Merge mainline (v2.6.34-rc7)
[deliverable/linux.git] / drivers / net / chelsio / cxgb2.c
1 /*****************************************************************************
2 * *
3 * File: cxgb2.c *
4 * $Revision: 1.25 $ *
5 * $Date: 2005/06/22 00:43:25 $ *
6 * Description: *
7 * Chelsio 10Gb Ethernet Driver. *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License, version 2, as *
11 * published by the Free Software Foundation. *
12 * *
13 * You should have received a copy of the GNU General Public License along *
14 * with this program; if not, write to the Free Software Foundation, Inc., *
15 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
16 * *
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
20 * *
21 * http://www.chelsio.com *
22 * *
23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
24 * All rights reserved. *
25 * *
26 * Maintainers: maintainers@chelsio.com *
27 * *
28 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
29 * Tina Yang <tainay@chelsio.com> *
30 * Felix Marti <felix@chelsio.com> *
31 * Scott Bardone <sbardone@chelsio.com> *
32 * Kurt Ottaway <kottaway@chelsio.com> *
33 * Frank DiMambro <frank@chelsio.com> *
34 * *
35 * History: *
36 * *
37 ****************************************************************************/
38
39 #include "common.h"
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/pci.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/if_vlan.h>
46 #include <linux/mii.h>
47 #include <linux/sockios.h>
48 #include <linux/dma-mapping.h>
49 #include <asm/uaccess.h>
50
51 #include "cpl5_cmd.h"
52 #include "regs.h"
53 #include "gmac.h"
54 #include "cphy.h"
55 #include "sge.h"
56 #include "tp.h"
57 #include "espi.h"
58 #include "elmer0.h"
59
60 #include <linux/workqueue.h>
61
62 static inline void schedule_mac_stats_update(struct adapter *ap, int secs)
63 {
64 schedule_delayed_work(&ap->stats_update_task, secs * HZ);
65 }
66
67 static inline void cancel_mac_stats_update(struct adapter *ap)
68 {
69 cancel_delayed_work(&ap->stats_update_task);
70 }
71
72 #define MAX_CMDQ_ENTRIES 16384
73 #define MAX_CMDQ1_ENTRIES 1024
74 #define MAX_RX_BUFFERS 16384
75 #define MAX_RX_JUMBO_BUFFERS 16384
76 #define MAX_TX_BUFFERS_HIGH 16384U
77 #define MAX_TX_BUFFERS_LOW 1536U
78 #define MAX_TX_BUFFERS 1460U
79 #define MIN_FL_ENTRIES 32
80
81 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
82 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
83 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
84
85 /*
86 * The EEPROM is actually bigger but only the first few bytes are used so we
87 * only report those.
88 */
89 #define EEPROM_SIZE 32
90
91 MODULE_DESCRIPTION(DRV_DESCRIPTION);
92 MODULE_AUTHOR("Chelsio Communications");
93 MODULE_LICENSE("GPL");
94
95 static int dflt_msg_enable = DFLT_MSG_ENABLE;
96
97 module_param(dflt_msg_enable, int, 0);
98 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T1 default message enable bitmap");
99
100 #define HCLOCK 0x0
101 #define LCLOCK 0x1
102
103 /* T1 cards powersave mode */
104 static int t1_clock(struct adapter *adapter, int mode);
105 static int t1powersave = 1; /* HW default is powersave mode. */
106
107 module_param(t1powersave, int, 0);
108 MODULE_PARM_DESC(t1powersave, "Enable/Disable T1 powersaving mode");
109
110 static int disable_msi = 0;
111 module_param(disable_msi, int, 0);
112 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
113
114 static const char pci_speed[][4] = {
115 "33", "66", "100", "133"
116 };
117
118 /*
119 * Setup MAC to receive the types of packets we want.
120 */
121 static void t1_set_rxmode(struct net_device *dev)
122 {
123 struct adapter *adapter = dev->ml_priv;
124 struct cmac *mac = adapter->port[dev->if_port].mac;
125 struct t1_rx_mode rm;
126
127 rm.dev = dev;
128 mac->ops->set_rx_mode(mac, &rm);
129 }
130
131 static void link_report(struct port_info *p)
132 {
133 if (!netif_carrier_ok(p->dev))
134 printk(KERN_INFO "%s: link down\n", p->dev->name);
135 else {
136 const char *s = "10Mbps";
137
138 switch (p->link_config.speed) {
139 case SPEED_10000: s = "10Gbps"; break;
140 case SPEED_1000: s = "1000Mbps"; break;
141 case SPEED_100: s = "100Mbps"; break;
142 }
143
144 printk(KERN_INFO "%s: link up, %s, %s-duplex\n",
145 p->dev->name, s,
146 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
147 }
148 }
149
150 void t1_link_negotiated(struct adapter *adapter, int port_id, int link_stat,
151 int speed, int duplex, int pause)
152 {
153 struct port_info *p = &adapter->port[port_id];
154
155 if (link_stat != netif_carrier_ok(p->dev)) {
156 if (link_stat)
157 netif_carrier_on(p->dev);
158 else
159 netif_carrier_off(p->dev);
160 link_report(p);
161
162 /* multi-ports: inform toe */
163 if ((speed > 0) && (adapter->params.nports > 1)) {
164 unsigned int sched_speed = 10;
165 switch (speed) {
166 case SPEED_1000:
167 sched_speed = 1000;
168 break;
169 case SPEED_100:
170 sched_speed = 100;
171 break;
172 case SPEED_10:
173 sched_speed = 10;
174 break;
175 }
176 t1_sched_update_parms(adapter->sge, port_id, 0, sched_speed);
177 }
178 }
179 }
180
181 static void link_start(struct port_info *p)
182 {
183 struct cmac *mac = p->mac;
184
185 mac->ops->reset(mac);
186 if (mac->ops->macaddress_set)
187 mac->ops->macaddress_set(mac, p->dev->dev_addr);
188 t1_set_rxmode(p->dev);
189 t1_link_start(p->phy, mac, &p->link_config);
190 mac->ops->enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
191 }
192
193 static void enable_hw_csum(struct adapter *adapter)
194 {
195 if (adapter->flags & TSO_CAPABLE)
196 t1_tp_set_ip_checksum_offload(adapter->tp, 1); /* for TSO only */
197 if (adapter->flags & UDP_CSUM_CAPABLE)
198 t1_tp_set_udp_checksum_offload(adapter->tp, 1);
199 t1_tp_set_tcp_checksum_offload(adapter->tp, 1);
200 }
201
202 /*
203 * Things to do upon first use of a card.
