 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7305 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7306 STATS_OFFSET32(stat_EtherStatsCollisions),
7307 STATS_OFFSET32(stat_EtherStatsFragments),
7308 STATS_OFFSET32(stat_EtherStatsJabbers),
7309 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7310 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7311 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7312 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7313 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7314 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7315 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7316 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7317 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7318 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7319 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7320 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7321 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7322 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7323 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7324 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7325 STATS_OFFSET32(stat_XonPauseFramesReceived),
7326 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7327 STATS_OFFSET32(stat_OutXonSent),
7328 STATS_OFFSET32(stat_OutXoffSent),
7329 STATS_OFFSET32(stat_MacControlFramesReceived),
7330 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7331 STATS_OFFSET32(stat_IfInFTQDiscards),
7332 STATS_OFFSET32(stat_IfInMBUFDiscards),
7333 STATS_OFFSET32(stat_FwRxDrop),
7334 };
7335
7336 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7337 * skipped because of errata.
7338 */
7339 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7340 8,0,8,8,8,8,8,8,8,8,
7341 4,0,4,4,4,4,4,4,4,4,
7342 4,4,4,4,4,4,4,4,4,4,
7343 4,4,4,4,4,4,4,4,4,4,
7344 4,4,4,4,4,4,4,
7345 };
7346
7347 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7348 8,0,8,8,8,8,8,8,8,8,
7349 4,4,4,4,4,4,4,4,4,4,
7350 4,4,4,4,4,4,4,4,4,4,
7351 4,4,4,4,4,4,4,4,4,4,
7352 4,4,4,4,4,4,4,
7353 };
7354
7355 #define BNX2_NUM_TESTS 6
7356
7357 static struct {
7358 char string[ETH_GSTRING_LEN];
7359 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7360 { "register_test (offline)" },
7361 { "memory_test (offline)" },
7362 { "loopback_test (offline)" },
7363 { "nvram_test (online)" },
7364 { "interrupt_test (online)" },
7365 { "link_test (online)" },
7366 };
7367
7368 static int
7369 bnx2_get_sset_count(struct net_device *dev, int sset)
7370 {
7371 switch (sset) {
7372 case ETH_SS_TEST:
7373 return BNX2_NUM_TESTS;
7374 case ETH_SS_STATS:
7375 return BNX2_NUM_STATS;
7376 default:
7377 return -EOPNOTSUPP;
7378 }
7379 }
7380
7381 static void
7382 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7383 {
7384 struct bnx2 *bp = netdev_priv(dev);
7385
7386 bnx2_set_power_state(bp, PCI_D0);
7387
7388 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7389 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7390 int i;
7391
7392 bnx2_netif_stop(bp, true);
7393 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7394 bnx2_free_skbs(bp);
7395
7396 if (bnx2_test_registers(bp) != 0) {
7397 buf[0] = 1;
7398 etest->flags |= ETH_TEST_FL_FAILED;
7399 }
7400 if (bnx2_test_memory(bp) != 0) {
7401 buf[1] = 1;
7402 etest->flags |= ETH_TEST_FL_FAILED;
7403 }
7404 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7405 etest->flags |= ETH_TEST_FL_FAILED;
7406
7407 if (!netif_running(bp->dev))
7408 bnx2_shutdown_chip(bp);
7409 else {
7410 bnx2_init_nic(bp, 1);
7411 bnx2_netif_start(bp, true);
7412 }
7413
7414 /* wait for link up */
7415 for (i = 0; i < 7; i++) {
7416 if (bp->link_up)
7417 break;
7418 msleep_interruptible(1000);
7419 }
7420 }
7421
7422 if (bnx2_test_nvram(bp) != 0) {
7423 buf[3] = 1;
7424 etest->flags |= ETH_TEST_FL_FAILED;
7425 }
7426 if (bnx2_test_intr(bp) != 0) {
7427 buf[4] = 1;
7428 etest->flags |= ETH_TEST_FL_FAILED;
7429 }
7430
7431 if (bnx2_test_link(bp) != 0) {
7432 buf[5] = 1;
7433 etest->flags |= ETH_TEST_FL_FAILED;
7434
7435 }
7436 if (!netif_running(bp->dev))
7437 bnx2_set_power_state(bp, PCI_D3hot);
7438 }
7439
7440 static void
7441 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7442 {
7443 switch (stringset) {
7444 case ETH_SS_STATS:
7445 memcpy(buf, bnx2_stats_str_arr,
7446 sizeof(bnx2_stats_str_arr));
7447 break;
