can: fix oops caused by wrong rtnl dellink usage
[deliverable/linux.git] / drivers / net / can / xilinx_can.c
1 /* Xilinx CAN device driver
2 *
3 * Copyright (C) 2012 - 2014 Xilinx, Inc.
4 * Copyright (C) 2009 PetaLogix. All rights reserved.
5 *
6 * Description:
7 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 */
18
19 #include <linux/clk.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/skbuff.h>
30 #include <linux/string.h>
31 #include <linux/types.h>
32 #include <linux/can/dev.h>
33 #include <linux/can/error.h>
34 #include <linux/can/led.h>
35 #include <linux/pm_runtime.h>
36
37 #define DRIVER_NAME "xilinx_can"
38
39 /* CAN registers set */
40 enum xcan_reg {
41 XCAN_SRR_OFFSET = 0x00, /* Software reset */
42 XCAN_MSR_OFFSET = 0x04, /* Mode select */
43 XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */
44 XCAN_BTR_OFFSET = 0x0C, /* Bit timing */
45 XCAN_ECR_OFFSET = 0x10, /* Error counter */
46 XCAN_ESR_OFFSET = 0x14, /* Error status */
47 XCAN_SR_OFFSET = 0x18, /* Status */
48 XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */
49 XCAN_IER_OFFSET = 0x20, /* Interrupt enable */
50 XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */
51 XCAN_TXFIFO_ID_OFFSET = 0x30,/* TX FIFO ID */
52 XCAN_TXFIFO_DLC_OFFSET = 0x34, /* TX FIFO DLC */
53 XCAN_TXFIFO_DW1_OFFSET = 0x38, /* TX FIFO Data Word 1 */
54 XCAN_TXFIFO_DW2_OFFSET = 0x3C, /* TX FIFO Data Word 2 */
55 XCAN_RXFIFO_ID_OFFSET = 0x50, /* RX FIFO ID */
56 XCAN_RXFIFO_DLC_OFFSET = 0x54, /* RX FIFO DLC */
57 XCAN_RXFIFO_DW1_OFFSET = 0x58, /* RX FIFO Data Word 1 */
58 XCAN_RXFIFO_DW2_OFFSET = 0x5C, /* RX FIFO Data Word 2 */
59 };
60
61 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
62 #define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */
63 #define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */
64 #define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */
65 #define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */
66 #define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */
67 #define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */
68 #define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */
69 #define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */
70 #define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */
71 #define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */
72 #define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */
73 #define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */
74 #define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */
75 #define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */
76 #define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */
77 #define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */
78 #define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */
79 #define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */
80 #define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */
81 #define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */
82 #define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */
83 #define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */
84 #define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */
85 #define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */
86 #define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */
87 #define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */
88 #define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */
89 #define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */
90 #define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */
91 #define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */
92 #define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */
93 #define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */
94 #define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */
95 #define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */
96 #define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */
97 #define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */
98 #define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */
99 #define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */
100
101 #define XCAN_INTR_ALL (XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\
102 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \
103 XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \
104 XCAN_IXR_ARBLST_MASK | XCAN_IXR_RXOK_MASK)
105
106 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
107 #define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */
108 #define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */
109 #define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */
110 #define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */
111 #define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */
112 #define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */
113
114 /* CAN frame length constants */
115 #define XCAN_FRAME_MAX_DATA_LEN 8
116 #define XCAN_TIMEOUT (1 * HZ)
117
118 /**
119 * struct xcan_priv - This definition define CAN driver instance
120 * @can: CAN private data structure.
