Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[deliverable/linux.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2010 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
31 #include <asm/io.h>
32 #include <asm/irq.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if_vlan.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/checksum.h>
43 #include <linux/workqueue.h>
44 #include <linux/crc32.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/firmware.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50
51 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
52 #define BCM_CNIC 1
53 #include "cnic_if.h"
54 #endif
55 #include "bnx2.h"
56 #include "bnx2_fw.h"
57
58 #define DRV_MODULE_NAME "bnx2"
59 #define DRV_MODULE_VERSION "2.0.21"
60 #define DRV_MODULE_RELDATE "Dec 23, 2010"
61 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.1.fw"
62 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
63 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1.fw"
64 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
65 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
66
67 #define RUN_AT(x) (jiffies + (x))
68
69 /* Time in jiffies before concluding the transmitter is hung. */
70 #define TX_TIMEOUT (5*HZ)
71
72 static char version[] __devinitdata =
73 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
74
75 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
76 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
77 MODULE_LICENSE("GPL");
78 MODULE_VERSION(DRV_MODULE_VERSION);
79 MODULE_FIRMWARE(FW_MIPS_FILE_06);
80 MODULE_FIRMWARE(FW_RV2P_FILE_06);
81 MODULE_FIRMWARE(FW_MIPS_FILE_09);
82 MODULE_FIRMWARE(FW_RV2P_FILE_09);
83 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
84
85 static int disable_msi = 0;
86
87 module_param(disable_msi, int, 0);
88 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
89
90 typedef enum {
91 BCM5706 = 0,
92 NC370T,
93 NC370I,
94 BCM5706S,
95 NC370F,
96 BCM5708,
97 BCM5708S,
98 BCM5709,
99 BCM5709S,
100 BCM5716,
101 BCM5716S,
102 } board_t;
103
104 /* indexed by board_t, above */
105 static struct {
106 char *name;
107 } board_info[] __devinitdata = {
108 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
109 { "HP NC370T Multifunction Gigabit Server Adapter" },
110 { "HP NC370i Multifunction Gigabit Server Adapter" },
111 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
112 { "HP NC370F Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
115 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
119 };
120
121 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
122 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
123 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
124 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
125 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
126 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
127 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
128 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
130 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
131 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
132 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
134 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
135 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
136 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
137 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
138 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
139 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
140 { PCI_VENDOR_ID_BROADCOM, 0x163b,
141 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
142 { PCI_VENDOR_ID_BROADCOM, 0x163c,
143 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
144 { 0, }
145 };
146
147 static const struct flash_spec flash_table[] =
148 {
149 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
150 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
151 /* Slow EEPROM */
152 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
153 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
154 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
155 "EEPROM - slow"},
156 /* Expansion entry 0001 */
157 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
158 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
159 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
160 "Entry 0001"},
161 /* Saifun SA25F010 (non-buffered flash) */
162 /* strap, cfg1, & write1 need updates */
163 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
164 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
165 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
166 "Non-buffered flash (128kB)"},
167 /* Saifun SA25F020 (non-buffered flash) */
168 /* strap, cfg1, & write1 need updates */
169 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
170 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
171 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
172 "Non-buffered flash (256kB)"},
173 /* Expansion entry 0100 */
174 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
175 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
177 "Entry 0100"},
178 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
179 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
180 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
181 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
182 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
183 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
184 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
185 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
187 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
188 /* Saifun SA25F005 (non-buffered flash) */
189 /* strap, cfg1, & write1 need updates */
190 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
191 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
192 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
193 "Non-buffered flash (64kB)"},
194 /* Fast EEPROM */
195 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
196 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
197 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
198 "EEPROM - fast"},
199 /* Expansion entry 1001 */
200 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
203 "Entry 1001"},
204 /* Expansion entry 1010 */
205 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 "Entry 1010"},
209 /* ATMEL AT45DB011B (buffered flash) */
210 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
211 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
212 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
213 "Buffered flash (128kB)"},
214 /* Expansion entry 1100 */
215 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
217 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
218 "Entry 1100"},
219 /* Expansion entry 1101 */
220 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 "Entry 1101"},
224 /* Ateml Expansion entry 1110 */
225 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
226 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
227 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
228 "Entry 1110 (Atmel)"},
229 /* ATMEL AT45DB021B (buffered flash) */
230 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
231 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
233 "Buffered flash (256kB)"},
234 };
235
236 static const struct flash_spec flash_5709 = {
237 .flags = BNX2_NV_BUFFERED,
238 .page_bits = BCM5709_FLASH_PAGE_BITS,
239 .page_size = BCM5709_FLASH_PAGE_SIZE,
240 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
241 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
242 .name = "5709 Buffered flash (256kB)",
243 };
244
245 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
246
247 static void bnx2_init_napi(struct bnx2 *bp);
248 static void bnx2_del_napi(struct bnx2 *bp);
249
250 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
251 {
252 u32 diff;
253
254 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
255 barrier();
256
257 /* The ring uses 256 indices for 255 entries, one of them
258 * needs to be skipped.
259 */
260 diff = txr->tx_prod - txr->tx_cons;
261 if (unlikely(diff >= TX_DESC_CNT)) {
262 diff &= 0xffff;
263 if (diff == TX_DESC_CNT)
264 diff = MAX_TX_DESC_CNT;
265 }
266 return bp->tx_ring_size - diff;
267 }
268
269 static u32
270 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
271 {
272 u32 val;
273
274 spin_lock_bh(&bp->indirect_lock);
275 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
276 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
277 spin_unlock_bh(&bp->indirect_lock);
278 return val;
279 }
280
281 static void
282 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
283 {
284 spin_lock_bh(&bp->indirect_lock);
285 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
286 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
287 spin_unlock_bh(&bp->indirect_lock);
288 }
289
290 static void
291 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
292 {
293 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
294 }
295
296 static u32
297 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
298 {
299 return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
300 }
301
302 static void
303 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
304 {
305 offset += cid_addr;
306 spin_lock_bh(&bp->indirect_lock);
307 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
308 int i;
309
310 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
311 REG_WR(bp, BNX2_CTX_CTX_CTRL,
312 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
313 for (i = 0; i < 5; i++) {
314 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
315 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
316 break;
317 udelay(5);
318 }
319 } else {
320 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
321 REG_WR(bp, BNX2_CTX_DATA, val);
322 }
323 spin_unlock_bh(&bp->indirect_lock);
324 }
325
326 #ifdef BCM_CNIC
327 static int
328 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
329 {
330 struct bnx2 *bp = netdev_priv(dev);
331 struct drv_ctl_io *io = &info->data.io;
332
333 switch (info->cmd) {
334 case DRV_CTL_IO_WR_CMD:
335 bnx2_reg_wr_ind(bp, io->offset, io->data);
336 break;
337 case DRV_CTL_IO_RD_CMD:
338 io->data = bnx2_reg_rd_ind(bp, io->offset);
339 break;
340 case DRV_CTL_CTX_WR_CMD:
341 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
342 break;
343 default:
344 return -EINVAL;
345 }
346 return 0;
347 }
348
349 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
350 {
351 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
352 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
353 int sb_id;
354
355 if (bp->flags & BNX2_FLAG_USING_MSIX) {
356 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
357 bnapi->cnic_present = 0;
358 sb_id = bp->irq_nvecs;
359 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
360 } else {
361 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
362 bnapi->cnic_tag = bnapi->last_status_idx;
363 bnapi->cnic_present = 1;
364 sb_id = 0;
365 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
366 }
367
368 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
369 cp->irq_arr[0].status_blk = (void *)
370 ((unsigned long) bnapi->status_blk.msi +
371 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
372 cp->irq_arr[0].status_blk_num = sb_id;
373 cp->num_irq = 1;
374 }
375
376 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
377 void *data)
378 {
379 struct bnx2 *bp = netdev_priv(dev);
380 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
381
382 if (ops == NULL)
383 return -EINVAL;
384
385 if (cp->drv_state & CNIC_DRV_STATE_REGD)
386 return -EBUSY;
387
388 bp->cnic_data = data;
389 rcu_assign_pointer(bp->cnic_ops, ops);
390
391 cp->num_irq = 0;
392 cp->drv_state = CNIC_DRV_STATE_REGD;
393
394 bnx2_setup_cnic_irq_info(bp);
395
396 return 0;
397 }
398
399 static int bnx2_unregister_cnic(struct net_device *dev)
400 {
401 struct bnx2 *bp = netdev_priv(dev);
402 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
403 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
404
405 mutex_lock(&bp->cnic_lock);
406 cp->drv_state = 0;
407 bnapi->cnic_present = 0;
408 rcu_assign_pointer(bp->cnic_ops, NULL);
409 mutex_unlock(&bp->cnic_lock);
410 synchronize_rcu();
411 return 0;
412 }
413
414 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
415 {
416 struct bnx2 *bp = netdev_priv(dev);
417 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
418
419 cp->drv_owner = THIS_MODULE;
420 cp->chip_id = bp->chip_id;
421 cp->pdev = bp->pdev;
422 cp->io_base = bp->regview;
423 cp->drv_ctl = bnx2_drv_ctl;
424 cp->drv_register_cnic = bnx2_register_cnic;
425 cp->drv_unregister_cnic = bnx2_unregister_cnic;
426
427 return cp;
428 }
429 EXPORT_SYMBOL(bnx2_cnic_probe);
430
431 static void
432 bnx2_cnic_stop(struct bnx2 *bp)
433 {
434 struct cnic_ops *c_ops;
435 struct cnic_ctl_info info;
436
437 mutex_lock(&bp->cnic_lock);
438 c_ops = bp->cnic_ops;
439 if (c_ops) {
440 info.cmd = CNIC_CTL_STOP_CMD;
441 c_ops->cnic_ctl(bp->cnic_data, &info);
442 }
443 mutex_unlock(&bp->cnic_lock);
444 }
445
446 static void
447 bnx2_cnic_start(struct bnx2 *bp)
448 {
449 struct cnic_ops *c_ops;
450 struct cnic_ctl_info info;
451
452 mutex_lock(&bp->cnic_lock);
453 c_ops = bp->cnic_ops;
454 if (c_ops) {
455 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
456 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
457
458 bnapi->cnic_tag = bnapi->last_status_idx;
459 }
460 info.cmd = CNIC_CTL_START_CMD;
461 c_ops->cnic_ctl(bp->cnic_data, &info);
462 }
463 mutex_unlock(&bp->cnic_lock);
464 }
465
466 #else
467
468 static void
469 bnx2_cnic_stop(struct bnx2 *bp)
470 {
471 }
472
473 static void
474 bnx2_cnic_start(struct bnx2 *bp)
475 {
476 }
477
478 #endif
479
480 static int
481 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
482 {
483 u32 val1;
484 int i, ret;
485
486 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
487 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
488 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
489
490 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
491 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
492
493 udelay(40);
494 }
495
496 val1 = (bp->phy_addr << 21) | (reg << 16) |
497 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
498 BNX2_EMAC_MDIO_COMM_START_BUSY;
499 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
500
501 for (i = 0; i < 50; i++) {
502 udelay(10);
503
504 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
505 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
506 udelay(5);
507
508 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
509 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
510
511 break;
512 }
513 }
514
515 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
516 *val = 0x0;
517 ret = -EBUSY;
518 }
519 else {
520 *val = val1;
521 ret = 0;
522 }
523
524 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
525 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
526 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
527
528 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
529 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
530
531 udelay(40);
532 }
533
534 return ret;
535 }
536
537 static int
538 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
539 {
540 u32 val1;
541 int i, ret;
542
543 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
544 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
545 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
546
547 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
548 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
549
550 udelay(40);
551 }
552
553 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
554 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
555 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
556 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
557
558 for (i = 0; i < 50; i++) {
559 udelay(10);
560
561 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
562 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
563 udelay(5);
564 break;
565 }
566 }
567
568 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
569 ret = -EBUSY;
570 else
571 ret = 0;
572
573 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
574 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
575 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
576
577 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
578 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
579
580 udelay(40);
581 }
582
583 return ret;
584 }
585
586 static void
587 bnx2_disable_int(struct bnx2 *bp)
588 {
589 int i;
590 struct bnx2_napi *bnapi;
591
592 for (i = 0; i < bp->irq_nvecs; i++) {
593 bnapi = &bp->bnx2_napi[i];
594 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
595 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
596 }
597 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
598 }
599
600 static void
601 bnx2_enable_int(struct bnx2 *bp)
602 {
603 int i;
604 struct bnx2_napi *bnapi;
605
606 for (i = 0; i < bp->irq_nvecs; i++) {
607 bnapi = &bp->bnx2_napi[i];
608
609 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
610 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
611 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
612 bnapi->last_status_idx);
613
614 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
615 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
616 bnapi->last_status_idx);
617 }
618 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
619 }
620
621 static void
622 bnx2_disable_int_sync(struct bnx2 *bp)
623 {
624 int i;
625
626 atomic_inc(&bp->intr_sem);
627 if (!netif_running(bp->dev))
628 return;
629
630 bnx2_disable_int(bp);
631 for (i = 0; i < bp->irq_nvecs; i++)
632 synchronize_irq(bp->irq_tbl[i].vector);
633 }
634
635 static void
636 bnx2_napi_disable(struct bnx2 *bp)
637 {
638 int i;
639
640 for (i = 0; i < bp->irq_nvecs; i++)
641 napi_disable(&bp->bnx2_napi[i].napi);
642 }
643
644 static void
645 bnx2_napi_enable(struct bnx2 *bp)
646 {
647 int i;
648
649 for (i = 0; i < bp->irq_nvecs; i++)
650 napi_enable(&bp->bnx2_napi[i].napi);
651 }
652
653 static void
654 bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
655 {
656 if (stop_cnic)
657 bnx2_cnic_stop(bp);
658 if (netif_running(bp->dev)) {
659 bnx2_napi_disable(bp);
660 netif_tx_disable(bp->dev);
661 }
662 bnx2_disable_int_sync(bp);
663 netif_carrier_off(bp->dev); /* prevent tx timeout */
664 }
665
666 static void
667 bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
668 {
669 if (atomic_dec_and_test(&bp->intr_sem)) {
670 if (netif_running(bp->dev)) {
671 netif_tx_wake_all_queues(bp->dev);
672 spin_lock_bh(&bp->phy_lock);
673 if (bp->link_up)
674 netif_carrier_on(bp->dev);
675 spin_unlock_bh(&bp->phy_lock);
676 bnx2_napi_enable(bp);
677 bnx2_enable_int(bp);
678 if (start_cnic)
679 bnx2_cnic_start(bp);
680 }
681 }
682 }
683
684 static void
685 bnx2_free_tx_mem(struct bnx2 *bp)
686 {
687 int i;
688
689 for (i = 0; i < bp->num_tx_rings; i++) {
690 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
691 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
692
693 if (txr->tx_desc_ring) {
694 dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
695 txr->tx_desc_ring,
696 txr->tx_desc_mapping);
697 txr->tx_desc_ring = NULL;
698 }
699 kfree(txr->tx_buf_ring);
700 txr->tx_buf_ring = NULL;
701 }
702 }
703
704 static void
705 bnx2_free_rx_mem(struct bnx2 *bp)
706 {
707 int i;
708
709 for (i = 0; i < bp->num_rx_rings; i++) {
710 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
711 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
712 int j;
713
714 for (j = 0; j < bp->rx_max_ring; j++) {
715 if (rxr->rx_desc_ring[j])
716 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
717 rxr->rx_desc_ring[j],
718 rxr->rx_desc_mapping[j]);
719 rxr->rx_desc_ring[j] = NULL;
720 }
721 vfree(rxr->rx_buf_ring);
722 rxr->rx_buf_ring = NULL;
723
724 for (j = 0; j < bp->rx_max_pg_ring; j++) {
725 if (rxr->rx_pg_desc_ring[j])
726 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
727 rxr->rx_pg_desc_ring[j],
728 rxr->rx_pg_desc_mapping[j]);
729 rxr->rx_pg_desc_ring[j] = NULL;
730 }
731 vfree(rxr->rx_pg_ring);
732 rxr->rx_pg_ring = NULL;
733 }
734 }
735
736 static int
737 bnx2_alloc_tx_mem(struct bnx2 *bp)
738 {
739 int i;
740
741 for (i = 0; i < bp->num_tx_rings; i++) {
742 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
743 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
744
745 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
746 if (txr->tx_buf_ring == NULL)
747 return -ENOMEM;
748
749 txr->tx_desc_ring =
750 dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
751 &txr->tx_desc_mapping, GFP_KERNEL);
752 if (txr->tx_desc_ring == NULL)
753 return -ENOMEM;
754 }
755 return 0;
756 }
757
758 static int
759 bnx2_alloc_rx_mem(struct bnx2 *bp)
760 {
761 int i;
762
763 for (i = 0; i < bp->num_rx_rings; i++) {
764 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
765 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
766 int j;
767
768 rxr->rx_buf_ring =
769 vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
770 if (rxr->rx_buf_ring == NULL)
771 return -ENOMEM;
772
773 for (j = 0; j < bp->rx_max_ring; j++) {
774 rxr->rx_desc_ring[j] =
775 dma_alloc_coherent(&bp->pdev->dev,
776 RXBD_RING_SIZE,
777 &rxr->rx_desc_mapping[j],
778 GFP_KERNEL);
779 if (rxr->rx_desc_ring[j] == NULL)
780 return -ENOMEM;
781
782 }
783
784 if (bp->rx_pg_ring_size) {
785 rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
786 bp->rx_max_pg_ring);
787 if (rxr->rx_pg_ring == NULL)
788 return -ENOMEM;
789
790 }
791
792 for (j = 0; j < bp->rx_max_pg_ring; j++) {
793 rxr->rx_pg_desc_ring[j] =
794 dma_alloc_coherent(&bp->pdev->dev,
795 RXBD_RING_SIZE,
796 &rxr->rx_pg_desc_mapping[j],
797 GFP_KERNEL);
798 if (rxr->rx_pg_desc_ring[j] == NULL)
799 return -ENOMEM;
800
801 }
802 }
803 return 0;
804 }
805
806 static void
807 bnx2_free_mem(struct bnx2 *bp)
808 {
809 int i;
810 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
811
812 bnx2_free_tx_mem(bp);
813 bnx2_free_rx_mem(bp);
814
815 for (i = 0; i < bp->ctx_pages; i++) {
816 if (bp->ctx_blk[i]) {
817 dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE,
818 bp->ctx_blk[i],
819 bp->ctx_blk_mapping[i]);
820 bp->ctx_blk[i] = NULL;
821 }
822 }
823 if (bnapi->status_blk.msi) {
824 dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
825 bnapi->status_blk.msi,
826 bp->status_blk_mapping);
827 bnapi->status_blk.msi = NULL;
828 bp->stats_blk = NULL;
829 }
830 }
831
832 static int
833 bnx2_alloc_mem(struct bnx2 *bp)
834 {
835 int i, status_blk_size, err;
836 struct bnx2_napi *bnapi;
837 void *status_blk;
838
839 /* Combine status and statistics blocks into one allocation. */
840 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
841 if (bp->flags & BNX2_FLAG_MSIX_CAP)
842 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
843 BNX2_SBLK_MSIX_ALIGN_SIZE);
844 bp->status_stats_size = status_blk_size +
845 sizeof(struct statistics_block);
846
847 status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
848 &bp->status_blk_mapping, GFP_KERNEL);
849 if (status_blk == NULL)
850 goto alloc_mem_err;
851
852 memset(status_blk, 0, bp->status_stats_size);
853
854 bnapi = &bp->bnx2_napi[0];
855 bnapi->status_blk.msi = status_blk;
856 bnapi->hw_tx_cons_ptr =
857 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
858 bnapi->hw_rx_cons_ptr =
859 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
860 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
861 for (i = 1; i < bp->irq_nvecs; i++) {
862 struct status_block_msix *sblk;
863
864 bnapi = &bp->bnx2_napi[i];
865
866 sblk = (void *) (status_blk +
867 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
868 bnapi->status_blk.msix = sblk;
869 bnapi->hw_tx_cons_ptr =
870 &sblk->status_tx_quick_consumer_index;
871 bnapi->hw_rx_cons_ptr =
872 &sblk->status_rx_quick_consumer_index;
873 bnapi->int_num = i << 24;
874 }
875 }
876
877 bp->stats_blk = status_blk + status_blk_size;
878
879 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
880
881 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
882 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
883 if (bp->ctx_pages == 0)
884 bp->ctx_pages = 1;
885 for (i = 0; i < bp->ctx_pages; i++) {
886 bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
887 BCM_PAGE_SIZE,
888 &bp->ctx_blk_mapping[i],
889 GFP_KERNEL);
890 if (bp->ctx_blk[i] == NULL)
891 goto alloc_mem_err;
892 }
893 }
894
895 err = bnx2_alloc_rx_mem(bp);
896 if (err)
897 goto alloc_mem_err;
898
899 err = bnx2_alloc_tx_mem(bp);
900 if (err)
901 goto alloc_mem_err;
902
903 return 0;
904
905 alloc_mem_err:
906 bnx2_free_mem(bp);
907 return -ENOMEM;
908 }
909
910 static void
911 bnx2_report_fw_link(struct bnx2 *bp)
912 {
913 u32 fw_link_status = 0;
914
915 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
916 return;
917
918 if (bp->link_up) {
919 u32 bmsr;
920
921 switch (bp->line_speed) {
922 case SPEED_10:
923 if (bp->duplex == DUPLEX_HALF)
924 fw_link_status = BNX2_LINK_STATUS_10HALF;
925 else
926 fw_link_status = BNX2_LINK_STATUS_10FULL;
927 break;
928 case SPEED_100:
929 if (bp->duplex == DUPLEX_HALF)
930 fw_link_status = BNX2_LINK_STATUS_100HALF;
931 else
932 fw_link_status = BNX2_LINK_STATUS_100FULL;
933 break;
934 case SPEED_1000:
935 if (bp->duplex == DUPLEX_HALF)
936 fw_link_status = BNX2_LINK_STATUS_1000HALF;
937 else
938 fw_link_status = BNX2_LINK_STATUS_1000FULL;
939 break;
940 case SPEED_2500:
941 if (bp->duplex == DUPLEX_HALF)
942 fw_link_status = BNX2_LINK_STATUS_2500HALF;
943 else
944 fw_link_status = BNX2_LINK_STATUS_2500FULL;
945 break;
946 }
947
948 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
949
950 if (bp->autoneg) {
951 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
952
953 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
954 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
955
956 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
957 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
958 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
959 else
960 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
961 }
962 }
963 else
964 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
965
966 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
967 }
968
969 static char *
970 bnx2_xceiver_str(struct bnx2 *bp)
971 {
972 return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
973 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
974 "Copper");
975 }
976
977 static void
978 bnx2_report_link(struct bnx2 *bp)
979 {
980 if (bp->link_up) {
981 netif_carrier_on(bp->dev);
982 netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
983 bnx2_xceiver_str(bp),
984 bp->line_speed,
985 bp->duplex == DUPLEX_FULL ? "full" : "half");
986
987 if (bp->flow_ctrl) {
988 if (bp->flow_ctrl & FLOW_CTRL_RX) {
989 pr_cont(", receive ");
990 if (bp->flow_ctrl & FLOW_CTRL_TX)
991 pr_cont("& transmit ");
992 }
993 else {
994 pr_cont(", transmit ");
995 }
996 pr_cont("flow control ON");
997 }
998 pr_cont("\n");
999 } else {
1000 netif_carrier_off(bp->dev);
1001 netdev_err(bp->dev, "NIC %s Link is Down\n",
1002 bnx2_xceiver_str(bp));
1003 }
1004
1005 bnx2_report_fw_link(bp);
1006 }
1007
1008 static void
1009 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1010 {
1011 u32 local_adv, remote_adv;
1012
1013 bp->flow_ctrl = 0;
1014 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1015 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1016
1017 if (bp->duplex == DUPLEX_FULL) {
1018 bp->flow_ctrl = bp->req_flow_ctrl;
1019 }
1020 return;
1021 }
1022
1023 if (bp->duplex != DUPLEX_FULL) {
1024 return;
1025 }
1026
1027 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1028 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1029 u32 val;
1030
1031 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1032 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1033 bp->flow_ctrl |= FLOW_CTRL_TX;
1034 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1035 bp->flow_ctrl |= FLOW_CTRL_RX;
1036 return;
1037 }
1038
1039 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1040 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1041
1042 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1043 u32 new_local_adv = 0;
1044 u32 new_remote_adv = 0;
1045
1046 if (local_adv & ADVERTISE_1000XPAUSE)
1047 new_local_adv |= ADVERTISE_PAUSE_CAP;
1048 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1049 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1050 if (remote_adv & ADVERTISE_1000XPAUSE)
1051 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1052 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1053 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1054
1055 local_adv = new_local_adv;
1056 remote_adv = new_remote_adv;
1057 }
1058
1059 /* See Table 28B-3 of 802.3ab-1999 spec. */
1060 if (local_adv & ADVERTISE_PAUSE_CAP) {
1061 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1062 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1063 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1064 }
1065 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1066 bp->flow_ctrl = FLOW_CTRL_RX;
1067 }
1068 }
1069 else {
1070 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1071 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1072 }
1073 }
1074 }
1075 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1076 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1077 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1078
1079 bp->flow_ctrl = FLOW_CTRL_TX;
1080 }
1081 }
1082 }
1083
1084 static int
1085 bnx2_5709s_linkup(struct bnx2 *bp)
1086 {
1087 u32 val, speed;
1088
1089 bp->link_up = 1;
1090
1091 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1092 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1093 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1094
