Merge branch 'linux-next' of git://git.infradead.org/ubifs-2.6
[deliverable/linux.git] / drivers / net / bonding / bond_alb.c
1 /*
2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 */
22
23 //#define BONDING_DEBUG 1
24
25 #include <linux/skbuff.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/pkt_sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/ip.h>
33 #include <linux/ipv6.h>
34 #include <linux/if_arp.h>
35 #include <linux/if_ether.h>
36 #include <linux/if_bonding.h>
37 #include <linux/if_vlan.h>
38 #include <linux/in.h>
39 #include <net/ipx.h>
40 #include <net/arp.h>
41 #include <net/ipv6.h>
42 #include <asm/byteorder.h>
43 #include "bonding.h"
44 #include "bond_alb.h"
45
46
47 #define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */
48 #define BOND_TLB_REBALANCE_INTERVAL 10 /* In seconds, periodic re-balancing.
49 * Used for division - never set
50 * to zero !!!
51 */
52 #define BOND_ALB_LP_INTERVAL 1 /* In seconds, periodic send of
53 * learning packets to the switch
54 */
55
56 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
57 * ALB_TIMER_TICKS_PER_SEC)
58
59 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
60 * ALB_TIMER_TICKS_PER_SEC)
61
62 #define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table.
63 * Note that this value MUST NOT be smaller
64 * because the key hash table is BYTE wide !
65 */
66
67
68 #define TLB_NULL_INDEX 0xffffffff
69 #define MAX_LP_BURST 3
70
71 /* rlb defs */
72 #define RLB_HASH_TABLE_SIZE 256
73 #define RLB_NULL_INDEX 0xffffffff
74 #define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
75 #define RLB_ARP_BURST_SIZE 2
76 #define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb
77 * rebalance interval (5 min).
78 */
79 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
80 * promiscuous after failover
81 */
82 #define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC
83
84 static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
85 static const u8 mac_v6_allmcast[ETH_ALEN] = {0x33,0x33,0x00,0x00,0x00,0x01};
86 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
87
88 #pragma pack(1)
89 struct learning_pkt {
90 u8 mac_dst[ETH_ALEN];
91 u8 mac_src[ETH_ALEN];
92 __be16 type;
93 u8 padding[ETH_ZLEN - ETH_HLEN];
94 };
95
96 struct arp_pkt {
97 __be16 hw_addr_space;
98 __be16 prot_addr_space;
99 u8 hw_addr_len;
100 u8 prot_addr_len;
101 __be16 op_code;
102 u8 mac_src[ETH_ALEN]; /* sender hardware address */
103 __be32 ip_src; /* sender IP address */
104 u8 mac_dst[ETH_ALEN]; /* target hardware address */
105 __be32 ip_dst; /* target IP address */
106 };
107 #pragma pack()
108
109 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
110 {
111 return (struct arp_pkt *)skb_network_header(skb);
112 }
113
114 /* Forward declaration */
115 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
116
117 static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
118 {
119 int i;
120 u8 hash = 0;
121
122 for (i = 0; i < hash_size; i++) {
123 hash ^= hash_start[i];
124 }
125
126 return hash;
127 }
128
129 /*********************** tlb specific functions ***************************/
130
131 static inline void _lock_tx_hashtbl(struct bonding *bond)
132 {
133 spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
134 }
135
136 static inline void _unlock_tx_hashtbl(struct bonding *bond)
137 {
138 spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
139 }
140
141 /* Caller must hold tx_hashtbl lock */
142 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
143 {
144 if (save_load) {
145 entry->load_history = 1 + entry->tx_bytes /
146 BOND_TLB_REBALANCE_INTERVAL;
147 entry->tx_bytes = 0;
148 }
149
150 entry->tx_slave = NULL;
151 entry->next = TLB_NULL_INDEX;
152 entry->prev = TLB_NULL_INDEX;
153 }
154
155 static inline void tlb_init_slave(struct slave *slave)
156 {
157 SLAVE_TLB_INFO(slave).load = 0;
158 SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
159 }
160
161 /* Caller must hold bond lock for read */
162 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
163 {
164 struct tlb_client_info *tx_hash_table;
165 u32 index;
166
167 _lock_tx_hashtbl(bond);
168
169 /* clear slave from tx_hashtbl */
170 tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
171
172 index = SLAVE_TLB_INFO(slave).head;
173 while (index != TLB_NULL_INDEX) {
174 u32 next_index = tx_hash_table[index].next;
175 tlb_init_table_entry(&tx_hash_table[index], save_load);
176 index = next_index;
177 }
178
179 tlb_init_slave(slave);
180
181 _unlock_tx_hashtbl(bond);
182 }
183
184 /* Must be called before starting the monitor timer */
185 static int tlb_initialize(struct bonding *bond)
186 {
187 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
188 int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
189 struct tlb_client_info *new_hashtbl;
190 int i;
191
192 spin_lock_init(&(bond_info->tx_hashtbl_lock));
193
194 new_hashtbl = kzalloc(size, GFP_KERNEL);
195 if (!new_hashtbl) {
196 printk(KERN_ERR DRV_NAME
197 ": %s: Error: Failed to allocate TLB hash table\n",
198 bond->dev->name);
199 return -1;
200 }
201 _lock_tx_hashtbl(bond);
202
203 bond_info->tx_hashtbl = new_hashtbl;
204
205 for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
206 tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
207 }
208
209 _unlock_tx_hashtbl(bond);
210
211 return 0;
212 }
213
214 /* Must be called only after all slaves have been released */
215 static void tlb_deinitialize(struct bonding *bond)
216 {
217 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
218
219 _lock_tx_hashtbl(bond);
220
221 kfree(bond_info->tx_hashtbl);
222 bond_info->tx_hashtbl = NULL;
223
224 _unlock_tx_hashtbl(bond);
225 }
226
227 /* Caller must hold bond lock for read */
228 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
229 {
230 struct slave *slave, *least_loaded;
231 s64 max_gap;
232 int i, found = 0;
233
234 /* Find the first enabled slave */
235 bond_for_each_slave(bond, slave, i) {
236 if (SLAVE_IS_OK(slave)) {
237 found = 1;
238 break;
