dma-mapping: replace all DMA_32BIT_MASK macro with DMA_BIT_MASK(32)
[deliverable/linux.git] / drivers / net / chelsio / cxgb2.c
1 /*****************************************************************************
2 * *
3 * File: cxgb2.c *
4 * $Revision: 1.25 $ *
5 * $Date: 2005/06/22 00:43:25 $ *
6 * Description: *
7 * Chelsio 10Gb Ethernet Driver. *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License, version 2, as *
11 * published by the Free Software Foundation. *
12 * *
13 * You should have received a copy of the GNU General Public License along *
14 * with this program; if not, write to the Free Software Foundation, Inc., *
15 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
16 * *
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
20 * *
21 * http://www.chelsio.com *
22 * *
23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
24 * All rights reserved. *
25 * *
26 * Maintainers: maintainers@chelsio.com *
27 * *
28 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
29 * Tina Yang <tainay@chelsio.com> *
30 * Felix Marti <felix@chelsio.com> *
31 * Scott Bardone <sbardone@chelsio.com> *
32 * Kurt Ottaway <kottaway@chelsio.com> *
33 * Frank DiMambro <frank@chelsio.com> *
34 * *
35 * History: *
36 * *
37 ****************************************************************************/
38
39 #include "common.h"
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/pci.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/if_vlan.h>
46 #include <linux/mii.h>
47 #include <linux/sockios.h>
48 #include <linux/dma-mapping.h>
49 #include <asm/uaccess.h>
50
51 #include "cpl5_cmd.h"
52 #include "regs.h"
53 #include "gmac.h"
54 #include "cphy.h"
55 #include "sge.h"
56 #include "tp.h"
57 #include "espi.h"
58 #include "elmer0.h"
59
60 #include <linux/workqueue.h>
61
62 static inline void schedule_mac_stats_update(struct adapter *ap, int secs)
63 {
64 schedule_delayed_work(&ap->stats_update_task, secs * HZ);
65 }
66
67 static inline void cancel_mac_stats_update(struct adapter *ap)
68 {
69 cancel_delayed_work(&ap->stats_update_task);
70 }
71
72 #define MAX_CMDQ_ENTRIES 16384
73 #define MAX_CMDQ1_ENTRIES 1024
74 #define MAX_RX_BUFFERS 16384
75 #define MAX_RX_JUMBO_BUFFERS 16384
76 #define MAX_TX_BUFFERS_HIGH 16384U
77 #define MAX_TX_BUFFERS_LOW 1536U
78 #define MAX_TX_BUFFERS 1460U
79 #define MIN_FL_ENTRIES 32
80
81 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
82 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
83 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
84
85 /*
86 * The EEPROM is actually bigger but only the first few bytes are used so we
87 * only report those.
88 */
89 #define EEPROM_SIZE 32
90
91 MODULE_DESCRIPTION(DRV_DESCRIPTION);
92 MODULE_AUTHOR("Chelsio Communications");
93 MODULE_LICENSE("GPL");
94
95 static int dflt_msg_enable = DFLT_MSG_ENABLE;
96
97 module_param(dflt_msg_enable, int, 0);
98 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T1 default message enable bitmap");
99
100 #define HCLOCK 0x0
101 #define LCLOCK 0x1
102
103 /* T1 cards powersave mode */
104 static int t1_clock(struct adapter *adapter, int mode);
105 static int t1powersave = 1; /* HW default is powersave mode. */
106
107 module_param(t1powersave, int, 0);
108 MODULE_PARM_DESC(t1powersave, "Enable/Disable T1 powersaving mode");
109
110 static int disable_msi = 0;
111 module_param(disable_msi, int, 0);
112 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
113
114 static const char pci_speed[][4] = {
115 "33", "66", "100", "133"
116 };
117
118 /*
119 * Setup MAC to receive the types of packets we want.
120 */
121 static void t1_set_rxmode(struct net_device *dev)
122 {
123 struct adapter *adapter = dev->ml_priv;
124 struct cmac *mac = adapter->port[dev->if_port].mac;
125 struct t1_rx_mode rm;
126
127 rm.dev = dev;
128 rm.idx = 0;
129 rm.list = dev->mc_list;
130 mac->ops->set_rx_mode(mac, &rm);
131 }
132
133 static void link_report(struct port_info *p)
134 {
135 if (!netif_carrier_ok(p->dev))
136 printk(KERN_INFO "%s: link down\n", p->dev->name);
137 else {
138 const char *s = "10Mbps";
139
140 switch (p->link_config.speed) {
141 case SPEED_10000: s = "10Gbps"; break;
142 case SPEED_1000: s = "1000Mbps"; break;
143 case SPEED_100: s = "100Mbps"; break;
144 }
145
146 printk(KERN_INFO "%s: link up, %s, %s-duplex\n",
147 p->dev->name, s,
148 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
149 }
150 }
151
152 void t1_link_negotiated(struct adapter *adapter, int port_id, int link_stat,
153 int speed, int duplex, int pause)
154 {
155 struct port_info *p = &adapter->port[port_id];
156
157 if (link_stat != netif_carrier_ok(p->dev)) {
158 if (link_stat)
159 netif_carrier_on(p->dev);
160 else
161 netif_carrier_off(p->dev);
162 link_report(p);
163
164 /* multi-ports: inform toe */
165 if ((speed > 0) && (adapter->params.nports > 1)) {
166 unsigned int sched_speed = 10;
167 switch (speed) {
168 case SPEED_1000:
169 sched_speed = 1000;
170 break;
171 case SPEED_100:
172 sched_speed = 100;
173 break;
174 case SPEED_10:
175 sched_speed = 10;
176 break;
177 }
178 t1_sched_update_parms(adapter->sge, port_id, 0, sched_speed);
179 }
180 }
181 }
182
183 static void link_start(struct port_info *p)
184 {
185 struct cmac *mac = p->mac;
186
187 mac->ops->reset(mac);
188 if (mac->ops->macaddress_set)
189 mac->ops->macaddress_set(mac, p->dev->dev_addr);
190 t1_set_rxmode(p->dev);
191 t1_link_start(p->phy, mac, &p->link_config);
192 mac->ops->enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
193 }
194
195 static void enable_hw_csum(struct adapter *adapter)
196 {
197 if (adapter->flags & TSO_CAPABLE)
198 t1_tp_set_ip_checksum_offload(adapter->tp, 1); /* for TSO only */
199 if (adapter->flags & UDP_CSUM_CAPABLE)
200 t1_tp_set_udp_checksum_offload(adapter->tp, 1);
201 t1_tp_set_tcp_checksum_offload(adapter->tp, 1);
202 }
203
204 /*
205 * Things to do upon first use of a card.