1095 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1096 bp->line_speed = bp->req_line_speed;
1097 bp->duplex = bp->req_duplex;
1098 return 0;
1099 }
1100 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1101 switch (speed) {
1102 case MII_BNX2_GP_TOP_AN_SPEED_10:
1103 bp->line_speed = SPEED_10;
1104 break;
1105 case MII_BNX2_GP_TOP_AN_SPEED_100:
1106 bp->line_speed = SPEED_100;
1107 break;
1108 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1109 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1110 bp->line_speed = SPEED_1000;
1111 break;
1112 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1113 bp->line_speed = SPEED_2500;
1114 break;
1115 }
1116 if (val & MII_BNX2_GP_TOP_AN_FD)
1117 bp->duplex = DUPLEX_FULL;
1118 else
1119 bp->duplex = DUPLEX_HALF;
1120 return 0;
1121 }
1122
1123 static int
1124 bnx2_5708s_linkup(struct bnx2 *bp)
1125 {
1126 u32 val;
1127
1128 bp->link_up = 1;
1129 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1130 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1131 case BCM5708S_1000X_STAT1_SPEED_10:
1132 bp->line_speed = SPEED_10;
1133 break;
1134 case BCM5708S_1000X_STAT1_SPEED_100:
1135 bp->line_speed = SPEED_100;
1136 break;
1137 case BCM5708S_1000X_STAT1_SPEED_1G:
1138 bp->line_speed = SPEED_1000;
1139 break;
1140 case BCM5708S_1000X_STAT1_SPEED_2G5:
1141 bp->line_speed = SPEED_2500;
1142 break;
1143 }
1144 if (val & BCM5708S_1000X_STAT1_FD)
1145 bp->duplex = DUPLEX_FULL;
1146 else
1147 bp->duplex = DUPLEX_HALF;
1148
1149 return 0;
1150 }
1151
1152 static int
1153 bnx2_5706s_linkup(struct bnx2 *bp)
1154 {
1155 u32 bmcr, local_adv, remote_adv, common;
1156
1157 bp->link_up = 1;
1158 bp->line_speed = SPEED_1000;
1159
1160 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1161 if (bmcr & BMCR_FULLDPLX) {
1162 bp->duplex = DUPLEX_FULL;
1163 }
1164 else {
1165 bp->duplex = DUPLEX_HALF;
1166 }
1167
1168 if (!(bmcr & BMCR_ANENABLE)) {
1169 return 0;
1170 }
1171
1172 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1173 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1174
1175 common = local_adv & remote_adv;
1176 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1177
1178 if (common & ADVERTISE_1000XFULL) {
1179 bp->duplex = DUPLEX_FULL;
1180 }
1181 else {
1182 bp->duplex = DUPLEX_HALF;
1183 }
1184 }
1185
1186 return 0;
1187 }
1188
1189 static int
1190 bnx2_copper_linkup(struct bnx2 *bp)
1191 {
1192 u32 bmcr;
1193
1194 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1195 if (bmcr & BMCR_ANENABLE) {
1196 u32 local_adv, remote_adv, common;
1197
1198 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1199 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1200
1201 common = local_adv & (remote_adv >> 2);
1202 if (common & ADVERTISE_1000FULL) {
1203 bp->line_speed = SPEED_1000;
1204 bp->duplex = DUPLEX_FULL;
1205 }
1206 else if (common & ADVERTISE_1000HALF) {
1207 bp->line_speed = SPEED_1000;
1208 bp->duplex = DUPLEX_HALF;
1209 }
1210 else {
1211 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1212 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1213
1214 common = local_adv & remote_adv;
1215 if (common & ADVERTISE_100FULL) {
1216 bp->line_speed = SPEED_100;
1217 bp->duplex = DUPLEX_FULL;
1218 }
1219 else if (common & ADVERTISE_100HALF) {
1220 bp->line_speed = SPEED_100;
1221 bp->duplex = DUPLEX_HALF;
1222 }
1223 else if (common & ADVERTISE_10FULL) {
1224 bp->line_speed = SPEED_10;
1225 bp->duplex = DUPLEX_FULL;
1226 }
1227 else if (common & ADVERTISE_10HALF) {
1228 bp->line_speed = SPEED_10;
1229 bp->duplex = DUPLEX_HALF;
1230 }
1231 else {
1232 bp->line_speed = 0;
1233 bp->link_up = 0;
1234 }
1235 }
1236 }
1237 else {
1238 if (bmcr & BMCR_SPEED100) {
1239 bp->line_speed = SPEED_100;
1240 }
1241 else {
1242 bp->line_speed = SPEED_10;
1243 }
1244 if (bmcr & BMCR_FULLDPLX) {
1245 bp->duplex = DUPLEX_FULL;
1246 }
1247 else {
1248 bp->duplex = DUPLEX_HALF;
1249 }
1250 }
1251
1252 return 0;
1253 }
1254
1255 static void
1256 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1257 {
1258 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1259
1260 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1261 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1262 val |= 0x02 << 8;
1263
1264 if (bp->flow_ctrl & FLOW_CTRL_TX)
1265 val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
1266
1267 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1268 }
1269
1270 static void
1271 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1272 {
1273 int i;
1274 u32 cid;
1275
1276 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1277 if (i == 1)
1278 cid = RX_RSS_CID;
1279 bnx2_init_rx_context(bp, cid);
1280 }
1281 }
1282
1283 static void
1284 bnx2_set_mac_link(struct bnx2 *bp)
1285 {
1286 u32 val;
1287
1288 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1289 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1290 (bp->duplex == DUPLEX_HALF)) {
1291 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1292 }
1293
1294 /* Configure the EMAC mode register. */
1295 val = REG_RD(bp, BNX2_EMAC_MODE);
1296
1297 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1298 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1299 BNX2_EMAC_MODE_25G_MODE);
1300
1301 if (bp->link_up) {
1302 switch (bp->line_speed) {
1303 case SPEED_10:
1304 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1305 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1306 break;
1307 }
1308 /* fall through */
1309 case SPEED_100:
1310 val |= BNX2_EMAC_MODE_PORT_MII;
1311 break;
1312 case SPEED_2500:
1313 val |= BNX2_EMAC_MODE_25G_MODE;
1314 /* fall through */
1315 case SPEED_1000:
1316 val |= BNX2_EMAC_MODE_PORT_GMII;
1317 break;
1318 }
1319 }
1320 else {
1321 val |= BNX2_EMAC_MODE_PORT_GMII;
1322 }
1323
1324 /* Set the MAC to operate in the appropriate duplex mode. */
1325 if (bp->duplex == DUPLEX_HALF)
1326 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1327 REG_WR(bp, BNX2_EMAC_MODE, val);
1328
1329 /* Enable/disable rx PAUSE. */
1330 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1331
1332 if (bp->flow_ctrl & FLOW_CTRL_RX)
1333 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1334 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1335
1336 /* Enable/disable tx PAUSE. */
1337 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1338 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1339
1340 if (bp->flow_ctrl & FLOW_CTRL_TX)
1341 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1342 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1343
1344 /* Acknowledge the interrupt. */
1345 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1346
1347 bnx2_init_all_rx_contexts(bp);
1348 }
1349
1350 static void
1351 bnx2_enable_bmsr1(struct bnx2 *bp)
1352 {
1353 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1354 (CHIP_NUM(bp) == CHIP_NUM_5709))
1355 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1356 MII_BNX2_BLK_ADDR_GP_STATUS);
1357 }
1358
1359 static void
1360 bnx2_disable_bmsr1(struct bnx2 *bp)
1361 {
1362 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1363 (CHIP_NUM(bp) == CHIP_NUM_5709))
1364 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1365 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1366 }
1367
1368 static int
1369 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1370 {
1371 u32 up1;
1372 int ret = 1;
1373
1374 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1375 return 0;
1376
1377 if (bp->autoneg & AUTONEG_SPEED)
1378 bp->advertising |= ADVERTISED_2500baseX_Full;
1379
1380 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1381 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1382
1383 bnx2_read_phy(bp, bp->mii_up1, &up1);
1384 if (!(up1 & BCM5708S_UP1_2G5)) {
1385 up1 |= BCM5708S_UP1_2G5;
1386 bnx2_write_phy(bp, bp->mii_up1, up1);
1387 ret = 0;
1388 }
1389
1390 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1391 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1392 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1393
1394 return ret;
1395 }
1396
1397 static int
1398 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1399 {
1400 u32 up1;
1401 int ret = 0;
1402
1403 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1404 return 0;
1405
1406 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1407 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1408
1409 bnx2_read_phy(bp, bp->mii_up1, &up1);
1410 if (up1 & BCM5708S_UP1_2G5) {
1411 up1 &= ~BCM5708S_UP1_2G5;
1412 bnx2_write_phy(bp, bp->mii_up1, up1);
1413 ret = 1;
1414 }
1415
1416 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1417 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1418 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1419
1420 return ret;
1421 }
1422
1423 static void
1424 bnx2_enable_forced_2g5(struct bnx2 *bp)
1425 {
1426 u32 uninitialized_var(bmcr);
1427 int err;
1428
1429 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1430 return;
1431
1432 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1433 u32 val;
1434
1435 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1436 MII_BNX2_BLK_ADDR_SERDES_DIG);
1437 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1438 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1439 val |= MII_BNX2_SD_MISC1_FORCE |
1440 MII_BNX2_SD_MISC1_FORCE_2_5G;
1441 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1442 }
1443
1444 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1445 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1446 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1447
1448 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1449 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1450 if (!err)
1451 bmcr |= BCM5708S_BMCR_FORCE_2500;
1452 } else {
1453 return;
1454 }
1455
1456 if (err)
1457 return;
1458
1459 if (bp->autoneg & AUTONEG_SPEED) {
1460 bmcr &= ~BMCR_ANENABLE;
1461 if (bp->req_duplex == DUPLEX_FULL)
1462 bmcr |= BMCR_FULLDPLX;
1463 }
1464 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1465 }
1466
1467 static void
1468 bnx2_disable_forced_2g5(struct bnx2 *bp)
1469 {
1470 u32 uninitialized_var(bmcr);
1471 int err;
1472
1473 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1474 return;
1475
1476 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1477 u32 val;
1478
1479 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1480 MII_BNX2_BLK_ADDR_SERDES_DIG);
1481 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1482 val &= ~MII_BNX2_SD_MISC1_FORCE;
1483 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1484 }
1485
1486 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1487 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1488 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1489
1490 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1491 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1492 if (!err)
1493 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1494 } else {
1495 return;
1496 }
1497
1498 if (err)
1499 return;
1500
1501 if (bp->autoneg & AUTONEG_SPEED)
1502 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1503 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1504 }
1505
1506 static void
1507 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1508 {
1509 u32 val;
1510
1511 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1512 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1513 if (start)
1514 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1515 else
1516 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1517 }
1518
1519 static int
1520 bnx2_set_link(struct bnx2 *bp)
1521 {
1522 u32 bmsr;
1523 u8 link_up;
1524
1525 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1526 bp->link_up = 1;
1527 return 0;
1528 }
1529
1530 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1531 return 0;
1532
1533 link_up = bp->link_up;
1534
1535 bnx2_enable_bmsr1(bp);
1536 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1537 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1538 bnx2_disable_bmsr1(bp);
1539
1540 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1541 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1542 u32 val, an_dbg;
1543
1544 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1545 bnx2_5706s_force_link_dn(bp, 0);
1546 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1547 }
1548 val = REG_RD(bp, BNX2_EMAC_STATUS);
1549
1550 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1551 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1552 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1553
1554 if ((val & BNX2_EMAC_STATUS_LINK) &&
1555 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1556 bmsr |= BMSR_LSTATUS;
1557 else
1558 bmsr &= ~BMSR_LSTATUS;
1559 }
1560
1561 if (bmsr & BMSR_LSTATUS) {
1562 bp->link_up = 1;
1563
1564 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1565 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1566 bnx2_5706s_linkup(bp);
1567 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1568 bnx2_5708s_linkup(bp);
1569 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1570 bnx2_5709s_linkup(bp);
1571 }
1572 else {
1573 bnx2_copper_linkup(bp);
1574 }
1575 bnx2_resolve_flow_ctrl(bp);
1576 }
1577 else {
1578 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1579 (bp->autoneg & AUTONEG_SPEED))
1580 bnx2_disable_forced_2g5(bp);
1581
1582 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1583 u32 bmcr;
1584
1585 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1586 bmcr |= BMCR_ANENABLE;
1587 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1588
1589 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1590 }
1591 bp->link_up = 0;
1592 }
1593
1594 if (bp->link_up != link_up) {
1595 bnx2_report_link(bp);
1596 }
1597
1598 bnx2_set_mac_link(bp);
1599
1600 return 0;
1601 }
1602
1603 static int
1604 bnx2_reset_phy(struct bnx2 *bp)
1605 {
1606 int i;
1607 u32 reg;
1608
1609 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1610
1611 #define PHY_RESET_MAX_WAIT 100
1612 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1613 udelay(10);
1614
1615 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1616 if (!(reg & BMCR_RESET)) {
1617 udelay(20);
1618 break;
1619 }
1620 }
1621 if (i == PHY_RESET_MAX_WAIT) {
1622 return -EBUSY;
1623 }
1624 return 0;
1625 }
1626
1627 static u32
1628 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1629 {
1630 u32 adv = 0;
1631
1632 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1633 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1634
1635 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1636 adv = ADVERTISE_1000XPAUSE;
1637 }
1638 else {
1639 adv = ADVERTISE_PAUSE_CAP;
1640 }
1641 }
1642 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1643 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1644 adv = ADVERTISE_1000XPSE_ASYM;
1645 }
1646 else {
1647 adv = ADVERTISE_PAUSE_ASYM;
1648 }
1649 }
1650 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1651 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1652 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1653 }
1654 else {
1655 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1656 }
1657 }
1658 return adv;
1659 }
1660
1661 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1662
1663 static int
1664 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1665 __releases(&bp->phy_lock)
1666 __acquires(&bp->phy_lock)
1667 {
1668 u32 speed_arg = 0, pause_adv;
1669
1670 pause_adv = bnx2_phy_get_pause_adv(bp);
1671
1672 if (bp->autoneg & AUTONEG_SPEED) {
1673 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1674 if (bp->advertising & ADVERTISED_10baseT_Half)
1675 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1676 if (bp->advertising & ADVERTISED_10baseT_Full)
1677 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1678 if (bp->advertising & ADVERTISED_100baseT_Half)
1679 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1680 if (bp->advertising & ADVERTISED_100baseT_Full)
1681 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1682 if (bp->advertising & ADVERTISED_1000baseT_Full)
1683 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1684 if (bp->advertising & ADVERTISED_2500baseX_Full)
1685 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1686 } else {
1687 if (bp->req_line_speed == SPEED_2500)
1688 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1689 else if (bp->req_line_speed == SPEED_1000)
1690 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1691 else if (bp->req_line_speed == SPEED_100) {
1692 if (bp->req_duplex == DUPLEX_FULL)
1693 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1694 else
1695 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1696 } else if (bp->req_line_speed == SPEED_10) {
1697 if (bp->req_duplex == DUPLEX_FULL)
1698 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1699 else
1700 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1701 }
1702 }
1703
1704 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1705 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1706 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1707 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1708
1709 if (port == PORT_TP)
1710 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1711 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1712
1713 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1714
1715 spin_unlock_bh(&bp->phy_lock);
1716 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1717 spin_lock_bh(&bp->phy_lock);
1718
1719 return 0;
1720 }
1721
1722 static int
1723 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1724 __releases(&bp->phy_lock)
1725 __acquires(&bp->phy_lock)
1726 {
1727 u32 adv, bmcr;
1728 u32 new_adv = 0;
1729
1730 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1731 return bnx2_setup_remote_phy(bp, port);
1732
1733 if (!(bp->autoneg & AUTONEG_SPEED)) {
1734 u32 new_bmcr;
1735 int force_link_down = 0;
1736
1737 if (bp->req_line_speed == SPEED_2500) {
1738 if (!bnx2_test_and_enable_2g5(bp))
1739 force_link_down = 1;
1740 } else if (bp->req_line_speed == SPEED_1000) {
1741 if (bnx2_test_and_disable_2g5(bp))
1742 force_link_down = 1;
1743 }
1744 bnx2_read_phy(bp, bp->mii_adv, &adv);
1745 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1746
1747 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1748 new_bmcr = bmcr & ~BMCR_ANENABLE;
1749 new_bmcr |= BMCR_SPEED1000;
1750
1751 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1752 if (bp->req_line_speed == SPEED_2500)
1753 bnx2_enable_forced_2g5(bp);
1754 else if (bp->req_line_speed == SPEED_1000) {
1755 bnx2_disable_forced_2g5(bp);
1756 new_bmcr &= ~0x2000;
1757 }
1758
1759 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1760 if (bp->req_line_speed == SPEED_2500)
1761 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1762 else
1763 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1764 }
1765
1766 if (bp->req_duplex == DUPLEX_FULL) {
1767 adv |= ADVERTISE_1000XFULL;
1768 new_bmcr |= BMCR_FULLDPLX;
1769 }
1770 else {
1771 adv |= ADVERTISE_1000XHALF;
1772 new_bmcr &= ~BMCR_FULLDPLX;
1773 }
1774 if ((new_bmcr != bmcr) || (force_link_down)) {
1775 /* Force a link down visible on the other side */
1776 if (bp->link_up) {
1777 bnx2_write_phy(bp, bp->mii_adv, adv &
1778 ~(ADVERTISE_1000XFULL |
1779 ADVERTISE_1000XHALF));
1780 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1781 BMCR_ANRESTART | BMCR_ANENABLE);
1782
1783 bp->link_up = 0;
1784 netif_carrier_off(bp->dev);
1785 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1786 bnx2_report_link(bp);
1787 }
1788 bnx2_write_phy(bp, bp->mii_adv, adv);
1789 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1790 } else {
1791 bnx2_resolve_flow_ctrl(bp);
1792 bnx2_set_mac_link(bp);
1793 }
1794 return 0;
1795 }
1796
1797 bnx2_test_and_enable_2g5(bp);
1798
1799 if (bp->advertising & ADVERTISED_1000baseT_Full)
1800 new_adv |= ADVERTISE_1000XFULL;
1801
1802 new_adv |= bnx2_phy_get_pause_adv(bp);
1803
1804 bnx2_read_phy(bp, bp->mii_adv, &adv);
1805 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1806
1807 bp->serdes_an_pending = 0;
1808 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1809 /* Force a link down visible on the other side */
1810 if (bp->link_up) {
1811 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1812 spin_unlock_bh(&bp->phy_lock);
1813 msleep(20);
1814 spin_lock_bh(&bp->phy_lock);
1815 }
1816
1817 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1818 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1819 BMCR_ANENABLE);
1820 /* Speed up link-up time when the link partner
1821 * does not autonegotiate which is very common
1822 * in blade servers. Some blade servers use
1823 * IPMI for kerboard input and it's important
1824 * to minimize link disruptions. Autoneg. involves
1825 * exchanging base pages plus 3 next pages and
1826 * normally completes in about 120 msec.
1827 */
1828 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1829 bp->serdes_an_pending = 1;
1830 mod_timer(&bp->timer, jiffies + bp->current_interval);
1831 } else {
1832 bnx2_resolve_flow_ctrl(bp);
1833 bnx2_set_mac_link(bp);
1834 }
1835
1836 return 0;
1837 }
1838
1839 #define ETHTOOL_ALL_FIBRE_SPEED \
1840 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1841 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1842 (ADVERTISED_1000baseT_Full)
1843
1844 #define ETHTOOL_ALL_COPPER_SPEED \
1845 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1846 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1847 ADVERTISED_1000baseT_Full)
1848
1849 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1850 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1851
1852 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1853
1854 static void
1855 bnx2_set_default_remote_link(struct bnx2 *bp)
1856 {
1857 u32 link;
1858
1859 if (bp->phy_port == PORT_TP)
1860 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1861 else
1862 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1863
1864 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1865 bp->req_line_speed = 0;
1866 bp->autoneg |= AUTONEG_SPEED;
1867 bp->advertising = ADVERTISED_Autoneg;
1868 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1869 bp->advertising |= ADVERTISED_10baseT_Half;
1870 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1871 bp->advertising |= ADVERTISED_10baseT_Full;
1872 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1873 bp->advertising |= ADVERTISED_100baseT_Half;
1874 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1875 bp->advertising |= ADVERTISED_100baseT_Full;
1876 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1877 bp->advertising |= ADVERTISED_1000baseT_Full;
1878 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1879 bp->advertising |= ADVERTISED_2500baseX_Full;
1880 } else {
1881 bp->autoneg = 0;
1882 bp->advertising = 0;
1883 bp->req_duplex = DUPLEX_FULL;
1884 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1885 bp->req_line_speed = SPEED_10;
1886 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1887 bp->req_duplex = DUPLEX_HALF;
1888 }
1889 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1890 bp->req_line_speed = SPEED_100;
1891 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1892 bp->req_duplex = DUPLEX_HALF;
1893 }
1894 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1895 bp->req_line_speed = SPEED_1000;
1896 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1897 bp->req_line_speed = SPEED_2500;
1898 }
1899 }
1900
1901 static void
1902 bnx2_set_default_link(struct bnx2 *bp)
1903 {
1904 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1905 bnx2_set_default_remote_link(bp);
1906 return;
1907 }
1908
1909 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1910 bp->req_line_speed = 0;
1911 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1912 u32 reg;
1913
1914 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1915
1916 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1917 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1918 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1919 bp->autoneg = 0;
1920 bp->req_line_speed = bp->line_speed = SPEED_1000;
1921 bp->req_duplex = DUPLEX_FULL;
1922 }
1923 } else
1924 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1925 }
1926
1927 static void
1928 bnx2_send_heart_beat(struct bnx2 *bp)
1929 {
1930 u32 msg;
1931 u32 addr;
1932
1933 spin_lock(&bp->indirect_lock);
1934 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1935 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1936 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1937 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1938 spin_unlock(&bp->indirect_lock);
1939 }
1940
1941 static void
1942 bnx2_remote_phy_event(struct bnx2 *bp)
1943 {
1944 u32 msg;
1945 u8 link_up = bp->link_up;
1946 u8 old_port;
1947
1948 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1949
1950 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1951 bnx2_send_heart_beat(bp);
1952
1953 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1954
1955 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1956 bp->link_up = 0;
1957 else {
1958 u32 speed;
1959
1960 bp->link_up = 1;
1961 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1962 bp->duplex = DUPLEX_FULL;
1963 switch (speed) {
1964 case BNX2_LINK_STATUS_10HALF:
1965 bp->duplex = DUPLEX_HALF;
1966 case BNX2_LINK_STATUS_10FULL:
1967 bp->line_speed = SPEED_10;
1968 break;
1969 case BNX2_LINK_STATUS_100HALF:
1970 bp->duplex = DUPLEX_HALF;
1971 case BNX2_LINK_STATUS_100BASE_T4:
1972 case BNX2_LINK_STATUS_100FULL:
1973 bp->line_speed = SPEED_100;
1974 break;
1975 case BNX2_LINK_STATUS_1000HALF:
1976 bp->duplex = DUPLEX_HALF;
1977 case BNX2_LINK_STATUS_1000FULL:
1978 bp->line_speed = SPEED_1000;
1979 break;
1980 case BNX2_LINK_STATUS_2500HALF:
1981 bp->duplex = DUPLEX_HALF;
1982 case BNX2_LINK_STATUS_2500FULL:
1983 bp->line_speed = SPEED_2500;
1984 break;
1985 default:
1986 bp->line_speed = 0;
1987 break;
1988 }
1989
1990 bp->flow_ctrl = 0;
1991 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1992 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1993 if (bp->duplex == DUPLEX_FULL)
1994 bp->flow_ctrl = bp->req_flow_ctrl;
1995 } else {
1996 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
1997 bp->flow_ctrl |= FLOW_CTRL_TX;
1998 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
1999 bp->flow_ctrl |= FLOW_CTRL_RX;
2000 }
2001
2002 old_port = bp->phy_port;
2003 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2004 bp->phy_port = PORT_FIBRE;
2005 else
2006 bp->phy_port = PORT_TP;
2007
2008 if (old_port != bp->phy_port)
2009 bnx2_set_default_link(bp);
2010
2011 }
2012 if (bp->link_up != link_up)
2013 bnx2_report_link(bp);
2014
2015 bnx2_set_mac_link(bp);
2016 }
2017
2018 static int
2019 bnx2_set_remote_link(struct bnx2 *bp)
2020 {
2021 u32 evt_code;
2022
2023 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2024 switch (evt_code) {
2025 case BNX2_FW_EVT_CODE_LINK_EVENT:
2026 bnx2_remote_phy_event(bp);
2027 break;
2028 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2029 default:
2030 bnx2_send_heart_beat(bp);
2031 break;
2032 }
2033 return 0;
2034 }
2035
2036 static int
2037 bnx2_setup_copper_phy(struct bnx2 *bp)
2038 __releases(&bp->phy_lock)
2039 __acquires(&bp->phy_lock)
2040 {
2041 u32 bmcr;
2042 u32 new_bmcr;
2043
2044 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2045
2046 if (bp->autoneg & AUTONEG_SPEED) {
2047 u32 adv_reg, adv1000_reg;
2048 u32 new_adv_reg = 0;
2049 u32 new_adv1000_reg = 0;
2050
2051 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2052 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2053 ADVERTISE_PAUSE_ASYM);
2054
2055 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2056 adv1000_reg &= PHY_ALL_1000_SPEED;
2057
2058 if (bp->advertising & ADVERTISED_10baseT_Half)
2059 new_adv_reg |= ADVERTISE_10HALF;
2060 if (bp->advertising & ADVERTISED_10baseT_Full)
2061 new_adv_reg |= ADVERTISE_10FULL;
2062 if (bp->advertising & ADVERTISED_100baseT_Half)
2063 new_adv_reg |= ADVERTISE_100HALF;
2064 if (bp->advertising & ADVERTISED_100baseT_Full)
2065 new_adv_reg |= ADVERTISE_100FULL;
2066 if (bp->advertising & ADVERTISED_1000baseT_Full)
2067 new_adv1000_reg |= ADVERTISE_1000FULL;
2068
2069 new_adv_reg |= ADVERTISE_CSMA;
2070
2071 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2072
2073 if ((adv1000_reg != new_adv1000_reg) ||
2074 (adv_reg != new_adv_reg) ||
2075 ((bmcr & BMCR_ANENABLE) == 0)) {
2076
2077 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2078 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2079 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2080 BMCR_ANENABLE);
2081 }
2082 else if (bp->link_up) {
2083 /* Flow ctrl may have changed from auto to forced */
2084 /* or vice-versa. */
2085
2086 bnx2_resolve_flow_ctrl(bp);
2087 bnx2_set_mac_link(bp);
2088 }
2089 return 0;
2090 }
2091
2092 new_bmcr = 0;
2093 if (bp->req_line_speed == SPEED_100) {
2094 new_bmcr |= BMCR_SPEED100;
2095 }
2096 if (bp->req_duplex == DUPLEX_FULL) {
2097 new_bmcr |= BMCR_FULLDPLX;
2098 }
2099 if (new_bmcr != bmcr) {
2100 u32 bmsr;
2101
2102 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2103 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2104
2105 if (bmsr & BMSR_LSTATUS) {
2106 /* Force link down */
2107 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2108 spin_unlock_bh(&bp->phy_lock);
2109 msleep(50);
2110 spin_lock_bh(&bp->phy_lock);
2111
2112 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2113 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2114 }
2115
2116 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2117
2118 /* Normally, the new speed is setup after the link has
2119 * gone down and up again. In some cases, link will not go
2120 * down so we need to set up the new speed here.