7448 case ETH_SS_TEST:
7449 memcpy(buf, bnx2_tests_str_arr,
7450 sizeof(bnx2_tests_str_arr));
7451 break;
7452 }
7453 }
7454
7455 static void
7456 bnx2_get_ethtool_stats(struct net_device *dev,
7457 struct ethtool_stats *stats, u64 *buf)
7458 {
7459 struct bnx2 *bp = netdev_priv(dev);
7460 int i;
7461 u32 *hw_stats = (u32 *) bp->stats_blk;
7462 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
7463 u8 *stats_len_arr = NULL;
7464
7465 if (hw_stats == NULL) {
7466 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7467 return;
7468 }
7469
7470 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7471 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7472 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7473 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7474 stats_len_arr = bnx2_5706_stats_len_arr;
7475 else
7476 stats_len_arr = bnx2_5708_stats_len_arr;
7477
7478 for (i = 0; i < BNX2_NUM_STATS; i++) {
7479 unsigned long offset;
7480
7481 if (stats_len_arr[i] == 0) {
7482 /* skip this counter */
7483 buf[i] = 0;
7484 continue;
7485 }
7486
7487 offset = bnx2_stats_offset_arr[i];
7488 if (stats_len_arr[i] == 4) {
7489 /* 4-byte counter */
7490 buf[i] = (u64) *(hw_stats + offset) +
7491 *(temp_stats + offset);
7492 continue;
7493 }
7494 /* 8-byte counter */
7495 buf[i] = (((u64) *(hw_stats + offset)) << 32) +
7496 *(hw_stats + offset + 1) +
7497 (((u64) *(temp_stats + offset)) << 32) +
7498 *(temp_stats + offset + 1);
7499 }
7500 }
7501
7502 static int
7503 bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state)
7504 {
7505 struct bnx2 *bp = netdev_priv(dev);
7506
7507 switch (state) {
7508 case ETHTOOL_ID_ACTIVE:
7509 bnx2_set_power_state(bp, PCI_D0);
7510
7511 bp->leds_save = REG_RD(bp, BNX2_MISC_CFG);
7512 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7513 return 1; /* cycle on/off once per second */
7514
7515 case ETHTOOL_ID_ON:
7516 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7517 BNX2_EMAC_LED_1000MB_OVERRIDE |
7518 BNX2_EMAC_LED_100MB_OVERRIDE |
7519 BNX2_EMAC_LED_10MB_OVERRIDE |
7520 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7521 BNX2_EMAC_LED_TRAFFIC);
7522 break;
7523
7524 case ETHTOOL_ID_OFF:
7525 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7526 break;
7527
7528 case ETHTOOL_ID_INACTIVE:
7529 REG_WR(bp, BNX2_EMAC_LED, 0);
7530 REG_WR(bp, BNX2_MISC_CFG, bp->leds_save);
7531
7532 if (!netif_running(dev))
7533 bnx2_set_power_state(bp, PCI_D3hot);
7534 break;
7535 }
7536
7537 return 0;
7538 }
7539
7540 static u32
7541 bnx2_fix_features(struct net_device *dev, u32 features)
7542 {
7543 struct bnx2 *bp = netdev_priv(dev);
7544
7545 if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
7546 features |= NETIF_F_HW_VLAN_RX;
7547
7548 return features;
7549 }
7550
7551 static int
7552 bnx2_set_features(struct net_device *dev, u32 features)
7553 {
7554 struct bnx2 *bp = netdev_priv(dev);
7555
7556 /* TSO with VLAN tag won't work with current firmware */
7557 if (features & NETIF_F_HW_VLAN_TX)
7558 dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO);
7559 else
7560 dev->vlan_features &= ~NETIF_F_ALL_TSO;
7561
7562 if ((!!(features & NETIF_F_HW_VLAN_RX) !=
7563 !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
7564 netif_running(dev)) {
7565 bnx2_netif_stop(bp, false);
7566 dev->features = features;
7567 bnx2_set_rx_mode(dev);
7568 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
7569 bnx2_netif_start(bp, false);
7570 return 1;
7571 }
7572
7573 return 0;
7574 }
7575
7576 static const struct ethtool_ops bnx2_ethtool_ops = {
7577 .get_settings = bnx2_get_settings,
7578 .set_settings = bnx2_set_settings,
7579 .get_drvinfo = bnx2_get_drvinfo,
7580 .get_regs_len = bnx2_get_regs_len,
7581 .get_regs = bnx2_get_regs,
7582 .get_wol = bnx2_get_wol,
7583 .set_wol = bnx2_set_wol,
7584 .nway_reset = bnx2_nway_reset,
7585 .get_link = bnx2_get_link,
7586 .get_eeprom_len = bnx2_get_eeprom_len,
7587 .get_eeprom = bnx2_get_eeprom,
7588 .set_eeprom = bnx2_set_eeprom,
7589 .get_coalesce = bnx2_get_coalesce,
7590 .set_coalesce = bnx2_set_coalesce,
7591 .get_ringparam = bnx2_get_ringparam,
7592 .set_ringparam = bnx2_set_ringparam,
7593 .get_pauseparam = bnx2_get_pauseparam,
7594 .set_pauseparam = bnx2_set_pauseparam,
7595 .self_test = bnx2_self_test,
7596 .get_strings = bnx2_get_strings,
7597 .set_phys_id = bnx2_set_phys_id,
7598 .get_ethtool_stats = bnx2_get_ethtool_stats,
