Merge branch 'linus' into x86/urgent
[deliverable/linux.git] / drivers / net / chelsio / cxgb2.c
1 /*****************************************************************************
2 * *
3 * File: cxgb2.c *
4 * $Revision: 1.25 $ *
5 * $Date: 2005/06/22 00:43:25 $ *
6 * Description: *
7 * Chelsio 10Gb Ethernet Driver. *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License, version 2, as *
11 * published by the Free Software Foundation. *
12 * *
13 * You should have received a copy of the GNU General Public License along *
14 * with this program; if not, write to the Free Software Foundation, Inc., *
15 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
16 * *
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
20 * *
21 * http://www.chelsio.com *
22 * *
23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
24 * All rights reserved. *
25 * *
26 * Maintainers: maintainers@chelsio.com *
27 * *
28 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
29 * Tina Yang <tainay@chelsio.com> *
30 * Felix Marti <felix@chelsio.com> *
31 * Scott Bardone <sbardone@chelsio.com> *
32 * Kurt Ottaway <kottaway@chelsio.com> *
33 * Frank DiMambro <frank@chelsio.com> *
34 * *
35 * History: *
36 * *
37 ****************************************************************************/
38
39 #include "common.h"
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/pci.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/if_vlan.h>
46 #include <linux/mii.h>
47 #include <linux/sockios.h>
48 #include <linux/dma-mapping.h>
49 #include <asm/uaccess.h>
50
51 #include "cpl5_cmd.h"
52 #include "regs.h"
53 #include "gmac.h"
54 #include "cphy.h"
55 #include "sge.h"
56 #include "tp.h"
57 #include "espi.h"
58 #include "elmer0.h"
59
60 #include <linux/workqueue.h>
61
62 static inline void schedule_mac_stats_update(struct adapter *ap, int secs)
63 {
64 schedule_delayed_work(&ap->stats_update_task, secs * HZ);
65 }
66
67 static inline void cancel_mac_stats_update(struct adapter *ap)
68 {
69 cancel_delayed_work(&ap->stats_update_task);
70 }
71
72 #define MAX_CMDQ_ENTRIES 16384
73 #define MAX_CMDQ1_ENTRIES 1024
74 #define MAX_RX_BUFFERS 16384
75 #define MAX_RX_JUMBO_BUFFERS 16384
76 #define MAX_TX_BUFFERS_HIGH 16384U
77 #define MAX_TX_BUFFERS_LOW 1536U
78 #define MAX_TX_BUFFERS 1460U
79 #define MIN_FL_ENTRIES 32
80
81 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
82 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
83 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
84
85 /*
86 * The EEPROM is actually bigger but only the first few bytes are used so we
87 * only report those.
88 */
89 #define EEPROM_SIZE 32
90
91 MODULE_DESCRIPTION(DRV_DESCRIPTION);
92 MODULE_AUTHOR("Chelsio Communications");
93 MODULE_LICENSE("GPL");
94
95 static int dflt_msg_enable = DFLT_MSG_ENABLE;
96
97 module_param(dflt_msg_enable, int, 0);
98 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T1 default message enable bitmap");
99
100 #define HCLOCK 0x0
101 #define LCLOCK 0x1
102
103 /* T1 cards powersave mode */
104 static int t1_clock(struct adapter *adapter, int mode);
105 static int t1powersave = 1; /* HW default is powersave mode. */
106
107 module_param(t1powersave, int, 0);
108 MODULE_PARM_DESC(t1powersave, "Enable/Disable T1 powersaving mode");
109
110 static int disable_msi = 0;
111 module_param(disable_msi, int, 0);
112 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
113
114 static const char pci_speed[][4] = {
115 "33", "66", "100", "133"
116 };
117
118 /*
119 * Setup MAC to receive the types of packets we want.
120 */
121 static void t1_set_rxmode(struct net_device *dev)
122 {
123 struct adapter *adapter = dev->priv;
124 struct cmac *mac = adapter->port[dev->if_port].mac;
125 struct t1_rx_mode rm;
126
127 rm.dev = dev;
128 rm.idx = 0;
129 rm.list = dev->mc_list;
130 mac->ops->set_rx_mode(mac, &rm);
131 }
132
133 static void link_report(struct port_info *p)
134 {
135 if (!netif_carrier_ok(p->dev))
136 printk(KERN_INFO "%s: link down\n", p->dev->name);
137 else {
138 const char *s = "10Mbps";
139
140 switch (p->link_config.speed) {
141 case SPEED_10000: s = "10Gbps"; break;
142 case SPEED_1000: s = "1000Mbps"; break;
143 case SPEED_100: s = "100Mbps"; break;
144 }
145
146 printk(KERN_INFO "%s: link up, %s, %s-duplex\n",
147 p->dev->name, s,
148 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
149 }
150 }
151
152 void t1_link_negotiated(struct adapter *adapter, int port_id, int link_stat,
153 int speed, int duplex, int pause)
154 {
155 struct port_info *p = &adapter->port[port_id];
156
157 if (link_stat != netif_carrier_ok(p->dev)) {
158 if (link_stat)
159 netif_carrier_on(p->dev);
160 else
161 netif_carrier_off(p->dev);
162 link_report(p);
163
164 /* multi-ports: inform toe */
165 if ((speed > 0) && (adapter->params.nports > 1)) {
166 unsigned int sched_speed = 10;
167 switch (speed) {
168 case SPEED_1000:
169 sched_speed = 1000;
170 break;
171 case SPEED_100:
172 sched_speed = 100;
173 break;
174 case SPEED_10:
175 sched_speed = 10;
176 break;
177 }
178 t1_sched_update_parms(adapter->sge, port_id, 0, sched_speed);
179 }
180 }
181 }
182
183 static void link_start(struct port_info *p)
184 {
185 struct cmac *mac = p->mac;
186
187 mac->ops->reset(mac);
188 if (mac->ops->macaddress_set)
189 mac->ops->macaddress_set(mac, p->dev->dev_addr);
190 t1_set_rxmode(p->dev);
191 t1_link_start(p->phy, mac, &p->link_config);
192 mac->ops->enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
193 }
194
195 static void enable_hw_csum(struct adapter *adapter)
196 {
197 if (adapter->flags & TSO_CAPABLE)
198 t1_tp_set_ip_checksum_offload(adapter->tp, 1); /* for TSO only */
199 if (adapter->flags & UDP_CSUM_CAPABLE)
200 t1_tp_set_udp_checksum_offload(adapter->tp, 1);
201 t1_tp_set_tcp_checksum_offload(adapter->tp, 1);
202 }
203
204 /*
205 * Things to do upon first use of a card.