2121 */
2122 if (bmsr & BMSR_LSTATUS) {
2123 bp->line_speed = bp->req_line_speed;
2124 bp->duplex = bp->req_duplex;
2125 bnx2_resolve_flow_ctrl(bp);
2126 bnx2_set_mac_link(bp);
2127 }
2128 } else {
2129 bnx2_resolve_flow_ctrl(bp);
2130 bnx2_set_mac_link(bp);
2131 }
2132 return 0;
2133 }
2134
2135 static int
2136 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2137 __releases(&bp->phy_lock)
2138 __acquires(&bp->phy_lock)
2139 {
2140 if (bp->loopback == MAC_LOOPBACK)
2141 return 0;
2142
2143 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2144 return bnx2_setup_serdes_phy(bp, port);
2145 }
2146 else {
2147 return bnx2_setup_copper_phy(bp);
2148 }
2149 }
2150
2151 static int
2152 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2153 {
2154 u32 val;
2155
2156 bp->mii_bmcr = MII_BMCR + 0x10;
2157 bp->mii_bmsr = MII_BMSR + 0x10;
2158 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2159 bp->mii_adv = MII_ADVERTISE + 0x10;
2160 bp->mii_lpa = MII_LPA + 0x10;
2161 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2162
2163 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2164 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2165
2166 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2167 if (reset_phy)
2168 bnx2_reset_phy(bp);
2169
2170 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2171
2172 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2173 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2174 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2175 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2176
2177 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2178 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2179 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2180 val |= BCM5708S_UP1_2G5;
2181 else
2182 val &= ~BCM5708S_UP1_2G5;
2183 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2184
2185 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2186 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2187 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2188 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2189
2190 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2191
2192 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2193 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2194 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2195
2196 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2197
2198 return 0;
2199 }
2200
2201 static int
2202 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2203 {
2204 u32 val;
2205
2206 if (reset_phy)
2207 bnx2_reset_phy(bp);
2208
2209 bp->mii_up1 = BCM5708S_UP1;
2210
2211 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2212 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2213 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2214
2215 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2216 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2217 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2218
2219 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2220 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2221 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2222
2223 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2224 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2225 val |= BCM5708S_UP1_2G5;
2226 bnx2_write_phy(bp, BCM5708S_UP1, val);
2227 }
2228
2229 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2230 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2231 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2232 /* increase tx signal amplitude */
2233 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2234 BCM5708S_BLK_ADDR_TX_MISC);
2235 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2236 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2237 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2238 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2239 }
2240
2241 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2242 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2243
2244 if (val) {
2245 u32 is_backplane;
2246
2247 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2248 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2249 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2250 BCM5708S_BLK_ADDR_TX_MISC);
2251 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2252 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2253 BCM5708S_BLK_ADDR_DIG);
2254 }
2255 }
2256 return 0;
2257 }
2258
2259 static int
2260 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2261 {
2262 if (reset_phy)
2263 bnx2_reset_phy(bp);
2264
2265 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2266
2267 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2268 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2269
2270 if (bp->dev->mtu > 1500) {
2271 u32 val;
2272
2273 /* Set extended packet length bit */
2274 bnx2_write_phy(bp, 0x18, 0x7);
2275 bnx2_read_phy(bp, 0x18, &val);
2276 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2277
2278 bnx2_write_phy(bp, 0x1c, 0x6c00);
2279 bnx2_read_phy(bp, 0x1c, &val);
2280 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2281 }
2282 else {
2283 u32 val;
2284
2285 bnx2_write_phy(bp, 0x18, 0x7);
2286 bnx2_read_phy(bp, 0x18, &val);
2287 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2288
2289 bnx2_write_phy(bp, 0x1c, 0x6c00);
2290 bnx2_read_phy(bp, 0x1c, &val);
2291 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2292 }
2293
2294 return 0;
2295 }
2296
2297 static int
2298 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2299 {
2300 u32 val;
2301
2302 if (reset_phy)
2303 bnx2_reset_phy(bp);
2304
2305 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2306 bnx2_write_phy(bp, 0x18, 0x0c00);
2307 bnx2_write_phy(bp, 0x17, 0x000a);
2308 bnx2_write_phy(bp, 0x15, 0x310b);
2309 bnx2_write_phy(bp, 0x17, 0x201f);
2310 bnx2_write_phy(bp, 0x15, 0x9506);
2311 bnx2_write_phy(bp, 0x17, 0x401f);
2312 bnx2_write_phy(bp, 0x15, 0x14e2);
2313 bnx2_write_phy(bp, 0x18, 0x0400);
2314 }
2315
2316 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2317 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2318 MII_BNX2_DSP_EXPAND_REG | 0x8);
2319 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2320 val &= ~(1 << 8);
2321 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2322 }
2323
2324 if (bp->dev->mtu > 1500) {
2325 /* Set extended packet length bit */
2326 bnx2_write_phy(bp, 0x18, 0x7);
2327 bnx2_read_phy(bp, 0x18, &val);
2328 bnx2_write_phy(bp, 0x18, val | 0x4000);
2329
2330 bnx2_read_phy(bp, 0x10, &val);
2331 bnx2_write_phy(bp, 0x10, val | 0x1);
2332 }
2333 else {
2334 bnx2_write_phy(bp, 0x18, 0x7);
2335 bnx2_read_phy(bp, 0x18, &val);
2336 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2337
2338 bnx2_read_phy(bp, 0x10, &val);
2339 bnx2_write_phy(bp, 0x10, val & ~0x1);
2340 }
2341
2342 /* ethernet@wirespeed */
2343 bnx2_write_phy(bp, 0x18, 0x7007);
2344 bnx2_read_phy(bp, 0x18, &val);
2345 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2346 return 0;
2347 }
2348
2349
2350 static int
2351 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2352 __releases(&bp->phy_lock)
2353 __acquires(&bp->phy_lock)
2354 {
2355 u32 val;
2356 int rc = 0;
2357
2358 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2359 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2360
2361 bp->mii_bmcr = MII_BMCR;
2362 bp->mii_bmsr = MII_BMSR;
2363 bp->mii_bmsr1 = MII_BMSR;
2364 bp->mii_adv = MII_ADVERTISE;
2365 bp->mii_lpa = MII_LPA;
2366
2367 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2368
2369 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2370 goto setup_phy;
2371
2372 bnx2_read_phy(bp, MII_PHYSID1, &val);
2373 bp->phy_id = val << 16;
2374 bnx2_read_phy(bp, MII_PHYSID2, &val);
2375 bp->phy_id |= val & 0xffff;
2376
2377 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2378 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2379 rc = bnx2_init_5706s_phy(bp, reset_phy);
2380 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2381 rc = bnx2_init_5708s_phy(bp, reset_phy);
2382 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2383 rc = bnx2_init_5709s_phy(bp, reset_phy);
2384 }
2385 else {
2386 rc = bnx2_init_copper_phy(bp, reset_phy);
2387 }
2388
2389 setup_phy:
2390 if (!rc)
2391 rc = bnx2_setup_phy(bp, bp->phy_port);
2392
2393 return rc;
2394 }
2395
2396 static int
2397 bnx2_set_mac_loopback(struct bnx2 *bp)
2398 {
2399 u32 mac_mode;
2400
2401 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2402 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2403 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2404 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2405 bp->link_up = 1;
2406 return 0;
2407 }
2408
2409 static int bnx2_test_link(struct bnx2 *);
2410
2411 static int
2412 bnx2_set_phy_loopback(struct bnx2 *bp)
2413 {
2414 u32 mac_mode;
2415 int rc, i;
2416
2417 spin_lock_bh(&bp->phy_lock);
2418 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2419 BMCR_SPEED1000);
2420 spin_unlock_bh(&bp->phy_lock);
2421 if (rc)
2422 return rc;
2423
2424 for (i = 0; i < 10; i++) {
2425 if (bnx2_test_link(bp) == 0)
2426 break;
2427 msleep(100);
2428 }
2429
2430 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2431 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2432 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2433 BNX2_EMAC_MODE_25G_MODE);
2434
2435 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2436 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2437 bp->link_up = 1;
2438 return 0;
2439 }
2440
2441 static int
2442 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2443 {
2444 int i;
2445 u32 val;
2446
2447 bp->fw_wr_seq++;
2448 msg_data |= bp->fw_wr_seq;
2449
2450 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2451
2452 if (!ack)
2453 return 0;
2454
2455 /* wait for an acknowledgement. */
2456 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2457 msleep(10);
2458
2459 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2460
2461 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2462 break;
2463 }
2464 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2465 return 0;
2466
2467 /* If we timed out, inform the firmware that this is the case. */
2468 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2469 if (!silent)
2470 pr_err("fw sync timeout, reset code = %x\n", msg_data);
2471
2472 msg_data &= ~BNX2_DRV_MSG_CODE;
2473 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2474
2475 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2476
2477 return -EBUSY;
2478 }
2479
2480 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2481 return -EIO;
2482
2483 return 0;
2484 }
2485
2486 static int
2487 bnx2_init_5709_context(struct bnx2 *bp)
2488 {
2489 int i, ret = 0;
2490 u32 val;
2491
2492 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2493 val |= (BCM_PAGE_BITS - 8) << 16;
2494 REG_WR(bp, BNX2_CTX_COMMAND, val);
2495 for (i = 0; i < 10; i++) {
2496 val = REG_RD(bp, BNX2_CTX_COMMAND);
2497 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2498 break;
2499 udelay(2);
2500 }
2501 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2502 return -EBUSY;
2503
2504 for (i = 0; i < bp->ctx_pages; i++) {
2505 int j;
2506
2507 if (bp->ctx_blk[i])
2508 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2509 else
2510 return -ENOMEM;
2511
2512 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2513 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2514 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2515 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2516 (u64) bp->ctx_blk_mapping[i] >> 32);
2517 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2518 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2519 for (j = 0; j < 10; j++) {
2520
2521 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2522 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2523 break;
2524 udelay(5);
2525 }
2526 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2527 ret = -EBUSY;
2528 break;
2529 }
2530 }
2531 return ret;
2532 }
2533
2534 static void
2535 bnx2_init_context(struct bnx2 *bp)
2536 {
2537 u32 vcid;
2538
2539 vcid = 96;
2540 while (vcid) {
2541 u32 vcid_addr, pcid_addr, offset;
2542 int i;
2543
2544 vcid--;
2545
2546 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2547 u32 new_vcid;
2548
2549 vcid_addr = GET_PCID_ADDR(vcid);
2550 if (vcid & 0x8) {
2551 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2552 }
2553 else {
2554 new_vcid = vcid;
2555 }
2556 pcid_addr = GET_PCID_ADDR(new_vcid);
2557 }
2558 else {
2559 vcid_addr = GET_CID_ADDR(vcid);
2560 pcid_addr = vcid_addr;
2561 }
2562
2563 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2564 vcid_addr += (i << PHY_CTX_SHIFT);
2565 pcid_addr += (i << PHY_CTX_SHIFT);
2566
2567 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2568 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2569
2570 /* Zero out the context. */
2571 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2572 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2573 }
2574 }
2575 }
2576
2577 static int
2578 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2579 {
2580 u16 *good_mbuf;
2581 u32 good_mbuf_cnt;
2582 u32 val;
2583
2584 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2585 if (good_mbuf == NULL) {
2586 pr_err("Failed to allocate memory in %s\n", __func__);
2587 return -ENOMEM;
2588 }
2589
2590 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2591 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2592
2593 good_mbuf_cnt = 0;
2594
2595 /* Allocate a bunch of mbufs and save the good ones in an array. */
2596 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2597 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2598 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2599 BNX2_RBUF_COMMAND_ALLOC_REQ);
2600
2601 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2602
2603 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2604
2605 /* The addresses with Bit 9 set are bad memory blocks. */
2606 if (!(val & (1 << 9))) {
2607 good_mbuf[good_mbuf_cnt] = (u16) val;
2608 good_mbuf_cnt++;
2609 }
2610
2611 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2612 }
2613
2614 /* Free the good ones back to the mbuf pool thus discarding
2615 * all the bad ones. */
2616 while (good_mbuf_cnt) {
2617 good_mbuf_cnt--;
2618
2619 val = good_mbuf[good_mbuf_cnt];
2620 val = (val << 9) | val | 1;
2621
2622 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2623 }
2624 kfree(good_mbuf);
2625 return 0;
2626 }
2627
2628 static void
2629 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2630 {
2631 u32 val;
2632
2633 val = (mac_addr[0] << 8) | mac_addr[1];
2634
2635 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2636
2637 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2638 (mac_addr[4] << 8) | mac_addr[5];
2639
2640 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2641 }
2642
2643 static inline int
2644 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
2645 {
2646 dma_addr_t mapping;
2647 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2648 struct rx_bd *rxbd =
2649 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2650 struct page *page = alloc_page(gfp);
2651
2652 if (!page)
2653 return -ENOMEM;
2654 mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
2655 PCI_DMA_FROMDEVICE);
2656 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
2657 __free_page(page);
2658 return -EIO;
2659 }
2660
2661 rx_pg->page = page;
2662 dma_unmap_addr_set(rx_pg, mapping, mapping);
2663 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2664 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2665 return 0;
2666 }
2667
2668 static void
2669 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2670 {
2671 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2672 struct page *page = rx_pg->page;
2673
2674 if (!page)
2675 return;
2676
2677 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
2678 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2679
2680 __free_page(page);
2681 rx_pg->page = NULL;
2682 }
2683
2684 static inline int
2685 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
2686 {
2687 struct sk_buff *skb;
2688 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2689 dma_addr_t mapping;
2690 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2691 unsigned long align;
2692
2693 skb = __netdev_alloc_skb(bp->dev, bp->rx_buf_size, gfp);
2694 if (skb == NULL) {
2695 return -ENOMEM;
2696 }
2697
2698 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2699 skb_reserve(skb, BNX2_RX_ALIGN - align);
2700
2701 mapping = dma_map_single(&bp->pdev->dev, skb->data, bp->rx_buf_use_size,
2702 PCI_DMA_FROMDEVICE);
2703 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
2704 dev_kfree_skb(skb);
2705 return -EIO;
2706 }
2707
2708 rx_buf->skb = skb;
2709 rx_buf->desc = (struct l2_fhdr *) skb->data;
2710 dma_unmap_addr_set(rx_buf, mapping, mapping);
2711
2712 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2713 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2714
2715 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2716
2717 return 0;
2718 }
2719
2720 static int
2721 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2722 {
2723 struct status_block *sblk = bnapi->status_blk.msi;
2724 u32 new_link_state, old_link_state;
2725 int is_set = 1;
2726
2727 new_link_state = sblk->status_attn_bits & event;
2728 old_link_state = sblk->status_attn_bits_ack & event;
2729 if (new_link_state != old_link_state) {
2730 if (new_link_state)
2731 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2732 else
2733 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2734 } else
2735 is_set = 0;
2736
2737 return is_set;
2738 }
2739
2740 static void
2741 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2742 {
2743 spin_lock(&bp->phy_lock);
2744
2745 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2746 bnx2_set_link(bp);
2747 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2748 bnx2_set_remote_link(bp);
2749
2750 spin_unlock(&bp->phy_lock);
2751
2752 }
2753
2754 static inline u16
2755 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2756 {
2757 u16 cons;
2758
2759 /* Tell compiler that status block fields can change. */
2760 barrier();
2761 cons = *bnapi->hw_tx_cons_ptr;
2762 barrier();
2763 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2764 cons++;
2765 return cons;
2766 }
2767
2768 static int
2769 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2770 {
2771 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2772 u16 hw_cons, sw_cons, sw_ring_cons;
2773 int tx_pkt = 0, index;
2774 struct netdev_queue *txq;
2775
2776 index = (bnapi - bp->bnx2_napi);
2777 txq = netdev_get_tx_queue(bp->dev, index);
2778
2779 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2780 sw_cons = txr->tx_cons;
2781
2782 while (sw_cons != hw_cons) {
2783 struct sw_tx_bd *tx_buf;
2784 struct sk_buff *skb;
2785 int i, last;
2786
2787 sw_ring_cons = TX_RING_IDX(sw_cons);
2788
2789 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2790 skb = tx_buf->skb;
2791
2792 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2793 prefetch(&skb->end);
2794
2795 /* partial BD completions possible with TSO packets */
2796 if (tx_buf->is_gso) {
2797 u16 last_idx, last_ring_idx;
2798
2799 last_idx = sw_cons + tx_buf->nr_frags + 1;
2800 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2801 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2802 last_idx++;
2803 }
2804 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2805 break;
2806 }
2807 }
2808
2809 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
2810 skb_headlen(skb), PCI_DMA_TODEVICE);
2811
2812 tx_buf->skb = NULL;
2813 last = tx_buf->nr_frags;
2814
2815 for (i = 0; i < last; i++) {
2816 sw_cons = NEXT_TX_BD(sw_cons);
2817
2818 dma_unmap_page(&bp->pdev->dev,
2819 dma_unmap_addr(
2820 &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
2821 mapping),
2822 skb_shinfo(skb)->frags[i].size,
2823 PCI_DMA_TODEVICE);
2824 }
2825
2826 sw_cons = NEXT_TX_BD(sw_cons);
2827
2828 dev_kfree_skb(skb);
2829 tx_pkt++;
2830 if (tx_pkt == budget)
2831 break;
2832
2833 if (hw_cons == sw_cons)
2834 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2835 }
2836
2837 txr->hw_tx_cons = hw_cons;
2838 txr->tx_cons = sw_cons;
2839
2840 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2841 * before checking for netif_tx_queue_stopped(). Without the
2842 * memory barrier, there is a small possibility that bnx2_start_xmit()
2843 * will miss it and cause the queue to be stopped forever.
2844 */
2845 smp_mb();
2846
2847 if (unlikely(netif_tx_queue_stopped(txq)) &&
2848 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2849 __netif_tx_lock(txq, smp_processor_id());
2850 if ((netif_tx_queue_stopped(txq)) &&
2851 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2852 netif_tx_wake_queue(txq);
2853 __netif_tx_unlock(txq);
2854 }
2855
2856 return tx_pkt;
2857 }
2858
2859 static void
2860 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2861 struct sk_buff *skb, int count)
2862 {
2863 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2864 struct rx_bd *cons_bd, *prod_bd;
2865 int i;
2866 u16 hw_prod, prod;
2867 u16 cons = rxr->rx_pg_cons;
2868
2869 cons_rx_pg = &rxr->rx_pg_ring[cons];
2870
2871 /* The caller was unable to allocate a new page to replace the
2872 * last one in the frags array, so we need to recycle that page
2873 * and then free the skb.
2874 */
2875 if (skb) {
2876 struct page *page;
2877 struct skb_shared_info *shinfo;
2878
2879 shinfo = skb_shinfo(skb);
2880 shinfo->nr_frags--;
2881 page = shinfo->frags[shinfo->nr_frags].page;
2882 shinfo->frags[shinfo->nr_frags].page = NULL;
2883
2884 cons_rx_pg->page = page;
2885 dev_kfree_skb(skb);
2886 }
2887
2888 hw_prod = rxr->rx_pg_prod;
2889
2890 for (i = 0; i < count; i++) {
2891 prod = RX_PG_RING_IDX(hw_prod);
2892
2893 prod_rx_pg = &rxr->rx_pg_ring[prod];
2894 cons_rx_pg = &rxr->rx_pg_ring[cons];
2895 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2896 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2897
2898 if (prod != cons) {
2899 prod_rx_pg->page = cons_rx_pg->page;
2900 cons_rx_pg->page = NULL;
2901 dma_unmap_addr_set(prod_rx_pg, mapping,
2902 dma_unmap_addr(cons_rx_pg, mapping));
2903
2904 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2905 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2906
2907 }
2908 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2909 hw_prod = NEXT_RX_BD(hw_prod);
2910 }
2911 rxr->rx_pg_prod = hw_prod;
2912 rxr->rx_pg_cons = cons;
2913 }
2914
2915 static inline void
2916 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2917 struct sk_buff *skb, u16 cons, u16 prod)
2918 {
2919 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2920 struct rx_bd *cons_bd, *prod_bd;
2921
2922 cons_rx_buf = &rxr->rx_buf_ring[cons];
2923 prod_rx_buf = &rxr->rx_buf_ring[prod];
2924
2925 dma_sync_single_for_device(&bp->pdev->dev,
2926 dma_unmap_addr(cons_rx_buf, mapping),
2927 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2928
2929 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2930
2931 prod_rx_buf->skb = skb;
2932 prod_rx_buf->desc = (struct l2_fhdr *) skb->data;
2933
2934 if (cons == prod)
2935 return;
2936
2937 dma_unmap_addr_set(prod_rx_buf, mapping,
2938 dma_unmap_addr(cons_rx_buf, mapping));
2939
2940 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2941 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2942 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2943 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2944 }
2945
2946 static int
2947 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2948 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2949 u32 ring_idx)
2950 {
2951 int err;
2952 u16 prod = ring_idx & 0xffff;
2953
2954 err = bnx2_alloc_rx_skb(bp, rxr, prod, GFP_ATOMIC);
2955 if (unlikely(err)) {
2956 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2957 if (hdr_len) {
2958 unsigned int raw_len = len + 4;
2959 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2960
2961 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2962 }
2963 return err;
2964 }
2965
2966 skb_reserve(skb, BNX2_RX_OFFSET);
2967 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
2968 PCI_DMA_FROMDEVICE);
2969
2970 if (hdr_len == 0) {
2971 skb_put(skb, len);
2972 return 0;
2973 } else {
2974 unsigned int i, frag_len, frag_size, pages;
2975 struct sw_pg *rx_pg;
2976 u16 pg_cons = rxr->rx_pg_cons;
2977 u16 pg_prod = rxr->rx_pg_prod;
2978
2979 frag_size = len + 4 - hdr_len;
2980 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2981 skb_put(skb, hdr_len);
2982
2983 for (i = 0; i < pages; i++) {
2984 dma_addr_t mapping_old;
2985
2986 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2987 if (unlikely(frag_len <= 4)) {
2988 unsigned int tail = 4 - frag_len;
2989
2990 rxr->rx_pg_cons = pg_cons;
2991 rxr->rx_pg_prod = pg_prod;
2992 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2993 pages - i);
2994 skb->len -= tail;
2995 if (i == 0) {
2996 skb->tail -= tail;
2997 } else {
2998 skb_frag_t *frag =
2999 &skb_shinfo(skb)->frags[i - 1];
3000 frag->size -= tail;
3001 skb->data_len -= tail;
3002 skb->truesize -= tail;
3003 }
3004 return 0;
3005 }
3006 rx_pg = &rxr->rx_pg_ring[pg_cons];
3007
3008 /* Don't unmap yet. If we're unable to allocate a new
3009 * page, we need to recycle the page and the DMA addr.
3010 */
3011 mapping_old = dma_unmap_addr(rx_pg, mapping);
3012 if (i == pages - 1)
3013 frag_len -= 4;
3014
3015 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3016 rx_pg->page = NULL;
3017
3018 err = bnx2_alloc_rx_page(bp, rxr,
3019 RX_PG_RING_IDX(pg_prod),
3020 GFP_ATOMIC);
3021 if (unlikely(err)) {
3022 rxr->rx_pg_cons = pg_cons;
3023 rxr->rx_pg_prod = pg_prod;
3024 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3025 pages - i);
3026 return err;
3027 }
3028
3029 dma_unmap_page(&bp->pdev->dev, mapping_old,
3030 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3031
3032 frag_size -= frag_len;
3033 skb->data_len += frag_len;
3034 skb->truesize += frag_len;
3035 skb->len += frag_len;
3036
3037 pg_prod = NEXT_RX_BD(pg_prod);
3038 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3039 }
3040 rxr->rx_pg_prod = pg_prod;
3041 rxr->rx_pg_cons = pg_cons;
3042 }
3043 return 0;
3044 }
3045
3046 static inline u16
3047 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3048 {
3049 u16 cons;
3050
3051 /* Tell compiler that status block fields can change. */
3052 barrier();
3053 cons = *bnapi->hw_rx_cons_ptr;
3054 barrier();
3055 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3056 cons++;
3057 return cons;
3058 }
3059
3060 static int
3061 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3062 {
3063 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3064 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3065 struct l2_fhdr *rx_hdr;
3066 int rx_pkt = 0, pg_ring_used = 0;
3067
3068 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3069 sw_cons = rxr->rx_cons;
3070 sw_prod = rxr->rx_prod;
3071
3072 /* Memory barrier necessary as speculative reads of the rx
3073 * buffer can be ahead of the index in the status block
3074 */
3075 rmb();
3076 while (sw_cons != hw_cons) {
3077 unsigned int len, hdr_len;
3078 u32 status;
3079 struct sw_bd *rx_buf, *next_rx_buf;
3080 struct sk_buff *skb;
3081 dma_addr_t dma_addr;
3082
3083 sw_ring_cons = RX_RING_IDX(sw_cons);
3084 sw_ring_prod = RX_RING_IDX(sw_prod);
3085
3086 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3087 skb = rx_buf->skb;
3088 prefetchw(skb);
3089
3090 next_rx_buf =
3091 &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
3092 prefetch(next_rx_buf->desc);
3093
3094 rx_buf->skb = NULL;
3095
3096 dma_addr = dma_unmap_addr(rx_buf, mapping);
3097
3098 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
3099 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3100 PCI_DMA_FROMDEVICE);
3101
3102 rx_hdr = rx_buf->desc;
3103 len = rx_hdr->l2_fhdr_pkt_len;
3104 status = rx_hdr->l2_fhdr_status;
3105
3106 hdr_len = 0;
3107 if (status & L2_FHDR_STATUS_SPLIT) {
3108 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3109 pg_ring_used = 1;
3110 } else if (len > bp->rx_jumbo_thresh) {
3111 hdr_len = bp->rx_jumbo_thresh;
3112 pg_ring_used = 1;
3113 }
3114
3115 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3116 L2_FHDR_ERRORS_PHY_DECODE |
3117 L2_FHDR_ERRORS_ALIGNMENT |
3118 L2_FHDR_ERRORS_TOO_SHORT |
3119 L2_FHDR_ERRORS_GIANT_FRAME))) {
3120
3121 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3122 sw_ring_prod);
3123 if (pg_ring_used) {
3124 int pages;
3125
3126 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3127
3128 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3129 }
3130 goto next_rx;
3131 }
3132
3133 len -= 4;
3134
3135 if (len <= bp->rx_copy_thresh) {
3136 struct sk_buff *new_skb;
3137
3138 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3139 if (new_skb == NULL) {
3140 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3141 sw_ring_prod);
3142 goto next_rx;
3143 }
3144
3145 /* aligned copy */
3146 skb_copy_from_linear_data_offset(skb,
3147 BNX2_RX_OFFSET - 6,
3148 new_skb->data, len + 6);
3149 skb_reserve(new_skb, 6);
3150 skb_put(new_skb, len);
3151
3152 bnx2_reuse_rx_skb(bp, rxr, skb,
3153 sw_ring_cons, sw_ring_prod);
3154
3155 skb = new_skb;
3156 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3157 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3158 goto next_rx;
3159
3160 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3161 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
3162 __vlan_hwaccel_put_tag(skb, rx_hdr->l2_fhdr_vlan_tag);
3163
3164 skb->protocol = eth_type_trans(skb, bp->dev);
3165
3166 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3167 (ntohs(skb->protocol) != 0x8100)) {
3168
3169 dev_kfree_skb(skb);
3170 goto next_rx;
3171
3172 }
3173
3174 skb_checksum_none_assert(skb);
3175 if (bp->rx_csum &&
3176 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3177 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3178
3179 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3180 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3181 skb->ip_summed = CHECKSUM_UNNECESSARY;
3182 }
3183 if ((bp->dev->features & NETIF_F_RXHASH) &&
3184 ((status & L2_FHDR_STATUS_USE_RXHASH) ==
3185 L2_FHDR_STATUS_USE_RXHASH))
3186 skb->rxhash = rx_hdr->l2_fhdr_hash;
3187
3188 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3189 napi_gro_receive(&bnapi->napi, skb);
3190 rx_pkt++;
3191
3192 next_rx:
3193 sw_cons = NEXT_RX_BD(sw_cons);
3194 sw_prod = NEXT_RX_BD(sw_prod);
3195
3196 if ((rx_pkt == budget))
3197 break;
3198
3199 /* Refresh hw_cons to see if there is new work */
3200 if (sw_cons == hw_cons) {
3201 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3202 rmb();
3203 }
3204 }
3205 rxr->rx_cons = sw_cons;
3206 rxr->rx_prod = sw_prod;
3207
3208 if (pg_ring_used)
3209 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3210
3211 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3212
3213 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3214
3215 mmiowb();
3216
3217 return rx_pkt;
3218
3219 }
3220
3221 /* MSI ISR - The only difference between this and the INTx ISR
3222 * is that the MSI interrupt is always serviced.
3223 */
3224 static irqreturn_t
3225 bnx2_msi(int irq, void *dev_instance)
3226 {
3227 struct bnx2_napi *bnapi = dev_instance;
3228 struct bnx2 *bp = bnapi->bp;
3229
3230 prefetch(bnapi->status_blk.msi);
3231 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3232 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3233 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3234
3235 /* Return here if interrupt is disabled. */
3236 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3237 return IRQ_HANDLED;
3238
3239 napi_schedule(&bnapi->napi);
3240
3241 return IRQ_HANDLED;
3242 }
3243
3244 static irqreturn_t
3245 bnx2_msi_1shot(int irq, void *dev_instance)
3246 {
3247 struct bnx2_napi *bnapi = dev_instance;
3248 struct bnx2 *bp = bnapi->bp;
3249
3250 prefetch(bnapi->status_blk.msi);
3251
3252 /* Return here if interrupt is disabled. */
3253 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3254 return IRQ_HANDLED;
3255
3256 napi_schedule(&bnapi->napi);
3257
3258 return IRQ_HANDLED;
3259 }
3260
3261 static irqreturn_t
3262 bnx2_interrupt(int irq, void *dev_instance)
3263 {
3264 struct bnx2_napi *bnapi = dev_instance;
3265 struct bnx2 *bp = bnapi->bp;
3266 struct status_block *sblk = bnapi->status_blk.msi;
3267
3268 /* When using INTx, it is possible for the interrupt to arrive
3269 * at the CPU before the status block posted prior to the
3270 * interrupt. Reading a register will flush the status block.
3271 * When using MSI, the MSI message will always complete after
3272 * the status block write.
3273 */
3274 if ((sblk->status_idx == bnapi->last_status_idx) &&
3275 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3276 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3277 return IRQ_NONE;
3278
3279 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3280 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3281 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3282
3283 /* Read back to deassert IRQ immediately to avoid too many
3284 * spurious interrupts.
3285 */
3286 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3287
3288 /* Return here if interrupt is shared and is disabled. */
3289 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3290 return IRQ_HANDLED;
3291
3292 if (napi_schedule_prep(&bnapi->napi)) {
3293 bnapi->last_status_idx = sblk->status_idx;
3294 __napi_schedule(&bnapi->napi);
3295 }
3296
3297 return IRQ_HANDLED;
3298 }
3299
3300 static inline int
3301 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3302 {
3303 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3304 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3305
3306 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3307 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3308 return 1;
3309 return 0;
3310 }
3311
3312 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3313 STATUS_ATTN_BITS_TIMER_ABORT)
3314
3315 static inline int
3316 bnx2_has_work(struct bnx2_napi *bnapi)
3317 {
3318 struct status_block *sblk = bnapi->status_blk.msi;
3319
3320 if (bnx2_has_fast_work(bnapi))
3321 return 1;
3322
3323 #ifdef BCM_CNIC
3324 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3325 return 1;
3326 #endif
3327
3328 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3329 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3330 return 1;
3331
3332 return 0;
3333 }
3334
3335 static void
3336 bnx2_chk_missed_msi(struct bnx2 *bp)
3337 {
3338 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3339 u32 msi_ctrl;
3340
3341 if (bnx2_has_work(bnapi)) {
3342 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3343 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3344 return;
3345
3346 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3347 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3348 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3349 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3350 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3351 }
3352 }
3353
3354 bp->idle_chk_status_idx = bnapi->last_status_idx;
3355 }
3356
3357 #ifdef BCM_CNIC
3358 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3359 {
3360 struct cnic_ops *c_ops;
3361
3362 if (!bnapi->cnic_present)
3363 return;
3364
3365 rcu_read_lock();
3366 c_ops = rcu_dereference(bp->cnic_ops);
3367 if (c_ops)
3368 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3369 bnapi->status_blk.msi);
3370 rcu_read_unlock();
3371 }
3372 #endif
3373
3374 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3375 {
3376 struct status_block *sblk = bnapi->status_blk.msi;
3377 u32 status_attn_bits = sblk->status_attn_bits;
3378 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3379
3380 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3381 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3382
3383 bnx2_phy_int(bp, bnapi);
3384
3385 /* This is needed to take care of transient status
3386 * during link changes.