7599 .get_sset_count = bnx2_get_sset_count,
7600 };
7601
7602 /* Called with rtnl_lock */
7603 static int
7604 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7605 {
7606 struct mii_ioctl_data *data = if_mii(ifr);
7607 struct bnx2 *bp = netdev_priv(dev);
7608 int err;
7609
7610 switch(cmd) {
7611 case SIOCGMIIPHY:
7612 data->phy_id = bp->phy_addr;
7613
7614 /* fallthru */
7615 case SIOCGMIIREG: {
7616 u32 mii_regval;
7617
7618 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7619 return -EOPNOTSUPP;
7620
7621 if (!netif_running(dev))
7622 return -EAGAIN;
7623
7624 spin_lock_bh(&bp->phy_lock);
7625 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7626 spin_unlock_bh(&bp->phy_lock);
7627
7628 data->val_out = mii_regval;
7629
7630 return err;
7631 }
7632
7633 case SIOCSMIIREG:
7634 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7635 return -EOPNOTSUPP;
7636
7637 if (!netif_running(dev))
7638 return -EAGAIN;
7639
7640 spin_lock_bh(&bp->phy_lock);
7641 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7642 spin_unlock_bh(&bp->phy_lock);
7643
7644 return err;
7645
7646 default:
7647 /* do nothing */
7648 break;
7649 }
7650 return -EOPNOTSUPP;
7651 }
7652
7653 /* Called with rtnl_lock */
7654 static int
7655 bnx2_change_mac_addr(struct net_device *dev, void *p)
7656 {
7657 struct sockaddr *addr = p;
7658 struct bnx2 *bp = netdev_priv(dev);
7659
7660 if (!is_valid_ether_addr(addr->sa_data))
7661 return -EINVAL;
7662
7663 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7664 if (netif_running(dev))
7665 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7666
7667 return 0;
7668 }
7669
7670 /* Called with rtnl_lock */
7671 static int
7672 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7673 {
7674 struct bnx2 *bp = netdev_priv(dev);
7675
7676 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7677 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7678 return -EINVAL;
7679
7680 dev->mtu = new_mtu;
7681 return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size);
7682 }
7683
7684 #ifdef CONFIG_NET_POLL_CONTROLLER
7685 static void
7686 poll_bnx2(struct net_device *dev)
7687 {
7688 struct bnx2 *bp = netdev_priv(dev);
7689 int i;
7690
7691 for (i = 0; i < bp->irq_nvecs; i++) {
7692 struct bnx2_irq *irq = &bp->irq_tbl[i];
7693
7694 disable_irq(irq->vector);
7695 irq->handler(irq->vector, &bp->bnx2_napi[i]);
7696 enable_irq(irq->vector);
7697 }
7698 }
7699 #endif
7700
7701 static void __devinit
7702 bnx2_get_5709_media(struct bnx2 *bp)
7703 {
7704 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7705 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7706 u32 strap;
7707
7708 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7709 return;
7710 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7711 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7712 return;
7713 }
7714
7715 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7716 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7717 else
7718 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7719
7720 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7721 switch (strap) {
7722 case 0x4:
7723 case 0x5:
7724 case 0x6:
7725 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7726 return;
7727 }
7728 } else {
7729 switch (strap) {
7730 case 0x1:
7731 case 0x2:
7732 case 0x4:
7733 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7734 return;
7735 }
7736 }
7737 }
7738
7739 static void __devinit
7740 bnx2_get_pci_speed(struct bnx2 *bp)
7741 {
7742 u32 reg;
7743
7744 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7745 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7746 u32 clkreg;
7747
7748 bp->flags |= BNX2_FLAG_PCIX;
7749
7750 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7751
7752 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7753 switch (clkreg) {
7754 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7755 bp->bus_speed_mhz = 133;
7756 break;
7757
7758 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7759 bp->bus_speed_mhz = 100;
7760 break;
7761
7762 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7763 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7764 bp->bus_speed_mhz = 66;
7765 break;
7766
7767 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7768 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7769 bp->bus_speed_mhz = 50;
7770 break;