121 * @tx_head: Tx CAN packets ready to send on the queue
122 * @tx_tail: Tx CAN packets successfully sended on the queue
123 * @tx_max: Maximum number packets the driver can send
124 * @napi: NAPI structure
125 * @read_reg: For reading data from CAN registers
126 * @write_reg: For writing data to CAN registers
127 * @dev: Network device data structure
128 * @reg_base: Ioremapped address to registers
129 * @irq_flags: For request_irq()
130 * @bus_clk: Pointer to struct clk
131 * @can_clk: Pointer to struct clk
132 */
133 struct xcan_priv {
134 struct can_priv can;
135 unsigned int tx_head;
136 unsigned int tx_tail;
137 unsigned int tx_max;
138 struct napi_struct napi;
139 u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
140 void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
141 u32 val);
142 struct device *dev;
143 void __iomem *reg_base;
144 unsigned long irq_flags;
145 struct clk *bus_clk;
146 struct clk *can_clk;
147 };
148
149 /* CAN Bittiming constants as per Xilinx CAN specs */
150 static const struct can_bittiming_const xcan_bittiming_const = {
151 .name = DRIVER_NAME,
152 .tseg1_min = 1,
153 .tseg1_max = 16,
154 .tseg2_min = 1,
155 .tseg2_max = 8,
156 .sjw_max = 4,
157 .brp_min = 1,
158 .brp_max = 256,
159 .brp_inc = 1,
160 };
161
162 /**
163 * xcan_write_reg_le - Write a value to the device register little endian
164 * @priv: Driver private data structure
165 * @reg: Register offset
166 * @val: Value to write at the Register offset
167 *
168 * Write data to the paricular CAN register
169 */
170 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
171 u32 val)
172 {
173 iowrite32(val, priv->reg_base + reg);
174 }
175
176 /**
177 * xcan_read_reg_le - Read a value from the device register little endian
178 * @priv: Driver private data structure
179 * @reg: Register offset
180 *
181 * Read data from the particular CAN register
182 * Return: value read from the CAN register
183 */
184 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
185 {
186 return ioread32(priv->reg_base + reg);
187 }
188
189 /**
190 * xcan_write_reg_be - Write a value to the device register big endian
191 * @priv: Driver private data structure
192 * @reg: Register offset
193 * @val: Value to write at the Register offset
194 *
195 * Write data to the paricular CAN register
196 */
197 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
198 u32 val)
199 {
200 iowrite32be(val, priv->reg_base + reg);
201 }
202
203 /**
204 * xcan_read_reg_be - Read a value from the device register big endian
205 * @priv: Driver private data structure
206 * @reg: Register offset
207 *
208 * Read data from the particular CAN register
209 * Return: value read from the CAN register
210 */
211 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
212 {
213 return ioread32be(priv->reg_base + reg);
214 }
215
216 /**
217 * set_reset_mode - Resets the CAN device mode
218 * @ndev: Pointer to net_device structure
219 *
220 * This is the driver reset mode routine.The driver
221 * enters into configuration mode.
222 *
223 * Return: 0 on success and failure value on error
224 */
225 static int set_reset_mode(struct net_device *ndev)
226 {
227 struct xcan_priv *priv = netdev_priv(ndev);
228 unsigned long timeout;
229
230 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
231
232 timeout = jiffies + XCAN_TIMEOUT;
233 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
234 if (time_after(jiffies, timeout)) {
235 netdev_warn(ndev, "timed out for config mode\n");
236 return -ETIMEDOUT;
237 }
238 usleep_range(500, 10000);
239 }
240
241 return 0;
242 }
243
244 /**
245 * xcan_set_bittiming - CAN set bit timing routine
246 * @ndev: Pointer to net_device structure
247 *
248 * This is the driver set bittiming routine.
249 * Return: 0 on success and failure value on error
250 */
251 static int xcan_set_bittiming(struct net_device *ndev)
252 {
253 struct xcan_priv *priv = netdev_priv(ndev);
254 struct can_bittiming *bt = &priv->can.bittiming;
255 u32 btr0, btr1;
256 u32 is_config_mode;
257
258 /* Check whether Xilinx CAN is in configuration mode.
259 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
260 */
261 is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
262 XCAN_SR_CONFIG_MASK;
263 if (!is_config_mode) {
264 netdev_alert(ndev,
265 "BUG! Cannot set bittiming - CAN is not in config mode\n");
266 return -EPERM;
267 }
268
269 /* Setting Baud Rate prescalar value in BRPR Register */
270 btr0 = (bt->brp - 1);
271
272 /* Setting Time Segment 1 in BTR Register */
273 btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
274
275 /* Setting Time Segment 2 in BTR Register */
276 btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT;
277
278 /* Setting Synchronous jump width in BTR Register */
279 btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT;
280
281 priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
282 priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
283
284 netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
285 priv->read_reg(priv, XCAN_BRPR_OFFSET),
286 priv->read_reg(priv, XCAN_BTR_OFFSET));
287
288 return 0;
289 }
290
291 /**
292 * xcan_chip_start - This the drivers start routine
293 * @ndev: Pointer to net_device structure
294 *
295 * This is the drivers start routine.
296 * Based on the State of the CAN device it puts
297 * the CAN device into a proper mode.
