Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[deliverable/linux.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004, 2005, 2006 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <asm/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #ifdef NETIF_F_HW_VLAN_TX
39 #include <linux/if_vlan.h>
40 #define BCM_VLAN 1
41 #endif
42 #ifdef NETIF_F_TSO
43 #include <net/ip.h>
44 #include <net/tcp.h>
45 #include <net/checksum.h>
46 #define BCM_TSO 1
47 #endif
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/prefetch.h>
51 #include <linux/cache.h>
52 #include <linux/zlib.h>
53
54 #include "bnx2.h"
55 #include "bnx2_fw.h"
56 #include "bnx2_fw2.h"
57
58 #define DRV_MODULE_NAME "bnx2"
59 #define PFX DRV_MODULE_NAME ": "
60 #define DRV_MODULE_VERSION "1.5.5"
61 #define DRV_MODULE_RELDATE "February 1, 2007"
62
63 #define RUN_AT(x) (jiffies + (x))
64
65 /* Time in jiffies before concluding the transmitter is hung. */
66 #define TX_TIMEOUT (5*HZ)
67
68 static const char version[] __devinitdata =
69 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
70
71 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
72 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
73 MODULE_LICENSE("GPL");
74 MODULE_VERSION(DRV_MODULE_VERSION);
75
76 static int disable_msi = 0;
77
78 module_param(disable_msi, int, 0);
79 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
80
81 typedef enum {
82 BCM5706 = 0,
83 NC370T,
84 NC370I,
85 BCM5706S,
86 NC370F,
87 BCM5708,
88 BCM5708S,
89 BCM5709,
90 } board_t;
91
92 /* indexed by board_t, above */
93 static const struct {
94 char *name;
95 } board_info[] __devinitdata = {
96 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
97 { "HP NC370T Multifunction Gigabit Server Adapter" },
98 { "HP NC370i Multifunction Gigabit Server Adapter" },
99 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
100 { "HP NC370F Multifunction Gigabit Server Adapter" },
101 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
102 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
103 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
104 };
105
106 static struct pci_device_id bnx2_pci_tbl[] = {
107 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
108 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
109 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
110 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
111 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
113 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
114 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
115 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
116 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
117 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
118 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
119 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
120 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
121 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
122 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
123 { 0, }
124 };
125
126 static struct flash_spec flash_table[] =
127 {
128 /* Slow EEPROM */
129 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
130 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
131 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
132 "EEPROM - slow"},
133 /* Expansion entry 0001 */
134 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
135 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
136 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
137 "Entry 0001"},
138 /* Saifun SA25F010 (non-buffered flash) */
139 /* strap, cfg1, & write1 need updates */
140 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
141 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
142 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
143 "Non-buffered flash (128kB)"},
144 /* Saifun SA25F020 (non-buffered flash) */
145 /* strap, cfg1, & write1 need updates */
146 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
147 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
148 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
149 "Non-buffered flash (256kB)"},
150 /* Expansion entry 0100 */
151 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
152 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
153 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
154 "Entry 0100"},
155 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
156 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
157 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
158 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
159 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
160 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
161 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
162 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
163 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
164 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
165 /* Saifun SA25F005 (non-buffered flash) */
166 /* strap, cfg1, & write1 need updates */
167 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
168 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
169 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
170 "Non-buffered flash (64kB)"},
171 /* Fast EEPROM */
172 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
173 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
174 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
175 "EEPROM - fast"},
176 /* Expansion entry 1001 */
177 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
178 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
179 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
180 "Entry 1001"},
181 /* Expansion entry 1010 */
182 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
183 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
184 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
185 "Entry 1010"},
186 /* ATMEL AT45DB011B (buffered flash) */
187 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
188 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
189 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
190 "Buffered flash (128kB)"},
191 /* Expansion entry 1100 */
192 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
193 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 "Entry 1100"},
196 /* Expansion entry 1101 */
197 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
198 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
199 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
200 "Entry 1101"},
201 /* Ateml Expansion entry 1110 */
202 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
203 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
204 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
205 "Entry 1110 (Atmel)"},
206 /* ATMEL AT45DB021B (buffered flash) */
207 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
208 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
209 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
210 "Buffered flash (256kB)"},
211 };
212
213 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
214
215 static inline u32 bnx2_tx_avail(struct bnx2 *bp)
216 {
217 u32 diff;
218
219 smp_mb();
220
221 /* The ring uses 256 indices for 255 entries, one of them
222 * needs to be skipped.
223 */
224 diff = bp->tx_prod - bp->tx_cons;
225 if (unlikely(diff >= TX_DESC_CNT)) {
226 diff &= 0xffff;
227 if (diff == TX_DESC_CNT)
228 diff = MAX_TX_DESC_CNT;
229 }
230 return (bp->tx_ring_size - diff);
231 }
232
233 static u32
234 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
235 {
236 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
237 return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW));
238 }
239
240 static void
241 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
242 {
243 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
244 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
245 }
246
247 static void
248 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
249 {
250 offset += cid_addr;
251 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
252 int i;
253
254 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
255 REG_WR(bp, BNX2_CTX_CTX_CTRL,
256 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
257 for (i = 0; i < 5; i++) {
258 u32 val;
259 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
260 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
261 break;
262 udelay(5);
263 }
264 } else {
265 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
266 REG_WR(bp, BNX2_CTX_DATA, val);
267 }
268 }
269
270 static int
271 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
272 {
273 u32 val1;
274 int i, ret;
275
276 if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
277 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
278 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
279
280 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
281 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
282
283 udelay(40);
284 }
285
286 val1 = (bp->phy_addr << 21) | (reg << 16) |
287 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
288 BNX2_EMAC_MDIO_COMM_START_BUSY;
289 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
290
291 for (i = 0; i < 50; i++) {
292 udelay(10);
293
294 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
295 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
296 udelay(5);
297
298 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
299 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
300
301 break;
302 }
303 }
304
305 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
306 *val = 0x0;
307 ret = -EBUSY;
308 }
309 else {
310 *val = val1;
311 ret = 0;
312 }
313
314 if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
315 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
316 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
317
318 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
319 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
320
321 udelay(40);
322 }
323
324 return ret;
325 }
326
327 static int
328 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
329 {
330 u32 val1;
331 int i, ret;
332
333 if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
334 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
335 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
336
337 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
338 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
339
340 udelay(40);
341 }
342
343 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
344 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
345 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
346 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
347
348 for (i = 0; i < 50; i++) {
349 udelay(10);
350
351 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
352 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
353 udelay(5);
354 break;
355 }
356 }
357
358 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
359 ret = -EBUSY;
360 else
361 ret = 0;
362
363 if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
364 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
365 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
366
367 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
368 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
369
370 udelay(40);
371 }
372
373 return ret;
374 }
375
376 static void
377 bnx2_disable_int(struct bnx2 *bp)
378 {
379 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
380 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
381 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
382 }
383
384 static void
385 bnx2_enable_int(struct bnx2 *bp)
386 {
387 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
388 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
389 BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
390
391 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
392 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
393
394 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
395 }
396
397 static void
398 bnx2_disable_int_sync(struct bnx2 *bp)
399 {
400 atomic_inc(&bp->intr_sem);
401 bnx2_disable_int(bp);
402 synchronize_irq(bp->pdev->irq);
403 }
404
405 static void
406 bnx2_netif_stop(struct bnx2 *bp)
407 {
408 bnx2_disable_int_sync(bp);
409 if (netif_running(bp->dev)) {
410 netif_poll_disable(bp->dev);
411 netif_tx_disable(bp->dev);
412 bp->dev->trans_start = jiffies; /* prevent tx timeout */
413 }
414 }
415
416 static void
417 bnx2_netif_start(struct bnx2 *bp)
418 {
419 if (atomic_dec_and_test(&bp->intr_sem)) {
420 if (netif_running(bp->dev)) {
421 netif_wake_queue(bp->dev);
422 netif_poll_enable(bp->dev);
423 bnx2_enable_int(bp);
424 }
425 }
426 }
427
428 static void
429 bnx2_free_mem(struct bnx2 *bp)
430 {
431 int i;
432
433 for (i = 0; i < bp->ctx_pages; i++) {
434 if (bp->ctx_blk[i]) {
435 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
436 bp->ctx_blk[i],
437 bp->ctx_blk_mapping[i]);
438 bp->ctx_blk[i] = NULL;
439 }
440 }
441 if (bp->status_blk) {
442 pci_free_consistent(bp->pdev, bp->status_stats_size,
443 bp->status_blk, bp->status_blk_mapping);
444 bp->status_blk = NULL;
445 bp->stats_blk = NULL;
446 }
447 if (bp->tx_desc_ring) {
448 pci_free_consistent(bp->pdev,
449 sizeof(struct tx_bd) * TX_DESC_CNT,
450 bp->tx_desc_ring, bp->tx_desc_mapping);
451 bp->tx_desc_ring = NULL;
452 }
453 kfree(bp->tx_buf_ring);
454 bp->tx_buf_ring = NULL;
455 for (i = 0; i < bp->rx_max_ring; i++) {
456 if (bp->rx_desc_ring[i])
457 pci_free_consistent(bp->pdev,
458 sizeof(struct rx_bd) * RX_DESC_CNT,
459 bp->rx_desc_ring[i],
460 bp->rx_desc_mapping[i]);
461 bp->rx_desc_ring[i] = NULL;
462 }
463 vfree(bp->rx_buf_ring);
464 bp->rx_buf_ring = NULL;
465 }
466
467 static int
468 bnx2_alloc_mem(struct bnx2 *bp)
469 {
470 int i, status_blk_size;
471
472 bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
473 GFP_KERNEL);
474 if (bp->tx_buf_ring == NULL)
475 return -ENOMEM;
476
477 bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
478 sizeof(struct tx_bd) *
479 TX_DESC_CNT,
480 &bp->tx_desc_mapping);
481 if (bp->tx_desc_ring == NULL)
482 goto alloc_mem_err;
483
484 bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT *
485 bp->rx_max_ring);
486 if (bp->rx_buf_ring == NULL)
487 goto alloc_mem_err;
488
489 memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT *
490 bp->rx_max_ring);
491
492 for (i = 0; i < bp->rx_max_ring; i++) {
493 bp->rx_desc_ring[i] =
494 pci_alloc_consistent(bp->pdev,
495 sizeof(struct rx_bd) * RX_DESC_CNT,
496 &bp->rx_desc_mapping[i]);
497 if (bp->rx_desc_ring[i] == NULL)
498 goto alloc_mem_err;
499
500 }
501
502 /* Combine status and statistics blocks into one allocation. */
503 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
504 bp->status_stats_size = status_blk_size +
505 sizeof(struct statistics_block);
506
507 bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
508 &bp->status_blk_mapping);
509 if (bp->status_blk == NULL)
510 goto alloc_mem_err;
511
512 memset(bp->status_blk, 0, bp->status_stats_size);
513
514 bp->stats_blk = (void *) ((unsigned long) bp->status_blk +
515 status_blk_size);
516
517 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
518
519 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
520 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
521 if (bp->ctx_pages == 0)
522 bp->ctx_pages = 1;
523 for (i = 0; i < bp->ctx_pages; i++) {
524 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
525 BCM_PAGE_SIZE,
526 &bp->ctx_blk_mapping[i]);
527 if (bp->ctx_blk[i] == NULL)
528 goto alloc_mem_err;
529 }
530 }
531 return 0;
532
533 alloc_mem_err:
534 bnx2_free_mem(bp);
535 return -ENOMEM;
536 }
537
538 static void
539 bnx2_report_fw_link(struct bnx2 *bp)
540 {
541 u32 fw_link_status = 0;
542
543 if (bp->link_up) {
544 u32 bmsr;
545
546 switch (bp->line_speed) {
547 case SPEED_10:
548 if (bp->duplex == DUPLEX_HALF)
549 fw_link_status = BNX2_LINK_STATUS_10HALF;
550 else
551 fw_link_status = BNX2_LINK_STATUS_10FULL;
552 break;
553 case SPEED_100:
554 if (bp->duplex == DUPLEX_HALF)
555 fw_link_status = BNX2_LINK_STATUS_100HALF;
556 else
557 fw_link_status = BNX2_LINK_STATUS_100FULL;
558 break;
559 case SPEED_1000:
560 if (bp->duplex == DUPLEX_HALF)
561 fw_link_status = BNX2_LINK_STATUS_1000HALF;
562 else
563 fw_link_status = BNX2_LINK_STATUS_1000FULL;
564 break;
565 case SPEED_2500:
566 if (bp->duplex == DUPLEX_HALF)
567 fw_link_status = BNX2_LINK_STATUS_2500HALF;
568 else
569 fw_link_status = BNX2_LINK_STATUS_2500FULL;
570 break;
571 }
572
573 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
574
575 if (bp->autoneg) {
576 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
577
578 bnx2_read_phy(bp, MII_BMSR, &bmsr);
579 bnx2_read_phy(bp, MII_BMSR, &bmsr);
580
581 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
582 bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
583 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
584 else
585 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
586 }
587 }
588 else
589 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
590
591 REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
592 }
593
594 static void
595 bnx2_report_link(struct bnx2 *bp)
596 {
597 if (bp->link_up) {
598 netif_carrier_on(bp->dev);
599 printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name);
600
601 printk("%d Mbps ", bp->line_speed);
602
603 if (bp->duplex == DUPLEX_FULL)
604 printk("full duplex");
605 else
606 printk("half duplex");
607
608 if (bp->flow_ctrl) {
609 if (bp->flow_ctrl & FLOW_CTRL_RX) {
610 printk(", receive ");
611 if (bp->flow_ctrl & FLOW_CTRL_TX)
612 printk("& transmit ");
613 }
614 else {
615 printk(", transmit ");
616 }
617 printk("flow control ON");
618 }
619 printk("\n");
620 }
621 else {
622 netif_carrier_off(bp->dev);
623 printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name);
624 }
625
626 bnx2_report_fw_link(bp);
627 }
628
629 static void
630 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
631 {
632 u32 local_adv, remote_adv;
633
634 bp->flow_ctrl = 0;
635 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
636 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
637
638 if (bp->duplex == DUPLEX_FULL) {
639 bp->flow_ctrl = bp->req_flow_ctrl;
640 }
641 return;
642 }
643
644 if (bp->duplex != DUPLEX_FULL) {
645 return;
646 }
647
648 if ((bp->phy_flags & PHY_SERDES_FLAG) &&
649 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
650 u32 val;
651
652 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
653 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
654 bp->flow_ctrl |= FLOW_CTRL_TX;
655 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
656 bp->flow_ctrl |= FLOW_CTRL_RX;
657 return;
658 }
659
660 bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
661 bnx2_read_phy(bp, MII_LPA, &remote_adv);
662
663 if (bp->phy_flags & PHY_SERDES_FLAG) {
664 u32 new_local_adv = 0;
665 u32 new_remote_adv = 0;
666
667 if (local_adv & ADVERTISE_1000XPAUSE)
668 new_local_adv |= ADVERTISE_PAUSE_CAP;
669 if (local_adv & ADVERTISE_1000XPSE_ASYM)
670 new_local_adv |= ADVERTISE_PAUSE_ASYM;
671 if (remote_adv & ADVERTISE_1000XPAUSE)
672 new_remote_adv |= ADVERTISE_PAUSE_CAP;
673 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
674 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
675
676 local_adv = new_local_adv;
677 remote_adv = new_remote_adv;
678 }
679
680 /* See Table 28B-3 of 802.3ab-1999 spec. */
681 if (local_adv & ADVERTISE_PAUSE_CAP) {
682 if(local_adv & ADVERTISE_PAUSE_ASYM) {
683 if (remote_adv & ADVERTISE_PAUSE_CAP) {
684 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
685 }
686 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
687 bp->flow_ctrl = FLOW_CTRL_RX;
688 }
689 }
690 else {
691 if (remote_adv & ADVERTISE_PAUSE_CAP) {
692 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
693 }
694 }
695 }
696 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
697 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
698 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
699
700 bp->flow_ctrl = FLOW_CTRL_TX;
701 }
702 }
703 }
704
705 static int
706 bnx2_5708s_linkup(struct bnx2 *bp)
707 {
708 u32 val;
709
710 bp->link_up = 1;
711 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
712 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
713 case BCM5708S_1000X_STAT1_SPEED_10:
714 bp->line_speed = SPEED_10;
715 break;
716 case BCM5708S_1000X_STAT1_SPEED_100:
717 bp->line_speed = SPEED_100;
718 break;
719 case BCM5708S_1000X_STAT1_SPEED_1G:
720 bp->line_speed = SPEED_1000;
721 break;
722 case BCM5708S_1000X_STAT1_SPEED_2G5:
723 bp->line_speed = SPEED_2500;
724 break;
725 }
726 if (val & BCM5708S_1000X_STAT1_FD)
727 bp->duplex = DUPLEX_FULL;
728 else
729 bp->duplex = DUPLEX_HALF;
730
731 return 0;
732 }
733
734 static int
735 bnx2_5706s_linkup(struct bnx2 *bp)
736 {
737 u32 bmcr, local_adv, remote_adv, common;
738
739 bp->link_up = 1;
740 bp->line_speed = SPEED_1000;
741
742 bnx2_read_phy(bp, MII_BMCR, &bmcr);
743 if (bmcr & BMCR_FULLDPLX) {
744 bp->duplex = DUPLEX_FULL;
745 }
746 else {
747 bp->duplex = DUPLEX_HALF;
748 }
749
750 if (!(bmcr & BMCR_ANENABLE)) {
751 return 0;
752 }
753
754 bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
755 bnx2_read_phy(bp, MII_LPA, &remote_adv);
756
757 common = local_adv & remote_adv;
758 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
759
760 if (common & ADVERTISE_1000XFULL) {
761 bp->duplex = DUPLEX_FULL;
762 }
763 else {
764 bp->duplex = DUPLEX_HALF;
765 }
766 }
767
768 return 0;
769 }
770
771 static int
772 bnx2_copper_linkup(struct bnx2 *bp)
773 {
774 u32 bmcr;
775
776 bnx2_read_phy(bp, MII_BMCR, &bmcr);
777 if (bmcr & BMCR_ANENABLE) {
778 u32 local_adv, remote_adv, common;
779
780 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
781 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
782
783 common = local_adv & (remote_adv >> 2);
784 if (common & ADVERTISE_1000FULL) {
785 bp->line_speed = SPEED_1000;
786 bp->duplex = DUPLEX_FULL;
787 }
788 else if (common & ADVERTISE_1000HALF) {
789 bp->line_speed = SPEED_1000;
790 bp->duplex = DUPLEX_HALF;
791 }
792 else {
793 bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
794 bnx2_read_phy(bp, MII_LPA, &remote_adv);
795
796 common = local_adv & remote_adv;
797 if (common & ADVERTISE_100FULL) {
798 bp->line_speed = SPEED_100;
799 bp->duplex = DUPLEX_FULL;
800 }
801 else if (common & ADVERTISE_100HALF) {
802 bp->line_speed = SPEED_100;
803 bp->duplex = DUPLEX_HALF;
804 }
805 else if (common & ADVERTISE_10FULL) {
806 bp->line_speed = SPEED_10;
807 bp->duplex = DUPLEX_FULL;
808 }
809 else if (common & ADVERTISE_10HALF) {
810 bp->line_speed = SPEED_10;
811 bp->duplex = DUPLEX_HALF;
812 }
813 else {
814 bp->line_speed = 0;
815 bp->link_up = 0;
816 }
817 }
818 }
819 else {
820 if (bmcr & BMCR_SPEED100) {
821 bp->line_speed = SPEED_100;
822 }
823 else {
824 bp->line_speed = SPEED_10;
825 }
826 if (bmcr & BMCR_FULLDPLX) {
827 bp->duplex = DUPLEX_FULL;
828 }
829 else {
830 bp->duplex = DUPLEX_HALF;
831 }
832 }
833
834 return 0;
835 }
836
837 static int
838 bnx2_set_mac_link(struct bnx2 *bp)
839 {
840 u32 val;
841
842 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
843 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
844 (bp->duplex == DUPLEX_HALF)) {
845 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
846 }
847
848 /* Configure the EMAC mode register. */
849 val = REG_RD(bp, BNX2_EMAC_MODE);
850
851 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
852 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
853 BNX2_EMAC_MODE_25G_MODE);
854
855 if (bp->link_up) {
856 switch (bp->line_speed) {
857 case SPEED_10:
858 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
859 val |= BNX2_EMAC_MODE_PORT_MII_10M;
860 break;
861 }
862 /* fall through */
863 case SPEED_100:
864 val |= BNX2_EMAC_MODE_PORT_MII;
865 break;
866 case SPEED_2500:
867 val |= BNX2_EMAC_MODE_25G_MODE;
868 /* fall through */
869 case SPEED_1000:
870 val |= BNX2_EMAC_MODE_PORT_GMII;
871 break;
872 }
873 }
874 else {
875 val |= BNX2_EMAC_MODE_PORT_GMII;
876 }
877
878 /* Set the MAC to operate in the appropriate duplex mode. */
879 if (bp->duplex == DUPLEX_HALF)
880 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
881 REG_WR(bp, BNX2_EMAC_MODE, val);
882
883 /* Enable/disable rx PAUSE. */
884 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
885
886 if (bp->flow_ctrl & FLOW_CTRL_RX)
887 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
888 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
889
890 /* Enable/disable tx PAUSE. */
891 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
892 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
893
894 if (bp->flow_ctrl & FLOW_CTRL_TX)
895 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
896 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
897
898 /* Acknowledge the interrupt. */
899 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
900
901 return 0;
902 }
903
904 static int
905 bnx2_set_link(struct bnx2 *bp)
906 {
907 u32 bmsr;
908 u8 link_up;
909
910 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
911 bp->link_up = 1;
912 return 0;
913 }
914
915 link_up = bp->link_up;
916
917 bnx2_read_phy(bp, MII_BMSR, &bmsr);
918 bnx2_read_phy(bp, MII_BMSR, &bmsr);
919
920 if ((bp->phy_flags & PHY_SERDES_FLAG) &&
921 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
922 u32 val;
923
924 val = REG_RD(bp, BNX2_EMAC_STATUS);
925 if (val & BNX2_EMAC_STATUS_LINK)
926 bmsr |= BMSR_LSTATUS;
927 else
928 bmsr &= ~BMSR_LSTATUS;
929 }
930
931 if (bmsr & BMSR_LSTATUS) {
932 bp->link_up = 1;
933
934 if (bp->phy_flags & PHY_SERDES_FLAG) {
935 if (CHIP_NUM(bp) == CHIP_NUM_5706)
936 bnx2_5706s_linkup(bp);
937 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
938 bnx2_5708s_linkup(bp);
939 }
940 else {
941 bnx2_copper_linkup(bp);
942 }
943 bnx2_resolve_flow_ctrl(bp);
944 }
945 else {
946 if ((bp->phy_flags & PHY_SERDES_FLAG) &&
947 (bp->autoneg & AUTONEG_SPEED)) {
948
949 u32 bmcr;
950
951 bnx2_read_phy(bp, MII_BMCR, &bmcr);
952 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
953 if (!(bmcr & BMCR_ANENABLE)) {
954 bnx2_write_phy(bp, MII_BMCR, bmcr |
955 BMCR_ANENABLE);
956 }
957 }
958 bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
959 bp->link_up = 0;
960 }
961
962 if (bp->link_up != link_up) {
963 bnx2_report_link(bp);
964 }
965
966 bnx2_set_mac_link(bp);
967
968 return 0;
969 }
970
971 static int
972 bnx2_reset_phy(struct bnx2 *bp)
973 {
974 int i;
975 u32 reg;
976
977 bnx2_write_phy(bp, MII_BMCR, BMCR_RESET);
978
979 #define PHY_RESET_MAX_WAIT 100
980 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
981 udelay(10);
982
983 bnx2_read_phy(bp, MII_BMCR, &reg);
984 if (!(reg & BMCR_RESET)) {
985 udelay(20);
986 break;
987 }
988 }
989 if (i == PHY_RESET_MAX_WAIT) {
990 return -EBUSY;
991 }
992 return 0;
993 }
994
995 static u32
996 bnx2_phy_get_pause_adv(struct bnx2 *bp)
997 {
998 u32 adv = 0;
999
1000 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1001 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1002
1003 if (bp->phy_flags & PHY_SERDES_FLAG) {
1004 adv = ADVERTISE_1000XPAUSE;
1005 }
1006 else {
1007 adv = ADVERTISE_PAUSE_CAP;
1008 }
1009 }
1010 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1011 if (bp->phy_flags & PHY_SERDES_FLAG) {
1012 adv = ADVERTISE_1000XPSE_ASYM;
1013 }
1014 else {
1015 adv = ADVERTISE_PAUSE_ASYM;
1016 }
1017 }
1018 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1019 if (bp->phy_flags & PHY_SERDES_FLAG) {
1020 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1021 }
1022 else {
1023 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1024 }
1025 }
1026 return adv;
1027 }
1028
1029 static int
1030 bnx2_setup_serdes_phy(struct bnx2 *bp)
1031 {
1032 u32 adv, bmcr, up1;
1033 u32 new_adv = 0;
1034
1035 if (!(bp->autoneg & AUTONEG_SPEED)) {
1036 u32 new_bmcr;
1037 int force_link_down = 0;
1038
1039 bnx2_read_phy(bp, MII_ADVERTISE, &adv);
1040 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1041
1042 bnx2_read_phy(bp, MII_BMCR, &bmcr);
1043 new_bmcr = bmcr & ~(BMCR_ANENABLE | BCM5708S_BMCR_FORCE_2500);
1044 new_bmcr |= BMCR_SPEED1000;
1045 if (bp->req_line_speed == SPEED_2500) {
1046 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1047 bnx2_read_phy(bp, BCM5708S_UP1, &up1);
1048 if (!(up1 & BCM5708S_UP1_2G5)) {
1049 up1 |= BCM5708S_UP1_2G5;
1050 bnx2_write_phy(bp, BCM5708S_UP1, up1);
1051 force_link_down = 1;
1052 }
1053 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1054 bnx2_read_phy(bp, BCM5708S_UP1, &up1);
1055 if (up1 & BCM5708S_UP1_2G5) {
1056 up1 &= ~BCM5708S_UP1_2G5;
1057 bnx2_write_phy(bp, BCM5708S_UP1, up1);
1058 force_link_down = 1;
1059 }
1060 }
1061
1062 if (bp->req_duplex == DUPLEX_FULL) {
1063 adv |= ADVERTISE_1000XFULL;
1064 new_bmcr |= BMCR_FULLDPLX;
1065 }
1066 else {
1067 adv |= ADVERTISE_1000XHALF;
1068 new_bmcr &= ~BMCR_FULLDPLX;
1069 }
1070 if ((new_bmcr != bmcr) || (force_link_down)) {
1071 /* Force a link down visible on the other side */
1072 if (bp->link_up) {
1073 bnx2_write_phy(bp, MII_ADVERTISE, adv &
1074 ~(ADVERTISE_1000XFULL |
1075 ADVERTISE_1000XHALF));
1076 bnx2_write_phy(bp, MII_BMCR, bmcr |
1077 BMCR_ANRESTART | BMCR_ANENABLE);
1078
1079 bp->link_up = 0;
1080 netif_carrier_off(bp->dev);
1081 bnx2_write_phy(bp, MII_BMCR, new_bmcr);
1082 bnx2_report_link(bp);
1083 }
1084 bnx2_write_phy(bp, MII_ADVERTISE, adv);
1085 bnx2_write_phy(bp, MII_BMCR, new_bmcr);
1086 }
1087 return 0;
1088 }
1089
1090 if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
1091 bnx2_read_phy(bp, BCM5708S_UP1, &up1);
1092 up1 |= BCM5708S_UP1_2G5;
1093 bnx2_write_phy(bp, BCM5708S_UP1, up1);
1094 }
1095
1096 if (bp->advertising & ADVERTISED_1000baseT_Full)
1097 new_adv |= ADVERTISE_1000XFULL;
1098
1099 new_adv |= bnx2_phy_get_pause_adv(bp);
1100
1101 bnx2_read_phy(bp, MII_ADVERTISE, &adv);
1102 bnx2_read_phy(bp, MII_BMCR, &bmcr);
1103
1104 bp->serdes_an_pending = 0;
1105 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1106 /* Force a link down visible on the other side */
1107 if (bp->link_up) {
1108 bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
1109 spin_unlock_bh(&bp->phy_lock);
1110 msleep(20);
1111 spin_lock_bh(&bp->phy_lock);
1112 }
1113
1114 bnx2_write_phy(bp, MII_ADVERTISE, new_adv);
1115 bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART |
1116 BMCR_ANENABLE);
1117 /* Speed up link-up time when the link partner
1118 * does not autonegotiate which is very common
1119 * in blade servers. Some blade servers use
1120 * IPMI for kerboard input and it's important
1121 * to minimize link disruptions. Autoneg. involves
1122 * exchanging base pages plus 3 next pages and
1123 * normally completes in about 120 msec.
