Merge branch 'bugzilla-11539' into release
[deliverable/linux.git] / drivers / net / bonding / bond_main.c
1 /*
2 * originally based on the dummy device.
3 *
4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5 * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6 *
7 * bonding.c: an Ethernet Bonding driver
8 *
9 * This is useful to talk to a Cisco EtherChannel compatible equipment:
10 * Cisco 5500
11 * Sun Trunking (Solaris)
12 * Alteon AceDirector Trunks
13 * Linux Bonding
14 * and probably many L2 switches ...
15 *
16 * How it works:
17 * ifconfig bond0 ipaddress netmask up
18 * will setup a network device, with an ip address. No mac address
19 * will be assigned at this time. The hw mac address will come from
20 * the first slave bonded to the channel. All slaves will then use
21 * this hw mac address.
22 *
23 * ifconfig bond0 down
24 * will release all slaves, marking them as down.
25 *
26 * ifenslave bond0 eth0
27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either
28 * a: be used as initial mac address
29 * b: if a hw mac address already is there, eth0's hw mac address
30 * will then be set from bond0.
31 *
32 */
33
34 //#define BONDING_DEBUG 1
35
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <asm/system.h>
57 #include <asm/io.h>
58 #include <asm/dma.h>
59 #include <asm/uaccess.h>
60 #include <linux/errno.h>
61 #include <linux/netdevice.h>
62 #include <linux/inetdevice.h>
63 #include <linux/igmp.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <net/sock.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/smp.h>
71 #include <linux/if_ether.h>
72 #include <net/arp.h>
73 #include <linux/mii.h>
74 #include <linux/ethtool.h>
75 #include <linux/if_vlan.h>
76 #include <linux/if_bonding.h>
77 #include <linux/jiffies.h>
78 #include <net/route.h>
79 #include <net/net_namespace.h>
80 #include "bonding.h"
81 #include "bond_3ad.h"
82 #include "bond_alb.h"
83
84 /*---------------------------- Module parameters ----------------------------*/
85
86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
87 #define BOND_LINK_MON_INTERV 0
88 #define BOND_LINK_ARP_INTERV 0
89
90 static int max_bonds = BOND_DEFAULT_MAX_BONDS;
91 static int num_grat_arp = 1;
92 static int miimon = BOND_LINK_MON_INTERV;
93 static int updelay = 0;
94 static int downdelay = 0;
95 static int use_carrier = 1;
96 static char *mode = NULL;
97 static char *primary = NULL;
98 static char *lacp_rate = NULL;
99 static char *xmit_hash_policy = NULL;
100 static int arp_interval = BOND_LINK_ARP_INTERV;
101 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
102 static char *arp_validate = NULL;
103 static char *fail_over_mac = NULL;
104 struct bond_params bonding_defaults;
105
106 module_param(max_bonds, int, 0);
107 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
108 module_param(num_grat_arp, int, 0644);
109 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event");
110 module_param(miimon, int, 0);
111 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
112 module_param(updelay, int, 0);
113 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
114 module_param(downdelay, int, 0);
115 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
116 "in milliseconds");
117 module_param(use_carrier, int, 0);
118 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
119 "0 for off, 1 for on (default)");
120 module_param(mode, charp, 0);
121 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
122 "1 for active-backup, 2 for balance-xor, "
123 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
124 "6 for balance-alb");
125 module_param(primary, charp, 0);
126 MODULE_PARM_DESC(primary, "Primary network device to use");
127 module_param(lacp_rate, charp, 0);
128 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
129 "(slow/fast)");
130 module_param(xmit_hash_policy, charp, 0);
131 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
132 ", 1 for layer 3+4");
133 module_param(arp_interval, int, 0);
134 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
135 module_param_array(arp_ip_target, charp, NULL, 0);
136 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
137 module_param(arp_validate, charp, 0);
138 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all");
139 module_param(fail_over_mac, charp, 0);
140 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. none (default), active or follow");
141
142 /*----------------------------- Global variables ----------------------------*/
143
144 static const char * const version =
145 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
146
147 LIST_HEAD(bond_dev_list);
148
149 #ifdef CONFIG_PROC_FS
150 static struct proc_dir_entry *bond_proc_dir = NULL;
151 #endif
152
153 extern struct rw_semaphore bonding_rwsem;
154 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
155 static int arp_ip_count = 0;
156 static int bond_mode = BOND_MODE_ROUNDROBIN;
157 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
158 static int lacp_fast = 0;
159
160
161 struct bond_parm_tbl bond_lacp_tbl[] = {
162 { "slow", AD_LACP_SLOW},
163 { "fast", AD_LACP_FAST},
164 { NULL, -1},
165 };
166
167 struct bond_parm_tbl bond_mode_tbl[] = {
168 { "balance-rr", BOND_MODE_ROUNDROBIN},
169 { "active-backup", BOND_MODE_ACTIVEBACKUP},
170 { "balance-xor", BOND_MODE_XOR},
171 { "broadcast", BOND_MODE_BROADCAST},
172 { "802.3ad", BOND_MODE_8023AD},
173 { "balance-tlb", BOND_MODE_TLB},
174 { "balance-alb", BOND_MODE_ALB},
175 { NULL, -1},
176 };
177
178 struct bond_parm_tbl xmit_hashtype_tbl[] = {
179 { "layer2", BOND_XMIT_POLICY_LAYER2},
180 { "layer3+4", BOND_XMIT_POLICY_LAYER34},
181 { "layer2+3", BOND_XMIT_POLICY_LAYER23},
182 { NULL, -1},
183 };
184
185 struct bond_parm_tbl arp_validate_tbl[] = {
186 { "none", BOND_ARP_VALIDATE_NONE},
187 { "active", BOND_ARP_VALIDATE_ACTIVE},
188 { "backup", BOND_ARP_VALIDATE_BACKUP},
189 { "all", BOND_ARP_VALIDATE_ALL},
190 { NULL, -1},
191 };
192
193 struct bond_parm_tbl fail_over_mac_tbl[] = {
194 { "none", BOND_FOM_NONE},
195 { "active", BOND_FOM_ACTIVE},
196 { "follow", BOND_FOM_FOLLOW},
197 { NULL, -1},
198 };
199
200 /*-------------------------- Forward declarations ---------------------------*/
201
202 static void bond_send_gratuitous_arp(struct bonding *bond);
203 static void bond_deinit(struct net_device *bond_dev);
204
205 /*---------------------------- General routines -----------------------------*/
206
207 static const char *bond_mode_name(int mode)
208 {
209 switch (mode) {
210 case BOND_MODE_ROUNDROBIN :
211 return "load balancing (round-robin)";
212 case BOND_MODE_ACTIVEBACKUP :
213 return "fault-tolerance (active-backup)";
214 case BOND_MODE_XOR :
215 return "load balancing (xor)";
216 case BOND_MODE_BROADCAST :
217 return "fault-tolerance (broadcast)";
218 case BOND_MODE_8023AD:
219 return "IEEE 802.3ad Dynamic link aggregation";
220 case BOND_MODE_TLB:
221 return "transmit load balancing";
222 case BOND_MODE_ALB:
223 return "adaptive load balancing";
224 default:
225 return "unknown";
226 }
227 }
228
229 /*---------------------------------- VLAN -----------------------------------*/
230
231 /**
232 * bond_add_vlan - add a new vlan id on bond
233 * @bond: bond that got the notification
234 * @vlan_id: the vlan id to add
235 *
236 * Returns -ENOMEM if allocation failed.
237 */
238 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
239 {
240 struct vlan_entry *vlan;
241
242 dprintk("bond: %s, vlan id %d\n",
243 (bond ? bond->dev->name: "None"), vlan_id);
244
245 vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL);
246 if (!vlan) {
247 return -ENOMEM;
248 }
249
250 INIT_LIST_HEAD(&vlan->vlan_list);
251 vlan->vlan_id = vlan_id;
252 vlan->vlan_ip = 0;
253
254 write_lock_bh(&bond->lock);
255
256 list_add_tail(&vlan->vlan_list, &bond->vlan_list);
257
258 write_unlock_bh(&bond->lock);
259
260 dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
261
262 return 0;
263 }
264
265 /**
266 * bond_del_vlan - delete a vlan id from bond
267 * @bond: bond that got the notification
268 * @vlan_id: the vlan id to delete
269 *
270 * returns -ENODEV if @vlan_id was not found in @bond.
271 */
272 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
273 {
274 struct vlan_entry *vlan;
275 int res = -ENODEV;
276
277 dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
278
279 write_lock_bh(&bond->lock);
280
281 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
282 if (vlan->vlan_id == vlan_id) {
283 list_del(&vlan->vlan_list);
284
285 if ((bond->params.mode == BOND_MODE_TLB) ||
286 (bond->params.mode == BOND_MODE_ALB)) {
287 bond_alb_clear_vlan(bond, vlan_id);
288 }
289
290 dprintk("removed VLAN ID %d from bond %s\n", vlan_id,
291 bond->dev->name);
292
293 kfree(vlan);
294
295 if (list_empty(&bond->vlan_list) &&
296 (bond->slave_cnt == 0)) {
297 /* Last VLAN removed and no slaves, so
298 * restore block on adding VLANs. This will
299 * be removed once new slaves that are not
300 * VLAN challenged will be added.
301 */
302 bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
303 }
304
305 res = 0;
306 goto out;
307 }
308 }
309
310 dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id,
311 bond->dev->name);
312
313 out:
314 write_unlock_bh(&bond->lock);
315 return res;
316 }
317
318 /**
319 * bond_has_challenged_slaves
320 * @bond: the bond we're working on
321 *
322 * Searches the slave list. Returns 1 if a vlan challenged slave
323 * was found, 0 otherwise.
324 *
325 * Assumes bond->lock is held.
326 */
327 static int bond_has_challenged_slaves(struct bonding *bond)
328 {
329 struct slave *slave;
330 int i;
331
332 bond_for_each_slave(bond, slave, i) {
333 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
334 dprintk("found VLAN challenged slave - %s\n",
335 slave->dev->name);
336 return 1;
337 }
338 }
339
340 dprintk("no VLAN challenged slaves found\n");
341 return 0;
342 }
343
344 /**
345 * bond_next_vlan - safely skip to the next item in the vlans list.
346 * @bond: the bond we're working on
347 * @curr: item we're advancing from
348 *
349 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
350 * or @curr->next otherwise (even if it is @curr itself again).
351 *
352 * Caller must hold bond->lock
353 */
354 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
355 {
356 struct vlan_entry *next, *last;
357
358 if (list_empty(&bond->vlan_list)) {
359 return NULL;
360 }
361
362 if (!curr) {
363 next = list_entry(bond->vlan_list.next,
364 struct vlan_entry, vlan_list);
365 } else {
366 last = list_entry(bond->vlan_list.prev,
367 struct vlan_entry, vlan_list);
368 if (last == curr) {
369 next = list_entry(bond->vlan_list.next,
370 struct vlan_entry, vlan_list);
371 } else {
372 next = list_entry(curr->vlan_list.next,
373 struct vlan_entry, vlan_list);
374 }
375 }
376
377 return next;
378 }
379
380 /**
381 * bond_dev_queue_xmit - Prepare skb for xmit.
382 *
383 * @bond: bond device that got this skb for tx.
384 * @skb: hw accel VLAN tagged skb to transmit
385 * @slave_dev: slave that is supposed to xmit this skbuff
386 *
387 * When the bond gets an skb to transmit that is
388 * already hardware accelerated VLAN tagged, and it
389 * needs to relay this skb to a slave that is not
390 * hw accel capable, the skb needs to be "unaccelerated",
391 * i.e. strip the hwaccel tag and re-insert it as part
392 * of the payload.
393 */
394 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
395 {
396 unsigned short uninitialized_var(vlan_id);
397
398 if (!list_empty(&bond->vlan_list) &&
399 !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
400 vlan_get_tag(skb, &vlan_id) == 0) {
401 skb->dev = slave_dev;
402 skb = vlan_put_tag(skb, vlan_id);
403 if (!skb) {
404 /* vlan_put_tag() frees the skb in case of error,
405 * so return success here so the calling functions
406 * won't attempt to free is again.
407 */
408 return 0;
409 }
410 } else {
411 skb->dev = slave_dev;
412 }
413
414 skb->priority = 1;
415 dev_queue_xmit(skb);
416
417 return 0;
418 }
419
420 /*
421 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
422 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
423 * lock because:
424 * a. This operation is performed in IOCTL context,
425 * b. The operation is protected by the RTNL semaphore in the 8021q code,
426 * c. Holding a lock with BH disabled while directly calling a base driver
427 * entry point is generally a BAD idea.
428 *
429 * The design of synchronization/protection for this operation in the 8021q
430 * module is good for one or more VLAN devices over a single physical device
431 * and cannot be extended for a teaming solution like bonding, so there is a
432 * potential race condition here where a net device from the vlan group might
433 * be referenced (either by a base driver or the 8021q code) while it is being
434 * removed from the system. However, it turns out we're not making matters
435 * worse, and if it works for regular VLAN usage it will work here too.
436 */
437
438 /**
439 * bond_vlan_rx_register - Propagates registration to slaves
440 * @bond_dev: bonding net device that got called
441 * @grp: vlan group being registered
442 */
443 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
444 {
445 struct bonding *bond = bond_dev->priv;
446 struct slave *slave;
447 int i;
448
449 bond->vlgrp = grp;
450
451 bond_for_each_slave(bond, slave, i) {
452 struct net_device *slave_dev = slave->dev;
453
454 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
455 slave_dev->vlan_rx_register) {
456 slave_dev->vlan_rx_register(slave_dev, grp);
457 }
458 }
459 }
460
461 /**
462 * bond_vlan_rx_add_vid - Propagates adding an id to slaves
463 * @bond_dev: bonding net device that got called
464 * @vid: vlan id being added
465 */
466 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
467 {
468 struct bonding *bond = bond_dev->priv;
469 struct slave *slave;
470 int i, res;
471
472 bond_for_each_slave(bond, slave, i) {
473 struct net_device *slave_dev = slave->dev;
474
475 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
476 slave_dev->vlan_rx_add_vid) {
477 slave_dev->vlan_rx_add_vid(slave_dev, vid);
478 }
479 }
480
481 res = bond_add_vlan(bond, vid);
482 if (res) {
483 printk(KERN_ERR DRV_NAME
484 ": %s: Error: Failed to add vlan id %d\n",
485 bond_dev->name, vid);
486 }
487 }
488
489 /**
490 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
491 * @bond_dev: bonding net device that got called
492 * @vid: vlan id being removed
493 */
494 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
495 {
496 struct bonding *bond = bond_dev->priv;
497 struct slave *slave;
498 struct net_device *vlan_dev;
499 int i, res;
500
501 bond_for_each_slave(bond, slave, i) {
502 struct net_device *slave_dev = slave->dev;
503
504 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
505 slave_dev->vlan_rx_kill_vid) {
506 /* Save and then restore vlan_dev in the grp array,
507 * since the slave's driver might clear it.
508 */
509 vlan_dev = vlan_group_get_device(bond->vlgrp, vid);
510 slave_dev->vlan_rx_kill_vid(slave_dev, vid);
511 vlan_group_set_device(bond->vlgrp, vid, vlan_dev);
512 }
513 }
514
515 res = bond_del_vlan(bond, vid);
516 if (res) {
517 printk(KERN_ERR DRV_NAME
518 ": %s: Error: Failed to remove vlan id %d\n",
519 bond_dev->name, vid);
520 }
521 }
522
523 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
524 {
525 struct vlan_entry *vlan;
526
527 write_lock_bh(&bond->lock);
528
529 if (list_empty(&bond->vlan_list)) {
530 goto out;
531 }
532
533 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
534 slave_dev->vlan_rx_register) {
535 slave_dev->vlan_rx_register(slave_dev, bond->vlgrp);
536 }
537
538 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
539 !(slave_dev->vlan_rx_add_vid)) {
540 goto out;
541 }
542
543 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
544 slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id);
545 }
546
547 out:
548 write_unlock_bh(&bond->lock);
549 }
550
551 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
552 {
553 struct vlan_entry *vlan;
554 struct net_device *vlan_dev;
555
556 write_lock_bh(&bond->lock);
557
558 if (list_empty(&bond->vlan_list)) {
559 goto out;
560 }
561
562 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
563 !(slave_dev->vlan_rx_kill_vid)) {
564 goto unreg;
565 }
566
567 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
568 /* Save and then restore vlan_dev in the grp array,
569 * since the slave's driver might clear it.
570 */
571 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
572 slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
573 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev);
574 }
575
576 unreg:
577 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
578 slave_dev->vlan_rx_register) {
579 slave_dev->vlan_rx_register(slave_dev, NULL);
580 }
581
582 out:
583 write_unlock_bh(&bond->lock);
584 }
585
586 /*------------------------------- Link status -------------------------------*/
587
588 /*
589 * Set the carrier state for the master according to the state of its
590 * slaves. If any slaves are up, the master is up. In 802.3ad mode,
591 * do special 802.3ad magic.
592 *
593 * Returns zero if carrier state does not change, nonzero if it does.
594 */
595 static int bond_set_carrier(struct bonding *bond)
596 {
597 struct slave *slave;
598 int i;
599
600 if (bond->slave_cnt == 0)
601 goto down;
602
603 if (bond->params.mode == BOND_MODE_8023AD)
604 return bond_3ad_set_carrier(bond);
605
606 bond_for_each_slave(bond, slave, i) {
607 if (slave->link == BOND_LINK_UP) {
608 if (!netif_carrier_ok(bond->dev)) {
609 netif_carrier_on(bond->dev);
610 return 1;
611 }
612 return 0;
613 }
614 }
615
616 down:
617 if (netif_carrier_ok(bond->dev)) {
618 netif_carrier_off(bond->dev);
619 return 1;
620 }
621 return 0;
622 }
623
624 /*
625 * Get link speed and duplex from the slave's base driver
626 * using ethtool. If for some reason the call fails or the
627 * values are invalid, fake speed and duplex to 100/Full
628 * and return error.
629 */
630 static int bond_update_speed_duplex(struct slave *slave)
631 {
632 struct net_device *slave_dev = slave->dev;
633 struct ethtool_cmd etool;
634 int res;
635
636 /* Fake speed and duplex */
637 slave->speed = SPEED_100;
638 slave->duplex = DUPLEX_FULL;
639
640 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings)
641 return -1;
642
643 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
644 if (res < 0)
645 return -1;
646
647 switch (etool.speed) {
648 case SPEED_10:
649 case SPEED_100:
650 case SPEED_1000:
651 case SPEED_10000:
652 break;
653 default:
654 return -1;
655 }
656
657 switch (etool.duplex) {
658 case DUPLEX_FULL:
659 case DUPLEX_HALF:
660 break;
661 default:
662 return -1;
663 }
664
665 slave->speed = etool.speed;
666 slave->duplex = etool.duplex;
667
668 return 0;
669 }
670
671 /*
672 * if <dev> supports MII link status reporting, check its link status.
673 *
674 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
675 * depening upon the setting of the use_carrier parameter.
676 *
677 * Return either BMSR_LSTATUS, meaning that the link is up (or we
678 * can't tell and just pretend it is), or 0, meaning that the link is
679 * down.
680 *
681 * If reporting is non-zero, instead of faking link up, return -1 if
682 * both ETHTOOL and MII ioctls fail (meaning the device does not
683 * support them). If use_carrier is set, return whatever it says.
684 * It'd be nice if there was a good way to tell if a driver supports
685 * netif_carrier, but there really isn't.
686 */
687 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
688 {
689 static int (* ioctl)(struct net_device *, struct ifreq *, int);
690 struct ifreq ifr;
691 struct mii_ioctl_data *mii;
692
693 if (bond->params.use_carrier) {
694 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
695 }
696
697 ioctl = slave_dev->do_ioctl;
698 if (ioctl) {
699 /* TODO: set pointer to correct ioctl on a per team member */
700 /* bases to make this more efficient. that is, once */
701 /* we determine the correct ioctl, we will always */
702 /* call it and not the others for that team */
703 /* member. */
704
705 /*
706 * We cannot assume that SIOCGMIIPHY will also read a
707 * register; not all network drivers (e.g., e100)
708 * support that.
709 */
710
711 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */
712 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
713 mii = if_mii(&ifr);
714 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
715 mii->reg_num = MII_BMSR;
716 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
717 return (mii->val_out & BMSR_LSTATUS);
718 }
719 }
720 }
721
722 /*
723 * Some drivers cache ETHTOOL_GLINK for a period of time so we only
724 * attempt to get link status from it if the above MII ioctls fail.