239 }
240 }
241
242 if (!found) {
243 return NULL;
244 }
245
246 least_loaded = slave;
247 max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */
248 (s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
249
250 /* Find the slave with the largest gap */
251 bond_for_each_slave_from(bond, slave, i, least_loaded) {
252 if (SLAVE_IS_OK(slave)) {
253 s64 gap = (s64)(slave->speed << 20) -
254 (s64)(SLAVE_TLB_INFO(slave).load << 3);
255 if (max_gap < gap) {
256 least_loaded = slave;
257 max_gap = gap;
258 }
259 }
260 }
261
262 return least_loaded;
263 }
264
265 /* Caller must hold bond lock for read */
266 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
267 {
268 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
269 struct tlb_client_info *hash_table;
270 struct slave *assigned_slave;
271
272 _lock_tx_hashtbl(bond);
273
274 hash_table = bond_info->tx_hashtbl;
275 assigned_slave = hash_table[hash_index].tx_slave;
276 if (!assigned_slave) {
277 assigned_slave = tlb_get_least_loaded_slave(bond);
278
279 if (assigned_slave) {
280 struct tlb_slave_info *slave_info =
281 &(SLAVE_TLB_INFO(assigned_slave));
282 u32 next_index = slave_info->head;
283
284 hash_table[hash_index].tx_slave = assigned_slave;
285 hash_table[hash_index].next = next_index;
286 hash_table[hash_index].prev = TLB_NULL_INDEX;
287
288 if (next_index != TLB_NULL_INDEX) {
289 hash_table[next_index].prev = hash_index;
290 }
291
292 slave_info->head = hash_index;
293 slave_info->load +=
294 hash_table[hash_index].load_history;
295 }
296 }
297
298 if (assigned_slave) {
299 hash_table[hash_index].tx_bytes += skb_len;
300 }
301
302 _unlock_tx_hashtbl(bond);
303
304 return assigned_slave;
305 }
306
307 /*********************** rlb specific functions ***************************/
308 static inline void _lock_rx_hashtbl(struct bonding *bond)
309 {
310 spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
311 }
312
313 static inline void _unlock_rx_hashtbl(struct bonding *bond)
314 {
315 spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
316 }
317
318 /* when an ARP REPLY is received from a client update its info
319 * in the rx_hashtbl
320 */
321 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
322 {
323 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
324 struct rlb_client_info *client_info;
325 u32 hash_index;
326
327 _lock_rx_hashtbl(bond);
328
329 hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
330 client_info = &(bond_info->rx_hashtbl[hash_index]);
331
332 if ((client_info->assigned) &&
333 (client_info->ip_src == arp->ip_dst) &&
334 (client_info->ip_dst == arp->ip_src)) {
335 /* update the clients MAC address */
336 memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
337 client_info->ntt = 1;
338 bond_info->rx_ntt = 1;
339 }
340
341 _unlock_rx_hashtbl(bond);
342 }
343
344 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
345 {
346 struct bonding *bond = bond_dev->priv;
347 struct arp_pkt *arp = (struct arp_pkt *)skb->data;
348 int res = NET_RX_DROP;
349
350 if (dev_net(bond_dev) != &init_net)
351 goto out;
352
353 if (!(bond_dev->flags & IFF_MASTER))
354 goto out;
355
356 if (!arp) {
357 dprintk("Packet has no ARP data\n");
358 goto out;
359 }
360
361 if (skb->len < sizeof(struct arp_pkt)) {
362 dprintk("Packet is too small to be an ARP\n");
363 goto out;
364 }
365
366 if (arp->op_code == htons(ARPOP_REPLY)) {
367 /* update rx hash table for this ARP */
368 rlb_update_entry_from_arp(bond, arp);
369 dprintk("Server received an ARP Reply from client\n");
370 }
371
372 res = NET_RX_SUCCESS;
373
374 out:
375 dev_kfree_skb(skb);
376
377 return res;
378 }
379
380 /* Caller must hold bond lock for read */
381 static struct slave *rlb_next_rx_slave(struct bonding *bond)
382 {
383 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
384 struct slave *rx_slave, *slave, *start_at;
385 int i = 0;
386
387 if (bond_info->next_rx_slave) {
388 start_at = bond_info->next_rx_slave;
389 } else {
390 start_at = bond->first_slave;
391 }
392
393 rx_slave = NULL;
394
395 bond_for_each_slave_from(bond, slave, i, start_at) {
396 if (SLAVE_IS_OK(slave)) {
397 if (!rx_slave) {
398 rx_slave = slave;
399 } else if (slave->speed > rx_slave->speed) {
400 rx_slave = slave;
401 }
402 }
403 }
404
405 if (rx_slave) {
406 bond_info->next_rx_slave = rx_slave->next;
407 }
408
409 return rx_slave;
410 }
411
412 /* teach the switch the mac of a disabled slave
413 * on the primary for fault tolerance
414 *
415 * Caller must hold bond->curr_slave_lock for write or bond lock for write
416 */
417 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
418 {
419 if (!bond->curr_active_slave) {
420 return;
421 }
422
423 if (!bond->alb_info.primary_is_promisc) {
424 if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1))
425 bond->alb_info.primary_is_promisc = 1;
426 else
427 bond->alb_info.primary_is_promisc = 0;
428 }
429
430 bond->alb_info.rlb_promisc_timeout_counter = 0;
431
432 alb_send_learning_packets(bond->curr_active_slave, addr);
433 }
434
435 /* slave being removed should not be active at this point
436 *
437 * Caller must hold bond lock for read
438 */
439 static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
440 {
441 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
442 struct rlb_client_info *rx_hash_table;
443 u32 index, next_index;
444
445 /* clear slave from rx_hashtbl */
446 _lock_rx_hashtbl(bond);
447
448 rx_hash_table = bond_info->rx_hashtbl;
449 index = bond_info->rx_hashtbl_head;
450 for (; index != RLB_NULL_INDEX; index = next_index) {
451 next_index = rx_hash_table[index].next;
452 if (rx_hash_table[index].slave == slave) {
453 struct slave *assigned_slave = rlb_next_rx_slave(bond);
454
455 if (assigned_slave) {
456 rx_hash_table[index].slave = assigned_slave;
457 if (memcmp(rx_hash_table[index].mac_dst,
458 mac_bcast, ETH_ALEN)) {
459 bond_info->rx_hashtbl[index].ntt = 1;
460 bond_info->rx_ntt = 1;
461 /* A slave has been removed from the
462 * table because it is either disabled