206 * This must run with the rtnl lock held.
207 */
208 static int cxgb_up(struct adapter *adapter)
209 {
210 int err = 0;
211
212 if (!(adapter->flags & FULL_INIT_DONE)) {
213 err = t1_init_hw_modules(adapter);
214 if (err)
215 goto out_err;
216
217 enable_hw_csum(adapter);
218 adapter->flags |= FULL_INIT_DONE;
219 }
220
221 t1_interrupts_clear(adapter);
222
223 adapter->params.has_msi = !disable_msi && !pci_enable_msi(adapter->pdev);
224 err = request_irq(adapter->pdev->irq, t1_interrupt,
225 adapter->params.has_msi ? 0 : IRQF_SHARED,
226 adapter->name, adapter);
227 if (err) {
228 if (adapter->params.has_msi)
229 pci_disable_msi(adapter->pdev);
230
231 goto out_err;
232 }
233
234 t1_sge_start(adapter->sge);
235 t1_interrupts_enable(adapter);
236 out_err:
237 return err;
238 }
239
240 /*
241 * Release resources when all the ports have been stopped.
242 */
243 static void cxgb_down(struct adapter *adapter)
244 {
245 t1_sge_stop(adapter->sge);
246 t1_interrupts_disable(adapter);
247 free_irq(adapter->pdev->irq, adapter);
248 if (adapter->params.has_msi)
249 pci_disable_msi(adapter->pdev);
250 }
251
252 static int cxgb_open(struct net_device *dev)
253 {
254 int err;
255 struct adapter *adapter = dev->priv;
256 int other_ports = adapter->open_device_map & PORT_MASK;
257
258 napi_enable(&adapter->napi);
259 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) {
260 napi_disable(&adapter->napi);
261 return err;
262 }
263
264 __set_bit(dev->if_port, &adapter->open_device_map);
265 link_start(&adapter->port[dev->if_port]);
266 netif_start_queue(dev);
267 if (!other_ports && adapter->params.stats_update_period)
268 schedule_mac_stats_update(adapter,
269 adapter->params.stats_update_period);
270 return 0;
271 }
272
273 static int cxgb_close(struct net_device *dev)
274 {
275 struct adapter *adapter = dev->priv;
276 struct port_info *p = &adapter->port[dev->if_port];
277 struct cmac *mac = p->mac;
278
279 netif_stop_queue(dev);
280 napi_disable(&adapter->napi);
281 mac->ops->disable(mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
282 netif_carrier_off(dev);
283
284 clear_bit(dev->if_port, &adapter->open_device_map);
285 if (adapter->params.stats_update_period &&
286 !(adapter->open_device_map & PORT_MASK)) {
287 /* Stop statistics accumulation. */
288 smp_mb__after_clear_bit();
289 spin_lock(&adapter->work_lock); /* sync with update task */
290 spin_unlock(&adapter->work_lock);
291 cancel_mac_stats_update(adapter);
292 }
293
294 if (!adapter->open_device_map)
295 cxgb_down(adapter);
296 return 0;
297 }
298
299 static struct net_device_stats *t1_get_stats(struct net_device *dev)
300 {
301 struct adapter *adapter = dev->priv;
302 struct port_info *p = &adapter->port[dev->if_port];
303 struct net_device_stats *ns = &p->netstats;
304 const struct cmac_statistics *pstats;
305
306 /* Do a full update of the MAC stats */
307 pstats = p->mac->ops->statistics_update(p->mac,
308 MAC_STATS_UPDATE_FULL);
309
310 ns->tx_packets = pstats->TxUnicastFramesOK +
311 pstats->TxMulticastFramesOK + pstats->TxBroadcastFramesOK;
312
313 ns->rx_packets = pstats->RxUnicastFramesOK +
314 pstats->RxMulticastFramesOK + pstats->RxBroadcastFramesOK;
315
316 ns->tx_bytes = pstats->TxOctetsOK;
317 ns->rx_bytes = pstats->RxOctetsOK;
318
319 ns->tx_errors = pstats->TxLateCollisions + pstats->TxLengthErrors +
320 pstats->TxUnderrun + pstats->TxFramesAbortedDueToXSCollisions;
321 ns->rx_errors = pstats->RxDataErrors + pstats->RxJabberErrors +
322 pstats->RxFCSErrors + pstats->RxAlignErrors +
323 pstats->RxSequenceErrors + pstats->RxFrameTooLongErrors +
324 pstats->RxSymbolErrors + pstats->RxRuntErrors;
325
326 ns->multicast = pstats->RxMulticastFramesOK;
327 ns->collisions = pstats->TxTotalCollisions;
328
329 /* detailed rx_errors */
330 ns->rx_length_errors = pstats->RxFrameTooLongErrors +
331 pstats->RxJabberErrors;
332 ns->rx_over_errors = 0;
333 ns->rx_crc_errors = pstats->RxFCSErrors;
334 ns->rx_frame_errors = pstats->RxAlignErrors;
335 ns->rx_fifo_errors = 0;
336 ns->rx_missed_errors = 0;
337
338 /* detailed tx_errors */
339 ns->tx_aborted_errors = pstats->TxFramesAbortedDueToXSCollisions;