725 */
726 if (slave_dev->ethtool_ops) {
727 if (slave_dev->ethtool_ops->get_link) {
728 u32 link;
729
730 link = slave_dev->ethtool_ops->get_link(slave_dev);
731
732 return link ? BMSR_LSTATUS : 0;
733 }
734 }
735
736 /*
737 * If reporting, report that either there's no dev->do_ioctl,
738 * or both SIOCGMIIREG and get_link failed (meaning that we
739 * cannot report link status). If not reporting, pretend
740 * we're ok.
741 */
742 return (reporting ? -1 : BMSR_LSTATUS);
743 }
744
745 /*----------------------------- Multicast list ------------------------------*/
746
747 /*
748 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
749 */
750 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
751 {
752 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
753 dmi1->dmi_addrlen == dmi2->dmi_addrlen;
754 }
755
756 /*
757 * returns dmi entry if found, NULL otherwise
758 */
759 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
760 {
761 struct dev_mc_list *idmi;
762
763 for (idmi = mc_list; idmi; idmi = idmi->next) {
764 if (bond_is_dmi_same(dmi, idmi)) {
765 return idmi;
766 }
767 }
768
769 return NULL;
770 }
771
772 /*
773 * Push the promiscuity flag down to appropriate slaves
774 */
775 static int bond_set_promiscuity(struct bonding *bond, int inc)
776 {
777 int err = 0;
778 if (USES_PRIMARY(bond->params.mode)) {
779 /* write lock already acquired */
780 if (bond->curr_active_slave) {
781 err = dev_set_promiscuity(bond->curr_active_slave->dev,
782 inc);
783 }
784 } else {
785 struct slave *slave;
786 int i;
787 bond_for_each_slave(bond, slave, i) {
788 err = dev_set_promiscuity(slave->dev, inc);
789 if (err)
790 return err;
791 }
792 }
793 return err;
794 }
795
796 /*
797 * Push the allmulti flag down to all slaves
798 */
799 static int bond_set_allmulti(struct bonding *bond, int inc)
800 {
801 int err = 0;
802 if (USES_PRIMARY(bond->params.mode)) {
803 /* write lock already acquired */
804 if (bond->curr_active_slave) {
805 err = dev_set_allmulti(bond->curr_active_slave->dev,
806 inc);
807 }
808 } else {
809 struct slave *slave;
810 int i;
811 bond_for_each_slave(bond, slave, i) {
812 err = dev_set_allmulti(slave->dev, inc);
813 if (err)
814 return err;
815 }
816 }
817 return err;
818 }
819
820 /*
821 * Add a Multicast address to slaves
822 * according to mode
823 */
824 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
825 {
826 if (USES_PRIMARY(bond->params.mode)) {
827 /* write lock already acquired */
828 if (bond->curr_active_slave) {
829 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
830 }
831 } else {
832 struct slave *slave;
833 int i;
834 bond_for_each_slave(bond, slave, i) {
835 dev_mc_add(slave->dev, addr, alen, 0);
836 }
837 }
838 }
839
840 /*
841 * Remove a multicast address from slave
842 * according to mode
843 */
844 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
845 {
846 if (USES_PRIMARY(bond->params.mode)) {
847 /* write lock already acquired */
848 if (bond->curr_active_slave) {
849 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
850 }
851 } else {
852 struct slave *slave;
853 int i;
854 bond_for_each_slave(bond, slave, i) {
855 dev_mc_delete(slave->dev, addr, alen, 0);
856 }
857 }
858 }
859
860
861 /*
862 * Retrieve the list of registered multicast addresses for the bonding
863 * device and retransmit an IGMP JOIN request to the current active
864 * slave.
865 */
866 static void bond_resend_igmp_join_requests(struct bonding *bond)
867 {
868 struct in_device *in_dev;
869 struct ip_mc_list *im;
870
871 rcu_read_lock();
872 in_dev = __in_dev_get_rcu(bond->dev);
873 if (in_dev) {
874 for (im = in_dev->mc_list; im; im = im->next) {
875 ip_mc_rejoin_group(im);
876 }
877 }
878
879 rcu_read_unlock();
880 }
881
882 /*
883 * Totally destroys the mc_list in bond
884 */
885 static void bond_mc_list_destroy(struct bonding *bond)
886 {
887 struct dev_mc_list *dmi;
888
889 dmi = bond->mc_list;
890 while (dmi) {
891 bond->mc_list = dmi->next;
892 kfree(dmi);
893 dmi = bond->mc_list;
894 }
895 bond->mc_list = NULL;
896 }
897
898 /*
899 * Copy all the Multicast addresses from src to the bonding device dst
900 */
901 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
902 gfp_t gfp_flag)
903 {
904 struct dev_mc_list *dmi, *new_dmi;
905
906 for (dmi = mc_list; dmi; dmi = dmi->next) {
907 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
908
909 if (!new_dmi) {
910 /* FIXME: Potential memory leak !!! */
911 return -ENOMEM;
912 }
913
914 new_dmi->next = bond->mc_list;
915 bond->mc_list = new_dmi;
916 new_dmi->dmi_addrlen = dmi->dmi_addrlen;
917 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
918 new_dmi->dmi_users = dmi->dmi_users;
919 new_dmi->dmi_gusers = dmi->dmi_gusers;
920 }
921
922 return 0;
923 }
924
925 /*
926 * flush all members of flush->mc_list from device dev->mc_list
927 */
928 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
929 {
930 struct bonding *bond = bond_dev->priv;
931 struct dev_mc_list *dmi;
932
933 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
934 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
935 }
936
937 if (bond->params.mode == BOND_MODE_8023AD) {
938 /* del lacpdu mc addr from mc list */
939 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
940
941 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
942 }
943 }
944
945 /*--------------------------- Active slave change ---------------------------*/
946
947 /*
948 * Update the mc list and multicast-related flags for the new and
949 * old active slaves (if any) according to the multicast mode, and
950 * promiscuous flags unconditionally.
951 */
952 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
953 {
954 struct dev_mc_list *dmi;
955
956 if (!USES_PRIMARY(bond->params.mode)) {
957 /* nothing to do - mc list is already up-to-date on
958 * all slaves
959 */
960 return;
961 }
962
963 if (old_active) {
964 if (bond->dev->flags & IFF_PROMISC) {
965 dev_set_promiscuity(old_active->dev, -1);
966 }
967
968 if (bond->dev->flags & IFF_ALLMULTI) {
969 dev_set_allmulti(old_active->dev, -1);
970 }
971
972 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
973 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
974 }
975 }
976
977 if (new_active) {
978 /* FIXME: Signal errors upstream. */
979 if (bond->dev->flags & IFF_PROMISC) {
980 dev_set_promiscuity(new_active->dev, 1);
981 }
982
983 if (bond->dev->flags & IFF_ALLMULTI) {
984 dev_set_allmulti(new_active->dev, 1);
985 }
986
987 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
988 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
989 }
990 bond_resend_igmp_join_requests(bond);
991 }
992 }
993
994 /*
995 * bond_do_fail_over_mac
996 *
997 * Perform special MAC address swapping for fail_over_mac settings
998 *
999 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh.
1000 */
1001 static void bond_do_fail_over_mac(struct bonding *bond,
1002 struct slave *new_active,
1003 struct slave *old_active)
1004 {
1005 u8 tmp_mac[ETH_ALEN];
1006 struct sockaddr saddr;
1007 int rv;
1008
1009 switch (bond->params.fail_over_mac) {
1010 case BOND_FOM_ACTIVE:
1011 if (new_active)
1012 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr,
1013 new_active->dev->addr_len);
1014 break;
1015 case BOND_FOM_FOLLOW:
1016 /*
1017 * if new_active && old_active, swap them
1018 * if just old_active, do nothing (going to no active slave)
1019 * if just new_active, set new_active to bond's MAC
1020 */
1021 if (!new_active)
1022 return;
1023
1024 write_unlock_bh(&bond->curr_slave_lock);
1025 read_unlock(&bond->lock);
1026
1027 if (old_active) {
1028 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN);
1029 memcpy(saddr.sa_data, old_active->dev->dev_addr,
1030 ETH_ALEN);
1031 saddr.sa_family = new_active->dev->type;
1032 } else {
1033 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN);
1034 saddr.sa_family = bond->dev->type;
1035 }
1036
1037 rv = dev_set_mac_address(new_active->dev, &saddr);
1038 if (rv) {
1039 printk(KERN_ERR DRV_NAME
1040 ": %s: Error %d setting MAC of slave %s\n",
1041 bond->dev->name, -rv, new_active->dev->name);
1042 goto out;
1043 }
1044
1045 if (!old_active)
1046 goto out;
1047
1048 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN);
1049 saddr.sa_family = old_active->dev->type;
1050
1051 rv = dev_set_mac_address(old_active->dev, &saddr);
1052 if (rv)
1053 printk(KERN_ERR DRV_NAME
1054 ": %s: Error %d setting MAC of slave %s\n",
1055 bond->dev->name, -rv, new_active->dev->name);
1056 out:
1057 read_lock(&bond->lock);
1058 write_lock_bh(&bond->curr_slave_lock);
1059 break;
1060 default:
1061 printk(KERN_ERR DRV_NAME
1062 ": %s: bond_do_fail_over_mac impossible: bad policy %d\n",
1063 bond->dev->name, bond->params.fail_over_mac);
1064 break;
1065 }
1066
1067 }
1068
1069
1070 /**
1071 * find_best_interface - select the best available slave to be the active one
1072 * @bond: our bonding struct
1073 *
1074 * Warning: Caller must hold curr_slave_lock for writing.
1075 */
1076 static struct slave *bond_find_best_slave(struct bonding *bond)
1077 {
1078 struct slave *new_active, *old_active;
1079 struct slave *bestslave = NULL;
1080 int mintime = bond->params.updelay;
1081 int i;
1082
1083 new_active = old_active = bond->curr_active_slave;
1084
1085 if (!new_active) { /* there were no active slaves left */
1086 if (bond->slave_cnt > 0) { /* found one slave */
1087 new_active = bond->first_slave;
1088 } else {
1089 return NULL; /* still no slave, return NULL */
1090 }
1091 }
1092
1093 /* first try the primary link; if arping, a link must tx/rx traffic
1094 * before it can be considered the curr_active_slave - also, we would skip
1095 * slaves between the curr_active_slave and primary_slave that may be up
1096 * and able to arp
1097 */
1098 if ((bond->primary_slave) &&
1099 (!bond->params.arp_interval) &&
1100 (IS_UP(bond->primary_slave->dev))) {
1101 new_active = bond->primary_slave;
1102 }
1103
1104 /* remember where to stop iterating over the slaves */
1105 old_active = new_active;
1106
1107 bond_for_each_slave_from(bond, new_active, i, old_active) {
1108 if (IS_UP(new_active->dev)) {
1109 if (new_active->link == BOND_LINK_UP) {
1110 return new_active;
1111 } else if (new_active->link == BOND_LINK_BACK) {
1112 /* link up, but waiting for stabilization */
1113 if (new_active->delay < mintime) {
1114 mintime = new_active->delay;
1115 bestslave = new_active;
1116 }
1117 }
1118 }
1119 }
1120
1121 return bestslave;
1122 }
1123
1124 /**
1125 * change_active_interface - change the active slave into the specified one
1126 * @bond: our bonding struct
1127 * @new: the new slave to make the active one
1128 *
1129 * Set the new slave to the bond's settings and unset them on the old
1130 * curr_active_slave.
1131 * Setting include flags, mc-list, promiscuity, allmulti, etc.
1132 *
1133 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1134 * because it is apparently the best available slave we have, even though its
1135 * updelay hasn't timed out yet.
1136 *
1137 * If new_active is not NULL, caller must hold bond->lock for read and
1138 * curr_slave_lock for write_bh.
1139 */
1140 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1141 {
1142 struct slave *old_active = bond->curr_active_slave;
1143
1144 if (old_active == new_active) {
1145 return;
1146 }
1147
1148 if (new_active) {
1149 new_active->jiffies = jiffies;
1150
1151 if (new_active->link == BOND_LINK_BACK) {
1152 if (USES_PRIMARY(bond->params.mode)) {
1153 printk(KERN_INFO DRV_NAME
1154 ": %s: making interface %s the new "
1155 "active one %d ms earlier.\n",
1156 bond->dev->name, new_active->dev->name,
1157 (bond->params.updelay - new_active->delay) * bond->params.miimon);
1158 }
1159
1160 new_active->delay = 0;
1161 new_active->link = BOND_LINK_UP;
1162
1163 if (bond->params.mode == BOND_MODE_8023AD) {
1164 bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1165 }
1166
1167 if ((bond->params.mode == BOND_MODE_TLB) ||
1168 (bond->params.mode == BOND_MODE_ALB)) {
1169 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1170 }
1171 } else {
1172 if (USES_PRIMARY(bond->params.mode)) {
1173 printk(KERN_INFO DRV_NAME
1174 ": %s: making interface %s the new "
1175 "active one.\n",
1176 bond->dev->name, new_active->dev->name);
1177 }
1178 }
1179 }
1180
1181 if (USES_PRIMARY(bond->params.mode)) {
1182 bond_mc_swap(bond, new_active, old_active);
1183 }
1184
1185 if ((bond->params.mode == BOND_MODE_TLB) ||
1186 (bond->params.mode == BOND_MODE_ALB)) {
1187 bond_alb_handle_active_change(bond, new_active);
1188 if (old_active)
1189 bond_set_slave_inactive_flags(old_active);
1190 if (new_active)
1191 bond_set_slave_active_flags(new_active);
1192 } else {
1193 bond->curr_active_slave = new_active;
1194 }
1195
1196 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1197 if (old_active) {
1198 bond_set_slave_inactive_flags(old_active);
1199 }
1200
1201 if (new_active) {
1202 bond_set_slave_active_flags(new_active);
1203
1204 if (bond->params.fail_over_mac)
1205 bond_do_fail_over_mac(bond, new_active,
1206 old_active);
1207
1208 bond->send_grat_arp = bond->params.num_grat_arp;
1209 bond_send_gratuitous_arp(bond);
1210
1211 write_unlock_bh(&bond->curr_slave_lock);
1212 read_unlock(&bond->lock);
1213
1214 netdev_bonding_change(bond->dev);
1215
1216 read_lock(&bond->lock);
1217 write_lock_bh(&bond->curr_slave_lock);
1218 }
1219 }
1220 }
1221
1222 /**
1223 * bond_select_active_slave - select a new active slave, if needed
1224 * @bond: our bonding struct
1225 *
1226 * This functions shoud be called when one of the following occurs:
1227 * - The old curr_active_slave has been released or lost its link.
1228 * - The primary_slave has got its link back.
1229 * - A slave has got its link back and there's no old curr_active_slave.
1230 *
1231 * Caller must hold bond->lock for read and curr_slave_lock for write_bh.
1232 */
1233 void bond_select_active_slave(struct bonding *bond)
1234 {
1235 struct slave *best_slave;
1236 int rv;
1237
1238 best_slave = bond_find_best_slave(bond);
1239 if (best_slave != bond->curr_active_slave) {
1240 bond_change_active_slave(bond, best_slave);
1241 rv = bond_set_carrier(bond);
1242 if (!rv)
1243 return;
1244
1245 if (netif_carrier_ok(bond->dev)) {
1246 printk(KERN_INFO DRV_NAME
1247 ": %s: first active interface up!\n",
1248 bond->dev->name);
1249 } else {
1250 printk(KERN_INFO DRV_NAME ": %s: "
1251 "now running without any active interface !\n",
1252 bond->dev->name);
1253 }
1254 }
1255 }
1256
1257 /*--------------------------- slave list handling ---------------------------*/
1258
1259 /*
1260 * This function attaches the slave to the end of list.
1261 *
1262 * bond->lock held for writing by caller.
1263 */
1264 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1265 {
1266 if (bond->first_slave == NULL) { /* attaching the first slave */
1267 new_slave->next = new_slave;
1268 new_slave->prev = new_slave;
1269 bond->first_slave = new_slave;
1270 } else {
1271 new_slave->next = bond->first_slave;
1272 new_slave->prev = bond->first_slave->prev;
1273 new_slave->next->prev = new_slave;
1274 new_slave->prev->next = new_slave;
1275 }
1276
1277 bond->slave_cnt++;
1278 }
1279
1280 /*
1281 * This function detaches the slave from the list.
1282 * WARNING: no check is made to verify if the slave effectively
1283 * belongs to <bond>.
1284 * Nothing is freed on return, structures are just unchained.
1285 * If any slave pointer in bond was pointing to <slave>,
1286 * it should be changed by the calling function.
1287 *
1288 * bond->lock held for writing by caller.
1289 */
1290 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1291 {
1292 if (slave->next) {
1293 slave->next->prev = slave->prev;
1294 }
1295
1296 if (slave->prev) {
1297 slave->prev->next = slave->next;
1298 }
1299
1300 if (bond->first_slave == slave) { /* slave is the first slave */
1301 if (bond->slave_cnt > 1) { /* there are more slave */
1302 bond->first_slave = slave->next;
1303 } else {
1304 bond->first_slave = NULL; /* slave was the last one */
1305 }
1306 }
1307
1308 slave->next = NULL;
1309 slave->prev = NULL;
1310 bond->slave_cnt--;
1311 }
1312
1313 /*---------------------------------- IOCTL ----------------------------------*/
1314
1315 static int bond_sethwaddr(struct net_device *bond_dev,
1316 struct net_device *slave_dev)
1317 {
1318 dprintk("bond_dev=%p\n", bond_dev);
1319 dprintk("slave_dev=%p\n", slave_dev);
1320 dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1321 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1322 return 0;
1323 }
1324
1325 #define BOND_VLAN_FEATURES \
1326 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \
1327 NETIF_F_HW_VLAN_FILTER)
1328
1329 /*
1330 * Compute the common dev->feature set available to all slaves. Some
1331 * feature bits are managed elsewhere, so preserve those feature bits
1332 * on the master device.
1333 */
1334 static int bond_compute_features(struct bonding *bond)
1335 {
1336 struct slave *slave;
1337 struct net_device *bond_dev = bond->dev;
1338 unsigned long features = bond_dev->features;
1339 unsigned short max_hard_header_len = max((u16)ETH_HLEN,
1340 bond_dev->hard_header_len);
1341 int i;
1342
1343 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES);
1344 features |= NETIF_F_GSO_MASK | NETIF_F_NO_CSUM;
1345
1346 if (!bond->first_slave)
1347 goto done;
1348
1349 features &= ~NETIF_F_ONE_FOR_ALL;
1350
1351 bond_for_each_slave(bond, slave, i) {
1352 features = netdev_increment_features(features,
1353 slave->dev->features,
1354 NETIF_F_ONE_FOR_ALL);
1355 if (slave->dev->hard_header_len > max_hard_header_len)
1356 max_hard_header_len = slave->dev->hard_header_len;
1357 }
1358
1359 done:
1360 features |= (bond_dev->features & BOND_VLAN_FEATURES);
1361 bond_dev->features = netdev_fix_features(features, NULL);
1362 bond_dev->hard_header_len = max_hard_header_len;
1363
1364 return 0;
1365 }
1366
1367
1368 static void bond_setup_by_slave(struct net_device *bond_dev,
1369 struct net_device *slave_dev)
1370 {
1371 struct bonding *bond = bond_dev->priv;
1372
1373 bond_dev->neigh_setup = slave_dev->neigh_setup;
1374 bond_dev->header_ops = slave_dev->header_ops;
1375
1376 bond_dev->type = slave_dev->type;
1377 bond_dev->hard_header_len = slave_dev->hard_header_len;
1378 bond_dev->addr_len = slave_dev->addr_len;
1379
1380 memcpy(bond_dev->broadcast, slave_dev->broadcast,
1381 slave_dev->addr_len);
1382 bond->setup_by_slave = 1;
1383 }
1384
1385 /* enslave device <slave> to bond device <master> */
1386 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1387 {
1388 struct bonding *bond = bond_dev->priv;
1389 struct slave *new_slave = NULL;
1390 struct dev_mc_list *dmi;
1391 struct sockaddr addr;
1392 int link_reporting;
1393 int old_features = bond_dev->features;
1394 int res = 0;
1395
1396 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1397 slave_dev->do_ioctl == NULL) {
1398 printk(KERN_WARNING DRV_NAME
1399 ": %s: Warning: no link monitoring support for %s\n",
1400 bond_dev->name, slave_dev->name);
1401 }
1402
1403 /* bond must be initialized by bond_open() before enslaving */
1404 if (!(bond_dev->flags & IFF_UP)) {
1405 printk(KERN_WARNING DRV_NAME
1406 " %s: master_dev is not up in bond_enslave\n",
1407 bond_dev->name);
1408 }
1409
1410 /* already enslaved */
1411 if (slave_dev->flags & IFF_SLAVE) {
1412 dprintk("Error, Device was already enslaved\n");
1413 return -EBUSY;
1414 }
1415
1416 /* vlan challenged mutual exclusion */
1417 /* no need to lock since we're protected by rtnl_lock */
1418 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1419 dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1420 if (!list_empty(&bond->vlan_list)) {
1421 printk(KERN_ERR DRV_NAME
1422 ": %s: Error: cannot enslave VLAN "
1423 "challenged slave %s on VLAN enabled "
1424 "bond %s\n", bond_dev->name, slave_dev->name,
1425 bond_dev->name);
1426 return -EPERM;
1427 } else {
1428 printk(KERN_WARNING DRV_NAME
1429 ": %s: Warning: enslaved VLAN challenged "
1430 "slave %s. Adding VLANs will be blocked as "
1431 "long as %s is part of bond %s\n",
1432 bond_dev->name, slave_dev->name, slave_dev->name,
1433 bond_dev->name);
1434 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1435 }
1436 } else {
1437 dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1438 if (bond->slave_cnt == 0) {
1439 /* First slave, and it is not VLAN challenged,
1440 * so remove the block of adding VLANs over the bond.