463 * or being released. We must retry the
464 * update to avoid clients from not
465 * being updated & disconnecting when
466 * there is stress
467 */
468 bond_info->rlb_update_retry_counter =
469 RLB_UPDATE_RETRY;
470 }
471 } else { /* there is no active slave */
472 rx_hash_table[index].slave = NULL;
473 }
474 }
475 }
476
477 _unlock_rx_hashtbl(bond);
478
479 write_lock_bh(&bond->curr_slave_lock);
480
481 if (slave != bond->curr_active_slave) {
482 rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
483 }
484
485 write_unlock_bh(&bond->curr_slave_lock);
486 }
487
488 static void rlb_update_client(struct rlb_client_info *client_info)
489 {
490 int i;
491
492 if (!client_info->slave) {
493 return;
494 }
495
496 for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
497 struct sk_buff *skb;
498
499 skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
500 client_info->ip_dst,
501 client_info->slave->dev,
502 client_info->ip_src,
503 client_info->mac_dst,
504 client_info->slave->dev->dev_addr,
505 client_info->mac_dst);
506 if (!skb) {
507 printk(KERN_ERR DRV_NAME
508 ": %s: Error: failed to create an ARP packet\n",
509 client_info->slave->dev->master->name);
510 continue;
511 }
512
513 skb->dev = client_info->slave->dev;
514
515 if (client_info->tag) {
516 skb = vlan_put_tag(skb, client_info->vlan_id);
517 if (!skb) {
518 printk(KERN_ERR DRV_NAME
519 ": %s: Error: failed to insert VLAN tag\n",
520 client_info->slave->dev->master->name);
521 continue;
522 }
523 }
524
525 arp_xmit(skb);
526 }
527 }
528
529 /* sends ARP REPLIES that update the clients that need updating */
530 static void rlb_update_rx_clients(struct bonding *bond)
531 {
532 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
533 struct rlb_client_info *client_info;
534 u32 hash_index;
535
536 _lock_rx_hashtbl(bond);
537
538 hash_index = bond_info->rx_hashtbl_head;
539 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
540 client_info = &(bond_info->rx_hashtbl[hash_index]);
541 if (client_info->ntt) {
542 rlb_update_client(client_info);
543 if (bond_info->rlb_update_retry_counter == 0) {
544 client_info->ntt = 0;
545 }
546 }
547 }
548
549 /* do not update the entries again untill this counter is zero so that
550 * not to confuse the clients.
551 */
552 bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
553
554 _unlock_rx_hashtbl(bond);
555 }
556
557 /* The slave was assigned a new mac address - update the clients */
558 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
559 {
560 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
561 struct rlb_client_info *client_info;
562 int ntt = 0;
563 u32 hash_index;
564
565 _lock_rx_hashtbl(bond);
566
567 hash_index = bond_info->rx_hashtbl_head;
568 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
569 client_info = &(bond_info->rx_hashtbl[hash_index]);
570
571 if ((client_info->slave == slave) &&
572 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
573 client_info->ntt = 1;
574 ntt = 1;
575 }
576 }
577
578 // update the team's flag only after the whole iteration
579 if (ntt) {
580 bond_info->rx_ntt = 1;
581 //fasten the change
582 bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
583 }
584
585 _unlock_rx_hashtbl(bond);
586 }
587
588 /* mark all clients using src_ip to be updated */
589 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
590 {
591 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
592 struct rlb_client_info *client_info;
593 u32 hash_index;
594
595 _lock_rx_hashtbl(bond);
596
597 hash_index = bond_info->rx_hashtbl_head;
598 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
599 client_info = &(bond_info->rx_hashtbl[hash_index]);
600
601 if (!client_info->slave) {
602 printk(KERN_ERR DRV_NAME
603 ": %s: Error: found a client with no channel in "
604 "the client's hash table\n",
605 bond->dev->name);
606 continue;
607 }
608 /*update all clients using this src_ip, that are not assigned
609 * to the team's address (curr_active_slave) and have a known
610 * unicast mac address.
611 */
612 if ((client_info->ip_src == src_ip) &&
613 memcmp(client_info->slave->dev->dev_addr,
614 bond->dev->dev_addr, ETH_ALEN) &&
615 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
616 client_info->ntt = 1;
617 bond_info->rx_ntt = 1;
618 }
619 }
620
621 _unlock_rx_hashtbl(bond);
622 }
623
624 /* Caller must hold both bond and ptr locks for read */
625 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
626 {
627 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
628 struct arp_pkt *arp = arp_pkt(skb);
629 struct slave *assigned_slave;
630 struct rlb_client_info *client_info;
631 u32 hash_index = 0;
632
633 _lock_rx_hashtbl(bond);
634
635 hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
636 client_info = &(bond_info->rx_hashtbl[hash_index]);
637
638 if (client_info->assigned) {
639 if ((client_info->ip_src == arp->ip_src) &&
640 (client_info->ip_dst == arp->ip_dst)) {
641 /* the entry is already assigned to this client */
642 if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
643 /* update mac address from arp */
644 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
645 }
646
647 assigned_slave = client_info->slave;
648 if (assigned_slave) {
649 _unlock_rx_hashtbl(bond);
650 return assigned_slave;
651 }
652 } else {
653 /* the entry is already assigned to some other client,
654 * move the old client to primary (curr_active_slave) so
655 * that the new client can be assigned to this entry.
656 */
657 if (bond->curr_active_slave &&
658 client_info->slave != bond->curr_active_slave) {
659 client_info->slave = bond->curr_active_slave;
660 rlb_update_client(client_info);
661 }
662 }
663 }
664 /* assign a new slave */
665 assigned_slave = rlb_next_rx_slave(bond);
666
667 if (assigned_slave) {
668 client_info->ip_src = arp->ip_src;
669 client_info->ip_dst = arp->ip_dst;
670 /* arp->mac_dst is broadcast for arp reqeusts.
671 * will be updated with clients actual unicast mac address
672 * upon receiving an arp reply.