1124 */
1125 bp->current_interval = SERDES_AN_TIMEOUT;
1126 bp->serdes_an_pending = 1;
1127 mod_timer(&bp->timer, jiffies + bp->current_interval);
1128 }
1129
1130 return 0;
1131 }
1132
1133 #define ETHTOOL_ALL_FIBRE_SPEED \
1134 (ADVERTISED_1000baseT_Full)
1135
1136 #define ETHTOOL_ALL_COPPER_SPEED \
1137 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1138 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1139 ADVERTISED_1000baseT_Full)
1140
1141 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1142 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1143
1144 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1145
1146 static int
1147 bnx2_setup_copper_phy(struct bnx2 *bp)
1148 {
1149 u32 bmcr;
1150 u32 new_bmcr;
1151
1152 bnx2_read_phy(bp, MII_BMCR, &bmcr);
1153
1154 if (bp->autoneg & AUTONEG_SPEED) {
1155 u32 adv_reg, adv1000_reg;
1156 u32 new_adv_reg = 0;
1157 u32 new_adv1000_reg = 0;
1158
1159 bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg);
1160 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
1161 ADVERTISE_PAUSE_ASYM);
1162
1163 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
1164 adv1000_reg &= PHY_ALL_1000_SPEED;
1165
1166 if (bp->advertising & ADVERTISED_10baseT_Half)
1167 new_adv_reg |= ADVERTISE_10HALF;
1168 if (bp->advertising & ADVERTISED_10baseT_Full)
1169 new_adv_reg |= ADVERTISE_10FULL;
1170 if (bp->advertising & ADVERTISED_100baseT_Half)
1171 new_adv_reg |= ADVERTISE_100HALF;
1172 if (bp->advertising & ADVERTISED_100baseT_Full)
1173 new_adv_reg |= ADVERTISE_100FULL;
1174 if (bp->advertising & ADVERTISED_1000baseT_Full)
1175 new_adv1000_reg |= ADVERTISE_1000FULL;
1176
1177 new_adv_reg |= ADVERTISE_CSMA;
1178
1179 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
1180
1181 if ((adv1000_reg != new_adv1000_reg) ||
1182 (adv_reg != new_adv_reg) ||
1183 ((bmcr & BMCR_ANENABLE) == 0)) {
1184
1185 bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg);
1186 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
1187 bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART |
1188 BMCR_ANENABLE);
1189 }
1190 else if (bp->link_up) {
1191 /* Flow ctrl may have changed from auto to forced */
1192 /* or vice-versa. */
1193
1194 bnx2_resolve_flow_ctrl(bp);
1195 bnx2_set_mac_link(bp);
1196 }
1197 return 0;
1198 }
1199
1200 new_bmcr = 0;
1201 if (bp->req_line_speed == SPEED_100) {
1202 new_bmcr |= BMCR_SPEED100;
1203 }
1204 if (bp->req_duplex == DUPLEX_FULL) {
1205 new_bmcr |= BMCR_FULLDPLX;
1206 }
1207 if (new_bmcr != bmcr) {
1208 u32 bmsr;
1209
1210 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1211 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1212
1213 if (bmsr & BMSR_LSTATUS) {
1214 /* Force link down */
1215 bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
1216 spin_unlock_bh(&bp->phy_lock);
1217 msleep(50);
1218 spin_lock_bh(&bp->phy_lock);
1219
1220 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1221 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1222 }
1223
1224 bnx2_write_phy(bp, MII_BMCR, new_bmcr);
1225
1226 /* Normally, the new speed is setup after the link has
1227 * gone down and up again. In some cases, link will not go
1228 * down so we need to set up the new speed here.
1229 */
1230 if (bmsr & BMSR_LSTATUS) {
1231 bp->line_speed = bp->req_line_speed;
1232 bp->duplex = bp->req_duplex;
1233 bnx2_resolve_flow_ctrl(bp);
1234 bnx2_set_mac_link(bp);
1235 }
1236 }
1237 return 0;
1238 }
1239
1240 static int
1241 bnx2_setup_phy(struct bnx2 *bp)
1242 {
1243 if (bp->loopback == MAC_LOOPBACK)
1244 return 0;
1245
1246 if (bp->phy_flags & PHY_SERDES_FLAG) {
1247 return (bnx2_setup_serdes_phy(bp));
1248 }
1249 else {
1250 return (bnx2_setup_copper_phy(bp));
1251 }
1252 }
1253
1254 static int
1255 bnx2_init_5708s_phy(struct bnx2 *bp)
1256 {
1257 u32 val;
1258
1259 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
1260 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
1261 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
1262
1263 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
1264 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
1265 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
1266
1267 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
1268 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
1269 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
1270
1271 if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
1272 bnx2_read_phy(bp, BCM5708S_UP1, &val);
1273 val |= BCM5708S_UP1_2G5;
1274 bnx2_write_phy(bp, BCM5708S_UP1, val);
1275 }
1276
1277 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
1278 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
1279 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
1280 /* increase tx signal amplitude */
1281 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1282 BCM5708S_BLK_ADDR_TX_MISC);
1283 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
1284 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
1285 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
1286 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
1287 }
1288
1289 val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
1290 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
1291
1292 if (val) {
1293 u32 is_backplane;
1294
1295 is_backplane = REG_RD_IND(bp, bp->shmem_base +
1296 BNX2_SHARED_HW_CFG_CONFIG);
1297 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
1298 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1299 BCM5708S_BLK_ADDR_TX_MISC);
1300 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
1301 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1302 BCM5708S_BLK_ADDR_DIG);
1303 }
1304 }
1305 return 0;
1306 }
1307
1308 static int
1309 bnx2_init_5706s_phy(struct bnx2 *bp)
1310 {
1311 bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
1312
1313 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1314 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
1315
1316 if (bp->dev->mtu > 1500) {
1317 u32 val;
1318
1319 /* Set extended packet length bit */
1320 bnx2_write_phy(bp, 0x18, 0x7);
1321 bnx2_read_phy(bp, 0x18, &val);
1322 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
1323
1324 bnx2_write_phy(bp, 0x1c, 0x6c00);
1325 bnx2_read_phy(bp, 0x1c, &val);
1326 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
1327 }
1328 else {
1329 u32 val;
1330
1331 bnx2_write_phy(bp, 0x18, 0x7);
1332 bnx2_read_phy(bp, 0x18, &val);
1333 bnx2_write_phy(bp, 0x18, val & ~0x4007);
1334
1335 bnx2_write_phy(bp, 0x1c, 0x6c00);
1336 bnx2_read_phy(bp, 0x1c, &val);
1337 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
1338 }
1339
1340 return 0;
1341 }
1342
1343 static int
1344 bnx2_init_copper_phy(struct bnx2 *bp)
1345 {
1346 u32 val;
1347
1348 if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
1349 bnx2_write_phy(bp, 0x18, 0x0c00);
1350 bnx2_write_phy(bp, 0x17, 0x000a);
1351 bnx2_write_phy(bp, 0x15, 0x310b);
1352 bnx2_write_phy(bp, 0x17, 0x201f);
1353 bnx2_write_phy(bp, 0x15, 0x9506);
1354 bnx2_write_phy(bp, 0x17, 0x401f);
1355 bnx2_write_phy(bp, 0x15, 0x14e2);
1356 bnx2_write_phy(bp, 0x18, 0x0400);
1357 }
1358
1359 if (bp->phy_flags & PHY_DIS_EARLY_DAC_FLAG) {
1360 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
1361 MII_BNX2_DSP_EXPAND_REG | 0x8);
1362 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1363 val &= ~(1 << 8);
1364 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
1365 }
1366
1367 if (bp->dev->mtu > 1500) {
1368 /* Set extended packet length bit */
1369 bnx2_write_phy(bp, 0x18, 0x7);
1370 bnx2_read_phy(bp, 0x18, &val);
1371 bnx2_write_phy(bp, 0x18, val | 0x4000);
1372
1373 bnx2_read_phy(bp, 0x10, &val);
1374 bnx2_write_phy(bp, 0x10, val | 0x1);
1375 }
1376 else {
1377 bnx2_write_phy(bp, 0x18, 0x7);
1378 bnx2_read_phy(bp, 0x18, &val);
1379 bnx2_write_phy(bp, 0x18, val & ~0x4007);
1380
1381 bnx2_read_phy(bp, 0x10, &val);
1382 bnx2_write_phy(bp, 0x10, val & ~0x1);
1383 }
1384
1385 /* ethernet@wirespeed */
1386 bnx2_write_phy(bp, 0x18, 0x7007);
1387 bnx2_read_phy(bp, 0x18, &val);
1388 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
1389 return 0;
1390 }
1391
1392
1393 static int
1394 bnx2_init_phy(struct bnx2 *bp)
1395 {
1396 u32 val;
1397 int rc = 0;
1398
1399 bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
1400 bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
1401
1402 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
1403
1404 bnx2_reset_phy(bp);
1405
1406 bnx2_read_phy(bp, MII_PHYSID1, &val);
1407 bp->phy_id = val << 16;
1408 bnx2_read_phy(bp, MII_PHYSID2, &val);
1409 bp->phy_id |= val & 0xffff;
1410
1411 if (bp->phy_flags & PHY_SERDES_FLAG) {
1412 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1413 rc = bnx2_init_5706s_phy(bp);
1414 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1415 rc = bnx2_init_5708s_phy(bp);
1416 }
1417 else {
1418 rc = bnx2_init_copper_phy(bp);
1419 }
1420
1421 bnx2_setup_phy(bp);
1422
1423 return rc;
1424 }
1425
1426 static int
1427 bnx2_set_mac_loopback(struct bnx2 *bp)
1428 {
1429 u32 mac_mode;
1430
1431 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
1432 mac_mode &= ~BNX2_EMAC_MODE_PORT;
1433 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
1434 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
1435 bp->link_up = 1;
1436 return 0;
1437 }
1438
1439 static int bnx2_test_link(struct bnx2 *);
1440
1441 static int
1442 bnx2_set_phy_loopback(struct bnx2 *bp)
1443 {
1444 u32 mac_mode;
1445 int rc, i;
1446
1447 spin_lock_bh(&bp->phy_lock);
1448 rc = bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX |
1449 BMCR_SPEED1000);
1450 spin_unlock_bh(&bp->phy_lock);
1451 if (rc)
1452 return rc;
1453
1454 for (i = 0; i < 10; i++) {
1455 if (bnx2_test_link(bp) == 0)
1456 break;
1457 msleep(100);
1458 }
1459
1460 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
1461 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1462 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1463 BNX2_EMAC_MODE_25G_MODE);
1464
1465 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
1466 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
1467 bp->link_up = 1;
1468 return 0;
1469 }
1470
1471 static int
1472 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
1473 {
1474 int i;
1475 u32 val;
1476
1477 bp->fw_wr_seq++;
1478 msg_data |= bp->fw_wr_seq;
1479
1480 REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
1481
1482 /* wait for an acknowledgement. */
1483 for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
1484 msleep(10);
1485
1486 val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
1487
1488 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
1489 break;
1490 }
1491 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
1492 return 0;
1493
1494 /* If we timed out, inform the firmware that this is the case. */
1495 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
1496 if (!silent)
1497 printk(KERN_ERR PFX "fw sync timeout, reset code = "
1498 "%x\n", msg_data);
1499
1500 msg_data &= ~BNX2_DRV_MSG_CODE;
1501 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
1502
1503 REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
1504
1505 return -EBUSY;
1506 }
1507
1508 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
1509 return -EIO;
1510
1511 return 0;
1512 }
1513
1514 static int
1515 bnx2_init_5709_context(struct bnx2 *bp)
1516 {
1517 int i, ret = 0;
1518 u32 val;
1519
1520 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
1521 val |= (BCM_PAGE_BITS - 8) << 16;
1522 REG_WR(bp, BNX2_CTX_COMMAND, val);
1523 for (i = 0; i < bp->ctx_pages; i++) {
1524 int j;
1525
1526 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
1527 (bp->ctx_blk_mapping[i] & 0xffffffff) |
1528 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
1529 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
1530 (u64) bp->ctx_blk_mapping[i] >> 32);
1531 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
1532 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
1533 for (j = 0; j < 10; j++) {
1534
1535 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
1536 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
1537 break;
1538 udelay(5);
1539 }
1540 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
1541 ret = -EBUSY;
1542 break;
1543 }
1544 }
1545 return ret;
1546 }
1547
1548 static void
1549 bnx2_init_context(struct bnx2 *bp)
1550 {
1551 u32 vcid;
1552
1553 vcid = 96;
1554 while (vcid) {
1555 u32 vcid_addr, pcid_addr, offset;
1556
1557 vcid--;
1558
1559 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
1560 u32 new_vcid;
1561
1562 vcid_addr = GET_PCID_ADDR(vcid);
1563 if (vcid & 0x8) {
1564 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
1565 }
1566 else {
1567 new_vcid = vcid;
1568 }
1569 pcid_addr = GET_PCID_ADDR(new_vcid);
1570 }
1571 else {
1572 vcid_addr = GET_CID_ADDR(vcid);
1573 pcid_addr = vcid_addr;
1574 }
1575
1576 REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
1577 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
1578
1579 /* Zero out the context. */
1580 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
1581 CTX_WR(bp, 0x00, offset, 0);
1582 }
1583
1584 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
1585 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
1586 }
1587 }
1588
1589 static int
1590 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
1591 {
1592 u16 *good_mbuf;
1593 u32 good_mbuf_cnt;
1594 u32 val;
1595
1596 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
1597 if (good_mbuf == NULL) {
1598 printk(KERN_ERR PFX "Failed to allocate memory in "
1599 "bnx2_alloc_bad_rbuf\n");
1600 return -ENOMEM;
1601 }
1602
1603 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
1604 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
1605
1606 good_mbuf_cnt = 0;
1607
1608 /* Allocate a bunch of mbufs and save the good ones in an array. */
1609 val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
1610 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
1611 REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
1612
1613 val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
1614
1615 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
1616
1617 /* The addresses with Bit 9 set are bad memory blocks. */
1618 if (!(val & (1 << 9))) {
1619 good_mbuf[good_mbuf_cnt] = (u16) val;
1620 good_mbuf_cnt++;
1621 }
1622
1623 val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
1624 }
1625
1626 /* Free the good ones back to the mbuf pool thus discarding
1627 * all the bad ones. */
1628 while (good_mbuf_cnt) {
1629 good_mbuf_cnt--;
1630
1631 val = good_mbuf[good_mbuf_cnt];
1632 val = (val << 9) | val | 1;
1633
1634 REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
1635 }
1636 kfree(good_mbuf);
1637 return 0;
1638 }
1639
1640 static void
1641 bnx2_set_mac_addr(struct bnx2 *bp)
1642 {
1643 u32 val;
1644 u8 *mac_addr = bp->dev->dev_addr;
1645
1646 val = (mac_addr[0] << 8) | mac_addr[1];
1647
1648 REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
1649
1650 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
1651 (mac_addr[4] << 8) | mac_addr[5];
1652
1653 REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
1654 }
1655
1656 static inline int
1657 bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
1658 {
1659 struct sk_buff *skb;
1660 struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
1661 dma_addr_t mapping;
1662 struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
1663 unsigned long align;
1664
1665 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
1666 if (skb == NULL) {
1667 return -ENOMEM;
1668 }
1669
1670 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
1671 skb_reserve(skb, BNX2_RX_ALIGN - align);
1672
1673 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
1674 PCI_DMA_FROMDEVICE);
1675
1676 rx_buf->skb = skb;
1677 pci_unmap_addr_set(rx_buf, mapping, mapping);
1678
1679 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
1680 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
1681
1682 bp->rx_prod_bseq += bp->rx_buf_use_size;
1683
1684 return 0;
1685 }
1686
1687 static void
1688 bnx2_phy_int(struct bnx2 *bp)
1689 {
1690 u32 new_link_state, old_link_state;
1691
1692 new_link_state = bp->status_blk->status_attn_bits &
1693 STATUS_ATTN_BITS_LINK_STATE;
1694 old_link_state = bp->status_blk->status_attn_bits_ack &
1695 STATUS_ATTN_BITS_LINK_STATE;
1696 if (new_link_state != old_link_state) {
1697 if (new_link_state) {
1698 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD,
1699 STATUS_ATTN_BITS_LINK_STATE);
1700 }
1701 else {
1702 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD,
1703 STATUS_ATTN_BITS_LINK_STATE);
1704 }
1705 bnx2_set_link(bp);
1706 }
1707 }
1708
1709 static void
1710 bnx2_tx_int(struct bnx2 *bp)
1711 {
1712 struct status_block *sblk = bp->status_blk;
1713 u16 hw_cons, sw_cons, sw_ring_cons;
1714 int tx_free_bd = 0;
1715
1716 hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
1717 if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
1718 hw_cons++;
1719 }
1720 sw_cons = bp->tx_cons;
1721
1722 while (sw_cons != hw_cons) {
1723 struct sw_bd *tx_buf;
1724 struct sk_buff *skb;
1725 int i, last;
1726
1727 sw_ring_cons = TX_RING_IDX(sw_cons);
1728
1729 tx_buf = &bp->tx_buf_ring[sw_ring_cons];
1730 skb = tx_buf->skb;
1731 #ifdef BCM_TSO
1732 /* partial BD completions possible with TSO packets */
1733 if (skb_is_gso(skb)) {
1734 u16 last_idx, last_ring_idx;
1735
1736 last_idx = sw_cons +
1737 skb_shinfo(skb)->nr_frags + 1;
1738 last_ring_idx = sw_ring_cons +
1739 skb_shinfo(skb)->nr_frags + 1;
1740 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
1741 last_idx++;
1742 }
1743 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
1744 break;
1745 }
1746 }
1747 #endif
1748 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
1749 skb_headlen(skb), PCI_DMA_TODEVICE);
1750
1751 tx_buf->skb = NULL;
1752 last = skb_shinfo(skb)->nr_frags;
1753
1754 for (i = 0; i < last; i++) {
1755 sw_cons = NEXT_TX_BD(sw_cons);
1756
1757 pci_unmap_page(bp->pdev,
1758 pci_unmap_addr(
1759 &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
1760 mapping),
1761 skb_shinfo(skb)->frags[i].size,
1762 PCI_DMA_TODEVICE);
1763 }
1764
1765 sw_cons = NEXT_TX_BD(sw_cons);
1766
1767 tx_free_bd += last + 1;
1768
1769 dev_kfree_skb(skb);
1770
1771 hw_cons = bp->hw_tx_cons =
1772 sblk->status_tx_quick_consumer_index0;
1773
1774 if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
1775 hw_cons++;
1776 }
1777 }
1778
1779 bp->tx_cons = sw_cons;
1780 /* Need to make the tx_cons update visible to bnx2_start_xmit()
1781 * before checking for netif_queue_stopped(). Without the
1782 * memory barrier, there is a small possibility that bnx2_start_xmit()
1783 * will miss it and cause the queue to be stopped forever.