340 ns->tx_carrier_errors = 0;
341 ns->tx_fifo_errors = pstats->TxUnderrun;
342 ns->tx_heartbeat_errors = 0;
343 ns->tx_window_errors = pstats->TxLateCollisions;
344 return ns;
345 }
346
347 static u32 get_msglevel(struct net_device *dev)
348 {
349 struct adapter *adapter = dev->priv;
350
351 return adapter->msg_enable;
352 }
353
354 static void set_msglevel(struct net_device *dev, u32 val)
355 {
356 struct adapter *adapter = dev->priv;
357
358 adapter->msg_enable = val;
359 }
360
361 static char stats_strings[][ETH_GSTRING_LEN] = {
362 "TxOctetsOK",
363 "TxOctetsBad",
364 "TxUnicastFramesOK",
365 "TxMulticastFramesOK",
366 "TxBroadcastFramesOK",
367 "TxPauseFrames",
368 "TxFramesWithDeferredXmissions",
369 "TxLateCollisions",
370 "TxTotalCollisions",
371 "TxFramesAbortedDueToXSCollisions",
372 "TxUnderrun",
373 "TxLengthErrors",
374 "TxInternalMACXmitError",
375 "TxFramesWithExcessiveDeferral",
376 "TxFCSErrors",
377 "TxJumboFramesOk",
378 "TxJumboOctetsOk",
379
380 "RxOctetsOK",
381 "RxOctetsBad",
382 "RxUnicastFramesOK",
383 "RxMulticastFramesOK",
384 "RxBroadcastFramesOK",
385 "RxPauseFrames",
386 "RxFCSErrors",
387 "RxAlignErrors",
388 "RxSymbolErrors",
389 "RxDataErrors",
390 "RxSequenceErrors",
391 "RxRuntErrors",
392 "RxJabberErrors",
393 "RxInternalMACRcvError",
394 "RxInRangeLengthErrors",
395 "RxOutOfRangeLengthField",
396 "RxFrameTooLongErrors",
397 "RxJumboFramesOk",
398 "RxJumboOctetsOk",
399
400 /* Port stats */
401 "RxCsumGood",
402 "TxCsumOffload",
403 "TxTso",
404 "RxVlan",
405 "TxVlan",
406 "TxNeedHeadroom",
407
408 /* Interrupt stats */
409 "rx drops",
410 "pure_rsps",
411 "unhandled irqs",
412 "respQ_empty",
413 "respQ_overflow",
414 "freelistQ_empty",
415 "pkt_too_big",
416 "pkt_mismatch",
417 "cmdQ_full0",
418 "cmdQ_full1",
419
420 "espi_DIP2ParityErr",
421 "espi_DIP4Err",
422 "espi_RxDrops",
423 "espi_TxDrops",
424 "espi_RxOvfl",
425 "espi_ParityErr"
426 };
427
428 #define T2_REGMAP_SIZE (3 * 1024)
429
430 static int get_regs_len(struct net_device *dev)
431 {
432 return T2_REGMAP_SIZE;
433 }
434
435 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
436 {
437 struct adapter *adapter = dev->priv;
438
439 strcpy(info->driver, DRV_NAME);
440 strcpy(info->version, DRV_VERSION);
441 strcpy(info->fw_version, "N/A");
442 strcpy(info->bus_info, pci_name(adapter->pdev));
443 }
444
445 static int get_sset_count(struct net_device *dev, int sset)
446 {
447 switch (sset) {
448 case ETH_SS_STATS:
449 return ARRAY_SIZE(stats_strings);
450 default:
451 return -EOPNOTSUPP;
452 }
453 }
454
455 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
456 {
457 if (stringset == ETH_SS_STATS)
458 memcpy(data, stats_strings, sizeof(stats_strings));
459 }
460
461 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
462 u64 *data)
463 {
464 struct adapter *adapter = dev->priv;
465 struct cmac *mac = adapter->port[dev->if_port].mac;
466 const struct cmac_statistics *s;
467 const struct sge_intr_counts *t;
468 struct sge_port_stats ss;
469
470 s = mac->ops->statistics_update(mac, MAC_STATS_UPDATE_FULL);
471 t = t1_sge_get_intr_counts(adapter->sge);
472 t1_sge_get_port_stats(adapter->sge, dev->if_port, &ss);
473
474 *data++ = s->TxOctetsOK;
475 *data++ = s->TxOctetsBad;
476 *data++ = s->TxUnicastFramesOK;
477 *data++ = s->TxMulticastFramesOK;
478 *data++ = s->TxBroadcastFramesOK;
479 *data++ = s->TxPauseFrames;
480 *data++ = s->TxFramesWithDeferredXmissions;
481 *data++ = s->TxLateCollisions;
482 *data++ = s->TxTotalCollisions;
483 *data++ = s->TxFramesAbortedDueToXSCollisions;
484 *data++ = s->TxUnderrun;
485 *data++ = s->TxLengthErrors;
486 *data++ = s->TxInternalMACXmitError;
487 *data++ = s->TxFramesWithExcessiveDeferral;
488 *data++ = s->TxFCSErrors;
489 *data++ = s->TxJumboFramesOK;
490 *data++ = s->TxJumboOctetsOK;
491
492 *data++ = s->RxOctetsOK;
493 *data++ = s->RxOctetsBad;
494 *data++ = s->RxUnicastFramesOK;
495 *data++ = s->RxMulticastFramesOK;
496 *data++ = s->RxBroadcastFramesOK;
497 *data++ = s->RxPauseFrames;
498 *data++ = s->RxFCSErrors;
499 *data++ = s->RxAlignErrors;
500 *data++ = s->RxSymbolErrors;