298 *
299 * Return: 0 on success and failure value on error
300 */
301 static int xcan_chip_start(struct net_device *ndev)
302 {
303 struct xcan_priv *priv = netdev_priv(ndev);
304 u32 reg_msr, reg_sr_mask;
305 int err;
306 unsigned long timeout;
307
308 /* Check if it is in reset mode */
309 err = set_reset_mode(ndev);
310 if (err < 0)
311 return err;
312
313 err = xcan_set_bittiming(ndev);
314 if (err < 0)
315 return err;
316
317 /* Enable interrupts */
318 priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL);
319
320 /* Check whether it is loopback mode or normal mode */
321 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
322 reg_msr = XCAN_MSR_LBACK_MASK;
323 reg_sr_mask = XCAN_SR_LBACK_MASK;
324 } else {
325 reg_msr = 0x0;
326 reg_sr_mask = XCAN_SR_NORMAL_MASK;
327 }
328
329 priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
330 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
331
332 timeout = jiffies + XCAN_TIMEOUT;
333 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
334 if (time_after(jiffies, timeout)) {
335 netdev_warn(ndev,
336 "timed out for correct mode\n");
337 return -ETIMEDOUT;
338 }
339 }
340 netdev_dbg(ndev, "status:#x%08x\n",
341 priv->read_reg(priv, XCAN_SR_OFFSET));
342
343 priv->can.state = CAN_STATE_ERROR_ACTIVE;
344 return 0;
345 }
346
347 /**
348 * xcan_do_set_mode - This sets the mode of the driver
349 * @ndev: Pointer to net_device structure
350 * @mode: Tells the mode of the driver
351 *
352 * This check the drivers state and calls the
353 * the corresponding modes to set.
354 *
355 * Return: 0 on success and failure value on error
356 */
357 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
358 {
359 int ret;
360
361 switch (mode) {
362 case CAN_MODE_START:
363 ret = xcan_chip_start(ndev);
364 if (ret < 0) {
365 netdev_err(ndev, "xcan_chip_start failed!\n");
366 return ret;
367 }
368 netif_wake_queue(ndev);
369 break;
370 default:
371 ret = -EOPNOTSUPP;
372 break;
373 }
374
375 return ret;
376 }
377
378 /**
379 * xcan_start_xmit - Starts the transmission
380 * @skb: sk_buff pointer that contains data to be Txed
381 * @ndev: Pointer to net_device structure
382 *
383 * This function is invoked from upper layers to initiate transmission. This
384 * function uses the next available free txbuff and populates their fields to
385 * start the transmission.
386 *
387 * Return: 0 on success and failure value on error
388 */
389 static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
390 {
391 struct xcan_priv *priv = netdev_priv(ndev);
392 struct net_device_stats *stats = &ndev->stats;
393 struct can_frame *cf = (struct can_frame *)skb->data;
394 u32 id, dlc, data[2] = {0, 0};
395
396 if (can_dropped_invalid_skb(ndev, skb))
397 return NETDEV_TX_OK;
398
399 /* Check if the TX buffer is full */
400 if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
401 XCAN_SR_TXFLL_MASK)) {
402 netif_stop_queue(ndev);
403 netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n");
404 return NETDEV_TX_BUSY;
405 }
406
407 /* Watch carefully on the bit sequence */
408 if (cf->can_id & CAN_EFF_FLAG) {
409 /* Extended CAN ID format */
410 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
411 XCAN_IDR_ID2_MASK;
412 id |= (((cf->can_id & CAN_EFF_MASK) >>
413 (CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
414 XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
415
416 /* The substibute remote TX request bit should be "1"
417 * for extended frames as in the Xilinx CAN datasheet
418 */
419 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
420
421 if (cf->can_id & CAN_RTR_FLAG)
422 /* Extended frames remote TX request */
423 id |= XCAN_IDR_RTR_MASK;
424 } else {
425 /* Standard CAN ID format */
426 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
427 XCAN_IDR_ID1_MASK;
428
429 if (cf->can_id & CAN_RTR_FLAG)
430 /* Standard frames remote TX request */
431 id |= XCAN_IDR_SRR_MASK;
432 }
433
434 dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
435
436 if (cf->can_dlc > 0)
437 data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
438 if (cf->can_dlc > 4)
439 data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
440
441 can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
442 priv->tx_head++;
443
444 /* Write the Frame to Xilinx CAN TX FIFO */
445 priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id);
446 /* If the CAN frame is RTR frame this write triggers tranmission */
447 priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc);
448 if (!(cf->can_id & CAN_RTR_FLAG)) {
449 priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]);
450 /* If the CAN frame is Standard/Extended frame this
451 * write triggers tranmission
452 */
453 priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]);
454 stats->tx_bytes += cf->can_dlc;
455 }
456
457 /* Check if the TX buffer is full */
458 if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
459 netif_stop_queue(ndev);
460
461 return NETDEV_TX_OK;
462 }
463
464 /**
465 * xcan_rx - Is called from CAN isr to complete the received
466 * frame processing
467 * @ndev: Pointer to net_device structure
468 *
469 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
470 * does minimal processing and invokes "netif_receive_skb" to complete further
471 * processing.
472 * Return: 1 on success and 0 on failure.