1784 */
1785 smp_mb();
1786
1787 if (unlikely(netif_queue_stopped(bp->dev)) &&
1788 (bnx2_tx_avail(bp) > bp->tx_wake_thresh)) {
1789 netif_tx_lock(bp->dev);
1790 if ((netif_queue_stopped(bp->dev)) &&
1791 (bnx2_tx_avail(bp) > bp->tx_wake_thresh))
1792 netif_wake_queue(bp->dev);
1793 netif_tx_unlock(bp->dev);
1794 }
1795 }
1796
1797 static inline void
1798 bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
1799 u16 cons, u16 prod)
1800 {
1801 struct sw_bd *cons_rx_buf, *prod_rx_buf;
1802 struct rx_bd *cons_bd, *prod_bd;
1803
1804 cons_rx_buf = &bp->rx_buf_ring[cons];
1805 prod_rx_buf = &bp->rx_buf_ring[prod];
1806
1807 pci_dma_sync_single_for_device(bp->pdev,
1808 pci_unmap_addr(cons_rx_buf, mapping),
1809 bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
1810
1811 bp->rx_prod_bseq += bp->rx_buf_use_size;
1812
1813 prod_rx_buf->skb = skb;
1814
1815 if (cons == prod)
1816 return;
1817
1818 pci_unmap_addr_set(prod_rx_buf, mapping,
1819 pci_unmap_addr(cons_rx_buf, mapping));
1820
1821 cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
1822 prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1823 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
1824 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
1825 }
1826
1827 static int
1828 bnx2_rx_int(struct bnx2 *bp, int budget)
1829 {
1830 struct status_block *sblk = bp->status_blk;
1831 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
1832 struct l2_fhdr *rx_hdr;
1833 int rx_pkt = 0;
1834
1835 hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
1836 if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
1837 hw_cons++;
1838 }
1839 sw_cons = bp->rx_cons;
1840 sw_prod = bp->rx_prod;
1841
1842 /* Memory barrier necessary as speculative reads of the rx
1843 * buffer can be ahead of the index in the status block
1844 */
1845 rmb();
1846 while (sw_cons != hw_cons) {
1847 unsigned int len;
1848 u32 status;
1849 struct sw_bd *rx_buf;
1850 struct sk_buff *skb;
1851 dma_addr_t dma_addr;
1852
1853 sw_ring_cons = RX_RING_IDX(sw_cons);
1854 sw_ring_prod = RX_RING_IDX(sw_prod);
1855
1856 rx_buf = &bp->rx_buf_ring[sw_ring_cons];
1857 skb = rx_buf->skb;
1858
1859 rx_buf->skb = NULL;
1860
1861 dma_addr = pci_unmap_addr(rx_buf, mapping);
1862
1863 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
1864 bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
1865
1866 rx_hdr = (struct l2_fhdr *) skb->data;
1867 len = rx_hdr->l2_fhdr_pkt_len - 4;
1868
1869 if ((status = rx_hdr->l2_fhdr_status) &
1870 (L2_FHDR_ERRORS_BAD_CRC |
1871 L2_FHDR_ERRORS_PHY_DECODE |
1872 L2_FHDR_ERRORS_ALIGNMENT |
1873 L2_FHDR_ERRORS_TOO_SHORT |
1874 L2_FHDR_ERRORS_GIANT_FRAME)) {
1875
1876 goto reuse_rx;
1877 }
1878
1879 /* Since we don't have a jumbo ring, copy small packets
1880 * if mtu > 1500
1881 */
1882 if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
1883 struct sk_buff *new_skb;
1884
1885 new_skb = netdev_alloc_skb(bp->dev, len + 2);
1886 if (new_skb == NULL)
1887 goto reuse_rx;
1888
1889 /* aligned copy */
1890 memcpy(new_skb->data,
1891 skb->data + bp->rx_offset - 2,
1892 len + 2);
1893
1894 skb_reserve(new_skb, 2);
1895 skb_put(new_skb, len);
1896
1897 bnx2_reuse_rx_skb(bp, skb,
1898 sw_ring_cons, sw_ring_prod);
1899
1900 skb = new_skb;
1901 }
1902 else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
1903 pci_unmap_single(bp->pdev, dma_addr,
1904 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
1905
1906 skb_reserve(skb, bp->rx_offset);
1907 skb_put(skb, len);
1908 }
1909 else {
1910 reuse_rx:
1911 bnx2_reuse_rx_skb(bp, skb,
1912 sw_ring_cons, sw_ring_prod);
1913 goto next_rx;
1914 }
1915
1916 skb->protocol = eth_type_trans(skb, bp->dev);
1917
1918 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
1919 (ntohs(skb->protocol) != 0x8100)) {
1920
1921 dev_kfree_skb(skb);
1922 goto next_rx;
1923
1924 }
1925
1926 skb->ip_summed = CHECKSUM_NONE;
1927 if (bp->rx_csum &&
1928 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
1929 L2_FHDR_STATUS_UDP_DATAGRAM))) {
1930
1931 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
1932 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
1933 skb->ip_summed = CHECKSUM_UNNECESSARY;
1934 }
1935
1936 #ifdef BCM_VLAN
1937 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
1938 vlan_hwaccel_receive_skb(skb, bp->vlgrp,
1939 rx_hdr->l2_fhdr_vlan_tag);
1940 }
1941 else
1942 #endif
1943 netif_receive_skb(skb);
1944
1945 bp->dev->last_rx = jiffies;
1946 rx_pkt++;
1947
1948 next_rx:
1949 sw_cons = NEXT_RX_BD(sw_cons);
1950 sw_prod = NEXT_RX_BD(sw_prod);
1951
1952 if ((rx_pkt == budget))
1953 break;
1954
1955 /* Refresh hw_cons to see if there is new work */
1956 if (sw_cons == hw_cons) {
1957 hw_cons = bp->hw_rx_cons =
1958 sblk->status_rx_quick_consumer_index0;
1959 if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
1960 hw_cons++;
1961 rmb();
1962 }
1963 }
1964 bp->rx_cons = sw_cons;
1965 bp->rx_prod = sw_prod;
1966
1967 REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
1968
1969 REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
1970
1971 mmiowb();
1972
1973 return rx_pkt;
1974
1975 }
1976
1977 /* MSI ISR - The only difference between this and the INTx ISR
1978 * is that the MSI interrupt is always serviced.
1979 */
1980 static irqreturn_t
1981 bnx2_msi(int irq, void *dev_instance)
1982 {
1983 struct net_device *dev = dev_instance;
1984 struct bnx2 *bp = netdev_priv(dev);
1985
1986 prefetch(bp->status_blk);
1987 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
1988 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
1989 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
1990
1991 /* Return here if interrupt is disabled. */
1992 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1993 return IRQ_HANDLED;
1994
1995 netif_rx_schedule(dev);
1996
1997 return IRQ_HANDLED;
1998 }
1999
2000 static irqreturn_t
2001 bnx2_interrupt(int irq, void *dev_instance)
2002 {
2003 struct net_device *dev = dev_instance;
2004 struct bnx2 *bp = netdev_priv(dev);
2005
2006 /* When using INTx, it is possible for the interrupt to arrive
2007 * at the CPU before the status block posted prior to the
2008 * interrupt. Reading a register will flush the status block.
2009 * When using MSI, the MSI message will always complete after
2010 * the status block write.
2011 */
2012 if ((bp->status_blk->status_idx == bp->last_status_idx) &&
2013 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
2014 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
2015 return IRQ_NONE;
2016
2017 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2018 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
2019 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
2020
2021 /* Return here if interrupt is shared and is disabled. */
2022 if (unlikely(atomic_read(&bp->intr_sem) != 0))
2023 return IRQ_HANDLED;
2024
2025 netif_rx_schedule(dev);
2026
2027 return IRQ_HANDLED;
2028 }
2029
2030 static inline int
2031 bnx2_has_work(struct bnx2 *bp)
2032 {
2033 struct status_block *sblk = bp->status_blk;
2034
2035 if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
2036 (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
2037 return 1;
2038
2039 if (((sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) !=
2040 bp->link_up)
2041 return 1;
2042
2043 return 0;
2044 }
2045
2046 static int
2047 bnx2_poll(struct net_device *dev, int *budget)
2048 {
2049 struct bnx2 *bp = netdev_priv(dev);
2050
2051 if ((bp->status_blk->status_attn_bits &
2052 STATUS_ATTN_BITS_LINK_STATE) !=
2053 (bp->status_blk->status_attn_bits_ack &
2054 STATUS_ATTN_BITS_LINK_STATE)) {
2055
2056 spin_lock(&bp->phy_lock);
2057 bnx2_phy_int(bp);
2058 spin_unlock(&bp->phy_lock);
2059
2060 /* This is needed to take care of transient status
2061 * during link changes.
2062 */
2063 REG_WR(bp, BNX2_HC_COMMAND,
2064 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
2065 REG_RD(bp, BNX2_HC_COMMAND);
2066 }
2067
2068 if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
2069 bnx2_tx_int(bp);
2070
2071 if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) {
2072 int orig_budget = *budget;
2073 int work_done;
2074
2075 if (orig_budget > dev->quota)
2076 orig_budget = dev->quota;
2077
2078 work_done = bnx2_rx_int(bp, orig_budget);
2079 *budget -= work_done;
2080 dev->quota -= work_done;
2081 }
2082
2083 bp->last_status_idx = bp->status_blk->status_idx;
2084 rmb();
2085
2086 if (!bnx2_has_work(bp)) {
2087 netif_rx_complete(dev);
2088 if (likely(bp->flags & USING_MSI_FLAG)) {
2089 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2090 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2091 bp->last_status_idx);
2092 return 0;
2093 }
2094 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2095 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2096 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
2097 bp->last_status_idx);
2098
2099 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2100 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2101 bp->last_status_idx);
2102 return 0;
2103 }
2104
2105 return 1;
2106 }
2107
2108 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
2109 * from set_multicast.
2110 */
2111 static void
2112 bnx2_set_rx_mode(struct net_device *dev)
2113 {
2114 struct bnx2 *bp = netdev_priv(dev);
2115 u32 rx_mode, sort_mode;
2116 int i;
2117
2118 spin_lock_bh(&bp->phy_lock);
2119
2120 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
2121 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
2122 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
2123 #ifdef BCM_VLAN
2124 if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
2125 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
2126 #else
2127 if (!(bp->flags & ASF_ENABLE_FLAG))
2128 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
2129 #endif
2130 if (dev->flags & IFF_PROMISC) {
2131 /* Promiscuous mode. */
2132 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
2133 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
2134 BNX2_RPM_SORT_USER0_PROM_VLAN;
2135 }
2136 else if (dev->flags & IFF_ALLMULTI) {
2137 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2138 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2139 0xffffffff);
2140 }
2141 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
2142 }
2143 else {
2144 /* Accept one or more multicast(s). */
2145 struct dev_mc_list *mclist;
2146 u32 mc_filter[NUM_MC_HASH_REGISTERS];
2147 u32 regidx;
2148 u32 bit;
2149 u32 crc;
2150
2151 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
2152
2153 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2154 i++, mclist = mclist->next) {
2155
2156 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
2157 bit = crc & 0xff;
2158 regidx = (bit & 0xe0) >> 5;
2159 bit &= 0x1f;
2160 mc_filter[regidx] |= (1 << bit);
2161 }
2162
2163 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2164 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2165 mc_filter[i]);
2166 }
2167
2168 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
2169 }
2170
2171 if (rx_mode != bp->rx_mode) {
2172 bp->rx_mode = rx_mode;
2173 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
2174 }
2175
2176 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
2177 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
2178 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
2179
2180 spin_unlock_bh(&bp->phy_lock);
2181 }
2182
2183 #define FW_BUF_SIZE 0x8000
2184
2185 static int
2186 bnx2_gunzip_init(struct bnx2 *bp)
2187 {
2188 if ((bp->gunzip_buf = vmalloc(FW_BUF_SIZE)) == NULL)
2189 goto gunzip_nomem1;
2190
2191 if ((bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL)) == NULL)
2192 goto gunzip_nomem2;
2193
2194 bp->strm->workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
2195 if (bp->strm->workspace == NULL)
2196 goto gunzip_nomem3;
2197
2198 return 0;
2199
2200 gunzip_nomem3:
2201 kfree(bp->strm);
2202 bp->strm = NULL;
2203
2204 gunzip_nomem2:
2205 vfree(bp->gunzip_buf);
2206 bp->gunzip_buf = NULL;
2207
2208 gunzip_nomem1:
2209 printk(KERN_ERR PFX "%s: Cannot allocate firmware buffer for "
2210 "uncompression.\n", bp->dev->name);
2211 return -ENOMEM;
2212 }
2213
2214 static void
2215 bnx2_gunzip_end(struct bnx2 *bp)
2216 {
2217 kfree(bp->strm->workspace);
2218
2219 kfree(bp->strm);
2220 bp->strm = NULL;
2221
2222 if (bp->gunzip_buf) {
2223 vfree(bp->gunzip_buf);
2224 bp->gunzip_buf = NULL;
2225 }
2226 }
2227
2228 static int
2229 bnx2_gunzip(struct bnx2 *bp, u8 *zbuf, int len, void **outbuf, int *outlen)
2230 {
2231 int n, rc;
2232
2233 /* check gzip header */
2234 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED))
2235 return -EINVAL;
2236
2237 n = 10;
2238
2239 #define FNAME 0x8
2240 if (zbuf[3] & FNAME)
2241 while ((zbuf[n++] != 0) && (n < len));
2242
2243 bp->strm->next_in = zbuf + n;
2244 bp->strm->avail_in = len - n;
2245 bp->strm->next_out = bp->gunzip_buf;
2246 bp->strm->avail_out = FW_BUF_SIZE;
2247
2248 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
2249 if (rc != Z_OK)
2250 return rc;
2251
2252 rc = zlib_inflate(bp->strm, Z_FINISH);
2253
2254 *outlen = FW_BUF_SIZE - bp->strm->avail_out;
2255 *outbuf = bp->gunzip_buf;
2256
2257 if ((rc != Z_OK) && (rc != Z_STREAM_END))
2258 printk(KERN_ERR PFX "%s: Firmware decompression error: %s\n",
2259 bp->dev->name, bp->strm->msg);
2260
2261 zlib_inflateEnd(bp->strm);
2262
2263 if (rc == Z_STREAM_END)
2264 return 0;
2265
2266 return rc;
2267 }
2268
2269 static void
2270 load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
2271 u32 rv2p_proc)
2272 {
2273 int i;
2274 u32 val;
2275
2276
2277 for (i = 0; i < rv2p_code_len; i += 8) {
2278 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, cpu_to_le32(*rv2p_code));
2279 rv2p_code++;
2280 REG_WR(bp, BNX2_RV2P_INSTR_LOW, cpu_to_le32(*rv2p_code));
2281 rv2p_code++;
2282
2283 if (rv2p_proc == RV2P_PROC1) {
2284 val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
2285 REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
2286 }
2287 else {
2288 val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
2289 REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
2290 }
2291 }
2292
2293 /* Reset the processor, un-stall is done later. */
2294 if (rv2p_proc == RV2P_PROC1) {
2295 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
2296 }
2297 else {
2298 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
2299 }
2300 }
2301
2302 static int
2303 load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
2304 {
2305 u32 offset;
2306 u32 val;
2307 int rc;
2308
2309 /* Halt the CPU. */
2310 val = REG_RD_IND(bp, cpu_reg->mode);
2311 val |= cpu_reg->mode_value_halt;
2312 REG_WR_IND(bp, cpu_reg->mode, val);
2313 REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
2314
2315 /* Load the Text area. */
2316 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2317 if (fw->gz_text) {
2318 u32 text_len;
2319 void *text;
2320
2321 rc = bnx2_gunzip(bp, fw->gz_text, fw->gz_text_len, &text,
2322 &text_len);
2323 if (rc)
2324 return rc;
2325
2326 fw->text = text;
2327 }
2328 if (fw->gz_text) {
2329 int j;
2330
2331 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
2332 REG_WR_IND(bp, offset, cpu_to_le32(fw->text[j]));
2333 }
2334 }
2335
2336 /* Load the Data area. */
2337 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2338 if (fw->data) {
2339 int j;
2340
2341 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
2342 REG_WR_IND(bp, offset, fw->data[j]);
2343 }
2344 }
2345
2346 /* Load the SBSS area. */
2347 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2348 if (fw->sbss) {
2349 int j;
2350
2351 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
2352 REG_WR_IND(bp, offset, fw->sbss[j]);
2353 }
2354 }
2355
2356 /* Load the BSS area. */
2357 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2358 if (fw->bss) {
2359 int j;
2360
2361 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
2362 REG_WR_IND(bp, offset, fw->bss[j]);
2363 }
2364 }
2365
2366 /* Load the Read-Only area. */
2367 offset = cpu_reg->spad_base +
2368 (fw->rodata_addr - cpu_reg->mips_view_base);
2369 if (fw->rodata) {
2370 int j;
2371
2372 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
2373 REG_WR_IND(bp, offset, fw->rodata[j]);
2374 }
2375 }
2376
2377 /* Clear the pre-fetch instruction. */
2378 REG_WR_IND(bp, cpu_reg->inst, 0);
2379 REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
2380
2381 /* Start the CPU. */
2382 val = REG_RD_IND(bp, cpu_reg->mode);
2383 val &= ~cpu_reg->mode_value_halt;
2384 REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
2385 REG_WR_IND(bp, cpu_reg->mode, val);
2386
2387 return 0;
2388 }
2389
2390 static int
2391 bnx2_init_cpus(struct bnx2 *bp)
2392 {
2393 struct cpu_reg cpu_reg;
2394 struct fw_info *fw;
2395 int rc = 0;
2396 void *text;
2397 u32 text_len;
2398
2399 if ((rc = bnx2_gunzip_init(bp)) != 0)
2400 return rc;
2401
2402 /* Initialize the RV2P processor. */
2403 rc = bnx2_gunzip(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), &text,
2404 &text_len);
2405 if (rc)
2406 goto init_cpu_err;
2407
2408 load_rv2p_fw(bp, text, text_len, RV2P_PROC1);
2409
2410 rc = bnx2_gunzip(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), &text,
2411 &text_len);
2412 if (rc)
2413 goto init_cpu_err;
2414
2415 load_rv2p_fw(bp, text, text_len, RV2P_PROC2);
2416
2417 /* Initialize the RX Processor. */
2418 cpu_reg.mode = BNX2_RXP_CPU_MODE;
2419 cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
2420 cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
2421 cpu_reg.state = BNX2_RXP_CPU_STATE;
2422 cpu_reg.state_value_clear = 0xffffff;
2423 cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
2424 cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
2425 cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
2426 cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
2427 cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
2428 cpu_reg.spad_base = BNX2_RXP_SCRATCH;
2429 cpu_reg.mips_view_base = 0x8000000;
2430
2431 if (CHIP_NUM(bp) == CHIP_NUM_5709)
2432 fw = &bnx2_rxp_fw_09;
2433 else
2434 fw = &bnx2_rxp_fw_06;
2435
2436 rc = load_cpu_fw(bp, &cpu_reg, fw);
2437 if (rc)
2438 goto init_cpu_err;
2439
2440 /* Initialize the TX Processor. */
2441 cpu_reg.mode = BNX2_TXP_CPU_MODE;
2442 cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
2443 cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
2444 cpu_reg.state = BNX2_TXP_CPU_STATE;
2445 cpu_reg.state_value_clear = 0xffffff;
2446 cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
2447 cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
2448 cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
2449 cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
2450 cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
2451 cpu_reg.spad_base = BNX2_TXP_SCRATCH;
2452 cpu_reg.mips_view_base = 0x8000000;
2453
2454 if (CHIP_NUM(bp) == CHIP_NUM_5709)
2455 fw = &bnx2_txp_fw_09;
2456 else
2457 fw = &bnx2_txp_fw_06;
2458
2459 rc = load_cpu_fw(bp, &cpu_reg, fw);
2460 if (rc)
2461 goto init_cpu_err;
2462
2463 /* Initialize the TX Patch-up Processor. */
2464 cpu_reg.mode = BNX2_TPAT_CPU_MODE;
2465 cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
2466 cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
2467 cpu_reg.state = BNX2_TPAT_CPU_STATE;
2468 cpu_reg.state_value_clear = 0xffffff;
2469 cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
2470 cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
2471 cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
2472 cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
2473 cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
2474 cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
2475 cpu_reg.mips_view_base = 0x8000000;
2476
2477 if (CHIP_NUM(bp) == CHIP_NUM_5709)
2478 fw = &bnx2_tpat_fw_09;
2479 else
2480 fw = &bnx2_tpat_fw_06;
2481
2482 rc = load_cpu_fw(bp, &cpu_reg, fw);
2483 if (rc)
2484 goto init_cpu_err;
2485
2486 /* Initialize the Completion Processor. */
2487 cpu_reg.mode = BNX2_COM_CPU_MODE;
2488 cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
2489 cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
2490 cpu_reg.state = BNX2_COM_CPU_STATE;
2491 cpu_reg.state_value_clear = 0xffffff;
2492 cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
2493 cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
2494 cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
2495 cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
2496 cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
2497 cpu_reg.spad_base = BNX2_COM_SCRATCH;
2498 cpu_reg.mips_view_base = 0x8000000;
2499
2500 if (CHIP_NUM(bp) == CHIP_NUM_5709)
2501 fw = &bnx2_com_fw_09;
2502 else
2503 fw = &bnx2_com_fw_06;
2504
2505 rc = load_cpu_fw(bp, &cpu_reg, fw);
2506 if (rc)
2507 goto init_cpu_err;
2508
2509 /* Initialize the Command Processor. */
2510 cpu_reg.mode = BNX2_CP_CPU_MODE;
2511 cpu_reg.mode_value_halt = BNX2_CP_CPU_MODE_SOFT_HALT;
2512 cpu_reg.mode_value_sstep = BNX2_CP_CPU_MODE_STEP_ENA;
2513 cpu_reg.state = BNX2_CP_CPU_STATE;
2514 cpu_reg.state_value_clear = 0xffffff;
2515 cpu_reg.gpr0 = BNX2_CP_CPU_REG_FILE;
2516 cpu_reg.evmask = BNX2_CP_CPU_EVENT_MASK;
2517 cpu_reg.pc = BNX2_CP_CPU_PROGRAM_COUNTER;
2518 cpu_reg.inst = BNX2_CP_CPU_INSTRUCTION;
2519 cpu_reg.bp = BNX2_CP_CPU_HW_BREAKPOINT;
2520 cpu_reg.spad_base = BNX2_CP_SCRATCH;
2521 cpu_reg.mips_view_base = 0x8000000;
2522
2523 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
2524 fw = &bnx2_cp_fw_09;
2525
2526 rc = load_cpu_fw(bp, &cpu_reg, fw);
2527 if (rc)
2528 goto init_cpu_err;
2529 }
2530 init_cpu_err:
2531 bnx2_gunzip_end(bp);
2532 return rc;
2533 }
2534
2535 static int
2536 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
2537 {
2538 u16 pmcsr;
2539
2540 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
2541
2542 switch (state) {
2543 case PCI_D0: {
2544 u32 val;
2545
2546 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2547 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
2548 PCI_PM_CTRL_PME_STATUS);
2549
2550 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
2551 /* delay required during transition out of D3hot */
2552 msleep(20);
2553
2554 val = REG_RD(bp, BNX2_EMAC_MODE);
2555 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
2556 val &= ~BNX2_EMAC_MODE_MPKT;
2557 REG_WR(bp, BNX2_EMAC_MODE, val);
2558
2559 val = REG_RD(bp, BNX2_RPM_CONFIG);
2560 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
2561 REG_WR(bp, BNX2_RPM_CONFIG, val);
2562 break;
2563 }
2564 case PCI_D3hot: {
2565 int i;
2566 u32 val, wol_msg;
2567
2568 if (bp->wol) {
2569 u32 advertising;
2570 u8 autoneg;
2571
2572 autoneg = bp->autoneg;
2573 advertising = bp->advertising;
2574
2575 bp->autoneg = AUTONEG_SPEED;
2576 bp->advertising = ADVERTISED_10baseT_Half |
2577 ADVERTISED_10baseT_Full |
2578 ADVERTISED_100baseT_Half |
2579 ADVERTISED_100baseT_Full |
2580 ADVERTISED_Autoneg;
2581
2582 bnx2_setup_copper_phy(bp);
2583
2584 bp->autoneg = autoneg;
2585 bp->advertising = advertising;
2586
2587 bnx2_set_mac_addr(bp);
2588
2589 val = REG_RD(bp, BNX2_EMAC_MODE);
2590
2591 /* Enable port mode. */
2592 val &= ~BNX2_EMAC_MODE_PORT;
2593 val |= BNX2_EMAC_MODE_PORT_MII |
2594 BNX2_EMAC_MODE_MPKT_RCVD |
2595 BNX2_EMAC_MODE_ACPI_RCVD |
2596 BNX2_EMAC_MODE_MPKT;
2597
2598 REG_WR(bp, BNX2_EMAC_MODE, val);
2599
2600 /* receive all multicast */
2601 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2602 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2603 0xffffffff);
2604 }
2605 REG_WR(bp, BNX2_EMAC_RX_MODE,
2606 BNX2_EMAC_RX_MODE_SORT_MODE);
2607
2608 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
2609 BNX2_RPM_SORT_USER0_MC_EN;
2610 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
2611 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
2612 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
2613 BNX2_RPM_SORT_USER0_ENA);
2614
2615 /* Need to enable EMAC and RPM for WOL. */
2616 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2617 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
2618 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
2619 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
2620
2621 val = REG_RD(bp, BNX2_RPM_CONFIG);
2622 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
2623 REG_WR(bp, BNX2_RPM_CONFIG, val);
2624
2625 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
2626 }
2627 else {
2628 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
2629 }
2630
2631 if (!(bp->flags & NO_WOL_FLAG))
2632 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
2633
2634 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2635 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
2636 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
2637
2638 if (bp->wol)
2639 pmcsr |= 3;
2640 }
2641 else {
2642 pmcsr |= 3;
2643 }
2644 if (bp->wol) {
2645 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2646 }
2647 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2648 pmcsr);
2649
2650 /* No more memory access after this point until
2651 * device is brought back to D0.