3387 */
3388 REG_WR(bp, BNX2_HC_COMMAND,
3389 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3390 REG_RD(bp, BNX2_HC_COMMAND);
3391 }
3392 }
3393
3394 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3395 int work_done, int budget)
3396 {
3397 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3398 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3399
3400 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3401 bnx2_tx_int(bp, bnapi, 0);
3402
3403 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3404 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3405
3406 return work_done;
3407 }
3408
3409 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3410 {
3411 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3412 struct bnx2 *bp = bnapi->bp;
3413 int work_done = 0;
3414 struct status_block_msix *sblk = bnapi->status_blk.msix;
3415
3416 while (1) {
3417 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3418 if (unlikely(work_done >= budget))
3419 break;
3420
3421 bnapi->last_status_idx = sblk->status_idx;
3422 /* status idx must be read before checking for more work. */
3423 rmb();
3424 if (likely(!bnx2_has_fast_work(bnapi))) {
3425
3426 napi_complete(napi);
3427 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3428 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3429 bnapi->last_status_idx);
3430 break;
3431 }
3432 }
3433 return work_done;
3434 }
3435
3436 static int bnx2_poll(struct napi_struct *napi, int budget)
3437 {
3438 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3439 struct bnx2 *bp = bnapi->bp;
3440 int work_done = 0;
3441 struct status_block *sblk = bnapi->status_blk.msi;
3442
3443 while (1) {
3444 bnx2_poll_link(bp, bnapi);
3445
3446 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3447
3448 #ifdef BCM_CNIC
3449 bnx2_poll_cnic(bp, bnapi);
3450 #endif
3451
3452 /* bnapi->last_status_idx is used below to tell the hw how
3453 * much work has been processed, so we must read it before
3454 * checking for more work.
3455 */
3456 bnapi->last_status_idx = sblk->status_idx;
3457
3458 if (unlikely(work_done >= budget))
3459 break;
3460
3461 rmb();
3462 if (likely(!bnx2_has_work(bnapi))) {
3463 napi_complete(napi);
3464 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3465 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3466 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3467 bnapi->last_status_idx);
3468 break;
3469 }
3470 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3471 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3472 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3473 bnapi->last_status_idx);
3474
3475 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3476 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3477 bnapi->last_status_idx);
3478 break;
3479 }
3480 }
3481
3482 return work_done;
3483 }
3484
3485 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3486 * from set_multicast.
3487 */
3488 static void
3489 bnx2_set_rx_mode(struct net_device *dev)
3490 {
3491 struct bnx2 *bp = netdev_priv(dev);
3492 u32 rx_mode, sort_mode;
3493 struct netdev_hw_addr *ha;
3494 int i;
3495
3496 if (!netif_running(dev))
3497 return;
3498
3499 spin_lock_bh(&bp->phy_lock);
3500
3501 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3502 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3503 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3504 if (!(dev->features & NETIF_F_HW_VLAN_RX) &&
3505 (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3506 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3507 if (dev->flags & IFF_PROMISC) {
3508 /* Promiscuous mode. */
3509 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3510 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3511 BNX2_RPM_SORT_USER0_PROM_VLAN;
3512 }
3513 else if (dev->flags & IFF_ALLMULTI) {
3514 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3515 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3516 0xffffffff);
3517 }
3518 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3519 }
3520 else {
3521 /* Accept one or more multicast(s). */
3522 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3523 u32 regidx;
3524 u32 bit;
3525 u32 crc;
3526
3527 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3528
3529 netdev_for_each_mc_addr(ha, dev) {
3530 crc = ether_crc_le(ETH_ALEN, ha->addr);
3531 bit = crc & 0xff;
3532 regidx = (bit & 0xe0) >> 5;
3533 bit &= 0x1f;
3534 mc_filter[regidx] |= (1 << bit);
3535 }
3536
3537 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3538 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3539 mc_filter[i]);
3540 }
3541
3542 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3543 }
3544
3545 if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
3546 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3547 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3548 BNX2_RPM_SORT_USER0_PROM_VLAN;
3549 } else if (!(dev->flags & IFF_PROMISC)) {
3550 /* Add all entries into to the match filter list */
3551 i = 0;
3552 netdev_for_each_uc_addr(ha, dev) {
3553 bnx2_set_mac_addr(bp, ha->addr,
3554 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3555 sort_mode |= (1 <<
3556 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3557 i++;
3558 }
3559
3560 }
3561
3562 if (rx_mode != bp->rx_mode) {
3563 bp->rx_mode = rx_mode;
3564 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3565 }
3566
3567 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3568 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3569 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3570
3571 spin_unlock_bh(&bp->phy_lock);
3572 }
3573
3574 static int __devinit
3575 check_fw_section(const struct firmware *fw,
3576 const struct bnx2_fw_file_section *section,
3577 u32 alignment, bool non_empty)
3578 {
3579 u32 offset = be32_to_cpu(section->offset);
3580 u32 len = be32_to_cpu(section->len);
3581
3582 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3583 return -EINVAL;
3584 if ((non_empty && len == 0) || len > fw->size - offset ||
3585 len & (alignment - 1))
3586 return -EINVAL;
3587 return 0;
3588 }
3589
3590 static int __devinit
3591 check_mips_fw_entry(const struct firmware *fw,
3592 const struct bnx2_mips_fw_file_entry *entry)
3593 {
3594 if (check_fw_section(fw, &entry->text, 4, true) ||
3595 check_fw_section(fw, &entry->data, 4, false) ||
3596 check_fw_section(fw, &entry->rodata, 4, false))
3597 return -EINVAL;
3598 return 0;
3599 }
3600
3601 static int __devinit
3602 bnx2_request_firmware(struct bnx2 *bp)
3603 {
3604 const char *mips_fw_file, *rv2p_fw_file;
3605 const struct bnx2_mips_fw_file *mips_fw;
3606 const struct bnx2_rv2p_fw_file *rv2p_fw;
3607 int rc;
3608
3609 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3610 mips_fw_file = FW_MIPS_FILE_09;
3611 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3612 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3613 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3614 else
3615 rv2p_fw_file = FW_RV2P_FILE_09;
3616 } else {
3617 mips_fw_file = FW_MIPS_FILE_06;
3618 rv2p_fw_file = FW_RV2P_FILE_06;
3619 }
3620
3621 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3622 if (rc) {
3623 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
3624 return rc;
3625 }
3626
3627 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3628 if (rc) {
3629 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
3630 return rc;
3631 }
3632 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3633 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3634 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3635 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3636 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3637 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3638 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3639 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3640 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
3641 return -EINVAL;
3642 }
3643 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3644 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3645 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3646 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
3647 return -EINVAL;
3648 }
3649
3650 return 0;
3651 }
3652
3653 static u32
3654 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3655 {
3656 switch (idx) {
3657 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3658 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3659 rv2p_code |= RV2P_BD_PAGE_SIZE;
3660 break;
3661 }
3662 return rv2p_code;
3663 }
3664
3665 static int
3666 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3667 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3668 {
3669 u32 rv2p_code_len, file_offset;
3670 __be32 *rv2p_code;
3671 int i;
3672 u32 val, cmd, addr;
3673
3674 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3675 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3676
3677 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3678
3679 if (rv2p_proc == RV2P_PROC1) {
3680 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3681 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3682 } else {
3683 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3684 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3685 }
3686
3687 for (i = 0; i < rv2p_code_len; i += 8) {
3688 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3689 rv2p_code++;
3690 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3691 rv2p_code++;
3692
3693 val = (i / 8) | cmd;
3694 REG_WR(bp, addr, val);
3695 }
3696
3697 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3698 for (i = 0; i < 8; i++) {
3699 u32 loc, code;
3700
3701 loc = be32_to_cpu(fw_entry->fixup[i]);
3702 if (loc && ((loc * 4) < rv2p_code_len)) {
3703 code = be32_to_cpu(*(rv2p_code + loc - 1));
3704 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3705 code = be32_to_cpu(*(rv2p_code + loc));
3706 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3707 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3708
3709 val = (loc / 2) | cmd;
3710 REG_WR(bp, addr, val);
3711 }
3712 }
3713
3714 /* Reset the processor, un-stall is done later. */
3715 if (rv2p_proc == RV2P_PROC1) {
3716 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3717 }
3718 else {
3719 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3720 }
3721
3722 return 0;
3723 }
3724
3725 static int
3726 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3727 const struct bnx2_mips_fw_file_entry *fw_entry)
3728 {
3729 u32 addr, len, file_offset;
3730 __be32 *data;
3731 u32 offset;
3732 u32 val;
3733
3734 /* Halt the CPU. */
3735 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3736 val |= cpu_reg->mode_value_halt;
3737 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3738 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3739
3740 /* Load the Text area. */
3741 addr = be32_to_cpu(fw_entry->text.addr);
3742 len = be32_to_cpu(fw_entry->text.len);
3743 file_offset = be32_to_cpu(fw_entry->text.offset);
3744 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3745
3746 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3747 if (len) {
3748 int j;
3749
3750 for (j = 0; j < (len / 4); j++, offset += 4)
3751 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3752 }
3753
3754 /* Load the Data area. */
3755 addr = be32_to_cpu(fw_entry->data.addr);
3756 len = be32_to_cpu(fw_entry->data.len);
3757 file_offset = be32_to_cpu(fw_entry->data.offset);
3758 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3759
3760 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3761 if (len) {
3762 int j;
3763
3764 for (j = 0; j < (len / 4); j++, offset += 4)
3765 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3766 }
3767
3768 /* Load the Read-Only area. */
3769 addr = be32_to_cpu(fw_entry->rodata.addr);
3770 len = be32_to_cpu(fw_entry->rodata.len);
3771 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3772 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3773
3774 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3775 if (len) {
3776 int j;
3777
3778 for (j = 0; j < (len / 4); j++, offset += 4)
3779 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3780 }
3781
3782 /* Clear the pre-fetch instruction. */
3783 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3784
3785 val = be32_to_cpu(fw_entry->start_addr);
3786 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3787
3788 /* Start the CPU. */
3789 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3790 val &= ~cpu_reg->mode_value_halt;
3791 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3792 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3793
3794 return 0;
3795 }
3796
3797 static int
3798 bnx2_init_cpus(struct bnx2 *bp)
3799 {
3800 const struct bnx2_mips_fw_file *mips_fw =
3801 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3802 const struct bnx2_rv2p_fw_file *rv2p_fw =
3803 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3804 int rc;
3805
3806 /* Initialize the RV2P processor. */
3807 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3808 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3809
3810 /* Initialize the RX Processor. */
3811 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3812 if (rc)
3813 goto init_cpu_err;
3814
3815 /* Initialize the TX Processor. */
3816 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3817 if (rc)
3818 goto init_cpu_err;
3819
3820 /* Initialize the TX Patch-up Processor. */
3821 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3822 if (rc)
3823 goto init_cpu_err;
3824
3825 /* Initialize the Completion Processor. */
3826 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3827 if (rc)
3828 goto init_cpu_err;
3829
3830 /* Initialize the Command Processor. */
3831 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3832
3833 init_cpu_err:
3834 return rc;
3835 }
3836
3837 static int
3838 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3839 {
3840 u16 pmcsr;
3841
3842 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3843
3844 switch (state) {
3845 case PCI_D0: {
3846 u32 val;
3847
3848 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3849 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3850 PCI_PM_CTRL_PME_STATUS);
3851
3852 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3853 /* delay required during transition out of D3hot */
3854 msleep(20);
3855
3856 val = REG_RD(bp, BNX2_EMAC_MODE);
3857 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3858 val &= ~BNX2_EMAC_MODE_MPKT;
3859 REG_WR(bp, BNX2_EMAC_MODE, val);
3860
3861 val = REG_RD(bp, BNX2_RPM_CONFIG);
3862 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3863 REG_WR(bp, BNX2_RPM_CONFIG, val);
3864 break;
3865 }
3866 case PCI_D3hot: {
3867 int i;
3868 u32 val, wol_msg;
3869
3870 if (bp->wol) {
3871 u32 advertising;
3872 u8 autoneg;
3873
3874 autoneg = bp->autoneg;
3875 advertising = bp->advertising;
3876
3877 if (bp->phy_port == PORT_TP) {
3878 bp->autoneg = AUTONEG_SPEED;
3879 bp->advertising = ADVERTISED_10baseT_Half |
3880 ADVERTISED_10baseT_Full |
3881 ADVERTISED_100baseT_Half |
3882 ADVERTISED_100baseT_Full |
3883 ADVERTISED_Autoneg;
3884 }
3885
3886 spin_lock_bh(&bp->phy_lock);
3887 bnx2_setup_phy(bp, bp->phy_port);
3888 spin_unlock_bh(&bp->phy_lock);
3889
3890 bp->autoneg = autoneg;
3891 bp->advertising = advertising;
3892
3893 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3894
3895 val = REG_RD(bp, BNX2_EMAC_MODE);
3896
3897 /* Enable port mode. */
3898 val &= ~BNX2_EMAC_MODE_PORT;
3899 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3900 BNX2_EMAC_MODE_ACPI_RCVD |
3901 BNX2_EMAC_MODE_MPKT;
3902 if (bp->phy_port == PORT_TP)
3903 val |= BNX2_EMAC_MODE_PORT_MII;
3904 else {
3905 val |= BNX2_EMAC_MODE_PORT_GMII;
3906 if (bp->line_speed == SPEED_2500)
3907 val |= BNX2_EMAC_MODE_25G_MODE;
3908 }
3909
3910 REG_WR(bp, BNX2_EMAC_MODE, val);
3911
3912 /* receive all multicast */
3913 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3914 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3915 0xffffffff);
3916 }
3917 REG_WR(bp, BNX2_EMAC_RX_MODE,
3918 BNX2_EMAC_RX_MODE_SORT_MODE);
3919
3920 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3921 BNX2_RPM_SORT_USER0_MC_EN;
3922 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3923 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3924 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3925 BNX2_RPM_SORT_USER0_ENA);
3926
3927 /* Need to enable EMAC and RPM for WOL. */
3928 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3929 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3930 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3931 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3932
3933 val = REG_RD(bp, BNX2_RPM_CONFIG);
3934 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3935 REG_WR(bp, BNX2_RPM_CONFIG, val);
3936
3937 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3938 }
3939 else {
3940 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3941 }
3942
3943 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3944 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3945 1, 0);
3946
3947 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3948 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3949 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3950
3951 if (bp->wol)
3952 pmcsr |= 3;
3953 }
3954 else {
3955 pmcsr |= 3;
3956 }
3957 if (bp->wol) {
3958 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3959 }
3960 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3961 pmcsr);
3962
3963 /* No more memory access after this point until
3964 * device is brought back to D0.
3965 */
3966 udelay(50);
3967 break;
3968 }
3969 default:
3970 return -EINVAL;
3971 }
3972 return 0;
3973 }
3974
3975 static int
3976 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3977 {
3978 u32 val;
3979 int j;
3980
3981 /* Request access to the flash interface. */
3982 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
3983 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3984 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3985 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
3986 break;
3987
3988 udelay(5);
3989 }
3990
3991 if (j >= NVRAM_TIMEOUT_COUNT)
3992 return -EBUSY;
3993
3994 return 0;
3995 }
3996
3997 static int
3998 bnx2_release_nvram_lock(struct bnx2 *bp)
3999 {
4000 int j;
4001 u32 val;
4002
4003 /* Relinquish nvram interface. */
4004 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4005
4006 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4007 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4008 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4009 break;
4010
4011 udelay(5);
4012 }
4013
4014 if (j >= NVRAM_TIMEOUT_COUNT)
4015 return -EBUSY;
4016
4017 return 0;
4018 }
4019
4020
4021 static int
4022 bnx2_enable_nvram_write(struct bnx2 *bp)
4023 {
4024 u32 val;
4025
4026 val = REG_RD(bp, BNX2_MISC_CFG);
4027 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4028
4029 if (bp->flash_info->flags & BNX2_NV_WREN) {
4030 int j;
4031
4032 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4033 REG_WR(bp, BNX2_NVM_COMMAND,
4034 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4035
4036 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4037 udelay(5);
4038
4039 val = REG_RD(bp, BNX2_NVM_COMMAND);
4040 if (val & BNX2_NVM_COMMAND_DONE)
4041 break;
4042 }
4043
4044 if (j >= NVRAM_TIMEOUT_COUNT)
4045 return -EBUSY;
4046 }
4047 return 0;
4048 }
4049
4050 static void
4051 bnx2_disable_nvram_write(struct bnx2 *bp)
4052 {
4053 u32 val;
4054
4055 val = REG_RD(bp, BNX2_MISC_CFG);
4056 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4057 }
4058
4059
4060 static void
4061 bnx2_enable_nvram_access(struct bnx2 *bp)
4062 {
4063 u32 val;
4064
4065 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4066 /* Enable both bits, even on read. */
4067 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4068 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4069 }
4070
4071 static void
4072 bnx2_disable_nvram_access(struct bnx2 *bp)
4073 {
4074 u32 val;
4075
4076 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4077 /* Disable both bits, even after read. */
4078 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4079 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4080 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4081 }
4082
4083 static int
4084 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4085 {
4086 u32 cmd;
4087 int j;
4088
4089 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4090 /* Buffered flash, no erase needed */
4091 return 0;
4092
4093 /* Build an erase command */
4094 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4095 BNX2_NVM_COMMAND_DOIT;
4096
4097 /* Need to clear DONE bit separately. */
4098 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4099
4100 /* Address of the NVRAM to read from. */
4101 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4102
4103 /* Issue an erase command. */
4104 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4105
4106 /* Wait for completion. */
4107 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4108 u32 val;
4109
4110 udelay(5);
4111
4112 val = REG_RD(bp, BNX2_NVM_COMMAND);
4113 if (val & BNX2_NVM_COMMAND_DONE)
4114 break;
4115 }
4116
4117 if (j >= NVRAM_TIMEOUT_COUNT)
4118 return -EBUSY;
4119
4120 return 0;
4121 }
4122
4123 static int
4124 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4125 {
4126 u32 cmd;
4127 int j;
4128
4129 /* Build the command word. */
4130 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4131
4132 /* Calculate an offset of a buffered flash, not needed for 5709. */
4133 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4134 offset = ((offset / bp->flash_info->page_size) <<
4135 bp->flash_info->page_bits) +
4136 (offset % bp->flash_info->page_size);
4137 }
4138
4139 /* Need to clear DONE bit separately. */
4140 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4141
4142 /* Address of the NVRAM to read from. */
4143 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4144
4145 /* Issue a read command. */
4146 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4147
4148 /* Wait for completion. */
4149 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4150 u32 val;
4151
4152 udelay(5);
4153
4154 val = REG_RD(bp, BNX2_NVM_COMMAND);
4155 if (val & BNX2_NVM_COMMAND_DONE) {
4156 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4157 memcpy(ret_val, &v, 4);
4158 break;
4159 }
4160 }
4161 if (j >= NVRAM_TIMEOUT_COUNT)
4162 return -EBUSY;
4163
4164 return 0;
4165 }
4166
4167
4168 static int
4169 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4170 {
4171 u32 cmd;
4172 __be32 val32;
4173 int j;
4174
4175 /* Build the command word. */
4176 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4177
4178 /* Calculate an offset of a buffered flash, not needed for 5709. */
4179 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4180 offset = ((offset / bp->flash_info->page_size) <<
4181 bp->flash_info->page_bits) +
4182 (offset % bp->flash_info->page_size);
4183 }
4184
4185 /* Need to clear DONE bit separately. */
4186 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4187
4188 memcpy(&val32, val, 4);
4189
4190 /* Write the data. */
4191 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4192
4193 /* Address of the NVRAM to write to. */
4194 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4195
4196 /* Issue the write command. */
4197 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4198
4199 /* Wait for completion. */
4200 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4201 udelay(5);
4202
4203 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4204 break;
4205 }
4206 if (j >= NVRAM_TIMEOUT_COUNT)
4207 return -EBUSY;
4208
4209 return 0;
4210 }
4211
4212 static int
4213 bnx2_init_nvram(struct bnx2 *bp)
4214 {
4215 u32 val;
4216 int j, entry_count, rc = 0;
4217 const struct flash_spec *flash;
4218
4219 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4220 bp->flash_info = &flash_5709;
4221 goto get_flash_size;
4222 }
4223
4224 /* Determine the selected interface. */
4225 val = REG_RD(bp, BNX2_NVM_CFG1);
4226
4227 entry_count = ARRAY_SIZE(flash_table);
4228
4229 if (val & 0x40000000) {
4230
4231 /* Flash interface has been reconfigured */
4232 for (j = 0, flash = &flash_table[0]; j < entry_count;
4233 j++, flash++) {
4234 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4235 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4236 bp->flash_info = flash;
4237 break;
4238 }
4239 }
4240 }
4241 else {
4242 u32 mask;
4243 /* Not yet been reconfigured */
4244
4245 if (val & (1 << 23))
4246 mask = FLASH_BACKUP_STRAP_MASK;
4247 else
4248 mask = FLASH_STRAP_MASK;
4249
4250 for (j = 0, flash = &flash_table[0]; j < entry_count;
4251 j++, flash++) {
4252
4253 if ((val & mask) == (flash->strapping & mask)) {
4254 bp->flash_info = flash;
4255
4256 /* Request access to the flash interface. */
4257 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4258 return rc;
4259
4260 /* Enable access to flash interface */
4261 bnx2_enable_nvram_access(bp);
4262
4263 /* Reconfigure the flash interface */
4264 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4265 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4266 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4267 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4268
4269 /* Disable access to flash interface */
4270 bnx2_disable_nvram_access(bp);
4271 bnx2_release_nvram_lock(bp);
4272
4273 break;
4274 }
4275 }
4276 } /* if (val & 0x40000000) */
4277
4278 if (j == entry_count) {
4279 bp->flash_info = NULL;
4280 pr_alert("Unknown flash/EEPROM type\n");
4281 return -ENODEV;
4282 }
4283
4284 get_flash_size:
4285 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4286 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4287 if (val)
4288 bp->flash_size = val;
4289 else
4290 bp->flash_size = bp->flash_info->total_size;
4291
4292 return rc;
4293 }
4294
4295 static int
4296 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4297 int buf_size)
4298 {
4299 int rc = 0;
4300 u32 cmd_flags, offset32, len32, extra;
4301
4302 if (buf_size == 0)
4303 return 0;
4304
4305 /* Request access to the flash interface. */
4306 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4307 return rc;
4308
4309 /* Enable access to flash interface */
4310 bnx2_enable_nvram_access(bp);
4311
4312 len32 = buf_size;
4313 offset32 = offset;
4314 extra = 0;
4315
4316 cmd_flags = 0;
4317
4318 if (offset32 & 3) {
4319 u8 buf[4];
4320 u32 pre_len;
4321
4322 offset32 &= ~3;
4323 pre_len = 4 - (offset & 3);
4324
4325 if (pre_len >= len32) {
4326 pre_len = len32;
4327 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4328 BNX2_NVM_COMMAND_LAST;
4329 }
4330 else {
4331 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4332 }
4333
4334 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4335
4336 if (rc)
4337 return rc;
4338
4339 memcpy(ret_buf, buf + (offset & 3), pre_len);
4340
4341 offset32 += 4;
4342 ret_buf += pre_len;
4343 len32 -= pre_len;
4344 }
4345 if (len32 & 3) {
4346 extra = 4 - (len32 & 3);
4347 len32 = (len32 + 4) & ~3;
4348 }
4349
4350 if (len32 == 4) {
4351 u8 buf[4];
4352
4353 if (cmd_flags)
4354 cmd_flags = BNX2_NVM_COMMAND_LAST;
4355 else
4356 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4357 BNX2_NVM_COMMAND_LAST;
4358
4359 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4360
4361 memcpy(ret_buf, buf, 4 - extra);
4362 }
4363 else if (len32 > 0) {
4364 u8 buf[4];
4365
4366 /* Read the first word. */
4367 if (cmd_flags)
4368 cmd_flags = 0;
4369 else
4370 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4371
4372 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4373
4374 /* Advance to the next dword. */
4375 offset32 += 4;
4376 ret_buf += 4;
4377 len32 -= 4;
4378
4379 while (len32 > 4 && rc == 0) {
4380 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4381
4382 /* Advance to the next dword. */
4383 offset32 += 4;
4384 ret_buf += 4;
4385 len32 -= 4;
4386 }
4387
4388 if (rc)
4389 return rc;
4390
4391 cmd_flags = BNX2_NVM_COMMAND_LAST;
4392 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4393
4394 memcpy(ret_buf, buf, 4 - extra);
4395 }
4396
4397 /* Disable access to flash interface */
4398 bnx2_disable_nvram_access(bp);
4399
4400 bnx2_release_nvram_lock(bp);
4401
4402 return rc;
4403 }
4404
4405 static int
4406 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4407 int buf_size)
4408 {
4409 u32 written, offset32, len32;
4410 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4411 int rc = 0;
4412 int align_start, align_end;
4413
4414 buf = data_buf;
4415 offset32 = offset;
4416 len32 = buf_size;
4417 align_start = align_end = 0;
4418
4419 if ((align_start = (offset32 & 3))) {
4420 offset32 &= ~3;
4421 len32 += align_start;
4422 if (len32 < 4)
4423 len32 = 4;
4424 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4425 return rc;
4426 }
4427
4428 if (len32 & 3) {
4429 align_end = 4 - (len32 & 3);
4430 len32 += align_end;
4431 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4432 return rc;
4433 }
4434
4435 if (align_start || align_end) {
4436 align_buf = kmalloc(len32, GFP_KERNEL);
4437 if (align_buf == NULL)
4438 return -ENOMEM;
4439 if (align_start) {
4440 memcpy(align_buf, start, 4);
4441 }
4442 if (align_end) {
4443 memcpy(align_buf + len32 - 4, end, 4);
4444 }
4445 memcpy(align_buf + align_start, data_buf, buf_size);
4446 buf = align_buf;
4447 }
4448
4449 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4450 flash_buffer = kmalloc(264, GFP_KERNEL);
4451 if (flash_buffer == NULL) {
4452 rc = -ENOMEM;
4453 goto nvram_write_end;
4454 }
4455 }
4456
4457 written = 0;
4458 while ((written < len32) && (rc == 0)) {
4459 u32 page_start, page_end, data_start, data_end;
4460 u32 addr, cmd_flags;
4461 int i;
4462
4463 /* Find the page_start addr */
4464 page_start = offset32 + written;
4465 page_start -= (page_start % bp->flash_info->page_size);
4466 /* Find the page_end addr */
4467 page_end = page_start + bp->flash_info->page_size;
4468 /* Find the data_start addr */
4469 data_start = (written == 0) ? offset32 : page_start;
4470 /* Find the data_end addr */
4471 data_end = (page_end > offset32 + len32) ?