206 * This must run with the rtnl lock held.
207 */
208 static int cxgb_up(struct adapter *adapter)
209 {
210 int err = 0;
211
212 if (!(adapter->flags & FULL_INIT_DONE)) {
213 err = t1_init_hw_modules(adapter);
214 if (err)
215 goto out_err;
216
217 enable_hw_csum(adapter);
218 adapter->flags |= FULL_INIT_DONE;
219 }
220
221 t1_interrupts_clear(adapter);
222
223 adapter->params.has_msi = !disable_msi && !pci_enable_msi(adapter->pdev);
224 err = request_irq(adapter->pdev->irq, t1_interrupt,
225 adapter->params.has_msi ? 0 : IRQF_SHARED,
226 adapter->name, adapter);
227 if (err) {
228 if (adapter->params.has_msi)
229 pci_disable_msi(adapter->pdev);
230
231 goto out_err;
232 }
233
234 t1_sge_start(adapter->sge);
235 t1_interrupts_enable(adapter);
236 out_err:
237 return err;
238 }
239
240 /*
241 * Release resources when all the ports have been stopped.
242 */
243 static void cxgb_down(struct adapter *adapter)
244 {
245 t1_sge_stop(adapter->sge);
246 t1_interrupts_disable(adapter);
247 free_irq(adapter->pdev->irq, adapter);
248 if (adapter->params.has_msi)
249 pci_disable_msi(adapter->pdev);
250 }
251
252 static int cxgb_open(struct net_device *dev)
253 {
254 int err;
255 struct adapter *adapter = dev->ml_priv;
256 int other_ports = adapter->open_device_map & PORT_MASK;
257
258 napi_enable(&adapter->napi);
259 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) {
260 napi_disable(&adapter->napi);
261 return err;
262 }
263
264 __set_bit(dev->if_port, &adapter->open_device_map);
265 link_start(&adapter->port[dev->if_port]);
266 netif_start_queue(dev);
267 if (!other_ports && adapter->params.stats_update_period)
268 schedule_mac_stats_update(adapter,
269 adapter->params.stats_update_period);
270 return 0;
271 }
272
273 static int cxgb_close(struct net_device *dev)
274 {
275 struct adapter *adapter = dev->ml_priv;
276 struct port_info *p = &adapter->port[dev->if_port];
277 struct cmac *mac = p->mac;
278
279 netif_stop_queue(dev);
280 napi_disable(&adapter->napi);
281 mac->ops->disable(mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
282 netif_carrier_off(dev);
283
284 clear_bit(dev->if_port, &adapter->open_device_map);
285 if (adapter->params.stats_update_period &&
286 !(adapter->open_device_map & PORT_MASK)) {
287 /* Stop statistics accumulation. */
288 smp_mb__after_clear_bit();
289 spin_lock(&adapter->work_lock); /* sync with update task */
290 spin_unlock(&adapter->work_lock);
291 cancel_mac_stats_update(adapter);
292 }
293
294 if (!adapter->open_device_map)
295 cxgb_down(adapter);
296 return 0;
297 }
298
299 static struct net_device_stats *t1_get_stats(struct net_device *dev)
300 {
301 struct adapter *adapter = dev->ml_priv;
302 struct port_info *p = &adapter->port[dev->if_port];
303 struct net_device_stats *ns = &p->netstats;
304 const struct cmac_statistics *pstats;
305
306 /* Do a full update of the MAC stats */
307 pstats = p->mac->ops->statistics_update(p->mac,
308 MAC_STATS_UPDATE_FULL);
309
310 ns->tx_packets = pstats->TxUnicastFramesOK +
311 pstats->TxMulticastFramesOK + pstats->TxBroadcastFramesOK;
312
313 ns->rx_packets = pstats->RxUnicastFramesOK +
314 pstats->RxMulticastFramesOK + pstats->RxBroadcastFramesOK;
315
316 ns->tx_bytes = pstats->TxOctetsOK;
317 ns->rx_bytes = pstats->RxOctetsOK;
318
319 ns->tx_errors = pstats->TxLateCollisions + pstats->TxLengthErrors +
320 pstats->TxUnderrun + pstats->TxFramesAbortedDueToXSCollisions;
321 ns->rx_errors = pstats->RxDataErrors + pstats->RxJabberErrors +
322 pstats->RxFCSErrors + pstats->RxAlignErrors +
323 pstats->RxSequenceErrors + pstats->RxFrameTooLongErrors +
324 pstats->RxSymbolErrors + pstats->RxRuntErrors;
325
326 ns->multicast = pstats->RxMulticastFramesOK;
327 ns->collisions = pstats->TxTotalCollisions;
328
329 /* detailed rx_errors */
330 ns->rx_length_errors = pstats->RxFrameTooLongErrors +
331 pstats->RxJabberErrors;
332 ns->rx_over_errors = 0;
333 ns->rx_crc_errors = pstats->RxFCSErrors;
334 ns->rx_frame_errors = pstats->RxAlignErrors;
335 ns->rx_fifo_errors = 0;
336 ns->rx_missed_errors = 0;
337
338 /* detailed tx_errors */
339 ns->tx_aborted_errors = pstats->TxFramesAbortedDueToXSCollisions;
340 ns->tx_carrier_errors = 0;
341 ns->tx_fifo_errors = pstats->TxUnderrun;
342 ns->tx_heartbeat_errors = 0;
343 ns->tx_window_errors = pstats->TxLateCollisions;
344 return ns;
345 }
346
347 static u32 get_msglevel(struct net_device *dev)
348 {
349 struct adapter *adapter = dev->ml_priv;
350
351 return adapter->msg_enable;
352 }
353
354 static void set_msglevel(struct net_device *dev, u32 val)
355 {
356 struct adapter *adapter = dev->ml_priv;
357
358 adapter->msg_enable = val;
359 }
360
361 static char stats_strings[][ETH_GSTRING_LEN] = {
362 "TxOctetsOK",
363 "TxOctetsBad",
364 "TxUnicastFramesOK",
365 "TxMulticastFramesOK",
366 "TxBroadcastFramesOK",
367 "TxPauseFrames",
368 "TxFramesWithDeferredXmissions",
369 "TxLateCollisions",
370 "TxTotalCollisions",