473 */
474 static int xcan_rx(struct net_device *ndev)
475 {
476 struct xcan_priv *priv = netdev_priv(ndev);
477 struct net_device_stats *stats = &ndev->stats;
478 struct can_frame *cf;
479 struct sk_buff *skb;
480 u32 id_xcan, dlc, data[2] = {0, 0};
481
482 skb = alloc_can_skb(ndev, &cf);
483 if (unlikely(!skb)) {
484 stats->rx_dropped++;
485 return 0;
486 }
487
488 /* Read a frame from Xilinx zynq CANPS */
489 id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET);
490 dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >>
491 XCAN_DLCR_DLC_SHIFT;
492
493 /* Change Xilinx CAN data length format to socketCAN data format */
494 cf->can_dlc = get_can_dlc(dlc);
495
496 /* Change Xilinx CAN ID format to socketCAN ID format */
497 if (id_xcan & XCAN_IDR_IDE_MASK) {
498 /* The received frame is an Extended format frame */
499 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
500 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
501 XCAN_IDR_ID2_SHIFT;
502 cf->can_id |= CAN_EFF_FLAG;
503 if (id_xcan & XCAN_IDR_RTR_MASK)
504 cf->can_id |= CAN_RTR_FLAG;
505 } else {
506 /* The received frame is a standard format frame */
507 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
508 XCAN_IDR_ID1_SHIFT;
509 if (id_xcan & XCAN_IDR_SRR_MASK)
510 cf->can_id |= CAN_RTR_FLAG;
511 }
512
513 /* DW1/DW2 must always be read to remove message from RXFIFO */
514 data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET);
515 data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET);
516
517 if (!(cf->can_id & CAN_RTR_FLAG)) {
518 /* Change Xilinx CAN data format to socketCAN data format */
519 if (cf->can_dlc > 0)
520 *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
521 if (cf->can_dlc > 4)
522 *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
523 }
524
525 stats->rx_bytes += cf->can_dlc;
526 stats->rx_packets++;
527 netif_receive_skb(skb);
528
529 return 1;
530 }
531
532 /**
533 * xcan_err_interrupt - error frame Isr
534 * @ndev: net_device pointer
535 * @isr: interrupt status register value
536 *
537 * This is the CAN error interrupt and it will
538 * check the the type of error and forward the error
539 * frame to upper layers.
540 */
541 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
542 {
543 struct xcan_priv *priv = netdev_priv(ndev);
544 struct net_device_stats *stats = &ndev->stats;
545 struct can_frame *cf;
546 struct sk_buff *skb;
547 u32 err_status, status, txerr = 0, rxerr = 0;
548
549 skb = alloc_can_err_skb(ndev, &cf);
550
551 err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
552 priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
553 txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
554 rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
555 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
556 status = priv->read_reg(priv, XCAN_SR_OFFSET);
557
558 if (isr & XCAN_IXR_BSOFF_MASK) {
559 priv->can.state = CAN_STATE_BUS_OFF;
560 priv->can.can_stats.bus_off++;
561 /* Leave device in Config Mode in bus-off state */
562 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
563 can_bus_off(ndev);
564 if (skb)
565 cf->can_id |= CAN_ERR_BUSOFF;
566 } else if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK) {
567 priv->can.state = CAN_STATE_ERROR_PASSIVE;
568 priv->can.can_stats.error_passive++;
569 if (skb) {
570 cf->can_id |= CAN_ERR_CRTL;
571 cf->data[1] = (rxerr > 127) ?
572 CAN_ERR_CRTL_RX_PASSIVE :
573 CAN_ERR_CRTL_TX_PASSIVE;
574 cf->data[6] = txerr;
575 cf->data[7] = rxerr;
576 }
577 } else if (status & XCAN_SR_ERRWRN_MASK) {
578 priv->can.state = CAN_STATE_ERROR_WARNING;
579 priv->can.can_stats.error_warning++;
580 if (skb) {
581 cf->can_id |= CAN_ERR_CRTL;
582 cf->data[1] |= (txerr > rxerr) ?