7771
7772 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7773 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7774 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7775 bp->bus_speed_mhz = 33;
7776 break;
7777 }
7778 }
7779 else {
7780 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7781 bp->bus_speed_mhz = 66;
7782 else
7783 bp->bus_speed_mhz = 33;
7784 }
7785
7786 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7787 bp->flags |= BNX2_FLAG_PCI_32BIT;
7788
7789 }
7790
7791 static void __devinit
7792 bnx2_read_vpd_fw_ver(struct bnx2 *bp)
7793 {
7794 int rc, i, j;
7795 u8 *data;
7796 unsigned int block_end, rosize, len;
7797
7798 #define BNX2_VPD_NVRAM_OFFSET 0x300
7799 #define BNX2_VPD_LEN 128
7800 #define BNX2_MAX_VER_SLEN 30
7801
7802 data = kmalloc(256, GFP_KERNEL);
7803 if (!data)
7804 return;
7805
7806 rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
7807 BNX2_VPD_LEN);
7808 if (rc)
7809 goto vpd_done;
7810
7811 for (i = 0; i < BNX2_VPD_LEN; i += 4) {
7812 data[i] = data[i + BNX2_VPD_LEN + 3];
7813 data[i + 1] = data[i + BNX2_VPD_LEN + 2];
7814 data[i + 2] = data[i + BNX2_VPD_LEN + 1];
7815 data[i + 3] = data[i + BNX2_VPD_LEN];
7816 }
7817
7818 i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
7819 if (i < 0)
7820 goto vpd_done;
7821
7822 rosize = pci_vpd_lrdt_size(&data[i]);
7823 i += PCI_VPD_LRDT_TAG_SIZE;
7824 block_end = i + rosize;
7825
7826 if (block_end > BNX2_VPD_LEN)
7827 goto vpd_done;
7828
7829 j = pci_vpd_find_info_keyword(data, i, rosize,
7830 PCI_VPD_RO_KEYWORD_MFR_ID);
7831 if (j < 0)
7832 goto vpd_done;
7833
7834 len = pci_vpd_info_field_size(&data[j]);
7835
7836 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7837 if (j + len > block_end || len != 4 ||
7838 memcmp(&data[j], "1028", 4))
7839 goto vpd_done;
7840
7841 j = pci_vpd_find_info_keyword(data, i, rosize,
7842 PCI_VPD_RO_KEYWORD_VENDOR0);
7843 if (j < 0)
7844 goto vpd_done;
7845
7846 len = pci_vpd_info_field_size(&data[j]);
7847
7848 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7849 if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
7850 goto vpd_done;
7851
7852 memcpy(bp->fw_version, &data[j], len);
7853 bp->fw_version[len] = ' ';
7854
7855 vpd_done:
7856 kfree(data);
7857 }
7858
7859 static int __devinit
7860 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7861 {
7862 struct bnx2 *bp;
7863 unsigned long mem_len;
7864 int rc, i, j;
7865 u32 reg;
7866 u64 dma_mask, persist_dma_mask;
7867 int err;
7868
7869 SET_NETDEV_DEV(dev, &pdev->dev);
7870 bp = netdev_priv(dev);
7871
7872 bp->flags = 0;
7873 bp->phy_flags = 0;
7874
7875 bp->temp_stats_blk =
7876 kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
7877
7878 if (bp->temp_stats_blk == NULL) {
7879 rc = -ENOMEM;
7880 goto err_out;
7881 }
7882
7883 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7884 rc = pci_enable_device(pdev);
7885 if (rc) {
7886 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7887 goto err_out;
7888 }
7889
7890 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7891 dev_err(&pdev->dev,
7892 "Cannot find PCI device base address, aborting\n");
7893 rc = -ENODEV;
7894 goto err_out_disable;
7895 }
7896
7897 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7898 if (rc) {
7899 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7900 goto err_out_disable;
7901 }
7902
7903 pci_set_master(pdev);
7904
7905 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7906 if (bp->pm_cap == 0) {
7907 dev_err(&pdev->dev,
7908 "Cannot find power management capability, aborting\n");
7909 rc = -EIO;
7910 goto err_out_release;
7911 }
7912
7913 bp->dev = dev;
7914 bp->pdev = pdev;
7915
7916 spin_lock_init(&bp->phy_lock);
7917 spin_lock_init(&bp->indirect_lock);
7918 #ifdef BCM_CNIC
7919 mutex_init(&bp->cnic_lock);
7920 #endif
7921 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7922
7923 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7924 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7925 dev->mem_end = dev->mem_start + mem_len;
7926 dev->irq = pdev->irq;
7927
7928 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7929
7930 if (!bp->regview) {
7931 dev_err(&pdev->dev, "Cannot map register space, aborting\n");
7932 rc = -ENOMEM;
7933 goto err_out_release;
7934 }
7935
7936 bnx2_set_power_state(bp, PCI_D0);
7937
7938 /* Configure byte swap and enable write to the reg_window registers.