2652 */
2653 udelay(50);
2654 break;
2655 }
2656 default:
2657 return -EINVAL;
2658 }
2659 return 0;
2660 }
2661
2662 static int
2663 bnx2_acquire_nvram_lock(struct bnx2 *bp)
2664 {
2665 u32 val;
2666 int j;
2667
2668 /* Request access to the flash interface. */
2669 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
2670 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2671 val = REG_RD(bp, BNX2_NVM_SW_ARB);
2672 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
2673 break;
2674
2675 udelay(5);
2676 }
2677
2678 if (j >= NVRAM_TIMEOUT_COUNT)
2679 return -EBUSY;
2680
2681 return 0;
2682 }
2683
2684 static int
2685 bnx2_release_nvram_lock(struct bnx2 *bp)
2686 {
2687 int j;
2688 u32 val;
2689
2690 /* Relinquish nvram interface. */
2691 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
2692
2693 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2694 val = REG_RD(bp, BNX2_NVM_SW_ARB);
2695 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
2696 break;
2697
2698 udelay(5);
2699 }
2700
2701 if (j >= NVRAM_TIMEOUT_COUNT)
2702 return -EBUSY;
2703
2704 return 0;
2705 }
2706
2707
2708 static int
2709 bnx2_enable_nvram_write(struct bnx2 *bp)
2710 {
2711 u32 val;
2712
2713 val = REG_RD(bp, BNX2_MISC_CFG);
2714 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
2715
2716 if (!bp->flash_info->buffered) {
2717 int j;
2718
2719 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2720 REG_WR(bp, BNX2_NVM_COMMAND,
2721 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
2722
2723 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2724 udelay(5);
2725
2726 val = REG_RD(bp, BNX2_NVM_COMMAND);
2727 if (val & BNX2_NVM_COMMAND_DONE)
2728 break;
2729 }
2730
2731 if (j >= NVRAM_TIMEOUT_COUNT)
2732 return -EBUSY;
2733 }
2734 return 0;
2735 }
2736
2737 static void
2738 bnx2_disable_nvram_write(struct bnx2 *bp)
2739 {
2740 u32 val;
2741
2742 val = REG_RD(bp, BNX2_MISC_CFG);
2743 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
2744 }
2745
2746
2747 static void
2748 bnx2_enable_nvram_access(struct bnx2 *bp)
2749 {
2750 u32 val;
2751
2752 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
2753 /* Enable both bits, even on read. */
2754 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
2755 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
2756 }
2757
2758 static void
2759 bnx2_disable_nvram_access(struct bnx2 *bp)
2760 {
2761 u32 val;
2762
2763 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
2764 /* Disable both bits, even after read. */
2765 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
2766 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
2767 BNX2_NVM_ACCESS_ENABLE_WR_EN));
2768 }
2769
2770 static int
2771 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
2772 {
2773 u32 cmd;
2774 int j;
2775
2776 if (bp->flash_info->buffered)
2777 /* Buffered flash, no erase needed */
2778 return 0;
2779
2780 /* Build an erase command */
2781 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
2782 BNX2_NVM_COMMAND_DOIT;
2783
2784 /* Need to clear DONE bit separately. */
2785 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2786
2787 /* Address of the NVRAM to read from. */
2788 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
2789
2790 /* Issue an erase command. */
2791 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
2792
2793 /* Wait for completion. */
2794 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2795 u32 val;
2796
2797 udelay(5);
2798
2799 val = REG_RD(bp, BNX2_NVM_COMMAND);
2800 if (val & BNX2_NVM_COMMAND_DONE)
2801 break;
2802 }
2803
2804 if (j >= NVRAM_TIMEOUT_COUNT)
2805 return -EBUSY;
2806
2807 return 0;
2808 }
2809
2810 static int
2811 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
2812 {
2813 u32 cmd;
2814 int j;
2815
2816 /* Build the command word. */
2817 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
2818
2819 /* Calculate an offset of a buffered flash. */
2820 if (bp->flash_info->buffered) {
2821 offset = ((offset / bp->flash_info->page_size) <<
2822 bp->flash_info->page_bits) +
2823 (offset % bp->flash_info->page_size);
2824 }
2825
2826 /* Need to clear DONE bit separately. */
2827 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2828
2829 /* Address of the NVRAM to read from. */
2830 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
2831
2832 /* Issue a read command. */
2833 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
2834
2835 /* Wait for completion. */
2836 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2837 u32 val;
2838
2839 udelay(5);
2840
2841 val = REG_RD(bp, BNX2_NVM_COMMAND);
2842 if (val & BNX2_NVM_COMMAND_DONE) {
2843 val = REG_RD(bp, BNX2_NVM_READ);
2844
2845 val = be32_to_cpu(val);
2846 memcpy(ret_val, &val, 4);
2847 break;
2848 }
2849 }
2850 if (j >= NVRAM_TIMEOUT_COUNT)
2851 return -EBUSY;
2852
2853 return 0;
2854 }
2855
2856
2857 static int
2858 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
2859 {
2860 u32 cmd, val32;
2861 int j;
2862
2863 /* Build the command word. */
2864 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
2865
2866 /* Calculate an offset of a buffered flash. */
2867 if (bp->flash_info->buffered) {
2868 offset = ((offset / bp->flash_info->page_size) <<
2869 bp->flash_info->page_bits) +
2870 (offset % bp->flash_info->page_size);
2871 }
2872
2873 /* Need to clear DONE bit separately. */
2874 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2875
2876 memcpy(&val32, val, 4);
2877 val32 = cpu_to_be32(val32);
2878
2879 /* Write the data. */
2880 REG_WR(bp, BNX2_NVM_WRITE, val32);
2881
2882 /* Address of the NVRAM to write to. */
2883 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
2884
2885 /* Issue the write command. */
2886 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
2887
2888 /* Wait for completion. */
2889 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2890 udelay(5);
2891
2892 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
2893 break;
2894 }
2895 if (j >= NVRAM_TIMEOUT_COUNT)
2896 return -EBUSY;
2897
2898 return 0;
2899 }
2900
2901 static int
2902 bnx2_init_nvram(struct bnx2 *bp)
2903 {
2904 u32 val;
2905 int j, entry_count, rc;
2906 struct flash_spec *flash;
2907
2908 /* Determine the selected interface. */
2909 val = REG_RD(bp, BNX2_NVM_CFG1);
2910
2911 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2912
2913 rc = 0;
2914 if (val & 0x40000000) {
2915
2916 /* Flash interface has been reconfigured */
2917 for (j = 0, flash = &flash_table[0]; j < entry_count;
2918 j++, flash++) {
2919 if ((val & FLASH_BACKUP_STRAP_MASK) ==
2920 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2921 bp->flash_info = flash;
2922 break;
2923 }
2924 }
2925 }
2926 else {
2927 u32 mask;
2928 /* Not yet been reconfigured */
2929
2930 if (val & (1 << 23))
2931 mask = FLASH_BACKUP_STRAP_MASK;
2932 else
2933 mask = FLASH_STRAP_MASK;
2934
2935 for (j = 0, flash = &flash_table[0]; j < entry_count;
2936 j++, flash++) {
2937
2938 if ((val & mask) == (flash->strapping & mask)) {
2939 bp->flash_info = flash;
2940
2941 /* Request access to the flash interface. */
2942 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
2943 return rc;
2944
2945 /* Enable access to flash interface */
2946 bnx2_enable_nvram_access(bp);
2947
2948 /* Reconfigure the flash interface */
2949 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
2950 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
2951 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
2952 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
2953
2954 /* Disable access to flash interface */
2955 bnx2_disable_nvram_access(bp);
2956 bnx2_release_nvram_lock(bp);
2957
2958 break;
2959 }
2960 }
2961 } /* if (val & 0x40000000) */
2962
2963 if (j == entry_count) {
2964 bp->flash_info = NULL;
2965 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
2966 return -ENODEV;
2967 }
2968
2969 val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
2970 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
2971 if (val)
2972 bp->flash_size = val;
2973 else
2974 bp->flash_size = bp->flash_info->total_size;
2975
2976 return rc;
2977 }
2978
2979 static int
2980 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
2981 int buf_size)
2982 {
2983 int rc = 0;
2984 u32 cmd_flags, offset32, len32, extra;
2985
2986 if (buf_size == 0)
2987 return 0;
2988
2989 /* Request access to the flash interface. */
2990 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
2991 return rc;
2992
2993 /* Enable access to flash interface */
2994 bnx2_enable_nvram_access(bp);
2995
2996 len32 = buf_size;
2997 offset32 = offset;
2998 extra = 0;
2999
3000 cmd_flags = 0;
3001
3002 if (offset32 & 3) {
3003 u8 buf[4];
3004 u32 pre_len;
3005
3006 offset32 &= ~3;
3007 pre_len = 4 - (offset & 3);
3008
3009 if (pre_len >= len32) {
3010 pre_len = len32;
3011 cmd_flags = BNX2_NVM_COMMAND_FIRST |
3012 BNX2_NVM_COMMAND_LAST;
3013 }
3014 else {
3015 cmd_flags = BNX2_NVM_COMMAND_FIRST;
3016 }
3017
3018 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
3019
3020 if (rc)
3021 return rc;
3022
3023 memcpy(ret_buf, buf + (offset & 3), pre_len);
3024
3025 offset32 += 4;
3026 ret_buf += pre_len;
3027 len32 -= pre_len;
3028 }
3029 if (len32 & 3) {
3030 extra = 4 - (len32 & 3);
3031 len32 = (len32 + 4) & ~3;
3032 }
3033
3034 if (len32 == 4) {
3035 u8 buf[4];
3036
3037 if (cmd_flags)
3038 cmd_flags = BNX2_NVM_COMMAND_LAST;
3039 else
3040 cmd_flags = BNX2_NVM_COMMAND_FIRST |
3041 BNX2_NVM_COMMAND_LAST;
3042
3043 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
3044
3045 memcpy(ret_buf, buf, 4 - extra);
3046 }
3047 else if (len32 > 0) {
3048 u8 buf[4];
3049
3050 /* Read the first word. */
3051 if (cmd_flags)
3052 cmd_flags = 0;
3053 else
3054 cmd_flags = BNX2_NVM_COMMAND_FIRST;
3055
3056 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
3057
3058 /* Advance to the next dword. */
3059 offset32 += 4;
3060 ret_buf += 4;
3061 len32 -= 4;
3062
3063 while (len32 > 4 && rc == 0) {
3064 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
3065
3066 /* Advance to the next dword. */
3067 offset32 += 4;
3068 ret_buf += 4;
3069 len32 -= 4;
3070 }
3071
3072 if (rc)
3073 return rc;
3074
3075 cmd_flags = BNX2_NVM_COMMAND_LAST;
3076 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
3077
3078 memcpy(ret_buf, buf, 4 - extra);
3079 }
3080
3081 /* Disable access to flash interface */
3082 bnx2_disable_nvram_access(bp);
3083
3084 bnx2_release_nvram_lock(bp);
3085
3086 return rc;
3087 }
3088
3089 static int
3090 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
3091 int buf_size)
3092 {
3093 u32 written, offset32, len32;
3094 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
3095 int rc = 0;
3096 int align_start, align_end;
3097
3098 buf = data_buf;
3099 offset32 = offset;
3100 len32 = buf_size;
3101 align_start = align_end = 0;
3102
3103 if ((align_start = (offset32 & 3))) {
3104 offset32 &= ~3;
3105 len32 += (4 - align_start);
3106 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
3107 return rc;
3108 }
3109
3110 if (len32 & 3) {
3111 if ((len32 > 4) || !align_start) {
3112 align_end = 4 - (len32 & 3);
3113 len32 += align_end;
3114 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4,
3115 end, 4))) {
3116 return rc;
3117 }
3118 }
3119 }
3120
3121 if (align_start || align_end) {
3122 align_buf = kmalloc(len32, GFP_KERNEL);
3123 if (align_buf == NULL)
3124 return -ENOMEM;
3125 if (align_start) {
3126 memcpy(align_buf, start, 4);
3127 }
3128 if (align_end) {
3129 memcpy(align_buf + len32 - 4, end, 4);
3130 }
3131 memcpy(align_buf + align_start, data_buf, buf_size);
3132 buf = align_buf;
3133 }
3134
3135 if (bp->flash_info->buffered == 0) {
3136 flash_buffer = kmalloc(264, GFP_KERNEL);
3137 if (flash_buffer == NULL) {
3138 rc = -ENOMEM;
3139 goto nvram_write_end;
3140 }
3141 }
3142
3143 written = 0;
3144 while ((written < len32) && (rc == 0)) {
3145 u32 page_start, page_end, data_start, data_end;
3146 u32 addr, cmd_flags;
3147 int i;
3148
3149 /* Find the page_start addr */
3150 page_start = offset32 + written;
3151 page_start -= (page_start % bp->flash_info->page_size);
3152 /* Find the page_end addr */
3153 page_end = page_start + bp->flash_info->page_size;
3154 /* Find the data_start addr */
3155 data_start = (written == 0) ? offset32 : page_start;
3156 /* Find the data_end addr */
3157 data_end = (page_end > offset32 + len32) ?