371 "TxFramesAbortedDueToXSCollisions",
372 "TxUnderrun",
373 "TxLengthErrors",
374 "TxInternalMACXmitError",
375 "TxFramesWithExcessiveDeferral",
376 "TxFCSErrors",
377 "TxJumboFramesOk",
378 "TxJumboOctetsOk",
379
380 "RxOctetsOK",
381 "RxOctetsBad",
382 "RxUnicastFramesOK",
383 "RxMulticastFramesOK",
384 "RxBroadcastFramesOK",
385 "RxPauseFrames",
386 "RxFCSErrors",
387 "RxAlignErrors",
388 "RxSymbolErrors",
389 "RxDataErrors",
390 "RxSequenceErrors",
391 "RxRuntErrors",
392 "RxJabberErrors",
393 "RxInternalMACRcvError",
394 "RxInRangeLengthErrors",
395 "RxOutOfRangeLengthField",
396 "RxFrameTooLongErrors",
397 "RxJumboFramesOk",
398 "RxJumboOctetsOk",
399
400 /* Port stats */
401 "RxCsumGood",
402 "TxCsumOffload",
403 "TxTso",
404 "RxVlan",
405 "TxVlan",
406 "TxNeedHeadroom",
407
408 /* Interrupt stats */
409 "rx drops",
410 "pure_rsps",
411 "unhandled irqs",
412 "respQ_empty",
413 "respQ_overflow",
414 "freelistQ_empty",
415 "pkt_too_big",
416 "pkt_mismatch",
417 "cmdQ_full0",
418 "cmdQ_full1",
419
420 "espi_DIP2ParityErr",
421 "espi_DIP4Err",
422 "espi_RxDrops",
423 "espi_TxDrops",
424 "espi_RxOvfl",
425 "espi_ParityErr"
426 };
427
428 #define T2_REGMAP_SIZE (3 * 1024)
429
430 static int get_regs_len(struct net_device *dev)
431 {
432 return T2_REGMAP_SIZE;
433 }
434
435 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
436 {
437 struct adapter *adapter = dev->ml_priv;
438
439 strcpy(info->driver, DRV_NAME);
440 strcpy(info->version, DRV_VERSION);
441 strcpy(info->fw_version, "N/A");
442 strcpy(info->bus_info, pci_name(adapter->pdev));
443 }
444
445 static int get_sset_count(struct net_device *dev, int sset)
446 {
447 switch (sset) {
448 case ETH_SS_STATS:
449 return ARRAY_SIZE(stats_strings);
450 default:
451 return -EOPNOTSUPP;
452 }
453 }
454
455 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
456 {
457 if (stringset == ETH_SS_STATS)
458 memcpy(data, stats_strings, sizeof(stats_strings));
459 }
460
461 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
462 u64 *data)
463 {
464 struct adapter *adapter = dev->ml_priv;
465 struct cmac *mac = adapter->port[dev->if_port].mac;
466 const struct cmac_statistics *s;
467 const struct sge_intr_counts *t;
468 struct sge_port_stats ss;
469
470 s = mac->ops->statistics_update(mac, MAC_STATS_UPDATE_FULL);
471 t = t1_sge_get_intr_counts(adapter->sge);
472 t1_sge_get_port_stats(adapter->sge, dev->if_port, &ss);
473
474 *data++ = s->TxOctetsOK;
475 *data++ = s->TxOctetsBad;
476 *data++ = s->TxUnicastFramesOK;
477 *data++ = s->TxMulticastFramesOK;
478 *data++ = s->TxBroadcastFramesOK;
479 *data++ = s->TxPauseFrames;
480 *data++ = s->TxFramesWithDeferredXmissions;
481 *data++ = s->TxLateCollisions;
482 *data++ = s->TxTotalCollisions;
483 *data++ = s->TxFramesAbortedDueToXSCollisions;
484 *data++ = s->TxUnderrun;
485 *data++ = s->TxLengthErrors;
486 *data++ = s->TxInternalMACXmitError;
487 *data++ = s->TxFramesWithExcessiveDeferral;
488 *data++ = s->TxFCSErrors;
489 *data++ = s->TxJumboFramesOK;
490 *data++ = s->TxJumboOctetsOK;
491
492 *data++ = s->RxOctetsOK;
493 *data++ = s->RxOctetsBad;
494 *data++ = s->RxUnicastFramesOK;
495 *data++ = s->RxMulticastFramesOK;
496 *data++ = s->RxBroadcastFramesOK;
497 *data++ = s->RxPauseFrames;
498 *data++ = s->RxFCSErrors;
499 *data++ = s->RxAlignErrors;
500 *data++ = s->RxSymbolErrors;
501 *data++ = s->RxDataErrors;
502 *data++ = s->RxSequenceErrors;
503 *data++ = s->RxRuntErrors;
504 *data++ = s->RxJabberErrors;
505 *data++ = s->RxInternalMACRcvError;
506 *data++ = s->RxInRangeLengthErrors;
507 *data++ = s->RxOutOfRangeLengthField;
508 *data++ = s->RxFrameTooLongErrors;
509 *data++ = s->RxJumboFramesOK;
510 *data++ = s->RxJumboOctetsOK;
511
512 *data++ = ss.rx_cso_good;
513 *data++ = ss.tx_cso;
514 *data++ = ss.tx_tso;
515 *data++ = ss.vlan_xtract;
516 *data++ = ss.vlan_insert;
517 *data++ = ss.tx_need_hdrroom;
518
519 *data++ = t->rx_drops;
520 *data++ = t->pure_rsps;
521 *data++ = t->unhandled_irqs;
522 *data++ = t->respQ_empty;
523 *data++ = t->respQ_overflow;
524 *data++ = t->freelistQ_empty;
525 *data++ = t->pkt_too_big;
526 *data++ = t->pkt_mismatch;
527 *data++ = t->cmdQ_full[0];
528 *data++ = t->cmdQ_full[1];
529
530 if (adapter->espi) {
531 const struct espi_intr_counts *e;
532
533 e = t1_espi_get_intr_counts(adapter->espi);
534 *data++ = e->DIP2_parity_err;
535 *data++ = e->DIP4_err;
536 *data++ = e->rx_drops;
537 *data++ = e->tx_drops;
538 *data++ = e->rx_ovflw;
539 *data++ = e->parity_err;
540 }
541 }
542
543 static inline void reg_block_dump(struct adapter *ap, void *buf,
544 unsigned int start, unsigned int end)
545 {
546 u32 *p = buf + start;
547
548 for ( ; start <= end; start += sizeof(u32))
549 *p++ = readl(ap->regs + start);
550 }
551
552 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
553 void *buf)
554 {
555 struct adapter *ap = dev->ml_priv;
556
557 /*
558 * Version scheme: bits 0..9: chip version, bits 10..15: chip revision