1441 */
1442 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1443 }
1444 }
1445
1446 /*
1447 * Old ifenslave binaries are no longer supported. These can
1448 * be identified with moderate accurary by the state of the slave:
1449 * the current ifenslave will set the interface down prior to
1450 * enslaving it; the old ifenslave will not.
1451 */
1452 if ((slave_dev->flags & IFF_UP)) {
1453 printk(KERN_ERR DRV_NAME ": %s is up. "
1454 "This may be due to an out of date ifenslave.\n",
1455 slave_dev->name);
1456 res = -EPERM;
1457 goto err_undo_flags;
1458 }
1459
1460 /* set bonding device ether type by slave - bonding netdevices are
1461 * created with ether_setup, so when the slave type is not ARPHRD_ETHER
1462 * there is a need to override some of the type dependent attribs/funcs.
1463 *
1464 * bond ether type mutual exclusion - don't allow slaves of dissimilar
1465 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond
1466 */
1467 if (bond->slave_cnt == 0) {
1468 if (slave_dev->type != ARPHRD_ETHER)
1469 bond_setup_by_slave(bond_dev, slave_dev);
1470 } else if (bond_dev->type != slave_dev->type) {
1471 printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different "
1472 "from other slaves (%d), can not enslave it.\n",
1473 slave_dev->name,
1474 slave_dev->type, bond_dev->type);
1475 res = -EINVAL;
1476 goto err_undo_flags;
1477 }
1478
1479 if (slave_dev->set_mac_address == NULL) {
1480 if (bond->slave_cnt == 0) {
1481 printk(KERN_WARNING DRV_NAME
1482 ": %s: Warning: The first slave device "
1483 "specified does not support setting the MAC "
1484 "address. Setting fail_over_mac to active.",
1485 bond_dev->name);
1486 bond->params.fail_over_mac = BOND_FOM_ACTIVE;
1487 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1488 printk(KERN_ERR DRV_NAME
1489 ": %s: Error: The slave device specified "
1490 "does not support setting the MAC address, "
1491 "but fail_over_mac is not set to active.\n"
1492 , bond_dev->name);
1493 res = -EOPNOTSUPP;
1494 goto err_undo_flags;
1495 }
1496 }
1497
1498 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1499 if (!new_slave) {
1500 res = -ENOMEM;
1501 goto err_undo_flags;
1502 }
1503
1504 /* save slave's original flags before calling
1505 * netdev_set_master and dev_open
1506 */
1507 new_slave->original_flags = slave_dev->flags;
1508
1509 /*
1510 * Save slave's original ("permanent") mac address for modes
1511 * that need it, and for restoring it upon release, and then
1512 * set it to the master's address
1513 */
1514 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1515
1516 if (!bond->params.fail_over_mac) {
1517 /*
1518 * Set slave to master's mac address. The application already
1519 * set the master's mac address to that of the first slave
1520 */
1521 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1522 addr.sa_family = slave_dev->type;
1523 res = dev_set_mac_address(slave_dev, &addr);
1524 if (res) {
1525 dprintk("Error %d calling set_mac_address\n", res);
1526 goto err_free;
1527 }
1528 }
1529
1530 res = netdev_set_master(slave_dev, bond_dev);
1531 if (res) {
1532 dprintk("Error %d calling netdev_set_master\n", res);
1533 goto err_restore_mac;
1534 }
1535 /* open the slave since the application closed it */
1536 res = dev_open(slave_dev);
1537 if (res) {
1538 dprintk("Openning slave %s failed\n", slave_dev->name);
1539 goto err_unset_master;
1540 }
1541
1542 new_slave->dev = slave_dev;
1543 slave_dev->priv_flags |= IFF_BONDING;
1544
1545 if ((bond->params.mode == BOND_MODE_TLB) ||
1546 (bond->params.mode == BOND_MODE_ALB)) {
1547 /* bond_alb_init_slave() must be called before all other stages since
1548 * it might fail and we do not want to have to undo everything
1549 */
1550 res = bond_alb_init_slave(bond, new_slave);
1551 if (res) {
1552 goto err_close;
1553 }
1554 }
1555
1556 /* If the mode USES_PRIMARY, then the new slave gets the
1557 * master's promisc (and mc) settings only if it becomes the
1558 * curr_active_slave, and that is taken care of later when calling
1559 * bond_change_active()
1560 */
1561 if (!USES_PRIMARY(bond->params.mode)) {
1562 /* set promiscuity level to new slave */
1563 if (bond_dev->flags & IFF_PROMISC) {
1564 res = dev_set_promiscuity(slave_dev, 1);
1565 if (res)
1566 goto err_close;
1567 }
1568
1569 /* set allmulti level to new slave */
1570 if (bond_dev->flags & IFF_ALLMULTI) {
1571 res = dev_set_allmulti(slave_dev, 1);
1572 if (res)
1573 goto err_close;
1574 }
1575
1576 netif_addr_lock_bh(bond_dev);
1577 /* upload master's mc_list to new slave */
1578 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1579 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1580 }
1581 netif_addr_unlock_bh(bond_dev);
1582 }
1583
1584 if (bond->params.mode == BOND_MODE_8023AD) {
1585 /* add lacpdu mc addr to mc list */
1586 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1587
1588 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1589 }
1590
1591 bond_add_vlans_on_slave(bond, slave_dev);
1592
1593 write_lock_bh(&bond->lock);
1594
1595 bond_attach_slave(bond, new_slave);
1596
1597 new_slave->delay = 0;
1598 new_slave->link_failure_count = 0;
1599
1600 bond_compute_features(bond);
1601
1602 write_unlock_bh(&bond->lock);
1603
1604 read_lock(&bond->lock);
1605
1606 new_slave->last_arp_rx = jiffies;
1607
1608 if (bond->params.miimon && !bond->params.use_carrier) {
1609 link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1610
1611 if ((link_reporting == -1) && !bond->params.arp_interval) {
1612 /*
1613 * miimon is set but a bonded network driver
1614 * does not support ETHTOOL/MII and
1615 * arp_interval is not set. Note: if
1616 * use_carrier is enabled, we will never go
1617 * here (because netif_carrier is always
1618 * supported); thus, we don't need to change
1619 * the messages for netif_carrier.
1620 */
1621 printk(KERN_WARNING DRV_NAME
1622 ": %s: Warning: MII and ETHTOOL support not "
1623 "available for interface %s, and "
1624 "arp_interval/arp_ip_target module parameters "
1625 "not specified, thus bonding will not detect "
1626 "link failures! see bonding.txt for details.\n",
1627 bond_dev->name, slave_dev->name);
1628 } else if (link_reporting == -1) {
1629 /* unable get link status using mii/ethtool */
1630 printk(KERN_WARNING DRV_NAME
1631 ": %s: Warning: can't get link status from "
1632 "interface %s; the network driver associated "
1633 "with this interface does not support MII or "
1634 "ETHTOOL link status reporting, thus miimon "
1635 "has no effect on this interface.\n",
1636 bond_dev->name, slave_dev->name);
1637 }
1638 }
1639
1640 /* check for initial state */
1641 if (!bond->params.miimon ||
1642 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1643 if (bond->params.updelay) {
1644 dprintk("Initial state of slave_dev is "
1645 "BOND_LINK_BACK\n");
1646 new_slave->link = BOND_LINK_BACK;
1647 new_slave->delay = bond->params.updelay;
1648 } else {
1649 dprintk("Initial state of slave_dev is "
1650 "BOND_LINK_UP\n");
1651 new_slave->link = BOND_LINK_UP;
1652 }
1653 new_slave->jiffies = jiffies;
1654 } else {
1655 dprintk("Initial state of slave_dev is "
1656 "BOND_LINK_DOWN\n");
1657 new_slave->link = BOND_LINK_DOWN;
1658 }
1659
1660 if (bond_update_speed_duplex(new_slave) &&
1661 (new_slave->link != BOND_LINK_DOWN)) {
1662 printk(KERN_WARNING DRV_NAME
1663 ": %s: Warning: failed to get speed and duplex from %s, "
1664 "assumed to be 100Mb/sec and Full.\n",
1665 bond_dev->name, new_slave->dev->name);
1666
1667 if (bond->params.mode == BOND_MODE_8023AD) {
1668 printk(KERN_WARNING DRV_NAME
1669 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1670 "support in base driver for proper aggregator "
1671 "selection.\n", bond_dev->name);
1672 }
1673 }
1674
1675 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1676 /* if there is a primary slave, remember it */
1677 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1678 bond->primary_slave = new_slave;
1679 }
1680 }
1681
1682 write_lock_bh(&bond->curr_slave_lock);
1683
1684 switch (bond->params.mode) {
1685 case BOND_MODE_ACTIVEBACKUP:
1686 bond_set_slave_inactive_flags(new_slave);
1687 bond_select_active_slave(bond);
1688 break;
1689 case BOND_MODE_8023AD:
1690 /* in 802.3ad mode, the internal mechanism
1691 * will activate the slaves in the selected
1692 * aggregator
1693 */
1694 bond_set_slave_inactive_flags(new_slave);
1695 /* if this is the first slave */
1696 if (bond->slave_cnt == 1) {
1697 SLAVE_AD_INFO(new_slave).id = 1;
1698 /* Initialize AD with the number of times that the AD timer is called in 1 second
1699 * can be called only after the mac address of the bond is set
1700 */
1701 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1702 bond->params.lacp_fast);
1703 } else {
1704 SLAVE_AD_INFO(new_slave).id =
1705 SLAVE_AD_INFO(new_slave->prev).id + 1;
1706 }
1707
1708 bond_3ad_bind_slave(new_slave);
1709 break;
1710 case BOND_MODE_TLB:
1711 case BOND_MODE_ALB:
1712 new_slave->state = BOND_STATE_ACTIVE;
1713 bond_set_slave_inactive_flags(new_slave);
1714 break;
1715 default:
1716 dprintk("This slave is always active in trunk mode\n");
1717
1718 /* always active in trunk mode */
1719 new_slave->state = BOND_STATE_ACTIVE;
1720
1721 /* In trunking mode there is little meaning to curr_active_slave
1722 * anyway (it holds no special properties of the bond device),
1723 * so we can change it without calling change_active_interface()
1724 */
1725 if (!bond->curr_active_slave) {
1726 bond->curr_active_slave = new_slave;
1727 }
1728 break;
1729 } /* switch(bond_mode) */
1730
1731 write_unlock_bh(&bond->curr_slave_lock);
1732
1733 bond_set_carrier(bond);
1734
1735 read_unlock(&bond->lock);
1736
1737 res = bond_create_slave_symlinks(bond_dev, slave_dev);
1738 if (res)
1739 goto err_close;
1740
1741 printk(KERN_INFO DRV_NAME
1742 ": %s: enslaving %s as a%s interface with a%s link.\n",
1743 bond_dev->name, slave_dev->name,
1744 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1745 new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1746
1747 /* enslave is successful */
1748 return 0;
1749
1750 /* Undo stages on error */
1751 err_close:
1752 dev_close(slave_dev);
1753
1754 err_unset_master:
1755 netdev_set_master(slave_dev, NULL);
1756
1757 err_restore_mac:
1758 if (!bond->params.fail_over_mac) {
1759 /* XXX TODO - fom follow mode needs to change master's
1760 * MAC if this slave's MAC is in use by the bond, or at
1761 * least print a warning.
1762 */
1763 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1764 addr.sa_family = slave_dev->type;
1765 dev_set_mac_address(slave_dev, &addr);
1766 }
1767
1768 err_free:
1769 kfree(new_slave);
1770
1771 err_undo_flags:
1772 bond_dev->features = old_features;
1773
1774 return res;
1775 }
1776
1777 /*
1778 * Try to release the slave device <slave> from the bond device <master>
1779 * It is legal to access curr_active_slave without a lock because all the function
1780 * is write-locked.
1781 *
1782 * The rules for slave state should be:
1783 * for Active/Backup:
1784 * Active stays on all backups go down
1785 * for Bonded connections:
1786 * The first up interface should be left on and all others downed.
1787 */
1788 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1789 {
1790 struct bonding *bond = bond_dev->priv;
1791 struct slave *slave, *oldcurrent;
1792 struct sockaddr addr;
1793 int mac_addr_differ;
1794 DECLARE_MAC_BUF(mac);
1795
1796 /* slave is not a slave or master is not master of this slave */
1797 if (!(slave_dev->flags & IFF_SLAVE) ||
1798 (slave_dev->master != bond_dev)) {
1799 printk(KERN_ERR DRV_NAME
1800 ": %s: Error: cannot release %s.\n",
1801 bond_dev->name, slave_dev->name);
1802 return -EINVAL;
1803 }
1804
1805 write_lock_bh(&bond->lock);
1806
1807 slave = bond_get_slave_by_dev(bond, slave_dev);
1808 if (!slave) {
1809 /* not a slave of this bond */
1810 printk(KERN_INFO DRV_NAME
1811 ": %s: %s not enslaved\n",
1812 bond_dev->name, slave_dev->name);
1813 write_unlock_bh(&bond->lock);
1814 return -EINVAL;
1815 }
1816
1817 if (!bond->params.fail_over_mac) {
1818 mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr,
1819 ETH_ALEN);
1820 if (!mac_addr_differ && (bond->slave_cnt > 1))
1821 printk(KERN_WARNING DRV_NAME
1822 ": %s: Warning: the permanent HWaddr of %s - "
1823 "%s - is still in use by %s. "
1824 "Set the HWaddr of %s to a different address "
1825 "to avoid conflicts.\n",
1826 bond_dev->name, slave_dev->name,
1827 print_mac(mac, slave->perm_hwaddr),
1828 bond_dev->name, slave_dev->name);
1829 }
1830
1831 /* Inform AD package of unbinding of slave. */
1832 if (bond->params.mode == BOND_MODE_8023AD) {
1833 /* must be called before the slave is
1834 * detached from the list
1835 */
1836 bond_3ad_unbind_slave(slave);
1837 }
1838
1839 printk(KERN_INFO DRV_NAME
1840 ": %s: releasing %s interface %s\n",
1841 bond_dev->name,
1842 (slave->state == BOND_STATE_ACTIVE)
1843 ? "active" : "backup",
1844 slave_dev->name);
1845
1846 oldcurrent = bond->curr_active_slave;
1847
1848 bond->current_arp_slave = NULL;
1849
1850 /* release the slave from its bond */
1851 bond_detach_slave(bond, slave);
1852
1853 bond_compute_features(bond);
1854
1855 if (bond->primary_slave == slave) {
1856 bond->primary_slave = NULL;
1857 }
1858
1859 if (oldcurrent == slave) {
1860 bond_change_active_slave(bond, NULL);
1861 }
1862
1863 if ((bond->params.mode == BOND_MODE_TLB) ||
1864 (bond->params.mode == BOND_MODE_ALB)) {
1865 /* Must be called only after the slave has been
1866 * detached from the list and the curr_active_slave
1867 * has been cleared (if our_slave == old_current),
1868 * but before a new active slave is selected.
1869 */
1870 write_unlock_bh(&bond->lock);
1871 bond_alb_deinit_slave(bond, slave);
1872 write_lock_bh(&bond->lock);
1873 }
1874
1875 if (oldcurrent == slave) {
1876 /*
1877 * Note that we hold RTNL over this sequence, so there
1878 * is no concern that another slave add/remove event
1879 * will interfere.
1880 */
1881 write_unlock_bh(&bond->lock);
1882 read_lock(&bond->lock);
1883 write_lock_bh(&bond->curr_slave_lock);
1884
1885 bond_select_active_slave(bond);
1886
1887 write_unlock_bh(&bond->curr_slave_lock);
1888 read_unlock(&bond->lock);
1889 write_lock_bh(&bond->lock);
1890 }
1891
1892 if (bond->slave_cnt == 0) {
1893 bond_set_carrier(bond);
1894
1895 /* if the last slave was removed, zero the mac address
1896 * of the master so it will be set by the application
1897 * to the mac address of the first slave
1898 */
1899 memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1900
1901 if (list_empty(&bond->vlan_list)) {
1902 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1903 } else {
1904 printk(KERN_WARNING DRV_NAME
1905 ": %s: Warning: clearing HW address of %s while it "
1906 "still has VLANs.\n",
1907 bond_dev->name, bond_dev->name);
1908 printk(KERN_WARNING DRV_NAME
1909 ": %s: When re-adding slaves, make sure the bond's "
1910 "HW address matches its VLANs'.\n",
1911 bond_dev->name);
1912 }
1913 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1914 !bond_has_challenged_slaves(bond)) {
1915 printk(KERN_INFO DRV_NAME
1916 ": %s: last VLAN challenged slave %s "
1917 "left bond %s. VLAN blocking is removed\n",
1918 bond_dev->name, slave_dev->name, bond_dev->name);
1919 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1920 }
1921
1922 write_unlock_bh(&bond->lock);
1923
1924 /* must do this from outside any spinlocks */
1925 bond_destroy_slave_symlinks(bond_dev, slave_dev);
1926
1927 bond_del_vlans_from_slave(bond, slave_dev);
1928
1929 /* If the mode USES_PRIMARY, then we should only remove its
1930 * promisc and mc settings if it was the curr_active_slave, but that was
1931 * already taken care of above when we detached the slave
1932 */
1933 if (!USES_PRIMARY(bond->params.mode)) {
1934 /* unset promiscuity level from slave */
1935 if (bond_dev->flags & IFF_PROMISC) {
1936 dev_set_promiscuity(slave_dev, -1);
1937 }
1938
1939 /* unset allmulti level from slave */
1940 if (bond_dev->flags & IFF_ALLMULTI) {
1941 dev_set_allmulti(slave_dev, -1);
1942 }
1943
1944 /* flush master's mc_list from slave */
1945 netif_addr_lock_bh(bond_dev);
1946 bond_mc_list_flush(bond_dev, slave_dev);
1947 netif_addr_unlock_bh(bond_dev);
1948 }
1949
1950 netdev_set_master(slave_dev, NULL);
1951
1952 /* close slave before restoring its mac address */
1953 dev_close(slave_dev);
1954
1955 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1956 /* restore original ("permanent") mac address */
1957 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1958 addr.sa_family = slave_dev->type;
1959 dev_set_mac_address(slave_dev, &addr);
1960 }
1961
1962 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1963 IFF_SLAVE_INACTIVE | IFF_BONDING |
1964 IFF_SLAVE_NEEDARP);
1965
1966 kfree(slave);
1967
1968 return 0; /* deletion OK */
1969 }
1970
1971 /*
1972 * Destroy a bonding device.
1973 * Must be under rtnl_lock when this function is called.
1974 */
1975 void bond_destroy(struct bonding *bond)
1976 {
1977 bond_deinit(bond->dev);
1978 bond_destroy_sysfs_entry(bond);
1979 unregister_netdevice(bond->dev);
1980 }
1981
1982 static void bond_destructor(struct net_device *bond_dev)
1983 {
1984 struct bonding *bond = bond_dev->priv;
1985
1986 if (bond->wq)
1987 destroy_workqueue(bond->wq);
1988
1989 netif_addr_lock_bh(bond_dev);
1990 bond_mc_list_destroy(bond);
1991 netif_addr_unlock_bh(bond_dev);
1992
1993 free_netdev(bond_dev);
1994 }
1995
1996 /*
1997 * First release a slave and than destroy the bond if no more slaves iare left.
1998 * Must be under rtnl_lock when this function is called.