673 */
674 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
675 client_info->slave = assigned_slave;
676
677 if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
678 client_info->ntt = 1;
679 bond->alb_info.rx_ntt = 1;
680 } else {
681 client_info->ntt = 0;
682 }
683
684 if (!list_empty(&bond->vlan_list)) {
685 if (!vlan_get_tag(skb, &client_info->vlan_id))
686 client_info->tag = 1;
687 }
688
689 if (!client_info->assigned) {
690 u32 prev_tbl_head = bond_info->rx_hashtbl_head;
691 bond_info->rx_hashtbl_head = hash_index;
692 client_info->next = prev_tbl_head;
693 if (prev_tbl_head != RLB_NULL_INDEX) {
694 bond_info->rx_hashtbl[prev_tbl_head].prev =
695 hash_index;
696 }
697 client_info->assigned = 1;
698 }
699 }
700
701 _unlock_rx_hashtbl(bond);
702
703 return assigned_slave;
704 }
705
706 /* chooses (and returns) transmit channel for arp reply
707 * does not choose channel for other arp types since they are
708 * sent on the curr_active_slave
709 */
710 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
711 {
712 struct arp_pkt *arp = arp_pkt(skb);
713 struct slave *tx_slave = NULL;
714
715 if (arp->op_code == htons(ARPOP_REPLY)) {
716 /* the arp must be sent on the selected
717 * rx channel
718 */
719 tx_slave = rlb_choose_channel(skb, bond);
720 if (tx_slave) {
721 memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
722 }
723 dprintk("Server sent ARP Reply packet\n");
724 } else if (arp->op_code == htons(ARPOP_REQUEST)) {
725 /* Create an entry in the rx_hashtbl for this client as a
726 * place holder.
727 * When the arp reply is received the entry will be updated
728 * with the correct unicast address of the client.
729 */
730 rlb_choose_channel(skb, bond);
731
732 /* The ARP relpy packets must be delayed so that
733 * they can cancel out the influence of the ARP request.
734 */
735 bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
736
737 /* arp requests are broadcast and are sent on the primary
738 * the arp request will collapse all clients on the subnet to
739 * the primary slave. We must register these clients to be
740 * updated with their assigned mac.
741 */
742 rlb_req_update_subnet_clients(bond, arp->ip_src);
743 dprintk("Server sent ARP Request packet\n");
744 }
745
746 return tx_slave;
747 }
748
749 /* Caller must hold bond lock for read */
750 static void rlb_rebalance(struct bonding *bond)
751 {
752 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
753 struct slave *assigned_slave;
754 struct rlb_client_info *client_info;
755 int ntt;
756 u32 hash_index;
757
758 _lock_rx_hashtbl(bond);
759
760 ntt = 0;
761 hash_index = bond_info->rx_hashtbl_head;
762 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
763 client_info = &(bond_info->rx_hashtbl[hash_index]);
764 assigned_slave = rlb_next_rx_slave(bond);
765 if (assigned_slave && (client_info->slave != assigned_slave)) {
766 client_info->slave = assigned_slave;
767 client_info->ntt = 1;
768 ntt = 1;
769 }
770 }
771
772 /* update the team's flag only after the whole iteration */
773 if (ntt) {
774 bond_info->rx_ntt = 1;
775 }
776 _unlock_rx_hashtbl(bond);
777 }
778
779 /* Caller must hold rx_hashtbl lock */
780 static void rlb_init_table_entry(struct rlb_client_info *entry)
781 {
782 memset(entry, 0, sizeof(struct rlb_client_info));
783 entry->next = RLB_NULL_INDEX;
784 entry->prev = RLB_NULL_INDEX;
785 }
786
787 static int rlb_initialize(struct bonding *bond)
788 {
789 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
790 struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
791 struct rlb_client_info *new_hashtbl;
792 int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
793 int i;
794
795 spin_lock_init(&(bond_info->rx_hashtbl_lock));
796
797 new_hashtbl = kmalloc(size, GFP_KERNEL);
798 if (!new_hashtbl) {
799 printk(KERN_ERR DRV_NAME
800 ": %s: Error: Failed to allocate RLB hash table\n",
801 bond->dev->name);
802 return -1;
803 }
804 _lock_rx_hashtbl(bond);
805
806 bond_info->rx_hashtbl = new_hashtbl;
807
808 bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
809
810 for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
811 rlb_init_table_entry(bond_info->rx_hashtbl + i);
812 }
813
814 _unlock_rx_hashtbl(bond);
815
816 /*initialize packet type*/
817 pk_type->type = __constant_htons(ETH_P_ARP);
818 pk_type->dev = bond->dev;
819 pk_type->func = rlb_arp_recv;
820
821 /* register to receive ARPs */
822 dev_add_pack(pk_type);
823
824 return 0;
825 }
826
827 static void rlb_deinitialize(struct bonding *bond)
828 {
829 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
830
831 dev_remove_pack(&(bond_info->rlb_pkt_type));
832
833 _lock_rx_hashtbl(bond);
834
835 kfree(bond_info->rx_hashtbl);
836 bond_info->rx_hashtbl = NULL;
837 bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
838
839 _unlock_rx_hashtbl(bond);
840 }
841
842 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
843 {
844 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
845 u32 curr_index;
846
847 _lock_rx_hashtbl(bond);
848
849 curr_index = bond_info->rx_hashtbl_head;
850 while (curr_index != RLB_NULL_INDEX) {
851 struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
852 u32 next_index = bond_info->rx_hashtbl[curr_index].next;
853 u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
854
855 if (curr->tag && (curr->vlan_id == vlan_id)) {
856 if (curr_index == bond_info->rx_hashtbl_head) {
857 bond_info->rx_hashtbl_head = next_index;
858 }
859 if (prev_index != RLB_NULL_INDEX) {
860 bond_info->rx_hashtbl[prev_index].next = next_index;
861 }
862 if (next_index != RLB_NULL_INDEX) {
863 bond_info->rx_hashtbl[next_index].prev = prev_index;
864 }
865
866 rlb_init_table_entry(curr);
867 }
868
869 curr_index = next_index;
870 }
871
872 _unlock_rx_hashtbl(bond);
873 }
874
875 /*********************** tlb/rlb shared functions *********************/
876
877 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
878 {
879 struct bonding *bond = bond_get_bond_by_slave(slave);
880 struct learning_pkt pkt;
881 int size = sizeof(struct learning_pkt);
882 int i;
883
884 memset(&pkt, 0, size);
885 memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
886 memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
887 pkt.type = __constant_htons(ETH_P_LOOP);
888
889 for (i = 0; i < MAX_LP_BURST; i++) {
890 struct sk_buff *skb;
891 char *data;
892
893 skb = dev_alloc_skb(size);
894 if (!skb) {
895 return;
896 }
897
898 data = skb_put(skb, size);
899 memcpy(data, &pkt, size);
900
901 skb_reset_mac_header(skb);
902 skb->network_header = skb->mac_header + ETH_HLEN;
903 skb->protocol = pkt.type;
904 skb->priority = TC_PRIO_CONTROL;
905 skb->dev = slave->dev;
906
907 if (!list_empty(&bond->vlan_list)) {
908 struct vlan_entry *vlan;
909
910 vlan = bond_next_vlan(bond,
911 bond->alb_info.current_alb_vlan);
912
913 bond->alb_info.current_alb_vlan = vlan;
914 if (!vlan) {
915 kfree_skb(skb);
916 continue;
917 }
918
919 skb = vlan_put_tag(skb, vlan->vlan_id);
920 if (!skb) {
921 printk(KERN_ERR DRV_NAME
922 ": %s: Error: failed to insert VLAN tag\n",
923 bond->dev->name);
924 continue;
925 }
926 }
927
928 dev_queue_xmit(skb);
929 }
930 }
931
932 /* hw is a boolean parameter that determines whether we should try and
933 * set the hw address of the device as well as the hw address of the
934 * net_device
935 */
936 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
937 {
938 struct net_device *dev = slave->dev;
939 struct sockaddr s_addr;
940
941 if (!hw) {
942 memcpy(dev->dev_addr, addr, dev->addr_len);
943 return 0;
944 }
945
946 /* for rlb each slave must have a unique hw mac addresses so that */
947 /* each slave will receive packets destined to a different mac */
948 memcpy(s_addr.sa_data, addr, dev->addr_len);
949 s_addr.sa_family = dev->type;
950 if (dev_set_mac_address(dev, &s_addr)) {
951 printk(KERN_ERR DRV_NAME
952 ": %s: Error: dev_set_mac_address of dev %s failed! ALB "
953 "mode requires that the base driver support setting "
954 "the hw address also when the network device's "
955 "interface is open\n",
956 dev->master->name, dev->name);
957 return -EOPNOTSUPP;
958 }
959 return 0;
960 }
961
962 /*
963 * Swap MAC addresses between two slaves.