204 * This must run with the rtnl lock held.
205 */
206 static int cxgb_up(struct adapter *adapter)
207 {
208 int err = 0;
209
210 if (!(adapter->flags & FULL_INIT_DONE)) {
211 err = t1_init_hw_modules(adapter);
212 if (err)
213 goto out_err;
214
215 enable_hw_csum(adapter);
216 adapter->flags |= FULL_INIT_DONE;
217 }
218
219 t1_interrupts_clear(adapter);
220
221 adapter->params.has_msi = !disable_msi && !pci_enable_msi(adapter->pdev);
222 err = request_irq(adapter->pdev->irq, t1_interrupt,
223 adapter->params.has_msi ? 0 : IRQF_SHARED,
224 adapter->name, adapter);
225 if (err) {
226 if (adapter->params.has_msi)
227 pci_disable_msi(adapter->pdev);
228
229 goto out_err;
230 }
231
232 t1_sge_start(adapter->sge);
233 t1_interrupts_enable(adapter);
234 out_err:
235 return err;
236 }
237
238 /*
239 * Release resources when all the ports have been stopped.
240 */
241 static void cxgb_down(struct adapter *adapter)
242 {
243 t1_sge_stop(adapter->sge);
244 t1_interrupts_disable(adapter);
245 free_irq(adapter->pdev->irq, adapter);
246 if (adapter->params.has_msi)
247 pci_disable_msi(adapter->pdev);
248 }
249
250 static int cxgb_open(struct net_device *dev)
251 {
252 int err;
253 struct adapter *adapter = dev->ml_priv;
254 int other_ports = adapter->open_device_map & PORT_MASK;
255
256 napi_enable(&adapter->napi);
257 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) {
258 napi_disable(&adapter->napi);
259 return err;
260 }
261
262 __set_bit(dev->if_port, &adapter->open_device_map);
263 link_start(&adapter->port[dev->if_port]);
264 netif_start_queue(dev);
265 if (!other_ports && adapter->params.stats_update_period)
266 schedule_mac_stats_update(adapter,
267 adapter->params.stats_update_period);
268 return 0;
269 }
270
271 static int cxgb_close(struct net_device *dev)
272 {
273 struct adapter *adapter = dev->ml_priv;
274 struct port_info *p = &adapter->port[dev->if_port];
275 struct cmac *mac = p->mac;
276
277 netif_stop_queue(dev);
278 napi_disable(&adapter->napi);
279 mac->ops->disable(mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
280 netif_carrier_off(dev);
281
282 clear_bit(dev->if_port, &adapter->open_device_map);
283 if (adapter->params.stats_update_period &&
284 !(adapter->open_device_map & PORT_MASK)) {
285 /* Stop statistics accumulation. */
286 smp_mb__after_clear_bit();
287 spin_lock(&adapter->work_lock); /* sync with update task */
288 spin_unlock(&adapter->work_lock);
289 cancel_mac_stats_update(adapter);
290 }
291
292 if (!adapter->open_device_map)
293 cxgb_down(adapter);
294 return 0;
295 }
296
297 static struct net_device_stats *t1_get_stats(struct net_device *dev)
298 {
299 struct adapter *adapter = dev->ml_priv;
300 struct port_info *p = &adapter->port[dev->if_port];
301 struct net_device_stats *ns = &p->netstats;
302 const struct cmac_statistics *pstats;
303
304 /* Do a full update of the MAC stats */
305 pstats = p->mac->ops->statistics_update(p->mac,
306 MAC_STATS_UPDATE_FULL);
307
308 ns->tx_packets = pstats->TxUnicastFramesOK +
309 pstats->TxMulticastFramesOK + pstats->TxBroadcastFramesOK;
310
311 ns->rx_packets = pstats->RxUnicastFramesOK +
312 pstats->RxMulticastFramesOK + pstats->RxBroadcastFramesOK;
313
314 ns->tx_bytes = pstats->TxOctetsOK;
315 ns->rx_bytes = pstats->RxOctetsOK;
316
317 ns->tx_errors = pstats->TxLateCollisions + pstats->TxLengthErrors +
318 pstats->TxUnderrun + pstats->TxFramesAbortedDueToXSCollisions;
319 ns->rx_errors = pstats->RxDataErrors + pstats->RxJabberErrors +
320 pstats->RxFCSErrors + pstats->RxAlignErrors +
321 pstats->RxSequenceErrors + pstats->RxFrameTooLongErrors +
322 pstats->RxSymbolErrors + pstats->RxRuntErrors;
323
324 ns->multicast = pstats->RxMulticastFramesOK;
325 ns->collisions = pstats->TxTotalCollisions;
326
327 /* detailed rx_errors */
328 ns->rx_length_errors = pstats->RxFrameTooLongErrors +
329 pstats->RxJabberErrors;
330 ns->rx_over_errors = 0;
331 ns->rx_crc_errors = pstats->RxFCSErrors;
332 ns->rx_frame_errors = pstats->RxAlignErrors;
333 ns->rx_fifo_errors = 0;
334 ns->rx_missed_errors = 0;
335
336 /* detailed tx_errors */
337 ns->tx_aborted_errors = pstats->TxFramesAbortedDueToXSCollisions;
338 ns->tx_carrier_errors = 0;
339 ns->tx_fifo_errors = pstats->TxUnderrun;
340 ns->tx_heartbeat_errors = 0;
341 ns->tx_window_errors = pstats->TxLateCollisions;
342 return ns;
343 }
344
345 static u32 get_msglevel(struct net_device *dev)
346 {
347 struct adapter *adapter = dev->ml_priv;
348
349 return adapter->msg_enable;
350 }
351
352 static void set_msglevel(struct net_device *dev, u32 val)
353 {
354 struct adapter *adapter = dev->ml_priv;
355
356 adapter->msg_enable = val;
357 }
358
359 static char stats_strings[][ETH_GSTRING_LEN] = {
360 "TxOctetsOK",
361 "TxOctetsBad",
362 "TxUnicastFramesOK",
363 "TxMulticastFramesOK",
364 "TxBroadcastFramesOK",
365 "TxPauseFrames",
366 "TxFramesWithDeferredXmissions",
367 "TxLateCollisions",
368 "TxTotalCollisions",
369 "TxFramesAbortedDueToXSCollisions",
370 "TxUnderrun",
371 "TxLengthErrors",
372 "TxInternalMACXmitError",
373 "TxFramesWithExcessiveDeferral",
374 "TxFCSErrors",
375 "TxJumboFramesOk",
376 "TxJumboOctetsOk",
377
378 "RxOctetsOK",
379 "RxOctetsBad",
380 "RxUnicastFramesOK",