583 CAN_ERR_CRTL_TX_WARNING :
584 CAN_ERR_CRTL_RX_WARNING;
585 cf->data[6] = txerr;
586 cf->data[7] = rxerr;
587 }
588 }
589
590 /* Check for Arbitration lost interrupt */
591 if (isr & XCAN_IXR_ARBLST_MASK) {
592 priv->can.can_stats.arbitration_lost++;
593 if (skb) {
594 cf->can_id |= CAN_ERR_LOSTARB;
595 cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
596 }
597 }
598
599 /* Check for RX FIFO Overflow interrupt */
600 if (isr & XCAN_IXR_RXOFLW_MASK) {
601 stats->rx_over_errors++;
602 stats->rx_errors++;
603 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
604 if (skb) {
605 cf->can_id |= CAN_ERR_CRTL;
606 cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
607 }
608 }
609
610 /* Check for error interrupt */
611 if (isr & XCAN_IXR_ERROR_MASK) {
612 if (skb)
613 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
614
615 /* Check for Ack error interrupt */
616 if (err_status & XCAN_ESR_ACKER_MASK) {
617 stats->tx_errors++;
618 if (skb) {
619 cf->can_id |= CAN_ERR_ACK;
620 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
621 }
622 }
623
624 /* Check for Bit error interrupt */
625 if (err_status & XCAN_ESR_BERR_MASK) {
626 stats->tx_errors++;
627 if (skb) {
628 cf->can_id |= CAN_ERR_PROT;
629 cf->data[2] = CAN_ERR_PROT_BIT;
630 }
631 }
632
633 /* Check for Stuff error interrupt */
634 if (err_status & XCAN_ESR_STER_MASK) {
635 stats->rx_errors++;
636 if (skb) {
637 cf->can_id |= CAN_ERR_PROT;
638 cf->data[2] = CAN_ERR_PROT_STUFF;
639 }
640 }
641
642 /* Check for Form error interrupt */
643 if (err_status & XCAN_ESR_FMER_MASK) {
644 stats->rx_errors++;
645 if (skb) {
646 cf->can_id |= CAN_ERR_PROT;
647 cf->data[2] = CAN_ERR_PROT_FORM;
648 }
649 }
650
651 /* Check for CRC error interrupt */
652 if (err_status & XCAN_ESR_CRCER_MASK) {
653 stats->rx_errors++;
654 if (skb) {
655 cf->can_id |= CAN_ERR_PROT;
656 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
657 }
658 }
659 priv->can.can_stats.bus_error++;
660 }
661
662 if (skb) {
663 stats->rx_packets++;
664 stats->rx_bytes += cf->can_dlc;
665 netif_rx(skb);
666 }
667
668 netdev_dbg(ndev, "%s: error status register:0x%x\n",
669 __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
670 }
671
672 /**
673 * xcan_state_interrupt - It will check the state of the CAN device
674 * @ndev: net_device pointer
675 * @isr: interrupt status register value
676 *
677 * This will checks the state of the CAN device
678 * and puts the device into appropriate state.
679 */
680 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
681 {
682 struct xcan_priv *priv = netdev_priv(ndev);
683
684 /* Check for Sleep interrupt if set put CAN device in sleep state */
685 if (isr & XCAN_IXR_SLP_MASK)
686 priv->can.state = CAN_STATE_SLEEPING;
687
688 /* Check for Wake up interrupt if set put CAN device in Active state */
689 if (isr & XCAN_IXR_WKUP_MASK)
690 priv->can.state = CAN_STATE_ERROR_ACTIVE;
691 }
692
693 /**
694 * xcan_rx_poll - Poll routine for rx packets (NAPI)
695 * @napi: napi structure pointer
696 * @quota: Max number of rx packets to be processed.
697 *
698 * This is the poll routine for rx part.
699 * It will process the packets maximux quota value.
700 *
701 * Return: number of packets received
702 */
703 static int xcan_rx_poll(struct napi_struct *napi, int quota)
704 {
705 struct net_device *ndev = napi->dev;
706 struct xcan_priv *priv = netdev_priv(ndev);
707 u32 isr, ier;
708 int work_done = 0;
709
710 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
711 while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) {
712 if (isr & XCAN_IXR_RXOK_MASK) {
713 priv->write_reg(priv, XCAN_ICR_OFFSET,
714 XCAN_IXR_RXOK_MASK);
715 work_done += xcan_rx(ndev);
716 } else {
717 priv->write_reg(priv, XCAN_ICR_OFFSET,
718 XCAN_IXR_RXNEMP_MASK);
719 break;
720 }
721 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK);
722 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
723 }
724
725 if (work_done)
726 can_led_event(ndev, CAN_LED_EVENT_RX);
727
728 if (work_done < quota) {
729 napi_complete(napi);
730 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
731 ier |= (XCAN_IXR_RXOK_MASK | XCAN_IXR_RXNEMP_MASK);
732 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
733 }
734 return work_done;
735 }
736
737 /**
738 * xcan_tx_interrupt - Tx Done Isr
739 * @ndev: net_device pointer
740 * @isr: Interrupt status register value
741 */
742 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
743 {
744 struct xcan_priv *priv = netdev_priv(ndev);
745 struct net_device_stats *stats = &ndev->stats;
746
747 while ((priv->tx_head - priv->tx_tail > 0) &&
748 (isr & XCAN_IXR_TXOK_MASK)) {
749 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
750 can_get_echo_skb(ndev, priv->tx_tail %
751 priv->tx_max);
752 priv->tx_tail++;
753 stats->tx_packets++;
754 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
755 }
756 can_led_event(ndev, CAN_LED_EVENT_TX);
757 netif_wake_queue(ndev);
758 }
759
760 /**
761 * xcan_interrupt - CAN Isr
762 * @irq: irq number
763 * @dev_id: device id poniter
764 *
765 * This is the xilinx CAN Isr. It checks for the type of interrupt
766 * and invokes the corresponding ISR.