4472 (offset32 + len32) : page_end;
4473
4474 /* Request access to the flash interface. */
4475 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4476 goto nvram_write_end;
4477
4478 /* Enable access to flash interface */
4479 bnx2_enable_nvram_access(bp);
4480
4481 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4482 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4483 int j;
4484
4485 /* Read the whole page into the buffer
4486 * (non-buffer flash only) */
4487 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4488 if (j == (bp->flash_info->page_size - 4)) {
4489 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4490 }
4491 rc = bnx2_nvram_read_dword(bp,
4492 page_start + j,
4493 &flash_buffer[j],
4494 cmd_flags);
4495
4496 if (rc)
4497 goto nvram_write_end;
4498
4499 cmd_flags = 0;
4500 }
4501 }
4502
4503 /* Enable writes to flash interface (unlock write-protect) */
4504 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4505 goto nvram_write_end;
4506
4507 /* Loop to write back the buffer data from page_start to
4508 * data_start */
4509 i = 0;
4510 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4511 /* Erase the page */
4512 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4513 goto nvram_write_end;
4514
4515 /* Re-enable the write again for the actual write */
4516 bnx2_enable_nvram_write(bp);
4517
4518 for (addr = page_start; addr < data_start;
4519 addr += 4, i += 4) {
4520
4521 rc = bnx2_nvram_write_dword(bp, addr,
4522 &flash_buffer[i], cmd_flags);
4523
4524 if (rc != 0)
4525 goto nvram_write_end;
4526
4527 cmd_flags = 0;
4528 }
4529 }
4530
4531 /* Loop to write the new data from data_start to data_end */
4532 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4533 if ((addr == page_end - 4) ||
4534 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4535 (addr == data_end - 4))) {
4536
4537 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4538 }
4539 rc = bnx2_nvram_write_dword(bp, addr, buf,
4540 cmd_flags);
4541
4542 if (rc != 0)
4543 goto nvram_write_end;
4544
4545 cmd_flags = 0;
4546 buf += 4;
4547 }
4548
4549 /* Loop to write back the buffer data from data_end
4550 * to page_end */
4551 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4552 for (addr = data_end; addr < page_end;
4553 addr += 4, i += 4) {
4554
4555 if (addr == page_end-4) {
4556 cmd_flags = BNX2_NVM_COMMAND_LAST;
4557 }
4558 rc = bnx2_nvram_write_dword(bp, addr,
4559 &flash_buffer[i], cmd_flags);
4560
4561 if (rc != 0)
4562 goto nvram_write_end;
4563
4564 cmd_flags = 0;
4565 }
4566 }
4567
4568 /* Disable writes to flash interface (lock write-protect) */
4569 bnx2_disable_nvram_write(bp);
4570
4571 /* Disable access to flash interface */
4572 bnx2_disable_nvram_access(bp);
4573 bnx2_release_nvram_lock(bp);
4574
4575 /* Increment written */
4576 written += data_end - data_start;
4577 }
4578
4579 nvram_write_end:
4580 kfree(flash_buffer);
4581 kfree(align_buf);
4582 return rc;
4583 }
4584
4585 static void
4586 bnx2_init_fw_cap(struct bnx2 *bp)
4587 {
4588 u32 val, sig = 0;
4589
4590 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4591 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4592
4593 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4594 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4595
4596 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4597 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4598 return;
4599
4600 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4601 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4602 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4603 }
4604
4605 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4606 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4607 u32 link;
4608
4609 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4610
4611 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4612 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4613 bp->phy_port = PORT_FIBRE;
4614 else
4615 bp->phy_port = PORT_TP;
4616
4617 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4618 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4619 }
4620
4621 if (netif_running(bp->dev) && sig)
4622 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4623 }
4624
4625 static void
4626 bnx2_setup_msix_tbl(struct bnx2 *bp)
4627 {
4628 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4629
4630 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4631 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4632 }
4633
4634 static int
4635 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4636 {
4637 u32 val;
4638 int i, rc = 0;
4639 u8 old_port;
4640
4641 /* Wait for the current PCI transaction to complete before
4642 * issuing a reset. */
4643 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
4644 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
4645 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4646 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4647 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4648 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4649 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4650 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4651 udelay(5);
4652 } else { /* 5709 */
4653 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4654 val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4655 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4656 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4657
4658 for (i = 0; i < 100; i++) {
4659 msleep(1);
4660 val = REG_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
4661 if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
4662 break;
4663 }
4664 }
4665
4666 /* Wait for the firmware to tell us it is ok to issue a reset. */
4667 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4668
4669 /* Deposit a driver reset signature so the firmware knows that
4670 * this is a soft reset. */
4671 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4672 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4673
4674 /* Do a dummy read to force the chip to complete all current transaction
4675 * before we issue a reset. */
4676 val = REG_RD(bp, BNX2_MISC_ID);
4677
4678 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4679 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4680 REG_RD(bp, BNX2_MISC_COMMAND);
4681 udelay(5);
4682
4683 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4684 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4685
4686 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4687
4688 } else {
4689 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4690 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4691 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4692
4693 /* Chip reset. */
4694 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4695
4696 /* Reading back any register after chip reset will hang the
4697 * bus on 5706 A0 and A1. The msleep below provides plenty
4698 * of margin for write posting.
4699 */
4700 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4701 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4702 msleep(20);
4703
4704 /* Reset takes approximate 30 usec */
4705 for (i = 0; i < 10; i++) {
4706 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4707 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4708 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4709 break;
4710 udelay(10);
4711 }
4712
4713 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4714 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4715 pr_err("Chip reset did not complete\n");
4716 return -EBUSY;
4717 }
4718 }
4719
4720 /* Make sure byte swapping is properly configured. */
4721 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4722 if (val != 0x01020304) {
4723 pr_err("Chip not in correct endian mode\n");
4724 return -ENODEV;
4725 }
4726
4727 /* Wait for the firmware to finish its initialization. */
4728 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4729 if (rc)
4730 return rc;
4731
4732 spin_lock_bh(&bp->phy_lock);
4733 old_port = bp->phy_port;
4734 bnx2_init_fw_cap(bp);
4735 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4736 old_port != bp->phy_port)
4737 bnx2_set_default_remote_link(bp);
4738 spin_unlock_bh(&bp->phy_lock);
4739
4740 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4741 /* Adjust the voltage regular to two steps lower. The default
4742 * of this register is 0x0000000e. */
4743 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4744
4745 /* Remove bad rbuf memory from the free pool. */
4746 rc = bnx2_alloc_bad_rbuf(bp);
4747 }
4748
4749 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4750 bnx2_setup_msix_tbl(bp);
4751 /* Prevent MSIX table reads and write from timing out */
4752 REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
4753 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
4754 }
4755
4756 return rc;
4757 }
4758
4759 static int
4760 bnx2_init_chip(struct bnx2 *bp)
4761 {
4762 u32 val, mtu;
4763 int rc, i;
4764
4765 /* Make sure the interrupt is not active. */
4766 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4767
4768 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4769 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4770 #ifdef __BIG_ENDIAN
4771 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4772 #endif
4773 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4774 DMA_READ_CHANS << 12 |
4775 DMA_WRITE_CHANS << 16;
4776
4777 val |= (0x2 << 20) | (1 << 11);
4778
4779 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4780 val |= (1 << 23);
4781
4782 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4783 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4784 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4785
4786 REG_WR(bp, BNX2_DMA_CONFIG, val);
4787
4788 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4789 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4790 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4791 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4792 }
4793
4794 if (bp->flags & BNX2_FLAG_PCIX) {
4795 u16 val16;
4796
4797 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4798 &val16);
4799 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4800 val16 & ~PCI_X_CMD_ERO);
4801 }
4802
4803 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4804 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4805 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4806 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4807
4808 /* Initialize context mapping and zero out the quick contexts. The
4809 * context block must have already been enabled. */
4810 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4811 rc = bnx2_init_5709_context(bp);
4812 if (rc)
4813 return rc;
4814 } else
4815 bnx2_init_context(bp);
4816
4817 if ((rc = bnx2_init_cpus(bp)) != 0)
4818 return rc;
4819
4820 bnx2_init_nvram(bp);
4821
4822 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4823
4824 val = REG_RD(bp, BNX2_MQ_CONFIG);
4825 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4826 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4827 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4828 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4829 if (CHIP_REV(bp) == CHIP_REV_Ax)
4830 val |= BNX2_MQ_CONFIG_HALT_DIS;
4831 }
4832
4833 REG_WR(bp, BNX2_MQ_CONFIG, val);
4834
4835 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4836 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4837 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4838
4839 val = (BCM_PAGE_BITS - 8) << 24;
4840 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4841
4842 /* Configure page size. */
4843 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4844 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4845 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4846 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4847
4848 val = bp->mac_addr[0] +
4849 (bp->mac_addr[1] << 8) +
4850 (bp->mac_addr[2] << 16) +
4851 bp->mac_addr[3] +
4852 (bp->mac_addr[4] << 8) +
4853 (bp->mac_addr[5] << 16);
4854 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4855
4856 /* Program the MTU. Also include 4 bytes for CRC32. */
4857 mtu = bp->dev->mtu;
4858 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4859 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4860 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4861 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4862
4863 if (mtu < 1500)
4864 mtu = 1500;
4865
4866 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4867 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4868 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4869
4870 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4871 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4872 bp->bnx2_napi[i].last_status_idx = 0;
4873
4874 bp->idle_chk_status_idx = 0xffff;
4875
4876 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4877
4878 /* Set up how to generate a link change interrupt. */
4879 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4880
4881 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4882 (u64) bp->status_blk_mapping & 0xffffffff);
4883 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4884
4885 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4886 (u64) bp->stats_blk_mapping & 0xffffffff);
4887 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4888 (u64) bp->stats_blk_mapping >> 32);
4889
4890 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4891 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4892
4893 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4894 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4895
4896 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4897 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4898
4899 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4900
4901 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4902
4903 REG_WR(bp, BNX2_HC_COM_TICKS,
4904 (bp->com_ticks_int << 16) | bp->com_ticks);
4905
4906 REG_WR(bp, BNX2_HC_CMD_TICKS,
4907 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4908
4909 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4910 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4911 else
4912 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4913 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4914
4915 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4916 val = BNX2_HC_CONFIG_COLLECT_STATS;
4917 else {
4918 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4919 BNX2_HC_CONFIG_COLLECT_STATS;
4920 }
4921
4922 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4923 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4924 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4925
4926 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4927 }
4928
4929 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4930 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4931
4932 REG_WR(bp, BNX2_HC_CONFIG, val);
4933
4934 if (bp->rx_ticks < 25)
4935 bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
4936 else
4937 bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
4938
4939 for (i = 1; i < bp->irq_nvecs; i++) {
4940 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4941 BNX2_HC_SB_CONFIG_1;
4942
4943 REG_WR(bp, base,
4944 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4945 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4946 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4947
4948 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4949 (bp->tx_quick_cons_trip_int << 16) |
4950 bp->tx_quick_cons_trip);
4951
4952 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4953 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4954
4955 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4956 (bp->rx_quick_cons_trip_int << 16) |
4957 bp->rx_quick_cons_trip);
4958
4959 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4960 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4961 }
4962
4963 /* Clear internal stats counters. */
4964 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4965
4966 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4967
4968 /* Initialize the receive filter. */
4969 bnx2_set_rx_mode(bp->dev);
4970
4971 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4972 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4973 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4974 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4975 }
4976 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4977 1, 0);
4978
4979 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4980 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4981
4982 udelay(20);
4983
4984 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4985
4986 return rc;
4987 }
4988
4989 static void
4990 bnx2_clear_ring_states(struct bnx2 *bp)
4991 {
4992 struct bnx2_napi *bnapi;
4993 struct bnx2_tx_ring_info *txr;
4994 struct bnx2_rx_ring_info *rxr;
4995 int i;
4996
4997 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4998 bnapi = &bp->bnx2_napi[i];
4999 txr = &bnapi->tx_ring;
5000 rxr = &bnapi->rx_ring;
5001
5002 txr->tx_cons = 0;
5003 txr->hw_tx_cons = 0;
5004 rxr->rx_prod_bseq = 0;
5005 rxr->rx_prod = 0;
5006 rxr->rx_cons = 0;
5007 rxr->rx_pg_prod = 0;
5008 rxr->rx_pg_cons = 0;
5009 }
5010 }
5011
5012 static void
5013 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5014 {
5015 u32 val, offset0, offset1, offset2, offset3;
5016 u32 cid_addr = GET_CID_ADDR(cid);
5017
5018 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5019 offset0 = BNX2_L2CTX_TYPE_XI;
5020 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5021 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5022 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5023 } else {
5024 offset0 = BNX2_L2CTX_TYPE;
5025 offset1 = BNX2_L2CTX_CMD_TYPE;
5026 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5027 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5028 }
5029 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5030 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5031
5032 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5033 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5034
5035 val = (u64) txr->tx_desc_mapping >> 32;
5036 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5037
5038 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5039 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5040 }
5041
5042 static void
5043 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5044 {
5045 struct tx_bd *txbd;
5046 u32 cid = TX_CID;
5047 struct bnx2_napi *bnapi;
5048 struct bnx2_tx_ring_info *txr;
5049
5050 bnapi = &bp->bnx2_napi[ring_num];
5051 txr = &bnapi->tx_ring;
5052
5053 if (ring_num == 0)
5054 cid = TX_CID;
5055 else
5056 cid = TX_TSS_CID + ring_num - 1;
5057
5058 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5059
5060 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5061
5062 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5063 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5064
5065 txr->tx_prod = 0;
5066 txr->tx_prod_bseq = 0;
5067
5068 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5069 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5070
5071 bnx2_init_tx_context(bp, cid, txr);
5072 }
5073
5074 static void
5075 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5076 int num_rings)
5077 {
5078 int i;
5079 struct rx_bd *rxbd;
5080
5081 for (i = 0; i < num_rings; i++) {
5082 int j;
5083
5084 rxbd = &rx_ring[i][0];
5085 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5086 rxbd->rx_bd_len = buf_size;
5087 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5088 }
5089 if (i == (num_rings - 1))
5090 j = 0;
5091 else
5092 j = i + 1;
5093 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5094 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5095 }
5096 }
5097
5098 static void
5099 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5100 {
5101 int i;
5102 u16 prod, ring_prod;
5103 u32 cid, rx_cid_addr, val;
5104 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5105 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5106
5107 if (ring_num == 0)
5108 cid = RX_CID;
5109 else
5110 cid = RX_RSS_CID + ring_num - 1;
5111
5112 rx_cid_addr = GET_CID_ADDR(cid);
5113
5114 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5115 bp->rx_buf_use_size, bp->rx_max_ring);
5116
5117 bnx2_init_rx_context(bp, cid);
5118
5119 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5120 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5121 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5122 }
5123
5124 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5125 if (bp->rx_pg_ring_size) {
5126 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5127 rxr->rx_pg_desc_mapping,
5128 PAGE_SIZE, bp->rx_max_pg_ring);
5129 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5130 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5131 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5132 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5133
5134 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5135 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5136
5137 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5138 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5139
5140 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5141 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5142 }
5143
5144 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5145 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5146
5147 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5148 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5149
5150 ring_prod = prod = rxr->rx_pg_prod;
5151 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5152 if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
5153 netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
5154 ring_num, i, bp->rx_pg_ring_size);
5155 break;
5156 }
5157 prod = NEXT_RX_BD(prod);
5158 ring_prod = RX_PG_RING_IDX(prod);
5159 }
5160 rxr->rx_pg_prod = prod;
5161
5162 ring_prod = prod = rxr->rx_prod;
5163 for (i = 0; i < bp->rx_ring_size; i++) {
5164 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
5165 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
5166 ring_num, i, bp->rx_ring_size);
5167 break;
5168 }
5169 prod = NEXT_RX_BD(prod);
5170 ring_prod = RX_RING_IDX(prod);
5171 }
5172 rxr->rx_prod = prod;
5173
5174 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5175 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5176 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5177
5178 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5179 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5180
5181 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5182 }
5183
5184 static void
5185 bnx2_init_all_rings(struct bnx2 *bp)
5186 {
5187 int i;
5188 u32 val;
5189
5190 bnx2_clear_ring_states(bp);
5191
5192 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5193 for (i = 0; i < bp->num_tx_rings; i++)
5194 bnx2_init_tx_ring(bp, i);
5195
5196 if (bp->num_tx_rings > 1)
5197 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5198 (TX_TSS_CID << 7));
5199
5200 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5201 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5202
5203 for (i = 0; i < bp->num_rx_rings; i++)
5204 bnx2_init_rx_ring(bp, i);
5205
5206 if (bp->num_rx_rings > 1) {
5207 u32 tbl_32 = 0;
5208
5209 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5210 int shift = (i % 8) << 2;
5211
5212 tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
5213 if ((i % 8) == 7) {
5214 REG_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
5215 REG_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
5216 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
5217 BNX2_RLUP_RSS_COMMAND_WRITE |
5218 BNX2_RLUP_RSS_COMMAND_HASH_MASK);
5219 tbl_32 = 0;
5220 }
5221 }
5222
5223 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5224 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5225
5226 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5227
5228 }
5229 }
5230
5231 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5232 {
5233 u32 max, num_rings = 1;
5234
5235 while (ring_size > MAX_RX_DESC_CNT) {
5236 ring_size -= MAX_RX_DESC_CNT;
5237 num_rings++;
5238 }
5239 /* round to next power of 2 */
5240 max = max_size;
5241 while ((max & num_rings) == 0)
5242 max >>= 1;
5243
5244 if (num_rings != max)
5245 max <<= 1;
5246
5247 return max;
5248 }
5249
5250 static void
5251 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5252 {
5253 u32 rx_size, rx_space, jumbo_size;
5254
5255 /* 8 for CRC and VLAN */
5256 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5257
5258 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5259 sizeof(struct skb_shared_info);
5260
5261 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5262 bp->rx_pg_ring_size = 0;
5263 bp->rx_max_pg_ring = 0;
5264 bp->rx_max_pg_ring_idx = 0;
5265 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5266 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5267
5268 jumbo_size = size * pages;
5269 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5270 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5271
5272 bp->rx_pg_ring_size = jumbo_size;
5273 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5274 MAX_RX_PG_RINGS);
5275 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5276 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5277 bp->rx_copy_thresh = 0;
5278 }
5279
5280 bp->rx_buf_use_size = rx_size;
5281 /* hw alignment */
5282 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5283 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5284 bp->rx_ring_size = size;
5285 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5286 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5287 }
5288
5289 static void
5290 bnx2_free_tx_skbs(struct bnx2 *bp)
5291 {
5292 int i;
5293
5294 for (i = 0; i < bp->num_tx_rings; i++) {
5295 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5296 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5297 int j;
5298
5299 if (txr->tx_buf_ring == NULL)
5300 continue;
5301
5302 for (j = 0; j < TX_DESC_CNT; ) {
5303 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5304 struct sk_buff *skb = tx_buf->skb;
5305 int k, last;
5306
5307 if (skb == NULL) {
5308 j++;
5309 continue;
5310 }
5311
5312 dma_unmap_single(&bp->pdev->dev,
5313 dma_unmap_addr(tx_buf, mapping),
5314 skb_headlen(skb),
5315 PCI_DMA_TODEVICE);
5316
5317 tx_buf->skb = NULL;
5318
5319 last = tx_buf->nr_frags;
5320 j++;
5321 for (k = 0; k < last; k++, j++) {
5322 tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
5323 dma_unmap_page(&bp->pdev->dev,
5324 dma_unmap_addr(tx_buf, mapping),
5325 skb_shinfo(skb)->frags[k].size,
5326 PCI_DMA_TODEVICE);
5327 }
5328 dev_kfree_skb(skb);
5329 }
5330 }
5331 }
5332
5333 static void
5334 bnx2_free_rx_skbs(struct bnx2 *bp)
5335 {
5336 int i;
5337
5338 for (i = 0; i < bp->num_rx_rings; i++) {
5339 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5340 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5341 int j;
5342
5343 if (rxr->rx_buf_ring == NULL)
5344 return;
5345
5346 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5347 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5348 struct sk_buff *skb = rx_buf->skb;
5349
5350 if (skb == NULL)
5351 continue;
5352
5353 dma_unmap_single(&bp->pdev->dev,
5354 dma_unmap_addr(rx_buf, mapping),
5355 bp->rx_buf_use_size,
5356 PCI_DMA_FROMDEVICE);
5357
5358 rx_buf->skb = NULL;
5359
5360 dev_kfree_skb(skb);
5361 }
5362 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5363 bnx2_free_rx_page(bp, rxr, j);
5364 }
5365 }
5366
5367 static void
5368 bnx2_free_skbs(struct bnx2 *bp)
5369 {
5370 bnx2_free_tx_skbs(bp);
5371 bnx2_free_rx_skbs(bp);
5372 }
5373
5374 static int
5375 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5376 {
5377 int rc;
5378
5379 rc = bnx2_reset_chip(bp, reset_code);
5380 bnx2_free_skbs(bp);
5381 if (rc)
5382 return rc;
5383
5384 if ((rc = bnx2_init_chip(bp)) != 0)
5385 return rc;
5386
5387 bnx2_init_all_rings(bp);
5388 return 0;
5389 }
5390
5391 static int
5392 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5393 {
5394 int rc;
5395
5396 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5397 return rc;
5398
5399 spin_lock_bh(&bp->phy_lock);
5400 bnx2_init_phy(bp, reset_phy);
5401 bnx2_set_link(bp);
5402 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5403 bnx2_remote_phy_event(bp);
5404 spin_unlock_bh(&bp->phy_lock);
5405 return 0;
5406 }
5407
5408 static int
5409 bnx2_shutdown_chip(struct bnx2 *bp)
5410 {
5411 u32 reset_code;
5412
5413 if (bp->flags & BNX2_FLAG_NO_WOL)
5414 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5415 else if (bp->wol)
5416 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5417 else
5418 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5419
5420 return bnx2_reset_chip(bp, reset_code);
5421 }
5422
5423 static int
5424 bnx2_test_registers(struct bnx2 *bp)
5425 {
5426 int ret;
5427 int i, is_5709;
5428 static const struct {
5429 u16 offset;
5430 u16 flags;
5431 #define BNX2_FL_NOT_5709 1
5432 u32 rw_mask;
5433 u32 ro_mask;
5434 } reg_tbl[] = {
5435 { 0x006c, 0, 0x00000000, 0x0000003f },
5436 { 0x0090, 0, 0xffffffff, 0x00000000 },
5437 { 0x0094, 0, 0x00000000, 0x00000000 },
5438
5439 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5440 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5441 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5442 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5443 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5444 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5445 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5446 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5447 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5448
5449 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5450 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5451 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5452 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5453 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5454 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5455
5456 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5457 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5458 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5459
5460 { 0x1000, 0, 0x00000000, 0x00000001 },
5461 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5462
5463 { 0x1408, 0, 0x01c00800, 0x00000000 },
5464 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5465 { 0x14a8, 0, 0x00000000, 0x000001ff },
5466 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5467 { 0x14b0, 0, 0x00000002, 0x00000001 },
5468 { 0x14b8, 0, 0x00000000, 0x00000000 },
5469 { 0x14c0, 0, 0x00000000, 0x00000009 },
5470 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5471 { 0x14cc, 0, 0x00000000, 0x00000001 },
5472 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5473
5474 { 0x1800, 0, 0x00000000, 0x00000001 },
5475 { 0x1804, 0, 0x00000000, 0x00000003 },
5476
5477 { 0x2800, 0, 0x00000000, 0x00000001 },
5478 { 0x2804, 0, 0x00000000, 0x00003f01 },
5479 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5480 { 0x2810, 0, 0xffff0000, 0x00000000 },
5481 { 0x2814, 0, 0xffff0000, 0x00000000 },
5482 { 0x2818, 0, 0xffff0000, 0x00000000 },
5483 { 0x281c, 0, 0xffff0000, 0x00000000 },
5484 { 0x2834, 0, 0xffffffff, 0x00000000 },
5485 { 0x2840, 0, 0x00000000, 0xffffffff },
5486 { 0x2844, 0, 0x00000000, 0xffffffff },
5487 { 0x2848, 0, 0xffffffff, 0x00000000 },
5488 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5489
5490 { 0x2c00, 0, 0x00000000, 0x00000011 },
5491 { 0x2c04, 0, 0x00000000, 0x00030007 },
5492
5493 { 0x3c00, 0, 0x00000000, 0x00000001 },
5494 { 0x3c04, 0, 0x00000000, 0x00070000 },
5495 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5496 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5497 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5498 { 0x3c14, 0, 0x00000000, 0xffffffff },
5499 { 0x3c18, 0, 0x00000000, 0xffffffff },
5500 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5501 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5502
5503 { 0x5004, 0, 0x00000000, 0x0000007f },
5504 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5505
5506 { 0x5c00, 0, 0x00000000, 0x00000001 },
5507 { 0x5c04, 0, 0x00000000, 0x0003000f },
5508 { 0x5c08, 0, 0x00000003, 0x00000000 },
5509 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5510 { 0x5c10, 0, 0x00000000, 0xffffffff },
5511 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5512 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5513 { 0x5c88, 0, 0x00000000, 0x00077373 },
5514 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5515
5516 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5517 { 0x680c, 0, 0xffffffff, 0x00000000 },
5518 { 0x6810, 0, 0xffffffff, 0x00000000 },
5519 { 0x6814, 0, 0xffffffff, 0x00000000 },
5520 { 0x6818, 0, 0xffffffff, 0x00000000 },
5521 { 0x681c, 0, 0xffffffff, 0x00000000 },
5522 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5523 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5524 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5525 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5526 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5527 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5528 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5529 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5530 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5531 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5532 { 0x684c, 0, 0xffffffff, 0x00000000 },