3158 (offset32 + len32) : page_end;
3159
3160 /* Request access to the flash interface. */
3161 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
3162 goto nvram_write_end;
3163
3164 /* Enable access to flash interface */
3165 bnx2_enable_nvram_access(bp);
3166
3167 cmd_flags = BNX2_NVM_COMMAND_FIRST;
3168 if (bp->flash_info->buffered == 0) {
3169 int j;
3170
3171 /* Read the whole page into the buffer
3172 * (non-buffer flash only) */
3173 for (j = 0; j < bp->flash_info->page_size; j += 4) {
3174 if (j == (bp->flash_info->page_size - 4)) {
3175 cmd_flags |= BNX2_NVM_COMMAND_LAST;
3176 }
3177 rc = bnx2_nvram_read_dword(bp,
3178 page_start + j,
3179 &flash_buffer[j],
3180 cmd_flags);
3181
3182 if (rc)
3183 goto nvram_write_end;
3184
3185 cmd_flags = 0;
3186 }
3187 }
3188
3189 /* Enable writes to flash interface (unlock write-protect) */
3190 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
3191 goto nvram_write_end;
3192
3193 /* Erase the page */
3194 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
3195 goto nvram_write_end;
3196
3197 /* Re-enable the write again for the actual write */
3198 bnx2_enable_nvram_write(bp);
3199
3200 /* Loop to write back the buffer data from page_start to
3201 * data_start */
3202 i = 0;
3203 if (bp->flash_info->buffered == 0) {
3204 for (addr = page_start; addr < data_start;
3205 addr += 4, i += 4) {
3206
3207 rc = bnx2_nvram_write_dword(bp, addr,
3208 &flash_buffer[i], cmd_flags);
3209
3210 if (rc != 0)
3211 goto nvram_write_end;
3212
3213 cmd_flags = 0;
3214 }
3215 }
3216
3217 /* Loop to write the new data from data_start to data_end */
3218 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
3219 if ((addr == page_end - 4) ||
3220 ((bp->flash_info->buffered) &&
3221 (addr == data_end - 4))) {
3222
3223 cmd_flags |= BNX2_NVM_COMMAND_LAST;
3224 }
3225 rc = bnx2_nvram_write_dword(bp, addr, buf,
3226 cmd_flags);
3227
3228 if (rc != 0)
3229 goto nvram_write_end;
3230
3231 cmd_flags = 0;
3232 buf += 4;
3233 }
3234
3235 /* Loop to write back the buffer data from data_end
3236 * to page_end */
3237 if (bp->flash_info->buffered == 0) {
3238 for (addr = data_end; addr < page_end;
3239 addr += 4, i += 4) {
3240
3241 if (addr == page_end-4) {
3242 cmd_flags = BNX2_NVM_COMMAND_LAST;
3243 }
3244 rc = bnx2_nvram_write_dword(bp, addr,
3245 &flash_buffer[i], cmd_flags);
3246
3247 if (rc != 0)
3248 goto nvram_write_end;
3249
3250 cmd_flags = 0;
3251 }
3252 }
3253
3254 /* Disable writes to flash interface (lock write-protect) */
3255 bnx2_disable_nvram_write(bp);
3256
3257 /* Disable access to flash interface */
3258 bnx2_disable_nvram_access(bp);
3259 bnx2_release_nvram_lock(bp);
3260
3261 /* Increment written */
3262 written += data_end - data_start;
3263 }
3264
3265 nvram_write_end:
3266 kfree(flash_buffer);
3267 kfree(align_buf);
3268 return rc;
3269 }
3270
3271 static int
3272 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
3273 {
3274 u32 val;
3275 int i, rc = 0;
3276
3277 /* Wait for the current PCI transaction to complete before
3278 * issuing a reset. */
3279 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
3280 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3281 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3282 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3283 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3284 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
3285 udelay(5);
3286
3287 /* Wait for the firmware to tell us it is ok to issue a reset. */
3288 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
3289
3290 /* Deposit a driver reset signature so the firmware knows that
3291 * this is a soft reset. */
3292 REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
3293 BNX2_DRV_RESET_SIGNATURE_MAGIC);
3294
3295 /* Do a dummy read to force the chip to complete all current transaction
3296 * before we issue a reset. */
3297 val = REG_RD(bp, BNX2_MISC_ID);
3298
3299 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3300 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
3301 REG_RD(bp, BNX2_MISC_COMMAND);
3302 udelay(5);
3303
3304 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3305 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3306
3307 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
3308
3309 } else {
3310 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3311 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3312 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3313
3314 /* Chip reset. */
3315 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
3316
3317 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3318 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3319 current->state = TASK_UNINTERRUPTIBLE;
3320 schedule_timeout(HZ / 50);
3321 }
3322
3323 /* Reset takes approximate 30 usec */
3324 for (i = 0; i < 10; i++) {
3325 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
3326 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3327 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
3328 break;
3329 udelay(10);
3330 }
3331
3332 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3333 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3334 printk(KERN_ERR PFX "Chip reset did not complete\n");
3335 return -EBUSY;
3336 }
3337 }
3338
3339 /* Make sure byte swapping is properly configured. */
3340 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
3341 if (val != 0x01020304) {
3342 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
3343 return -ENODEV;
3344 }
3345
3346 /* Wait for the firmware to finish its initialization. */
3347 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
3348 if (rc)
3349 return rc;
3350
3351 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
3352 /* Adjust the voltage regular to two steps lower. The default
3353 * of this register is 0x0000000e. */
3354 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
3355
3356 /* Remove bad rbuf memory from the free pool. */
3357 rc = bnx2_alloc_bad_rbuf(bp);
3358 }
3359
3360 return rc;
3361 }
3362
3363 static int
3364 bnx2_init_chip(struct bnx2 *bp)
3365 {
3366 u32 val;
3367 int rc;
3368
3369 /* Make sure the interrupt is not active. */
3370 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3371
3372 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
3373 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
3374 #ifdef __BIG_ENDIAN
3375 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
3376 #endif
3377 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
3378 DMA_READ_CHANS << 12 |
3379 DMA_WRITE_CHANS << 16;
3380
3381 val |= (0x2 << 20) | (1 << 11);
3382
3383 if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
3384 val |= (1 << 23);
3385
3386 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
3387 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
3388 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
3389
3390 REG_WR(bp, BNX2_DMA_CONFIG, val);
3391
3392 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
3393 val = REG_RD(bp, BNX2_TDMA_CONFIG);
3394 val |= BNX2_TDMA_CONFIG_ONE_DMA;
3395 REG_WR(bp, BNX2_TDMA_CONFIG, val);
3396 }
3397
3398 if (bp->flags & PCIX_FLAG) {
3399 u16 val16;
3400
3401 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
3402 &val16);
3403 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
3404 val16 & ~PCI_X_CMD_ERO);
3405 }
3406
3407 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3408 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3409 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3410 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3411
3412 /* Initialize context mapping and zero out the quick contexts. The
3413 * context block must have already been enabled. */
3414 if (CHIP_NUM(bp) == CHIP_NUM_5709)
3415 bnx2_init_5709_context(bp);
3416 else
3417 bnx2_init_context(bp);
3418
3419 if ((rc = bnx2_init_cpus(bp)) != 0)
3420 return rc;
3421
3422 bnx2_init_nvram(bp);
3423
3424 bnx2_set_mac_addr(bp);
3425
3426 val = REG_RD(bp, BNX2_MQ_CONFIG);
3427 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3428 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3429 REG_WR(bp, BNX2_MQ_CONFIG, val);
3430
3431 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3432 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
3433 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
3434
3435 val = (BCM_PAGE_BITS - 8) << 24;
3436 REG_WR(bp, BNX2_RV2P_CONFIG, val);
3437
3438 /* Configure page size. */
3439 val = REG_RD(bp, BNX2_TBDR_CONFIG);
3440 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
3441 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3442 REG_WR(bp, BNX2_TBDR_CONFIG, val);
3443
3444 val = bp->mac_addr[0] +
3445 (bp->mac_addr[1] << 8) +
3446 (bp->mac_addr[2] << 16) +
3447 bp->mac_addr[3] +
3448 (bp->mac_addr[4] << 8) +
3449 (bp->mac_addr[5] << 16);
3450 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
3451
3452 /* Program the MTU. Also include 4 bytes for CRC32. */
3453 val = bp->dev->mtu + ETH_HLEN + 4;
3454 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
3455 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
3456 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
3457
3458 bp->last_status_idx = 0;
3459 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
3460
3461 /* Set up how to generate a link change interrupt. */
3462 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
3463
3464 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
3465 (u64) bp->status_blk_mapping & 0xffffffff);
3466 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
3467
3468 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
3469 (u64) bp->stats_blk_mapping & 0xffffffff);
3470 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
3471 (u64) bp->stats_blk_mapping >> 32);
3472
3473 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
3474 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
3475
3476 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
3477 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
3478
3479 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
3480 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
3481
3482 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
3483
3484 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
3485
3486 REG_WR(bp, BNX2_HC_COM_TICKS,
3487 (bp->com_ticks_int << 16) | bp->com_ticks);
3488
3489 REG_WR(bp, BNX2_HC_CMD_TICKS,
3490 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
3491
3492 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00);
3493 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3494
3495 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
3496 REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS);
3497 else {
3498 REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE |
3499 BNX2_HC_CONFIG_TX_TMR_MODE |
3500 BNX2_HC_CONFIG_COLLECT_STATS);
3501 }
3502
3503 /* Clear internal stats counters. */
3504 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
3505
3506 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3507
3508 if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) &
3509 BNX2_PORT_FEATURE_ASF_ENABLED)
3510 bp->flags |= ASF_ENABLE_FLAG;
3511
3512 /* Initialize the receive filter. */
3513 bnx2_set_rx_mode(bp->dev);
3514
3515 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
3516 0);
3517
3518 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff);
3519 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
3520
3521 udelay(20);
3522
3523 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
3524
3525 return rc;
3526 }
3527
3528 static void
3529 bnx2_init_tx_context(struct bnx2 *bp, u32 cid)
3530 {
3531 u32 val, offset0, offset1, offset2, offset3;
3532
3533 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3534 offset0 = BNX2_L2CTX_TYPE_XI;
3535 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
3536 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
3537 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
3538 } else {
3539 offset0 = BNX2_L2CTX_TYPE;
3540 offset1 = BNX2_L2CTX_CMD_TYPE;
3541 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
3542 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
3543 }
3544 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
3545 CTX_WR(bp, GET_CID_ADDR(cid), offset0, val);
3546
3547 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3548 CTX_WR(bp, GET_CID_ADDR(cid), offset1, val);
3549
3550 val = (u64) bp->tx_desc_mapping >> 32;
3551 CTX_WR(bp, GET_CID_ADDR(cid), offset2, val);
3552
3553 val = (u64) bp->tx_desc_mapping & 0xffffffff;
3554 CTX_WR(bp, GET_CID_ADDR(cid), offset3, val);
3555 }
3556
3557 static void
3558 bnx2_init_tx_ring(struct bnx2 *bp)
3559 {
3560 struct tx_bd *txbd;
3561 u32 cid;
3562
3563 bp->tx_wake_thresh = bp->tx_ring_size / 2;
3564
3565 txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
3566
3567 txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
3568 txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
3569
3570 bp->tx_prod = 0;
3571 bp->tx_cons = 0;
3572 bp->hw_tx_cons = 0;
3573 bp->tx_prod_bseq = 0;
3574
3575 cid = TX_CID;
3576 bp->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
3577 bp->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
3578
3579 bnx2_init_tx_context(bp, cid);
3580 }
3581
3582 static void
3583 bnx2_init_rx_ring(struct bnx2 *bp)
3584 {
3585 struct rx_bd *rxbd;
3586 int i;
3587 u16 prod, ring_prod;
3588 u32 val;
3589
3590 /* 8 for CRC and VLAN */
3591 bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
3592 /* hw alignment */
3593 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
3594
3595 ring_prod = prod = bp->rx_prod = 0;
3596 bp->rx_cons = 0;
3597 bp->hw_rx_cons = 0;
3598 bp->rx_prod_bseq = 0;
3599
3600 for (i = 0; i < bp->rx_max_ring; i++) {
3601 int j;
3602
3603 rxbd = &bp->rx_desc_ring[i][0];
3604 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
3605 rxbd->rx_bd_len = bp->rx_buf_use_size;
3606 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
3607 }
3608 if (i == (bp->rx_max_ring - 1))
3609 j = 0;
3610 else
3611 j = i + 1;
3612 rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32;
3613 rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] &
3614 0xffffffff;
3615 }
3616
3617 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3618 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
3619 val |= 0x02 << 8;
3620 CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
3621
3622 val = (u64) bp->rx_desc_mapping[0] >> 32;
3623 CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
3624
3625 val = (u64) bp->rx_desc_mapping[0] & 0xffffffff;
3626 CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
3627
3628 for (i = 0; i < bp->rx_ring_size; i++) {
3629 if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
3630 break;
3631 }
3632 prod = NEXT_RX_BD(prod);
3633 ring_prod = RX_RING_IDX(prod);
3634 }
3635 bp->rx_prod = prod;
3636
3637 REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
3638
3639 REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
3640 }
3641
3642 static void
3643 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
3644 {
3645 u32 num_rings, max;
3646
3647 bp->rx_ring_size = size;
3648 num_rings = 1;
3649 while (size > MAX_RX_DESC_CNT) {
3650 size -= MAX_RX_DESC_CNT;
3651 num_rings++;
3652 }
3653 /* round to next power of 2 */
3654 max = MAX_RX_RINGS;
3655 while ((max & num_rings) == 0)
3656 max >>= 1;
3657
3658 if (num_rings != max)
3659 max <<= 1;
3660
3661 bp->rx_max_ring = max;
3662 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
3663 }
3664
3665 static void
3666 bnx2_free_tx_skbs(struct bnx2 *bp)
3667 {
3668 int i;
3669
3670 if (bp->tx_buf_ring == NULL)
3671 return;
3672
3673 for (i = 0; i < TX_DESC_CNT; ) {
3674 struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
3675 struct sk_buff *skb = tx_buf->skb;
3676 int j, last;
3677
3678 if (skb == NULL) {
3679 i++;
3680 continue;
3681 }
3682
3683 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
3684 skb_headlen(skb), PCI_DMA_TODEVICE);
3685
3686 tx_buf->skb = NULL;
3687
3688 last = skb_shinfo(skb)->nr_frags;
3689 for (j = 0; j < last; j++) {
3690 tx_buf = &bp->tx_buf_ring[i + j + 1];
3691 pci_unmap_page(bp->pdev,
3692 pci_unmap_addr(tx_buf, mapping),
3693 skb_shinfo(skb)->frags[j].size,
3694 PCI_DMA_TODEVICE);
3695 }
3696 dev_kfree_skb(skb);
3697 i += j + 1;
3698 }
3699
3700 }
3701
3702 static void
3703 bnx2_free_rx_skbs(struct bnx2 *bp)
3704 {
3705 int i;
3706
3707 if (bp->rx_buf_ring == NULL)
3708 return;
3709
3710 for (i = 0; i < bp->rx_max_ring_idx; i++) {
3711 struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
3712 struct sk_buff *skb = rx_buf->skb;
3713
3714 if (skb == NULL)
3715 continue;
3716
3717 pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
3718 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
3719
3720 rx_buf->skb = NULL;
3721
3722 dev_kfree_skb(skb);
3723 }
3724 }
3725
3726 static void
3727 bnx2_free_skbs(struct bnx2 *bp)
3728 {
3729 bnx2_free_tx_skbs(bp);
3730 bnx2_free_rx_skbs(bp);
3731 }
3732
3733 static int
3734 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
3735 {
3736 int rc;
3737
3738 rc = bnx2_reset_chip(bp, reset_code);
3739 bnx2_free_skbs(bp);
3740 if (rc)
3741 return rc;
3742
3743 if ((rc = bnx2_init_chip(bp)) != 0)
3744 return rc;
3745
3746 bnx2_init_tx_ring(bp);
3747 bnx2_init_rx_ring(bp);
3748 return 0;
3749 }
3750
3751 static int
3752 bnx2_init_nic(struct bnx2 *bp)
3753 {
3754 int rc;
3755
3756 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
3757 return rc;
3758
3759 spin_lock_bh(&bp->phy_lock);
3760 bnx2_init_phy(bp);
3761 spin_unlock_bh(&bp->phy_lock);
3762 bnx2_set_link(bp);
3763 return 0;
3764 }
3765
3766 static int
3767 bnx2_test_registers(struct bnx2 *bp)
3768 {
3769 int ret;
3770 int i;
3771 static const struct {
3772 u16 offset;
3773 u16 flags;
3774 u32 rw_mask;
3775 u32 ro_mask;
3776 } reg_tbl[] = {
3777 { 0x006c, 0, 0x00000000, 0x0000003f },
3778 { 0x0090, 0, 0xffffffff, 0x00000000 },
3779 { 0x0094, 0, 0x00000000, 0x00000000 },
3780
3781 { 0x0404, 0, 0x00003f00, 0x00000000 },
3782 { 0x0418, 0, 0x00000000, 0xffffffff },
3783 { 0x041c, 0, 0x00000000, 0xffffffff },
3784 { 0x0420, 0, 0x00000000, 0x80ffffff },
3785 { 0x0424, 0, 0x00000000, 0x00000000 },
3786 { 0x0428, 0, 0x00000000, 0x00000001 },
3787 { 0x0450, 0, 0x00000000, 0x0000ffff },
3788 { 0x0454, 0, 0x00000000, 0xffffffff },
3789 { 0x0458, 0, 0x00000000, 0xffffffff },
3790
3791 { 0x0808, 0, 0x00000000, 0xffffffff },
3792 { 0x0854, 0, 0x00000000, 0xffffffff },
3793 { 0x0868, 0, 0x00000000, 0x77777777 },
3794 { 0x086c, 0, 0x00000000, 0x77777777 },
3795 { 0x0870, 0, 0x00000000, 0x77777777 },
3796 { 0x0874, 0, 0x00000000, 0x77777777 },
3797
3798 { 0x0c00, 0, 0x00000000, 0x00000001 },
3799 { 0x0c04, 0, 0x00000000, 0x03ff0001 },
3800 { 0x0c08, 0, 0x0f0ff073, 0x00000000 },
3801
3802 { 0x1000, 0, 0x00000000, 0x00000001 },
3803 { 0x1004, 0, 0x00000000, 0x000f0001 },
3804
3805 { 0x1408, 0, 0x01c00800, 0x00000000 },
3806 { 0x149c, 0, 0x8000ffff, 0x00000000 },
3807 { 0x14a8, 0, 0x00000000, 0x000001ff },
3808 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
3809 { 0x14b0, 0, 0x00000002, 0x00000001 },
3810 { 0x14b8, 0, 0x00000000, 0x00000000 },
3811 { 0x14c0, 0, 0x00000000, 0x00000009 },
3812 { 0x14c4, 0, 0x00003fff, 0x00000000 },
3813 { 0x14cc, 0, 0x00000000, 0x00000001 },
3814 { 0x14d0, 0, 0xffffffff, 0x00000000 },
3815
3816 { 0x1800, 0, 0x00000000, 0x00000001 },
3817 { 0x1804, 0, 0x00000000, 0x00000003 },
3818
3819 { 0x2800, 0, 0x00000000, 0x00000001 },
3820 { 0x2804, 0, 0x00000000, 0x00003f01 },
3821 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
3822 { 0x2810, 0, 0xffff0000, 0x00000000 },
3823 { 0x2814, 0, 0xffff0000, 0x00000000 },
3824 { 0x2818, 0, 0xffff0000, 0x00000000 },
3825 { 0x281c, 0, 0xffff0000, 0x00000000 },
3826 { 0x2834, 0, 0xffffffff, 0x00000000 },
3827 { 0x2840, 0, 0x00000000, 0xffffffff },
3828 { 0x2844, 0, 0x00000000, 0xffffffff },
3829 { 0x2848, 0, 0xffffffff, 0x00000000 },
3830 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
3831
3832 { 0x2c00, 0, 0x00000000, 0x00000011 },
3833 { 0x2c04, 0, 0x00000000, 0x00030007 },
3834
3835 { 0x3c00, 0, 0x00000000, 0x00000001 },
3836 { 0x3c04, 0, 0x00000000, 0x00070000 },
3837 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
3838 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
3839 { 0x3c10, 0, 0xffffffff, 0x00000000 },
3840 { 0x3c14, 0, 0x00000000, 0xffffffff },
3841 { 0x3c18, 0, 0x00000000, 0xffffffff },
3842 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
3843 { 0x3c20, 0, 0xffffff00, 0x00000000 },
3844
3845 { 0x5004, 0, 0x00000000, 0x0000007f },