381 "RxMulticastFramesOK",
382 "RxBroadcastFramesOK",
383 "RxPauseFrames",
384 "RxFCSErrors",
385 "RxAlignErrors",
386 "RxSymbolErrors",
387 "RxDataErrors",
388 "RxSequenceErrors",
389 "RxRuntErrors",
390 "RxJabberErrors",
391 "RxInternalMACRcvError",
392 "RxInRangeLengthErrors",
393 "RxOutOfRangeLengthField",
394 "RxFrameTooLongErrors",
395 "RxJumboFramesOk",
396 "RxJumboOctetsOk",
397
398 /* Port stats */
399 "RxCsumGood",
400 "TxCsumOffload",
401 "TxTso",
402 "RxVlan",
403 "TxVlan",
404 "TxNeedHeadroom",
405
406 /* Interrupt stats */
407 "rx drops",
408 "pure_rsps",
409 "unhandled irqs",
410 "respQ_empty",
411 "respQ_overflow",
412 "freelistQ_empty",
413 "pkt_too_big",
414 "pkt_mismatch",
415 "cmdQ_full0",
416 "cmdQ_full1",
417
418 "espi_DIP2ParityErr",
419 "espi_DIP4Err",
420 "espi_RxDrops",
421 "espi_TxDrops",
422 "espi_RxOvfl",
423 "espi_ParityErr"
424 };
425
426 #define T2_REGMAP_SIZE (3 * 1024)
427
428 static int get_regs_len(struct net_device *dev)
429 {
430 return T2_REGMAP_SIZE;
431 }
432
433 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
434 {
435 struct adapter *adapter = dev->ml_priv;
436
437 strcpy(info->driver, DRV_NAME);
438 strcpy(info->version, DRV_VERSION);
439 strcpy(info->fw_version, "N/A");
440 strcpy(info->bus_info, pci_name(adapter->pdev));
441 }
442
443 static int get_sset_count(struct net_device *dev, int sset)
444 {
445 switch (sset) {
446 case ETH_SS_STATS:
447 return ARRAY_SIZE(stats_strings);
448 default:
449 return -EOPNOTSUPP;
450 }
451 }
452
453 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
454 {
455 if (stringset == ETH_SS_STATS)
456 memcpy(data, stats_strings, sizeof(stats_strings));
457 }
458
459 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
460 u64 *data)
461 {
462 struct adapter *adapter = dev->ml_priv;
463 struct cmac *mac = adapter->port[dev->if_port].mac;
464 const struct cmac_statistics *s;
465 const struct sge_intr_counts *t;
466 struct sge_port_stats ss;
467
468 s = mac->ops->statistics_update(mac, MAC_STATS_UPDATE_FULL);
469 t = t1_sge_get_intr_counts(adapter->sge);
470 t1_sge_get_port_stats(adapter->sge, dev->if_port, &ss);
471
472 *data++ = s->TxOctetsOK;
473 *data++ = s->TxOctetsBad;
474 *data++ = s->TxUnicastFramesOK;
475 *data++ = s->TxMulticastFramesOK;
476 *data++ = s->TxBroadcastFramesOK;
477 *data++ = s->TxPauseFrames;
478 *data++ = s->TxFramesWithDeferredXmissions;
479 *data++ = s->TxLateCollisions;
480 *data++ = s->TxTotalCollisions;
481 *data++ = s->TxFramesAbortedDueToXSCollisions;
482 *data++ = s->TxUnderrun;
483 *data++ = s->TxLengthErrors;
484 *data++ = s->TxInternalMACXmitError;
485 *data++ = s->TxFramesWithExcessiveDeferral;
486 *data++ = s->TxFCSErrors;
487 *data++ = s->TxJumboFramesOK;
488 *data++ = s->TxJumboOctetsOK;
489
490 *data++ = s->RxOctetsOK;
491 *data++ = s->RxOctetsBad;
492 *data++ = s->RxUnicastFramesOK;
493 *data++ = s->RxMulticastFramesOK;
494 *data++ = s->RxBroadcastFramesOK;
495 *data++ = s->RxPauseFrames;
496 *data++ = s->RxFCSErrors;
497 *data++ = s->RxAlignErrors;
498 *data++ = s->RxSymbolErrors;
499 *data++ = s->RxDataErrors;
500 *data++ = s->RxSequenceErrors;
501 *data++ = s->RxRuntErrors;
502 *data++ = s->RxJabberErrors;
503 *data++ = s->RxInternalMACRcvError;
504 *data++ = s->RxInRangeLengthErrors;
505 *data++ = s->RxOutOfRangeLengthField;
506 *data++ = s->RxFrameTooLongErrors;
507 *data++ = s->RxJumboFramesOK;
508 *data++ = s->RxJumboOctetsOK;
509
510 *data++ = ss.rx_cso_good;
511 *data++ = ss.tx_cso;
512 *data++ = ss.tx_tso;
513 *data++ = ss.vlan_xtract;
514 *data++ = ss.vlan_insert;
515 *data++ = ss.tx_need_hdrroom;
516
517 *data++ = t->rx_drops;
518 *data++ = t->pure_rsps;
519 *data++ = t->unhandled_irqs;
520 *data++ = t->respQ_empty;
521 *data++ = t->respQ_overflow;
522 *data++ = t->freelistQ_empty;
523 *data++ = t->pkt_too_big;
524 *data++ = t->pkt_mismatch;
525 *data++ = t->cmdQ_full[0];
526 *data++ = t->cmdQ_full[1];
527
528 if (adapter->espi) {
529 const struct espi_intr_counts *e;
530
531 e = t1_espi_get_intr_counts(adapter->espi);
532 *data++ = e->DIP2_parity_err;
533 *data++ = e->DIP4_err;
534 *data++ = e->rx_drops;
535 *data++ = e->tx_drops;
536 *data++ = e->rx_ovflw;
537 *data++ = e->parity_err;
538 }
539 }
540
541 static inline void reg_block_dump(struct adapter *ap, void *buf,
542 unsigned int start, unsigned int end)
543 {
544 u32 *p = buf + start;
545
546 for ( ; start <= end; start += sizeof(u32))
547 *p++ = readl(ap->regs + start);
548 }
549
550 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
551 void *buf)
552 {
553 struct adapter *ap = dev->ml_priv;
554
555 /*
556 * Version scheme: bits 0..9: chip version, bits 10..15: chip revision
557 */
558 regs->version = 2;
559
560 memset(buf, 0, T2_REGMAP_SIZE);
561 reg_block_dump(ap, buf, 0, A_SG_RESPACCUTIMER);
562 reg_block_dump(ap, buf, A_MC3_CFG, A_MC4_INT_CAUSE);
563 reg_block_dump(ap, buf, A_TPI_ADDR, A_TPI_PAR);
564 reg_block_dump(ap, buf, A_TP_IN_CONFIG, A_TP_TX_DROP_COUNT);
565 reg_block_dump(ap, buf, A_RAT_ROUTE_CONTROL, A_RAT_INTR_CAUSE);
566 reg_block_dump(ap, buf, A_CSPI_RX_AE_WM, A_CSPI_INTR_ENABLE);
567 reg_block_dump(ap, buf, A_ESPI_SCH_TOKEN0, A_ESPI_GOSTAT);
568 reg_block_dump(ap, buf, A_ULP_ULIMIT, A_ULP_PIO_CTRL);