5533 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5534 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5535 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5536 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5537 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5538 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5539
5540 { 0xffff, 0, 0x00000000, 0x00000000 },
5541 };
5542
5543 ret = 0;
5544 is_5709 = 0;
5545 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5546 is_5709 = 1;
5547
5548 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5549 u32 offset, rw_mask, ro_mask, save_val, val;
5550 u16 flags = reg_tbl[i].flags;
5551
5552 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5553 continue;
5554
5555 offset = (u32) reg_tbl[i].offset;
5556 rw_mask = reg_tbl[i].rw_mask;
5557 ro_mask = reg_tbl[i].ro_mask;
5558
5559 save_val = readl(bp->regview + offset);
5560
5561 writel(0, bp->regview + offset);
5562
5563 val = readl(bp->regview + offset);
5564 if ((val & rw_mask) != 0) {
5565 goto reg_test_err;
5566 }
5567
5568 if ((val & ro_mask) != (save_val & ro_mask)) {
5569 goto reg_test_err;
5570 }
5571
5572 writel(0xffffffff, bp->regview + offset);
5573
5574 val = readl(bp->regview + offset);
5575 if ((val & rw_mask) != rw_mask) {
5576 goto reg_test_err;
5577 }
5578
5579 if ((val & ro_mask) != (save_val & ro_mask)) {
5580 goto reg_test_err;
5581 }
5582
5583 writel(save_val, bp->regview + offset);
5584 continue;
5585
5586 reg_test_err:
5587 writel(save_val, bp->regview + offset);
5588 ret = -ENODEV;
5589 break;
5590 }
5591 return ret;
5592 }
5593
5594 static int
5595 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5596 {
5597 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5598 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5599 int i;
5600
5601 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5602 u32 offset;
5603
5604 for (offset = 0; offset < size; offset += 4) {
5605
5606 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5607
5608 if (bnx2_reg_rd_ind(bp, start + offset) !=
5609 test_pattern[i]) {
5610 return -ENODEV;
5611 }
5612 }
5613 }
5614 return 0;
5615 }
5616
5617 static int
5618 bnx2_test_memory(struct bnx2 *bp)
5619 {
5620 int ret = 0;
5621 int i;
5622 static struct mem_entry {
5623 u32 offset;
5624 u32 len;
5625 } mem_tbl_5706[] = {
5626 { 0x60000, 0x4000 },
5627 { 0xa0000, 0x3000 },
5628 { 0xe0000, 0x4000 },
5629 { 0x120000, 0x4000 },
5630 { 0x1a0000, 0x4000 },
5631 { 0x160000, 0x4000 },
5632 { 0xffffffff, 0 },
5633 },
5634 mem_tbl_5709[] = {
5635 { 0x60000, 0x4000 },
5636 { 0xa0000, 0x3000 },
5637 { 0xe0000, 0x4000 },
5638 { 0x120000, 0x4000 },
5639 { 0x1a0000, 0x4000 },
5640 { 0xffffffff, 0 },
5641 };
5642 struct mem_entry *mem_tbl;
5643
5644 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5645 mem_tbl = mem_tbl_5709;
5646 else
5647 mem_tbl = mem_tbl_5706;
5648
5649 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5650 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5651 mem_tbl[i].len)) != 0) {
5652 return ret;
5653 }
5654 }
5655
5656 return ret;
5657 }
5658
5659 #define BNX2_MAC_LOOPBACK 0
5660 #define BNX2_PHY_LOOPBACK 1
5661
5662 static int
5663 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5664 {
5665 unsigned int pkt_size, num_pkts, i;
5666 struct sk_buff *skb, *rx_skb;
5667 unsigned char *packet;
5668 u16 rx_start_idx, rx_idx;
5669 dma_addr_t map;
5670 struct tx_bd *txbd;
5671 struct sw_bd *rx_buf;
5672 struct l2_fhdr *rx_hdr;
5673 int ret = -ENODEV;
5674 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5675 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5676 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5677
5678 tx_napi = bnapi;
5679
5680 txr = &tx_napi->tx_ring;
5681 rxr = &bnapi->rx_ring;
5682 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5683 bp->loopback = MAC_LOOPBACK;
5684 bnx2_set_mac_loopback(bp);
5685 }
5686 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5687 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5688 return 0;
5689
5690 bp->loopback = PHY_LOOPBACK;
5691 bnx2_set_phy_loopback(bp);
5692 }
5693 else
5694 return -EINVAL;
5695
5696 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5697 skb = netdev_alloc_skb(bp->dev, pkt_size);
5698 if (!skb)
5699 return -ENOMEM;
5700 packet = skb_put(skb, pkt_size);
5701 memcpy(packet, bp->dev->dev_addr, 6);
5702 memset(packet + 6, 0x0, 8);
5703 for (i = 14; i < pkt_size; i++)
5704 packet[i] = (unsigned char) (i & 0xff);
5705
5706 map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
5707 PCI_DMA_TODEVICE);
5708 if (dma_mapping_error(&bp->pdev->dev, map)) {
5709 dev_kfree_skb(skb);
5710 return -EIO;
5711 }
5712
5713 REG_WR(bp, BNX2_HC_COMMAND,
5714 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5715
5716 REG_RD(bp, BNX2_HC_COMMAND);
5717
5718 udelay(5);
5719 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5720
5721 num_pkts = 0;
5722
5723 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5724
5725 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5726 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5727 txbd->tx_bd_mss_nbytes = pkt_size;
5728 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5729
5730 num_pkts++;
5731 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5732 txr->tx_prod_bseq += pkt_size;
5733
5734 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5735 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5736
5737 udelay(100);
5738
5739 REG_WR(bp, BNX2_HC_COMMAND,
5740 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5741
5742 REG_RD(bp, BNX2_HC_COMMAND);
5743
5744 udelay(5);
5745
5746 dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
5747 dev_kfree_skb(skb);
5748
5749 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5750 goto loopback_test_done;
5751
5752 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5753 if (rx_idx != rx_start_idx + num_pkts) {
5754 goto loopback_test_done;
5755 }
5756
5757 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5758 rx_skb = rx_buf->skb;
5759
5760 rx_hdr = rx_buf->desc;
5761 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5762
5763 dma_sync_single_for_cpu(&bp->pdev->dev,
5764 dma_unmap_addr(rx_buf, mapping),
5765 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5766
5767 if (rx_hdr->l2_fhdr_status &
5768 (L2_FHDR_ERRORS_BAD_CRC |
5769 L2_FHDR_ERRORS_PHY_DECODE |
5770 L2_FHDR_ERRORS_ALIGNMENT |
5771 L2_FHDR_ERRORS_TOO_SHORT |
5772 L2_FHDR_ERRORS_GIANT_FRAME)) {
5773
5774 goto loopback_test_done;
5775 }
5776
5777 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5778 goto loopback_test_done;
5779 }
5780
5781 for (i = 14; i < pkt_size; i++) {
5782 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5783 goto loopback_test_done;
5784 }
5785 }
5786
5787 ret = 0;
5788
5789 loopback_test_done:
5790 bp->loopback = 0;
5791 return ret;
5792 }
5793
5794 #define BNX2_MAC_LOOPBACK_FAILED 1
5795 #define BNX2_PHY_LOOPBACK_FAILED 2
5796 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5797 BNX2_PHY_LOOPBACK_FAILED)
5798
5799 static int
5800 bnx2_test_loopback(struct bnx2 *bp)
5801 {
5802 int rc = 0;
5803
5804 if (!netif_running(bp->dev))
5805 return BNX2_LOOPBACK_FAILED;
5806
5807 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5808 spin_lock_bh(&bp->phy_lock);
5809 bnx2_init_phy(bp, 1);
5810 spin_unlock_bh(&bp->phy_lock);
5811 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5812 rc |= BNX2_MAC_LOOPBACK_FAILED;
5813 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5814 rc |= BNX2_PHY_LOOPBACK_FAILED;
5815 return rc;
5816 }
5817
5818 #define NVRAM_SIZE 0x200
5819 #define CRC32_RESIDUAL 0xdebb20e3
5820
5821 static int
5822 bnx2_test_nvram(struct bnx2 *bp)
5823 {
5824 __be32 buf[NVRAM_SIZE / 4];
5825 u8 *data = (u8 *) buf;
5826 int rc = 0;
5827 u32 magic, csum;
5828
5829 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5830 goto test_nvram_done;
5831
5832 magic = be32_to_cpu(buf[0]);
5833 if (magic != 0x669955aa) {
5834 rc = -ENODEV;
5835 goto test_nvram_done;
5836 }
5837
5838 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5839 goto test_nvram_done;
5840
5841 csum = ether_crc_le(0x100, data);
5842 if (csum != CRC32_RESIDUAL) {
5843 rc = -ENODEV;
5844 goto test_nvram_done;
5845 }
5846
5847 csum = ether_crc_le(0x100, data + 0x100);
5848 if (csum != CRC32_RESIDUAL) {
5849 rc = -ENODEV;
5850 }
5851
5852 test_nvram_done:
5853 return rc;
5854 }
5855
5856 static int
5857 bnx2_test_link(struct bnx2 *bp)
5858 {
5859 u32 bmsr;
5860
5861 if (!netif_running(bp->dev))
5862 return -ENODEV;
5863
5864 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5865 if (bp->link_up)
5866 return 0;
5867 return -ENODEV;
5868 }
5869 spin_lock_bh(&bp->phy_lock);
5870 bnx2_enable_bmsr1(bp);
5871 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5872 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5873 bnx2_disable_bmsr1(bp);
5874 spin_unlock_bh(&bp->phy_lock);
5875
5876 if (bmsr & BMSR_LSTATUS) {
5877 return 0;
5878 }
5879 return -ENODEV;
5880 }
5881
5882 static int
5883 bnx2_test_intr(struct bnx2 *bp)
5884 {
5885 int i;
5886 u16 status_idx;
5887
5888 if (!netif_running(bp->dev))
5889 return -ENODEV;
5890
5891 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5892
5893 /* This register is not touched during run-time. */
5894 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5895 REG_RD(bp, BNX2_HC_COMMAND);
5896
5897 for (i = 0; i < 10; i++) {
5898 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5899 status_idx) {
5900
5901 break;
5902 }
5903
5904 msleep_interruptible(10);
5905 }
5906 if (i < 10)
5907 return 0;
5908
5909 return -ENODEV;
5910 }
5911
5912 /* Determining link for parallel detection. */
5913 static int
5914 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5915 {
5916 u32 mode_ctl, an_dbg, exp;
5917
5918 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5919 return 0;
5920
5921 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5922 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5923
5924 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5925 return 0;
5926
5927 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5928 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5929 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5930
5931 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5932 return 0;
5933
5934 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5935 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5936 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5937
5938 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5939 return 0;
5940
5941 return 1;
5942 }
5943
5944 static void
5945 bnx2_5706_serdes_timer(struct bnx2 *bp)
5946 {
5947 int check_link = 1;
5948
5949 spin_lock(&bp->phy_lock);
5950 if (bp->serdes_an_pending) {
5951 bp->serdes_an_pending--;
5952 check_link = 0;
5953 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5954 u32 bmcr;
5955
5956 bp->current_interval = BNX2_TIMER_INTERVAL;
5957
5958 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5959
5960 if (bmcr & BMCR_ANENABLE) {
5961 if (bnx2_5706_serdes_has_link(bp)) {
5962 bmcr &= ~BMCR_ANENABLE;
5963 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5964 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5965 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5966 }
5967 }
5968 }
5969 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5970 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5971 u32 phy2;
5972
5973 bnx2_write_phy(bp, 0x17, 0x0f01);
5974 bnx2_read_phy(bp, 0x15, &phy2);
5975 if (phy2 & 0x20) {
5976 u32 bmcr;
5977
5978 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5979 bmcr |= BMCR_ANENABLE;
5980 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5981
5982 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5983 }
5984 } else
5985 bp->current_interval = BNX2_TIMER_INTERVAL;
5986
5987 if (check_link) {
5988 u32 val;
5989
5990 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5991 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5992 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5993
5994 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5995 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5996 bnx2_5706s_force_link_dn(bp, 1);
5997 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5998 } else
5999 bnx2_set_link(bp);
6000 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
6001 bnx2_set_link(bp);
6002 }
6003 spin_unlock(&bp->phy_lock);
6004 }
6005
6006 static void
6007 bnx2_5708_serdes_timer(struct bnx2 *bp)
6008 {
6009 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
6010 return;
6011
6012 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
6013 bp->serdes_an_pending = 0;
6014 return;
6015 }
6016
6017 spin_lock(&bp->phy_lock);
6018 if (bp->serdes_an_pending)
6019 bp->serdes_an_pending--;
6020 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6021 u32 bmcr;
6022
6023 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6024 if (bmcr & BMCR_ANENABLE) {
6025 bnx2_enable_forced_2g5(bp);
6026 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6027 } else {
6028 bnx2_disable_forced_2g5(bp);
6029 bp->serdes_an_pending = 2;
6030 bp->current_interval = BNX2_TIMER_INTERVAL;
6031 }
6032
6033 } else
6034 bp->current_interval = BNX2_TIMER_INTERVAL;
6035
6036 spin_unlock(&bp->phy_lock);
6037 }
6038
6039 static void
6040 bnx2_timer(unsigned long data)
6041 {
6042 struct bnx2 *bp = (struct bnx2 *) data;
6043
6044 if (!netif_running(bp->dev))
6045 return;
6046
6047 if (atomic_read(&bp->intr_sem) != 0)
6048 goto bnx2_restart_timer;
6049
6050 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6051 BNX2_FLAG_USING_MSI)
6052 bnx2_chk_missed_msi(bp);
6053
6054 bnx2_send_heart_beat(bp);
6055
6056 bp->stats_blk->stat_FwRxDrop =
6057 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6058
6059 /* workaround occasional corrupted counters */
6060 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6061 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6062 BNX2_HC_COMMAND_STATS_NOW);
6063
6064 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6065 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6066 bnx2_5706_serdes_timer(bp);
6067 else
6068 bnx2_5708_serdes_timer(bp);
6069 }
6070
6071 bnx2_restart_timer:
6072 mod_timer(&bp->timer, jiffies + bp->current_interval);
6073 }
6074
6075 static int
6076 bnx2_request_irq(struct bnx2 *bp)
6077 {
6078 unsigned long flags;
6079 struct bnx2_irq *irq;
6080 int rc = 0, i;
6081
6082 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6083 flags = 0;
6084 else
6085 flags = IRQF_SHARED;
6086
6087 for (i = 0; i < bp->irq_nvecs; i++) {
6088 irq = &bp->irq_tbl[i];
6089 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6090 &bp->bnx2_napi[i]);
6091 if (rc)
6092 break;
6093 irq->requested = 1;
6094 }
6095 return rc;
6096 }
6097
6098 static void
6099 __bnx2_free_irq(struct bnx2 *bp)
6100 {
6101 struct bnx2_irq *irq;
6102 int i;
6103
6104 for (i = 0; i < bp->irq_nvecs; i++) {
6105 irq = &bp->irq_tbl[i];
6106 if (irq->requested)
6107 free_irq(irq->vector, &bp->bnx2_napi[i]);
6108 irq->requested = 0;
6109 }
6110 }
6111
6112 static void
6113 bnx2_free_irq(struct bnx2 *bp)
6114 {
6115
6116 __bnx2_free_irq(bp);
6117 if (bp->flags & BNX2_FLAG_USING_MSI)
6118 pci_disable_msi(bp->pdev);
6119 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6120 pci_disable_msix(bp->pdev);
6121
6122 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6123 }
6124
6125 static void
6126 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6127 {
6128 int i, total_vecs, rc;
6129 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6130 struct net_device *dev = bp->dev;
6131 const int len = sizeof(bp->irq_tbl[0].name);
6132
6133 bnx2_setup_msix_tbl(bp);
6134 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6135 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6136 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6137
6138 /* Need to flush the previous three writes to ensure MSI-X
6139 * is setup properly */
6140 REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
6141
6142 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6143 msix_ent[i].entry = i;
6144 msix_ent[i].vector = 0;
6145 }
6146
6147 total_vecs = msix_vecs;
6148 #ifdef BCM_CNIC
6149 total_vecs++;
6150 #endif
6151 rc = -ENOSPC;
6152 while (total_vecs >= BNX2_MIN_MSIX_VEC) {
6153 rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
6154 if (rc <= 0)
6155 break;
6156 if (rc > 0)
6157 total_vecs = rc;
6158 }
6159
6160 if (rc != 0)
6161 return;
6162
6163 msix_vecs = total_vecs;
6164 #ifdef BCM_CNIC
6165 msix_vecs--;
6166 #endif
6167 bp->irq_nvecs = msix_vecs;
6168 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6169 for (i = 0; i < total_vecs; i++) {
6170 bp->irq_tbl[i].vector = msix_ent[i].vector;
6171 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6172 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6173 }
6174 }
6175
6176 static int
6177 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6178 {
6179 int cpus = num_online_cpus();
6180 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6181
6182 bp->irq_tbl[0].handler = bnx2_interrupt;
6183 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6184 bp->irq_nvecs = 1;
6185 bp->irq_tbl[0].vector = bp->pdev->irq;
6186
6187 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
6188 bnx2_enable_msix(bp, msix_vecs);
6189
6190 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6191 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6192 if (pci_enable_msi(bp->pdev) == 0) {
6193 bp->flags |= BNX2_FLAG_USING_MSI;
6194 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6195 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6196 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6197 } else
6198 bp->irq_tbl[0].handler = bnx2_msi;
6199
6200 bp->irq_tbl[0].vector = bp->pdev->irq;
6201 }
6202 }
6203
6204 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6205 netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
6206
6207 bp->num_rx_rings = bp->irq_nvecs;
6208 return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
6209 }
6210
6211 /* Called with rtnl_lock */
6212 static int
6213 bnx2_open(struct net_device *dev)
6214 {
6215 struct bnx2 *bp = netdev_priv(dev);
6216 int rc;
6217
6218 netif_carrier_off(dev);
6219
6220 bnx2_set_power_state(bp, PCI_D0);
6221 bnx2_disable_int(bp);
6222
6223 rc = bnx2_setup_int_mode(bp, disable_msi);
6224 if (rc)
6225 goto open_err;
6226 bnx2_init_napi(bp);
6227 bnx2_napi_enable(bp);
6228 rc = bnx2_alloc_mem(bp);
6229 if (rc)
6230 goto open_err;
6231
6232 rc = bnx2_request_irq(bp);
6233 if (rc)
6234 goto open_err;
6235
6236 rc = bnx2_init_nic(bp, 1);
6237 if (rc)
6238 goto open_err;
6239
6240 mod_timer(&bp->timer, jiffies + bp->current_interval);
6241
6242 atomic_set(&bp->intr_sem, 0);
6243
6244 memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
6245
6246 bnx2_enable_int(bp);
6247
6248 if (bp->flags & BNX2_FLAG_USING_MSI) {
6249 /* Test MSI to make sure it is working
6250 * If MSI test fails, go back to INTx mode
6251 */
6252 if (bnx2_test_intr(bp) != 0) {
6253 netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6254
6255 bnx2_disable_int(bp);
6256 bnx2_free_irq(bp);
6257
6258 bnx2_setup_int_mode(bp, 1);
6259
6260 rc = bnx2_init_nic(bp, 0);
6261
6262 if (!rc)
6263 rc = bnx2_request_irq(bp);
6264
6265 if (rc) {
6266 del_timer_sync(&bp->timer);
6267 goto open_err;
6268 }
6269 bnx2_enable_int(bp);
6270 }
6271 }
6272 if (bp->flags & BNX2_FLAG_USING_MSI)
6273 netdev_info(dev, "using MSI\n");
6274 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6275 netdev_info(dev, "using MSIX\n");
6276
6277 netif_tx_start_all_queues(dev);
6278
6279 return 0;
6280
6281 open_err:
6282 bnx2_napi_disable(bp);
6283 bnx2_free_skbs(bp);
6284 bnx2_free_irq(bp);
6285 bnx2_free_mem(bp);
6286 bnx2_del_napi(bp);
6287 return rc;
6288 }
6289
6290 static void
6291 bnx2_reset_task(struct work_struct *work)
6292 {
6293 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6294
6295 rtnl_lock();
6296 if (!netif_running(bp->dev)) {
6297 rtnl_unlock();
6298 return;
6299 }
6300
6301 bnx2_netif_stop(bp, true);
6302
6303 bnx2_init_nic(bp, 1);
6304
6305 atomic_set(&bp->intr_sem, 1);
6306 bnx2_netif_start(bp, true);
6307 rtnl_unlock();
6308 }
6309
6310 static void
6311 bnx2_dump_state(struct bnx2 *bp)
6312 {
6313 struct net_device *dev = bp->dev;
6314 u32 mcp_p0, mcp_p1, val1, val2;
6315
6316 pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
6317 netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6318 atomic_read(&bp->intr_sem), val1);
6319 pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
6320 pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
6321 netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
6322 netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6323 REG_RD(bp, BNX2_EMAC_TX_STATUS),
6324 REG_RD(bp, BNX2_EMAC_RX_STATUS));
6325 netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6326 REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
6327 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6328 mcp_p0 = BNX2_MCP_STATE_P0;
6329 mcp_p1 = BNX2_MCP_STATE_P1;
6330 } else {
6331 mcp_p0 = BNX2_MCP_STATE_P0_5708;
6332 mcp_p1 = BNX2_MCP_STATE_P1_5708;
6333 }
6334 netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
6335 bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
6336 netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6337 REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
6338 if (bp->flags & BNX2_FLAG_USING_MSIX)
6339 netdev_err(dev, "DEBUG: PBA[%08x]\n",
6340 REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
6341 }
6342
6343 static void
6344 bnx2_tx_timeout(struct net_device *dev)
6345 {
6346 struct bnx2 *bp = netdev_priv(dev);
6347
6348 bnx2_dump_state(bp);
6349
6350 /* This allows the netif to be shutdown gracefully before resetting */
6351 schedule_work(&bp->reset_task);
6352 }
6353
6354 /* Called with netif_tx_lock.
6355 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6356 * netif_wake_queue().
6357 */
6358 static netdev_tx_t
6359 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6360 {
6361 struct bnx2 *bp = netdev_priv(dev);
6362 dma_addr_t mapping;
6363 struct tx_bd *txbd;
6364 struct sw_tx_bd *tx_buf;
6365 u32 len, vlan_tag_flags, last_frag, mss;
6366 u16 prod, ring_prod;
6367 int i;
6368 struct bnx2_napi *bnapi;
6369 struct bnx2_tx_ring_info *txr;
6370 struct netdev_queue *txq;
6371
6372 /* Determine which tx ring we will be placed on */
6373 i = skb_get_queue_mapping(skb);
6374 bnapi = &bp->bnx2_napi[i];
6375 txr = &bnapi->tx_ring;
6376 txq = netdev_get_tx_queue(dev, i);
6377
6378 if (unlikely(bnx2_tx_avail(bp, txr) <
6379 (skb_shinfo(skb)->nr_frags + 1))) {
6380 netif_tx_stop_queue(txq);
6381 netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
6382
6383 return NETDEV_TX_BUSY;
6384 }
6385 len = skb_headlen(skb);
6386 prod = txr->tx_prod;
6387 ring_prod = TX_RING_IDX(prod);
6388
6389 vlan_tag_flags = 0;
6390 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6391 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6392 }
6393
6394 if (vlan_tx_tag_present(skb)) {
6395 vlan_tag_flags |=
6396 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6397 }
6398
6399 if ((mss = skb_shinfo(skb)->gso_size)) {
6400 u32 tcp_opt_len;
6401 struct iphdr *iph;
6402
6403 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6404
6405 tcp_opt_len = tcp_optlen(skb);
6406
6407 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6408 u32 tcp_off = skb_transport_offset(skb) -
6409 sizeof(struct ipv6hdr) - ETH_HLEN;
6410
6411 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6412 TX_BD_FLAGS_SW_FLAGS;
6413 if (likely(tcp_off == 0))
6414 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6415 else {
6416 tcp_off >>= 3;
6417 vlan_tag_flags |= ((tcp_off & 0x3) <<
6418 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6419 ((tcp_off & 0x10) <<
6420 TX_BD_FLAGS_TCP6_OFF4_SHL);
6421 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6422 }
6423 } else {
6424 iph = ip_hdr(skb);
6425 if (tcp_opt_len || (iph->ihl > 5)) {
6426 vlan_tag_flags |= ((iph->ihl - 5) +
6427 (tcp_opt_len >> 2)) << 8;
6428 }
6429 }
6430 } else
6431 mss = 0;
6432
6433 mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
6434 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
6435 dev_kfree_skb(skb);
6436 return NETDEV_TX_OK;
6437 }
6438
6439 tx_buf = &txr->tx_buf_ring[ring_prod];
6440 tx_buf->skb = skb;
6441 dma_unmap_addr_set(tx_buf, mapping, mapping);
6442
6443 txbd = &txr->tx_desc_ring[ring_prod];
6444
6445 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6446 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6447 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6448 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6449
6450 last_frag = skb_shinfo(skb)->nr_frags;
6451 tx_buf->nr_frags = last_frag;
6452 tx_buf->is_gso = skb_is_gso(skb);
6453
6454 for (i = 0; i < last_frag; i++) {
6455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6456
6457 prod = NEXT_TX_BD(prod);
6458 ring_prod = TX_RING_IDX(prod);
6459 txbd = &txr->tx_desc_ring[ring_prod];
6460
6461 len = frag->size;
6462 mapping = dma_map_page(&bp->pdev->dev, frag->page, frag->page_offset,
6463 len, PCI_DMA_TODEVICE);
6464 if (dma_mapping_error(&bp->pdev->dev, mapping))
6465 goto dma_error;
6466 dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
6467 mapping);
6468
6469 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6470 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6471 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6472 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6473
6474 }
6475 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6476
6477 prod = NEXT_TX_BD(prod);
6478 txr->tx_prod_bseq += skb->len;
6479
6480 REG_WR16(bp, txr->tx_bidx_addr, prod);
6481 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6482
6483 mmiowb();
6484
6485 txr->tx_prod = prod;
6486
6487 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6488 netif_tx_stop_queue(txq);
6489
6490 /* netif_tx_stop_queue() must be done before checking
6491 * tx index in bnx2_tx_avail() below, because in
6492 * bnx2_tx_int(), we update tx index before checking for
6493 * netif_tx_queue_stopped().
6494 */
6495 smp_mb();
6496 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6497 netif_tx_wake_queue(txq);
6498 }
6499
6500 return NETDEV_TX_OK;
6501 dma_error:
6502 /* save value of frag that failed */
6503 last_frag = i;
6504
6505 /* start back at beginning and unmap skb */
6506 prod = txr->tx_prod;
6507 ring_prod = TX_RING_IDX(prod);
6508 tx_buf = &txr->tx_buf_ring[ring_prod];
6509 tx_buf->skb = NULL;
6510 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
6511 skb_headlen(skb), PCI_DMA_TODEVICE);
6512
6513 /* unmap remaining mapped pages */
6514 for (i = 0; i < last_frag; i++) {
6515 prod = NEXT_TX_BD(prod);
6516 ring_prod = TX_RING_IDX(prod);
6517 tx_buf = &txr->tx_buf_ring[ring_prod];
6518 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
6519 skb_shinfo(skb)->frags[i].size,
6520 PCI_DMA_TODEVICE);
6521 }
6522
6523 dev_kfree_skb(skb);
6524 return NETDEV_TX_OK;
6525 }
6526
6527 /* Called with rtnl_lock */
6528 static int
6529 bnx2_close(struct net_device *dev)
6530 {
6531 struct bnx2 *bp = netdev_priv(dev);
6532
6533 cancel_work_sync(&bp->reset_task);
6534
6535 bnx2_disable_int_sync(bp);
6536 bnx2_napi_disable(bp);
6537 del_timer_sync(&bp->timer);
6538 bnx2_shutdown_chip(bp);
6539 bnx2_free_irq(bp);
6540 bnx2_free_skbs(bp);
6541 bnx2_free_mem(bp);
6542 bnx2_del_napi(bp);
6543 bp->link_up = 0;
6544 netif_carrier_off(bp->dev);
6545 bnx2_set_power_state(bp, PCI_D3hot);
6546 return 0;
6547 }
6548
6549 static void
6550 bnx2_save_stats(struct bnx2 *bp)
6551 {
6552 u32 *hw_stats = (u32 *) bp->stats_blk;
6553 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
6554 int i;
6555
6556 /* The 1st 10 counters are 64-bit counters */
6557 for (i = 0; i < 20; i += 2) {
6558 u32 hi;
6559 u64 lo;
6560
6561 hi = temp_stats[i] + hw_stats[i];
6562 lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
6563 if (lo > 0xffffffff)
6564 hi++;
6565 temp_stats[i] = hi;
6566 temp_stats[i + 1] = lo & 0xffffffff;
6567 }
6568
6569 for ( ; i < sizeof(struct statistics_block) / 4; i++)
6570 temp_stats[i] += hw_stats[i];
6571 }
6572
6573 #define GET_64BIT_NET_STATS64(ctr) \
6574 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6575
6576 #define GET_64BIT_NET_STATS(ctr) \
6577 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6578 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6579
6580 #define GET_32BIT_NET_STATS(ctr) \
6581 (unsigned long) (bp->stats_blk->ctr + \
6582 bp->temp_stats_blk->ctr)
6583
6584 static struct rtnl_link_stats64 *
6585 bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
6586 {
6587 struct bnx2 *bp = netdev_priv(dev);
6588
6589 if (bp->stats_blk == NULL)
6590 return net_stats;
6591
6592 net_stats->rx_packets =
6593 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
6594 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
6595 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
6596
6597 net_stats->tx_packets =
6598 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
6599 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
6600 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
6601
6602 net_stats->rx_bytes =
6603 GET_64BIT_NET_STATS(stat_IfHCInOctets);
6604
6605 net_stats->tx_bytes =
6606 GET_64BIT_NET_STATS(stat_IfHCOutOctets);
6607
6608 net_stats->multicast =
6609 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
6610
6611 net_stats->collisions =
6612 GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
6613
6614 net_stats->rx_length_errors =
6615 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
6616 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
6617
6618 net_stats->rx_over_errors =
6619 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6620 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
6621
6622 net_stats->rx_frame_errors =
6623 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
6624
6625 net_stats->rx_crc_errors =
6626 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
6627
6628 net_stats->rx_errors = net_stats->rx_length_errors +
6629 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6630 net_stats->rx_crc_errors;
6631
6632 net_stats->tx_aborted_errors =
6633 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
6634 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
6635
6636 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6637 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6638 net_stats->tx_carrier_errors = 0;
6639 else {
6640 net_stats->tx_carrier_errors =
6641 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
6642 }
6643
6644 net_stats->tx_errors =
6645 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
6646 net_stats->tx_aborted_errors +
6647 net_stats->tx_carrier_errors;
6648
6649 net_stats->rx_missed_errors =
6650 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6651 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
6652 GET_32BIT_NET_STATS(stat_FwRxDrop);
6653
6654 return net_stats;
6655 }
6656
6657 /* All ethtool functions called with rtnl_lock */
6658
6659 static int
6660 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6661 {
6662 struct bnx2 *bp = netdev_priv(dev);
6663 int support_serdes = 0, support_copper = 0;
6664
6665 cmd->supported = SUPPORTED_Autoneg;
6666 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6667 support_serdes = 1;
6668 support_copper = 1;
6669 } else if (bp->phy_port == PORT_FIBRE)
6670 support_serdes = 1;
6671 else
6672 support_copper = 1;
6673
6674 if (support_serdes) {
6675 cmd->supported |= SUPPORTED_1000baseT_Full |
6676 SUPPORTED_FIBRE;
6677 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6678 cmd->supported |= SUPPORTED_2500baseX_Full;
6679
6680 }
6681 if (support_copper) {
6682 cmd->supported |= SUPPORTED_10baseT_Half |
6683 SUPPORTED_10baseT_Full |
6684 SUPPORTED_100baseT_Half |
6685 SUPPORTED_100baseT_Full |
6686 SUPPORTED_1000baseT_Full |
6687 SUPPORTED_TP;
6688
6689 }
6690
6691 spin_lock_bh(&bp->phy_lock);
6692 cmd->port = bp->phy_port;
6693 cmd->advertising = bp->advertising;
6694
6695 if (bp->autoneg & AUTONEG_SPEED) {
6696 cmd->autoneg = AUTONEG_ENABLE;
6697 }
6698 else {
6699 cmd->autoneg = AUTONEG_DISABLE;
6700 }
6701
6702 if (netif_carrier_ok(dev)) {
6703 cmd->speed = bp->line_speed;
6704 cmd->duplex = bp->duplex;
6705 }
6706 else {
6707 cmd->speed = -1;
6708 cmd->duplex = -1;
6709 }
6710 spin_unlock_bh(&bp->phy_lock);
6711
6712 cmd->transceiver = XCVR_INTERNAL;
6713 cmd->phy_address = bp->phy_addr;
6714
6715 return 0;
6716 }
6717
6718 static int
6719 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6720 {
6721 struct bnx2 *bp = netdev_priv(dev);
6722 u8 autoneg = bp->autoneg;
6723 u8 req_duplex = bp->req_duplex;
6724 u16 req_line_speed = bp->req_line_speed;
6725 u32 advertising = bp->advertising;
6726 int err = -EINVAL;
6727
6728 spin_lock_bh(&bp->phy_lock);
6729
6730 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6731 goto err_out_unlock;
6732
6733 if (cmd->port != bp->phy_port &&
6734 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6735 goto err_out_unlock;
6736
6737 /* If device is down, we can store the settings only if the user
6738 * is setting the currently active port.