1999 */
2000 int bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev)
2001 {
2002 struct bonding *bond = bond_dev->priv;
2003 int ret;
2004
2005 ret = bond_release(bond_dev, slave_dev);
2006 if ((ret == 0) && (bond->slave_cnt == 0)) {
2007 printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n",
2008 bond_dev->name, bond_dev->name);
2009 bond_destroy(bond);
2010 }
2011 return ret;
2012 }
2013
2014 /*
2015 * This function releases all slaves.
2016 */
2017 static int bond_release_all(struct net_device *bond_dev)
2018 {
2019 struct bonding *bond = bond_dev->priv;
2020 struct slave *slave;
2021 struct net_device *slave_dev;
2022 struct sockaddr addr;
2023
2024 write_lock_bh(&bond->lock);
2025
2026 netif_carrier_off(bond_dev);
2027
2028 if (bond->slave_cnt == 0) {
2029 goto out;
2030 }
2031
2032 bond->current_arp_slave = NULL;
2033 bond->primary_slave = NULL;
2034 bond_change_active_slave(bond, NULL);
2035
2036 while ((slave = bond->first_slave) != NULL) {
2037 /* Inform AD package of unbinding of slave
2038 * before slave is detached from the list.
2039 */
2040 if (bond->params.mode == BOND_MODE_8023AD) {
2041 bond_3ad_unbind_slave(slave);
2042 }
2043
2044 slave_dev = slave->dev;
2045 bond_detach_slave(bond, slave);
2046
2047 /* now that the slave is detached, unlock and perform
2048 * all the undo steps that should not be called from
2049 * within a lock.
2050 */
2051 write_unlock_bh(&bond->lock);
2052
2053 if ((bond->params.mode == BOND_MODE_TLB) ||
2054 (bond->params.mode == BOND_MODE_ALB)) {
2055 /* must be called only after the slave
2056 * has been detached from the list
2057 */
2058 bond_alb_deinit_slave(bond, slave);
2059 }
2060
2061 bond_compute_features(bond);
2062
2063 bond_destroy_slave_symlinks(bond_dev, slave_dev);
2064 bond_del_vlans_from_slave(bond, slave_dev);
2065
2066 /* If the mode USES_PRIMARY, then we should only remove its
2067 * promisc and mc settings if it was the curr_active_slave, but that was
2068 * already taken care of above when we detached the slave
2069 */
2070 if (!USES_PRIMARY(bond->params.mode)) {
2071 /* unset promiscuity level from slave */
2072 if (bond_dev->flags & IFF_PROMISC) {
2073 dev_set_promiscuity(slave_dev, -1);
2074 }
2075
2076 /* unset allmulti level from slave */
2077 if (bond_dev->flags & IFF_ALLMULTI) {
2078 dev_set_allmulti(slave_dev, -1);
2079 }
2080
2081 /* flush master's mc_list from slave */
2082 netif_addr_lock_bh(bond_dev);
2083 bond_mc_list_flush(bond_dev, slave_dev);
2084 netif_addr_unlock_bh(bond_dev);
2085 }
2086
2087 netdev_set_master(slave_dev, NULL);
2088
2089 /* close slave before restoring its mac address */
2090 dev_close(slave_dev);
2091
2092 if (!bond->params.fail_over_mac) {
2093 /* restore original ("permanent") mac address*/
2094 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
2095 addr.sa_family = slave_dev->type;
2096 dev_set_mac_address(slave_dev, &addr);
2097 }
2098
2099 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
2100 IFF_SLAVE_INACTIVE);
2101
2102 kfree(slave);
2103
2104 /* re-acquire the lock before getting the next slave */
2105 write_lock_bh(&bond->lock);
2106 }
2107
2108 /* zero the mac address of the master so it will be
2109 * set by the application to the mac address of the
2110 * first slave
2111 */
2112 memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
2113
2114 if (list_empty(&bond->vlan_list)) {
2115 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
2116 } else {
2117 printk(KERN_WARNING DRV_NAME
2118 ": %s: Warning: clearing HW address of %s while it "
2119 "still has VLANs.\n",
2120 bond_dev->name, bond_dev->name);
2121 printk(KERN_WARNING DRV_NAME
2122 ": %s: When re-adding slaves, make sure the bond's "
2123 "HW address matches its VLANs'.\n",
2124 bond_dev->name);
2125 }
2126
2127 printk(KERN_INFO DRV_NAME
2128 ": %s: released all slaves\n",
2129 bond_dev->name);
2130
2131 out:
2132 write_unlock_bh(&bond->lock);
2133
2134 return 0;
2135 }
2136
2137 /*
2138 * This function changes the active slave to slave <slave_dev>.
2139 * It returns -EINVAL in the following cases.
2140 * - <slave_dev> is not found in the list.
2141 * - There is not active slave now.
2142 * - <slave_dev> is already active.
2143 * - The link state of <slave_dev> is not BOND_LINK_UP.
2144 * - <slave_dev> is not running.
2145 * In these cases, this fuction does nothing.
2146 * In the other cases, currnt_slave pointer is changed and 0 is returned.
2147 */
2148 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
2149 {
2150 struct bonding *bond = bond_dev->priv;
2151 struct slave *old_active = NULL;
2152 struct slave *new_active = NULL;
2153 int res = 0;
2154
2155 if (!USES_PRIMARY(bond->params.mode)) {
2156 return -EINVAL;
2157 }
2158
2159 /* Verify that master_dev is indeed the master of slave_dev */
2160 if (!(slave_dev->flags & IFF_SLAVE) ||
2161 (slave_dev->master != bond_dev)) {
2162 return -EINVAL;
2163 }
2164
2165 read_lock(&bond->lock);
2166
2167 read_lock(&bond->curr_slave_lock);
2168 old_active = bond->curr_active_slave;
2169 read_unlock(&bond->curr_slave_lock);
2170
2171 new_active = bond_get_slave_by_dev(bond, slave_dev);
2172
2173 /*
2174 * Changing to the current active: do nothing; return success.
2175 */
2176 if (new_active && (new_active == old_active)) {
2177 read_unlock(&bond->lock);
2178 return 0;
2179 }
2180
2181 if ((new_active) &&
2182 (old_active) &&
2183 (new_active->link == BOND_LINK_UP) &&
2184 IS_UP(new_active->dev)) {
2185 write_lock_bh(&bond->curr_slave_lock);
2186 bond_change_active_slave(bond, new_active);
2187 write_unlock_bh(&bond->curr_slave_lock);
2188 } else {
2189 res = -EINVAL;
2190 }
2191
2192 read_unlock(&bond->lock);
2193
2194 return res;
2195 }
2196
2197 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
2198 {
2199 struct bonding *bond = bond_dev->priv;
2200
2201 info->bond_mode = bond->params.mode;
2202 info->miimon = bond->params.miimon;
2203
2204 read_lock(&bond->lock);
2205 info->num_slaves = bond->slave_cnt;
2206 read_unlock(&bond->lock);
2207
2208 return 0;
2209 }
2210
2211 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
2212 {
2213 struct bonding *bond = bond_dev->priv;
2214 struct slave *slave;
2215 int i, found = 0;
2216
2217 if (info->slave_id < 0) {
2218 return -ENODEV;
2219 }
2220
2221 read_lock(&bond->lock);
2222
2223 bond_for_each_slave(bond, slave, i) {
2224 if (i == (int)info->slave_id) {
2225 found = 1;
2226 break;
2227 }
2228 }
2229
2230 read_unlock(&bond->lock);
2231
2232 if (found) {
2233 strcpy(info->slave_name, slave->dev->name);
2234 info->link = slave->link;
2235 info->state = slave->state;
2236 info->link_failure_count = slave->link_failure_count;
2237 } else {
2238 return -ENODEV;
2239 }
2240
2241 return 0;
2242 }
2243
2244 /*-------------------------------- Monitoring -------------------------------*/
2245
2246
2247 static int bond_miimon_inspect(struct bonding *bond)
2248 {
2249 struct slave *slave;
2250 int i, link_state, commit = 0;
2251
2252 bond_for_each_slave(bond, slave, i) {
2253 slave->new_link = BOND_LINK_NOCHANGE;
2254
2255 link_state = bond_check_dev_link(bond, slave->dev, 0);
2256
2257 switch (slave->link) {
2258 case BOND_LINK_UP:
2259 if (link_state)
2260 continue;
2261
2262 slave->link = BOND_LINK_FAIL;
2263 slave->delay = bond->params.downdelay;
2264 if (slave->delay) {
2265 printk(KERN_INFO DRV_NAME
2266 ": %s: link status down for %s"
2267 "interface %s, disabling it in %d ms.\n",
2268 bond->dev->name,
2269 (bond->params.mode ==
2270 BOND_MODE_ACTIVEBACKUP) ?
2271 ((slave->state == BOND_STATE_ACTIVE) ?
2272 "active " : "backup ") : "",
2273 slave->dev->name,
2274 bond->params.downdelay * bond->params.miimon);
2275 }
2276 /*FALLTHRU*/
2277 case BOND_LINK_FAIL:
2278 if (link_state) {
2279 /*
2280 * recovered before downdelay expired
2281 */
2282 slave->link = BOND_LINK_UP;
2283 slave->jiffies = jiffies;
2284 printk(KERN_INFO DRV_NAME
2285 ": %s: link status up again after %d "
2286 "ms for interface %s.\n",
2287 bond->dev->name,
2288 (bond->params.downdelay - slave->delay) *
2289 bond->params.miimon,
2290 slave->dev->name);
2291 continue;
2292 }
2293
2294 if (slave->delay <= 0) {
2295 slave->new_link = BOND_LINK_DOWN;
2296 commit++;
2297 continue;
2298 }
2299
2300 slave->delay--;
2301 break;
2302
2303 case BOND_LINK_DOWN:
2304 if (!link_state)
2305 continue;
2306
2307 slave->link = BOND_LINK_BACK;
2308 slave->delay = bond->params.updelay;
2309
2310 if (slave->delay) {
2311 printk(KERN_INFO DRV_NAME
2312 ": %s: link status up for "
2313 "interface %s, enabling it in %d ms.\n",
2314 bond->dev->name, slave->dev->name,
2315 bond->params.updelay *
2316 bond->params.miimon);
2317 }
2318 /*FALLTHRU*/
2319 case BOND_LINK_BACK:
2320 if (!link_state) {
2321 slave->link = BOND_LINK_DOWN;
2322 printk(KERN_INFO DRV_NAME
2323 ": %s: link status down again after %d "
2324 "ms for interface %s.\n",
2325 bond->dev->name,
2326 (bond->params.updelay - slave->delay) *
2327 bond->params.miimon,
2328 slave->dev->name);
2329
2330 continue;
2331 }
2332
2333 if (slave->delay <= 0) {
2334 slave->new_link = BOND_LINK_UP;
2335 commit++;
2336 continue;
2337 }
2338
2339 slave->delay--;
2340 break;
2341 }
2342 }
2343
2344 return commit;
2345 }
2346
2347 static void bond_miimon_commit(struct bonding *bond)
2348 {
2349 struct slave *slave;
2350 int i;
2351
2352 bond_for_each_slave(bond, slave, i) {
2353 switch (slave->new_link) {
2354 case BOND_LINK_NOCHANGE:
2355 continue;
2356
2357 case BOND_LINK_UP:
2358 slave->link = BOND_LINK_UP;
2359 slave->jiffies = jiffies;
2360
2361 if (bond->params.mode == BOND_MODE_8023AD) {
2362 /* prevent it from being the active one */
2363 slave->state = BOND_STATE_BACKUP;
2364 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2365 /* make it immediately active */
2366 slave->state = BOND_STATE_ACTIVE;
2367 } else if (slave != bond->primary_slave) {
2368 /* prevent it from being the active one */
2369 slave->state = BOND_STATE_BACKUP;
2370 }
2371
2372 printk(KERN_INFO DRV_NAME
2373 ": %s: link status definitely "
2374 "up for interface %s.\n",
2375 bond->dev->name, slave->dev->name);
2376
2377 /* notify ad that the link status has changed */
2378 if (bond->params.mode == BOND_MODE_8023AD)
2379 bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2380
2381 if ((bond->params.mode == BOND_MODE_TLB) ||
2382 (bond->params.mode == BOND_MODE_ALB))
2383 bond_alb_handle_link_change(bond, slave,
2384 BOND_LINK_UP);
2385
2386 if (!bond->curr_active_slave ||
2387 (slave == bond->primary_slave))
2388 goto do_failover;
2389
2390 continue;
2391
2392 case BOND_LINK_DOWN:
2393 if (slave->link_failure_count < UINT_MAX)
2394 slave->link_failure_count++;
2395
2396 slave->link = BOND_LINK_DOWN;
2397
2398 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP ||
2399 bond->params.mode == BOND_MODE_8023AD)
2400 bond_set_slave_inactive_flags(slave);
2401
2402 printk(KERN_INFO DRV_NAME
2403 ": %s: link status definitely down for "
2404 "interface %s, disabling it\n",
2405 bond->dev->name, slave->dev->name);
2406
2407 if (bond->params.mode == BOND_MODE_8023AD)
2408 bond_3ad_handle_link_change(slave,
2409 BOND_LINK_DOWN);
2410
2411 if (bond->params.mode == BOND_MODE_TLB ||
2412 bond->params.mode == BOND_MODE_ALB)
2413 bond_alb_handle_link_change(bond, slave,
2414 BOND_LINK_DOWN);
2415
2416 if (slave == bond->curr_active_slave)
2417 goto do_failover;
2418
2419 continue;
2420
2421 default:
2422 printk(KERN_ERR DRV_NAME
2423 ": %s: invalid new link %d on slave %s\n",
2424 bond->dev->name, slave->new_link,
2425 slave->dev->name);
2426 slave->new_link = BOND_LINK_NOCHANGE;
2427
2428 continue;
2429 }
2430
2431 do_failover:
2432 ASSERT_RTNL();
2433 write_lock_bh(&bond->curr_slave_lock);
2434 bond_select_active_slave(bond);
2435 write_unlock_bh(&bond->curr_slave_lock);
2436 }
2437
2438 bond_set_carrier(bond);
2439 }
2440
2441 /*
2442 * bond_mii_monitor
2443 *
2444 * Really a wrapper that splits the mii monitor into two phases: an
2445 * inspection, then (if inspection indicates something needs to be done)
2446 * an acquisition of appropriate locks followed by a commit phase to
2447 * implement whatever link state changes are indicated.
2448 */
2449 void bond_mii_monitor(struct work_struct *work)
2450 {
2451 struct bonding *bond = container_of(work, struct bonding,
2452 mii_work.work);
2453
2454 read_lock(&bond->lock);
2455 if (bond->kill_timers)
2456 goto out;
2457
2458 if (bond->slave_cnt == 0)
2459 goto re_arm;
2460
2461 if (bond->send_grat_arp) {
2462 read_lock(&bond->curr_slave_lock);
2463 bond_send_gratuitous_arp(bond);
2464 read_unlock(&bond->curr_slave_lock);
2465 }
2466
2467 if (bond_miimon_inspect(bond)) {
2468 read_unlock(&bond->lock);
2469 rtnl_lock();
2470 read_lock(&bond->lock);
2471
2472 bond_miimon_commit(bond);
2473
2474 read_unlock(&bond->lock);
2475 rtnl_unlock(); /* might sleep, hold no other locks */
2476 read_lock(&bond->lock);
2477 }
2478
2479 re_arm:
2480 if (bond->params.miimon)
2481 queue_delayed_work(bond->wq, &bond->mii_work,
2482 msecs_to_jiffies(bond->params.miimon));
2483 out:
2484 read_unlock(&bond->lock);
2485 }
2486
2487 static __be32 bond_glean_dev_ip(struct net_device *dev)
2488 {
2489 struct in_device *idev;
2490 struct in_ifaddr *ifa;
2491 __be32 addr = 0;
2492
2493 if (!dev)
2494 return 0;
2495
2496 rcu_read_lock();
2497 idev = __in_dev_get_rcu(dev);
2498 if (!idev)
2499 goto out;
2500
2501 ifa = idev->ifa_list;
2502 if (!ifa)
2503 goto out;
2504
2505 addr = ifa->ifa_local;
2506 out:
2507 rcu_read_unlock();
2508 return addr;
2509 }
2510
2511 static int bond_has_this_ip(struct bonding *bond, __be32 ip)
2512 {
2513 struct vlan_entry *vlan;
2514
2515 if (ip == bond->master_ip)
2516 return 1;
2517
2518 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2519 if (ip == vlan->vlan_ip)
2520 return 1;
2521 }
2522
2523 return 0;
2524 }
2525
2526 /*
2527 * We go to the (large) trouble of VLAN tagging ARP frames because
2528 * switches in VLAN mode (especially if ports are configured as
2529 * "native" to a VLAN) might not pass non-tagged frames.
2530 */
2531 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id)
2532 {
2533 struct sk_buff *skb;
2534
2535 dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2536 slave_dev->name, dest_ip, src_ip, vlan_id);
2537
2538 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2539 NULL, slave_dev->dev_addr, NULL);
2540
2541 if (!skb) {
2542 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2543 return;
2544 }
2545 if (vlan_id) {
2546 skb = vlan_put_tag(skb, vlan_id);
2547 if (!skb) {
2548 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2549 return;
2550 }
2551 }
2552 arp_xmit(skb);
2553 }
2554
2555
2556 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2557 {
2558 int i, vlan_id, rv;
2559 __be32 *targets = bond->params.arp_targets;
2560 struct vlan_entry *vlan;
2561 struct net_device *vlan_dev;
2562 struct flowi fl;
2563 struct rtable *rt;
2564
2565 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2566 if (!targets[i])
2567 continue;
2568 dprintk("basa: target %x\n", targets[i]);
2569 if (list_empty(&bond->vlan_list)) {
2570 dprintk("basa: empty vlan: arp_send\n");
2571 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2572 bond->master_ip, 0);
2573 continue;
2574 }
2575
2576 /*
2577 * If VLANs are configured, we do a route lookup to
2578 * determine which VLAN interface would be used, so we
2579 * can tag the ARP with the proper VLAN tag.
2580 */
2581 memset(&fl, 0, sizeof(fl));
2582 fl.fl4_dst = targets[i];
2583 fl.fl4_tos = RTO_ONLINK;
2584
2585 rv = ip_route_output_key(&init_net, &rt, &fl);
2586 if (rv) {
2587 if (net_ratelimit()) {
2588 printk(KERN_WARNING DRV_NAME
2589 ": %s: no route to arp_ip_target %u.%u.%u.%u\n",
2590 bond->dev->name, NIPQUAD(fl.fl4_dst));
2591 }
2592 continue;
2593 }
2594
2595 /*
2596 * This target is not on a VLAN
2597 */
2598 if (rt->u.dst.dev == bond->dev) {
2599 ip_rt_put(rt);
2600 dprintk("basa: rtdev == bond->dev: arp_send\n");
2601 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2602 bond->master_ip, 0);
2603 continue;
2604 }
2605
2606 vlan_id = 0;
2607 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2608 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2609 if (vlan_dev == rt->u.dst.dev) {
2610 vlan_id = vlan->vlan_id;
2611 dprintk("basa: vlan match on %s %d\n",
2612 vlan_dev->name, vlan_id);
2613 break;
2614 }
2615 }
2616
2617 if (vlan_id) {
2618 ip_rt_put(rt);
2619 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2620 vlan->vlan_ip, vlan_id);
2621 continue;
2622 }
2623
2624 if (net_ratelimit()) {
2625 printk(KERN_WARNING DRV_NAME
2626 ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n",
2627 bond->dev->name, NIPQUAD(fl.fl4_dst),
2628 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2629 }
2630 ip_rt_put(rt);
2631 }
2632 }
2633
2634 /*
2635 * Kick out a gratuitous ARP for an IP on the bonding master plus one
2636 * for each VLAN above us.