569 reg_block_dump(ap, buf, A_PL_ENABLE, A_PL_CAUSE);
570 reg_block_dump(ap, buf, A_MC5_CONFIG, A_MC5_MASK_WRITE_CMD);
571 }
572
573 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
574 {
575 struct adapter *adapter = dev->ml_priv;
576 struct port_info *p = &adapter->port[dev->if_port];
577
578 cmd->supported = p->link_config.supported;
579 cmd->advertising = p->link_config.advertising;
580
581 if (netif_carrier_ok(dev)) {
582 cmd->speed = p->link_config.speed;
583 cmd->duplex = p->link_config.duplex;
584 } else {
585 cmd->speed = -1;
586 cmd->duplex = -1;
587 }
588
589 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
590 cmd->phy_address = p->phy->mdio.prtad;
591 cmd->transceiver = XCVR_EXTERNAL;
592 cmd->autoneg = p->link_config.autoneg;
593 cmd->maxtxpkt = 0;
594 cmd->maxrxpkt = 0;
595 return 0;
596 }
597
598 static int speed_duplex_to_caps(int speed, int duplex)
599 {
600 int cap = 0;
601
602 switch (speed) {
603 case SPEED_10:
604 if (duplex == DUPLEX_FULL)
605 cap = SUPPORTED_10baseT_Full;
606 else
607 cap = SUPPORTED_10baseT_Half;
608 break;
609 case SPEED_100:
610 if (duplex == DUPLEX_FULL)
611 cap = SUPPORTED_100baseT_Full;
612 else
613 cap = SUPPORTED_100baseT_Half;
614 break;
615 case SPEED_1000:
616 if (duplex == DUPLEX_FULL)
617 cap = SUPPORTED_1000baseT_Full;
618 else
619 cap = SUPPORTED_1000baseT_Half;
620 break;
621 case SPEED_10000:
622 if (duplex == DUPLEX_FULL)
623 cap = SUPPORTED_10000baseT_Full;
624 }
625 return cap;
626 }
627
628 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
629 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
630 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
631 ADVERTISED_10000baseT_Full)
632
633 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
634 {
635 struct adapter *adapter = dev->ml_priv;
636 struct port_info *p = &adapter->port[dev->if_port];
637 struct link_config *lc = &p->link_config;
638
639 if (!(lc->supported & SUPPORTED_Autoneg))
640 return -EOPNOTSUPP; /* can't change speed/duplex */
641
642 if (cmd->autoneg == AUTONEG_DISABLE) {
643 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
644
645 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
646 return -EINVAL;
647 lc->requested_speed = cmd->speed;
648 lc->requested_duplex = cmd->duplex;
649 lc->advertising = 0;
650 } else {
651 cmd->advertising &= ADVERTISED_MASK;
652 if (cmd->advertising & (cmd->advertising - 1))
653 cmd->advertising = lc->supported;
654 cmd->advertising &= lc->supported;
655 if (!cmd->advertising)
656 return -EINVAL;
657 lc->requested_speed = SPEED_INVALID;
658 lc->requested_duplex = DUPLEX_INVALID;
659 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
660 }
661 lc->autoneg = cmd->autoneg;
662 if (netif_running(dev))
663 t1_link_start(p->phy, p->mac, lc);
664 return 0;
665 }
666
667 static void get_pauseparam(struct net_device *dev,
668 struct ethtool_pauseparam *epause)
669 {
670 struct adapter *adapter = dev->ml_priv;
671 struct port_info *p = &adapter->port[dev->if_port];
672
673 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
674 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
675 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
676 }
677
678 static int set_pauseparam(struct net_device *dev,
679 struct ethtool_pauseparam *epause)
680 {
681 struct adapter *adapter = dev->ml_priv;
682 struct port_info *p = &adapter->port[dev->if_port];
683 struct link_config *lc = &p->link_config;
684
685 if (epause->autoneg == AUTONEG_DISABLE)
686 lc->requested_fc = 0;
687 else if (lc->supported & SUPPORTED_Autoneg)
688 lc->requested_fc = PAUSE_AUTONEG;
689 else
690 return -EINVAL;
691
692 if (epause->rx_pause)
693 lc->requested_fc |= PAUSE_RX;
694 if (epause->tx_pause)
695 lc->requested_fc |= PAUSE_TX;
696 if (lc->autoneg == AUTONEG_ENABLE) {
697 if (netif_running(dev))
698 t1_link_start(p->phy, p->mac, lc);
699 } else {
700 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
701 if (netif_running(dev))
702 p->mac->ops->set_speed_duplex_fc(p->mac, -1, -1,
703 lc->fc);
704 }
705 return 0;
706 }
707
708 static u32 get_rx_csum(struct net_device *dev)
709 {
710 struct adapter *adapter = dev->ml_priv;
711
712 return (adapter->flags & RX_CSUM_ENABLED) != 0;
713 }
714
715 static int set_rx_csum(struct net_device *dev, u32 data)
716 {
717 struct adapter *adapter = dev->ml_priv;
718
719 if (data)
720 adapter->flags |= RX_CSUM_ENABLED;
721 else
722 adapter->flags &= ~RX_CSUM_ENABLED;
723 return 0;
724 }
725
726 static int set_tso(struct net_device *dev, u32 value)
727 {
728 struct adapter *adapter = dev->ml_priv;
729
730 if (!(adapter->flags & TSO_CAPABLE))
731 return value ? -EOPNOTSUPP : 0;
732 return ethtool_op_set_tso(dev, value);
733 }
734
735 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
736 {
737 struct adapter *adapter = dev->ml_priv;
738 int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
739
740 e->rx_max_pending = MAX_RX_BUFFERS;
741 e->rx_mini_max_pending = 0;
742 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
743 e->tx_max_pending = MAX_CMDQ_ENTRIES;
744
745 e->rx_pending = adapter->params.sge.freelQ_size[!jumbo_fl];
746 e->rx_mini_pending = 0;
747 e->rx_jumbo_pending = adapter->params.sge.freelQ_size[jumbo_fl];