7939 * Rely on CPU to do target byte swapping on big endian systems
7940 * The chip's target access swapping will not swap all accesses
7941 */
7942 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG,
7943 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7944 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7945
7946 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7947
7948 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7949 if (!pci_is_pcie(pdev)) {
7950 dev_err(&pdev->dev, "Not PCIE, aborting\n");
7951 rc = -EIO;
7952 goto err_out_unmap;
7953 }
7954 bp->flags |= BNX2_FLAG_PCIE;
7955 if (CHIP_REV(bp) == CHIP_REV_Ax)
7956 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7957
7958 /* AER (Advanced Error Reporting) hooks */
7959 err = pci_enable_pcie_error_reporting(pdev);
7960 if (!err)
7961 bp->flags |= BNX2_FLAG_AER_ENABLED;
7962
7963 } else {
7964 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7965 if (bp->pcix_cap == 0) {
7966 dev_err(&pdev->dev,
7967 "Cannot find PCIX capability, aborting\n");
7968 rc = -EIO;
7969 goto err_out_unmap;
7970 }
7971 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7972 }
7973
7974 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7975 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7976 bp->flags |= BNX2_FLAG_MSIX_CAP;
7977 }
7978
7979 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7980 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7981 bp->flags |= BNX2_FLAG_MSI_CAP;
7982 }
7983
7984 /* 5708 cannot support DMA addresses > 40-bit. */
7985 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7986 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7987 else
7988 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7989
7990 /* Configure DMA attributes. */
7991 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7992 dev->features |= NETIF_F_HIGHDMA;
7993 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7994 if (rc) {
7995 dev_err(&pdev->dev,
7996 "pci_set_consistent_dma_mask failed, aborting\n");
7997 goto err_out_unmap;
7998 }
7999 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
8000 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
8001 goto err_out_unmap;
8002 }
8003
8004 if (!(bp->flags & BNX2_FLAG_PCIE))
8005 bnx2_get_pci_speed(bp);
8006
8007 /* 5706A0 may falsely detect SERR and PERR. */
8008 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8009 reg = REG_RD(bp, PCI_COMMAND);
8010 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
8011 REG_WR(bp, PCI_COMMAND, reg);
8012 }
8013 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
8014 !(bp->flags & BNX2_FLAG_PCIX)) {
8015
8016 dev_err(&pdev->dev,
8017 "5706 A1 can only be used in a PCIX bus, aborting\n");
8018 goto err_out_unmap;
8019 }
8020
8021 bnx2_init_nvram(bp);
8022
8023 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
8024
8025 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
8026 BNX2_SHM_HDR_SIGNATURE_SIG) {
8027 u32 off = PCI_FUNC(pdev->devfn) << 2;
8028
8029 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
8030 } else
8031 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
8032
8033 /* Get the permanent MAC address. First we need to make sure the
8034 * firmware is actually running.
8035 */
8036 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
8037
8038 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
8039 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
8040 dev_err(&pdev->dev, "Firmware not running, aborting\n");
8041 rc = -ENODEV;
8042 goto err_out_unmap;
8043 }
8044
8045 bnx2_read_vpd_fw_ver(bp);
8046
8047 j = strlen(bp->fw_version);
8048 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
8049 for (i = 0; i < 3 && j < 24; i++) {
8050 u8 num, k, skip0;
8051
8052 if (i == 0) {
8053 bp->fw_version[j++] = 'b';
8054 bp->fw_version[j++] = 'c';
8055 bp->fw_version[j++] = ' ';
8056 }
8057 num = (u8) (reg >> (24 - (i * 8)));
8058 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
8059 if (num >= k || !skip0 || k == 1) {
8060 bp->fw_version[j++] = (num / k) + '0';
8061 skip0 = 0;
8062 }
8063 }
8064 if (i != 2)
8065 bp->fw_version[j++] = '.';
8066 }
8067 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
8068 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
8069 bp->wol = 1;
8070
8071 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
8072 bp->flags |= BNX2_FLAG_ASF_ENABLE;
8073
8074 for (i = 0; i < 30; i++) {
8075 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8076 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
8077 break;
8078 msleep(10);
8079 }
8080 }
8081 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8082 reg &= BNX2_CONDITION_MFW_RUN_MASK;
8083 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
8084 reg != BNX2_CONDITION_MFW_RUN_NONE) {
8085 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
8086
8087 if (j < 32)
8088 bp->fw_version[j++] = ' ';
8089 for (i = 0; i < 3 && j < 28; i++) {
8090 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
8091 reg = swab32(reg);
8092 memcpy(&bp->fw_version[j], &reg, 4);
8093 j += 4;
8094 }
8095 }
8096
8097 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
8098 bp->mac_addr[0] = (u8) (reg >> 8);
8099 bp->mac_addr[1] = (u8) reg;
8100
8101 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
8102 bp->mac_addr[2] = (u8) (reg >> 24);
8103 bp->mac_addr[3] = (u8) (reg >> 16);
8104 bp->mac_addr[4] = (u8) (reg >> 8);
8105 bp->mac_addr[5] = (u8) reg;
8106
8107 bp->tx_ring_size = MAX_TX_DESC_CNT;
8108 bnx2_set_rx_ring_size(bp, 255);
8109
8110 bp->tx_quick_cons_trip_int = 2;
8111 bp->tx_quick_cons_trip = 20;
8112 bp->tx_ticks_int = 18;
8113 bp->tx_ticks = 80;
8114
8115 bp->rx_quick_cons_trip_int = 2;
8116 bp->rx_quick_cons_trip = 12;
8117 bp->rx_ticks_int = 18;
8118 bp->rx_ticks = 18;
8119
8120 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
8121
8122 bp->current_interval = BNX2_TIMER_INTERVAL;
8123
8124 bp->phy_addr = 1;
8125
8126 /* Disable WOL support if we are running on a SERDES chip. */
8127 if (CHIP_NUM(bp) == CHIP_NUM_5709)
8128 bnx2_get_5709_media(bp);
8129 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
8130 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
8131
8132 bp->phy_port = PORT_TP;
8133 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
8134 bp->phy_port = PORT_FIBRE;
8135 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
8136 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
8137 bp->flags |= BNX2_FLAG_NO_WOL;
8138 bp->wol = 0;
8139 }
8140 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
8141 /* Don't do parallel detect on this board because of
8142 * some board problems. The link will not go down
8143 * if we do parallel detect.