2637 *
2638 * Caller must hold curr_slave_lock for read or better
2639 */
2640 static void bond_send_gratuitous_arp(struct bonding *bond)
2641 {
2642 struct slave *slave = bond->curr_active_slave;
2643 struct vlan_entry *vlan;
2644 struct net_device *vlan_dev;
2645
2646 dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2647 slave ? slave->dev->name : "NULL");
2648
2649 if (!slave || !bond->send_grat_arp ||
2650 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state))
2651 return;
2652
2653 bond->send_grat_arp--;
2654
2655 if (bond->master_ip) {
2656 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2657 bond->master_ip, 0);
2658 }
2659
2660 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2661 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2662 if (vlan->vlan_ip) {
2663 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2664 vlan->vlan_ip, vlan->vlan_id);
2665 }
2666 }
2667 }
2668
2669 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip)
2670 {
2671 int i;
2672 __be32 *targets = bond->params.arp_targets;
2673
2674 targets = bond->params.arp_targets;
2675 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2676 dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] "
2677 "%u.%u.%u.%u bhti(tip) %d\n",
2678 NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]),
2679 bond_has_this_ip(bond, tip));
2680 if (sip == targets[i]) {
2681 if (bond_has_this_ip(bond, tip))
2682 slave->last_arp_rx = jiffies;
2683 return;
2684 }
2685 }
2686 }
2687
2688 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
2689 {
2690 struct arphdr *arp;
2691 struct slave *slave;
2692 struct bonding *bond;
2693 unsigned char *arp_ptr;
2694 __be32 sip, tip;
2695
2696 if (dev_net(dev) != &init_net)
2697 goto out;
2698
2699 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER))
2700 goto out;
2701
2702 bond = dev->priv;
2703 read_lock(&bond->lock);
2704
2705 dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n",
2706 bond->dev->name, skb->dev ? skb->dev->name : "NULL",
2707 orig_dev ? orig_dev->name : "NULL");
2708
2709 slave = bond_get_slave_by_dev(bond, orig_dev);
2710 if (!slave || !slave_do_arp_validate(bond, slave))
2711 goto out_unlock;
2712
2713 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
2714 goto out_unlock;
2715
2716 arp = arp_hdr(skb);
2717 if (arp->ar_hln != dev->addr_len ||
2718 skb->pkt_type == PACKET_OTHERHOST ||
2719 skb->pkt_type == PACKET_LOOPBACK ||
2720 arp->ar_hrd != htons(ARPHRD_ETHER) ||
2721 arp->ar_pro != htons(ETH_P_IP) ||
2722 arp->ar_pln != 4)
2723 goto out_unlock;
2724
2725 arp_ptr = (unsigned char *)(arp + 1);
2726 arp_ptr += dev->addr_len;
2727 memcpy(&sip, arp_ptr, 4);
2728 arp_ptr += 4 + dev->addr_len;
2729 memcpy(&tip, arp_ptr, 4);
2730
2731 dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u"
2732 " tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name,
2733 slave->state, bond->params.arp_validate,
2734 slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip));
2735
2736 /*
2737 * Backup slaves won't see the ARP reply, but do come through
2738 * here for each ARP probe (so we swap the sip/tip to validate
2739 * the probe). In a "redundant switch, common router" type of
2740 * configuration, the ARP probe will (hopefully) travel from
2741 * the active, through one switch, the router, then the other
2742 * switch before reaching the backup.
2743 */
2744 if (slave->state == BOND_STATE_ACTIVE)
2745 bond_validate_arp(bond, slave, sip, tip);
2746 else
2747 bond_validate_arp(bond, slave, tip, sip);
2748
2749 out_unlock:
2750 read_unlock(&bond->lock);
2751 out:
2752 dev_kfree_skb(skb);
2753 return NET_RX_SUCCESS;
2754 }
2755
2756 /*
2757 * this function is called regularly to monitor each slave's link
2758 * ensuring that traffic is being sent and received when arp monitoring
2759 * is used in load-balancing mode. if the adapter has been dormant, then an
2760 * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2761 * arp monitoring in active backup mode.
2762 */
2763 void bond_loadbalance_arp_mon(struct work_struct *work)
2764 {
2765 struct bonding *bond = container_of(work, struct bonding,
2766 arp_work.work);
2767 struct slave *slave, *oldcurrent;
2768 int do_failover = 0;
2769 int delta_in_ticks;
2770 int i;
2771
2772 read_lock(&bond->lock);
2773
2774 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
2775
2776 if (bond->kill_timers) {
2777 goto out;
2778 }
2779
2780 if (bond->slave_cnt == 0) {
2781 goto re_arm;
2782 }
2783
2784 read_lock(&bond->curr_slave_lock);
2785 oldcurrent = bond->curr_active_slave;
2786 read_unlock(&bond->curr_slave_lock);
2787
2788 /* see if any of the previous devices are up now (i.e. they have
2789 * xmt and rcv traffic). the curr_active_slave does not come into
2790 * the picture unless it is null. also, slave->jiffies is not needed
2791 * here because we send an arp on each slave and give a slave as
2792 * long as it needs to get the tx/rx within the delta.
2793 * TODO: what about up/down delay in arp mode? it wasn't here before
2794 * so it can wait
2795 */
2796 bond_for_each_slave(bond, slave, i) {
2797 if (slave->link != BOND_LINK_UP) {
2798 if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) &&
2799 time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) {
2800
2801 slave->link = BOND_LINK_UP;
2802 slave->state = BOND_STATE_ACTIVE;
2803
2804 /* primary_slave has no meaning in round-robin
2805 * mode. the window of a slave being up and
2806 * curr_active_slave being null after enslaving
2807 * is closed.
2808 */
2809 if (!oldcurrent) {
2810 printk(KERN_INFO DRV_NAME
2811 ": %s: link status definitely "
2812 "up for interface %s, ",
2813 bond->dev->name,
2814 slave->dev->name);
2815 do_failover = 1;
2816 } else {
2817 printk(KERN_INFO DRV_NAME
2818 ": %s: interface %s is now up\n",
2819 bond->dev->name,
2820 slave->dev->name);
2821 }
2822 }
2823 } else {
2824 /* slave->link == BOND_LINK_UP */
2825
2826 /* not all switches will respond to an arp request
2827 * when the source ip is 0, so don't take the link down
2828 * if we don't know our ip yet
2829 */
2830 if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) ||
2831 (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) {
2832
2833 slave->link = BOND_LINK_DOWN;
2834 slave->state = BOND_STATE_BACKUP;
2835
2836 if (slave->link_failure_count < UINT_MAX) {
2837 slave->link_failure_count++;
2838 }
2839
2840 printk(KERN_INFO DRV_NAME
2841 ": %s: interface %s is now down.\n",
2842 bond->dev->name,
2843 slave->dev->name);
2844
2845 if (slave == oldcurrent) {
2846 do_failover = 1;
2847 }
2848 }
2849 }
2850
2851 /* note: if switch is in round-robin mode, all links
2852 * must tx arp to ensure all links rx an arp - otherwise
2853 * links may oscillate or not come up at all; if switch is
2854 * in something like xor mode, there is nothing we can
2855 * do - all replies will be rx'ed on same link causing slaves
2856 * to be unstable during low/no traffic periods
2857 */
2858 if (IS_UP(slave->dev)) {
2859 bond_arp_send_all(bond, slave);
2860 }
2861 }
2862
2863 if (do_failover) {
2864 write_lock_bh(&bond->curr_slave_lock);
2865
2866 bond_select_active_slave(bond);
2867
2868 write_unlock_bh(&bond->curr_slave_lock);
2869 }
2870
2871 re_arm:
2872 if (bond->params.arp_interval)
2873 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
2874 out:
2875 read_unlock(&bond->lock);
2876 }
2877
2878 /*
2879 * Called to inspect slaves for active-backup mode ARP monitor link state
2880 * changes. Sets new_link in slaves to specify what action should take
2881 * place for the slave. Returns 0 if no changes are found, >0 if changes
2882 * to link states must be committed.
2883 *
2884 * Called with bond->lock held for read.
2885 */
2886 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks)
2887 {
2888 struct slave *slave;
2889 int i, commit = 0;
2890
2891 bond_for_each_slave(bond, slave, i) {
2892 slave->new_link = BOND_LINK_NOCHANGE;
2893
2894 if (slave->link != BOND_LINK_UP) {
2895 if (time_before_eq(jiffies, slave_last_rx(bond, slave) +
2896 delta_in_ticks)) {
2897 slave->new_link = BOND_LINK_UP;
2898 commit++;
2899 }
2900
2901 continue;
2902 }
2903
2904 /*
2905 * Give slaves 2*delta after being enslaved or made
2906 * active. This avoids bouncing, as the last receive
2907 * times need a full ARP monitor cycle to be updated.
2908 */
2909 if (!time_after_eq(jiffies, slave->jiffies +
2910 2 * delta_in_ticks))
2911 continue;
2912
2913 /*
2914 * Backup slave is down if:
2915 * - No current_arp_slave AND
2916 * - more than 3*delta since last receive AND
2917 * - the bond has an IP address
2918 *
2919 * Note: a non-null current_arp_slave indicates
2920 * the curr_active_slave went down and we are
2921 * searching for a new one; under this condition
2922 * we only take the curr_active_slave down - this
2923 * gives each slave a chance to tx/rx traffic
2924 * before being taken out
2925 */
2926 if (slave->state == BOND_STATE_BACKUP &&
2927 !bond->current_arp_slave &&
2928 time_after(jiffies, slave_last_rx(bond, slave) +
2929 3 * delta_in_ticks)) {
2930 slave->new_link = BOND_LINK_DOWN;
2931 commit++;
2932 }
2933
2934 /*
2935 * Active slave is down if:
2936 * - more than 2*delta since transmitting OR
2937 * - (more than 2*delta since receive AND
2938 * the bond has an IP address)
2939 */
2940 if ((slave->state == BOND_STATE_ACTIVE) &&
2941 (time_after_eq(jiffies, slave->dev->trans_start +
2942 2 * delta_in_ticks) ||
2943 (time_after_eq(jiffies, slave_last_rx(bond, slave)
2944 + 2 * delta_in_ticks)))) {
2945 slave->new_link = BOND_LINK_DOWN;
2946 commit++;
2947 }
2948 }
2949
2950 read_lock(&bond->curr_slave_lock);
2951
2952 /*
2953 * Trigger a commit if the primary option setting has changed.
2954 */
2955 if (bond->primary_slave &&
2956 (bond->primary_slave != bond->curr_active_slave) &&
2957 (bond->primary_slave->link == BOND_LINK_UP))
2958 commit++;
2959
2960 read_unlock(&bond->curr_slave_lock);
2961
2962 return commit;
2963 }
2964
2965 /*
2966 * Called to commit link state changes noted by inspection step of
2967 * active-backup mode ARP monitor.
2968 *
2969 * Called with RTNL and bond->lock for read.
2970 */
2971 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks)
2972 {
2973 struct slave *slave;
2974 int i;
2975
2976 bond_for_each_slave(bond, slave, i) {
2977 switch (slave->new_link) {
2978 case BOND_LINK_NOCHANGE:
2979 continue;
2980
2981 case BOND_LINK_UP:
2982 write_lock_bh(&bond->curr_slave_lock);
2983
2984 if (!bond->curr_active_slave &&
2985 time_before_eq(jiffies, slave->dev->trans_start +
2986 delta_in_ticks)) {
2987 slave->link = BOND_LINK_UP;
2988 bond_change_active_slave(bond, slave);
2989 bond->current_arp_slave = NULL;
2990
2991 printk(KERN_INFO DRV_NAME
2992 ": %s: %s is up and now the "
2993 "active interface\n",
2994 bond->dev->name, slave->dev->name);
2995
2996 } else if (bond->curr_active_slave != slave) {
2997 /* this slave has just come up but we
2998 * already have a current slave; this can
2999 * also happen if bond_enslave adds a new
3000 * slave that is up while we are searching
3001 * for a new slave
3002 */
3003 slave->link = BOND_LINK_UP;
3004 bond_set_slave_inactive_flags(slave);
3005 bond->current_arp_slave = NULL;
3006
3007 printk(KERN_INFO DRV_NAME
3008 ": %s: backup interface %s is now up\n",
3009 bond->dev->name, slave->dev->name);
3010 }
3011
3012 write_unlock_bh(&bond->curr_slave_lock);
3013
3014 break;
3015
3016 case BOND_LINK_DOWN:
3017 if (slave->link_failure_count < UINT_MAX)
3018 slave->link_failure_count++;
3019
3020 slave->link = BOND_LINK_DOWN;
3021
3022 if (slave == bond->curr_active_slave) {
3023 printk(KERN_INFO DRV_NAME
3024 ": %s: link status down for active "
3025 "interface %s, disabling it\n",
3026 bond->dev->name, slave->dev->name);
3027
3028 bond_set_slave_inactive_flags(slave);
3029
3030 write_lock_bh(&bond->curr_slave_lock);
3031
3032 bond_select_active_slave(bond);
3033 if (bond->curr_active_slave)
3034 bond->curr_active_slave->jiffies =
3035 jiffies;
3036
3037 write_unlock_bh(&bond->curr_slave_lock);
3038
3039 bond->current_arp_slave = NULL;
3040
3041 } else if (slave->state == BOND_STATE_BACKUP) {
3042 printk(KERN_INFO DRV_NAME
3043 ": %s: backup interface %s is now down\n",
3044 bond->dev->name, slave->dev->name);
3045
3046 bond_set_slave_inactive_flags(slave);
3047 }
3048 break;
3049
3050 default:
3051 printk(KERN_ERR DRV_NAME
3052 ": %s: impossible: new_link %d on slave %s\n",
3053 bond->dev->name, slave->new_link,
3054 slave->dev->name);
3055 }
3056 }
3057
3058 /*
3059 * No race with changes to primary via sysfs, as we hold rtnl.
3060 */
3061 if (bond->primary_slave &&
3062 (bond->primary_slave != bond->curr_active_slave) &&
3063 (bond->primary_slave->link == BOND_LINK_UP)) {
3064 write_lock_bh(&bond->curr_slave_lock);
3065 bond_change_active_slave(bond, bond->primary_slave);
3066 write_unlock_bh(&bond->curr_slave_lock);
3067 }
3068
3069 bond_set_carrier(bond);
3070 }
3071
3072 /*
3073 * Send ARP probes for active-backup mode ARP monitor.
3074 *
3075 * Called with bond->lock held for read.
3076 */
3077 static void bond_ab_arp_probe(struct bonding *bond)
3078 {
3079 struct slave *slave;
3080 int i;
3081
3082 read_lock(&bond->curr_slave_lock);
3083
3084 if (bond->current_arp_slave && bond->curr_active_slave)
3085 printk("PROBE: c_arp %s && cas %s BAD\n",
3086 bond->current_arp_slave->dev->name,
3087 bond->curr_active_slave->dev->name);
3088
3089 if (bond->curr_active_slave) {
3090 bond_arp_send_all(bond, bond->curr_active_slave);
3091 read_unlock(&bond->curr_slave_lock);
3092 return;
3093 }
3094
3095 read_unlock(&bond->curr_slave_lock);
3096
3097 /* if we don't have a curr_active_slave, search for the next available
3098 * backup slave from the current_arp_slave and make it the candidate
3099 * for becoming the curr_active_slave
3100 */
3101
3102 if (!bond->current_arp_slave) {
3103 bond->current_arp_slave = bond->first_slave;
3104 if (!bond->current_arp_slave)
3105 return;
3106 }
3107
3108 bond_set_slave_inactive_flags(bond->current_arp_slave);
3109
3110 /* search for next candidate */
3111 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
3112 if (IS_UP(slave->dev)) {
3113 slave->link = BOND_LINK_BACK;
3114 bond_set_slave_active_flags(slave);
3115 bond_arp_send_all(bond, slave);
3116 slave->jiffies = jiffies;
3117 bond->current_arp_slave = slave;
3118 break;
3119 }
3120
3121 /* if the link state is up at this point, we
3122 * mark it down - this can happen if we have
3123 * simultaneous link failures and
3124 * reselect_active_interface doesn't make this
3125 * one the current slave so it is still marked
3126 * up when it is actually down
3127 */
3128 if (slave->link == BOND_LINK_UP) {
3129 slave->link = BOND_LINK_DOWN;
3130 if (slave->link_failure_count < UINT_MAX)
3131 slave->link_failure_count++;
3132
3133 bond_set_slave_inactive_flags(slave);
3134
3135 printk(KERN_INFO DRV_NAME
3136 ": %s: backup interface %s is now down.\n",
3137 bond->dev->name, slave->dev->name);
3138 }
3139 }
3140 }
3141
3142 void bond_activebackup_arp_mon(struct work_struct *work)
3143 {
3144 struct bonding *bond = container_of(work, struct bonding,
3145 arp_work.work);
3146 int delta_in_ticks;
3147
3148 read_lock(&bond->lock);
3149
3150 if (bond->kill_timers)
3151 goto out;
3152
3153 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
3154
3155 if (bond->slave_cnt == 0)
3156 goto re_arm;
3157
3158 if (bond->send_grat_arp) {
3159 read_lock(&bond->curr_slave_lock);
3160 bond_send_gratuitous_arp(bond);
3161 read_unlock(&bond->curr_slave_lock);
3162 }
3163
3164 if (bond_ab_arp_inspect(bond, delta_in_ticks)) {
3165 read_unlock(&bond->lock);
3166 rtnl_lock();
3167 read_lock(&bond->lock);
3168
3169 bond_ab_arp_commit(bond, delta_in_ticks);
3170
3171 read_unlock(&bond->lock);
3172 rtnl_unlock();
3173 read_lock(&bond->lock);
3174 }
3175
3176 bond_ab_arp_probe(bond);
3177
3178 re_arm:
3179 if (bond->params.arp_interval) {
3180 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
3181 }
3182 out:
3183 read_unlock(&bond->lock);
3184 }
3185
3186 /*------------------------------ proc/seq_file-------------------------------*/
3187
3188 #ifdef CONFIG_PROC_FS
3189
3190 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
3191 {
3192 struct bonding *bond = seq->private;
3193 loff_t off = 0;
3194 struct slave *slave;
3195 int i;
3196
3197 /* make sure the bond won't be taken away */
3198 read_lock(&dev_base_lock);
3199 read_lock(&bond->lock);
3200
3201 if (*pos == 0) {
3202 return SEQ_START_TOKEN;
3203 }
3204
3205 bond_for_each_slave(bond, slave, i) {
3206 if (++off == *pos) {
3207 return slave;
3208 }
3209 }
3210
3211 return NULL;
3212 }
3213
3214 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3215 {
3216 struct bonding *bond = seq->private;
3217 struct slave *slave = v;
3218
3219 ++*pos;
3220 if (v == SEQ_START_TOKEN) {
3221 return bond->first_slave;
3222 }
3223
3224 slave = slave->next;
3225
3226 return (slave == bond->first_slave) ? NULL : slave;
3227 }
3228
3229 static void bond_info_seq_stop(struct seq_file *seq, void *v)
3230 {
3231 struct bonding *bond = seq->private;
3232
3233 read_unlock(&bond->lock);
3234 read_unlock(&dev_base_lock);
3235 }
3236
3237 static void bond_info_show_master(struct seq_file *seq)
3238 {
3239 struct bonding *bond = seq->private;
3240 struct slave *curr;
3241 int i;
3242 u32 target;
3243
3244 read_lock(&bond->curr_slave_lock);
3245 curr = bond->curr_active_slave;
3246 read_unlock(&bond->curr_slave_lock);
3247
3248 seq_printf(seq, "Bonding Mode: %s",
3249 bond_mode_name(bond->params.mode));
3250
3251 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP &&
3252 bond->params.fail_over_mac)
3253 seq_printf(seq, " (fail_over_mac %s)",
3254 fail_over_mac_tbl[bond->params.fail_over_mac].modename);
3255
3256 seq_printf(seq, "\n");
3257
3258 if (bond->params.mode == BOND_MODE_XOR ||
3259 bond->params.mode == BOND_MODE_8023AD) {
3260 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
3261 xmit_hashtype_tbl[bond->params.xmit_policy].modename,
3262 bond->params.xmit_policy);
3263 }
3264
3265 if (USES_PRIMARY(bond->params.mode)) {
3266 seq_printf(seq, "Primary Slave: %s\n",
3267 (bond->primary_slave) ?