748 e->tx_pending = adapter->params.sge.cmdQ_size[0];
749 }
750
751 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
752 {
753 struct adapter *adapter = dev->ml_priv;
754 int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
755
756 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_mini_pending ||
757 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
758 e->tx_pending > MAX_CMDQ_ENTRIES ||
759 e->rx_pending < MIN_FL_ENTRIES ||
760 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
761 e->tx_pending < (adapter->params.nports + 1) * (MAX_SKB_FRAGS + 1))
762 return -EINVAL;
763
764 if (adapter->flags & FULL_INIT_DONE)
765 return -EBUSY;
766
767 adapter->params.sge.freelQ_size[!jumbo_fl] = e->rx_pending;
768 adapter->params.sge.freelQ_size[jumbo_fl] = e->rx_jumbo_pending;
769 adapter->params.sge.cmdQ_size[0] = e->tx_pending;
770 adapter->params.sge.cmdQ_size[1] = e->tx_pending > MAX_CMDQ1_ENTRIES ?
771 MAX_CMDQ1_ENTRIES : e->tx_pending;
772 return 0;
773 }
774
775 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
776 {
777 struct adapter *adapter = dev->ml_priv;
778
779 adapter->params.sge.rx_coalesce_usecs = c->rx_coalesce_usecs;
780 adapter->params.sge.coalesce_enable = c->use_adaptive_rx_coalesce;
781 adapter->params.sge.sample_interval_usecs = c->rate_sample_interval;
782 t1_sge_set_coalesce_params(adapter->sge, &adapter->params.sge);
783 return 0;
784 }
785
786 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
787 {
788 struct adapter *adapter = dev->ml_priv;
789
790 c->rx_coalesce_usecs = adapter->params.sge.rx_coalesce_usecs;
791 c->rate_sample_interval = adapter->params.sge.sample_interval_usecs;
792 c->use_adaptive_rx_coalesce = adapter->params.sge.coalesce_enable;
793 return 0;
794 }
795
796 static int get_eeprom_len(struct net_device *dev)
797 {
798 struct adapter *adapter = dev->ml_priv;
799
800 return t1_is_asic(adapter) ? EEPROM_SIZE : 0;
801 }
802
803 #define EEPROM_MAGIC(ap) \
804 (PCI_VENDOR_ID_CHELSIO | ((ap)->params.chip_version << 16))
805
806 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
807 u8 *data)
808 {
809 int i;
810 u8 buf[EEPROM_SIZE] __attribute__((aligned(4)));
811 struct adapter *adapter = dev->ml_priv;
812
813 e->magic = EEPROM_MAGIC(adapter);
814 for (i = e->offset & ~3; i < e->offset + e->len; i += sizeof(u32))
815 t1_seeprom_read(adapter, i, (__le32 *)&buf[i]);
816 memcpy(data, buf + e->offset, e->len);
817 return 0;
818 }
819
820 static const struct ethtool_ops t1_ethtool_ops = {
821 .get_settings = get_settings,
822 .set_settings = set_settings,
823 .get_drvinfo = get_drvinfo,
824 .get_msglevel = get_msglevel,
825 .set_msglevel = set_msglevel,
826 .get_ringparam = get_sge_param,
827 .set_ringparam = set_sge_param,
828 .get_coalesce = get_coalesce,
829 .set_coalesce = set_coalesce,
830 .get_eeprom_len = get_eeprom_len,
831 .get_eeprom = get_eeprom,
832 .get_pauseparam = get_pauseparam,
833 .set_pauseparam = set_pauseparam,
834 .get_rx_csum = get_rx_csum,
835 .set_rx_csum = set_rx_csum,
836 .set_tx_csum = ethtool_op_set_tx_csum,
837 .set_sg = ethtool_op_set_sg,
838 .get_link = ethtool_op_get_link,
839 .get_strings = get_strings,
840 .get_sset_count = get_sset_count,
841 .get_ethtool_stats = get_stats,
842 .get_regs_len = get_regs_len,
843 .get_regs = get_regs,
844 .set_tso = set_tso,
845 };
846
847 static int t1_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
848 {
849 struct adapter *adapter = dev->ml_priv;
850 struct mdio_if_info *mdio = &adapter->port[dev->if_port].phy->mdio;
851
852 return mdio_mii_ioctl(mdio, if_mii(req), cmd);
853 }
854
855 static int t1_change_mtu(struct net_device *dev, int new_mtu)
856 {
857 int ret;
858 struct adapter *adapter = dev->ml_priv;
859 struct cmac *mac = adapter->port[dev->if_port].mac;
860
861 if (!mac->ops->set_mtu)
862 return -EOPNOTSUPP;
863 if (new_mtu < 68)
864 return -EINVAL;
865 if ((ret = mac->ops->set_mtu(mac, new_mtu)))
866 return ret;
867 dev->mtu = new_mtu;
868 return 0;
869 }
870
871 static int t1_set_mac_addr(struct net_device *dev, void *p)
872 {
873 struct adapter *adapter = dev->ml_priv;
874 struct cmac *mac = adapter->port[dev->if_port].mac;
875 struct sockaddr *addr = p;
876
877 if (!mac->ops->macaddress_set)
878 return -EOPNOTSUPP;
879
880 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
881 mac->ops->macaddress_set(mac, dev->dev_addr);
882 return 0;
883 }
884
885 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
886 static void t1_vlan_rx_register(struct net_device *dev,
887 struct vlan_group *grp)
888 {
889 struct adapter *adapter = dev->ml_priv;
890
891 spin_lock_irq(&adapter->async_lock);
892 adapter->vlan_grp = grp;
893 t1_set_vlan_accel(adapter, grp != NULL);
894 spin_unlock_irq(&adapter->async_lock);
895 }
896 #endif
897
898 #ifdef CONFIG_NET_POLL_CONTROLLER
899 static void t1_netpoll(struct net_device *dev)
900 {
901 unsigned long flags;
902 struct adapter *adapter = dev->ml_priv;
903
904 local_irq_save(flags);
905 t1_interrupt(adapter->pdev->irq, adapter);
906 local_irq_restore(flags);
907 }
908 #endif
909
910 /*
911 * Periodic accumulation of MAC statistics. This is used only if the MAC
912 * does not have any other way to prevent stats counter overflow.