6739 */
6740 if (!netif_running(dev) && cmd->port != bp->phy_port)
6741 goto err_out_unlock;
6742
6743 if (cmd->autoneg == AUTONEG_ENABLE) {
6744 autoneg |= AUTONEG_SPEED;
6745
6746 advertising = cmd->advertising;
6747 if (cmd->port == PORT_TP) {
6748 advertising &= ETHTOOL_ALL_COPPER_SPEED;
6749 if (!advertising)
6750 advertising = ETHTOOL_ALL_COPPER_SPEED;
6751 } else {
6752 advertising &= ETHTOOL_ALL_FIBRE_SPEED;
6753 if (!advertising)
6754 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6755 }
6756 advertising |= ADVERTISED_Autoneg;
6757 }
6758 else {
6759 if (cmd->port == PORT_FIBRE) {
6760 if ((cmd->speed != SPEED_1000 &&
6761 cmd->speed != SPEED_2500) ||
6762 (cmd->duplex != DUPLEX_FULL))
6763 goto err_out_unlock;
6764
6765 if (cmd->speed == SPEED_2500 &&
6766 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6767 goto err_out_unlock;
6768 }
6769 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6770 goto err_out_unlock;
6771
6772 autoneg &= ~AUTONEG_SPEED;
6773 req_line_speed = cmd->speed;
6774 req_duplex = cmd->duplex;
6775 advertising = 0;
6776 }
6777
6778 bp->autoneg = autoneg;
6779 bp->advertising = advertising;
6780 bp->req_line_speed = req_line_speed;
6781 bp->req_duplex = req_duplex;
6782
6783 err = 0;
6784 /* If device is down, the new settings will be picked up when it is
6785 * brought up.
6786 */
6787 if (netif_running(dev))
6788 err = bnx2_setup_phy(bp, cmd->port);
6789
6790 err_out_unlock:
6791 spin_unlock_bh(&bp->phy_lock);
6792
6793 return err;
6794 }
6795
6796 static void
6797 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6798 {
6799 struct bnx2 *bp = netdev_priv(dev);
6800
6801 strcpy(info->driver, DRV_MODULE_NAME);
6802 strcpy(info->version, DRV_MODULE_VERSION);
6803 strcpy(info->bus_info, pci_name(bp->pdev));
6804 strcpy(info->fw_version, bp->fw_version);
6805 }
6806
6807 #define BNX2_REGDUMP_LEN (32 * 1024)
6808
6809 static int
6810 bnx2_get_regs_len(struct net_device *dev)
6811 {
6812 return BNX2_REGDUMP_LEN;
6813 }
6814
6815 static void
6816 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6817 {
6818 u32 *p = _p, i, offset;
6819 u8 *orig_p = _p;
6820 struct bnx2 *bp = netdev_priv(dev);
6821 static const u32 reg_boundaries[] = {
6822 0x0000, 0x0098, 0x0400, 0x045c,
6823 0x0800, 0x0880, 0x0c00, 0x0c10,
6824 0x0c30, 0x0d08, 0x1000, 0x101c,
6825 0x1040, 0x1048, 0x1080, 0x10a4,
6826 0x1400, 0x1490, 0x1498, 0x14f0,
6827 0x1500, 0x155c, 0x1580, 0x15dc,
6828 0x1600, 0x1658, 0x1680, 0x16d8,
6829 0x1800, 0x1820, 0x1840, 0x1854,
6830 0x1880, 0x1894, 0x1900, 0x1984,
6831 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6832 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6833 0x2000, 0x2030, 0x23c0, 0x2400,
6834 0x2800, 0x2820, 0x2830, 0x2850,
6835 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6836 0x3c00, 0x3c94, 0x4000, 0x4010,
6837 0x4080, 0x4090, 0x43c0, 0x4458,
6838 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6839 0x4fc0, 0x5010, 0x53c0, 0x5444,
6840 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6841 0x5fc0, 0x6000, 0x6400, 0x6428,
6842 0x6800, 0x6848, 0x684c, 0x6860,
6843 0x6888, 0x6910, 0x8000
6844 };
6845
6846 regs->version = 0;
6847
6848 memset(p, 0, BNX2_REGDUMP_LEN);
6849
6850 if (!netif_running(bp->dev))
6851 return;
6852
6853 i = 0;
6854 offset = reg_boundaries[0];
6855 p += offset;
6856 while (offset < BNX2_REGDUMP_LEN) {
6857 *p++ = REG_RD(bp, offset);
6858 offset += 4;
6859 if (offset == reg_boundaries[i + 1]) {
6860 offset = reg_boundaries[i + 2];
6861 p = (u32 *) (orig_p + offset);
6862 i += 2;
6863 }
6864 }
6865 }
6866
6867 static void
6868 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6869 {
6870 struct bnx2 *bp = netdev_priv(dev);
6871
6872 if (bp->flags & BNX2_FLAG_NO_WOL) {
6873 wol->supported = 0;
6874 wol->wolopts = 0;
6875 }
6876 else {
6877 wol->supported = WAKE_MAGIC;
6878 if (bp->wol)
6879 wol->wolopts = WAKE_MAGIC;
6880 else
6881 wol->wolopts = 0;
6882 }
6883 memset(&wol->sopass, 0, sizeof(wol->sopass));
6884 }
6885
6886 static int
6887 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6888 {
6889 struct bnx2 *bp = netdev_priv(dev);
6890
6891 if (wol->wolopts & ~WAKE_MAGIC)
6892 return -EINVAL;
6893
6894 if (wol->wolopts & WAKE_MAGIC) {
6895 if (bp->flags & BNX2_FLAG_NO_WOL)
6896 return -EINVAL;
6897
6898 bp->wol = 1;
6899 }
6900 else {
6901 bp->wol = 0;
6902 }
6903 return 0;
6904 }
6905
6906 static int
6907 bnx2_nway_reset(struct net_device *dev)
6908 {
6909 struct bnx2 *bp = netdev_priv(dev);
6910 u32 bmcr;
6911
6912 if (!netif_running(dev))
6913 return -EAGAIN;
6914
6915 if (!(bp->autoneg & AUTONEG_SPEED)) {
6916 return -EINVAL;
6917 }
6918
6919 spin_lock_bh(&bp->phy_lock);
6920
6921 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6922 int rc;
6923
6924 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6925 spin_unlock_bh(&bp->phy_lock);
6926 return rc;
6927 }
6928
6929 /* Force a link down visible on the other side */
6930 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6931 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6932 spin_unlock_bh(&bp->phy_lock);
6933
6934 msleep(20);
6935
6936 spin_lock_bh(&bp->phy_lock);
6937
6938 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6939 bp->serdes_an_pending = 1;
6940 mod_timer(&bp->timer, jiffies + bp->current_interval);
6941 }
6942
6943 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6944 bmcr &= ~BMCR_LOOPBACK;
6945 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6946
6947 spin_unlock_bh(&bp->phy_lock);
6948
6949 return 0;
6950 }
6951
6952 static u32
6953 bnx2_get_link(struct net_device *dev)
6954 {
6955 struct bnx2 *bp = netdev_priv(dev);
6956
6957 return bp->link_up;
6958 }
6959
6960 static int
6961 bnx2_get_eeprom_len(struct net_device *dev)
6962 {
6963 struct bnx2 *bp = netdev_priv(dev);
6964
6965 if (bp->flash_info == NULL)
6966 return 0;
6967
6968 return (int) bp->flash_size;
6969 }
6970
6971 static int
6972 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6973 u8 *eebuf)
6974 {
6975 struct bnx2 *bp = netdev_priv(dev);
6976 int rc;
6977
6978 if (!netif_running(dev))
6979 return -EAGAIN;
6980
6981 /* parameters already validated in ethtool_get_eeprom */
6982
6983 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6984
6985 return rc;
6986 }
6987
6988 static int
6989 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6990 u8 *eebuf)
6991 {
6992 struct bnx2 *bp = netdev_priv(dev);
6993 int rc;
6994
6995 if (!netif_running(dev))
6996 return -EAGAIN;
6997
6998 /* parameters already validated in ethtool_set_eeprom */
6999
7000 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
7001
7002 return rc;
7003 }
7004
7005 static int
7006 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7007 {
7008 struct bnx2 *bp = netdev_priv(dev);
7009
7010 memset(coal, 0, sizeof(struct ethtool_coalesce));
7011
7012 coal->rx_coalesce_usecs = bp->rx_ticks;
7013 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
7014 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
7015 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
7016
7017 coal->tx_coalesce_usecs = bp->tx_ticks;
7018 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
7019 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
7020 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
7021
7022 coal->stats_block_coalesce_usecs = bp->stats_ticks;
7023
7024 return 0;
7025 }
7026
7027 static int
7028 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7029 {
7030 struct bnx2 *bp = netdev_priv(dev);
7031
7032 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
7033 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
7034
7035 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
7036 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
7037
7038 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
7039 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
7040
7041 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
7042 if (bp->rx_quick_cons_trip_int > 0xff)
7043 bp->rx_quick_cons_trip_int = 0xff;
7044
7045 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
7046 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
7047
7048 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
7049 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
7050
7051 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
7052 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
7053
7054 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
7055 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
7056 0xff;
7057
7058 bp->stats_ticks = coal->stats_block_coalesce_usecs;
7059 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
7060 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
7061 bp->stats_ticks = USEC_PER_SEC;
7062 }
7063 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
7064 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7065 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7066
7067 if (netif_running(bp->dev)) {
7068 bnx2_netif_stop(bp, true);
7069 bnx2_init_nic(bp, 0);
7070 bnx2_netif_start(bp, true);
7071 }
7072
7073 return 0;
7074 }
7075
7076 static void
7077 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7078 {
7079 struct bnx2 *bp = netdev_priv(dev);
7080
7081 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
7082 ering->rx_mini_max_pending = 0;
7083 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
7084
7085 ering->rx_pending = bp->rx_ring_size;
7086 ering->rx_mini_pending = 0;
7087 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
7088
7089 ering->tx_max_pending = MAX_TX_DESC_CNT;
7090 ering->tx_pending = bp->tx_ring_size;
7091 }
7092
7093 static int
7094 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
7095 {
7096 if (netif_running(bp->dev)) {
7097 /* Reset will erase chipset stats; save them */
7098 bnx2_save_stats(bp);
7099
7100 bnx2_netif_stop(bp, true);
7101 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
7102 __bnx2_free_irq(bp);
7103 bnx2_free_skbs(bp);
7104 bnx2_free_mem(bp);
7105 }
7106
7107 bnx2_set_rx_ring_size(bp, rx);
7108 bp->tx_ring_size = tx;
7109
7110 if (netif_running(bp->dev)) {
7111 int rc;
7112
7113 rc = bnx2_alloc_mem(bp);
7114 if (!rc)
7115 rc = bnx2_request_irq(bp);
7116
7117 if (!rc)
7118 rc = bnx2_init_nic(bp, 0);
7119
7120 if (rc) {
7121 bnx2_napi_enable(bp);
7122 dev_close(bp->dev);
7123 return rc;
7124 }
7125 #ifdef BCM_CNIC
7126 mutex_lock(&bp->cnic_lock);
7127 /* Let cnic know about the new status block. */
7128 if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
7129 bnx2_setup_cnic_irq_info(bp);
7130 mutex_unlock(&bp->cnic_lock);
7131 #endif
7132 bnx2_netif_start(bp, true);
7133 }
7134 return 0;
7135 }
7136
7137 static int
7138 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7139 {
7140 struct bnx2 *bp = netdev_priv(dev);
7141 int rc;
7142
7143 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7144 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7145 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7146
7147 return -EINVAL;
7148 }
7149 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7150 return rc;
7151 }
7152
7153 static void
7154 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7155 {
7156 struct bnx2 *bp = netdev_priv(dev);
7157
7158 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7159 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7160 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7161 }
7162
7163 static int
7164 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7165 {
7166 struct bnx2 *bp = netdev_priv(dev);
7167
7168 bp->req_flow_ctrl = 0;
7169 if (epause->rx_pause)
7170 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7171 if (epause->tx_pause)
7172 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7173
7174 if (epause->autoneg) {
7175 bp->autoneg |= AUTONEG_FLOW_CTRL;
7176 }
7177 else {
7178 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7179 }
7180
7181 if (netif_running(dev)) {
7182 spin_lock_bh(&bp->phy_lock);
7183 bnx2_setup_phy(bp, bp->phy_port);
7184 spin_unlock_bh(&bp->phy_lock);
7185 }
7186
7187 return 0;
7188 }
7189
7190 static u32
7191 bnx2_get_rx_csum(struct net_device *dev)
7192 {
7193 struct bnx2 *bp = netdev_priv(dev);
7194
7195 return bp->rx_csum;
7196 }
7197
7198 static int
7199 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7200 {
7201 struct bnx2 *bp = netdev_priv(dev);
7202
7203 bp->rx_csum = data;
7204 return 0;
7205 }
7206
7207 static int
7208 bnx2_set_tso(struct net_device *dev, u32 data)
7209 {
7210 struct bnx2 *bp = netdev_priv(dev);
7211
7212 if (data) {
7213 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7214 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7215 dev->features |= NETIF_F_TSO6;
7216 } else
7217 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7218 NETIF_F_TSO_ECN);
7219 return 0;
7220 }
7221
7222 static struct {
7223 char string[ETH_GSTRING_LEN];
7224 } bnx2_stats_str_arr[] = {
7225 { "rx_bytes" },
7226 { "rx_error_bytes" },
7227 { "tx_bytes" },
7228 { "tx_error_bytes" },
7229 { "rx_ucast_packets" },
7230 { "rx_mcast_packets" },
7231 { "rx_bcast_packets" },
7232 { "tx_ucast_packets" },
7233 { "tx_mcast_packets" },
7234 { "tx_bcast_packets" },
7235 { "tx_mac_errors" },
7236 { "tx_carrier_errors" },
7237 { "rx_crc_errors" },
7238 { "rx_align_errors" },
7239 { "tx_single_collisions" },
7240 { "tx_multi_collisions" },
7241 { "tx_deferred" },
7242 { "tx_excess_collisions" },
7243 { "tx_late_collisions" },
7244 { "tx_total_collisions" },
7245 { "rx_fragments" },
7246 { "rx_jabbers" },
7247 { "rx_undersize_packets" },
7248 { "rx_oversize_packets" },
7249 { "rx_64_byte_packets" },
7250 { "rx_65_to_127_byte_packets" },
7251 { "rx_128_to_255_byte_packets" },
7252 { "rx_256_to_511_byte_packets" },
7253 { "rx_512_to_1023_byte_packets" },
7254 { "rx_1024_to_1522_byte_packets" },
7255 { "rx_1523_to_9022_byte_packets" },
7256 { "tx_64_byte_packets" },
7257 { "tx_65_to_127_byte_packets" },
7258 { "tx_128_to_255_byte_packets" },
7259 { "tx_256_to_511_byte_packets" },
7260 { "tx_512_to_1023_byte_packets" },
7261 { "tx_1024_to_1522_byte_packets" },
7262 { "tx_1523_to_9022_byte_packets" },
7263 { "rx_xon_frames" },
7264 { "rx_xoff_frames" },
7265 { "tx_xon_frames" },
7266 { "tx_xoff_frames" },
7267 { "rx_mac_ctrl_frames" },
7268 { "rx_filtered_packets" },
7269 { "rx_ftq_discards" },
7270 { "rx_discards" },
7271 { "rx_fw_discards" },
7272 };
7273
7274 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7275 sizeof(bnx2_stats_str_arr[0]))
7276
7277 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7278
7279 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7280 STATS_OFFSET32(stat_IfHCInOctets_hi),
7281 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7282 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7283 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7284 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7285 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7286 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7287 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7288 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7289 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7290 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7291 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7292 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7293 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7294 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7295 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7296 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7297 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7298 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7299 STATS_OFFSET32(stat_EtherStatsCollisions),
7300 STATS_OFFSET32(stat_EtherStatsFragments),
7301 STATS_OFFSET32(stat_EtherStatsJabbers),
7302 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7303 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7304 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7305 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7306 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7307 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7308 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7309 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7310 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7311 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7312 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7313 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7314 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7315 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7316 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7317 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7318 STATS_OFFSET32(stat_XonPauseFramesReceived),
7319 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7320 STATS_OFFSET32(stat_OutXonSent),
7321 STATS_OFFSET32(stat_OutXoffSent),
7322 STATS_OFFSET32(stat_MacControlFramesReceived),
7323 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7324 STATS_OFFSET32(stat_IfInFTQDiscards),
7325 STATS_OFFSET32(stat_IfInMBUFDiscards),
7326 STATS_OFFSET32(stat_FwRxDrop),
7327 };
7328
7329 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7330 * skipped because of errata.
7331 */
7332 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7333 8,0,8,8,8,8,8,8,8,8,
7334 4,0,4,4,4,4,4,4,4,4,
7335 4,4,4,4,4,4,4,4,4,4,
7336 4,4,4,4,4,4,4,4,4,4,
7337 4,4,4,4,4,4,4,
7338 };
7339
7340 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7341 8,0,8,8,8,8,8,8,8,8,
7342 4,4,4,4,4,4,4,4,4,4,
7343 4,4,4,4,4,4,4,4,4,4,
7344 4,4,4,4,4,4,4,4,4,4,
7345 4,4,4,4,4,4,4,
7346 };
7347
7348 #define BNX2_NUM_TESTS 6
7349
7350 static struct {
7351 char string[ETH_GSTRING_LEN];
7352 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7353 { "register_test (offline)" },
7354 { "memory_test (offline)" },
7355 { "loopback_test (offline)" },
7356 { "nvram_test (online)" },
7357 { "interrupt_test (online)" },
7358 { "link_test (online)" },
7359 };
7360
7361 static int
7362 bnx2_get_sset_count(struct net_device *dev, int sset)
7363 {
7364 switch (sset) {
7365 case ETH_SS_TEST:
7366 return BNX2_NUM_TESTS;
7367 case ETH_SS_STATS:
7368 return BNX2_NUM_STATS;
7369 default:
7370 return -EOPNOTSUPP;
7371 }
7372 }
7373
7374 static void
7375 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7376 {
7377 struct bnx2 *bp = netdev_priv(dev);
7378
7379 bnx2_set_power_state(bp, PCI_D0);
7380
7381 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7382 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7383 int i;
7384
7385 bnx2_netif_stop(bp, true);
7386 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7387 bnx2_free_skbs(bp);
7388
7389 if (bnx2_test_registers(bp) != 0) {
7390 buf[0] = 1;
7391 etest->flags |= ETH_TEST_FL_FAILED;
7392 }
7393 if (bnx2_test_memory(bp) != 0) {
7394 buf[1] = 1;
7395 etest->flags |= ETH_TEST_FL_FAILED;
7396 }
7397 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7398 etest->flags |= ETH_TEST_FL_FAILED;
7399
7400 if (!netif_running(bp->dev))
7401 bnx2_shutdown_chip(bp);
7402 else {
7403 bnx2_init_nic(bp, 1);
7404 bnx2_netif_start(bp, true);
7405 }
7406
7407 /* wait for link up */
7408 for (i = 0; i < 7; i++) {
7409 if (bp->link_up)
7410 break;
7411 msleep_interruptible(1000);
7412 }
7413 }
7414
7415 if (bnx2_test_nvram(bp) != 0) {
7416 buf[3] = 1;
7417 etest->flags |= ETH_TEST_FL_FAILED;
7418 }
7419 if (bnx2_test_intr(bp) != 0) {
7420 buf[4] = 1;
7421 etest->flags |= ETH_TEST_FL_FAILED;
7422 }
7423
7424 if (bnx2_test_link(bp) != 0) {
7425 buf[5] = 1;
7426 etest->flags |= ETH_TEST_FL_FAILED;
7427
7428 }
7429 if (!netif_running(bp->dev))
7430 bnx2_set_power_state(bp, PCI_D3hot);
7431 }
7432
7433 static void
7434 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7435 {
7436 switch (stringset) {
7437 case ETH_SS_STATS:
7438 memcpy(buf, bnx2_stats_str_arr,
7439 sizeof(bnx2_stats_str_arr));
7440 break;
7441 case ETH_SS_TEST:
7442 memcpy(buf, bnx2_tests_str_arr,
7443 sizeof(bnx2_tests_str_arr));
7444 break;
7445 }
7446 }
7447
7448 static void
7449 bnx2_get_ethtool_stats(struct net_device *dev,
7450 struct ethtool_stats *stats, u64 *buf)
7451 {
7452 struct bnx2 *bp = netdev_priv(dev);
7453 int i;
7454 u32 *hw_stats = (u32 *) bp->stats_blk;
7455 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
7456 u8 *stats_len_arr = NULL;
7457
7458 if (hw_stats == NULL) {
7459 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7460 return;
7461 }
7462
7463 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7464 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7465 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7466 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7467 stats_len_arr = bnx2_5706_stats_len_arr;
7468 else
7469 stats_len_arr = bnx2_5708_stats_len_arr;
7470
7471 for (i = 0; i < BNX2_NUM_STATS; i++) {
7472 unsigned long offset;
7473
7474 if (stats_len_arr[i] == 0) {
7475 /* skip this counter */
7476 buf[i] = 0;
7477 continue;
7478 }
7479
7480 offset = bnx2_stats_offset_arr[i];
7481 if (stats_len_arr[i] == 4) {
7482 /* 4-byte counter */
7483 buf[i] = (u64) *(hw_stats + offset) +
7484 *(temp_stats + offset);
7485 continue;
7486 }
7487 /* 8-byte counter */
7488 buf[i] = (((u64) *(hw_stats + offset)) << 32) +
7489 *(hw_stats + offset + 1) +
7490 (((u64) *(temp_stats + offset)) << 32) +
7491 *(temp_stats + offset + 1);
7492 }
7493 }
7494
7495 static int
7496 bnx2_phys_id(struct net_device *dev, u32 data)
7497 {
7498 struct bnx2 *bp = netdev_priv(dev);
7499 int i;
7500 u32 save;
7501
7502 bnx2_set_power_state(bp, PCI_D0);
7503
7504 if (data == 0)
7505 data = 2;
7506
7507 save = REG_RD(bp, BNX2_MISC_CFG);
7508 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7509
7510 for (i = 0; i < (data * 2); i++) {
7511 if ((i % 2) == 0) {
7512 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7513 }
7514 else {
7515 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7516 BNX2_EMAC_LED_1000MB_OVERRIDE |
7517 BNX2_EMAC_LED_100MB_OVERRIDE |
7518 BNX2_EMAC_LED_10MB_OVERRIDE |
7519 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7520 BNX2_EMAC_LED_TRAFFIC);
7521 }
7522 msleep_interruptible(500);
7523 if (signal_pending(current))
7524 break;
7525 }
7526 REG_WR(bp, BNX2_EMAC_LED, 0);
7527 REG_WR(bp, BNX2_MISC_CFG, save);
7528
7529 if (!netif_running(dev))
7530 bnx2_set_power_state(bp, PCI_D3hot);
7531
7532 return 0;
7533 }
7534
7535 static int
7536 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7537 {
7538 struct bnx2 *bp = netdev_priv(dev);
7539
7540 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7541 return ethtool_op_set_tx_ipv6_csum(dev, data);
7542 else
7543 return ethtool_op_set_tx_csum(dev, data);
7544 }
7545
7546 static int
7547 bnx2_set_flags(struct net_device *dev, u32 data)
7548 {
7549 struct bnx2 *bp = netdev_priv(dev);
7550 int rc;
7551
7552 if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN) &&
7553 !(data & ETH_FLAG_RXVLAN))
7554 return -EINVAL;
7555
7556 /* TSO with VLAN tag won't work with current firmware */
7557 if (!(data & ETH_FLAG_TXVLAN))
7558 return -EINVAL;
7559
7560 rc = ethtool_op_set_flags(dev, data, ETH_FLAG_RXHASH | ETH_FLAG_RXVLAN |
7561 ETH_FLAG_TXVLAN);
7562 if (rc)
7563 return rc;
7564
7565 if ((!!(data & ETH_FLAG_RXVLAN) !=
7566 !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
7567 netif_running(dev)) {
7568 bnx2_netif_stop(bp, false);
7569 bnx2_set_rx_mode(dev);
7570 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
7571 bnx2_netif_start(bp, false);
7572 }
7573
7574 return 0;
7575 }
7576
7577 static const struct ethtool_ops bnx2_ethtool_ops = {
7578 .get_settings = bnx2_get_settings,
7579 .set_settings = bnx2_set_settings,
7580 .get_drvinfo = bnx2_get_drvinfo,
7581 .get_regs_len = bnx2_get_regs_len,
7582 .get_regs = bnx2_get_regs,
7583 .get_wol = bnx2_get_wol,
7584 .set_wol = bnx2_set_wol,
7585 .nway_reset = bnx2_nway_reset,
7586 .get_link = bnx2_get_link,
7587 .get_eeprom_len = bnx2_get_eeprom_len,
7588 .get_eeprom = bnx2_get_eeprom,
7589 .set_eeprom = bnx2_set_eeprom,
7590 .get_coalesce = bnx2_get_coalesce,
7591 .set_coalesce = bnx2_set_coalesce,
7592 .get_ringparam = bnx2_get_ringparam,
7593 .set_ringparam = bnx2_set_ringparam,
7594 .get_pauseparam = bnx2_get_pauseparam,
7595 .set_pauseparam = bnx2_set_pauseparam,
7596 .get_rx_csum = bnx2_get_rx_csum,
7597 .set_rx_csum = bnx2_set_rx_csum,
7598 .set_tx_csum = bnx2_set_tx_csum,
7599 .set_sg = ethtool_op_set_sg,
7600 .set_tso = bnx2_set_tso,
7601 .self_test = bnx2_self_test,
7602 .get_strings = bnx2_get_strings,
7603 .phys_id = bnx2_phys_id,
7604 .get_ethtool_stats = bnx2_get_ethtool_stats,
7605 .get_sset_count = bnx2_get_sset_count,
7606 .set_flags = bnx2_set_flags,
7607 .get_flags = ethtool_op_get_flags,
7608 };
7609
7610 /* Called with rtnl_lock */
7611 static int
7612 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7613 {
7614 struct mii_ioctl_data *data = if_mii(ifr);
7615 struct bnx2 *bp = netdev_priv(dev);
7616 int err;
7617
7618 switch(cmd) {
7619 case SIOCGMIIPHY:
7620 data->phy_id = bp->phy_addr;
7621
7622 /* fallthru */
7623 case SIOCGMIIREG: {
7624 u32 mii_regval;
7625
7626 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7627 return -EOPNOTSUPP;
7628
7629 if (!netif_running(dev))
7630 return -EAGAIN;
7631
7632 spin_lock_bh(&bp->phy_lock);
7633 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7634 spin_unlock_bh(&bp->phy_lock);
7635
7636 data->val_out = mii_regval;
7637
7638 return err;
7639 }
7640
7641 case SIOCSMIIREG:
7642 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7643 return -EOPNOTSUPP;
7644
7645 if (!netif_running(dev))
7646 return -EAGAIN;
7647
7648 spin_lock_bh(&bp->phy_lock);
7649 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7650 spin_unlock_bh(&bp->phy_lock);
7651
7652 return err;
7653
7654 default:
7655 /* do nothing */
7656 break;
7657 }
7658 return -EOPNOTSUPP;
7659 }
7660
7661 /* Called with rtnl_lock */
7662 static int
7663 bnx2_change_mac_addr(struct net_device *dev, void *p)
7664 {
7665 struct sockaddr *addr = p;
7666 struct bnx2 *bp = netdev_priv(dev);
7667
7668 if (!is_valid_ether_addr(addr->sa_data))
7669 return -EINVAL;
7670
7671 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7672 if (netif_running(dev))
7673 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7674
7675 return 0;
7676 }
7677
7678 /* Called with rtnl_lock */
7679 static int
7680 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7681 {
7682 struct bnx2 *bp = netdev_priv(dev);
7683
7684 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7685 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7686 return -EINVAL;
7687
7688 dev->mtu = new_mtu;
7689 return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size);
7690 }
7691
7692 #ifdef CONFIG_NET_POLL_CONTROLLER
7693 static void
7694 poll_bnx2(struct net_device *dev)
7695 {
7696 struct bnx2 *bp = netdev_priv(dev);
7697 int i;
7698
7699 for (i = 0; i < bp->irq_nvecs; i++) {
7700 struct bnx2_irq *irq = &bp->irq_tbl[i];
7701
7702 disable_irq(irq->vector);
7703 irq->handler(irq->vector, &bp->bnx2_napi[i]);
7704 enable_irq(irq->vector);
7705 }
7706 }
7707 #endif
7708
7709 static void __devinit
7710 bnx2_get_5709_media(struct bnx2 *bp)
7711 {
7712 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7713 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7714 u32 strap;
7715
7716 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7717 return;
7718 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7719 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7720 return;
7721 }
7722
7723 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7724 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7725 else
7726 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7727
7728 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7729 switch (strap) {
7730 case 0x4:
7731 case 0x5:
7732 case 0x6:
7733 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7734 return;
7735 }
7736 } else {
7737 switch (strap) {
7738 case 0x1:
7739 case 0x2:
7740 case 0x4:
7741 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7742 return;
7743 }
7744 }
7745 }
7746
7747 static void __devinit
7748 bnx2_get_pci_speed(struct bnx2 *bp)
7749 {
7750 u32 reg;
7751
7752 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7753 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7754 u32 clkreg;
7755
7756 bp->flags |= BNX2_FLAG_PCIX;
7757
7758 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7759
7760 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7761 switch (clkreg) {
7762 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7763 bp->bus_speed_mhz = 133;
7764 break;
7765
7766 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7767 bp->bus_speed_mhz = 100;
7768 break;
7769
7770 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7771 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7772 bp->bus_speed_mhz = 66;
7773 break;
7774
7775 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7776 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7777 bp->bus_speed_mhz = 50;
7778 break;
7779
7780 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7781 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7782 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7783 bp->bus_speed_mhz = 33;
7784 break;
7785 }
7786 }
7787 else {
7788 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7789 bp->bus_speed_mhz = 66;
7790 else
7791 bp->bus_speed_mhz = 33;
7792 }
7793
7794 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7795 bp->flags |= BNX2_FLAG_PCI_32BIT;
7796
7797 }
7798
7799 static void __devinit
7800 bnx2_read_vpd_fw_ver(struct bnx2 *bp)
7801 {
7802 int rc, i, j;
7803 u8 *data;
7804 unsigned int block_end, rosize, len;
7805
7806 #define BNX2_VPD_NVRAM_OFFSET 0x300
7807 #define BNX2_VPD_LEN 128
7808 #define BNX2_MAX_VER_SLEN 30
7809
7810 data = kmalloc(256, GFP_KERNEL);
7811 if (!data)
7812 return;
7813
7814 rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
7815 BNX2_VPD_LEN);
7816 if (rc)
7817 goto vpd_done;
7818
7819 for (i = 0; i < BNX2_VPD_LEN; i += 4) {
7820 data[i] = data[i + BNX2_VPD_LEN + 3];
7821 data[i + 1] = data[i + BNX2_VPD_LEN + 2];
7822 data[i + 2] = data[i + BNX2_VPD_LEN + 1];
7823 data[i + 3] = data[i + BNX2_VPD_LEN];
7824 }
7825
7826 i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
7827 if (i < 0)
7828 goto vpd_done;
7829
7830 rosize = pci_vpd_lrdt_size(&data[i]);
7831 i += PCI_VPD_LRDT_TAG_SIZE;
7832 block_end = i + rosize;
7833
7834 if (block_end > BNX2_VPD_LEN)
7835 goto vpd_done;
7836
7837 j = pci_vpd_find_info_keyword(data, i, rosize,
7838 PCI_VPD_RO_KEYWORD_MFR_ID);
7839 if (j < 0)
7840 goto vpd_done;
7841
7842 len = pci_vpd_info_field_size(&data[j]);
7843
7844 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7845 if (j + len > block_end || len != 4 ||
7846 memcmp(&data[j], "1028", 4))
7847 goto vpd_done;
7848
7849 j = pci_vpd_find_info_keyword(data, i, rosize,
7850 PCI_VPD_RO_KEYWORD_VENDOR0);
7851 if (j < 0)
7852 goto vpd_done;
7853
7854 len = pci_vpd_info_field_size(&data[j]);
7855
7856 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7857 if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
7858 goto vpd_done;
7859
7860 memcpy(bp->fw_version, &data[j], len);
7861 bp->fw_version[len] = ' ';
7862
7863 vpd_done:
7864 kfree(data);
7865 }
7866
7867 static int __devinit
7868 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7869 {
7870 struct bnx2 *bp;
7871 unsigned long mem_len;
7872 int rc, i, j;
7873 u32 reg;
7874 u64 dma_mask, persist_dma_mask;
7875 int err;
7876
7877 SET_NETDEV_DEV(dev, &pdev->dev);
7878 bp = netdev_priv(dev);
7879
7880 bp->flags = 0;
7881 bp->phy_flags = 0;
7882
7883 bp->temp_stats_blk =
7884 kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
7885
7886 if (bp->temp_stats_blk == NULL) {
7887 rc = -ENOMEM;
7888 goto err_out;
7889 }
7890
7891 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7892 rc = pci_enable_device(pdev);
7893 if (rc) {
7894 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7895 goto err_out;
7896 }
7897
7898 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7899 dev_err(&pdev->dev,
7900 "Cannot find PCI device base address, aborting\n");
7901 rc = -ENODEV;
7902 goto err_out_disable;
7903 }
7904
7905 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7906 if (rc) {
7907 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7908 goto err_out_disable;
7909 }
7910
7911 pci_set_master(pdev);
7912
7913 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7914 if (bp->pm_cap == 0) {
7915 dev_err(&pdev->dev,
7916 "Cannot find power management capability, aborting\n");
7917 rc = -EIO;
7918 goto err_out_release;
7919 }
7920
7921 bp->dev = dev;
7922 bp->pdev = pdev;
7923
7924 spin_lock_init(&bp->phy_lock);
7925 spin_lock_init(&bp->indirect_lock);
7926 #ifdef BCM_CNIC
7927 mutex_init(&bp->cnic_lock);
7928 #endif
7929 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7930
7931 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7932 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7933 dev->mem_end = dev->mem_start + mem_len;
7934 dev->irq = pdev->irq;
7935
7936 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7937
7938 if (!bp->regview) {
7939 dev_err(&pdev->dev, "Cannot map register space, aborting\n");
7940 rc = -ENOMEM;
7941 goto err_out_release;
7942 }
7943
7944 bnx2_set_power_state(bp, PCI_D0);
7945
7946 /* Configure byte swap and enable write to the reg_window registers.