3268 bond->primary_slave->dev->name : "None");
3269
3270 seq_printf(seq, "Currently Active Slave: %s\n",
3271 (curr) ? curr->dev->name : "None");
3272 }
3273
3274 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
3275 "up" : "down");
3276 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
3277 seq_printf(seq, "Up Delay (ms): %d\n",
3278 bond->params.updelay * bond->params.miimon);
3279 seq_printf(seq, "Down Delay (ms): %d\n",
3280 bond->params.downdelay * bond->params.miimon);
3281
3282
3283 /* ARP information */
3284 if(bond->params.arp_interval > 0) {
3285 int printed=0;
3286 seq_printf(seq, "ARP Polling Interval (ms): %d\n",
3287 bond->params.arp_interval);
3288
3289 seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
3290
3291 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
3292 if (!bond->params.arp_targets[i])
3293 continue;
3294 if (printed)
3295 seq_printf(seq, ",");
3296 target = ntohl(bond->params.arp_targets[i]);
3297 seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target));
3298 printed = 1;
3299 }
3300 seq_printf(seq, "\n");
3301 }
3302
3303 if (bond->params.mode == BOND_MODE_8023AD) {
3304 struct ad_info ad_info;
3305 DECLARE_MAC_BUF(mac);
3306
3307 seq_puts(seq, "\n802.3ad info\n");
3308 seq_printf(seq, "LACP rate: %s\n",
3309 (bond->params.lacp_fast) ? "fast" : "slow");
3310
3311 if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
3312 seq_printf(seq, "bond %s has no active aggregator\n",
3313 bond->dev->name);
3314 } else {
3315 seq_printf(seq, "Active Aggregator Info:\n");
3316
3317 seq_printf(seq, "\tAggregator ID: %d\n",
3318 ad_info.aggregator_id);
3319 seq_printf(seq, "\tNumber of ports: %d\n",
3320 ad_info.ports);
3321 seq_printf(seq, "\tActor Key: %d\n",
3322 ad_info.actor_key);
3323 seq_printf(seq, "\tPartner Key: %d\n",
3324 ad_info.partner_key);
3325 seq_printf(seq, "\tPartner Mac Address: %s\n",
3326 print_mac(mac, ad_info.partner_system));
3327 }
3328 }
3329 }
3330
3331 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
3332 {
3333 struct bonding *bond = seq->private;
3334 DECLARE_MAC_BUF(mac);
3335
3336 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
3337 seq_printf(seq, "MII Status: %s\n",
3338 (slave->link == BOND_LINK_UP) ? "up" : "down");
3339 seq_printf(seq, "Link Failure Count: %u\n",
3340 slave->link_failure_count);
3341
3342 seq_printf(seq,
3343 "Permanent HW addr: %s\n",
3344 print_mac(mac, slave->perm_hwaddr));
3345
3346 if (bond->params.mode == BOND_MODE_8023AD) {
3347 const struct aggregator *agg
3348 = SLAVE_AD_INFO(slave).port.aggregator;
3349
3350 if (agg) {
3351 seq_printf(seq, "Aggregator ID: %d\n",
3352 agg->aggregator_identifier);
3353 } else {
3354 seq_puts(seq, "Aggregator ID: N/A\n");
3355 }
3356 }
3357 }
3358
3359 static int bond_info_seq_show(struct seq_file *seq, void *v)
3360 {
3361 if (v == SEQ_START_TOKEN) {
3362 seq_printf(seq, "%s\n", version);
3363 bond_info_show_master(seq);
3364 } else {
3365 bond_info_show_slave(seq, v);
3366 }
3367
3368 return 0;
3369 }
3370
3371 static struct seq_operations bond_info_seq_ops = {
3372 .start = bond_info_seq_start,
3373 .next = bond_info_seq_next,
3374 .stop = bond_info_seq_stop,
3375 .show = bond_info_seq_show,
3376 };
3377
3378 static int bond_info_open(struct inode *inode, struct file *file)
3379 {
3380 struct seq_file *seq;
3381 struct proc_dir_entry *proc;
3382 int res;
3383
3384 res = seq_open(file, &bond_info_seq_ops);
3385 if (!res) {
3386 /* recover the pointer buried in proc_dir_entry data */
3387 seq = file->private_data;
3388 proc = PDE(inode);
3389 seq->private = proc->data;
3390 }
3391
3392 return res;
3393 }
3394
3395 static const struct file_operations bond_info_fops = {
3396 .owner = THIS_MODULE,
3397 .open = bond_info_open,
3398 .read = seq_read,
3399 .llseek = seq_lseek,
3400 .release = seq_release,
3401 };
3402
3403 static int bond_create_proc_entry(struct bonding *bond)
3404 {
3405 struct net_device *bond_dev = bond->dev;
3406
3407 if (bond_proc_dir) {
3408 bond->proc_entry = proc_create_data(bond_dev->name,
3409 S_IRUGO, bond_proc_dir,
3410 &bond_info_fops, bond);
3411 if (bond->proc_entry == NULL) {
3412 printk(KERN_WARNING DRV_NAME
3413 ": Warning: Cannot create /proc/net/%s/%s\n",
3414 DRV_NAME, bond_dev->name);
3415 } else {
3416 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3417 }
3418 }
3419
3420 return 0;
3421 }
3422
3423 static void bond_remove_proc_entry(struct bonding *bond)
3424 {
3425 if (bond_proc_dir && bond->proc_entry) {
3426 remove_proc_entry(bond->proc_file_name, bond_proc_dir);
3427 memset(bond->proc_file_name, 0, IFNAMSIZ);
3428 bond->proc_entry = NULL;
3429 }
3430 }
3431
3432 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3433 * Caller must hold rtnl_lock.
3434 */
3435 static void bond_create_proc_dir(void)
3436 {
3437 int len = strlen(DRV_NAME);
3438
3439 for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir;
3440 bond_proc_dir = bond_proc_dir->next) {
3441 if ((bond_proc_dir->namelen == len) &&
3442 !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3443 break;
3444 }
3445 }
3446
3447 if (!bond_proc_dir) {
3448 bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net);
3449 if (bond_proc_dir) {
3450 bond_proc_dir->owner = THIS_MODULE;
3451 } else {
3452 printk(KERN_WARNING DRV_NAME
3453 ": Warning: cannot create /proc/net/%s\n",
3454 DRV_NAME);
3455 }
3456 }
3457 }
3458
3459 /* Destroy the bonding directory under /proc/net, if empty.
3460 * Caller must hold rtnl_lock.
3461 */
3462 static void bond_destroy_proc_dir(void)
3463 {
3464 struct proc_dir_entry *de;
3465
3466 if (!bond_proc_dir) {
3467 return;
3468 }
3469
3470 /* verify that the /proc dir is empty */
3471 for (de = bond_proc_dir->subdir; de; de = de->next) {
3472 /* ignore . and .. */
3473 if (*(de->name) != '.') {
3474 break;
3475 }
3476 }
3477
3478 if (de) {
3479 if (bond_proc_dir->owner == THIS_MODULE) {
3480 bond_proc_dir->owner = NULL;
3481 }
3482 } else {
3483 remove_proc_entry(DRV_NAME, init_net.proc_net);
3484 bond_proc_dir = NULL;
3485 }
3486 }
3487 #endif /* CONFIG_PROC_FS */
3488
3489 /*-------------------------- netdev event handling --------------------------*/
3490
3491 /*
3492 * Change device name
3493 */
3494 static int bond_event_changename(struct bonding *bond)
3495 {
3496 #ifdef CONFIG_PROC_FS
3497 bond_remove_proc_entry(bond);
3498 bond_create_proc_entry(bond);
3499 #endif
3500 down_write(&(bonding_rwsem));
3501 bond_destroy_sysfs_entry(bond);
3502 bond_create_sysfs_entry(bond);
3503 up_write(&(bonding_rwsem));
3504 return NOTIFY_DONE;
3505 }
3506
3507 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3508 {
3509 struct bonding *event_bond = bond_dev->priv;
3510
3511 switch (event) {
3512 case NETDEV_CHANGENAME:
3513 return bond_event_changename(event_bond);
3514 case NETDEV_UNREGISTER:
3515 bond_release_all(event_bond->dev);
3516 break;
3517 default:
3518 break;
3519 }
3520
3521 return NOTIFY_DONE;
3522 }
3523
3524 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3525 {
3526 struct net_device *bond_dev = slave_dev->master;
3527 struct bonding *bond = bond_dev->priv;
3528
3529 switch (event) {
3530 case NETDEV_UNREGISTER:
3531 if (bond_dev) {
3532 if (bond->setup_by_slave)
3533 bond_release_and_destroy(bond_dev, slave_dev);
3534 else
3535 bond_release(bond_dev, slave_dev);
3536 }
3537 break;
3538 case NETDEV_CHANGE:
3539 /*
3540 * TODO: is this what we get if somebody
3541 * sets up a hierarchical bond, then rmmod's
3542 * one of the slave bonding devices?
3543 */
3544 break;
3545 case NETDEV_DOWN:
3546 /*
3547 * ... Or is it this?
3548 */
3549 break;
3550 case NETDEV_CHANGEMTU:
3551 /*
3552 * TODO: Should slaves be allowed to
3553 * independently alter their MTU? For
3554 * an active-backup bond, slaves need
3555 * not be the same type of device, so
3556 * MTUs may vary. For other modes,
3557 * slaves arguably should have the
3558 * same MTUs. To do this, we'd need to
3559 * take over the slave's change_mtu
3560 * function for the duration of their
3561 * servitude.
3562 */
3563 break;
3564 case NETDEV_CHANGENAME:
3565 /*
3566 * TODO: handle changing the primary's name
3567 */
3568 break;
3569 case NETDEV_FEAT_CHANGE:
3570 bond_compute_features(bond);
3571 break;
3572 default:
3573 break;
3574 }
3575
3576 return NOTIFY_DONE;
3577 }
3578
3579 /*
3580 * bond_netdev_event: handle netdev notifier chain events.
3581 *
3582 * This function receives events for the netdev chain. The caller (an
3583 * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3584 * locks for us to safely manipulate the slave devices (RTNL lock,
3585 * dev_probe_lock).
3586 */
3587 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3588 {
3589 struct net_device *event_dev = (struct net_device *)ptr;
3590
3591 if (dev_net(event_dev) != &init_net)
3592 return NOTIFY_DONE;
3593
3594 dprintk("event_dev: %s, event: %lx\n",
3595 (event_dev ? event_dev->name : "None"),
3596 event);
3597
3598 if (!(event_dev->priv_flags & IFF_BONDING))
3599 return NOTIFY_DONE;
3600
3601 if (event_dev->flags & IFF_MASTER) {
3602 dprintk("IFF_MASTER\n");
3603 return bond_master_netdev_event(event, event_dev);
3604 }
3605
3606 if (event_dev->flags & IFF_SLAVE) {
3607 dprintk("IFF_SLAVE\n");
3608 return bond_slave_netdev_event(event, event_dev);
3609 }
3610
3611 return NOTIFY_DONE;
3612 }
3613
3614 /*
3615 * bond_inetaddr_event: handle inetaddr notifier chain events.
3616 *
3617 * We keep track of device IPs primarily to use as source addresses in
3618 * ARP monitor probes (rather than spewing out broadcasts all the time).
3619 *
3620 * We track one IP for the main device (if it has one), plus one per VLAN.
3621 */
3622 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3623 {
3624 struct in_ifaddr *ifa = ptr;
3625 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3626 struct bonding *bond;
3627 struct vlan_entry *vlan;
3628
3629 if (dev_net(ifa->ifa_dev->dev) != &init_net)
3630 return NOTIFY_DONE;
3631
3632 list_for_each_entry(bond, &bond_dev_list, bond_list) {
3633 if (bond->dev == event_dev) {
3634 switch (event) {
3635 case NETDEV_UP:
3636 bond->master_ip = ifa->ifa_local;
3637 return NOTIFY_OK;
3638 case NETDEV_DOWN:
3639 bond->master_ip = bond_glean_dev_ip(bond->dev);
3640 return NOTIFY_OK;
3641 default:
3642 return NOTIFY_DONE;
3643 }
3644 }
3645
3646 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
3647 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
3648 if (vlan_dev == event_dev) {
3649 switch (event) {
3650 case NETDEV_UP:
3651 vlan->vlan_ip = ifa->ifa_local;
3652 return NOTIFY_OK;
3653 case NETDEV_DOWN:
3654 vlan->vlan_ip =
3655 bond_glean_dev_ip(vlan_dev);
3656 return NOTIFY_OK;
3657 default:
3658 return NOTIFY_DONE;
3659 }
3660 }
3661 }
3662 }
3663 return NOTIFY_DONE;
3664 }
3665
3666 static struct notifier_block bond_netdev_notifier = {
3667 .notifier_call = bond_netdev_event,
3668 };
3669
3670 static struct notifier_block bond_inetaddr_notifier = {
3671 .notifier_call = bond_inetaddr_event,
3672 };
3673
3674 /*-------------------------- Packet type handling ---------------------------*/
3675
3676 /* register to receive lacpdus on a bond */
3677 static void bond_register_lacpdu(struct bonding *bond)
3678 {
3679 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3680
3681 /* initialize packet type */
3682 pk_type->type = PKT_TYPE_LACPDU;
3683 pk_type->dev = bond->dev;
3684 pk_type->func = bond_3ad_lacpdu_recv;
3685
3686 dev_add_pack(pk_type);
3687 }
3688
3689 /* unregister to receive lacpdus on a bond */
3690 static void bond_unregister_lacpdu(struct bonding *bond)
3691 {
3692 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3693 }
3694
3695 void bond_register_arp(struct bonding *bond)
3696 {
3697 struct packet_type *pt = &bond->arp_mon_pt;
3698
3699 if (pt->type)
3700 return;
3701
3702 pt->type = htons(ETH_P_ARP);
3703 pt->dev = bond->dev;
3704 pt->func = bond_arp_rcv;
3705 dev_add_pack(pt);
3706 }
3707
3708 void bond_unregister_arp(struct bonding *bond)
3709 {
3710 struct packet_type *pt = &bond->arp_mon_pt;
3711
3712 dev_remove_pack(pt);
3713 pt->type = 0;
3714 }
3715
3716 /*---------------------------- Hashing Policies -----------------------------*/
3717
3718 /*
3719 * Hash for the output device based upon layer 2 and layer 3 data. If
3720 * the packet is not IP mimic bond_xmit_hash_policy_l2()
3721 */
3722 static int bond_xmit_hash_policy_l23(struct sk_buff *skb,
3723 struct net_device *bond_dev, int count)
3724 {
3725 struct ethhdr *data = (struct ethhdr *)skb->data;
3726 struct iphdr *iph = ip_hdr(skb);
3727
3728 if (skb->protocol == htons(ETH_P_IP)) {
3729 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
3730 (data->h_dest[5] ^ bond_dev->dev_addr[5])) % count;
3731 }
3732
3733 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3734 }
3735
3736 /*
3737 * Hash for the output device based upon layer 3 and layer 4 data. If
3738 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is
3739 * altogether not IP, mimic bond_xmit_hash_policy_l2()
3740 */
3741 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3742 struct net_device *bond_dev, int count)
3743 {
3744 struct ethhdr *data = (struct ethhdr *)skb->data;
3745 struct iphdr *iph = ip_hdr(skb);
3746 __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl);
3747 int layer4_xor = 0;
3748
3749 if (skb->protocol == htons(ETH_P_IP)) {
3750 if (!(iph->frag_off & htons(IP_MF|IP_OFFSET)) &&
3751 (iph->protocol == IPPROTO_TCP ||
3752 iph->protocol == IPPROTO_UDP)) {
3753 layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1)));
3754 }
3755 return (layer4_xor ^
3756 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3757
3758 }
3759
3760 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3761 }
3762
3763 /*
3764 * Hash for the output device based upon layer 2 data
3765 */
3766 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3767 struct net_device *bond_dev, int count)
3768 {
3769 struct ethhdr *data = (struct ethhdr *)skb->data;
3770
3771 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3772 }
3773
3774 /*-------------------------- Device entry points ----------------------------*/
3775
3776 static int bond_open(struct net_device *bond_dev)
3777 {
3778 struct bonding *bond = bond_dev->priv;
3779
3780 bond->kill_timers = 0;
3781
3782 if ((bond->params.mode == BOND_MODE_TLB) ||
3783 (bond->params.mode == BOND_MODE_ALB)) {
3784 /* bond_alb_initialize must be called before the timer
3785 * is started.
3786 */
3787 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3788 /* something went wrong - fail the open operation */
3789 return -1;
3790 }
3791
3792 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor);
3793 queue_delayed_work(bond->wq, &bond->alb_work, 0);
3794 }
3795
3796 if (bond->params.miimon) { /* link check interval, in milliseconds. */
3797 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor);
3798 queue_delayed_work(bond->wq, &bond->mii_work, 0);
3799 }
3800
3801 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */
3802 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3803 INIT_DELAYED_WORK(&bond->arp_work,
3804 bond_activebackup_arp_mon);
3805 else
3806 INIT_DELAYED_WORK(&bond->arp_work,
3807 bond_loadbalance_arp_mon);
3808
3809 queue_delayed_work(bond->wq, &bond->arp_work, 0);
3810 if (bond->params.arp_validate)
3811 bond_register_arp(bond);
3812 }
3813
3814 if (bond->params.mode == BOND_MODE_8023AD) {
3815 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler);
3816 queue_delayed_work(bond->wq, &bond->ad_work, 0);
3817 /* register to receive LACPDUs */
3818 bond_register_lacpdu(bond);
3819 }
3820
3821 return 0;
3822 }
3823
3824 static int bond_close(struct net_device *bond_dev)
3825 {
3826 struct bonding *bond = bond_dev->priv;
3827
3828 if (bond->params.mode == BOND_MODE_8023AD) {
3829 /* Unregister the receive of LACPDUs */
3830 bond_unregister_lacpdu(bond);
3831 }
3832
3833 if (bond->params.arp_validate)
3834 bond_unregister_arp(bond);
3835
3836 write_lock_bh(&bond->lock);
3837
3838 bond->send_grat_arp = 0;
3839
3840 /* signal timers not to re-arm */
3841 bond->kill_timers = 1;
3842
3843 write_unlock_bh(&bond->lock);
3844
3845 if (bond->params.miimon) { /* link check interval, in milliseconds. */
3846 cancel_delayed_work(&bond->mii_work);
3847 }
3848
3849 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */
3850 cancel_delayed_work(&bond->arp_work);
3851 }
3852
3853 switch (bond->params.mode) {
3854 case BOND_MODE_8023AD:
3855 cancel_delayed_work(&bond->ad_work);
3856 break;
3857 case BOND_MODE_TLB:
3858 case BOND_MODE_ALB:
3859 cancel_delayed_work(&bond->alb_work);
3860 break;
3861 default:
3862 break;
3863 }
3864
3865
3866 if ((bond->params.mode == BOND_MODE_TLB) ||
3867 (bond->params.mode == BOND_MODE_ALB)) {
3868 /* Must be called only after all
3869 * slaves have been released
3870 */
3871 bond_alb_deinitialize(bond);
3872 }
3873
3874 return 0;
3875 }
3876
3877 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3878 {
3879 struct bonding *bond = bond_dev->priv;
3880 struct net_device_stats *stats = &(bond->stats), *sstats;
3881 struct net_device_stats local_stats;
3882 struct slave *slave;
3883 int i;
3884
3885 memset(&local_stats, 0, sizeof(struct net_device_stats));
3886
3887 read_lock_bh(&bond->lock);
3888
3889 bond_for_each_slave(bond, slave, i) {
3890 sstats = slave->dev->get_stats(slave->dev);
3891 local_stats.rx_packets += sstats->rx_packets;
3892 local_stats.rx_bytes += sstats->rx_bytes;
3893 local_stats.rx_errors += sstats->rx_errors;
3894 local_stats.rx_dropped += sstats->rx_dropped;
3895
3896 local_stats.tx_packets += sstats->tx_packets;
3897 local_stats.tx_bytes += sstats->tx_bytes;
3898 local_stats.tx_errors += sstats->tx_errors;
3899 local_stats.tx_dropped += sstats->tx_dropped;
3900
3901 local_stats.multicast += sstats->multicast;
3902 local_stats.collisions += sstats->collisions;
3903
3904 local_stats.rx_length_errors += sstats->rx_length_errors;
3905 local_stats.rx_over_errors += sstats->rx_over_errors;
3906 local_stats.rx_crc_errors += sstats->rx_crc_errors;
3907 local_stats.rx_frame_errors += sstats->rx_frame_errors;
3908 local_stats.rx_fifo_errors += sstats->rx_fifo_errors;
3909 local_stats.rx_missed_errors += sstats->rx_missed_errors;
3910
3911 local_stats.tx_aborted_errors += sstats->tx_aborted_errors;
3912 local_stats.tx_carrier_errors += sstats->tx_carrier_errors;
3913 local_stats.tx_fifo_errors += sstats->tx_fifo_errors;
3914 local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3915 local_stats.tx_window_errors += sstats->tx_window_errors;
3916 }
3917
3918 memcpy(stats, &local_stats, sizeof(struct net_device_stats));
3919
3920 read_unlock_bh(&bond->lock);
3921
3922 return stats;
3923 }
3924
3925 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3926 {
3927 struct net_device *slave_dev = NULL;
3928 struct ifbond k_binfo;
3929 struct ifbond __user *u_binfo = NULL;
3930 struct ifslave k_sinfo;
3931 struct ifslave __user *u_sinfo = NULL;
3932 struct mii_ioctl_data *mii = NULL;
3933 int res = 0;
3934
3935 dprintk("bond_ioctl: master=%s, cmd=%d\n",
3936 bond_dev->name, cmd);
3937
3938 switch (cmd) {
3939 case SIOCGMIIPHY:
3940 mii = if_mii(ifr);
3941 if (!mii) {
3942 return -EINVAL;
3943 }
3944 mii->phy_id = 0;
3945 /* Fall Through */
3946 case SIOCGMIIREG:
3947 /*
3948 * We do this again just in case we were called by SIOCGMIIREG
3949 * instead of SIOCGMIIPHY.