767 *
768 * Return:
769 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
770 */
771 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
772 {
773 struct net_device *ndev = (struct net_device *)dev_id;
774 struct xcan_priv *priv = netdev_priv(ndev);
775 u32 isr, ier;
776
777 /* Get the interrupt status from Xilinx CAN */
778 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
779 if (!isr)
780 return IRQ_NONE;
781
782 /* Check for the type of interrupt and Processing it */
783 if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
784 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
785 XCAN_IXR_WKUP_MASK));
786 xcan_state_interrupt(ndev, isr);
787 }
788
789 /* Check for Tx interrupt and Processing it */
790 if (isr & XCAN_IXR_TXOK_MASK)
791 xcan_tx_interrupt(ndev, isr);
792
793 /* Check for the type of error interrupt and Processing it */
794 if (isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
795 XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK)) {
796 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_ERROR_MASK |
797 XCAN_IXR_RXOFLW_MASK | XCAN_IXR_BSOFF_MASK |
798 XCAN_IXR_ARBLST_MASK));
799 xcan_err_interrupt(ndev, isr);
800 }
801
802 /* Check for the type of receive interrupt and Processing it */
803 if (isr & (XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK)) {
804 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
805 ier &= ~(XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK);
806 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
807 napi_schedule(&priv->napi);
808 }
809 return IRQ_HANDLED;
810 }
811
812 /**
813 * xcan_chip_stop - Driver stop routine
814 * @ndev: Pointer to net_device structure
815 *
816 * This is the drivers stop routine. It will disable the
817 * interrupts and put the device into configuration mode.
818 */
819 static void xcan_chip_stop(struct net_device *ndev)
820 {
821 struct xcan_priv *priv = netdev_priv(ndev);
822 u32 ier;
823
824 /* Disable interrupts and leave the can in configuration mode */
825 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
826 ier &= ~XCAN_INTR_ALL;
827 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
828 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
829 priv->can.state = CAN_STATE_STOPPED;
830 }
831
832 /**
833 * xcan_open - Driver open routine
834 * @ndev: Pointer to net_device structure
835 *
836 * This is the driver open routine.
837 * Return: 0 on success and failure value on error
838 */
839 static int xcan_open(struct net_device *ndev)
840 {
841 struct xcan_priv *priv = netdev_priv(ndev);
842 int ret;
843
844 ret = pm_runtime_get_sync(priv->dev);
845 if (ret < 0) {
846 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
847 __func__, ret);
848 return ret;
849 }
850
851 ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
852 ndev->name, ndev);
853 if (ret < 0) {
854 netdev_err(ndev, "irq allocation for CAN failed\n");
855 goto err;
856 }
857
858 /* Set chip into reset mode */
859 ret = set_reset_mode(ndev);
860 if (ret < 0) {
861 netdev_err(ndev, "mode resetting failed!\n");
862 goto err_irq;
863 }
864
865 /* Common open */
866 ret = open_candev(ndev);
867 if (ret)
868 goto err_irq;
869
870 ret = xcan_chip_start(ndev);
871 if (ret < 0) {
872 netdev_err(ndev, "xcan_chip_start failed!\n");
873 goto err_candev;
874 }
875
876 can_led_event(ndev, CAN_LED_EVENT_OPEN);
877 napi_enable(&priv->napi);
878 netif_start_queue(ndev);
879
880 return 0;
881
882 err_candev:
883 close_candev(ndev);
884 err_irq:
885 free_irq(ndev->irq, ndev);
886 err:
887 pm_runtime_put(priv->dev);
888
889 return ret;
890 }
891
892 /**
893 * xcan_close - Driver close routine
894 * @ndev: Pointer to net_device structure
895 *
896 * Return: 0 always
897 */
898 static int xcan_close(struct net_device *ndev)
899 {
900 struct xcan_priv *priv = netdev_priv(ndev);
901
902 netif_stop_queue(ndev);
903 napi_disable(&priv->napi);
904 xcan_chip_stop(ndev);
905 free_irq(ndev->irq, ndev);
906 close_candev(ndev);
907
908 can_led_event(ndev, CAN_LED_EVENT_STOP);
909 pm_runtime_put(priv->dev);
910
911 return 0;
912 }
913
914 /**
915 * xcan_get_berr_counter - error counter routine
916 * @ndev: Pointer to net_device structure
917 * @bec: Pointer to can_berr_counter structure
918 *
919 * This is the driver error counter routine.
920 * Return: 0 on success and failure value on error
921 */
922 static int xcan_get_berr_counter(const struct net_device *ndev,
923 struct can_berr_counter *bec)
924 {
925 struct xcan_priv *priv = netdev_priv(ndev);
926 int ret;
927
928 ret = pm_runtime_get_sync(priv->dev);
929 if (ret < 0) {
930 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
931 __func__, ret);
932 return ret;
933 }
934
935 bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
936 bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
937 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
938
939 pm_runtime_put(priv->dev);
940
941 return 0;
942 }
943
944
945 static const struct net_device_ops xcan_netdev_ops = {
946 .ndo_open = xcan_open,
947 .ndo_stop = xcan_close,
948 .ndo_start_xmit = xcan_start_xmit,
949 .ndo_change_mtu = can_change_mtu,
950 };
951
952 /**
953 * xcan_suspend - Suspend method for the driver
954 * @dev: Address of the device structure
955 *
956 * Put the driver into low power mode.