501 *data++ = s->RxDataErrors;
502 *data++ = s->RxSequenceErrors;
503 *data++ = s->RxRuntErrors;
504 *data++ = s->RxJabberErrors;
505 *data++ = s->RxInternalMACRcvError;
506 *data++ = s->RxInRangeLengthErrors;
507 *data++ = s->RxOutOfRangeLengthField;
508 *data++ = s->RxFrameTooLongErrors;
509 *data++ = s->RxJumboFramesOK;
510 *data++ = s->RxJumboOctetsOK;
511
512 *data++ = ss.rx_cso_good;
513 *data++ = ss.tx_cso;
514 *data++ = ss.tx_tso;
515 *data++ = ss.vlan_xtract;
516 *data++ = ss.vlan_insert;
517 *data++ = ss.tx_need_hdrroom;
518
519 *data++ = t->rx_drops;
520 *data++ = t->pure_rsps;
521 *data++ = t->unhandled_irqs;
522 *data++ = t->respQ_empty;
523 *data++ = t->respQ_overflow;
524 *data++ = t->freelistQ_empty;
525 *data++ = t->pkt_too_big;
526 *data++ = t->pkt_mismatch;
527 *data++ = t->cmdQ_full[0];
528 *data++ = t->cmdQ_full[1];
529
530 if (adapter->espi) {
531 const struct espi_intr_counts *e;
532
533 e = t1_espi_get_intr_counts(adapter->espi);
534 *data++ = e->DIP2_parity_err;
535 *data++ = e->DIP4_err;
536 *data++ = e->rx_drops;
537 *data++ = e->tx_drops;
538 *data++ = e->rx_ovflw;
539 *data++ = e->parity_err;
540 }
541 }
542
543 static inline void reg_block_dump(struct adapter *ap, void *buf,
544 unsigned int start, unsigned int end)
545 {
546 u32 *p = buf + start;
547
548 for ( ; start <= end; start += sizeof(u32))
549 *p++ = readl(ap->regs + start);
550 }
551
552 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
553 void *buf)
554 {
555 struct adapter *ap = dev->priv;
556
557 /*
558 * Version scheme: bits 0..9: chip version, bits 10..15: chip revision
559 */
560 regs->version = 2;
561
562 memset(buf, 0, T2_REGMAP_SIZE);
563 reg_block_dump(ap, buf, 0, A_SG_RESPACCUTIMER);
564 reg_block_dump(ap, buf, A_MC3_CFG, A_MC4_INT_CAUSE);
565 reg_block_dump(ap, buf, A_TPI_ADDR, A_TPI_PAR);
566 reg_block_dump(ap, buf, A_TP_IN_CONFIG, A_TP_TX_DROP_COUNT);
567 reg_block_dump(ap, buf, A_RAT_ROUTE_CONTROL, A_RAT_INTR_CAUSE);
568 reg_block_dump(ap, buf, A_CSPI_RX_AE_WM, A_CSPI_INTR_ENABLE);
569 reg_block_dump(ap, buf, A_ESPI_SCH_TOKEN0, A_ESPI_GOSTAT);
570 reg_block_dump(ap, buf, A_ULP_ULIMIT, A_ULP_PIO_CTRL);
571 reg_block_dump(ap, buf, A_PL_ENABLE, A_PL_CAUSE);
572 reg_block_dump(ap, buf, A_MC5_CONFIG, A_MC5_MASK_WRITE_CMD);
573 }
574
575 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
576 {
577 struct adapter *adapter = dev->priv;
578 struct port_info *p = &adapter->port[dev->if_port];
579
580 cmd->supported = p->link_config.supported;
581 cmd->advertising = p->link_config.advertising;
582
583 if (netif_carrier_ok(dev)) {
584 cmd->speed = p->link_config.speed;
585 cmd->duplex = p->link_config.duplex;
586 } else {
587 cmd->speed = -1;
588 cmd->duplex = -1;
589 }
590
591 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
592 cmd->phy_address = p->phy->addr;
593 cmd->transceiver = XCVR_EXTERNAL;
594 cmd->autoneg = p->link_config.autoneg;
595 cmd->maxtxpkt = 0;
596 cmd->maxrxpkt = 0;
597 return 0;
598 }
599
600 static int speed_duplex_to_caps(int speed, int duplex)
601 {
602 int cap = 0;
603
604 switch (speed) {
605 case SPEED_10:
606 if (duplex == DUPLEX_FULL)
607 cap = SUPPORTED_10baseT_Full;
608 else
609 cap = SUPPORTED_10baseT_Half;
610 break;
611 case SPEED_100:
612 if (duplex == DUPLEX_FULL)
613 cap = SUPPORTED_100baseT_Full;
614 else
615 cap = SUPPORTED_100baseT_Half;
616 break;
617 case SPEED_1000:
618 if (duplex == DUPLEX_FULL)
619 cap = SUPPORTED_1000baseT_Full;
620 else
621 cap = SUPPORTED_1000baseT_Half;
622 break;
623 case SPEED_10000:
624 if (duplex == DUPLEX_FULL)
625 cap = SUPPORTED_10000baseT_Full;
626 }
627 return cap;
628 }
629
630 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
631 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
632 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
633 ADVERTISED_10000baseT_Full)
634
635 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
636 {
637 struct adapter *adapter = dev->priv;
638 struct port_info *p = &adapter->port[dev->if_port];
639 struct link_config *lc = &p->link_config;
640
641 if (!(lc->supported & SUPPORTED_Autoneg))
642 return -EOPNOTSUPP; /* can't change speed/duplex */