913 */
914 static void mac_stats_task(struct work_struct *work)
915 {
916 int i;
917 struct adapter *adapter =
918 container_of(work, struct adapter, stats_update_task.work);
919
920 for_each_port(adapter, i) {
921 struct port_info *p = &adapter->port[i];
922
923 if (netif_running(p->dev))
924 p->mac->ops->statistics_update(p->mac,
925 MAC_STATS_UPDATE_FAST);
926 }
927
928 /* Schedule the next statistics update if any port is active. */
929 spin_lock(&adapter->work_lock);
930 if (adapter->open_device_map & PORT_MASK)
931 schedule_mac_stats_update(adapter,
932 adapter->params.stats_update_period);
933 spin_unlock(&adapter->work_lock);
934 }
935
936 /*
937 * Processes elmer0 external interrupts in process context.
938 */
939 static void ext_intr_task(struct work_struct *work)
940 {
941 struct adapter *adapter =
942 container_of(work, struct adapter, ext_intr_handler_task);
943
944 t1_elmer0_ext_intr_handler(adapter);
945
946 /* Now reenable external interrupts */
947 spin_lock_irq(&adapter->async_lock);
948 adapter->slow_intr_mask |= F_PL_INTR_EXT;
949 writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE);
950 writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
951 adapter->regs + A_PL_ENABLE);
952 spin_unlock_irq(&adapter->async_lock);
953 }
954
955 /*
956 * Interrupt-context handler for elmer0 external interrupts.
957 */
958 void t1_elmer0_ext_intr(struct adapter *adapter)
959 {
960 /*
961 * Schedule a task to handle external interrupts as we require
962 * a process context. We disable EXT interrupts in the interim
963 * and let the task reenable them when it's done.
964 */
965 adapter->slow_intr_mask &= ~F_PL_INTR_EXT;
966 writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
967 adapter->regs + A_PL_ENABLE);
968 schedule_work(&adapter->ext_intr_handler_task);
969 }
970
971 void t1_fatal_err(struct adapter *adapter)
972 {
973 if (adapter->flags & FULL_INIT_DONE) {
974 t1_sge_stop(adapter->sge);
975 t1_interrupts_disable(adapter);
976 }
977 pr_alert("%s: encountered fatal error, operation suspended\n",
978 adapter->name);
979 }
980
981 static const struct net_device_ops cxgb_netdev_ops = {
982 .ndo_open = cxgb_open,
983 .ndo_stop = cxgb_close,
984 .ndo_start_xmit = t1_start_xmit,
985 .ndo_get_stats = t1_get_stats,
986 .ndo_validate_addr = eth_validate_addr,
987 .ndo_set_multicast_list = t1_set_rxmode,
988 .ndo_do_ioctl = t1_ioctl,
989 .ndo_change_mtu = t1_change_mtu,
990 .ndo_set_mac_address = t1_set_mac_addr,
991 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
992 .ndo_vlan_rx_register = t1_vlan_rx_register,
993 #endif
994 #ifdef CONFIG_NET_POLL_CONTROLLER
995 .ndo_poll_controller = t1_netpoll,
996 #endif
997 };
998
999 static int __devinit init_one(struct pci_dev *pdev,
1000 const struct pci_device_id *ent)
1001 {
1002 static int version_printed;
1003
1004 int i, err, pci_using_dac = 0;
1005 unsigned long mmio_start, mmio_len;
1006 const struct board_info *bi;
1007 struct adapter *adapter = NULL;
1008 struct port_info *pi;
1009
1010 if (!version_printed) {
1011 printk(KERN_INFO "%s - version %s\n", DRV_DESCRIPTION,
1012 DRV_VERSION);
1013 ++version_printed;
1014 }
1015
1016 err = pci_enable_device(pdev);
1017 if (err)
1018 return err;
1019
1020 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
1021 pr_err("%s: cannot find PCI device memory base address\n",
1022 pci_name(pdev));
1023 err = -ENODEV;
1024 goto out_disable_pdev;
1025 }
1026
1027 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1028 pci_using_dac = 1;
1029
1030 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1031 pr_err("%s: unable to obtain 64-bit DMA for "
1032 "consistent allocations\n", pci_name(pdev));
1033 err = -ENODEV;
1034 goto out_disable_pdev;
1035 }
1036
1037 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
1038 pr_err("%s: no usable DMA configuration\n", pci_name(pdev));
1039 goto out_disable_pdev;
1040 }
1041
1042 err = pci_request_regions(pdev, DRV_NAME);
1043 if (err) {
1044 pr_err("%s: cannot obtain PCI resources\n", pci_name(pdev));