957 * Return: 0 on success and failure value on error
958 */
959 static int __maybe_unused xcan_suspend(struct device *dev)
960 {
961 if (!device_may_wakeup(dev))
962 return pm_runtime_force_suspend(dev);
963
964 return 0;
965 }
966
967 /**
968 * xcan_resume - Resume from suspend
969 * @dev: Address of the device structure
970 *
971 * Resume operation after suspend.
972 * Return: 0 on success and failure value on error
973 */
974 static int __maybe_unused xcan_resume(struct device *dev)
975 {
976 if (!device_may_wakeup(dev))
977 return pm_runtime_force_resume(dev);
978
979 return 0;
980
981 }
982
983 /**
984 * xcan_runtime_suspend - Runtime suspend method for the driver
985 * @dev: Address of the device structure
986 *
987 * Put the driver into low power mode.
988 * Return: 0 always
989 */
990 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
991 {
992 struct net_device *ndev = dev_get_drvdata(dev);
993 struct xcan_priv *priv = netdev_priv(ndev);
994
995 if (netif_running(ndev)) {
996 netif_stop_queue(ndev);
997 netif_device_detach(ndev);
998 }
999
1000 priv->write_reg(priv, XCAN_MSR_OFFSET, XCAN_MSR_SLEEP_MASK);
1001 priv->can.state = CAN_STATE_SLEEPING;
1002
1003 clk_disable_unprepare(priv->bus_clk);
1004 clk_disable_unprepare(priv->can_clk);
1005
1006 return 0;
1007 }
1008
1009 /**
1010 * xcan_runtime_resume - Runtime resume from suspend
1011 * @dev: Address of the device structure
1012 *
1013 * Resume operation after suspend.
1014 * Return: 0 on success and failure value on error
1015 */
1016 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1017 {
1018 struct net_device *ndev = dev_get_drvdata(dev);
1019 struct xcan_priv *priv = netdev_priv(ndev);
1020 int ret;
1021 u32 isr, status;
1022
1023 ret = clk_prepare_enable(priv->bus_clk);
1024 if (ret) {
1025 dev_err(dev, "Cannot enable clock.\n");
1026 return ret;
1027 }
1028 ret = clk_prepare_enable(priv->can_clk);
1029 if (ret) {
1030 dev_err(dev, "Cannot enable clock.\n");
1031 clk_disable_unprepare(priv->bus_clk);
1032 return ret;
1033 }
1034
1035 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1036 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1037 status = priv->read_reg(priv, XCAN_SR_OFFSET);
1038
1039 if (netif_running(ndev)) {
1040 if (isr & XCAN_IXR_BSOFF_MASK) {
1041 priv->can.state = CAN_STATE_BUS_OFF;
1042 priv->write_reg(priv, XCAN_SRR_OFFSET,
1043 XCAN_SRR_RESET_MASK);
1044 } else if ((status & XCAN_SR_ESTAT_MASK) ==
1045 XCAN_SR_ESTAT_MASK) {
1046 priv->can.state = CAN_STATE_ERROR_PASSIVE;
1047 } else if (status & XCAN_SR_ERRWRN_MASK) {
1048 priv->can.state = CAN_STATE_ERROR_WARNING;
1049 } else {
1050 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1051 }
1052 netif_device_attach(ndev);
1053 netif_start_queue(ndev);
1054 }
1055
1056 return 0;
1057 }
1058
1059 static const struct dev_pm_ops xcan_dev_pm_ops = {
1060 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1061 SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1062 };
1063
1064 /**
1065 * xcan_probe - Platform registration call
1066 * @pdev: Handle to the platform device structure
1067 *
1068 * This function does all the memory allocation and registration for the CAN
1069 * device.