643
644 if (cmd->autoneg == AUTONEG_DISABLE) {
645 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
646
647 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
648 return -EINVAL;
649 lc->requested_speed = cmd->speed;
650 lc->requested_duplex = cmd->duplex;
651 lc->advertising = 0;
652 } else {
653 cmd->advertising &= ADVERTISED_MASK;
654 if (cmd->advertising & (cmd->advertising - 1))
655 cmd->advertising = lc->supported;
656 cmd->advertising &= lc->supported;
657 if (!cmd->advertising)
658 return -EINVAL;
659 lc->requested_speed = SPEED_INVALID;
660 lc->requested_duplex = DUPLEX_INVALID;
661 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
662 }
663 lc->autoneg = cmd->autoneg;
664 if (netif_running(dev))
665 t1_link_start(p->phy, p->mac, lc);
666 return 0;
667 }
668
669 static void get_pauseparam(struct net_device *dev,
670 struct ethtool_pauseparam *epause)
671 {
672 struct adapter *adapter = dev->priv;
673 struct port_info *p = &adapter->port[dev->if_port];
674
675 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
676 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
677 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
678 }
679
680 static int set_pauseparam(struct net_device *dev,
681 struct ethtool_pauseparam *epause)
682 {
683 struct adapter *adapter = dev->priv;
684 struct port_info *p = &adapter->port[dev->if_port];
685 struct link_config *lc = &p->link_config;
686
687 if (epause->autoneg == AUTONEG_DISABLE)
688 lc->requested_fc = 0;
689 else if (lc->supported & SUPPORTED_Autoneg)
690 lc->requested_fc = PAUSE_AUTONEG;
691 else
692 return -EINVAL;
693
694 if (epause->rx_pause)
695 lc->requested_fc |= PAUSE_RX;
696 if (epause->tx_pause)
697 lc->requested_fc |= PAUSE_TX;
698 if (lc->autoneg == AUTONEG_ENABLE) {
699 if (netif_running(dev))
700 t1_link_start(p->phy, p->mac, lc);
701 } else {
702 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
703 if (netif_running(dev))
704 p->mac->ops->set_speed_duplex_fc(p->mac, -1, -1,
705 lc->fc);
706 }
707 return 0;
708 }
709
710 static u32 get_rx_csum(struct net_device *dev)
711 {
712 struct adapter *adapter = dev->priv;
713
714 return (adapter->flags & RX_CSUM_ENABLED) != 0;
715 }
716
717 static int set_rx_csum(struct net_device *dev, u32 data)
718 {
719 struct adapter *adapter = dev->priv;
720
721 if (data)
722 adapter->flags |= RX_CSUM_ENABLED;
723 else
724 adapter->flags &= ~RX_CSUM_ENABLED;
725 return 0;
726 }
727
728 static int set_tso(struct net_device *dev, u32 value)
729 {
730 struct adapter *adapter = dev->priv;
731
732 if (!(adapter->flags & TSO_CAPABLE))
733 return value ? -EOPNOTSUPP : 0;
734 return ethtool_op_set_tso(dev, value);
735 }
736
737 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
738 {
739 struct adapter *adapter = dev->priv;
740 int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
741
742 e->rx_max_pending = MAX_RX_BUFFERS;
743 e->rx_mini_max_pending = 0;
744 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
745 e->tx_max_pending = MAX_CMDQ_ENTRIES;
746
747 e->rx_pending = adapter->params.sge.freelQ_size[!jumbo_fl];
748 e->rx_mini_pending = 0;
749 e->rx_jumbo_pending = adapter->params.sge.freelQ_size[jumbo_fl];
750 e->tx_pending = adapter->params.sge.cmdQ_size[0];
751 }
752
753 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
754 {
755 struct adapter *adapter = dev->priv;
756 int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
757
758 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_mini_pending ||
759 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
760 e->tx_pending > MAX_CMDQ_ENTRIES ||
761 e->rx_pending < MIN_FL_ENTRIES ||
762 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
763 e->tx_pending < (adapter->params.nports + 1) * (MAX_SKB_FRAGS + 1))
764 return -EINVAL;
765
766 if (adapter->flags & FULL_INIT_DONE)
767 return -EBUSY;
768
769 adapter->params.sge.freelQ_size[!jumbo_fl] = e->rx_pending;
770 adapter->params.sge.freelQ_size[jumbo_fl] = e->rx_jumbo_pending;
771 adapter->params.sge.cmdQ_size[0] = e->tx_pending;
772 adapter->params.sge.cmdQ_size[1] = e->tx_pending > MAX_CMDQ1_ENTRIES ?