3846 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
3847 { 0x500c, 0, 0xf800f800, 0x07ff07ff },
3848
3849 { 0x5c00, 0, 0x00000000, 0x00000001 },
3850 { 0x5c04, 0, 0x00000000, 0x0003000f },
3851 { 0x5c08, 0, 0x00000003, 0x00000000 },
3852 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
3853 { 0x5c10, 0, 0x00000000, 0xffffffff },
3854 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
3855 { 0x5c84, 0, 0x00000000, 0x0000f333 },
3856 { 0x5c88, 0, 0x00000000, 0x00077373 },
3857 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
3858
3859 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
3860 { 0x680c, 0, 0xffffffff, 0x00000000 },
3861 { 0x6810, 0, 0xffffffff, 0x00000000 },
3862 { 0x6814, 0, 0xffffffff, 0x00000000 },
3863 { 0x6818, 0, 0xffffffff, 0x00000000 },
3864 { 0x681c, 0, 0xffffffff, 0x00000000 },
3865 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
3866 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
3867 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
3868 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
3869 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
3870 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
3871 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
3872 { 0x683c, 0, 0x0000ffff, 0x00000000 },
3873 { 0x6840, 0, 0x00000ff0, 0x00000000 },
3874 { 0x6844, 0, 0x00ffff00, 0x00000000 },
3875 { 0x684c, 0, 0xffffffff, 0x00000000 },
3876 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
3877 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
3878 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
3879 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
3880 { 0x6908, 0, 0x00000000, 0x0001ff0f },
3881 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
3882
3883 { 0xffff, 0, 0x00000000, 0x00000000 },
3884 };
3885
3886 ret = 0;
3887 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
3888 u32 offset, rw_mask, ro_mask, save_val, val;
3889
3890 offset = (u32) reg_tbl[i].offset;
3891 rw_mask = reg_tbl[i].rw_mask;
3892 ro_mask = reg_tbl[i].ro_mask;
3893
3894 save_val = readl(bp->regview + offset);
3895
3896 writel(0, bp->regview + offset);
3897
3898 val = readl(bp->regview + offset);
3899 if ((val & rw_mask) != 0) {
3900 goto reg_test_err;
3901 }
3902
3903 if ((val & ro_mask) != (save_val & ro_mask)) {
3904 goto reg_test_err;
3905 }
3906
3907 writel(0xffffffff, bp->regview + offset);
3908
3909 val = readl(bp->regview + offset);
3910 if ((val & rw_mask) != rw_mask) {
3911 goto reg_test_err;
3912 }
3913
3914 if ((val & ro_mask) != (save_val & ro_mask)) {
3915 goto reg_test_err;
3916 }
3917
3918 writel(save_val, bp->regview + offset);
3919 continue;
3920
3921 reg_test_err:
3922 writel(save_val, bp->regview + offset);
3923 ret = -ENODEV;
3924 break;
3925 }
3926 return ret;
3927 }
3928
3929 static int
3930 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
3931 {
3932 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
3933 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
3934 int i;
3935
3936 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
3937 u32 offset;
3938
3939 for (offset = 0; offset < size; offset += 4) {
3940
3941 REG_WR_IND(bp, start + offset, test_pattern[i]);
3942
3943 if (REG_RD_IND(bp, start + offset) !=
3944 test_pattern[i]) {
3945 return -ENODEV;
3946 }
3947 }
3948 }
3949 return 0;
3950 }
3951
3952 static int
3953 bnx2_test_memory(struct bnx2 *bp)
3954 {
3955 int ret = 0;
3956 int i;
3957 static const struct {
3958 u32 offset;
3959 u32 len;
3960 } mem_tbl[] = {
3961 { 0x60000, 0x4000 },
3962 { 0xa0000, 0x3000 },
3963 { 0xe0000, 0x4000 },
3964 { 0x120000, 0x4000 },
3965 { 0x1a0000, 0x4000 },
3966 { 0x160000, 0x4000 },
3967 { 0xffffffff, 0 },
3968 };
3969
3970 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
3971 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
3972 mem_tbl[i].len)) != 0) {
3973 return ret;
3974 }
3975 }
3976
3977 return ret;
3978 }
3979
3980 #define BNX2_MAC_LOOPBACK 0
3981 #define BNX2_PHY_LOOPBACK 1
3982
3983 static int
3984 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
3985 {
3986 unsigned int pkt_size, num_pkts, i;
3987 struct sk_buff *skb, *rx_skb;
3988 unsigned char *packet;
3989 u16 rx_start_idx, rx_idx;
3990 dma_addr_t map;
3991 struct tx_bd *txbd;
3992 struct sw_bd *rx_buf;
3993 struct l2_fhdr *rx_hdr;
3994 int ret = -ENODEV;
3995
3996 if (loopback_mode == BNX2_MAC_LOOPBACK) {
3997 bp->loopback = MAC_LOOPBACK;
3998 bnx2_set_mac_loopback(bp);
3999 }
4000 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
4001 bp->loopback = PHY_LOOPBACK;
4002 bnx2_set_phy_loopback(bp);
4003 }
4004 else
4005 return -EINVAL;
4006
4007 pkt_size = 1514;
4008 skb = netdev_alloc_skb(bp->dev, pkt_size);
4009 if (!skb)
4010 return -ENOMEM;
4011 packet = skb_put(skb, pkt_size);
4012 memcpy(packet, bp->dev->dev_addr, 6);
4013 memset(packet + 6, 0x0, 8);
4014 for (i = 14; i < pkt_size; i++)
4015 packet[i] = (unsigned char) (i & 0xff);
4016
4017 map = pci_map_single(bp->pdev, skb->data, pkt_size,
4018 PCI_DMA_TODEVICE);
4019
4020 REG_WR(bp, BNX2_HC_COMMAND,
4021 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
4022
4023 REG_RD(bp, BNX2_HC_COMMAND);
4024
4025 udelay(5);
4026 rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
4027
4028 num_pkts = 0;
4029
4030 txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
4031
4032 txbd->tx_bd_haddr_hi = (u64) map >> 32;
4033 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
4034 txbd->tx_bd_mss_nbytes = pkt_size;
4035 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
4036
4037 num_pkts++;
4038 bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
4039 bp->tx_prod_bseq += pkt_size;
4040
4041 REG_WR16(bp, bp->tx_bidx_addr, bp->tx_prod);
4042 REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
4043
4044 udelay(100);
4045
4046 REG_WR(bp, BNX2_HC_COMMAND,
4047 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
4048
4049 REG_RD(bp, BNX2_HC_COMMAND);
4050
4051 udelay(5);
4052
4053 pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
4054 dev_kfree_skb(skb);
4055
4056 if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) {
4057 goto loopback_test_done;
4058 }
4059
4060 rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
4061 if (rx_idx != rx_start_idx + num_pkts) {
4062 goto loopback_test_done;
4063 }
4064
4065 rx_buf = &bp->rx_buf_ring[rx_start_idx];
4066 rx_skb = rx_buf->skb;
4067
4068 rx_hdr = (struct l2_fhdr *) rx_skb->data;
4069 skb_reserve(rx_skb, bp->rx_offset);
4070
4071 pci_dma_sync_single_for_cpu(bp->pdev,
4072 pci_unmap_addr(rx_buf, mapping),
4073 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
4074
4075 if (rx_hdr->l2_fhdr_status &
4076 (L2_FHDR_ERRORS_BAD_CRC |
4077 L2_FHDR_ERRORS_PHY_DECODE |
4078 L2_FHDR_ERRORS_ALIGNMENT |
4079 L2_FHDR_ERRORS_TOO_SHORT |
4080 L2_FHDR_ERRORS_GIANT_FRAME)) {
4081
4082 goto loopback_test_done;
4083 }
4084
4085 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
4086 goto loopback_test_done;
4087 }
4088
4089 for (i = 14; i < pkt_size; i++) {
4090 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
4091 goto loopback_test_done;
4092 }
4093 }
4094
4095 ret = 0;
4096
4097 loopback_test_done:
4098 bp->loopback = 0;
4099 return ret;
4100 }
4101
4102 #define BNX2_MAC_LOOPBACK_FAILED 1
4103 #define BNX2_PHY_LOOPBACK_FAILED 2
4104 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
4105 BNX2_PHY_LOOPBACK_FAILED)
4106
4107 static int
4108 bnx2_test_loopback(struct bnx2 *bp)
4109 {
4110 int rc = 0;
4111
4112 if (!netif_running(bp->dev))
4113 return BNX2_LOOPBACK_FAILED;
4114
4115 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
4116 spin_lock_bh(&bp->phy_lock);
4117 bnx2_init_phy(bp);
4118 spin_unlock_bh(&bp->phy_lock);
4119 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
4120 rc |= BNX2_MAC_LOOPBACK_FAILED;
4121 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
4122 rc |= BNX2_PHY_LOOPBACK_FAILED;
4123 return rc;
4124 }
4125
4126 #define NVRAM_SIZE 0x200
4127 #define CRC32_RESIDUAL 0xdebb20e3
4128
4129 static int
4130 bnx2_test_nvram(struct bnx2 *bp)
4131 {
4132 u32 buf[NVRAM_SIZE / 4];
4133 u8 *data = (u8 *) buf;
4134 int rc = 0;
4135 u32 magic, csum;
4136
4137 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
4138 goto test_nvram_done;
4139
4140 magic = be32_to_cpu(buf[0]);
4141 if (magic != 0x669955aa) {
4142 rc = -ENODEV;
4143 goto test_nvram_done;
4144 }
4145
4146 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
4147 goto test_nvram_done;
4148
4149 csum = ether_crc_le(0x100, data);
4150 if (csum != CRC32_RESIDUAL) {
4151 rc = -ENODEV;
4152 goto test_nvram_done;
4153 }
4154
4155 csum = ether_crc_le(0x100, data + 0x100);
4156 if (csum != CRC32_RESIDUAL) {
4157 rc = -ENODEV;
4158 }
4159
4160 test_nvram_done:
4161 return rc;
4162 }
4163
4164 static int
4165 bnx2_test_link(struct bnx2 *bp)
4166 {
4167 u32 bmsr;
4168
4169 spin_lock_bh(&bp->phy_lock);
4170 bnx2_read_phy(bp, MII_BMSR, &bmsr);
4171 bnx2_read_phy(bp, MII_BMSR, &bmsr);
4172 spin_unlock_bh(&bp->phy_lock);
4173
4174 if (bmsr & BMSR_LSTATUS) {
4175 return 0;
4176 }
4177 return -ENODEV;
4178 }
4179
4180 static int
4181 bnx2_test_intr(struct bnx2 *bp)
4182 {
4183 int i;
4184 u16 status_idx;
4185
4186 if (!netif_running(bp->dev))
4187 return -ENODEV;
4188
4189 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
4190
4191 /* This register is not touched during run-time. */
4192 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
4193 REG_RD(bp, BNX2_HC_COMMAND);
4194
4195 for (i = 0; i < 10; i++) {
4196 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
4197 status_idx) {
4198
4199 break;
4200 }
4201
4202 msleep_interruptible(10);
4203 }
4204 if (i < 10)
4205 return 0;
4206
4207 return -ENODEV;
4208 }
4209
4210 static void
4211 bnx2_5706_serdes_timer(struct bnx2 *bp)
4212 {
4213 spin_lock(&bp->phy_lock);
4214 if (bp->serdes_an_pending)
4215 bp->serdes_an_pending--;
4216 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
4217 u32 bmcr;
4218
4219 bp->current_interval = bp->timer_interval;
4220
4221 bnx2_read_phy(bp, MII_BMCR, &bmcr);
4222
4223 if (bmcr & BMCR_ANENABLE) {
4224 u32 phy1, phy2;
4225
4226 bnx2_write_phy(bp, 0x1c, 0x7c00);
4227 bnx2_read_phy(bp, 0x1c, &phy1);
4228
4229 bnx2_write_phy(bp, 0x17, 0x0f01);
4230 bnx2_read_phy(bp, 0x15, &phy2);
4231 bnx2_write_phy(bp, 0x17, 0x0f01);
4232 bnx2_read_phy(bp, 0x15, &phy2);
4233
4234 if ((phy1 & 0x10) && /* SIGNAL DETECT */
4235 !(phy2 & 0x20)) { /* no CONFIG */
4236
4237 bmcr &= ~BMCR_ANENABLE;
4238 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
4239 bnx2_write_phy(bp, MII_BMCR, bmcr);
4240 bp->phy_flags |= PHY_PARALLEL_DETECT_FLAG;
4241 }
4242 }
4243 }
4244 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
4245 (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
4246 u32 phy2;
4247
4248 bnx2_write_phy(bp, 0x17, 0x0f01);
4249 bnx2_read_phy(bp, 0x15, &phy2);
4250 if (phy2 & 0x20) {
4251 u32 bmcr;
4252
4253 bnx2_read_phy(bp, MII_BMCR, &bmcr);
4254 bmcr |= BMCR_ANENABLE;
4255 bnx2_write_phy(bp, MII_BMCR, bmcr);
4256
4257 bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
4258 }
4259 } else
4260 bp->current_interval = bp->timer_interval;
4261
4262 spin_unlock(&bp->phy_lock);
4263 }
4264
4265 static void
4266 bnx2_5708_serdes_timer(struct bnx2 *bp)
4267 {
4268 if ((bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) == 0) {
4269 bp->serdes_an_pending = 0;
4270 return;
4271 }
4272
4273 spin_lock(&bp->phy_lock);
4274 if (bp->serdes_an_pending)
4275 bp->serdes_an_pending--;
4276 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
4277 u32 bmcr;
4278
4279 bnx2_read_phy(bp, MII_BMCR, &bmcr);
4280
4281 if (bmcr & BMCR_ANENABLE) {
4282 bmcr &= ~BMCR_ANENABLE;
4283 bmcr |= BMCR_FULLDPLX | BCM5708S_BMCR_FORCE_2500;
4284 bnx2_write_phy(bp, MII_BMCR, bmcr);
4285 bp->current_interval = SERDES_FORCED_TIMEOUT;
4286 } else {
4287 bmcr &= ~(BMCR_FULLDPLX | BCM5708S_BMCR_FORCE_2500);
4288 bmcr |= BMCR_ANENABLE;
4289 bnx2_write_phy(bp, MII_BMCR, bmcr);
4290 bp->serdes_an_pending = 2;
4291 bp->current_interval = bp->timer_interval;
4292 }
4293
4294 } else
4295 bp->current_interval = bp->timer_interval;
4296
4297 spin_unlock(&bp->phy_lock);
4298 }
4299
4300 static void
4301 bnx2_timer(unsigned long data)
4302 {
4303 struct bnx2 *bp = (struct bnx2 *) data;
4304 u32 msg;
4305
4306 if (!netif_running(bp->dev))
4307 return;
4308
4309 if (atomic_read(&bp->intr_sem) != 0)
4310 goto bnx2_restart_timer;
4311
4312 msg = (u32) ++bp->fw_drv_pulse_wr_seq;
4313 REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg);
4314
4315 bp->stats_blk->stat_FwRxDrop = REG_RD_IND(bp, BNX2_FW_RX_DROP_COUNT);
4316
4317 if (bp->phy_flags & PHY_SERDES_FLAG) {
4318 if (CHIP_NUM(bp) == CHIP_NUM_5706)
4319 bnx2_5706_serdes_timer(bp);
4320 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
4321 bnx2_5708_serdes_timer(bp);
4322 }
4323
4324 bnx2_restart_timer:
4325 mod_timer(&bp->timer, jiffies + bp->current_interval);
4326 }
4327
4328 /* Called with rtnl_lock */
4329 static int
4330 bnx2_open(struct net_device *dev)
4331 {
4332 struct bnx2 *bp = netdev_priv(dev);
4333 int rc;
4334
4335 bnx2_set_power_state(bp, PCI_D0);
4336 bnx2_disable_int(bp);
4337
4338 rc = bnx2_alloc_mem(bp);
4339 if (rc)
4340 return rc;
4341
4342 if ((CHIP_ID(bp) != CHIP_ID_5706_A0) &&
4343 (CHIP_ID(bp) != CHIP_ID_5706_A1) &&
4344 !disable_msi) {
4345
4346 if (pci_enable_msi(bp->pdev) == 0) {
4347 bp->flags |= USING_MSI_FLAG;
4348 rc = request_irq(bp->pdev->irq, bnx2_msi, 0, dev->name,
4349 dev);
4350 }
4351 else {
4352 rc = request_irq(bp->pdev->irq, bnx2_interrupt,
4353 IRQF_SHARED, dev->name, dev);
4354 }
4355 }
4356 else {
4357 rc = request_irq(bp->pdev->irq, bnx2_interrupt, IRQF_SHARED,
4358 dev->name, dev);
4359 }
4360 if (rc) {
4361 bnx2_free_mem(bp);
4362 return rc;
4363 }
4364
4365 rc = bnx2_init_nic(bp);
4366
4367 if (rc) {
4368 free_irq(bp->pdev->irq, dev);
4369 if (bp->flags & USING_MSI_FLAG) {
4370 pci_disable_msi(bp->pdev);
4371 bp->flags &= ~USING_MSI_FLAG;
4372 }
4373 bnx2_free_skbs(bp);
4374 bnx2_free_mem(bp);
4375 return rc;
4376 }
4377
4378 mod_timer(&bp->timer, jiffies + bp->current_interval);
4379
4380 atomic_set(&bp->intr_sem, 0);
4381
4382 bnx2_enable_int(bp);
4383
4384 if (bp->flags & USING_MSI_FLAG) {
4385 /* Test MSI to make sure it is working
4386 * If MSI test fails, go back to INTx mode
4387 */
4388 if (bnx2_test_intr(bp) != 0) {
4389 printk(KERN_WARNING PFX "%s: No interrupt was generated"
4390 " using MSI, switching to INTx mode. Please"
4391 " report this failure to the PCI maintainer"
4392 " and include system chipset information.\n",
4393 bp->dev->name);
4394
4395 bnx2_disable_int(bp);
4396 free_irq(bp->pdev->irq, dev);
4397 pci_disable_msi(bp->pdev);
4398 bp->flags &= ~USING_MSI_FLAG;
4399
4400 rc = bnx2_init_nic(bp);
4401
4402 if (!rc) {
4403 rc = request_irq(bp->pdev->irq, bnx2_interrupt,
4404 IRQF_SHARED, dev->name, dev);
4405 }
4406 if (rc) {
4407 bnx2_free_skbs(bp);
4408 bnx2_free_mem(bp);
4409 del_timer_sync(&bp->timer);
4410 return rc;
4411 }
4412 bnx2_enable_int(bp);
4413 }
4414 }
4415 if (bp->flags & USING_MSI_FLAG) {
4416 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
4417 }
4418
4419 netif_start_queue(dev);
4420
4421 return 0;
4422 }
4423
4424 static void
4425 bnx2_reset_task(struct work_struct *work)
4426 {
4427 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
4428
4429 if (!netif_running(bp->dev))
4430 return;
4431
4432 bp->in_reset_task = 1;
4433 bnx2_netif_stop(bp);
4434
4435 bnx2_init_nic(bp);
4436
4437 atomic_set(&bp->intr_sem, 1);
4438 bnx2_netif_start(bp);
4439 bp->in_reset_task = 0;
4440 }
4441
4442 static void
4443 bnx2_tx_timeout(struct net_device *dev)
4444 {
4445 struct bnx2 *bp = netdev_priv(dev);
4446
4447 /* This allows the netif to be shutdown gracefully before resetting */
4448 schedule_work(&bp->reset_task);
4449 }
4450
4451 #ifdef BCM_VLAN
4452 /* Called with rtnl_lock */
4453 static void
4454 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
4455 {
4456 struct bnx2 *bp = netdev_priv(dev);
4457
4458 bnx2_netif_stop(bp);
4459
4460 bp->vlgrp = vlgrp;
4461 bnx2_set_rx_mode(dev);
4462
4463 bnx2_netif_start(bp);
4464 }
4465
4466 /* Called with rtnl_lock */
4467 static void
4468 bnx2_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
4469 {
4470 struct bnx2 *bp = netdev_priv(dev);
4471
4472 bnx2_netif_stop(bp);
4473
4474 if (bp->vlgrp)
4475 bp->vlgrp->vlan_devices[vid] = NULL;
4476 bnx2_set_rx_mode(dev);
4477
4478 bnx2_netif_start(bp);
4479 }
4480 #endif
4481
4482 /* Called with netif_tx_lock.
4483 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
4484 * netif_wake_queue().
4485 */
4486 static int
4487 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
4488 {
4489 struct bnx2 *bp = netdev_priv(dev);
4490 dma_addr_t mapping;
4491 struct tx_bd *txbd;
4492 struct sw_bd *tx_buf;
4493 u32 len, vlan_tag_flags, last_frag, mss;
4494 u16 prod, ring_prod;
4495 int i;
4496
4497 if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
4498 netif_stop_queue(dev);
4499 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
4500 dev->name);
4501
4502 return NETDEV_TX_BUSY;
4503 }
4504 len = skb_headlen(skb);
4505 prod = bp->tx_prod;
4506 ring_prod = TX_RING_IDX(prod);
4507
4508 vlan_tag_flags = 0;
4509 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4510 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4511 }
4512
4513 if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
4514 vlan_tag_flags |=
4515 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
4516 }
4517 #ifdef BCM_TSO
4518 if ((mss = skb_shinfo(skb)->gso_size) &&
4519 (skb->len > (bp->dev->mtu + ETH_HLEN))) {
4520 u32 tcp_opt_len, ip_tcp_len;
4521
4522 if (skb_header_cloned(skb) &&
4523 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
4524 dev_kfree_skb(skb);
4525 return NETDEV_TX_OK;
4526 }
4527
4528 tcp_opt_len = ((skb->h.th->doff - 5) * 4);
4529 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
4530
4531 tcp_opt_len = 0;
4532 if (skb->h.th->doff > 5) {
4533 tcp_opt_len = (skb->h.th->doff - 5) << 2;
4534 }
4535 ip_tcp_len = (skb->nh.iph->ihl << 2) + sizeof(struct tcphdr);
4536
4537 skb->nh.iph->check = 0;
4538 skb->nh.iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
4539 skb->h.th->check =
4540 ~csum_tcpudp_magic(skb->nh.iph->saddr,
4541 skb->nh.iph->daddr,
4542 0, IPPROTO_TCP, 0);
4543
4544 if (tcp_opt_len || (skb->nh.iph->ihl > 5)) {
4545 vlan_tag_flags |= ((skb->nh.iph->ihl - 5) +
4546 (tcp_opt_len >> 2)) << 8;
4547 }
4548 }
4549 else
4550 #endif
4551 {
4552 mss = 0;
4553 }
4554
4555 mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
4556
4557 tx_buf = &bp->tx_buf_ring[ring_prod];
4558 tx_buf->skb = skb;
4559 pci_unmap_addr_set(tx_buf, mapping, mapping);
4560
4561 txbd = &bp->tx_desc_ring[ring_prod];
4562
4563 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
4564 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
4565 txbd->tx_bd_mss_nbytes = len | (mss << 16);
4566 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
4567
4568 last_frag = skb_shinfo(skb)->nr_frags;
4569
4570 for (i = 0; i < last_frag; i++) {
4571 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4572
4573 prod = NEXT_TX_BD(prod);
4574 ring_prod = TX_RING_IDX(prod);
4575 txbd = &bp->tx_desc_ring[ring_prod];
4576
4577 len = frag->size;
4578 mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
4579 len, PCI_DMA_TODEVICE);
4580 pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
4581 mapping, mapping);
4582
4583 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
4584 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
4585 txbd->tx_bd_mss_nbytes = len | (mss << 16);
4586 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
4587
4588 }
4589 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
4590
4591 prod = NEXT_TX_BD(prod);
4592 bp->tx_prod_bseq += skb->len;
4593
4594 REG_WR16(bp, bp->tx_bidx_addr, prod);
4595 REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
4596
4597 mmiowb();
4598
4599 bp->tx_prod = prod;
4600 dev->trans_start = jiffies;
4601
4602 if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
4603 netif_stop_queue(dev);
4604 if (bnx2_tx_avail(bp) > bp->tx_wake_thresh)
4605 netif_wake_queue(dev);
4606 }
4607
4608 return NETDEV_TX_OK;
4609 }
4610
4611 /* Called with rtnl_lock */
4612 static int
4613 bnx2_close(struct net_device *dev)
4614 {
4615 struct bnx2 *bp = netdev_priv(dev);
4616 u32 reset_code;
4617
4618 /* Calling flush_scheduled_work() may deadlock because
4619 * linkwatch_event() may be on the workqueue and it will try to get
4620 * the rtnl_lock which we are holding.