559 */
560 regs->version = 2;
561
562 memset(buf, 0, T2_REGMAP_SIZE);
563 reg_block_dump(ap, buf, 0, A_SG_RESPACCUTIMER);
564 reg_block_dump(ap, buf, A_MC3_CFG, A_MC4_INT_CAUSE);
565 reg_block_dump(ap, buf, A_TPI_ADDR, A_TPI_PAR);
566 reg_block_dump(ap, buf, A_TP_IN_CONFIG, A_TP_TX_DROP_COUNT);
567 reg_block_dump(ap, buf, A_RAT_ROUTE_CONTROL, A_RAT_INTR_CAUSE);
568 reg_block_dump(ap, buf, A_CSPI_RX_AE_WM, A_CSPI_INTR_ENABLE);
569 reg_block_dump(ap, buf, A_ESPI_SCH_TOKEN0, A_ESPI_GOSTAT);
570 reg_block_dump(ap, buf, A_ULP_ULIMIT, A_ULP_PIO_CTRL);
571 reg_block_dump(ap, buf, A_PL_ENABLE, A_PL_CAUSE);
572 reg_block_dump(ap, buf, A_MC5_CONFIG, A_MC5_MASK_WRITE_CMD);
573 }
574
575 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
576 {
577 struct adapter *adapter = dev->ml_priv;
578 struct port_info *p = &adapter->port[dev->if_port];
579
580 cmd->supported = p->link_config.supported;
581 cmd->advertising = p->link_config.advertising;
582
583 if (netif_carrier_ok(dev)) {
584 cmd->speed = p->link_config.speed;
585 cmd->duplex = p->link_config.duplex;
586 } else {
587 cmd->speed = -1;
588 cmd->duplex = -1;
589 }
590
591 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
592 cmd->phy_address = p->phy->addr;
593 cmd->transceiver = XCVR_EXTERNAL;
594 cmd->autoneg = p->link_config.autoneg;
595 cmd->maxtxpkt = 0;
596 cmd->maxrxpkt = 0;
597 return 0;
598 }
599
600 static int speed_duplex_to_caps(int speed, int duplex)
601 {
602 int cap = 0;
603
604 switch (speed) {
605 case SPEED_10:
606 if (duplex == DUPLEX_FULL)
607 cap = SUPPORTED_10baseT_Full;
608 else
609 cap = SUPPORTED_10baseT_Half;
610 break;
611 case SPEED_100:
612 if (duplex == DUPLEX_FULL)
613 cap = SUPPORTED_100baseT_Full;
614 else
615 cap = SUPPORTED_100baseT_Half;
616 break;
617 case SPEED_1000:
618 if (duplex == DUPLEX_FULL)
619 cap = SUPPORTED_1000baseT_Full;
620 else
621 cap = SUPPORTED_1000baseT_Half;
622 break;
623 case SPEED_10000:
624 if (duplex == DUPLEX_FULL)
625 cap = SUPPORTED_10000baseT_Full;
626 }
627 return cap;
628 }
629
630 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
631 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
632 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
633 ADVERTISED_10000baseT_Full)
634
635 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
636 {
637 struct adapter *adapter = dev->ml_priv;
638 struct port_info *p = &adapter->port[dev->if_port];
639 struct link_config *lc = &p->link_config;
640
641 if (!(lc->supported & SUPPORTED_Autoneg))
642 return -EOPNOTSUPP; /* can't change speed/duplex */
643
644 if (cmd->autoneg == AUTONEG_DISABLE) {
645 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
646
647 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
648 return -EINVAL;
649 lc->requested_speed = cmd->speed;
650 lc->requested_duplex = cmd->duplex;
651 lc->advertising = 0;
652 } else {
653 cmd->advertising &= ADVERTISED_MASK;
654 if (cmd->advertising & (cmd->advertising - 1))
655 cmd->advertising = lc->supported;
656 cmd->advertising &= lc->supported;
657 if (!cmd->advertising)
658 return -EINVAL;
659 lc->requested_speed = SPEED_INVALID;
660 lc->requested_duplex = DUPLEX_INVALID;
661 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
662 }
663 lc->autoneg = cmd->autoneg;
664 if (netif_running(dev))
665 t1_link_start(p->phy, p->mac, lc);
666 return 0;
667 }
668
669 static void get_pauseparam(struct net_device *dev,
670 struct ethtool_pauseparam *epause)
671 {
672 struct adapter *adapter = dev->ml_priv;
673 struct port_info *p = &adapter->port[dev->if_port];
674
675 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
676 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
677 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
678 }
679
680 static int set_pauseparam(struct net_device *dev,
681 struct ethtool_pauseparam *epause)
682 {
683 struct adapter *adapter = dev->ml_priv;
684 struct port_info *p = &adapter->port[dev->if_port];
685 struct link_config *lc = &p->link_config;
686
687 if (epause->autoneg == AUTONEG_DISABLE)
688 lc->requested_fc = 0;
689 else if (lc->supported & SUPPORTED_Autoneg)
690 lc->requested_fc = PAUSE_AUTONEG;
691 else
692 return -EINVAL;
693
694 if (epause->rx_pause)
695 lc->requested_fc |= PAUSE_RX;
696 if (epause->tx_pause)
697 lc->requested_fc |= PAUSE_TX;
698 if (lc->autoneg == AUTONEG_ENABLE) {
699 if (netif_running(dev))
700 t1_link_start(p->phy, p->mac, lc);
701 } else {
702 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
703 if (netif_running(dev))
704 p->mac->ops->set_speed_duplex_fc(p->mac, -1, -1,
705 lc->fc);
706 }
707 return 0;
708 }
709
710 static u32 get_rx_csum(struct net_device *dev)
711 {
712 struct adapter *adapter = dev->ml_priv;
713
714 return (adapter->flags & RX_CSUM_ENABLED) != 0;
715 }
716
717 static int set_rx_csum(struct net_device *dev, u32 data)
718 {
719 struct adapter *adapter = dev->ml_priv;
720
721 if (data)
722 adapter->flags |= RX_CSUM_ENABLED;