773 MAX_CMDQ1_ENTRIES : e->tx_pending;
774 return 0;
775 }
776
777 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
778 {
779 struct adapter *adapter = dev->priv;
780
781 adapter->params.sge.rx_coalesce_usecs = c->rx_coalesce_usecs;
782 adapter->params.sge.coalesce_enable = c->use_adaptive_rx_coalesce;
783 adapter->params.sge.sample_interval_usecs = c->rate_sample_interval;
784 t1_sge_set_coalesce_params(adapter->sge, &adapter->params.sge);
785 return 0;
786 }
787
788 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
789 {
790 struct adapter *adapter = dev->priv;
791
792 c->rx_coalesce_usecs = adapter->params.sge.rx_coalesce_usecs;
793 c->rate_sample_interval = adapter->params.sge.sample_interval_usecs;
794 c->use_adaptive_rx_coalesce = adapter->params.sge.coalesce_enable;
795 return 0;
796 }
797
798 static int get_eeprom_len(struct net_device *dev)
799 {
800 struct adapter *adapter = dev->priv;
801
802 return t1_is_asic(adapter) ? EEPROM_SIZE : 0;
803 }
804
805 #define EEPROM_MAGIC(ap) \
806 (PCI_VENDOR_ID_CHELSIO | ((ap)->params.chip_version << 16))
807
808 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
809 u8 *data)
810 {
811 int i;
812 u8 buf[EEPROM_SIZE] __attribute__((aligned(4)));
813 struct adapter *adapter = dev->priv;
814
815 e->magic = EEPROM_MAGIC(adapter);
816 for (i = e->offset & ~3; i < e->offset + e->len; i += sizeof(u32))
817 t1_seeprom_read(adapter, i, (__le32 *)&buf[i]);
818 memcpy(data, buf + e->offset, e->len);
819 return 0;
820 }
821
822 static const struct ethtool_ops t1_ethtool_ops = {
823 .get_settings = get_settings,
824 .set_settings = set_settings,
825 .get_drvinfo = get_drvinfo,
826 .get_msglevel = get_msglevel,
827 .set_msglevel = set_msglevel,
828 .get_ringparam = get_sge_param,
829 .set_ringparam = set_sge_param,
830 .get_coalesce = get_coalesce,
831 .set_coalesce = set_coalesce,
832 .get_eeprom_len = get_eeprom_len,
833 .get_eeprom = get_eeprom,
834 .get_pauseparam = get_pauseparam,
835 .set_pauseparam = set_pauseparam,
836 .get_rx_csum = get_rx_csum,
837 .set_rx_csum = set_rx_csum,
838 .set_tx_csum = ethtool_op_set_tx_csum,
839 .set_sg = ethtool_op_set_sg,
840 .get_link = ethtool_op_get_link,
841 .get_strings = get_strings,
842 .get_sset_count = get_sset_count,
843 .get_ethtool_stats = get_stats,
844 .get_regs_len = get_regs_len,
845 .get_regs = get_regs,
846 .set_tso = set_tso,
847 };
848
849 static int t1_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
850 {
851 struct adapter *adapter = dev->priv;
852 struct mii_ioctl_data *data = if_mii(req);
853
854 switch (cmd) {
855 case SIOCGMIIPHY:
856 data->phy_id = adapter->port[dev->if_port].phy->addr;
857 /* FALLTHRU */
858 case SIOCGMIIREG: {
859 struct cphy *phy = adapter->port[dev->if_port].phy;
860 u32 val;
861
862 if (!phy->mdio_read)
863 return -EOPNOTSUPP;
864 phy->mdio_read(adapter, data->phy_id, 0, data->reg_num & 0x1f,
865 &val);
866 data->val_out = val;
867 break;
868 }
869 case SIOCSMIIREG: {
870 struct cphy *phy = adapter->port[dev->if_port].phy;
871
872 if (!capable(CAP_NET_ADMIN))
873 return -EPERM;
874 if (!phy->mdio_write)
875 return -EOPNOTSUPP;
876 phy->mdio_write(adapter, data->phy_id, 0, data->reg_num & 0x1f,
877 data->val_in);
878 break;
879 }
880
881 default:
882 return -EOPNOTSUPP;
883 }
884 return 0;
885 }
886
887 static int t1_change_mtu(struct net_device *dev, int new_mtu)
888 {
889 int ret;
890 struct adapter *adapter = dev->priv;
891 struct cmac *mac = adapter->port[dev->if_port].mac;
892
893 if (!mac->ops->set_mtu)
894 return -EOPNOTSUPP;
895 if (new_mtu < 68)
896 return -EINVAL;
897 if ((ret = mac->ops->set_mtu(mac, new_mtu)))
898 return ret;
899 dev->mtu = new_mtu;
900 return 0;
901 }
902
903 static int t1_set_mac_addr(struct net_device *dev, void *p)
904 {
905 struct adapter *adapter = dev->priv;
906 struct cmac *mac = adapter->port[dev->if_port].mac;
907 struct sockaddr *addr = p;
908
909 if (!mac->ops->macaddress_set)
910 return -EOPNOTSUPP;
911
912 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
913 mac->ops->macaddress_set(mac, dev->dev_addr);
914 return 0;
915 }
916
917 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
918 static void vlan_rx_register(struct net_device *dev,
919 struct vlan_group *grp)
920 {
921 struct adapter *adapter = dev->priv;
922
923 spin_lock_irq(&adapter->async_lock);
924 adapter->vlan_grp = grp;
925 t1_set_vlan_accel(adapter, grp != NULL);
926 spin_unlock_irq(&adapter->async_lock);
927 }
928 #endif
929
930 #ifdef CONFIG_NET_POLL_CONTROLLER
931 static void t1_netpoll(struct net_device *dev)
932 {
933 unsigned long flags;
934 struct adapter *adapter = dev->priv;
935
936 local_irq_save(flags);
937 t1_interrupt(adapter->pdev->irq, adapter);
938 local_irq_restore(flags);
939 }
940 #endif
941
942 /*
943 * Periodic accumulation of MAC statistics. This is used only if the MAC
944 * does not have any other way to prevent stats counter overflow.
945 */
946 static void mac_stats_task(struct work_struct *work)
947 {
948 int i;
949 struct adapter *adapter =
950 container_of(work, struct adapter, stats_update_task.work);
951
952 for_each_port(adapter, i) {
953 struct port_info *p = &adapter->port[i];
954
955 if (netif_running(p->dev))
956 p->mac->ops->statistics_update(p->mac,
957 MAC_STATS_UPDATE_FAST);
958 }
959
960 /* Schedule the next statistics update if any port is active. */
961 spin_lock(&adapter->work_lock);
962 if (adapter->open_device_map & PORT_MASK)
963 schedule_mac_stats_update(adapter,
964 adapter->params.stats_update_period);
965 spin_unlock(&adapter->work_lock);
966 }
967
968 /*
969 * Processes elmer0 external interrupts in process context.