8144 */
8145 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
8146 pdev->subsystem_device == 0x310c)
8147 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
8148 } else {
8149 bp->phy_addr = 2;
8150 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
8151 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
8152 }
8153 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
8154 CHIP_NUM(bp) == CHIP_NUM_5708)
8155 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
8156 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
8157 (CHIP_REV(bp) == CHIP_REV_Ax ||
8158 CHIP_REV(bp) == CHIP_REV_Bx))
8159 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
8160
8161 bnx2_init_fw_cap(bp);
8162
8163 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
8164 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
8165 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
8166 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
8167 bp->flags |= BNX2_FLAG_NO_WOL;
8168 bp->wol = 0;
8169 }
8170
8171 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8172 bp->tx_quick_cons_trip_int =
8173 bp->tx_quick_cons_trip;
8174 bp->tx_ticks_int = bp->tx_ticks;
8175 bp->rx_quick_cons_trip_int =
8176 bp->rx_quick_cons_trip;
8177 bp->rx_ticks_int = bp->rx_ticks;
8178 bp->comp_prod_trip_int = bp->comp_prod_trip;
8179 bp->com_ticks_int = bp->com_ticks;
8180 bp->cmd_ticks_int = bp->cmd_ticks;
8181 }
8182
8183 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8184 *
8185 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8186 * with byte enables disabled on the unused 32-bit word. This is legal
8187 * but causes problems on the AMD 8132 which will eventually stop
8188 * responding after a while.
8189 *
8190 * AMD believes this incompatibility is unique to the 5706, and
8191 * prefers to locally disable MSI rather than globally disabling it.
8192 */
8193 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
8194 struct pci_dev *amd_8132 = NULL;
8195
8196 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
8197 PCI_DEVICE_ID_AMD_8132_BRIDGE,
8198 amd_8132))) {
8199
8200 if (amd_8132->revision >= 0x10 &&
8201 amd_8132->revision <= 0x13) {
8202 disable_msi = 1;
8203 pci_dev_put(amd_8132);
8204 break;
8205 }
8206 }
8207 }
8208
8209 bnx2_set_default_link(bp);
8210 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
8211
8212 init_timer(&bp->timer);
8213 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
8214 bp->timer.data = (unsigned long) bp;
8215 bp->timer.function = bnx2_timer;
8216
8217 #ifdef BCM_CNIC
8218 bp->cnic_eth_dev.max_iscsi_conn =
8219 bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN);
8220 #endif
8221 pci_save_state(pdev);
8222
8223 return 0;
8224
8225 err_out_unmap:
8226 if (bp->flags & BNX2_FLAG_AER_ENABLED) {
8227 pci_disable_pcie_error_reporting(pdev);
8228 bp->flags &= ~BNX2_FLAG_AER_ENABLED;
8229 }
8230
8231 if (bp->regview) {
8232 iounmap(bp->regview);
8233 bp->regview = NULL;
8234 }
8235
8236 err_out_release:
8237 pci_release_regions(pdev);
8238
8239 err_out_disable:
8240 pci_disable_device(pdev);
8241 pci_set_drvdata(pdev, NULL);
8242
8243 err_out:
8244 return rc;
8245 }
8246
8247 static char * __devinit
8248 bnx2_bus_string(struct bnx2 *bp, char *str)
8249 {
8250 char *s = str;
8251
8252 if (bp->flags & BNX2_FLAG_PCIE) {
8253 s += sprintf(s, "PCI Express");
8254 } else {
8255 s += sprintf(s, "PCI");
8256 if (bp->flags & BNX2_FLAG_PCIX)
8257 s += sprintf(s, "-X");
8258 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8259 s += sprintf(s, " 32-bit");
8260 else
8261 s += sprintf(s, " 64-bit");
8262 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8263 }
8264 return str;
8265 }
8266
8267 static void
8268 bnx2_del_napi(struct bnx2 *bp)
8269 {
8270 int i;
8271
8272 for (i = 0; i < bp->irq_nvecs; i++)
8273 netif_napi_del(&bp->bnx2_napi[i].napi);
8274 }
8275
8276 static void
8277 bnx2_init_napi(struct bnx2 *bp)
8278 {
8279 int i;
8280
8281 for (i = 0; i < bp->irq_nvecs; i++) {
8282 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8283 int (*poll)(struct napi_struct *, int);