3950 */
3951 mii = if_mii(ifr);
3952 if (!mii) {
3953 return -EINVAL;
3954 }
3955
3956 if (mii->reg_num == 1) {
3957 struct bonding *bond = bond_dev->priv;
3958 mii->val_out = 0;
3959 read_lock(&bond->lock);
3960 read_lock(&bond->curr_slave_lock);
3961 if (netif_carrier_ok(bond->dev)) {
3962 mii->val_out = BMSR_LSTATUS;
3963 }
3964 read_unlock(&bond->curr_slave_lock);
3965 read_unlock(&bond->lock);
3966 }
3967
3968 return 0;
3969 case BOND_INFO_QUERY_OLD:
3970 case SIOCBONDINFOQUERY:
3971 u_binfo = (struct ifbond __user *)ifr->ifr_data;
3972
3973 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
3974 return -EFAULT;
3975 }
3976
3977 res = bond_info_query(bond_dev, &k_binfo);
3978 if (res == 0) {
3979 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
3980 return -EFAULT;
3981 }
3982 }
3983
3984 return res;
3985 case BOND_SLAVE_INFO_QUERY_OLD:
3986 case SIOCBONDSLAVEINFOQUERY:
3987 u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3988
3989 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
3990 return -EFAULT;
3991 }
3992
3993 res = bond_slave_info_query(bond_dev, &k_sinfo);
3994 if (res == 0) {
3995 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
3996 return -EFAULT;
3997 }
3998 }
3999
4000 return res;
4001 default:
4002 /* Go on */
4003 break;
4004 }
4005
4006 if (!capable(CAP_NET_ADMIN)) {
4007 return -EPERM;
4008 }
4009
4010 down_write(&(bonding_rwsem));
4011 slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave);
4012
4013 dprintk("slave_dev=%p: \n", slave_dev);
4014
4015 if (!slave_dev) {
4016 res = -ENODEV;
4017 } else {
4018 dprintk("slave_dev->name=%s: \n", slave_dev->name);
4019 switch (cmd) {
4020 case BOND_ENSLAVE_OLD:
4021 case SIOCBONDENSLAVE:
4022 res = bond_enslave(bond_dev, slave_dev);
4023 break;
4024 case BOND_RELEASE_OLD:
4025 case SIOCBONDRELEASE:
4026 res = bond_release(bond_dev, slave_dev);
4027 break;
4028 case BOND_SETHWADDR_OLD:
4029 case SIOCBONDSETHWADDR:
4030 res = bond_sethwaddr(bond_dev, slave_dev);
4031 break;
4032 case BOND_CHANGE_ACTIVE_OLD:
4033 case SIOCBONDCHANGEACTIVE:
4034 res = bond_ioctl_change_active(bond_dev, slave_dev);
4035 break;
4036 default:
4037 res = -EOPNOTSUPP;
4038 }
4039
4040 dev_put(slave_dev);
4041 }
4042
4043 up_write(&(bonding_rwsem));
4044 return res;
4045 }
4046
4047 static void bond_set_multicast_list(struct net_device *bond_dev)
4048 {
4049 struct bonding *bond = bond_dev->priv;
4050 struct dev_mc_list *dmi;
4051
4052 /*
4053 * Do promisc before checking multicast_mode
4054 */
4055 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
4056 /*
4057 * FIXME: Need to handle the error when one of the multi-slaves
4058 * encounters error.
4059 */
4060 bond_set_promiscuity(bond, 1);
4061 }
4062
4063 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
4064 bond_set_promiscuity(bond, -1);
4065 }
4066
4067 /* set allmulti flag to slaves */
4068 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
4069 /*
4070 * FIXME: Need to handle the error when one of the multi-slaves
4071 * encounters error.
4072 */
4073 bond_set_allmulti(bond, 1);
4074 }
4075
4076 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
4077 bond_set_allmulti(bond, -1);
4078 }
4079
4080 read_lock(&bond->lock);
4081
4082 bond->flags = bond_dev->flags;
4083
4084 /* looking for addresses to add to slaves' mc list */
4085 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
4086 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
4087 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
4088 }
4089 }
4090
4091 /* looking for addresses to delete from slaves' list */
4092 for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
4093 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
4094 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
4095 }
4096 }
4097
4098 /* save master's multicast list */
4099 bond_mc_list_destroy(bond);
4100 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
4101
4102 read_unlock(&bond->lock);
4103 }
4104
4105 /*
4106 * Change the MTU of all of a master's slaves to match the master
4107 */
4108 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
4109 {
4110 struct bonding *bond = bond_dev->priv;
4111 struct slave *slave, *stop_at;
4112 int res = 0;
4113 int i;
4114
4115 dprintk("bond=%p, name=%s, new_mtu=%d\n", bond,
4116 (bond_dev ? bond_dev->name : "None"), new_mtu);
4117
4118 /* Can't hold bond->lock with bh disabled here since
4119 * some base drivers panic. On the other hand we can't
4120 * hold bond->lock without bh disabled because we'll
4121 * deadlock. The only solution is to rely on the fact
4122 * that we're under rtnl_lock here, and the slaves
4123 * list won't change. This doesn't solve the problem
4124 * of setting the slave's MTU while it is
4125 * transmitting, but the assumption is that the base
4126 * driver can handle that.
4127 *
4128 * TODO: figure out a way to safely iterate the slaves
4129 * list, but without holding a lock around the actual
4130 * call to the base driver.
4131 */
4132
4133 bond_for_each_slave(bond, slave, i) {
4134 dprintk("s %p s->p %p c_m %p\n", slave,
4135 slave->prev, slave->dev->change_mtu);
4136
4137 res = dev_set_mtu(slave->dev, new_mtu);
4138
4139 if (res) {
4140 /* If we failed to set the slave's mtu to the new value
4141 * we must abort the operation even in ACTIVE_BACKUP
4142 * mode, because if we allow the backup slaves to have
4143 * different mtu values than the active slave we'll
4144 * need to change their mtu when doing a failover. That
4145 * means changing their mtu from timer context, which
4146 * is probably not a good idea.
4147 */
4148 dprintk("err %d %s\n", res, slave->dev->name);
4149 goto unwind;
4150 }
4151 }
4152
4153 bond_dev->mtu = new_mtu;
4154
4155 return 0;
4156
4157 unwind:
4158 /* unwind from head to the slave that failed */
4159 stop_at = slave;
4160 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4161 int tmp_res;
4162
4163 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
4164 if (tmp_res) {
4165 dprintk("unwind err %d dev %s\n", tmp_res,
4166 slave->dev->name);
4167 }
4168 }
4169
4170 return res;
4171 }
4172
4173 /*
4174 * Change HW address
4175 *
4176 * Note that many devices must be down to change the HW address, and
4177 * downing the master releases all slaves. We can make bonds full of
4178 * bonding devices to test this, however.
4179 */
4180 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
4181 {
4182 struct bonding *bond = bond_dev->priv;
4183 struct sockaddr *sa = addr, tmp_sa;
4184 struct slave *slave, *stop_at;
4185 int res = 0;
4186 int i;
4187
4188 dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
4189
4190 /*
4191 * If fail_over_mac is set to active, do nothing and return
4192 * success. Returning an error causes ifenslave to fail.
4193 */
4194 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE)
4195 return 0;
4196
4197 if (!is_valid_ether_addr(sa->sa_data)) {
4198 return -EADDRNOTAVAIL;
4199 }
4200
4201 /* Can't hold bond->lock with bh disabled here since
4202 * some base drivers panic. On the other hand we can't
4203 * hold bond->lock without bh disabled because we'll
4204 * deadlock. The only solution is to rely on the fact
4205 * that we're under rtnl_lock here, and the slaves
4206 * list won't change. This doesn't solve the problem
4207 * of setting the slave's hw address while it is
4208 * transmitting, but the assumption is that the base
4209 * driver can handle that.
4210 *
4211 * TODO: figure out a way to safely iterate the slaves
4212 * list, but without holding a lock around the actual
4213 * call to the base driver.
4214 */
4215
4216 bond_for_each_slave(bond, slave, i) {
4217 dprintk("slave %p %s\n", slave, slave->dev->name);
4218
4219 if (slave->dev->set_mac_address == NULL) {
4220 res = -EOPNOTSUPP;
4221 dprintk("EOPNOTSUPP %s\n", slave->dev->name);
4222 goto unwind;
4223 }
4224
4225 res = dev_set_mac_address(slave->dev, addr);
4226 if (res) {
4227 /* TODO: consider downing the slave
4228 * and retry ?
4229 * User should expect communications
4230 * breakage anyway until ARP finish
4231 * updating, so...
4232 */
4233 dprintk("err %d %s\n", res, slave->dev->name);
4234 goto unwind;
4235 }
4236 }
4237
4238 /* success */
4239 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
4240 return 0;
4241
4242 unwind:
4243 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
4244 tmp_sa.sa_family = bond_dev->type;
4245
4246 /* unwind from head to the slave that failed */
4247 stop_at = slave;
4248 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4249 int tmp_res;
4250
4251 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
4252 if (tmp_res) {
4253 dprintk("unwind err %d dev %s\n", tmp_res,
4254 slave->dev->name);
4255 }
4256 }
4257
4258 return res;
4259 }
4260
4261 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
4262 {
4263 struct bonding *bond = bond_dev->priv;
4264 struct slave *slave, *start_at;
4265 int i, slave_no, res = 1;
4266
4267 read_lock(&bond->lock);
4268
4269 if (!BOND_IS_OK(bond)) {
4270 goto out;
4271 }
4272
4273 /*
4274 * Concurrent TX may collide on rr_tx_counter; we accept that
4275 * as being rare enough not to justify using an atomic op here
4276 */
4277 slave_no = bond->rr_tx_counter++ % bond->slave_cnt;
4278
4279 bond_for_each_slave(bond, slave, i) {
4280 slave_no--;
4281 if (slave_no < 0) {
4282 break;
4283 }
4284 }
4285
4286 start_at = slave;
4287 bond_for_each_slave_from(bond, slave, i, start_at) {
4288 if (IS_UP(slave->dev) &&
4289 (slave->link == BOND_LINK_UP) &&
4290 (slave->state == BOND_STATE_ACTIVE)) {
4291 res = bond_dev_queue_xmit(bond, skb, slave->dev);
4292 break;
4293 }
4294 }
4295
4296 out:
4297 if (res) {
4298 /* no suitable interface, frame not sent */
4299 dev_kfree_skb(skb);
4300 }
4301 read_unlock(&bond->lock);
4302 return 0;
4303 }
4304
4305
4306 /*
4307 * in active-backup mode, we know that bond->curr_active_slave is always valid if
4308 * the bond has a usable interface.
4309 */
4310 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
4311 {
4312 struct bonding *bond = bond_dev->priv;
4313 int res = 1;
4314
4315 read_lock(&bond->lock);
4316 read_lock(&bond->curr_slave_lock);
4317
4318 if (!BOND_IS_OK(bond)) {
4319 goto out;
4320 }
4321
4322 if (!bond->curr_active_slave)
4323 goto out;
4324
4325 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
4326
4327 out:
4328 if (res) {
4329 /* no suitable interface, frame not sent */
4330 dev_kfree_skb(skb);
4331 }
4332 read_unlock(&bond->curr_slave_lock);
4333 read_unlock(&bond->lock);
4334 return 0;
4335 }
4336
4337 /*
4338 * In bond_xmit_xor() , we determine the output device by using a pre-
4339 * determined xmit_hash_policy(), If the selected device is not enabled,
4340 * find the next active slave.
4341 */
4342 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
4343 {
4344 struct bonding *bond = bond_dev->priv;
4345 struct slave *slave, *start_at;
4346 int slave_no;
4347 int i;
4348 int res = 1;
4349
4350 read_lock(&bond->lock);
4351
4352 if (!BOND_IS_OK(bond)) {
4353 goto out;
4354 }
4355
4356 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
4357
4358 bond_for_each_slave(bond, slave, i) {
4359 slave_no--;
4360 if (slave_no < 0) {
4361 break;
4362 }
4363 }
4364
4365 start_at = slave;
4366
4367 bond_for_each_slave_from(bond, slave, i, start_at) {
4368 if (IS_UP(slave->dev) &&
4369 (slave->link == BOND_LINK_UP) &&
4370 (slave->state == BOND_STATE_ACTIVE)) {
4371 res = bond_dev_queue_xmit(bond, skb, slave->dev);
4372 break;
4373 }
4374 }
4375
4376 out:
4377 if (res) {
4378 /* no suitable interface, frame not sent */
4379 dev_kfree_skb(skb);
4380 }
4381 read_unlock(&bond->lock);
4382 return 0;
4383 }
4384
4385 /*
4386 * in broadcast mode, we send everything to all usable interfaces.
4387 */
4388 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4389 {
4390 struct bonding *bond = bond_dev->priv;
4391 struct slave *slave, *start_at;
4392 struct net_device *tx_dev = NULL;
4393 int i;
4394 int res = 1;
4395
4396 read_lock(&bond->lock);
4397
4398 if (!BOND_IS_OK(bond)) {
4399 goto out;
4400 }
4401
4402 read_lock(&bond->curr_slave_lock);
4403 start_at = bond->curr_active_slave;
4404 read_unlock(&bond->curr_slave_lock);
4405
4406 if (!start_at) {
4407 goto out;
4408 }
4409
4410 bond_for_each_slave_from(bond, slave, i, start_at) {
4411 if (IS_UP(slave->dev) &&
4412 (slave->link == BOND_LINK_UP) &&
4413 (slave->state == BOND_STATE_ACTIVE)) {
4414 if (tx_dev) {
4415 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4416 if (!skb2) {
4417 printk(KERN_ERR DRV_NAME
4418 ": %s: Error: bond_xmit_broadcast(): "
4419 "skb_clone() failed\n",
4420 bond_dev->name);
4421 continue;
4422 }
4423
4424 res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4425 if (res) {
4426 dev_kfree_skb(skb2);
4427 continue;
4428 }
4429 }
4430 tx_dev = slave->dev;
4431 }
4432 }
4433
4434 if (tx_dev) {
4435 res = bond_dev_queue_xmit(bond, skb, tx_dev);
4436 }
4437
4438 out:
4439 if (res) {
4440 /* no suitable interface, frame not sent */
4441 dev_kfree_skb(skb);
4442 }
4443 /* frame sent to all suitable interfaces */
4444 read_unlock(&bond->lock);
4445 return 0;
4446 }
4447
4448 /*------------------------- Device initialization ---------------------------*/
4449
4450 static void bond_set_xmit_hash_policy(struct bonding *bond)
4451 {
4452 switch (bond->params.xmit_policy) {
4453 case BOND_XMIT_POLICY_LAYER23:
4454 bond->xmit_hash_policy = bond_xmit_hash_policy_l23;
4455 break;
4456 case BOND_XMIT_POLICY_LAYER34:
4457 bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4458 break;
4459 case BOND_XMIT_POLICY_LAYER2:
4460 default:
4461 bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4462 break;
4463 }
4464 }
4465
4466 /*
4467 * set bond mode specific net device operations
4468 */
4469 void bond_set_mode_ops(struct bonding *bond, int mode)
4470 {
4471 struct net_device *bond_dev = bond->dev;
4472
4473 switch (mode) {
4474 case BOND_MODE_ROUNDROBIN:
4475 bond_dev->hard_start_xmit = bond_xmit_roundrobin;
4476 break;
4477 case BOND_MODE_ACTIVEBACKUP:
4478 bond_dev->hard_start_xmit = bond_xmit_activebackup;
4479 break;
4480 case BOND_MODE_XOR:
4481 bond_dev->hard_start_xmit = bond_xmit_xor;
4482 bond_set_xmit_hash_policy(bond);
4483 break;
4484 case BOND_MODE_BROADCAST:
4485 bond_dev->hard_start_xmit = bond_xmit_broadcast;
4486 break;
4487 case BOND_MODE_8023AD:
4488 bond_set_master_3ad_flags(bond);
4489 bond_dev->hard_start_xmit = bond_3ad_xmit_xor;
4490 bond_set_xmit_hash_policy(bond);
4491 break;
4492 case BOND_MODE_ALB:
4493 bond_set_master_alb_flags(bond);
4494 /* FALLTHRU */
4495 case BOND_MODE_TLB:
4496 bond_dev->hard_start_xmit = bond_alb_xmit;
4497 bond_dev->set_mac_address = bond_alb_set_mac_address;
4498 break;
4499 default:
4500 /* Should never happen, mode already checked */
4501 printk(KERN_ERR DRV_NAME
4502 ": %s: Error: Unknown bonding mode %d\n",
4503 bond_dev->name,
4504 mode);
4505 break;
4506 }
4507 }
4508
4509 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4510 struct ethtool_drvinfo *drvinfo)
4511 {
4512 strncpy(drvinfo->driver, DRV_NAME, 32);
4513 strncpy(drvinfo->version, DRV_VERSION, 32);
4514 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4515 }
4516
4517 static const struct ethtool_ops bond_ethtool_ops = {
4518 .get_drvinfo = bond_ethtool_get_drvinfo,
4519 .get_link = ethtool_op_get_link,
4520 .get_tx_csum = ethtool_op_get_tx_csum,
4521 .get_sg = ethtool_op_get_sg,
4522 .get_tso = ethtool_op_get_tso,
4523 .get_ufo = ethtool_op_get_ufo,
4524 .get_flags = ethtool_op_get_flags,
4525 };
4526
4527 /*
4528 * Does not allocate but creates a /proc entry.
4529 * Allowed to fail.
4530 */
4531 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4532 {
4533 struct bonding *bond = bond_dev->priv;
4534
4535 dprintk("Begin bond_init for %s\n", bond_dev->name);
4536
4537 /* initialize rwlocks */
4538 rwlock_init(&bond->lock);
4539 rwlock_init(&bond->curr_slave_lock);
4540
4541 bond->params = *params; /* copy params struct */
4542
4543 bond->wq = create_singlethread_workqueue(bond_dev->name);
4544 if (!bond->wq)
4545 return -ENOMEM;
4546
4547 /* Initialize pointers */
4548 bond->first_slave = NULL;
4549 bond->curr_active_slave = NULL;
4550 bond->current_arp_slave = NULL;
4551 bond->primary_slave = NULL;
4552 bond->dev = bond_dev;
4553 bond->send_grat_arp = 0;
4554 bond->setup_by_slave = 0;
4555 INIT_LIST_HEAD(&bond->vlan_list);
4556
4557 /* Initialize the device entry points */
4558 bond_dev->open = bond_open;
4559 bond_dev->stop = bond_close;
4560 bond_dev->get_stats = bond_get_stats;
4561 bond_dev->do_ioctl = bond_do_ioctl;
4562 bond_dev->ethtool_ops = &bond_ethtool_ops;
4563 bond_dev->set_multicast_list = bond_set_multicast_list;
4564 bond_dev->change_mtu = bond_change_mtu;
4565 bond_dev->set_mac_address = bond_set_mac_address;
4566 bond_dev->validate_addr = NULL;
4567
4568 bond_set_mode_ops(bond, bond->params.mode);
4569
4570 bond_dev->destructor = bond_destructor;
4571
4572 /* Initialize the device options */
4573 bond_dev->tx_queue_len = 0;
4574 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4575 bond_dev->priv_flags |= IFF_BONDING;
4576
4577 /* At first, we block adding VLANs. That's the only way to
4578 * prevent problems that occur when adding VLANs over an
4579 * empty bond. The block will be removed once non-challenged
4580 * slaves are enslaved.