723 else
724 adapter->flags &= ~RX_CSUM_ENABLED;
725 return 0;
726 }
727
728 static int set_tso(struct net_device *dev, u32 value)
729 {
730 struct adapter *adapter = dev->ml_priv;
731
732 if (!(adapter->flags & TSO_CAPABLE))
733 return value ? -EOPNOTSUPP : 0;
734 return ethtool_op_set_tso(dev, value);
735 }
736
737 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
738 {
739 struct adapter *adapter = dev->ml_priv;
740 int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
741
742 e->rx_max_pending = MAX_RX_BUFFERS;
743 e->rx_mini_max_pending = 0;
744 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
745 e->tx_max_pending = MAX_CMDQ_ENTRIES;
746
747 e->rx_pending = adapter->params.sge.freelQ_size[!jumbo_fl];
748 e->rx_mini_pending = 0;
749 e->rx_jumbo_pending = adapter->params.sge.freelQ_size[jumbo_fl];
750 e->tx_pending = adapter->params.sge.cmdQ_size[0];
751 }
752
753 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
754 {
755 struct adapter *adapter = dev->ml_priv;
756 int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
757
758 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_mini_pending ||
759 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
760 e->tx_pending > MAX_CMDQ_ENTRIES ||
761 e->rx_pending < MIN_FL_ENTRIES ||
762 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
763 e->tx_pending < (adapter->params.nports + 1) * (MAX_SKB_FRAGS + 1))
764 return -EINVAL;
765
766 if (adapter->flags & FULL_INIT_DONE)
767 return -EBUSY;
768
769 adapter->params.sge.freelQ_size[!jumbo_fl] = e->rx_pending;
770 adapter->params.sge.freelQ_size[jumbo_fl] = e->rx_jumbo_pending;
771 adapter->params.sge.cmdQ_size[0] = e->tx_pending;
772 adapter->params.sge.cmdQ_size[1] = e->tx_pending > MAX_CMDQ1_ENTRIES ?
773 MAX_CMDQ1_ENTRIES : e->tx_pending;
774 return 0;
775 }
776
777 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
778 {
779 struct adapter *adapter = dev->ml_priv;
780
781 adapter->params.sge.rx_coalesce_usecs = c->rx_coalesce_usecs;
782 adapter->params.sge.coalesce_enable = c->use_adaptive_rx_coalesce;
783 adapter->params.sge.sample_interval_usecs = c->rate_sample_interval;
784 t1_sge_set_coalesce_params(adapter->sge, &adapter->params.sge);
785 return 0;
786 }
787
788 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
789 {
790 struct adapter *adapter = dev->ml_priv;
791
792 c->rx_coalesce_usecs = adapter->params.sge.rx_coalesce_usecs;
793 c->rate_sample_interval = adapter->params.sge.sample_interval_usecs;
794 c->use_adaptive_rx_coalesce = adapter->params.sge.coalesce_enable;
795 return 0;
796 }
797
798 static int get_eeprom_len(struct net_device *dev)
799 {
800 struct adapter *adapter = dev->ml_priv;
801
802 return t1_is_asic(adapter) ? EEPROM_SIZE : 0;
803 }
804
805 #define EEPROM_MAGIC(ap) \
806 (PCI_VENDOR_ID_CHELSIO | ((ap)->params.chip_version << 16))
807
808 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
809 u8 *data)
810 {
811 int i;
812 u8 buf[EEPROM_SIZE] __attribute__((aligned(4)));
813 struct adapter *adapter = dev->ml_priv;
814
815 e->magic = EEPROM_MAGIC(adapter);
816 for (i = e->offset & ~3; i < e->offset + e->len; i += sizeof(u32))
817 t1_seeprom_read(adapter, i, (__le32 *)&buf[i]);
818 memcpy(data, buf + e->offset, e->len);
819 return 0;
820 }
821
822 static const struct ethtool_ops t1_ethtool_ops = {
823 .get_settings = get_settings,
824 .set_settings = set_settings,
825 .get_drvinfo = get_drvinfo,
826 .get_msglevel = get_msglevel,
827 .set_msglevel = set_msglevel,
828 .get_ringparam = get_sge_param,
829 .set_ringparam = set_sge_param,
830 .get_coalesce = get_coalesce,
831 .set_coalesce = set_coalesce,
832 .get_eeprom_len = get_eeprom_len,
833 .get_eeprom = get_eeprom,
834 .get_pauseparam = get_pauseparam,
835 .set_pauseparam = set_pauseparam,
836 .get_rx_csum = get_rx_csum,
837 .set_rx_csum = set_rx_csum,
838 .set_tx_csum = ethtool_op_set_tx_csum,
839 .set_sg = ethtool_op_set_sg,
840 .get_link = ethtool_op_get_link,
841 .get_strings = get_strings,
842 .get_sset_count = get_sset_count,
843 .get_ethtool_stats = get_stats,
844 .get_regs_len = get_regs_len,
845 .get_regs = get_regs,
846 .set_tso = set_tso,
847 };
848
849 static int t1_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
850 {
851 struct adapter *adapter = dev->ml_priv;
852 struct mii_ioctl_data *data = if_mii(req);
853
854 switch (cmd) {
855 case SIOCGMIIPHY:
856 data->phy_id = adapter->port[dev->if_port].phy->addr;
857 /* FALLTHRU */
858 case SIOCGMIIREG: {
859 struct cphy *phy = adapter->port[dev->if_port].phy;
860 u32 val;
861
862 if (!phy->mdio_read)
863 return -EOPNOTSUPP;
864 phy->mdio_read(adapter, data->phy_id, 0, data->reg_num & 0x1f,
865 &val);
866 data->val_out = val;
867 break;
868 }
869 case SIOCSMIIREG: {
870 struct cphy *phy = adapter->port[dev->if_port].phy;
871
872 if (!capable(CAP_NET_ADMIN))
873 return -EPERM;
874 if (!phy->mdio_write)
875 return -EOPNOTSUPP;
876 phy->mdio_write(adapter, data->phy_id, 0, data->reg_num & 0x1f,