8284
8285 if (i == 0)
8286 poll = bnx2_poll;
8287 else
8288 poll = bnx2_poll_msix;
8289
8290 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8291 bnapi->bp = bp;
8292 }
8293 }
8294
8295 static const struct net_device_ops bnx2_netdev_ops = {
8296 .ndo_open = bnx2_open,
8297 .ndo_start_xmit = bnx2_start_xmit,
8298 .ndo_stop = bnx2_close,
8299 .ndo_get_stats64 = bnx2_get_stats64,
8300 .ndo_set_rx_mode = bnx2_set_rx_mode,
8301 .ndo_do_ioctl = bnx2_ioctl,
8302 .ndo_validate_addr = eth_validate_addr,
8303 .ndo_set_mac_address = bnx2_change_mac_addr,
8304 .ndo_change_mtu = bnx2_change_mtu,
8305 .ndo_fix_features = bnx2_fix_features,
8306 .ndo_set_features = bnx2_set_features,
8307 .ndo_tx_timeout = bnx2_tx_timeout,
8308 #ifdef CONFIG_NET_POLL_CONTROLLER
8309 .ndo_poll_controller = poll_bnx2,
8310 #endif
8311 };
8312
8313 static int __devinit
8314 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8315 {
8316 static int version_printed = 0;
8317 struct net_device *dev = NULL;
8318 struct bnx2 *bp;
8319 int rc;
8320 char str[40];
8321
8322 if (version_printed++ == 0)
8323 pr_info("%s", version);
8324
8325 /* dev zeroed in init_etherdev */
8326 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8327
8328 if (!dev)
8329 return -ENOMEM;
8330
8331 rc = bnx2_init_board(pdev, dev);
8332 if (rc < 0) {
8333 free_netdev(dev);
8334 return rc;
8335 }
8336
8337 dev->netdev_ops = &bnx2_netdev_ops;
8338 dev->watchdog_timeo = TX_TIMEOUT;
8339 dev->ethtool_ops = &bnx2_ethtool_ops;
8340
8341 bp = netdev_priv(dev);
8342
8343 pci_set_drvdata(pdev, dev);
8344
8345 rc = bnx2_request_firmware(bp);
8346 if (rc)
8347 goto error;
8348
8349 memcpy(dev->dev_addr, bp->mac_addr, 6);
8350 memcpy(dev->perm_addr, bp->mac_addr, 6);
8351
8352 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
8353 NETIF_F_TSO | NETIF_F_TSO_ECN |
8354 NETIF_F_RXHASH | NETIF_F_RXCSUM;
8355
8356 if (CHIP_NUM(bp) == CHIP_NUM_5709)
8357 dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
8358
8359 dev->vlan_features = dev->hw_features;
8360 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8361 dev->features |= dev->hw_features;
8362
8363 if ((rc = register_netdev(dev))) {
8364 dev_err(&pdev->dev, "Cannot register net device\n");
8365 goto error;
8366 }
8367
8368 netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8369 board_info[ent->driver_data].name,
8370 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8371 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8372 bnx2_bus_string(bp, str),
8373 dev->base_addr,
8374 bp->pdev->irq, dev->dev_addr);
8375
8376 return 0;
8377
8378 error:
8379 if (bp->mips_firmware)
8380 release_firmware(bp->mips_firmware);
8381 if (bp->rv2p_firmware)
8382 release_firmware(bp->rv2p_firmware);
8383
8384 if (bp->regview)
8385 iounmap(bp->regview);
8386 pci_release_regions(pdev);
8387 pci_disable_device(pdev);
8388 pci_set_drvdata(pdev, NULL);
8389 free_netdev(dev);
8390 return rc;
8391 }
8392
8393 static void __devexit
8394 bnx2_remove_one(struct pci_dev *pdev)
8395 {
8396 struct net_device *dev = pci_get_drvdata(pdev);
8397 struct bnx2 *bp = netdev_priv(dev);
8398
8399 unregister_netdev(dev);
8400
8401 del_timer_sync(&bp->timer);
8402
8403 if (bp->mips_firmware)
8404 release_firmware(bp->mips_firmware);
8405 if (bp->rv2p_firmware)
8406 release_firmware(bp->rv2p_firmware);
8407
8408 if (bp->regview)
8409 iounmap(bp->regview);
8410
8411 kfree(bp->temp_stats_blk);
8412
8413 if (bp->flags & BNX2_FLAG_AER_ENABLED) {
8414 pci_disable_pcie_error_reporting(pdev);
8415 bp->flags &= ~BNX2_FLAG_AER_ENABLED;
8416 }
8417
8418 free_netdev(dev);
8419
8420 pci_release_regions(pdev);
8421 pci_disable_device(pdev);
8422 pci_set_drvdata(pdev, NULL);
8423 }
8424
8425 static int
8426 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8427 {
8428 struct net_device *dev = pci_get_drvdata(pdev);
8429 struct bnx2 *bp = netdev_priv(dev);
8430
8431 /* PCI register 4 needs to be saved whether netif_running() or not.
8432 * MSI address and data need to be saved if using MSI and
8433 * netif_running().