964 *
965 * Called with RTNL held, and no other locks.
966 *
967 */
968
969 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
970 {
971 u8 tmp_mac_addr[ETH_ALEN];
972
973 memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
974 alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
975 alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
976
977 }
978
979 /*
980 * Send learning packets after MAC address swap.
981 *
982 * Called with RTNL and no other locks
983 */
984 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
985 struct slave *slave2)
986 {
987 int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
988 struct slave *disabled_slave = NULL;
989
990 ASSERT_RTNL();
991
992 /* fasten the change in the switch */
993 if (SLAVE_IS_OK(slave1)) {
994 alb_send_learning_packets(slave1, slave1->dev->dev_addr);
995 if (bond->alb_info.rlb_enabled) {
996 /* inform the clients that the mac address
997 * has changed
998 */
999 rlb_req_update_slave_clients(bond, slave1);
1000 }
1001 } else {
1002 disabled_slave = slave1;
1003 }
1004
1005 if (SLAVE_IS_OK(slave2)) {
1006 alb_send_learning_packets(slave2, slave2->dev->dev_addr);
1007 if (bond->alb_info.rlb_enabled) {
1008 /* inform the clients that the mac address
1009 * has changed
1010 */
1011 rlb_req_update_slave_clients(bond, slave2);
1012 }
1013 } else {
1014 disabled_slave = slave2;
1015 }
1016
1017 if (bond->alb_info.rlb_enabled && slaves_state_differ) {
1018 /* A disabled slave was assigned an active mac addr */
1019 rlb_teach_disabled_mac_on_primary(bond,
1020 disabled_slave->dev->dev_addr);
1021 }
1022 }
1023
1024 /**
1025 * alb_change_hw_addr_on_detach
1026 * @bond: bonding we're working on
1027 * @slave: the slave that was just detached
1028 *
1029 * We assume that @slave was already detached from the slave list.
1030 *
1031 * If @slave's permanent hw address is different both from its current
1032 * address and from @bond's address, then somewhere in the bond there's
1033 * a slave that has @slave's permanet address as its current address.
1034 * We'll make sure that that slave no longer uses @slave's permanent address.
1035 *
1036 * Caller must hold RTNL and no other locks
1037 */
1038 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
1039 {
1040 int perm_curr_diff;
1041 int perm_bond_diff;
1042
1043 perm_curr_diff = memcmp(slave->perm_hwaddr,
1044 slave->dev->dev_addr,
1045 ETH_ALEN);
1046 perm_bond_diff = memcmp(slave->perm_hwaddr,
1047 bond->dev->dev_addr,
1048 ETH_ALEN);
1049
1050 if (perm_curr_diff && perm_bond_diff) {
1051 struct slave *tmp_slave;
1052 int i, found = 0;
1053
1054 bond_for_each_slave(bond, tmp_slave, i) {
1055 if (!memcmp(slave->perm_hwaddr,
1056 tmp_slave->dev->dev_addr,
1057 ETH_ALEN)) {
1058 found = 1;
1059 break;
1060 }
1061 }
1062
1063 if (found) {
1064 /* locking: needs RTNL and nothing else */
1065 alb_swap_mac_addr(bond, slave, tmp_slave);
1066 alb_fasten_mac_swap(bond, slave, tmp_slave);
1067 }
1068 }
1069 }
1070
1071 /**
1072 * alb_handle_addr_collision_on_attach
1073 * @bond: bonding we're working on
1074 * @slave: the slave that was just attached
1075 *
1076 * checks uniqueness of slave's mac address and handles the case the
1077 * new slave uses the bonds mac address.
1078 *
1079 * If the permanent hw address of @slave is @bond's hw address, we need to
1080 * find a different hw address to give @slave, that isn't in use by any other
1081 * slave in the bond. This address must be, of course, one of the premanent
1082 * addresses of the other slaves.
1083 *
1084 * We go over the slave list, and for each slave there we compare its
1085 * permanent hw address with the current address of all the other slaves.
1086 * If no match was found, then we've found a slave with a permanent address
1087 * that isn't used by any other slave in the bond, so we can assign it to
1088 * @slave.
1089 *
1090 * assumption: this function is called before @slave is attached to the
1091 * bond slave list.
1092 *
1093 * caller must hold the bond lock for write since the mac addresses are compared
1094 * and may be swapped.
1095 */
1096 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1097 {
1098 struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1099 struct slave *has_bond_addr = bond->curr_active_slave;
1100 int i, j, found = 0;
1101
1102 if (bond->slave_cnt == 0) {
1103 /* this is the first slave */
1104 return 0;
1105 }
1106
1107 /* if slave's mac address differs from bond's mac address
1108 * check uniqueness of slave's mac address against the other
1109 * slaves in the bond.