877 data->val_in);
878 break;
879 }
880
881 default:
882 return -EOPNOTSUPP;
883 }
884 return 0;
885 }
886
887 static int t1_change_mtu(struct net_device *dev, int new_mtu)
888 {
889 int ret;
890 struct adapter *adapter = dev->ml_priv;
891 struct cmac *mac = adapter->port[dev->if_port].mac;
892
893 if (!mac->ops->set_mtu)
894 return -EOPNOTSUPP;
895 if (new_mtu < 68)
896 return -EINVAL;
897 if ((ret = mac->ops->set_mtu(mac, new_mtu)))
898 return ret;
899 dev->mtu = new_mtu;
900 return 0;
901 }
902
903 static int t1_set_mac_addr(struct net_device *dev, void *p)
904 {
905 struct adapter *adapter = dev->ml_priv;
906 struct cmac *mac = adapter->port[dev->if_port].mac;
907 struct sockaddr *addr = p;
908
909 if (!mac->ops->macaddress_set)
910 return -EOPNOTSUPP;
911
912 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
913 mac->ops->macaddress_set(mac, dev->dev_addr);
914 return 0;
915 }
916
917 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
918 static void t1_vlan_rx_register(struct net_device *dev,
919 struct vlan_group *grp)
920 {
921 struct adapter *adapter = dev->ml_priv;
922
923 spin_lock_irq(&adapter->async_lock);
924 adapter->vlan_grp = grp;
925 t1_set_vlan_accel(adapter, grp != NULL);
926 spin_unlock_irq(&adapter->async_lock);
927 }
928 #endif
929
930 #ifdef CONFIG_NET_POLL_CONTROLLER
931 static void t1_netpoll(struct net_device *dev)
932 {
933 unsigned long flags;
934 struct adapter *adapter = dev->ml_priv;
935
936 local_irq_save(flags);
937 t1_interrupt(adapter->pdev->irq, adapter);
938 local_irq_restore(flags);
939 }
940 #endif
941
942 /*
943 * Periodic accumulation of MAC statistics. This is used only if the MAC
944 * does not have any other way to prevent stats counter overflow.
945 */
946 static void mac_stats_task(struct work_struct *work)
947 {
948 int i;
949 struct adapter *adapter =
950 container_of(work, struct adapter, stats_update_task.work);
951
952 for_each_port(adapter, i) {
953 struct port_info *p = &adapter->port[i];
954
955 if (netif_running(p->dev))
956 p->mac->ops->statistics_update(p->mac,
957 MAC_STATS_UPDATE_FAST);
958 }
959
960 /* Schedule the next statistics update if any port is active. */
961 spin_lock(&adapter->work_lock);
962 if (adapter->open_device_map & PORT_MASK)
963 schedule_mac_stats_update(adapter,
964 adapter->params.stats_update_period);
965 spin_unlock(&adapter->work_lock);
966 }
967
968 /*
969 * Processes elmer0 external interrupts in process context.
970 */
971 static void ext_intr_task(struct work_struct *work)
972 {
973 struct adapter *adapter =
974 container_of(work, struct adapter, ext_intr_handler_task);
975
976 t1_elmer0_ext_intr_handler(adapter);
977
978 /* Now reenable external interrupts */
979 spin_lock_irq(&adapter->async_lock);
980 adapter->slow_intr_mask |= F_PL_INTR_EXT;
981 writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE);
982 writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
983 adapter->regs + A_PL_ENABLE);
984 spin_unlock_irq(&adapter->async_lock);
985 }
986
987 /*
988 * Interrupt-context handler for elmer0 external interrupts.
989 */
990 void t1_elmer0_ext_intr(struct adapter *adapter)
991 {
992 /*
993 * Schedule a task to handle external interrupts as we require
994 * a process context. We disable EXT interrupts in the interim
995 * and let the task reenable them when it's done.
996 */
997 adapter->slow_intr_mask &= ~F_PL_INTR_EXT;
998 writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
999 adapter->regs + A_PL_ENABLE);
1000 schedule_work(&adapter->ext_intr_handler_task);
1001 }
1002
1003 void t1_fatal_err(struct adapter *adapter)
1004 {
1005 if (adapter->flags & FULL_INIT_DONE) {
1006 t1_sge_stop(adapter->sge);
1007 t1_interrupts_disable(adapter);
1008 }
1009 CH_ALERT("%s: encountered fatal error, operation suspended\n",
1010 adapter->name);
1011 }
1012
1013 static const struct net_device_ops cxgb_netdev_ops = {
1014 .ndo_open = cxgb_open,
1015 .ndo_stop = cxgb_close,
1016 .ndo_start_xmit = t1_start_xmit,
1017 .ndo_get_stats = t1_get_stats,
1018 .ndo_validate_addr = eth_validate_addr,
1019 .ndo_set_multicast_list = t1_set_rxmode,
1020 .ndo_do_ioctl = t1_ioctl,
1021 .ndo_change_mtu = t1_change_mtu,
1022 .ndo_set_mac_address = t1_set_mac_addr,
1023 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1024 .ndo_vlan_rx_register = t1_vlan_rx_register,
1025 #endif
1026 #ifdef CONFIG_NET_POLL_CONTROLLER
1027 .ndo_poll_controller = t1_netpoll,
1028 #endif
1029 };
1030
1031 static int __devinit init_one(struct pci_dev *pdev,
1032 const struct pci_device_id *ent)
1033 {
1034 static int version_printed;
1035
1036 int i, err, pci_using_dac = 0;
1037 unsigned long mmio_start, mmio_len;
1038 const struct board_info *bi;
1039 struct adapter *adapter = NULL;
1040 struct port_info *pi;
1041
1042 if (!version_printed) {
1043 printk(KERN_INFO "%s - version %s\n", DRV_DESCRIPTION,
1044 DRV_VERSION);
1045 ++version_printed;