7947 * Rely on CPU to do target byte swapping on big endian systems
7948 * The chip's target access swapping will not swap all accesses
7949 */
7950 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG,
7951 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7952 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7953
7954 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7955
7956 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7957 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7958 dev_err(&pdev->dev,
7959 "Cannot find PCIE capability, aborting\n");
7960 rc = -EIO;
7961 goto err_out_unmap;
7962 }
7963 bp->flags |= BNX2_FLAG_PCIE;
7964 if (CHIP_REV(bp) == CHIP_REV_Ax)
7965 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7966
7967 /* AER (Advanced Error Reporting) hooks */
7968 err = pci_enable_pcie_error_reporting(pdev);
7969 if (!err)
7970 bp->flags |= BNX2_FLAG_AER_ENABLED;
7971
7972 } else {
7973 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7974 if (bp->pcix_cap == 0) {
7975 dev_err(&pdev->dev,
7976 "Cannot find PCIX capability, aborting\n");
7977 rc = -EIO;
7978 goto err_out_unmap;
7979 }
7980 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7981 }
7982
7983 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7984 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7985 bp->flags |= BNX2_FLAG_MSIX_CAP;
7986 }
7987
7988 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7989 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7990 bp->flags |= BNX2_FLAG_MSI_CAP;
7991 }
7992
7993 /* 5708 cannot support DMA addresses > 40-bit. */
7994 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7995 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7996 else
7997 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7998
7999 /* Configure DMA attributes. */
8000 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
8001 dev->features |= NETIF_F_HIGHDMA;
8002 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
8003 if (rc) {
8004 dev_err(&pdev->dev,
8005 "pci_set_consistent_dma_mask failed, aborting\n");
8006 goto err_out_unmap;
8007 }
8008 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
8009 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
8010 goto err_out_unmap;
8011 }
8012
8013 if (!(bp->flags & BNX2_FLAG_PCIE))
8014 bnx2_get_pci_speed(bp);
8015
8016 /* 5706A0 may falsely detect SERR and PERR. */
8017 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8018 reg = REG_RD(bp, PCI_COMMAND);
8019 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
8020 REG_WR(bp, PCI_COMMAND, reg);
8021 }
8022 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
8023 !(bp->flags & BNX2_FLAG_PCIX)) {
8024
8025 dev_err(&pdev->dev,
8026 "5706 A1 can only be used in a PCIX bus, aborting\n");
8027 goto err_out_unmap;
8028 }
8029
8030 bnx2_init_nvram(bp);
8031
8032 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
8033
8034 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
8035 BNX2_SHM_HDR_SIGNATURE_SIG) {
8036 u32 off = PCI_FUNC(pdev->devfn) << 2;
8037
8038 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
8039 } else
8040 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
8041
8042 /* Get the permanent MAC address. First we need to make sure the
8043 * firmware is actually running.
8044 */
8045 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
8046
8047 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
8048 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
8049 dev_err(&pdev->dev, "Firmware not running, aborting\n");
8050 rc = -ENODEV;
8051 goto err_out_unmap;
8052 }
8053
8054 bnx2_read_vpd_fw_ver(bp);
8055
8056 j = strlen(bp->fw_version);
8057 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
8058 for (i = 0; i < 3 && j < 24; i++) {
8059 u8 num, k, skip0;
8060
8061 if (i == 0) {
8062 bp->fw_version[j++] = 'b';
8063 bp->fw_version[j++] = 'c';
8064 bp->fw_version[j++] = ' ';
8065 }
8066 num = (u8) (reg >> (24 - (i * 8)));
8067 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
8068 if (num >= k || !skip0 || k == 1) {
8069 bp->fw_version[j++] = (num / k) + '0';
8070 skip0 = 0;
8071 }
8072 }
8073 if (i != 2)
8074 bp->fw_version[j++] = '.';
8075 }
8076 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
8077 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
8078 bp->wol = 1;
8079
8080 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
8081 bp->flags |= BNX2_FLAG_ASF_ENABLE;
8082
8083 for (i = 0; i < 30; i++) {
8084 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8085 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
8086 break;
8087 msleep(10);
8088 }
8089 }
8090 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8091 reg &= BNX2_CONDITION_MFW_RUN_MASK;
8092 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
8093 reg != BNX2_CONDITION_MFW_RUN_NONE) {
8094 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
8095
8096 if (j < 32)
8097 bp->fw_version[j++] = ' ';
8098 for (i = 0; i < 3 && j < 28; i++) {
8099 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
8100 reg = swab32(reg);
8101 memcpy(&bp->fw_version[j], &reg, 4);
8102 j += 4;
8103 }
8104 }
8105
8106 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
8107 bp->mac_addr[0] = (u8) (reg >> 8);
8108 bp->mac_addr[1] = (u8) reg;
8109
8110 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
8111 bp->mac_addr[2] = (u8) (reg >> 24);
8112 bp->mac_addr[3] = (u8) (reg >> 16);
8113 bp->mac_addr[4] = (u8) (reg >> 8);
8114 bp->mac_addr[5] = (u8) reg;
8115
8116 bp->tx_ring_size = MAX_TX_DESC_CNT;
8117 bnx2_set_rx_ring_size(bp, 255);
8118
8119 bp->rx_csum = 1;
8120
8121 bp->tx_quick_cons_trip_int = 2;
8122 bp->tx_quick_cons_trip = 20;
8123 bp->tx_ticks_int = 18;
8124 bp->tx_ticks = 80;
8125
8126 bp->rx_quick_cons_trip_int = 2;
8127 bp->rx_quick_cons_trip = 12;
8128 bp->rx_ticks_int = 18;
8129 bp->rx_ticks = 18;
8130
8131 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
8132
8133 bp->current_interval = BNX2_TIMER_INTERVAL;
8134
8135 bp->phy_addr = 1;
8136
8137 /* Disable WOL support if we are running on a SERDES chip. */
8138 if (CHIP_NUM(bp) == CHIP_NUM_5709)
8139 bnx2_get_5709_media(bp);
8140 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
8141 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
8142
8143 bp->phy_port = PORT_TP;
8144 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
8145 bp->phy_port = PORT_FIBRE;
8146 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
8147 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
8148 bp->flags |= BNX2_FLAG_NO_WOL;
8149 bp->wol = 0;
8150 }
8151 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
8152 /* Don't do parallel detect on this board because of
8153 * some board problems. The link will not go down
8154 * if we do parallel detect.
8155 */
8156 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
8157 pdev->subsystem_device == 0x310c)
8158 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
8159 } else {
8160 bp->phy_addr = 2;
8161 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
8162 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
8163 }
8164 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
8165 CHIP_NUM(bp) == CHIP_NUM_5708)
8166 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
8167 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
8168 (CHIP_REV(bp) == CHIP_REV_Ax ||
8169 CHIP_REV(bp) == CHIP_REV_Bx))
8170 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
8171
8172 bnx2_init_fw_cap(bp);
8173
8174 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
8175 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
8176 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
8177 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
8178 bp->flags |= BNX2_FLAG_NO_WOL;
8179 bp->wol = 0;
8180 }
8181
8182 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8183 bp->tx_quick_cons_trip_int =
8184 bp->tx_quick_cons_trip;
8185 bp->tx_ticks_int = bp->tx_ticks;
8186 bp->rx_quick_cons_trip_int =
8187 bp->rx_quick_cons_trip;
8188 bp->rx_ticks_int = bp->rx_ticks;
8189 bp->comp_prod_trip_int = bp->comp_prod_trip;
8190 bp->com_ticks_int = bp->com_ticks;
8191 bp->cmd_ticks_int = bp->cmd_ticks;
8192 }
8193
8194 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8195 *
8196 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8197 * with byte enables disabled on the unused 32-bit word. This is legal
8198 * but causes problems on the AMD 8132 which will eventually stop
8199 * responding after a while.
8200 *
8201 * AMD believes this incompatibility is unique to the 5706, and
8202 * prefers to locally disable MSI rather than globally disabling it.
8203 */
8204 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
8205 struct pci_dev *amd_8132 = NULL;
8206
8207 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
8208 PCI_DEVICE_ID_AMD_8132_BRIDGE,
8209 amd_8132))) {
8210
8211 if (amd_8132->revision >= 0x10 &&
8212 amd_8132->revision <= 0x13) {
8213 disable_msi = 1;
8214 pci_dev_put(amd_8132);
8215 break;
8216 }
8217 }
8218 }
8219
8220 bnx2_set_default_link(bp);
8221 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
8222
8223 init_timer(&bp->timer);
8224 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
8225 bp->timer.data = (unsigned long) bp;
8226 bp->timer.function = bnx2_timer;
8227
8228 pci_save_state(pdev);
8229
8230 return 0;
8231
8232 err_out_unmap:
8233 if (bp->flags & BNX2_FLAG_AER_ENABLED) {
8234 pci_disable_pcie_error_reporting(pdev);
8235 bp->flags &= ~BNX2_FLAG_AER_ENABLED;
8236 }
8237
8238 if (bp->regview) {
8239 iounmap(bp->regview);
8240 bp->regview = NULL;
8241 }
8242
8243 err_out_release:
8244 pci_release_regions(pdev);
8245
8246 err_out_disable:
8247 pci_disable_device(pdev);
8248 pci_set_drvdata(pdev, NULL);
8249
8250 err_out:
8251 return rc;
8252 }
8253
8254 static char * __devinit
8255 bnx2_bus_string(struct bnx2 *bp, char *str)
8256 {
8257 char *s = str;
8258
8259 if (bp->flags & BNX2_FLAG_PCIE) {
8260 s += sprintf(s, "PCI Express");
8261 } else {
8262 s += sprintf(s, "PCI");
8263 if (bp->flags & BNX2_FLAG_PCIX)
8264 s += sprintf(s, "-X");
8265 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8266 s += sprintf(s, " 32-bit");
8267 else
8268 s += sprintf(s, " 64-bit");
8269 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8270 }
8271 return str;
8272 }
8273
8274 static void
8275 bnx2_del_napi(struct bnx2 *bp)
8276 {
8277 int i;
8278
8279 for (i = 0; i < bp->irq_nvecs; i++)
8280 netif_napi_del(&bp->bnx2_napi[i].napi);
8281 }
8282
8283 static void
8284 bnx2_init_napi(struct bnx2 *bp)
8285 {
8286 int i;
8287
8288 for (i = 0; i < bp->irq_nvecs; i++) {
8289 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8290 int (*poll)(struct napi_struct *, int);
8291
8292 if (i == 0)
8293 poll = bnx2_poll;
8294 else
8295 poll = bnx2_poll_msix;
8296
8297 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8298 bnapi->bp = bp;
8299 }
8300 }
8301
8302 static const struct net_device_ops bnx2_netdev_ops = {
8303 .ndo_open = bnx2_open,
8304 .ndo_start_xmit = bnx2_start_xmit,
8305 .ndo_stop = bnx2_close,
8306 .ndo_get_stats64 = bnx2_get_stats64,
8307 .ndo_set_rx_mode = bnx2_set_rx_mode,
8308 .ndo_do_ioctl = bnx2_ioctl,
8309 .ndo_validate_addr = eth_validate_addr,
8310 .ndo_set_mac_address = bnx2_change_mac_addr,
8311 .ndo_change_mtu = bnx2_change_mtu,
8312 .ndo_tx_timeout = bnx2_tx_timeout,
8313 #ifdef CONFIG_NET_POLL_CONTROLLER
8314 .ndo_poll_controller = poll_bnx2,
8315 #endif
8316 };
8317
8318 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8319 {
8320 dev->vlan_features |= flags;
8321 }
8322
8323 static int __devinit
8324 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8325 {
8326 static int version_printed = 0;
8327 struct net_device *dev = NULL;
8328 struct bnx2 *bp;
8329 int rc;
8330 char str[40];
8331
8332 if (version_printed++ == 0)
8333 pr_info("%s", version);
8334
8335 /* dev zeroed in init_etherdev */
8336 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8337
8338 if (!dev)
8339 return -ENOMEM;
8340
8341 rc = bnx2_init_board(pdev, dev);
8342 if (rc < 0) {
8343 free_netdev(dev);
8344 return rc;
8345 }
8346
8347 dev->netdev_ops = &bnx2_netdev_ops;
8348 dev->watchdog_timeo = TX_TIMEOUT;
8349 dev->ethtool_ops = &bnx2_ethtool_ops;
8350
8351 bp = netdev_priv(dev);
8352
8353 pci_set_drvdata(pdev, dev);
8354
8355 rc = bnx2_request_firmware(bp);
8356 if (rc)
8357 goto error;
8358
8359 memcpy(dev->dev_addr, bp->mac_addr, 6);
8360 memcpy(dev->perm_addr, bp->mac_addr, 6);
8361
8362 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_GRO |
8363 NETIF_F_RXHASH;
8364 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8365 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8366 dev->features |= NETIF_F_IPV6_CSUM;
8367 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8368 }
8369 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8370 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8371 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8372 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8373 dev->features |= NETIF_F_TSO6;
8374 vlan_features_add(dev, NETIF_F_TSO6);
8375 }
8376 if ((rc = register_netdev(dev))) {
8377 dev_err(&pdev->dev, "Cannot register net device\n");
8378 goto error;
8379 }
8380
8381 netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8382 board_info[ent->driver_data].name,
8383 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8384 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8385 bnx2_bus_string(bp, str),
8386 dev->base_addr,
8387 bp->pdev->irq, dev->dev_addr);
8388
8389 return 0;
8390
8391 error:
8392 if (bp->mips_firmware)
8393 release_firmware(bp->mips_firmware);
8394 if (bp->rv2p_firmware)
8395 release_firmware(bp->rv2p_firmware);
8396
8397 if (bp->regview)
8398 iounmap(bp->regview);
8399 pci_release_regions(pdev);
8400 pci_disable_device(pdev);
8401 pci_set_drvdata(pdev, NULL);
8402 free_netdev(dev);
8403 return rc;
8404 }
8405
8406 static void __devexit
8407 bnx2_remove_one(struct pci_dev *pdev)
8408 {
8409 struct net_device *dev = pci_get_drvdata(pdev);
8410 struct bnx2 *bp = netdev_priv(dev);
8411
8412 unregister_netdev(dev);
8413
8414 if (bp->mips_firmware)
8415 release_firmware(bp->mips_firmware);
8416 if (bp->rv2p_firmware)
8417 release_firmware(bp->rv2p_firmware);
8418
8419 if (bp->regview)
8420 iounmap(bp->regview);
8421
8422 kfree(bp->temp_stats_blk);
8423
8424 if (bp->flags & BNX2_FLAG_AER_ENABLED) {
8425 pci_disable_pcie_error_reporting(pdev);
8426 bp->flags &= ~BNX2_FLAG_AER_ENABLED;
8427 }
8428
8429 free_netdev(dev);
8430
8431 pci_release_regions(pdev);
8432 pci_disable_device(pdev);
8433 pci_set_drvdata(pdev, NULL);
8434 }
8435
8436 static int
8437 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8438 {
8439 struct net_device *dev = pci_get_drvdata(pdev);
8440 struct bnx2 *bp = netdev_priv(dev);
8441
8442 /* PCI register 4 needs to be saved whether netif_running() or not.
8443 * MSI address and data need to be saved if using MSI and
8444 * netif_running().
8445 */
8446 pci_save_state(pdev);
8447 if (!netif_running(dev))
8448 return 0;
8449
8450 cancel_work_sync(&bp->reset_task);
8451 bnx2_netif_stop(bp, true);
8452 netif_device_detach(dev);
8453 del_timer_sync(&bp->timer);
8454 bnx2_shutdown_chip(bp);
8455 bnx2_free_skbs(bp);
8456 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8457 return 0;
8458 }
8459
8460 static int
8461 bnx2_resume(struct pci_dev *pdev)
8462 {
8463 struct net_device *dev = pci_get_drvdata(pdev);
8464 struct bnx2 *bp = netdev_priv(dev);
8465
8466 pci_restore_state(pdev);
8467 if (!netif_running(dev))
8468 return 0;
8469
8470 bnx2_set_power_state(bp, PCI_D0);
8471 netif_device_attach(dev);
8472 bnx2_init_nic(bp, 1);
8473 bnx2_netif_start(bp, true);
8474 return 0;
8475 }
8476
8477 /**
8478 * bnx2_io_error_detected - called when PCI error is detected
8479 * @pdev: Pointer to PCI device
8480 * @state: The current pci connection state
8481 *
8482 * This function is called after a PCI bus error affecting
8483 * this device has been detected.
8484 */
8485 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8486 pci_channel_state_t state)
8487 {
8488 struct net_device *dev = pci_get_drvdata(pdev);
8489 struct bnx2 *bp = netdev_priv(dev);
8490
8491 rtnl_lock();
8492 netif_device_detach(dev);
8493
8494 if (state == pci_channel_io_perm_failure) {
8495 rtnl_unlock();
8496 return PCI_ERS_RESULT_DISCONNECT;
8497 }
8498
8499 if (netif_running(dev)) {
8500 bnx2_netif_stop(bp, true);
8501 del_timer_sync(&bp->timer);
8502 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8503 }
8504
8505 pci_disable_device(pdev);
8506 rtnl_unlock();
8507
8508 /* Request a slot slot reset. */
8509 return PCI_ERS_RESULT_NEED_RESET;
8510 }
8511
8512 /**
8513 * bnx2_io_slot_reset - called after the pci bus has been reset.
8514 * @pdev: Pointer to PCI device
8515 *
8516 * Restart the card from scratch, as if from a cold-boot.
8517 */
8518 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8519 {
8520 struct net_device *dev = pci_get_drvdata(pdev);
8521 struct bnx2 *bp = netdev_priv(dev);
8522 pci_ers_result_t result;
8523 int err;
8524
8525 rtnl_lock();
8526 if (pci_enable_device(pdev)) {
8527 dev_err(&pdev->dev,
8528 "Cannot re-enable PCI device after reset\n");
8529 result = PCI_ERS_RESULT_DISCONNECT;
8530 } else {
8531 pci_set_master(pdev);
8532 pci_restore_state(pdev);
8533 pci_save_state(pdev);
8534
8535 if (netif_running(dev)) {
8536 bnx2_set_power_state(bp, PCI_D0);
8537 bnx2_init_nic(bp, 1);
8538 }
8539 result = PCI_ERS_RESULT_RECOVERED;
8540 }
8541 rtnl_unlock();
8542
8543 if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
8544 return result;
8545
8546 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8547 if (err) {
8548 dev_err(&pdev->dev,
8549 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8550 err); /* non-fatal, continue */
8551 }
8552
8553 return result;
8554 }
8555
8556 /**
8557 * bnx2_io_resume - called when traffic can start flowing again.
8558 * @pdev: Pointer to PCI device
8559 *
8560 * This callback is called when the error recovery driver tells us that
8561 * its OK to resume normal operation.
8562 */
8563 static void bnx2_io_resume(struct pci_dev *pdev)
8564 {
8565 struct net_device *dev = pci_get_drvdata(pdev);
8566 struct bnx2 *bp = netdev_priv(dev);
8567
8568 rtnl_lock();
8569 if (netif_running(dev))
8570 bnx2_netif_start(bp, true);
8571
8572 netif_device_attach(dev);
8573 rtnl_unlock();
8574 }
8575
8576 static struct pci_error_handlers bnx2_err_handler = {
8577 .error_detected = bnx2_io_error_detected,
8578 .slot_reset = bnx2_io_slot_reset,
8579 .resume = bnx2_io_resume,
8580 };
8581
8582 static struct pci_driver bnx2_pci_driver = {
8583 .name = DRV_MODULE_NAME,
8584 .id_table = bnx2_pci_tbl,
8585 .probe = bnx2_init_one,
8586 .remove = __devexit_p(bnx2_remove_one),
8587 .suspend = bnx2_suspend,
8588 .resume = bnx2_resume,
8589 .err_handler = &bnx2_err_handler,
8590 };
8591
8592 static int __init bnx2_init(void)
8593 {
8594 return pci_register_driver(&bnx2_pci_driver);
8595 }
8596
8597 static void __exit bnx2_cleanup(void)
8598 {
8599 pci_unregister_driver(&bnx2_pci_driver);
8600 }
8601
8602 module_init(bnx2_init);
8603 module_exit(bnx2_cleanup);
8604
8605
8606
This page took 0.193406 seconds and 6 git commands to generate.