1045 goto out_disable_pdev;
1046 }
1047
1048 pci_set_master(pdev);
1049
1050 mmio_start = pci_resource_start(pdev, 0);
1051 mmio_len = pci_resource_len(pdev, 0);
1052 bi = t1_get_board_info(ent->driver_data);
1053
1054 for (i = 0; i < bi->port_number; ++i) {
1055 struct net_device *netdev;
1056
1057 netdev = alloc_etherdev(adapter ? 0 : sizeof(*adapter));
1058 if (!netdev) {
1059 err = -ENOMEM;
1060 goto out_free_dev;
1061 }
1062
1063 SET_NETDEV_DEV(netdev, &pdev->dev);
1064
1065 if (!adapter) {
1066 adapter = netdev_priv(netdev);
1067 adapter->pdev = pdev;
1068 adapter->port[0].dev = netdev; /* so we don't leak it */
1069
1070 adapter->regs = ioremap(mmio_start, mmio_len);
1071 if (!adapter->regs) {
1072 pr_err("%s: cannot map device registers\n",
1073 pci_name(pdev));
1074 err = -ENOMEM;
1075 goto out_free_dev;
1076 }
1077
1078 if (t1_get_board_rev(adapter, bi, &adapter->params)) {
1079 err = -ENODEV; /* Can't handle this chip rev */
1080 goto out_free_dev;
1081 }
1082
1083 adapter->name = pci_name(pdev);
1084 adapter->msg_enable = dflt_msg_enable;
1085 adapter->mmio_len = mmio_len;
1086
1087 spin_lock_init(&adapter->tpi_lock);
1088 spin_lock_init(&adapter->work_lock);
1089 spin_lock_init(&adapter->async_lock);
1090 spin_lock_init(&adapter->mac_lock);
1091
1092 INIT_WORK(&adapter->ext_intr_handler_task,
1093 ext_intr_task);
1094 INIT_DELAYED_WORK(&adapter->stats_update_task,
1095 mac_stats_task);
1096
1097 pci_set_drvdata(pdev, netdev);
1098 }
1099
1100 pi = &adapter->port[i];
1101 pi->dev = netdev;
1102 netif_carrier_off(netdev);
1103 netdev->irq = pdev->irq;
1104 netdev->if_port = i;
1105 netdev->mem_start = mmio_start;
1106 netdev->mem_end = mmio_start + mmio_len - 1;
1107 netdev->ml_priv = adapter;
1108 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
1109 netdev->features |= NETIF_F_LLTX;
1110
1111 adapter->flags |= RX_CSUM_ENABLED | TCP_CSUM_CAPABLE;
1112 if (pci_using_dac)
1113 netdev->features |= NETIF_F_HIGHDMA;
1114 if (vlan_tso_capable(adapter)) {
1115 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1116 adapter->flags |= VLAN_ACCEL_CAPABLE;
1117 netdev->features |=
1118 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1119 #endif
1120
1121 /* T204: disable TSO */
1122 if (!(is_T2(adapter)) || bi->port_number != 4) {
1123 adapter->flags |= TSO_CAPABLE;
1124 netdev->features |= NETIF_F_TSO;
1125 }
1126 }
1127
1128 netdev->netdev_ops = &cxgb_netdev_ops;
1129 netdev->hard_header_len += (adapter->flags & TSO_CAPABLE) ?
1130 sizeof(struct cpl_tx_pkt_lso) : sizeof(struct cpl_tx_pkt);
1131
1132 netif_napi_add(netdev, &adapter->napi, t1_poll, 64);
1133
1134 SET_ETHTOOL_OPS(netdev, &t1_ethtool_ops);
1135 }
1136
1137 if (t1_init_sw_modules(adapter, bi) < 0) {
1138 err = -ENODEV;
1139 goto out_free_dev;
1140 }
1141
1142 /*
1143 * The card is now ready to go. If any errors occur during device
1144 * registration we do not fail the whole card but rather proceed only
1145 * with the ports we manage to register successfully. However we must
1146 * register at least one net device.
1147 */
1148 for (i = 0; i < bi->port_number; ++i) {
1149 err = register_netdev(adapter->port[i].dev);
1150 if (err)
1151 pr_warning("%s: cannot register net device %s, skipping\n",
1152 pci_name(pdev), adapter->port[i].dev->name);
1153 else {
1154 /*
1155 * Change the name we use for messages to the name of
1156 * the first successfully registered interface.
1157 */
1158 if (!adapter->registered_device_map)
1159 adapter->name = adapter->port[i].dev->name;
1160
1161 __set_bit(i, &adapter->registered_device_map);
1162 }
1163 }
1164 if (!adapter->registered_device_map) {
1165 pr_err("%s: could not register any net devices\n",
1166 pci_name(pdev));
1167 goto out_release_adapter_res;
1168 }
1169
1170 printk(KERN_INFO "%s: %s (rev %d), %s %dMHz/%d-bit\n", adapter->name,
1171 bi->desc, adapter->params.chip_revision,
1172 adapter->params.pci.is_pcix ? "PCIX" : "PCI",
1173 adapter->params.pci.speed, adapter->params.pci.width);
1174
1175 /*
1176 * Set the T1B ASIC and memory clocks.