1046 }
1047
1048 err = pci_enable_device(pdev);
1049 if (err)
1050 return err;
1051
1052 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
1053 CH_ERR("%s: cannot find PCI device memory base address\n",
1054 pci_name(pdev));
1055 err = -ENODEV;
1056 goto out_disable_pdev;
1057 }
1058
1059 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1060 pci_using_dac = 1;
1061
1062 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1063 CH_ERR("%s: unable to obtain 64-bit DMA for "
1064 "consistent allocations\n", pci_name(pdev));
1065 err = -ENODEV;
1066 goto out_disable_pdev;
1067 }
1068
1069 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
1070 CH_ERR("%s: no usable DMA configuration\n", pci_name(pdev));
1071 goto out_disable_pdev;
1072 }
1073
1074 err = pci_request_regions(pdev, DRV_NAME);
1075 if (err) {
1076 CH_ERR("%s: cannot obtain PCI resources\n", pci_name(pdev));
1077 goto out_disable_pdev;
1078 }
1079
1080 pci_set_master(pdev);
1081
1082 mmio_start = pci_resource_start(pdev, 0);
1083 mmio_len = pci_resource_len(pdev, 0);
1084 bi = t1_get_board_info(ent->driver_data);
1085
1086 for (i = 0; i < bi->port_number; ++i) {
1087 struct net_device *netdev;
1088
1089 netdev = alloc_etherdev(adapter ? 0 : sizeof(*adapter));
1090 if (!netdev) {
1091 err = -ENOMEM;
1092 goto out_free_dev;
1093 }
1094
1095 SET_NETDEV_DEV(netdev, &pdev->dev);
1096
1097 if (!adapter) {
1098 adapter = netdev_priv(netdev);
1099 adapter->pdev = pdev;
1100 adapter->port[0].dev = netdev; /* so we don't leak it */
1101
1102 adapter->regs = ioremap(mmio_start, mmio_len);
1103 if (!adapter->regs) {
1104 CH_ERR("%s: cannot map device registers\n",
1105 pci_name(pdev));
1106 err = -ENOMEM;
1107 goto out_free_dev;
1108 }
1109
1110 if (t1_get_board_rev(adapter, bi, &adapter->params)) {
1111 err = -ENODEV; /* Can't handle this chip rev */
1112 goto out_free_dev;
1113 }
1114
1115 adapter->name = pci_name(pdev);
1116 adapter->msg_enable = dflt_msg_enable;
1117 adapter->mmio_len = mmio_len;
1118
1119 spin_lock_init(&adapter->tpi_lock);
1120 spin_lock_init(&adapter->work_lock);
1121 spin_lock_init(&adapter->async_lock);
1122 spin_lock_init(&adapter->mac_lock);
1123
1124 INIT_WORK(&adapter->ext_intr_handler_task,
1125 ext_intr_task);
1126 INIT_DELAYED_WORK(&adapter->stats_update_task,
1127 mac_stats_task);
1128
1129 pci_set_drvdata(pdev, netdev);
1130 }
1131
1132 pi = &adapter->port[i];
1133 pi->dev = netdev;
1134 netif_carrier_off(netdev);
1135 netdev->irq = pdev->irq;
1136 netdev->if_port = i;
1137 netdev->mem_start = mmio_start;
1138 netdev->mem_end = mmio_start + mmio_len - 1;
1139 netdev->ml_priv = adapter;
1140 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
1141 netdev->features |= NETIF_F_LLTX;
1142
1143 adapter->flags |= RX_CSUM_ENABLED | TCP_CSUM_CAPABLE;
1144 if (pci_using_dac)
1145 netdev->features |= NETIF_F_HIGHDMA;
1146 if (vlan_tso_capable(adapter)) {
1147 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1148 adapter->flags |= VLAN_ACCEL_CAPABLE;
1149 netdev->features |=
1150 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1151 #endif
1152
1153 /* T204: disable TSO */
1154 if (!(is_T2(adapter)) || bi->port_number != 4) {
1155 adapter->flags |= TSO_CAPABLE;
1156 netdev->features |= NETIF_F_TSO;
1157 }
1158 }
1159
1160 netdev->netdev_ops = &cxgb_netdev_ops;
1161 netdev->hard_header_len += (adapter->flags & TSO_CAPABLE) ?
1162 sizeof(struct cpl_tx_pkt_lso) : sizeof(struct cpl_tx_pkt);
1163
1164 netif_napi_add(netdev, &adapter->napi, t1_poll, 64);
1165
1166 SET_ETHTOOL_OPS(netdev, &t1_ethtool_ops);
1167 }
1168
1169 if (t1_init_sw_modules(adapter, bi) < 0) {
1170 err = -ENODEV;
1171 goto out_free_dev;
1172 }
1173
1174 /*
1175 * The card is now ready to go. If any errors occur during device
1176 * registration we do not fail the whole card but rather proceed only
1177 * with the ports we manage to register successfully. However we must
1178 * register at least one net device.
1179 */
1180 for (i = 0; i < bi->port_number; ++i) {
1181 err = register_netdev(adapter->port[i].dev);
1182 if (err)
1183 CH_WARN("%s: cannot register net device %s, skipping\n",
1184 pci_name(pdev), adapter->port[i].dev->name);
1185 else {
1186 /*
1187 * Change the name we use for messages to the name of
1188 * the first successfully registered interface.
1189 */
1190 if (!adapter->registered_device_map)
1191 adapter->name = adapter->port[i].dev->name;
1192
1193 __set_bit(i, &adapter->registered_device_map);
1194 }
1195 }
1196 if (!adapter->registered_device_map) {
1197 CH_ERR("%s: could not register any net devices\n",
1198 pci_name(pdev));
1199 goto out_release_adapter_res;
1200 }
1201
1202 printk(KERN_INFO "%s: %s (rev %d), %s %dMHz/%d-bit\n", adapter->name,
1203 bi->desc, adapter->params.chip_revision,
1204 adapter->params.pci.is_pcix ? "PCIX" : "PCI",
1205 adapter->params.pci.speed, adapter->params.pci.width);
1206
1207 /*
1208 * Set the T1B ASIC and memory clocks.