970 */
971 static void ext_intr_task(struct work_struct *work)
972 {
973 struct adapter *adapter =
974 container_of(work, struct adapter, ext_intr_handler_task);
975
976 t1_elmer0_ext_intr_handler(adapter);
977
978 /* Now reenable external interrupts */
979 spin_lock_irq(&adapter->async_lock);
980 adapter->slow_intr_mask |= F_PL_INTR_EXT;
981 writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE);
982 writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
983 adapter->regs + A_PL_ENABLE);
984 spin_unlock_irq(&adapter->async_lock);
985 }
986
987 /*
988 * Interrupt-context handler for elmer0 external interrupts.
989 */
990 void t1_elmer0_ext_intr(struct adapter *adapter)
991 {
992 /*
993 * Schedule a task to handle external interrupts as we require
994 * a process context. We disable EXT interrupts in the interim
995 * and let the task reenable them when it's done.
996 */
997 adapter->slow_intr_mask &= ~F_PL_INTR_EXT;
998 writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
999 adapter->regs + A_PL_ENABLE);
1000 schedule_work(&adapter->ext_intr_handler_task);
1001 }
1002
1003 void t1_fatal_err(struct adapter *adapter)
1004 {
1005 if (adapter->flags & FULL_INIT_DONE) {
1006 t1_sge_stop(adapter->sge);
1007 t1_interrupts_disable(adapter);
1008 }
1009 CH_ALERT("%s: encountered fatal error, operation suspended\n",
1010 adapter->name);
1011 }
1012
1013 static int __devinit init_one(struct pci_dev *pdev,
1014 const struct pci_device_id *ent)
1015 {
1016 static int version_printed;
1017
1018 int i, err, pci_using_dac = 0;
1019 unsigned long mmio_start, mmio_len;
1020 const struct board_info *bi;
1021 struct adapter *adapter = NULL;
1022 struct port_info *pi;
1023
1024 if (!version_printed) {
1025 printk(KERN_INFO "%s - version %s\n", DRV_DESCRIPTION,
1026 DRV_VERSION);
1027 ++version_printed;
1028 }
1029
1030 err = pci_enable_device(pdev);
1031 if (err)
1032 return err;
1033
1034 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
1035 CH_ERR("%s: cannot find PCI device memory base address\n",
1036 pci_name(pdev));
1037 err = -ENODEV;
1038 goto out_disable_pdev;
1039 }
1040
1041 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1042 pci_using_dac = 1;
1043
1044 if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
1045 CH_ERR("%s: unable to obtain 64-bit DMA for "
1046 "consistent allocations\n", pci_name(pdev));
1047 err = -ENODEV;
1048 goto out_disable_pdev;
1049 }
1050
1051 } else if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
1052 CH_ERR("%s: no usable DMA configuration\n", pci_name(pdev));
1053 goto out_disable_pdev;
1054 }
1055
1056 err = pci_request_regions(pdev, DRV_NAME);
1057 if (err) {
1058 CH_ERR("%s: cannot obtain PCI resources\n", pci_name(pdev));
1059 goto out_disable_pdev;
1060 }
1061
1062 pci_set_master(pdev);
1063
1064 mmio_start = pci_resource_start(pdev, 0);
1065 mmio_len = pci_resource_len(pdev, 0);
1066 bi = t1_get_board_info(ent->driver_data);
1067
1068 for (i = 0; i < bi->port_number; ++i) {
1069 struct net_device *netdev;
1070
1071 netdev = alloc_etherdev(adapter ? 0 : sizeof(*adapter));
1072 if (!netdev) {
1073 err = -ENOMEM;
1074 goto out_free_dev;
1075 }
1076
1077 SET_NETDEV_DEV(netdev, &pdev->dev);
1078
1079 if (!adapter) {
1080 adapter = netdev->priv;
1081 adapter->pdev = pdev;
1082 adapter->port[0].dev = netdev; /* so we don't leak it */
1083
1084 adapter->regs = ioremap(mmio_start, mmio_len);
1085 if (!adapter->regs) {
1086 CH_ERR("%s: cannot map device registers\n",
1087 pci_name(pdev));
1088 err = -ENOMEM;
1089 goto out_free_dev;
1090 }
1091
1092 if (t1_get_board_rev(adapter, bi, &adapter->params)) {
1093 err = -ENODEV; /* Can't handle this chip rev */
1094 goto out_free_dev;
1095 }
1096
1097 adapter->name = pci_name(pdev);
1098 adapter->msg_enable = dflt_msg_enable;
1099 adapter->mmio_len = mmio_len;
1100
1101 spin_lock_init(&adapter->tpi_lock);
1102 spin_lock_init(&adapter->work_lock);
1103 spin_lock_init(&adapter->async_lock);
1104 spin_lock_init(&adapter->mac_lock);
1105
1106 INIT_WORK(&adapter->ext_intr_handler_task,
1107 ext_intr_task);
1108 INIT_DELAYED_WORK(&adapter->stats_update_task,
1109 mac_stats_task);
1110
1111 pci_set_drvdata(pdev, netdev);
1112 }
1113
1114 pi = &adapter->port[i];
1115 pi->dev = netdev;
1116 netif_carrier_off(netdev);
1117 netdev->irq = pdev->irq;
1118 netdev->if_port = i;
1119 netdev->mem_start = mmio_start;
1120 netdev->mem_end = mmio_start + mmio_len - 1;
1121 netdev->priv = adapter;
1122 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
1123 netdev->features |= NETIF_F_LLTX;
1124
1125 adapter->flags |= RX_CSUM_ENABLED | TCP_CSUM_CAPABLE;
1126 if (pci_using_dac)
1127 netdev->features |= NETIF_F_HIGHDMA;
1128 if (vlan_tso_capable(adapter)) {
1129 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1130 adapter->flags |= VLAN_ACCEL_CAPABLE;
1131 netdev->features |=
1132 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1133 netdev->vlan_rx_register = vlan_rx_register;
1134 #endif
1135
1136 /* T204: disable TSO */
1137 if (!(is_T2(adapter)) || bi->port_number != 4) {
1138 adapter->flags |= TSO_CAPABLE;
1139 netdev->features |= NETIF_F_TSO;
1140 }
1141 }
1142
1143 netdev->open = cxgb_open;
1144 netdev->stop = cxgb_close;
1145 netdev->hard_start_xmit = t1_start_xmit;
1146 netdev->hard_header_len += (adapter->flags & TSO_CAPABLE) ?