4621 */
4622 while (bp->in_reset_task)
4623 msleep(1);
4624
4625 bnx2_netif_stop(bp);
4626 del_timer_sync(&bp->timer);
4627 if (bp->flags & NO_WOL_FLAG)
4628 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
4629 else if (bp->wol)
4630 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
4631 else
4632 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
4633 bnx2_reset_chip(bp, reset_code);
4634 free_irq(bp->pdev->irq, dev);
4635 if (bp->flags & USING_MSI_FLAG) {
4636 pci_disable_msi(bp->pdev);
4637 bp->flags &= ~USING_MSI_FLAG;
4638 }
4639 bnx2_free_skbs(bp);
4640 bnx2_free_mem(bp);
4641 bp->link_up = 0;
4642 netif_carrier_off(bp->dev);
4643 bnx2_set_power_state(bp, PCI_D3hot);
4644 return 0;
4645 }
4646
4647 #define GET_NET_STATS64(ctr) \
4648 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
4649 (unsigned long) (ctr##_lo)
4650
4651 #define GET_NET_STATS32(ctr) \
4652 (ctr##_lo)
4653
4654 #if (BITS_PER_LONG == 64)
4655 #define GET_NET_STATS GET_NET_STATS64
4656 #else
4657 #define GET_NET_STATS GET_NET_STATS32
4658 #endif
4659
4660 static struct net_device_stats *
4661 bnx2_get_stats(struct net_device *dev)
4662 {
4663 struct bnx2 *bp = netdev_priv(dev);
4664 struct statistics_block *stats_blk = bp->stats_blk;
4665 struct net_device_stats *net_stats = &bp->net_stats;
4666
4667 if (bp->stats_blk == NULL) {
4668 return net_stats;
4669 }
4670 net_stats->rx_packets =
4671 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
4672 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
4673 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
4674
4675 net_stats->tx_packets =
4676 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
4677 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
4678 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
4679
4680 net_stats->rx_bytes =
4681 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
4682
4683 net_stats->tx_bytes =
4684 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
4685
4686 net_stats->multicast =
4687 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
4688
4689 net_stats->collisions =
4690 (unsigned long) stats_blk->stat_EtherStatsCollisions;
4691
4692 net_stats->rx_length_errors =
4693 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
4694 stats_blk->stat_EtherStatsOverrsizePkts);
4695
4696 net_stats->rx_over_errors =
4697 (unsigned long) stats_blk->stat_IfInMBUFDiscards;
4698
4699 net_stats->rx_frame_errors =
4700 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
4701
4702 net_stats->rx_crc_errors =
4703 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
4704
4705 net_stats->rx_errors = net_stats->rx_length_errors +
4706 net_stats->rx_over_errors + net_stats->rx_frame_errors +
4707 net_stats->rx_crc_errors;
4708
4709 net_stats->tx_aborted_errors =
4710 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
4711 stats_blk->stat_Dot3StatsLateCollisions);
4712
4713 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
4714 (CHIP_ID(bp) == CHIP_ID_5708_A0))
4715 net_stats->tx_carrier_errors = 0;
4716 else {
4717 net_stats->tx_carrier_errors =
4718 (unsigned long)
4719 stats_blk->stat_Dot3StatsCarrierSenseErrors;
4720 }
4721
4722 net_stats->tx_errors =
4723 (unsigned long)
4724 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
4725 +
4726 net_stats->tx_aborted_errors +
4727 net_stats->tx_carrier_errors;
4728
4729 net_stats->rx_missed_errors =
4730 (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
4731 stats_blk->stat_FwRxDrop);
4732
4733 return net_stats;
4734 }
4735
4736 /* All ethtool functions called with rtnl_lock */
4737
4738 static int
4739 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4740 {
4741 struct bnx2 *bp = netdev_priv(dev);
4742
4743 cmd->supported = SUPPORTED_Autoneg;
4744 if (bp->phy_flags & PHY_SERDES_FLAG) {
4745 cmd->supported |= SUPPORTED_1000baseT_Full |
4746 SUPPORTED_FIBRE;
4747
4748 cmd->port = PORT_FIBRE;
4749 }
4750 else {
4751 cmd->supported |= SUPPORTED_10baseT_Half |
4752 SUPPORTED_10baseT_Full |
4753 SUPPORTED_100baseT_Half |
4754 SUPPORTED_100baseT_Full |
4755 SUPPORTED_1000baseT_Full |
4756 SUPPORTED_TP;
4757
4758 cmd->port = PORT_TP;
4759 }
4760
4761 cmd->advertising = bp->advertising;
4762
4763 if (bp->autoneg & AUTONEG_SPEED) {
4764 cmd->autoneg = AUTONEG_ENABLE;
4765 }
4766 else {
4767 cmd->autoneg = AUTONEG_DISABLE;
4768 }
4769
4770 if (netif_carrier_ok(dev)) {
4771 cmd->speed = bp->line_speed;
4772 cmd->duplex = bp->duplex;
4773 }
4774 else {
4775 cmd->speed = -1;
4776 cmd->duplex = -1;
4777 }
4778
4779 cmd->transceiver = XCVR_INTERNAL;
4780 cmd->phy_address = bp->phy_addr;
4781
4782 return 0;
4783 }
4784
4785 static int
4786 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4787 {
4788 struct bnx2 *bp = netdev_priv(dev);
4789 u8 autoneg = bp->autoneg;
4790 u8 req_duplex = bp->req_duplex;
4791 u16 req_line_speed = bp->req_line_speed;
4792 u32 advertising = bp->advertising;
4793
4794 if (cmd->autoneg == AUTONEG_ENABLE) {
4795 autoneg |= AUTONEG_SPEED;
4796
4797 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
4798
4799 /* allow advertising 1 speed */
4800 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
4801 (cmd->advertising == ADVERTISED_10baseT_Full) ||
4802 (cmd->advertising == ADVERTISED_100baseT_Half) ||
4803 (cmd->advertising == ADVERTISED_100baseT_Full)) {
4804
4805 if (bp->phy_flags & PHY_SERDES_FLAG)
4806 return -EINVAL;
4807
4808 advertising = cmd->advertising;
4809
4810 }
4811 else if (cmd->advertising == ADVERTISED_1000baseT_Full) {
4812 advertising = cmd->advertising;
4813 }
4814 else if (cmd->advertising == ADVERTISED_1000baseT_Half) {
4815 return -EINVAL;
4816 }
4817 else {
4818 if (bp->phy_flags & PHY_SERDES_FLAG) {
4819 advertising = ETHTOOL_ALL_FIBRE_SPEED;
4820 }
4821 else {
4822 advertising = ETHTOOL_ALL_COPPER_SPEED;
4823 }
4824 }
4825 advertising |= ADVERTISED_Autoneg;
4826 }
4827 else {
4828 if (bp->phy_flags & PHY_SERDES_FLAG) {
4829 if ((cmd->speed != SPEED_1000 &&
4830 cmd->speed != SPEED_2500) ||
4831 (cmd->duplex != DUPLEX_FULL))
4832 return -EINVAL;
4833
4834 if (cmd->speed == SPEED_2500 &&
4835 !(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
4836 return -EINVAL;
4837 }
4838 else if (cmd->speed == SPEED_1000) {
4839 return -EINVAL;
4840 }
4841 autoneg &= ~AUTONEG_SPEED;
4842 req_line_speed = cmd->speed;
4843 req_duplex = cmd->duplex;
4844 advertising = 0;
4845 }
4846
4847 bp->autoneg = autoneg;
4848 bp->advertising = advertising;
4849 bp->req_line_speed = req_line_speed;
4850 bp->req_duplex = req_duplex;
4851
4852 spin_lock_bh(&bp->phy_lock);
4853
4854 bnx2_setup_phy(bp);
4855
4856 spin_unlock_bh(&bp->phy_lock);
4857
4858 return 0;
4859 }
4860
4861 static void
4862 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4863 {
4864 struct bnx2 *bp = netdev_priv(dev);
4865
4866 strcpy(info->driver, DRV_MODULE_NAME);
4867 strcpy(info->version, DRV_MODULE_VERSION);
4868 strcpy(info->bus_info, pci_name(bp->pdev));
4869 info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0';
4870 info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0';
4871 info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0';
4872 info->fw_version[1] = info->fw_version[3] = '.';
4873 info->fw_version[5] = 0;
4874 }
4875
4876 #define BNX2_REGDUMP_LEN (32 * 1024)
4877
4878 static int
4879 bnx2_get_regs_len(struct net_device *dev)
4880 {
4881 return BNX2_REGDUMP_LEN;
4882 }
4883
4884 static void
4885 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
4886 {
4887 u32 *p = _p, i, offset;
4888 u8 *orig_p = _p;
4889 struct bnx2 *bp = netdev_priv(dev);
4890 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
4891 0x0800, 0x0880, 0x0c00, 0x0c10,
4892 0x0c30, 0x0d08, 0x1000, 0x101c,
4893 0x1040, 0x1048, 0x1080, 0x10a4,
4894 0x1400, 0x1490, 0x1498, 0x14f0,
4895 0x1500, 0x155c, 0x1580, 0x15dc,
4896 0x1600, 0x1658, 0x1680, 0x16d8,
4897 0x1800, 0x1820, 0x1840, 0x1854,
4898 0x1880, 0x1894, 0x1900, 0x1984,
4899 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
4900 0x1c80, 0x1c94, 0x1d00, 0x1d84,
4901 0x2000, 0x2030, 0x23c0, 0x2400,
4902 0x2800, 0x2820, 0x2830, 0x2850,
4903 0x2b40, 0x2c10, 0x2fc0, 0x3058,
4904 0x3c00, 0x3c94, 0x4000, 0x4010,
4905 0x4080, 0x4090, 0x43c0, 0x4458,
4906 0x4c00, 0x4c18, 0x4c40, 0x4c54,
4907 0x4fc0, 0x5010, 0x53c0, 0x5444,
4908 0x5c00, 0x5c18, 0x5c80, 0x5c90,
4909 0x5fc0, 0x6000, 0x6400, 0x6428,
4910 0x6800, 0x6848, 0x684c, 0x6860,
4911 0x6888, 0x6910, 0x8000 };
4912
4913 regs->version = 0;
4914
4915 memset(p, 0, BNX2_REGDUMP_LEN);
4916
4917 if (!netif_running(bp->dev))
4918 return;
4919
4920 i = 0;
4921 offset = reg_boundaries[0];
4922 p += offset;
4923 while (offset < BNX2_REGDUMP_LEN) {
4924 *p++ = REG_RD(bp, offset);
4925 offset += 4;
4926 if (offset == reg_boundaries[i + 1]) {
4927 offset = reg_boundaries[i + 2];
4928 p = (u32 *) (orig_p + offset);
4929 i += 2;
4930 }
4931 }
4932 }
4933
4934 static void
4935 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
4936 {
4937 struct bnx2 *bp = netdev_priv(dev);
4938
4939 if (bp->flags & NO_WOL_FLAG) {
4940 wol->supported = 0;
4941 wol->wolopts = 0;
4942 }
4943 else {
4944 wol->supported = WAKE_MAGIC;
4945 if (bp->wol)
4946 wol->wolopts = WAKE_MAGIC;
4947 else
4948 wol->wolopts = 0;
4949 }
4950 memset(&wol->sopass, 0, sizeof(wol->sopass));
4951 }
4952
4953 static int
4954 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
4955 {
4956 struct bnx2 *bp = netdev_priv(dev);
4957
4958 if (wol->wolopts & ~WAKE_MAGIC)
4959 return -EINVAL;
4960
4961 if (wol->wolopts & WAKE_MAGIC) {
4962 if (bp->flags & NO_WOL_FLAG)
4963 return -EINVAL;
4964
4965 bp->wol = 1;
4966 }
4967 else {
4968 bp->wol = 0;
4969 }
4970 return 0;
4971 }
4972
4973 static int
4974 bnx2_nway_reset(struct net_device *dev)
4975 {
4976 struct bnx2 *bp = netdev_priv(dev);
4977 u32 bmcr;
4978
4979 if (!(bp->autoneg & AUTONEG_SPEED)) {
4980 return -EINVAL;
4981 }
4982
4983 spin_lock_bh(&bp->phy_lock);
4984
4985 /* Force a link down visible on the other side */
4986 if (bp->phy_flags & PHY_SERDES_FLAG) {
4987 bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
4988 spin_unlock_bh(&bp->phy_lock);
4989
4990 msleep(20);
4991
4992 spin_lock_bh(&bp->phy_lock);
4993
4994 bp->current_interval = SERDES_AN_TIMEOUT;
4995 bp->serdes_an_pending = 1;
4996 mod_timer(&bp->timer, jiffies + bp->current_interval);
4997 }
4998
4999 bnx2_read_phy(bp, MII_BMCR, &bmcr);
5000 bmcr &= ~BMCR_LOOPBACK;
5001 bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
5002
5003 spin_unlock_bh(&bp->phy_lock);
5004
5005 return 0;
5006 }
5007
5008 static int
5009 bnx2_get_eeprom_len(struct net_device *dev)
5010 {
5011 struct bnx2 *bp = netdev_priv(dev);
5012
5013 if (bp->flash_info == NULL)
5014 return 0;
5015
5016 return (int) bp->flash_size;
5017 }
5018
5019 static int
5020 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
5021 u8 *eebuf)
5022 {
5023 struct bnx2 *bp = netdev_priv(dev);
5024 int rc;
5025
5026 /* parameters already validated in ethtool_get_eeprom */
5027
5028 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
5029
5030 return rc;
5031 }
5032
5033 static int
5034 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
5035 u8 *eebuf)
5036 {
5037 struct bnx2 *bp = netdev_priv(dev);
5038 int rc;
5039
5040 /* parameters already validated in ethtool_set_eeprom */
5041
5042 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
5043
5044 return rc;
5045 }
5046
5047 static int
5048 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
5049 {
5050 struct bnx2 *bp = netdev_priv(dev);
5051
5052 memset(coal, 0, sizeof(struct ethtool_coalesce));
5053
5054 coal->rx_coalesce_usecs = bp->rx_ticks;
5055 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
5056 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
5057 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
5058
5059 coal->tx_coalesce_usecs = bp->tx_ticks;
5060 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
5061 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
5062 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
5063
5064 coal->stats_block_coalesce_usecs = bp->stats_ticks;
5065
5066 return 0;
5067 }
5068
5069 static int
5070 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
5071 {
5072 struct bnx2 *bp = netdev_priv(dev);
5073
5074 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
5075 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
5076
5077 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
5078 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
5079
5080 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
5081 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
5082
5083 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
5084 if (bp->rx_quick_cons_trip_int > 0xff)
5085 bp->rx_quick_cons_trip_int = 0xff;
5086
5087 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
5088 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
5089
5090 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
5091 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
5092
5093 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
5094 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
5095
5096 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
5097 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
5098 0xff;
5099
5100 bp->stats_ticks = coal->stats_block_coalesce_usecs;
5101 if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00;
5102 bp->stats_ticks &= 0xffff00;
5103
5104 if (netif_running(bp->dev)) {
5105 bnx2_netif_stop(bp);
5106 bnx2_init_nic(bp);
5107 bnx2_netif_start(bp);
5108 }
5109
5110 return 0;
5111 }
5112
5113 static void
5114 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
5115 {
5116 struct bnx2 *bp = netdev_priv(dev);
5117
5118 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
5119 ering->rx_mini_max_pending = 0;
5120 ering->rx_jumbo_max_pending = 0;
5121
5122 ering->rx_pending = bp->rx_ring_size;
5123 ering->rx_mini_pending = 0;
5124 ering->rx_jumbo_pending = 0;
5125
5126 ering->tx_max_pending = MAX_TX_DESC_CNT;
5127 ering->tx_pending = bp->tx_ring_size;
5128 }
5129
5130 static int
5131 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
5132 {
5133 struct bnx2 *bp = netdev_priv(dev);
5134
5135 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
5136 (ering->tx_pending > MAX_TX_DESC_CNT) ||
5137 (ering->tx_pending <= MAX_SKB_FRAGS)) {
5138
5139 return -EINVAL;
5140 }
5141 if (netif_running(bp->dev)) {
5142 bnx2_netif_stop(bp);
5143 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
5144 bnx2_free_skbs(bp);
5145 bnx2_free_mem(bp);
5146 }
5147
5148 bnx2_set_rx_ring_size(bp, ering->rx_pending);
5149 bp->tx_ring_size = ering->tx_pending;
5150
5151 if (netif_running(bp->dev)) {
5152 int rc;
5153
5154 rc = bnx2_alloc_mem(bp);
5155 if (rc)
5156 return rc;
5157 bnx2_init_nic(bp);
5158 bnx2_netif_start(bp);
5159 }
5160
5161 return 0;
5162 }
5163
5164 static void
5165 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
5166 {
5167 struct bnx2 *bp = netdev_priv(dev);
5168
5169 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
5170 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
5171 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
5172 }
5173
5174 static int
5175 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
5176 {
5177 struct bnx2 *bp = netdev_priv(dev);
5178
5179 bp->req_flow_ctrl = 0;
5180 if (epause->rx_pause)
5181 bp->req_flow_ctrl |= FLOW_CTRL_RX;
5182 if (epause->tx_pause)
5183 bp->req_flow_ctrl |= FLOW_CTRL_TX;
5184
5185 if (epause->autoneg) {
5186 bp->autoneg |= AUTONEG_FLOW_CTRL;
5187 }
5188 else {
5189 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
5190 }
5191
5192 spin_lock_bh(&bp->phy_lock);
5193
5194 bnx2_setup_phy(bp);
5195
5196 spin_unlock_bh(&bp->phy_lock);
5197
5198 return 0;
5199 }
5200
5201 static u32
5202 bnx2_get_rx_csum(struct net_device *dev)
5203 {
5204 struct bnx2 *bp = netdev_priv(dev);
5205
5206 return bp->rx_csum;
5207 }
5208
5209 static int
5210 bnx2_set_rx_csum(struct net_device *dev, u32 data)
5211 {
5212 struct bnx2 *bp = netdev_priv(dev);
5213
5214 bp->rx_csum = data;
5215 return 0;
5216 }
5217
5218 static int
5219 bnx2_set_tso(struct net_device *dev, u32 data)
5220 {
5221 if (data)
5222 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
5223 else
5224 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO_ECN);
5225 return 0;
5226 }
5227
5228 #define BNX2_NUM_STATS 46
5229
5230 static struct {
5231 char string[ETH_GSTRING_LEN];
5232 } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
5233 { "rx_bytes" },
5234 { "rx_error_bytes" },
5235 { "tx_bytes" },
5236 { "tx_error_bytes" },
5237 { "rx_ucast_packets" },
5238 { "rx_mcast_packets" },
5239 { "rx_bcast_packets" },
5240 { "tx_ucast_packets" },
5241 { "tx_mcast_packets" },
5242 { "tx_bcast_packets" },
5243 { "tx_mac_errors" },
5244 { "tx_carrier_errors" },
5245 { "rx_crc_errors" },
5246 { "rx_align_errors" },
5247 { "tx_single_collisions" },
5248 { "tx_multi_collisions" },
5249 { "tx_deferred" },
5250 { "tx_excess_collisions" },
5251 { "tx_late_collisions" },
5252 { "tx_total_collisions" },
5253 { "rx_fragments" },
5254 { "rx_jabbers" },
5255 { "rx_undersize_packets" },
5256 { "rx_oversize_packets" },
5257 { "rx_64_byte_packets" },
5258 { "rx_65_to_127_byte_packets" },
5259 { "rx_128_to_255_byte_packets" },
5260 { "rx_256_to_511_byte_packets" },
5261 { "rx_512_to_1023_byte_packets" },
5262 { "rx_1024_to_1522_byte_packets" },
5263 { "rx_1523_to_9022_byte_packets" },
5264 { "tx_64_byte_packets" },
5265 { "tx_65_to_127_byte_packets" },
5266 { "tx_128_to_255_byte_packets" },
5267 { "tx_256_to_511_byte_packets" },
5268 { "tx_512_to_1023_byte_packets" },
5269 { "tx_1024_to_1522_byte_packets" },
5270 { "tx_1523_to_9022_byte_packets" },
5271 { "rx_xon_frames" },
5272 { "rx_xoff_frames" },
5273 { "tx_xon_frames" },
5274 { "tx_xoff_frames" },
5275 { "rx_mac_ctrl_frames" },
5276 { "rx_filtered_packets" },
5277 { "rx_discards" },
5278 { "rx_fw_discards" },
5279 };
5280
5281 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
5282
5283 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
5284 STATS_OFFSET32(stat_IfHCInOctets_hi),
5285 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
5286 STATS_OFFSET32(stat_IfHCOutOctets_hi),
5287 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
5288 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
5289 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
5290 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
5291 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
5292 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
5293 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
5294 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
5295 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
5296 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
5297 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
5298 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
5299 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
5300 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
5301 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
5302 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
5303 STATS_OFFSET32(stat_EtherStatsCollisions),
5304 STATS_OFFSET32(stat_EtherStatsFragments),
5305 STATS_OFFSET32(stat_EtherStatsJabbers),
5306 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
5307 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
5308 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
5309 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
5310 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
5311 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
5312 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
5313 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
5314 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
5315 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
5316 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
5317 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
5318 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
5319 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
5320 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
5321 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
5322 STATS_OFFSET32(stat_XonPauseFramesReceived),
5323 STATS_OFFSET32(stat_XoffPauseFramesReceived),
5324 STATS_OFFSET32(stat_OutXonSent),
5325 STATS_OFFSET32(stat_OutXoffSent),
5326 STATS_OFFSET32(stat_MacControlFramesReceived),
5327 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
5328 STATS_OFFSET32(stat_IfInMBUFDiscards),
5329 STATS_OFFSET32(stat_FwRxDrop),
5330 };
5331
5332 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
5333 * skipped because of errata.