1070 *
1071 * Return: 0 on success and failure value on error
1072 */
1073 static int xcan_probe(struct platform_device *pdev)
1074 {
1075 struct resource *res; /* IO mem resources */
1076 struct net_device *ndev;
1077 struct xcan_priv *priv;
1078 void __iomem *addr;
1079 int ret, rx_max, tx_max;
1080
1081 /* Get the virtual base address for the device */
1082 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1083 addr = devm_ioremap_resource(&pdev->dev, res);
1084 if (IS_ERR(addr)) {
1085 ret = PTR_ERR(addr);
1086 goto err;
1087 }
1088
1089 ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", &tx_max);
1090 if (ret < 0)
1091 goto err;
1092
1093 ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max);
1094 if (ret < 0)
1095 goto err;
1096
1097 /* Create a CAN device instance */
1098 ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1099 if (!ndev)
1100 return -ENOMEM;
1101
1102 priv = netdev_priv(ndev);
1103 priv->dev = &pdev->dev;
1104 priv->can.bittiming_const = &xcan_bittiming_const;
1105 priv->can.do_set_mode = xcan_do_set_mode;
1106 priv->can.do_get_berr_counter = xcan_get_berr_counter;
1107 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1108 CAN_CTRLMODE_BERR_REPORTING;
1109 priv->reg_base = addr;
1110 priv->tx_max = tx_max;
1111
1112 /* Get IRQ for the device */
1113 ndev->irq = platform_get_irq(pdev, 0);
1114 ndev->flags |= IFF_ECHO; /* We support local echo */
1115
1116 platform_set_drvdata(pdev, ndev);
1117 SET_NETDEV_DEV(ndev, &pdev->dev);
1118 ndev->netdev_ops = &xcan_netdev_ops;
1119
1120 /* Getting the CAN can_clk info */
1121 priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1122 if (IS_ERR(priv->can_clk)) {
1123 dev_err(&pdev->dev, "Device clock not found.\n");
1124 ret = PTR_ERR(priv->can_clk);
1125 goto err_free;
1126 }
1127 /* Check for type of CAN device */
1128 if (of_device_is_compatible(pdev->dev.of_node,
1129 "xlnx,zynq-can-1.0")) {
1130 priv->bus_clk = devm_clk_get(&pdev->dev, "pclk");
1131 if (IS_ERR(priv->bus_clk)) {
1132 dev_err(&pdev->dev, "bus clock not found\n");
1133 ret = PTR_ERR(priv->bus_clk);
1134 goto err_free;
1135 }
1136 } else {
1137 priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
1138 if (IS_ERR(priv->bus_clk)) {
1139 dev_err(&pdev->dev, "bus clock not found\n");
1140 ret = PTR_ERR(priv->bus_clk);
1141 goto err_free;
1142 }
1143 }
1144
1145 priv->write_reg = xcan_write_reg_le;
1146 priv->read_reg = xcan_read_reg_le;
1147
1148 pm_runtime_enable(&pdev->dev);
1149 ret = pm_runtime_get_sync(&pdev->dev);
1150 if (ret < 0) {
1151 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1152 __func__, ret);
1153 goto err_pmdisable;
1154 }
1155
1156 if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1157 priv->write_reg = xcan_write_reg_be;
1158 priv->read_reg = xcan_read_reg_be;
1159 }
1160
1161 priv->can.clock.freq = clk_get_rate(priv->can_clk);
1162
1163 netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1164
1165 ret = register_candev(ndev);
1166 if (ret) {
1167 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1168 goto err_disableclks;
1169 }
1170
1171 devm_can_led_init(ndev);
1172
1173 pm_runtime_put(&pdev->dev);
1174
1175 netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth:%d\n",
1176 priv->reg_base, ndev->irq, priv->can.clock.freq,
1177 priv->tx_max);
1178
1179 return 0;
1180
1181 err_disableclks:
1182 pm_runtime_put(priv->dev);
1183 err_pmdisable:
1184 pm_runtime_disable(&pdev->dev);
1185 err_free:
1186 free_candev(ndev);
1187 err:
1188 return ret;
1189 }
1190
1191 /**
1192 * xcan_remove - Unregister the device after releasing the resources
1193 * @pdev: Handle to the platform device structure
1194 *
1195 * This function frees all the resources allocated to the device.
1196 * Return: 0 always
1197 */
1198 static int xcan_remove(struct platform_device *pdev)
1199 {
1200 struct net_device *ndev = platform_get_drvdata(pdev);
1201 struct xcan_priv *priv = netdev_priv(ndev);
1202
1203 unregister_candev(ndev);
1204 pm_runtime_disable(&pdev->dev);
1205 netif_napi_del(&priv->napi);
1206 free_candev(ndev);
1207
1208 return 0;
1209 }
1210
1211 /* Match table for OF platform binding */
1212 static const struct of_device_id xcan_of_match[] = {
1213 { .compatible = "xlnx,zynq-can-1.0", },
1214 { .compatible = "xlnx,axi-can-1.00.a", },
1215 { /* end of list */ },
1216 };
1217 MODULE_DEVICE_TABLE(of, xcan_of_match);
1218
1219 static struct platform_driver xcan_driver = {
1220 .probe = xcan_probe,
1221 .remove = xcan_remove,
1222 .driver = {
1223 .name = DRIVER_NAME,
1224 .pm = &xcan_dev_pm_ops,
1225 .of_match_table = xcan_of_match,
1226 },
1227 };
1228
1229 module_platform_driver(xcan_driver);
1230
1231 MODULE_LICENSE("GPL");
1232 MODULE_AUTHOR("Xilinx Inc");
1233 MODULE_DESCRIPTION("Xilinx CAN interface");
This page took 0.06496 seconds and 5 git commands to generate.