4581 */
4582 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4583
4584 /* don't acquire bond device's netif_tx_lock when
4585 * transmitting */
4586 bond_dev->features |= NETIF_F_LLTX;
4587
4588 /* By default, we declare the bond to be fully
4589 * VLAN hardware accelerated capable. Special
4590 * care is taken in the various xmit functions
4591 * when there are slaves that are not hw accel
4592 * capable
4593 */
4594 bond_dev->vlan_rx_register = bond_vlan_rx_register;
4595 bond_dev->vlan_rx_add_vid = bond_vlan_rx_add_vid;
4596 bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid;
4597 bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4598 NETIF_F_HW_VLAN_RX |
4599 NETIF_F_HW_VLAN_FILTER);
4600
4601 #ifdef CONFIG_PROC_FS
4602 bond_create_proc_entry(bond);
4603 #endif
4604 list_add_tail(&bond->bond_list, &bond_dev_list);
4605
4606 return 0;
4607 }
4608
4609 static void bond_work_cancel_all(struct bonding *bond)
4610 {
4611 write_lock_bh(&bond->lock);
4612 bond->kill_timers = 1;
4613 write_unlock_bh(&bond->lock);
4614
4615 if (bond->params.miimon && delayed_work_pending(&bond->mii_work))
4616 cancel_delayed_work(&bond->mii_work);
4617
4618 if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work))
4619 cancel_delayed_work(&bond->arp_work);
4620
4621 if (bond->params.mode == BOND_MODE_ALB &&
4622 delayed_work_pending(&bond->alb_work))
4623 cancel_delayed_work(&bond->alb_work);
4624
4625 if (bond->params.mode == BOND_MODE_8023AD &&
4626 delayed_work_pending(&bond->ad_work))
4627 cancel_delayed_work(&bond->ad_work);
4628 }
4629
4630 /* De-initialize device specific data.
4631 * Caller must hold rtnl_lock.
4632 */
4633 static void bond_deinit(struct net_device *bond_dev)
4634 {
4635 struct bonding *bond = bond_dev->priv;
4636
4637 list_del(&bond->bond_list);
4638
4639 bond_work_cancel_all(bond);
4640
4641 #ifdef CONFIG_PROC_FS
4642 bond_remove_proc_entry(bond);
4643 #endif
4644 }
4645
4646 /* Unregister and free all bond devices.
4647 * Caller must hold rtnl_lock.
4648 */
4649 static void bond_free_all(void)
4650 {
4651 struct bonding *bond, *nxt;
4652
4653 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4654 struct net_device *bond_dev = bond->dev;
4655
4656 bond_work_cancel_all(bond);
4657 /* Release the bonded slaves */
4658 bond_release_all(bond_dev);
4659 bond_destroy(bond);
4660 }
4661
4662 #ifdef CONFIG_PROC_FS
4663 bond_destroy_proc_dir();
4664 #endif
4665 }
4666
4667 /*------------------------- Module initialization ---------------------------*/
4668
4669 /*
4670 * Convert string input module parms. Accept either the
4671 * number of the mode or its string name. A bit complicated because
4672 * some mode names are substrings of other names, and calls from sysfs
4673 * may have whitespace in the name (trailing newlines, for example).
4674 */
4675 int bond_parse_parm(const char *buf, struct bond_parm_tbl *tbl)
4676 {
4677 int mode = -1, i, rv;
4678 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, };
4679
4680 for (p = (char *)buf; *p; p++)
4681 if (!(isdigit(*p) || isspace(*p)))
4682 break;
4683
4684 if (*p)
4685 rv = sscanf(buf, "%20s", modestr);
4686 else
4687 rv = sscanf(buf, "%d", &mode);
4688
4689 if (!rv)
4690 return -1;
4691
4692 for (i = 0; tbl[i].modename; i++) {
4693 if (mode == tbl[i].mode)
4694 return tbl[i].mode;
4695 if (strcmp(modestr, tbl[i].modename) == 0)
4696 return tbl[i].mode;
4697 }
4698
4699 return -1;
4700 }
4701
4702 static int bond_check_params(struct bond_params *params)
4703 {
4704 int arp_validate_value, fail_over_mac_value;
4705
4706 /*
4707 * Convert string parameters.
4708 */
4709 if (mode) {
4710 bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4711 if (bond_mode == -1) {
4712 printk(KERN_ERR DRV_NAME
4713 ": Error: Invalid bonding mode \"%s\"\n",
4714 mode == NULL ? "NULL" : mode);
4715 return -EINVAL;
4716 }
4717 }
4718
4719 if (xmit_hash_policy) {
4720 if ((bond_mode != BOND_MODE_XOR) &&
4721 (bond_mode != BOND_MODE_8023AD)) {
4722 printk(KERN_INFO DRV_NAME
4723 ": xor_mode param is irrelevant in mode %s\n",
4724 bond_mode_name(bond_mode));
4725 } else {
4726 xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4727 xmit_hashtype_tbl);
4728 if (xmit_hashtype == -1) {
4729 printk(KERN_ERR DRV_NAME
4730 ": Error: Invalid xmit_hash_policy \"%s\"\n",
4731 xmit_hash_policy == NULL ? "NULL" :
4732 xmit_hash_policy);
4733 return -EINVAL;
4734 }
4735 }
4736 }
4737
4738 if (lacp_rate) {
4739 if (bond_mode != BOND_MODE_8023AD) {
4740 printk(KERN_INFO DRV_NAME
4741 ": lacp_rate param is irrelevant in mode %s\n",
4742 bond_mode_name(bond_mode));
4743 } else {
4744 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4745 if (lacp_fast == -1) {
4746 printk(KERN_ERR DRV_NAME
4747 ": Error: Invalid lacp rate \"%s\"\n",
4748 lacp_rate == NULL ? "NULL" : lacp_rate);
4749 return -EINVAL;
4750 }
4751 }
4752 }
4753
4754 if (max_bonds < 0 || max_bonds > INT_MAX) {
4755 printk(KERN_WARNING DRV_NAME
4756 ": Warning: max_bonds (%d) not in range %d-%d, so it "
4757 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4758 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4759 max_bonds = BOND_DEFAULT_MAX_BONDS;
4760 }
4761
4762 if (miimon < 0) {
4763 printk(KERN_WARNING DRV_NAME
4764 ": Warning: miimon module parameter (%d), "
4765 "not in range 0-%d, so it was reset to %d\n",
4766 miimon, INT_MAX, BOND_LINK_MON_INTERV);
4767 miimon = BOND_LINK_MON_INTERV;
4768 }
4769
4770 if (updelay < 0) {
4771 printk(KERN_WARNING DRV_NAME
4772 ": Warning: updelay module parameter (%d), "
4773 "not in range 0-%d, so it was reset to 0\n",
4774 updelay, INT_MAX);
4775 updelay = 0;
4776 }
4777
4778 if (downdelay < 0) {
4779 printk(KERN_WARNING DRV_NAME
4780 ": Warning: downdelay module parameter (%d), "
4781 "not in range 0-%d, so it was reset to 0\n",
4782 downdelay, INT_MAX);
4783 downdelay = 0;
4784 }
4785
4786 if ((use_carrier != 0) && (use_carrier != 1)) {
4787 printk(KERN_WARNING DRV_NAME
4788 ": Warning: use_carrier module parameter (%d), "
4789 "not of valid value (0/1), so it was set to 1\n",
4790 use_carrier);
4791 use_carrier = 1;
4792 }
4793
4794 if (num_grat_arp < 0 || num_grat_arp > 255) {
4795 printk(KERN_WARNING DRV_NAME
4796 ": Warning: num_grat_arp (%d) not in range 0-255 so it "
4797 "was reset to 1 \n", num_grat_arp);
4798 num_grat_arp = 1;
4799 }
4800
4801 /* reset values for 802.3ad */
4802 if (bond_mode == BOND_MODE_8023AD) {
4803 if (!miimon) {
4804 printk(KERN_WARNING DRV_NAME
4805 ": Warning: miimon must be specified, "
4806 "otherwise bonding will not detect link "
4807 "failure, speed and duplex which are "
4808 "essential for 802.3ad operation\n");
4809 printk(KERN_WARNING "Forcing miimon to 100msec\n");
4810 miimon = 100;
4811 }
4812 }
4813
4814 /* reset values for TLB/ALB */
4815 if ((bond_mode == BOND_MODE_TLB) ||
4816 (bond_mode == BOND_MODE_ALB)) {
4817 if (!miimon) {
4818 printk(KERN_WARNING DRV_NAME
4819 ": Warning: miimon must be specified, "
4820 "otherwise bonding will not detect link "
4821 "failure and link speed which are essential "
4822 "for TLB/ALB load balancing\n");
4823 printk(KERN_WARNING "Forcing miimon to 100msec\n");
4824 miimon = 100;
4825 }
4826 }
4827
4828 if (bond_mode == BOND_MODE_ALB) {
4829 printk(KERN_NOTICE DRV_NAME
4830 ": In ALB mode you might experience client "
4831 "disconnections upon reconnection of a link if the "
4832 "bonding module updelay parameter (%d msec) is "
4833 "incompatible with the forwarding delay time of the "
4834 "switch\n",
4835 updelay);
4836 }
4837
4838 if (!miimon) {
4839 if (updelay || downdelay) {
4840 /* just warn the user the up/down delay will have
4841 * no effect since miimon is zero...
4842 */
4843 printk(KERN_WARNING DRV_NAME
4844 ": Warning: miimon module parameter not set "
4845 "and updelay (%d) or downdelay (%d) module "
4846 "parameter is set; updelay and downdelay have "
4847 "no effect unless miimon is set\n",
4848 updelay, downdelay);
4849 }
4850 } else {
4851 /* don't allow arp monitoring */
4852 if (arp_interval) {
4853 printk(KERN_WARNING DRV_NAME
4854 ": Warning: miimon (%d) and arp_interval (%d) "
4855 "can't be used simultaneously, disabling ARP "
4856 "monitoring\n",
4857 miimon, arp_interval);
4858 arp_interval = 0;
4859 }
4860
4861 if ((updelay % miimon) != 0) {
4862 printk(KERN_WARNING DRV_NAME
4863 ": Warning: updelay (%d) is not a multiple "
4864 "of miimon (%d), updelay rounded to %d ms\n",
4865 updelay, miimon, (updelay / miimon) * miimon);
4866 }
4867
4868 updelay /= miimon;
4869
4870 if ((downdelay % miimon) != 0) {
4871 printk(KERN_WARNING DRV_NAME
4872 ": Warning: downdelay (%d) is not a multiple "
4873 "of miimon (%d), downdelay rounded to %d ms\n",
4874 downdelay, miimon,
4875 (downdelay / miimon) * miimon);
4876 }
4877
4878 downdelay /= miimon;
4879 }
4880
4881 if (arp_interval < 0) {
4882 printk(KERN_WARNING DRV_NAME
4883 ": Warning: arp_interval module parameter (%d) "
4884 ", not in range 0-%d, so it was reset to %d\n",
4885 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4886 arp_interval = BOND_LINK_ARP_INTERV;
4887 }
4888
4889 for (arp_ip_count = 0;
4890 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4891 arp_ip_count++) {
4892 /* not complete check, but should be good enough to
4893 catch mistakes */
4894 if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4895 printk(KERN_WARNING DRV_NAME
4896 ": Warning: bad arp_ip_target module parameter "
4897 "(%s), ARP monitoring will not be performed\n",
4898 arp_ip_target[arp_ip_count]);
4899 arp_interval = 0;
4900 } else {
4901 __be32 ip = in_aton(arp_ip_target[arp_ip_count]);
4902 arp_target[arp_ip_count] = ip;
4903 }
4904 }
4905
4906 if (arp_interval && !arp_ip_count) {
4907 /* don't allow arping if no arp_ip_target given... */
4908 printk(KERN_WARNING DRV_NAME
4909 ": Warning: arp_interval module parameter (%d) "
4910 "specified without providing an arp_ip_target "
4911 "parameter, arp_interval was reset to 0\n",
4912 arp_interval);
4913 arp_interval = 0;
4914 }
4915
4916 if (arp_validate) {
4917 if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4918 printk(KERN_ERR DRV_NAME
4919 ": arp_validate only supported in active-backup mode\n");
4920 return -EINVAL;
4921 }
4922 if (!arp_interval) {
4923 printk(KERN_ERR DRV_NAME
4924 ": arp_validate requires arp_interval\n");
4925 return -EINVAL;
4926 }
4927
4928 arp_validate_value = bond_parse_parm(arp_validate,
4929 arp_validate_tbl);
4930 if (arp_validate_value == -1) {
4931 printk(KERN_ERR DRV_NAME
4932 ": Error: invalid arp_validate \"%s\"\n",
4933 arp_validate == NULL ? "NULL" : arp_validate);
4934 return -EINVAL;
4935 }
4936 } else
4937 arp_validate_value = 0;
4938
4939 if (miimon) {
4940 printk(KERN_INFO DRV_NAME
4941 ": MII link monitoring set to %d ms\n",
4942 miimon);
4943 } else if (arp_interval) {
4944 int i;
4945
4946 printk(KERN_INFO DRV_NAME
4947 ": ARP monitoring set to %d ms, validate %s, with %d target(s):",
4948 arp_interval,
4949 arp_validate_tbl[arp_validate_value].modename,
4950 arp_ip_count);
4951
4952 for (i = 0; i < arp_ip_count; i++)
4953 printk (" %s", arp_ip_target[i]);
4954
4955 printk("\n");
4956
4957 } else if (max_bonds) {
4958 /* miimon and arp_interval not set, we need one so things
4959 * work as expected, see bonding.txt for details
4960 */
4961 printk(KERN_WARNING DRV_NAME
4962 ": Warning: either miimon or arp_interval and "
4963 "arp_ip_target module parameters must be specified, "
4964 "otherwise bonding will not detect link failures! see "
4965 "bonding.txt for details.\n");
4966 }
4967
4968 if (primary && !USES_PRIMARY(bond_mode)) {
4969 /* currently, using a primary only makes sense
4970 * in active backup, TLB or ALB modes
4971 */
4972 printk(KERN_WARNING DRV_NAME
4973 ": Warning: %s primary device specified but has no "
4974 "effect in %s mode\n",
4975 primary, bond_mode_name(bond_mode));
4976 primary = NULL;
4977 }
4978
4979 if (fail_over_mac) {
4980 fail_over_mac_value = bond_parse_parm(fail_over_mac,
4981 fail_over_mac_tbl);
4982 if (fail_over_mac_value == -1) {
4983 printk(KERN_ERR DRV_NAME
4984 ": Error: invalid fail_over_mac \"%s\"\n",
4985 arp_validate == NULL ? "NULL" : arp_validate);
4986 return -EINVAL;
4987 }
4988
4989 if (bond_mode != BOND_MODE_ACTIVEBACKUP)
4990 printk(KERN_WARNING DRV_NAME
4991 ": Warning: fail_over_mac only affects "
4992 "active-backup mode.\n");
4993 } else {
4994 fail_over_mac_value = BOND_FOM_NONE;
4995 }
4996
4997 /* fill params struct with the proper values */
4998 params->mode = bond_mode;
4999 params->xmit_policy = xmit_hashtype;
5000 params->miimon = miimon;
5001 params->num_grat_arp = num_grat_arp;
5002 params->arp_interval = arp_interval;
5003 params->arp_validate = arp_validate_value;
5004 params->updelay = updelay;
5005 params->downdelay = downdelay;
5006 params->use_carrier = use_carrier;
5007 params->lacp_fast = lacp_fast;
5008 params->primary[0] = 0;
5009 params->fail_over_mac = fail_over_mac_value;
5010
5011 if (primary) {
5012 strncpy(params->primary, primary, IFNAMSIZ);
5013 params->primary[IFNAMSIZ - 1] = 0;
5014 }
5015
5016 memcpy(params->arp_targets, arp_target, sizeof(arp_target));
5017
5018 return 0;
5019 }
5020
5021 static struct lock_class_key bonding_netdev_xmit_lock_key;
5022 static struct lock_class_key bonding_netdev_addr_lock_key;
5023
5024 static void bond_set_lockdep_class_one(struct net_device *dev,
5025 struct netdev_queue *txq,
5026 void *_unused)
5027 {
5028 lockdep_set_class(&txq->_xmit_lock,
5029 &bonding_netdev_xmit_lock_key);
5030 }
5031
5032 static void bond_set_lockdep_class(struct net_device *dev)
5033 {
5034 lockdep_set_class(&dev->addr_list_lock,
5035 &bonding_netdev_addr_lock_key);
5036 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL);
5037 }
5038
5039 /* Create a new bond based on the specified name and bonding parameters.
5040 * If name is NULL, obtain a suitable "bond%d" name for us.
5041 * Caller must NOT hold rtnl_lock; we need to release it here before we
5042 * set up our sysfs entries.
5043 */
5044 int bond_create(char *name, struct bond_params *params)
5045 {
5046 struct net_device *bond_dev;
5047 struct bonding *bond;
5048 int res;
5049
5050 rtnl_lock();
5051 down_write(&bonding_rwsem);
5052
5053 /* Check to see if the bond already exists. */
5054 if (name) {
5055 list_for_each_entry(bond, &bond_dev_list, bond_list)
5056 if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) {
5057 printk(KERN_ERR DRV_NAME
5058 ": cannot add bond %s; it already exists\n",
5059 name);
5060 res = -EPERM;
5061 goto out_rtnl;
5062 }
5063 }
5064
5065 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "",
5066 ether_setup);
5067 if (!bond_dev) {
5068 printk(KERN_ERR DRV_NAME
5069 ": %s: eek! can't alloc netdev!\n",
5070 name);
5071 res = -ENOMEM;
5072 goto out_rtnl;
5073 }
5074
5075 if (!name) {
5076 res = dev_alloc_name(bond_dev, "bond%d");
5077 if (res < 0)
5078 goto out_netdev;
5079 }
5080
5081 /* bond_init() must be called after dev_alloc_name() (for the
5082 * /proc files), but before register_netdevice(), because we
5083 * need to set function pointers.
5084 */
5085
5086 res = bond_init(bond_dev, params);
5087 if (res < 0) {
5088 goto out_netdev;
5089 }
5090
5091 res = register_netdevice(bond_dev);
5092 if (res < 0) {
5093 goto out_bond;
5094 }
5095
5096 bond_set_lockdep_class(bond_dev);
5097
5098 netif_carrier_off(bond_dev);
5099
5100 up_write(&bonding_rwsem);
5101 rtnl_unlock(); /* allows sysfs registration of net device */
5102 res = bond_create_sysfs_entry(bond_dev->priv);
5103 if (res < 0) {
5104 rtnl_lock();
5105 down_write(&bonding_rwsem);
5106 bond_deinit(bond_dev);
5107 unregister_netdevice(bond_dev);
5108 goto out_rtnl;
5109 }
5110
5111 return 0;
5112
5113 out_bond:
5114 bond_deinit(bond_dev);
5115 out_netdev:
5116 free_netdev(bond_dev);
5117 out_rtnl:
5118 up_write(&bonding_rwsem);
5119 rtnl_unlock();
5120 return res;
5121 }
5122
5123 static int __init bonding_init(void)
5124 {
5125 int i;
5126 int res;
5127 struct bonding *bond;
5128
5129 printk(KERN_INFO "%s", version);
5130
5131 res = bond_check_params(&bonding_defaults);
5132 if (res) {
5133 goto out;
5134 }
5135
5136 #ifdef CONFIG_PROC_FS
5137 bond_create_proc_dir();
5138 #endif
5139
5140 init_rwsem(&bonding_rwsem);
5141
5142 for (i = 0; i < max_bonds; i++) {
5143 res = bond_create(NULL, &bonding_defaults);
5144 if (res)
5145 goto err;
5146 }
5147
5148 res = bond_create_sysfs();
5149 if (res)
5150 goto err;
5151
5152 register_netdevice_notifier(&bond_netdev_notifier);
5153 register_inetaddr_notifier(&bond_inetaddr_notifier);
5154
5155 goto out;
5156 err:
5157 list_for_each_entry(bond, &bond_dev_list, bond_list) {
5158 bond_work_cancel_all(bond);
5159 destroy_workqueue(bond->wq);
5160 }
5161
5162 bond_destroy_sysfs();
5163
5164 rtnl_lock();
5165 bond_free_all();
5166 rtnl_unlock();
5167 out:
5168 return res;
5169
5170 }
5171
5172 static void __exit bonding_exit(void)
5173 {
5174 unregister_netdevice_notifier(&bond_netdev_notifier);
5175 unregister_inetaddr_notifier(&bond_inetaddr_notifier);
5176
5177 bond_destroy_sysfs();
5178
5179 rtnl_lock();
5180 bond_free_all();
5181 rtnl_unlock();
5182 }
5183
5184 module_init(bonding_init);
5185 module_exit(bonding_exit);
5186 MODULE_LICENSE("GPL");
5187 MODULE_VERSION(DRV_VERSION);
5188 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
5189 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
5190 MODULE_SUPPORTED_DEVICE("most ethernet devices");
5191
5192 /*
5193 * Local variables:
5194 * c-indent-level: 8
5195 * c-basic-offset: 8
5196 * tab-width: 8
5197 * End:
5198 */
5199
This page took 0.217418 seconds and 6 git commands to generate.