5334 */
5335 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
5336 8,0,8,8,8,8,8,8,8,8,
5337 4,0,4,4,4,4,4,4,4,4,
5338 4,4,4,4,4,4,4,4,4,4,
5339 4,4,4,4,4,4,4,4,4,4,
5340 4,4,4,4,4,4,
5341 };
5342
5343 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
5344 8,0,8,8,8,8,8,8,8,8,
5345 4,4,4,4,4,4,4,4,4,4,
5346 4,4,4,4,4,4,4,4,4,4,
5347 4,4,4,4,4,4,4,4,4,4,
5348 4,4,4,4,4,4,
5349 };
5350
5351 #define BNX2_NUM_TESTS 6
5352
5353 static struct {
5354 char string[ETH_GSTRING_LEN];
5355 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
5356 { "register_test (offline)" },
5357 { "memory_test (offline)" },
5358 { "loopback_test (offline)" },
5359 { "nvram_test (online)" },
5360 { "interrupt_test (online)" },
5361 { "link_test (online)" },
5362 };
5363
5364 static int
5365 bnx2_self_test_count(struct net_device *dev)
5366 {
5367 return BNX2_NUM_TESTS;
5368 }
5369
5370 static void
5371 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
5372 {
5373 struct bnx2 *bp = netdev_priv(dev);
5374
5375 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
5376 if (etest->flags & ETH_TEST_FL_OFFLINE) {
5377 int i;
5378
5379 bnx2_netif_stop(bp);
5380 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
5381 bnx2_free_skbs(bp);
5382
5383 if (bnx2_test_registers(bp) != 0) {
5384 buf[0] = 1;
5385 etest->flags |= ETH_TEST_FL_FAILED;
5386 }
5387 if (bnx2_test_memory(bp) != 0) {
5388 buf[1] = 1;
5389 etest->flags |= ETH_TEST_FL_FAILED;
5390 }
5391 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
5392 etest->flags |= ETH_TEST_FL_FAILED;
5393
5394 if (!netif_running(bp->dev)) {
5395 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
5396 }
5397 else {
5398 bnx2_init_nic(bp);
5399 bnx2_netif_start(bp);
5400 }
5401
5402 /* wait for link up */
5403 for (i = 0; i < 7; i++) {
5404 if (bp->link_up)
5405 break;
5406 msleep_interruptible(1000);
5407 }
5408 }
5409
5410 if (bnx2_test_nvram(bp) != 0) {
5411 buf[3] = 1;
5412 etest->flags |= ETH_TEST_FL_FAILED;
5413 }
5414 if (bnx2_test_intr(bp) != 0) {
5415 buf[4] = 1;
5416 etest->flags |= ETH_TEST_FL_FAILED;
5417 }
5418
5419 if (bnx2_test_link(bp) != 0) {
5420 buf[5] = 1;
5421 etest->flags |= ETH_TEST_FL_FAILED;
5422
5423 }
5424 }
5425
5426 static void
5427 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
5428 {
5429 switch (stringset) {
5430 case ETH_SS_STATS:
5431 memcpy(buf, bnx2_stats_str_arr,
5432 sizeof(bnx2_stats_str_arr));
5433 break;
5434 case ETH_SS_TEST:
5435 memcpy(buf, bnx2_tests_str_arr,
5436 sizeof(bnx2_tests_str_arr));
5437 break;
5438 }
5439 }
5440
5441 static int
5442 bnx2_get_stats_count(struct net_device *dev)
5443 {
5444 return BNX2_NUM_STATS;
5445 }
5446
5447 static void
5448 bnx2_get_ethtool_stats(struct net_device *dev,
5449 struct ethtool_stats *stats, u64 *buf)
5450 {
5451 struct bnx2 *bp = netdev_priv(dev);
5452 int i;
5453 u32 *hw_stats = (u32 *) bp->stats_blk;
5454 u8 *stats_len_arr = NULL;
5455
5456 if (hw_stats == NULL) {
5457 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
5458 return;
5459 }
5460
5461 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
5462 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
5463 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
5464 (CHIP_ID(bp) == CHIP_ID_5708_A0))
5465 stats_len_arr = bnx2_5706_stats_len_arr;
5466 else
5467 stats_len_arr = bnx2_5708_stats_len_arr;
5468
5469 for (i = 0; i < BNX2_NUM_STATS; i++) {
5470 if (stats_len_arr[i] == 0) {
5471 /* skip this counter */
5472 buf[i] = 0;
5473 continue;
5474 }
5475 if (stats_len_arr[i] == 4) {
5476 /* 4-byte counter */
5477 buf[i] = (u64)
5478 *(hw_stats + bnx2_stats_offset_arr[i]);
5479 continue;
5480 }
5481 /* 8-byte counter */
5482 buf[i] = (((u64) *(hw_stats +
5483 bnx2_stats_offset_arr[i])) << 32) +
5484 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
5485 }
5486 }
5487
5488 static int
5489 bnx2_phys_id(struct net_device *dev, u32 data)
5490 {
5491 struct bnx2 *bp = netdev_priv(dev);
5492 int i;
5493 u32 save;
5494
5495 if (data == 0)
5496 data = 2;
5497
5498 save = REG_RD(bp, BNX2_MISC_CFG);
5499 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
5500
5501 for (i = 0; i < (data * 2); i++) {
5502 if ((i % 2) == 0) {
5503 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
5504 }
5505 else {
5506 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
5507 BNX2_EMAC_LED_1000MB_OVERRIDE |
5508 BNX2_EMAC_LED_100MB_OVERRIDE |
5509 BNX2_EMAC_LED_10MB_OVERRIDE |
5510 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
5511 BNX2_EMAC_LED_TRAFFIC);
5512 }
5513 msleep_interruptible(500);
5514 if (signal_pending(current))
5515 break;
5516 }
5517 REG_WR(bp, BNX2_EMAC_LED, 0);
5518 REG_WR(bp, BNX2_MISC_CFG, save);
5519 return 0;
5520 }
5521
5522 static const struct ethtool_ops bnx2_ethtool_ops = {
5523 .get_settings = bnx2_get_settings,
5524 .set_settings = bnx2_set_settings,
5525 .get_drvinfo = bnx2_get_drvinfo,
5526 .get_regs_len = bnx2_get_regs_len,
5527 .get_regs = bnx2_get_regs,
5528 .get_wol = bnx2_get_wol,
5529 .set_wol = bnx2_set_wol,
5530 .nway_reset = bnx2_nway_reset,
5531 .get_link = ethtool_op_get_link,
5532 .get_eeprom_len = bnx2_get_eeprom_len,
5533 .get_eeprom = bnx2_get_eeprom,
5534 .set_eeprom = bnx2_set_eeprom,
5535 .get_coalesce = bnx2_get_coalesce,
5536 .set_coalesce = bnx2_set_coalesce,
5537 .get_ringparam = bnx2_get_ringparam,
5538 .set_ringparam = bnx2_set_ringparam,
5539 .get_pauseparam = bnx2_get_pauseparam,
5540 .set_pauseparam = bnx2_set_pauseparam,
5541 .get_rx_csum = bnx2_get_rx_csum,
5542 .set_rx_csum = bnx2_set_rx_csum,
5543 .get_tx_csum = ethtool_op_get_tx_csum,
5544 .set_tx_csum = ethtool_op_set_tx_csum,
5545 .get_sg = ethtool_op_get_sg,
5546 .set_sg = ethtool_op_set_sg,
5547 #ifdef BCM_TSO
5548 .get_tso = ethtool_op_get_tso,
5549 .set_tso = bnx2_set_tso,
5550 #endif
5551 .self_test_count = bnx2_self_test_count,
5552 .self_test = bnx2_self_test,
5553 .get_strings = bnx2_get_strings,
5554 .phys_id = bnx2_phys_id,
5555 .get_stats_count = bnx2_get_stats_count,
5556 .get_ethtool_stats = bnx2_get_ethtool_stats,
5557 .get_perm_addr = ethtool_op_get_perm_addr,
5558 };
5559
5560 /* Called with rtnl_lock */
5561 static int
5562 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5563 {
5564 struct mii_ioctl_data *data = if_mii(ifr);
5565 struct bnx2 *bp = netdev_priv(dev);
5566 int err;
5567
5568 switch(cmd) {
5569 case SIOCGMIIPHY:
5570 data->phy_id = bp->phy_addr;
5571
5572 /* fallthru */
5573 case SIOCGMIIREG: {
5574 u32 mii_regval;
5575
5576 spin_lock_bh(&bp->phy_lock);
5577 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
5578 spin_unlock_bh(&bp->phy_lock);
5579
5580 data->val_out = mii_regval;
5581
5582 return err;
5583 }
5584
5585 case SIOCSMIIREG:
5586 if (!capable(CAP_NET_ADMIN))
5587 return -EPERM;
5588
5589 spin_lock_bh(&bp->phy_lock);
5590 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
5591 spin_unlock_bh(&bp->phy_lock);
5592
5593 return err;
5594
5595 default:
5596 /* do nothing */
5597 break;
5598 }
5599 return -EOPNOTSUPP;
5600 }
5601
5602 /* Called with rtnl_lock */
5603 static int
5604 bnx2_change_mac_addr(struct net_device *dev, void *p)
5605 {
5606 struct sockaddr *addr = p;
5607 struct bnx2 *bp = netdev_priv(dev);
5608
5609 if (!is_valid_ether_addr(addr->sa_data))
5610 return -EINVAL;
5611
5612 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5613 if (netif_running(dev))
5614 bnx2_set_mac_addr(bp);
5615
5616 return 0;
5617 }
5618
5619 /* Called with rtnl_lock */
5620 static int
5621 bnx2_change_mtu(struct net_device *dev, int new_mtu)
5622 {
5623 struct bnx2 *bp = netdev_priv(dev);
5624
5625 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
5626 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
5627 return -EINVAL;
5628
5629 dev->mtu = new_mtu;
5630 if (netif_running(dev)) {
5631 bnx2_netif_stop(bp);
5632
5633 bnx2_init_nic(bp);
5634
5635 bnx2_netif_start(bp);
5636 }
5637 return 0;
5638 }
5639
5640 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
5641 static void
5642 poll_bnx2(struct net_device *dev)
5643 {
5644 struct bnx2 *bp = netdev_priv(dev);
5645
5646 disable_irq(bp->pdev->irq);
5647 bnx2_interrupt(bp->pdev->irq, dev);
5648 enable_irq(bp->pdev->irq);
5649 }
5650 #endif
5651
5652 static void __devinit
5653 bnx2_get_5709_media(struct bnx2 *bp)
5654 {
5655 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
5656 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
5657 u32 strap;
5658
5659 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
5660 return;
5661 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
5662 bp->phy_flags |= PHY_SERDES_FLAG;
5663 return;
5664 }
5665
5666 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
5667 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
5668 else
5669 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
5670
5671 if (PCI_FUNC(bp->pdev->devfn) == 0) {
5672 switch (strap) {
5673 case 0x4:
5674 case 0x5:
5675 case 0x6:
5676 bp->phy_flags |= PHY_SERDES_FLAG;
5677 return;
5678 }
5679 } else {
5680 switch (strap) {
5681 case 0x1:
5682 case 0x2:
5683 case 0x4:
5684 bp->phy_flags |= PHY_SERDES_FLAG;
5685 return;
5686 }
5687 }
5688 }
5689
5690 static int __devinit
5691 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
5692 {
5693 struct bnx2 *bp;
5694 unsigned long mem_len;
5695 int rc;
5696 u32 reg;
5697
5698 SET_MODULE_OWNER(dev);
5699 SET_NETDEV_DEV(dev, &pdev->dev);
5700 bp = netdev_priv(dev);
5701
5702 bp->flags = 0;
5703 bp->phy_flags = 0;
5704
5705 /* enable device (incl. PCI PM wakeup), and bus-mastering */
5706 rc = pci_enable_device(pdev);
5707 if (rc) {
5708 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.");
5709 goto err_out;
5710 }
5711
5712 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5713 dev_err(&pdev->dev,
5714 "Cannot find PCI device base address, aborting.\n");
5715 rc = -ENODEV;
5716 goto err_out_disable;
5717 }
5718
5719 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5720 if (rc) {
5721 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
5722 goto err_out_disable;
5723 }
5724
5725 pci_set_master(pdev);
5726
5727 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
5728 if (bp->pm_cap == 0) {
5729 dev_err(&pdev->dev,
5730 "Cannot find power management capability, aborting.\n");
5731 rc = -EIO;
5732 goto err_out_release;
5733 }
5734
5735 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0) {
5736 bp->flags |= USING_DAC_FLAG;
5737 if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
5738 dev_err(&pdev->dev,
5739 "pci_set_consistent_dma_mask failed, aborting.\n");
5740 rc = -EIO;
5741 goto err_out_release;
5742 }
5743 }
5744 else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0) {
5745 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
5746 rc = -EIO;
5747 goto err_out_release;
5748 }
5749
5750 bp->dev = dev;
5751 bp->pdev = pdev;
5752
5753 spin_lock_init(&bp->phy_lock);
5754 INIT_WORK(&bp->reset_task, bnx2_reset_task);
5755
5756 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
5757 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + 1);
5758 dev->mem_end = dev->mem_start + mem_len;
5759 dev->irq = pdev->irq;
5760
5761 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
5762
5763 if (!bp->regview) {
5764 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
5765 rc = -ENOMEM;
5766 goto err_out_release;
5767 }
5768
5769 /* Configure byte swap and enable write to the reg_window registers.
5770 * Rely on CPU to do target byte swapping on big endian systems
5771 * The chip's target access swapping will not swap all accesses
5772 */
5773 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
5774 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5775 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
5776
5777 bnx2_set_power_state(bp, PCI_D0);
5778
5779 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
5780
5781 if (CHIP_NUM(bp) != CHIP_NUM_5709) {
5782 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
5783 if (bp->pcix_cap == 0) {
5784 dev_err(&pdev->dev,
5785 "Cannot find PCIX capability, aborting.\n");
5786 rc = -EIO;
5787 goto err_out_unmap;
5788 }
5789 }
5790
5791 /* Get bus information. */
5792 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
5793 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
5794 u32 clkreg;
5795
5796 bp->flags |= PCIX_FLAG;
5797
5798 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
5799
5800 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
5801 switch (clkreg) {
5802 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
5803 bp->bus_speed_mhz = 133;
5804 break;
5805
5806 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
5807 bp->bus_speed_mhz = 100;
5808 break;
5809
5810 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
5811 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
5812 bp->bus_speed_mhz = 66;
5813 break;
5814
5815 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
5816 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
5817 bp->bus_speed_mhz = 50;
5818 break;
5819
5820 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
5821 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
5822 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
5823 bp->bus_speed_mhz = 33;
5824 break;
5825 }
5826 }
5827 else {
5828 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
5829 bp->bus_speed_mhz = 66;
5830 else
5831 bp->bus_speed_mhz = 33;
5832 }
5833
5834 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
5835 bp->flags |= PCI_32BIT_FLAG;
5836
5837 /* 5706A0 may falsely detect SERR and PERR. */
5838 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
5839 reg = REG_RD(bp, PCI_COMMAND);
5840 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
5841 REG_WR(bp, PCI_COMMAND, reg);
5842 }
5843 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
5844 !(bp->flags & PCIX_FLAG)) {
5845
5846 dev_err(&pdev->dev,
5847 "5706 A1 can only be used in a PCIX bus, aborting.\n");
5848 goto err_out_unmap;
5849 }
5850
5851 bnx2_init_nvram(bp);
5852
5853 reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
5854
5855 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
5856 BNX2_SHM_HDR_SIGNATURE_SIG) {
5857 u32 off = PCI_FUNC(pdev->devfn) << 2;
5858
5859 bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0 + off);
5860 } else
5861 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
5862
5863 /* Get the permanent MAC address. First we need to make sure the
5864 * firmware is actually running.
5865 */
5866 reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
5867
5868 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5869 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
5870 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
5871 rc = -ENODEV;
5872 goto err_out_unmap;
5873 }
5874
5875 bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
5876
5877 reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
5878 bp->mac_addr[0] = (u8) (reg >> 8);
5879 bp->mac_addr[1] = (u8) reg;
5880
5881 reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
5882 bp->mac_addr[2] = (u8) (reg >> 24);
5883 bp->mac_addr[3] = (u8) (reg >> 16);
5884 bp->mac_addr[4] = (u8) (reg >> 8);
5885 bp->mac_addr[5] = (u8) reg;
5886
5887 bp->tx_ring_size = MAX_TX_DESC_CNT;
5888 bnx2_set_rx_ring_size(bp, 255);
5889
5890 bp->rx_csum = 1;
5891
5892 bp->rx_offset = sizeof(struct l2_fhdr) + 2;
5893
5894 bp->tx_quick_cons_trip_int = 20;
5895 bp->tx_quick_cons_trip = 20;
5896 bp->tx_ticks_int = 80;
5897 bp->tx_ticks = 80;
5898
5899 bp->rx_quick_cons_trip_int = 6;
5900 bp->rx_quick_cons_trip = 6;
5901 bp->rx_ticks_int = 18;
5902 bp->rx_ticks = 18;
5903
5904 bp->stats_ticks = 1000000 & 0xffff00;
5905
5906 bp->timer_interval = HZ;
5907 bp->current_interval = HZ;
5908
5909 bp->phy_addr = 1;
5910
5911 /* Disable WOL support if we are running on a SERDES chip. */
5912 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5913 bnx2_get_5709_media(bp);
5914 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
5915 bp->phy_flags |= PHY_SERDES_FLAG;
5916
5917 if (bp->phy_flags & PHY_SERDES_FLAG) {
5918 bp->flags |= NO_WOL_FLAG;
5919 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
5920 bp->phy_addr = 2;
5921 reg = REG_RD_IND(bp, bp->shmem_base +
5922 BNX2_SHARED_HW_CFG_CONFIG);
5923 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
5924 bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
5925 }
5926 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
5927 CHIP_NUM(bp) == CHIP_NUM_5708)
5928 bp->phy_flags |= PHY_CRC_FIX_FLAG;
5929 else if (CHIP_ID(bp) == CHIP_ID_5709_A0)
5930 bp->phy_flags |= PHY_DIS_EARLY_DAC_FLAG;
5931
5932 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
5933 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
5934 (CHIP_ID(bp) == CHIP_ID_5708_B1))
5935 bp->flags |= NO_WOL_FLAG;
5936
5937 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
5938 bp->tx_quick_cons_trip_int =
5939 bp->tx_quick_cons_trip;
5940 bp->tx_ticks_int = bp->tx_ticks;
5941 bp->rx_quick_cons_trip_int =
5942 bp->rx_quick_cons_trip;
5943 bp->rx_ticks_int = bp->rx_ticks;
5944 bp->comp_prod_trip_int = bp->comp_prod_trip;
5945 bp->com_ticks_int = bp->com_ticks;
5946 bp->cmd_ticks_int = bp->cmd_ticks;
5947 }
5948
5949 /* Disable MSI on 5706 if AMD 8132 bridge is found.
5950 *
5951 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
5952 * with byte enables disabled on the unused 32-bit word. This is legal
5953 * but causes problems on the AMD 8132 which will eventually stop
5954 * responding after a while.
5955 *
5956 * AMD believes this incompatibility is unique to the 5706, and
5957 * prefers to locally disable MSI rather than globally disabling it
5958 * using pci_msi_quirk.
5959 */
5960 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
5961 struct pci_dev *amd_8132 = NULL;
5962
5963 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
5964 PCI_DEVICE_ID_AMD_8132_BRIDGE,
5965 amd_8132))) {
5966 u8 rev;
5967
5968 pci_read_config_byte(amd_8132, PCI_REVISION_ID, &rev);
5969 if (rev >= 0x10 && rev <= 0x13) {
5970 disable_msi = 1;
5971 pci_dev_put(amd_8132);
5972 break;
5973 }
5974 }
5975 }
5976
5977 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
5978 bp->req_line_speed = 0;
5979 if (bp->phy_flags & PHY_SERDES_FLAG) {
5980 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
5981
5982 reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
5983 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
5984 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
5985 bp->autoneg = 0;
5986 bp->req_line_speed = bp->line_speed = SPEED_1000;
5987 bp->req_duplex = DUPLEX_FULL;
5988 }
5989 }
5990 else {
5991 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
5992 }
5993
5994 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
5995
5996 init_timer(&bp->timer);
5997 bp->timer.expires = RUN_AT(bp->timer_interval);
5998 bp->timer.data = (unsigned long) bp;
5999 bp->timer.function = bnx2_timer;
6000
6001 return 0;
6002
6003 err_out_unmap:
6004 if (bp->regview) {
6005 iounmap(bp->regview);
6006 bp->regview = NULL;
6007 }
6008
6009 err_out_release:
6010 pci_release_regions(pdev);
6011
6012 err_out_disable:
6013 pci_disable_device(pdev);
6014 pci_set_drvdata(pdev, NULL);
6015
6016 err_out:
6017 return rc;
6018 }
6019
6020 static int __devinit
6021 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6022 {
6023 static int version_printed = 0;
6024 struct net_device *dev = NULL;
6025 struct bnx2 *bp;
6026 int rc, i;
6027
6028 if (version_printed++ == 0)
6029 printk(KERN_INFO "%s", version);
6030
6031 /* dev zeroed in init_etherdev */
6032 dev = alloc_etherdev(sizeof(*bp));
6033
6034 if (!dev)
6035 return -ENOMEM;
6036
6037 rc = bnx2_init_board(pdev, dev);
6038 if (rc < 0) {
6039 free_netdev(dev);
6040 return rc;
6041 }
6042
6043 dev->open = bnx2_open;
6044 dev->hard_start_xmit = bnx2_start_xmit;
6045 dev->stop = bnx2_close;
6046 dev->get_stats = bnx2_get_stats;
6047 dev->set_multicast_list = bnx2_set_rx_mode;
6048 dev->do_ioctl = bnx2_ioctl;
6049 dev->set_mac_address = bnx2_change_mac_addr;
6050 dev->change_mtu = bnx2_change_mtu;
6051 dev->tx_timeout = bnx2_tx_timeout;
6052 dev->watchdog_timeo = TX_TIMEOUT;
6053 #ifdef BCM_VLAN
6054 dev->vlan_rx_register = bnx2_vlan_rx_register;
6055 dev->vlan_rx_kill_vid = bnx2_vlan_rx_kill_vid;
6056 #endif
6057 dev->poll = bnx2_poll;
6058 dev->ethtool_ops = &bnx2_ethtool_ops;
6059 dev->weight = 64;
6060
6061 bp = netdev_priv(dev);
6062
6063 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
6064 dev->poll_controller = poll_bnx2;
6065 #endif
6066
6067 if ((rc = register_netdev(dev))) {
6068 dev_err(&pdev->dev, "Cannot register net device\n");
6069 if (bp->regview)
6070 iounmap(bp->regview);
6071 pci_release_regions(pdev);
6072 pci_disable_device(pdev);
6073 pci_set_drvdata(pdev, NULL);
6074 free_netdev(dev);
6075 return rc;
6076 }
6077
6078 pci_set_drvdata(pdev, dev);
6079
6080 memcpy(dev->dev_addr, bp->mac_addr, 6);
6081 memcpy(dev->perm_addr, bp->mac_addr, 6);
6082 bp->name = board_info[ent->driver_data].name,
6083 printk(KERN_INFO "%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, "
6084 "IRQ %d, ",
6085 dev->name,
6086 bp->name,
6087 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
6088 ((CHIP_ID(bp) & 0x0ff0) >> 4),
6089 ((bp->flags & PCIX_FLAG) ? "-X" : ""),
6090 ((bp->flags & PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
6091 bp->bus_speed_mhz,
6092 dev->base_addr,
6093 bp->pdev->irq);
6094
6095 printk("node addr ");
6096 for (i = 0; i < 6; i++)
6097 printk("%2.2x", dev->dev_addr[i]);
6098 printk("\n");
6099
6100 dev->features |= NETIF_F_SG;
6101 if (bp->flags & USING_DAC_FLAG)
6102 dev->features |= NETIF_F_HIGHDMA;
6103 dev->features |= NETIF_F_IP_CSUM;
6104 #ifdef BCM_VLAN
6105 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6106 #endif
6107 #ifdef BCM_TSO
6108 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
6109 #endif
6110
6111 netif_carrier_off(bp->dev);
6112
6113 return 0;
6114 }
6115
6116 static void __devexit
6117 bnx2_remove_one(struct pci_dev *pdev)
6118 {
6119 struct net_device *dev = pci_get_drvdata(pdev);
6120 struct bnx2 *bp = netdev_priv(dev);
6121
6122 flush_scheduled_work();
6123
6124 unregister_netdev(dev);
6125
6126 if (bp->regview)
6127 iounmap(bp->regview);
6128
6129 free_netdev(dev);
6130 pci_release_regions(pdev);
6131 pci_disable_device(pdev);
6132 pci_set_drvdata(pdev, NULL);
6133 }
6134
6135 static int
6136 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
6137 {
6138 struct net_device *dev = pci_get_drvdata(pdev);
6139 struct bnx2 *bp = netdev_priv(dev);
6140 u32 reset_code;
6141
6142 if (!netif_running(dev))
6143 return 0;
6144
6145 flush_scheduled_work();
6146 bnx2_netif_stop(bp);
6147 netif_device_detach(dev);
6148 del_timer_sync(&bp->timer);
6149 if (bp->flags & NO_WOL_FLAG)
6150 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
6151 else if (bp->wol)
6152 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
6153 else
6154 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
6155 bnx2_reset_chip(bp, reset_code);
6156 bnx2_free_skbs(bp);
6157 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
6158 return 0;
6159 }
6160
6161 static int
6162 bnx2_resume(struct pci_dev *pdev)
6163 {
6164 struct net_device *dev = pci_get_drvdata(pdev);
6165 struct bnx2 *bp = netdev_priv(dev);
6166
6167 if (!netif_running(dev))
6168 return 0;
6169
6170 bnx2_set_power_state(bp, PCI_D0);
6171 netif_device_attach(dev);
6172 bnx2_init_nic(bp);
6173 bnx2_netif_start(bp);
6174 return 0;
6175 }
6176
6177 static struct pci_driver bnx2_pci_driver = {
6178 .name = DRV_MODULE_NAME,
6179 .id_table = bnx2_pci_tbl,
6180 .probe = bnx2_init_one,
6181 .remove = __devexit_p(bnx2_remove_one),
6182 .suspend = bnx2_suspend,
6183 .resume = bnx2_resume,
6184 };
6185
6186 static int __init bnx2_init(void)
6187 {
6188 return pci_register_driver(&bnx2_pci_driver);
6189 }
6190
6191 static void __exit bnx2_cleanup(void)
6192 {
6193 pci_unregister_driver(&bnx2_pci_driver);
6194 }
6195
6196 module_init(bnx2_init);
6197 module_exit(bnx2_cleanup);
6198
6199
6200
This page took 0.160077 seconds and 6 git commands to generate.