8434 */
8435 pci_save_state(pdev);
8436 if (!netif_running(dev))
8437 return 0;
8438
8439 cancel_work_sync(&bp->reset_task);
8440 bnx2_netif_stop(bp, true);
8441 netif_device_detach(dev);
8442 del_timer_sync(&bp->timer);
8443 bnx2_shutdown_chip(bp);
8444 bnx2_free_skbs(bp);
8445 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8446 return 0;
8447 }
8448
8449 static int
8450 bnx2_resume(struct pci_dev *pdev)
8451 {
8452 struct net_device *dev = pci_get_drvdata(pdev);
8453 struct bnx2 *bp = netdev_priv(dev);
8454
8455 pci_restore_state(pdev);
8456 if (!netif_running(dev))
8457 return 0;
8458
8459 bnx2_set_power_state(bp, PCI_D0);
8460 netif_device_attach(dev);
8461 bnx2_init_nic(bp, 1);
8462 bnx2_netif_start(bp, true);
8463 return 0;
8464 }
8465
8466 /**
8467 * bnx2_io_error_detected - called when PCI error is detected
8468 * @pdev: Pointer to PCI device
8469 * @state: The current pci connection state
8470 *
8471 * This function is called after a PCI bus error affecting
8472 * this device has been detected.
8473 */
8474 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8475 pci_channel_state_t state)
8476 {
8477 struct net_device *dev = pci_get_drvdata(pdev);
8478 struct bnx2 *bp = netdev_priv(dev);
8479
8480 rtnl_lock();
8481 netif_device_detach(dev);
8482
8483 if (state == pci_channel_io_perm_failure) {
8484 rtnl_unlock();
8485 return PCI_ERS_RESULT_DISCONNECT;
8486 }
8487
8488 if (netif_running(dev)) {
8489 bnx2_netif_stop(bp, true);
8490 del_timer_sync(&bp->timer);
8491 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8492 }
8493
8494 pci_disable_device(pdev);
8495 rtnl_unlock();
8496
8497 /* Request a slot slot reset. */
8498 return PCI_ERS_RESULT_NEED_RESET;
8499 }
8500
8501 /**
8502 * bnx2_io_slot_reset - called after the pci bus has been reset.
8503 * @pdev: Pointer to PCI device
8504 *
8505 * Restart the card from scratch, as if from a cold-boot.
8506 */
8507 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8508 {
8509 struct net_device *dev = pci_get_drvdata(pdev);
8510 struct bnx2 *bp = netdev_priv(dev);
8511 pci_ers_result_t result;
8512 int err;
8513
8514 rtnl_lock();
8515 if (pci_enable_device(pdev)) {
8516 dev_err(&pdev->dev,
8517 "Cannot re-enable PCI device after reset\n");
8518 result = PCI_ERS_RESULT_DISCONNECT;
8519 } else {
8520 pci_set_master(pdev);
8521 pci_restore_state(pdev);
8522 pci_save_state(pdev);
8523
8524 if (netif_running(dev)) {
8525 bnx2_set_power_state(bp, PCI_D0);
8526 bnx2_init_nic(bp, 1);
8527 }
8528 result = PCI_ERS_RESULT_RECOVERED;
8529 }
8530 rtnl_unlock();
8531
8532 if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
8533 return result;
8534
8535 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8536 if (err) {
8537 dev_err(&pdev->dev,
8538 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8539 err); /* non-fatal, continue */
8540 }
8541
8542 return result;
8543 }
8544
8545 /**
8546 * bnx2_io_resume - called when traffic can start flowing again.
8547 * @pdev: Pointer to PCI device
8548 *
8549 * This callback is called when the error recovery driver tells us that
8550 * its OK to resume normal operation.
8551 */
8552 static void bnx2_io_resume(struct pci_dev *pdev)
8553 {
8554 struct net_device *dev = pci_get_drvdata(pdev);
8555 struct bnx2 *bp = netdev_priv(dev);
8556
8557 rtnl_lock();
8558 if (netif_running(dev))
8559 bnx2_netif_start(bp, true);
8560
8561 netif_device_attach(dev);
8562 rtnl_unlock();
8563 }
8564
8565 static struct pci_error_handlers bnx2_err_handler = {
8566 .error_detected = bnx2_io_error_detected,
8567 .slot_reset = bnx2_io_slot_reset,
8568 .resume = bnx2_io_resume,
8569 };
8570
8571 static struct pci_driver bnx2_pci_driver = {
8572 .name = DRV_MODULE_NAME,
8573 .id_table = bnx2_pci_tbl,
8574 .probe = bnx2_init_one,
8575 .remove = __devexit_p(bnx2_remove_one),
8576 .suspend = bnx2_suspend,
8577 .resume = bnx2_resume,
8578 .err_handler = &bnx2_err_handler,
8579 };
8580
8581 static int __init bnx2_init(void)
8582 {
8583 return pci_register_driver(&bnx2_pci_driver);
8584 }
8585
8586 static void __exit bnx2_cleanup(void)
8587 {
8588 pci_unregister_driver(&bnx2_pci_driver);
8589 }
8590
8591 module_init(bnx2_init);
8592 module_exit(bnx2_cleanup);
8593
8594
8595
This page took 0.342193 seconds and 5 git commands to generate.