1110 */
1111 if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) {
1112 bond_for_each_slave(bond, tmp_slave1, i) {
1113 if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
1114 ETH_ALEN)) {
1115 found = 1;
1116 break;
1117 }
1118 }
1119
1120 if (!found)
1121 return 0;
1122
1123 /* Try setting slave mac to bond address and fall-through
1124 to code handling that situation below... */
1125 alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
1126 bond->alb_info.rlb_enabled);
1127 }
1128
1129 /* The slave's address is equal to the address of the bond.
1130 * Search for a spare address in the bond for this slave.
1131 */
1132 free_mac_slave = NULL;
1133
1134 bond_for_each_slave(bond, tmp_slave1, i) {
1135 found = 0;
1136 bond_for_each_slave(bond, tmp_slave2, j) {
1137 if (!memcmp(tmp_slave1->perm_hwaddr,
1138 tmp_slave2->dev->dev_addr,
1139 ETH_ALEN)) {
1140 found = 1;
1141 break;
1142 }
1143 }
1144
1145 if (!found) {
1146 /* no slave has tmp_slave1's perm addr
1147 * as its curr addr
1148 */
1149 free_mac_slave = tmp_slave1;
1150 break;
1151 }
1152
1153 if (!has_bond_addr) {
1154 if (!memcmp(tmp_slave1->dev->dev_addr,
1155 bond->dev->dev_addr,
1156 ETH_ALEN)) {
1157
1158 has_bond_addr = tmp_slave1;
1159 }
1160 }
1161 }
1162
1163 if (free_mac_slave) {
1164 alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
1165 bond->alb_info.rlb_enabled);
1166
1167 printk(KERN_WARNING DRV_NAME
1168 ": %s: Warning: the hw address of slave %s is in use by "
1169 "the bond; giving it the hw address of %s\n",
1170 bond->dev->name, slave->dev->name, free_mac_slave->dev->name);
1171
1172 } else if (has_bond_addr) {
1173 printk(KERN_ERR DRV_NAME
1174 ": %s: Error: the hw address of slave %s is in use by the "
1175 "bond; couldn't find a slave with a free hw address to "
1176 "give it (this should not have happened)\n",
1177 bond->dev->name, slave->dev->name);
1178 return -EFAULT;
1179 }
1180
1181 return 0;
1182 }
1183
1184 /**
1185 * alb_set_mac_address
1186 * @bond:
1187 * @addr:
1188 *
1189 * In TLB mode all slaves are configured to the bond's hw address, but set
1190 * their dev_addr field to different addresses (based on their permanent hw
1191 * addresses).
1192 *
1193 * For each slave, this function sets the interface to the new address and then
1194 * changes its dev_addr field to its previous value.
1195 *
1196 * Unwinding assumes bond's mac address has not yet changed.
1197 */
1198 static int alb_set_mac_address(struct bonding *bond, void *addr)
1199 {
1200 struct sockaddr sa;
1201 struct slave *slave, *stop_at;
1202 char tmp_addr[ETH_ALEN];
1203 int res;
1204 int i;
1205
1206 if (bond->alb_info.rlb_enabled) {
1207 return 0;
1208 }
1209
1210 bond_for_each_slave(bond, slave, i) {
1211 if (slave->dev->set_mac_address == NULL) {
1212 res = -EOPNOTSUPP;
1213 goto unwind;
1214 }
1215
1216 /* save net_device's current hw address */
1217 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1218
1219 res = dev_set_mac_address(slave->dev, addr);
1220
1221 /* restore net_device's hw address */
1222 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1223
1224 if (res) {
1225 goto unwind;
1226 }
1227 }
1228
1229 return 0;
1230
1231 unwind:
1232 memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1233 sa.sa_family = bond->dev->type;
1234
1235 /* unwind from head to the slave that failed */
1236 stop_at = slave;
1237 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1238 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1239 dev_set_mac_address(slave->dev, &sa);
1240 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1241 }
1242
1243 return res;
1244 }
1245
1246 /************************ exported alb funcions ************************/
1247
1248 int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1249 {
1250 int res;
1251
1252 res = tlb_initialize(bond);
1253 if (res) {
1254 return res;
1255 }
1256
1257 if (rlb_enabled) {
1258 bond->alb_info.rlb_enabled = 1;
1259 /* initialize rlb */
1260 res = rlb_initialize(bond);
1261 if (res) {
1262 tlb_deinitialize(bond);
1263 return res;
1264 }
1265 } else {
1266 bond->alb_info.rlb_enabled = 0;
1267 }
1268
1269 return 0;
1270 }
1271
1272 void bond_alb_deinitialize(struct bonding *bond)
1273 {
1274 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1275
1276 tlb_deinitialize(bond);
1277
1278 if (bond_info->rlb_enabled) {
1279 rlb_deinitialize(bond);
1280 }
1281 }
1282
1283 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1284 {
1285 struct bonding *bond = bond_dev->priv;
1286 struct ethhdr *eth_data;
1287 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1288 struct slave *tx_slave = NULL;
1289 static const __be32 ip_bcast = htonl(0xffffffff);
1290 int hash_size = 0;
1291 int do_tx_balance = 1;
1292 u32 hash_index = 0;
1293 const u8 *hash_start = NULL;
1294 int res = 1;
1295 struct ipv6hdr *ip6hdr;
1296
1297 skb_reset_mac_header(skb);
1298 eth_data = eth_hdr(skb);
1299
1300 /* make sure that the curr_active_slave and the slaves list do
1301 * not change during tx
1302 */
1303 read_lock(&bond->lock);
1304 read_lock(&bond->curr_slave_lock);
1305
1306 if (!BOND_IS_OK(bond)) {
1307 goto out;
1308 }
1309
1310 switch (ntohs(skb->protocol)) {
1311 case ETH_P_IP: {
1312 const struct iphdr *iph = ip_hdr(skb);
1313
1314 if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
1315 (iph->daddr == ip_bcast) ||
1316 (iph->protocol == IPPROTO_IGMP)) {
1317 do_tx_balance = 0;
1318 break;
1319 }
1320 hash_start = (char *)&(iph->daddr);
1321 hash_size = sizeof(iph->daddr);
1322 }
1323 break;
1324 case ETH_P_IPV6:
1325 /* IPv6 doesn't really use broadcast mac address, but leave
1326 * that here just in case.
1327 */
1328 if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
1329 do_tx_balance = 0;
1330 break;
1331 }
1332
1333 /* IPv6 uses all-nodes multicast as an equivalent to
1334 * broadcasts in IPv4.