1209 */
1210 if (t1powersave)
1211 adapter->t1powersave = LCLOCK; /* HW default is powersave mode. */
1212 else
1213 adapter->t1powersave = HCLOCK;
1214 if (t1_is_T1B(adapter))
1215 t1_clock(adapter, t1powersave);
1216
1217 return 0;
1218
1219 out_release_adapter_res:
1220 t1_free_sw_modules(adapter);
1221 out_free_dev:
1222 if (adapter) {
1223 if (adapter->regs)
1224 iounmap(adapter->regs);
1225 for (i = bi->port_number - 1; i >= 0; --i)
1226 if (adapter->port[i].dev)
1227 free_netdev(adapter->port[i].dev);
1228 }
1229 pci_release_regions(pdev);
1230 out_disable_pdev:
1231 pci_disable_device(pdev);
1232 pci_set_drvdata(pdev, NULL);
1233 return err;
1234 }
1235
1236 static void bit_bang(struct adapter *adapter, int bitdata, int nbits)
1237 {
1238 int data;
1239 int i;
1240 u32 val;
1241
1242 enum {
1243 S_CLOCK = 1 << 3,
1244 S_DATA = 1 << 4
1245 };
1246
1247 for (i = (nbits - 1); i > -1; i--) {
1248
1249 udelay(50);
1250
1251 data = ((bitdata >> i) & 0x1);
1252 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1253
1254 if (data)
1255 val |= S_DATA;
1256 else
1257 val &= ~S_DATA;
1258
1259 udelay(50);
1260
1261 /* Set SCLOCK low */
1262 val &= ~S_CLOCK;
1263 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1264
1265 udelay(50);
1266
1267 /* Write SCLOCK high */
1268 val |= S_CLOCK;
1269 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1270
1271 }
1272 }
1273
1274 static int t1_clock(struct adapter *adapter, int mode)
1275 {
1276 u32 val;
1277 int M_CORE_VAL;
1278 int M_MEM_VAL;
1279
1280 enum {
1281 M_CORE_BITS = 9,
1282 T_CORE_VAL = 0,
1283 T_CORE_BITS = 2,
1284 N_CORE_VAL = 0,
1285 N_CORE_BITS = 2,
1286 M_MEM_BITS = 9,
1287 T_MEM_VAL = 0,
1288 T_MEM_BITS = 2,
1289 N_MEM_VAL = 0,
1290 N_MEM_BITS = 2,
1291 NP_LOAD = 1 << 17,
1292 S_LOAD_MEM = 1 << 5,
1293 S_LOAD_CORE = 1 << 6,
1294 S_CLOCK = 1 << 3
1295 };
1296
1297 if (!t1_is_T1B(adapter))
1298 return -ENODEV; /* Can't re-clock this chip. */
1299
1300 if (mode & 2)
1301 return 0; /* show current mode. */
1302
1303 if ((adapter->t1powersave & 1) == (mode & 1))
1304 return -EALREADY; /* ASIC already running in mode. */
1305
1306 if ((mode & 1) == HCLOCK) {
1307 M_CORE_VAL = 0x14;
1308 M_MEM_VAL = 0x18;
1309 adapter->t1powersave = HCLOCK; /* overclock */
1310 } else {
1311 M_CORE_VAL = 0xe;
1312 M_MEM_VAL = 0x10;
1313 adapter->t1powersave = LCLOCK; /* underclock */
1314 }
1315
1316 /* Don't interrupt this serial stream! */
1317 spin_lock(&adapter->tpi_lock);
1318
1319 /* Initialize for ASIC core */
1320 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1321 val |= NP_LOAD;
1322 udelay(50);
1323 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1324 udelay(50);
1325 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1326 val &= ~S_LOAD_CORE;
1327 val &= ~S_CLOCK;
1328 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1329 udelay(50);
1330
1331 /* Serial program the ASIC clock synthesizer */
1332 bit_bang(adapter, T_CORE_VAL, T_CORE_BITS);
1333 bit_bang(adapter, N_CORE_VAL, N_CORE_BITS);
1334 bit_bang(adapter, M_CORE_VAL, M_CORE_BITS);
1335 udelay(50);
1336
1337 /* Finish ASIC core */
1338 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1339 val |= S_LOAD_CORE;
1340 udelay(50);
1341 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1342 udelay(50);
1343 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1344 val &= ~S_LOAD_CORE;
1345 udelay(50);
1346 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1347 udelay(50);
1348
1349 /* Initialize for memory */
1350 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1351 val |= NP_LOAD;
1352 udelay(50);
1353 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1354 udelay(50);
1355 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1356 val &= ~S_LOAD_MEM;
1357 val &= ~S_CLOCK;
1358 udelay(50);
1359 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1360 udelay(50);
1361
1362 /* Serial program the memory clock synthesizer */
1363 bit_bang(adapter, T_MEM_VAL, T_MEM_BITS);
1364 bit_bang(adapter, N_MEM_VAL, N_MEM_BITS);
1365 bit_bang(adapter, M_MEM_VAL, M_MEM_BITS);
1366 udelay(50);
1367
1368 /* Finish memory */
1369 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1370 val |= S_LOAD_MEM;
1371 udelay(50);
1372 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1373 udelay(50);
1374 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1375 val &= ~S_LOAD_MEM;
1376 udelay(50);
1377 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1378
1379 spin_unlock(&adapter->tpi_lock);
1380
1381 return 0;
1382 }
1383
1384 static inline void t1_sw_reset(struct pci_dev *pdev)
1385 {
1386 pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 3);
1387 pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 0);
1388 }
1389
1390 static void __devexit remove_one(struct pci_dev *pdev)
1391 {
1392 struct net_device *dev = pci_get_drvdata(pdev);
1393 struct adapter *adapter = dev->ml_priv;
1394 int i;
1395
1396 for_each_port(adapter, i) {
1397 if (test_bit(i, &adapter->registered_device_map))
1398 unregister_netdev(adapter->port[i].dev);
1399 }
1400
1401 t1_free_sw_modules(adapter);
1402 iounmap(adapter->regs);
1403
1404 while (--i >= 0) {
1405 if (adapter->port[i].dev)
1406 free_netdev(adapter->port[i].dev);
1407 }
1408
1409 pci_release_regions(pdev);
1410 pci_disable_device(pdev);
1411 pci_set_drvdata(pdev, NULL);
1412 t1_sw_reset(pdev);
1413 }
1414
1415 static struct pci_driver driver = {
1416 .name = DRV_NAME,
1417 .id_table = t1_pci_tbl,
1418 .probe = init_one,
1419 .remove = __devexit_p(remove_one),
1420 };
1421
1422 static int __init t1_init_module(void)
1423 {
1424 return pci_register_driver(&driver);
1425 }
1426
1427 static void __exit t1_cleanup_module(void)
1428 {
1429 pci_unregister_driver(&driver);
1430 }
1431
1432 module_init(t1_init_module);
1433 module_exit(t1_cleanup_module);
This page took 0.060185 seconds and 5 git commands to generate.