1177 */
1178 if (t1powersave)
1179 adapter->t1powersave = LCLOCK; /* HW default is powersave mode. */
1180 else
1181 adapter->t1powersave = HCLOCK;
1182 if (t1_is_T1B(adapter))
1183 t1_clock(adapter, t1powersave);
1184
1185 return 0;
1186
1187 out_release_adapter_res:
1188 t1_free_sw_modules(adapter);
1189 out_free_dev:
1190 if (adapter) {
1191 if (adapter->regs)
1192 iounmap(adapter->regs);
1193 for (i = bi->port_number - 1; i >= 0; --i)
1194 if (adapter->port[i].dev)
1195 free_netdev(adapter->port[i].dev);
1196 }
1197 pci_release_regions(pdev);
1198 out_disable_pdev:
1199 pci_disable_device(pdev);
1200 pci_set_drvdata(pdev, NULL);
1201 return err;
1202 }
1203
1204 static void bit_bang(struct adapter *adapter, int bitdata, int nbits)
1205 {
1206 int data;
1207 int i;
1208 u32 val;
1209
1210 enum {
1211 S_CLOCK = 1 << 3,
1212 S_DATA = 1 << 4
1213 };
1214
1215 for (i = (nbits - 1); i > -1; i--) {
1216
1217 udelay(50);
1218
1219 data = ((bitdata >> i) & 0x1);
1220 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1221
1222 if (data)
1223 val |= S_DATA;
1224 else
1225 val &= ~S_DATA;
1226
1227 udelay(50);
1228
1229 /* Set SCLOCK low */
1230 val &= ~S_CLOCK;
1231 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1232
1233 udelay(50);
1234
1235 /* Write SCLOCK high */
1236 val |= S_CLOCK;
1237 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1238
1239 }
1240 }
1241
1242 static int t1_clock(struct adapter *adapter, int mode)
1243 {
1244 u32 val;
1245 int M_CORE_VAL;
1246 int M_MEM_VAL;
1247
1248 enum {
1249 M_CORE_BITS = 9,
1250 T_CORE_VAL = 0,
1251 T_CORE_BITS = 2,
1252 N_CORE_VAL = 0,
1253 N_CORE_BITS = 2,
1254 M_MEM_BITS = 9,
1255 T_MEM_VAL = 0,
1256 T_MEM_BITS = 2,
1257 N_MEM_VAL = 0,
1258 N_MEM_BITS = 2,
1259 NP_LOAD = 1 << 17,
1260 S_LOAD_MEM = 1 << 5,
1261 S_LOAD_CORE = 1 << 6,
1262 S_CLOCK = 1 << 3
1263 };
1264
1265 if (!t1_is_T1B(adapter))
1266 return -ENODEV; /* Can't re-clock this chip. */
1267
1268 if (mode & 2)
1269 return 0; /* show current mode. */
1270
1271 if ((adapter->t1powersave & 1) == (mode & 1))
1272 return -EALREADY; /* ASIC already running in mode. */
1273
1274 if ((mode & 1) == HCLOCK) {
1275 M_CORE_VAL = 0x14;
1276 M_MEM_VAL = 0x18;
1277 adapter->t1powersave = HCLOCK; /* overclock */
1278 } else {
1279 M_CORE_VAL = 0xe;
1280 M_MEM_VAL = 0x10;
1281 adapter->t1powersave = LCLOCK; /* underclock */
1282 }
1283
1284 /* Don't interrupt this serial stream! */
1285 spin_lock(&adapter->tpi_lock);
1286
1287 /* Initialize for ASIC core */
1288 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1289 val |= NP_LOAD;
1290 udelay(50);
1291 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1292 udelay(50);
1293 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1294 val &= ~S_LOAD_CORE;
1295 val &= ~S_CLOCK;
1296 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1297 udelay(50);
1298
1299 /* Serial program the ASIC clock synthesizer */
1300 bit_bang(adapter, T_CORE_VAL, T_CORE_BITS);
1301 bit_bang(adapter, N_CORE_VAL, N_CORE_BITS);
1302 bit_bang(adapter, M_CORE_VAL, M_CORE_BITS);
1303 udelay(50);
1304
1305 /* Finish ASIC core */
1306 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1307 val |= S_LOAD_CORE;
1308 udelay(50);
1309 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1310 udelay(50);
1311 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1312 val &= ~S_LOAD_CORE;
1313 udelay(50);
1314 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1315 udelay(50);
1316
1317 /* Initialize for memory */
1318 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1319 val |= NP_LOAD;
1320 udelay(50);
1321 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1322 udelay(50);
1323 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1324 val &= ~S_LOAD_MEM;
1325 val &= ~S_CLOCK;
1326 udelay(50);
1327 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1328 udelay(50);
1329
1330 /* Serial program the memory clock synthesizer */
1331 bit_bang(adapter, T_MEM_VAL, T_MEM_BITS);
1332 bit_bang(adapter, N_MEM_VAL, N_MEM_BITS);
1333 bit_bang(adapter, M_MEM_VAL, M_MEM_BITS);
1334 udelay(50);
1335
1336 /* Finish memory */
1337 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1338 val |= S_LOAD_MEM;
1339 udelay(50);
1340 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1341 udelay(50);
1342 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1343 val &= ~S_LOAD_MEM;
1344 udelay(50);
1345 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1346
1347 spin_unlock(&adapter->tpi_lock);
1348
1349 return 0;
1350 }
1351
1352 static inline void t1_sw_reset(struct pci_dev *pdev)
1353 {
1354 pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 3);
1355 pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 0);
1356 }
1357
1358 static void __devexit remove_one(struct pci_dev *pdev)
1359 {
1360 struct net_device *dev = pci_get_drvdata(pdev);
1361 struct adapter *adapter = dev->ml_priv;
1362 int i;
1363
1364 for_each_port(adapter, i) {
1365 if (test_bit(i, &adapter->registered_device_map))
1366 unregister_netdev(adapter->port[i].dev);
1367 }
1368
1369 t1_free_sw_modules(adapter);
1370 iounmap(adapter->regs);
1371
1372 while (--i >= 0) {
1373 if (adapter->port[i].dev)
1374 free_netdev(adapter->port[i].dev);
1375 }
1376
1377 pci_release_regions(pdev);
1378 pci_disable_device(pdev);
1379 pci_set_drvdata(pdev, NULL);
1380 t1_sw_reset(pdev);
1381 }
1382
1383 static struct pci_driver driver = {
1384 .name = DRV_NAME,
1385 .id_table = t1_pci_tbl,
1386 .probe = init_one,
1387 .remove = __devexit_p(remove_one),
1388 };
1389
1390 static int __init t1_init_module(void)
1391 {
1392 return pci_register_driver(&driver);
1393 }
1394
1395 static void __exit t1_cleanup_module(void)
1396 {
1397 pci_unregister_driver(&driver);
1398 }
1399
1400 module_init(t1_init_module);
1401 module_exit(t1_cleanup_module);
This page took 0.130439 seconds and 5 git commands to generate.