1335 */
1336 if (memcmp(eth_data->h_dest, mac_v6_allmcast, ETH_ALEN) == 0) {
1337 do_tx_balance = 0;
1338 break;
1339 }
1340
1341 /* Additianally, DAD probes should not be tx-balanced as that
1342 * will lead to false positives for duplicate addresses and
1343 * prevent address configuration from working.
1344 */
1345 ip6hdr = ipv6_hdr(skb);
1346 if (ipv6_addr_any(&ip6hdr->saddr)) {
1347 do_tx_balance = 0;
1348 break;
1349 }
1350
1351 hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1352 hash_size = sizeof(ipv6_hdr(skb)->daddr);
1353 break;
1354 case ETH_P_IPX:
1355 if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
1356 /* something is wrong with this packet */
1357 do_tx_balance = 0;
1358 break;
1359 }
1360
1361 if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1362 /* The only protocol worth balancing in
1363 * this family since it has an "ARP" like
1364 * mechanism
1365 */
1366 do_tx_balance = 0;
1367 break;
1368 }
1369
1370 hash_start = (char*)eth_data->h_dest;
1371 hash_size = ETH_ALEN;
1372 break;
1373 case ETH_P_ARP:
1374 do_tx_balance = 0;
1375 if (bond_info->rlb_enabled) {
1376 tx_slave = rlb_arp_xmit(skb, bond);
1377 }
1378 break;
1379 default:
1380 do_tx_balance = 0;
1381 break;
1382 }
1383
1384 if (do_tx_balance) {
1385 hash_index = _simple_hash(hash_start, hash_size);
1386 tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1387 }
1388
1389 if (!tx_slave) {
1390 /* unbalanced or unassigned, send through primary */
1391 tx_slave = bond->curr_active_slave;
1392 bond_info->unbalanced_load += skb->len;
1393 }
1394
1395 if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1396 if (tx_slave != bond->curr_active_slave) {
1397 memcpy(eth_data->h_source,
1398 tx_slave->dev->dev_addr,
1399 ETH_ALEN);
1400 }
1401
1402 res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1403 } else {
1404 if (tx_slave) {
1405 tlb_clear_slave(bond, tx_slave, 0);
1406 }
1407 }
1408
1409 out:
1410 if (res) {
1411 /* no suitable interface, frame not sent */
1412 dev_kfree_skb(skb);
1413 }
1414 read_unlock(&bond->curr_slave_lock);
1415 read_unlock(&bond->lock);
1416 return 0;
1417 }
1418
1419 void bond_alb_monitor(struct work_struct *work)
1420 {
1421 struct bonding *bond = container_of(work, struct bonding,
1422 alb_work.work);
1423 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1424 struct slave *slave;
1425 int i;
1426
1427 read_lock(&bond->lock);
1428
1429 if (bond->kill_timers) {
1430 goto out;
1431 }
1432
1433 if (bond->slave_cnt == 0) {
1434 bond_info->tx_rebalance_counter = 0;
1435 bond_info->lp_counter = 0;
1436 goto re_arm;
1437 }
1438
1439 bond_info->tx_rebalance_counter++;
1440 bond_info->lp_counter++;
1441
1442 /* send learning packets */
1443 if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1444 /* change of curr_active_slave involves swapping of mac addresses.
1445 * in order to avoid this swapping from happening while
1446 * sending the learning packets, the curr_slave_lock must be held for
1447 * read.
1448 */
1449 read_lock(&bond->curr_slave_lock);
1450
1451 bond_for_each_slave(bond, slave, i) {
1452 alb_send_learning_packets(slave, slave->dev->dev_addr);
1453 }
1454
1455 read_unlock(&bond->curr_slave_lock);
1456
1457 bond_info->lp_counter = 0;
1458 }
1459
1460 /* rebalance tx traffic */
1461 if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1462
1463 read_lock(&bond->curr_slave_lock);
1464
1465 bond_for_each_slave(bond, slave, i) {
1466 tlb_clear_slave(bond, slave, 1);
1467 if (slave == bond->curr_active_slave) {
1468 SLAVE_TLB_INFO(slave).load =
1469 bond_info->unbalanced_load /
1470 BOND_TLB_REBALANCE_INTERVAL;
1471 bond_info->unbalanced_load = 0;
1472 }
1473 }
1474
1475 read_unlock(&bond->curr_slave_lock);
1476
1477 bond_info->tx_rebalance_counter = 0;
1478 }
1479
1480 /* handle rlb stuff */
1481 if (bond_info->rlb_enabled) {
1482 if (bond_info->primary_is_promisc &&
1483 (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1484
1485 /*
1486 * dev_set_promiscuity requires rtnl and
1487 * nothing else.
1488 */
1489 read_unlock(&bond->lock);
1490 rtnl_lock();
1491
1492 bond_info->rlb_promisc_timeout_counter = 0;
1493
1494 /* If the primary was set to promiscuous mode
1495 * because a slave was disabled then
1496 * it can now leave promiscuous mode.
1497 */
1498 dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1499 bond_info->primary_is_promisc = 0;
1500
1501 rtnl_unlock();
1502 read_lock(&bond->lock);
1503 }
1504
1505 if (bond_info->rlb_rebalance) {
1506 bond_info->rlb_rebalance = 0;
1507 rlb_rebalance(bond);
1508 }
1509
1510 /* check if clients need updating */
1511 if (bond_info->rx_ntt) {
1512 if (bond_info->rlb_update_delay_counter) {
1513 --bond_info->rlb_update_delay_counter;
1514 } else {
1515 rlb_update_rx_clients(bond);
1516 if (bond_info->rlb_update_retry_counter) {
1517 --bond_info->rlb_update_retry_counter;
1518 } else {
1519 bond_info->rx_ntt = 0;
1520 }
1521 }
1522 }
1523 }
1524
1525 re_arm:
1526 queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
1527 out:
1528 read_unlock(&bond->lock);
1529 }
1530
1531 /* assumption: called before the slave is attached to the bond
1532 * and not locked by the bond lock
1533 */
1534 int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1535 {
1536 int res;
1537
1538 res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
1539 bond->alb_info.rlb_enabled);
1540 if (res) {
1541 return res;
1542 }
1543
1544 /* caller must hold the bond lock for write since the mac addresses
1545 * are compared and may be swapped.
1546 */
1547 read_lock(&bond->lock);
1548
1549 res = alb_handle_addr_collision_on_attach(bond, slave);
1550
1551 read_unlock(&bond->lock);
1552
1553 if (res) {
1554 return res;
1555 }
1556
1557 tlb_init_slave(slave);
1558
1559 /* order a rebalance ASAP */
1560 bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1561
1562 if (bond->alb_info.rlb_enabled) {
1563 bond->alb_info.rlb_rebalance = 1;
1564 }
1565
1566 return 0;
1567 }
1568
1569 /*
1570 * Remove slave from tlb and rlb hash tables, and fix up MAC addresses
1571 * if necessary.
1572 *
1573 * Caller must hold RTNL and no other locks
1574 */
1575 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1576 {
1577 if (bond->slave_cnt > 1) {
1578 alb_change_hw_addr_on_detach(bond, slave);
1579 }
1580
1581 tlb_clear_slave(bond, slave, 0);
1582
1583 if (bond->alb_info.rlb_enabled) {
1584 bond->alb_info.next_rx_slave = NULL;
1585 rlb_clear_slave(bond, slave);
1586 }
1587 }
1588
1589 /* Caller must hold bond lock for read */
1590 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1591 {
1592 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1593
1594 if (link == BOND_LINK_DOWN) {
1595 tlb_clear_slave(bond, slave, 0);
1596 if (bond->alb_info.rlb_enabled) {
1597 rlb_clear_slave(bond, slave);
1598 }
1599 } else if (link == BOND_LINK_UP) {
1600 /* order a rebalance ASAP */
1601 bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1602 if (bond->alb_info.rlb_enabled) {
1603 bond->alb_info.rlb_rebalance = 1;
1604 /* If the updelay module parameter is smaller than the
1605 * forwarding delay of the switch the rebalance will
1606 * not work because the rebalance arp replies will
1607 * not be forwarded to the clients..
1608 */
1609 }
1610 }
1611 }
1612
1613 /**
1614 * bond_alb_handle_active_change - assign new curr_active_slave
1615 * @bond: our bonding struct
1616 * @new_slave: new slave to assign
1617 *
1618 * Set the bond->curr_active_slave to @new_slave and handle
1619 * mac address swapping and promiscuity changes as needed.
1620 *
1621 * If new_slave is NULL, caller must hold curr_slave_lock or
1622 * bond->lock for write.
1623 *
1624 * If new_slave is not NULL, caller must hold RTNL, bond->lock for
1625 * read and curr_slave_lock for write. Processing here may sleep, so
1626 * no other locks may be held.
1627 */
1628 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1629 {
1630 struct slave *swap_slave;
1631 int i;
1632
1633 if (bond->curr_active_slave == new_slave) {
1634 return;
1635 }
1636
1637 if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1638 dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1639 bond->alb_info.primary_is_promisc = 0;
1640 bond->alb_info.rlb_promisc_timeout_counter = 0;
1641 }
1642
1643 swap_slave = bond->curr_active_slave;
1644 bond->curr_active_slave = new_slave;
1645
1646 if (!new_slave || (bond->slave_cnt == 0)) {
1647 return;
1648 }
1649
1650 /* set the new curr_active_slave to the bonds mac address
1651 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1652 */
1653 if (!swap_slave) {
1654 struct slave *tmp_slave;
1655 /* find slave that is holding the bond's mac address */
1656 bond_for_each_slave(bond, tmp_slave, i) {
1657 if (!memcmp(tmp_slave->dev->dev_addr,
1658 bond->dev->dev_addr, ETH_ALEN)) {
1659 swap_slave = tmp_slave;
1660 break;
1661 }
1662 }
1663 }
1664
1665 /*
1666 * Arrange for swap_slave and new_slave to temporarily be
1667 * ignored so we can mess with their MAC addresses without
1668 * fear of interference from transmit activity.
1669 */
1670 if (swap_slave) {
1671 tlb_clear_slave(bond, swap_slave, 1);
1672 }
1673 tlb_clear_slave(bond, new_slave, 1);
1674
1675 write_unlock_bh(&bond->curr_slave_lock);
1676 read_unlock(&bond->lock);
1677
1678 ASSERT_RTNL();
1679
1680 /* curr_active_slave must be set before calling alb_swap_mac_addr */
1681 if (swap_slave) {
1682 /* swap mac address */
1683 alb_swap_mac_addr(bond, swap_slave, new_slave);
1684 } else {
1685 /* set the new_slave to the bond mac address */
1686 alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
1687 bond->alb_info.rlb_enabled);
1688 }
1689
1690 if (swap_slave) {
1691 alb_fasten_mac_swap(bond, swap_slave, new_slave);
1692 read_lock(&bond->lock);
1693 } else {
1694 read_lock(&bond->lock);
1695 alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1696 }
1697
1698 write_lock_bh(&bond->curr_slave_lock);
1699 }
1700
1701 /*
1702 * Called with RTNL
1703 */
1704 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1705 {
1706 struct bonding *bond = bond_dev->priv;
1707 struct sockaddr *sa = addr;
1708 struct slave *slave, *swap_slave;
1709 int res;
1710 int i;
1711
1712 if (!is_valid_ether_addr(sa->sa_data)) {
1713 return -EADDRNOTAVAIL;
1714 }
1715
1716 res = alb_set_mac_address(bond, addr);
1717 if (res) {
1718 return res;
1719 }
1720
1721 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1722
1723 /* If there is no curr_active_slave there is nothing else to do.
1724 * Otherwise we'll need to pass the new address to it and handle
1725 * duplications.
1726 */
1727 if (!bond->curr_active_slave) {
1728 return 0;
1729 }
1730
1731 swap_slave = NULL;
1732
1733 bond_for_each_slave(bond, slave, i) {
1734 if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) {
1735 swap_slave = slave;
1736 break;
1737 }
1738 }
1739
1740 write_unlock_bh(&bond->curr_slave_lock);
1741 read_unlock(&bond->lock);
1742
1743 if (swap_slave) {
1744 alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1745 alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave);
1746 } else {
1747 alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
1748 bond->alb_info.rlb_enabled);
1749
1750 alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1751 if (bond->alb_info.rlb_enabled) {
1752 /* inform clients mac address has changed */
1753 rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1754 }
1755 }
1756
1757 read_lock(&bond->lock);
1758 write_lock_bh(&bond->curr_slave_lock);
1759
1760 return 0;
1761 }
1762
1763 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1764 {
1765 if (bond->alb_info.current_alb_vlan &&
1766 (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1767 bond->alb_info.current_alb_vlan = NULL;
1768 }
1769
1770 if (bond->alb_info.rlb_enabled) {
1771 rlb_clear_vlan(bond, vlan_id);
1772 }
1773 }
1774
This page took 0.067226 seconds and 5 git commands to generate.