1147 sizeof(struct cpl_tx_pkt_lso) : sizeof(struct cpl_tx_pkt);
1148 netdev->get_stats = t1_get_stats;
1149 netdev->set_multicast_list = t1_set_rxmode;
1150 netdev->do_ioctl = t1_ioctl;
1151 netdev->change_mtu = t1_change_mtu;
1152 netdev->set_mac_address = t1_set_mac_addr;
1153 #ifdef CONFIG_NET_POLL_CONTROLLER
1154 netdev->poll_controller = t1_netpoll;
1155 #endif
1156 netif_napi_add(netdev, &adapter->napi, t1_poll, 64);
1157
1158 SET_ETHTOOL_OPS(netdev, &t1_ethtool_ops);
1159 }
1160
1161 if (t1_init_sw_modules(adapter, bi) < 0) {
1162 err = -ENODEV;
1163 goto out_free_dev;
1164 }
1165
1166 /*
1167 * The card is now ready to go. If any errors occur during device
1168 * registration we do not fail the whole card but rather proceed only
1169 * with the ports we manage to register successfully. However we must
1170 * register at least one net device.
1171 */
1172 for (i = 0; i < bi->port_number; ++i) {
1173 err = register_netdev(adapter->port[i].dev);
1174 if (err)
1175 CH_WARN("%s: cannot register net device %s, skipping\n",
1176 pci_name(pdev), adapter->port[i].dev->name);
1177 else {
1178 /*
1179 * Change the name we use for messages to the name of
1180 * the first successfully registered interface.
1181 */
1182 if (!adapter->registered_device_map)
1183 adapter->name = adapter->port[i].dev->name;
1184
1185 __set_bit(i, &adapter->registered_device_map);
1186 }
1187 }
1188 if (!adapter->registered_device_map) {
1189 CH_ERR("%s: could not register any net devices\n",
1190 pci_name(pdev));
1191 goto out_release_adapter_res;
1192 }
1193
1194 printk(KERN_INFO "%s: %s (rev %d), %s %dMHz/%d-bit\n", adapter->name,
1195 bi->desc, adapter->params.chip_revision,
1196 adapter->params.pci.is_pcix ? "PCIX" : "PCI",
1197 adapter->params.pci.speed, adapter->params.pci.width);
1198
1199 /*
1200 * Set the T1B ASIC and memory clocks.
1201 */
1202 if (t1powersave)
1203 adapter->t1powersave = LCLOCK; /* HW default is powersave mode. */
1204 else
1205 adapter->t1powersave = HCLOCK;
1206 if (t1_is_T1B(adapter))
1207 t1_clock(adapter, t1powersave);
1208
1209 return 0;
1210
1211 out_release_adapter_res:
1212 t1_free_sw_modules(adapter);
1213 out_free_dev:
1214 if (adapter) {
1215 if (adapter->regs)
1216 iounmap(adapter->regs);
1217 for (i = bi->port_number - 1; i >= 0; --i)
1218 if (adapter->port[i].dev)
1219 free_netdev(adapter->port[i].dev);
1220 }
1221 pci_release_regions(pdev);
1222 out_disable_pdev:
1223 pci_disable_device(pdev);
1224 pci_set_drvdata(pdev, NULL);
1225 return err;
1226 }
1227
1228 static void bit_bang(struct adapter *adapter, int bitdata, int nbits)
1229 {
1230 int data;
1231 int i;
1232 u32 val;
1233
1234 enum {
1235 S_CLOCK = 1 << 3,
1236 S_DATA = 1 << 4
1237 };
1238
1239 for (i = (nbits - 1); i > -1; i--) {
1240
1241 udelay(50);
1242
1243 data = ((bitdata >> i) & 0x1);
1244 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1245
1246 if (data)
1247 val |= S_DATA;
1248 else
1249 val &= ~S_DATA;
1250
1251 udelay(50);
1252
1253 /* Set SCLOCK low */
1254 val &= ~S_CLOCK;
1255 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1256
1257 udelay(50);
1258
1259 /* Write SCLOCK high */
1260 val |= S_CLOCK;
1261 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1262
1263 }
1264 }
1265
1266 static int t1_clock(struct adapter *adapter, int mode)
1267 {
1268 u32 val;
1269 int M_CORE_VAL;
1270 int M_MEM_VAL;
1271
1272 enum {
1273 M_CORE_BITS = 9,
1274 T_CORE_VAL = 0,
1275 T_CORE_BITS = 2,
1276 N_CORE_VAL = 0,
1277 N_CORE_BITS = 2,
1278 M_MEM_BITS = 9,
1279 T_MEM_VAL = 0,
1280 T_MEM_BITS = 2,
1281 N_MEM_VAL = 0,
1282 N_MEM_BITS = 2,
1283 NP_LOAD = 1 << 17,
1284 S_LOAD_MEM = 1 << 5,
1285 S_LOAD_CORE = 1 << 6,
1286 S_CLOCK = 1 << 3
1287 };
1288
1289 if (!t1_is_T1B(adapter))
1290 return -ENODEV; /* Can't re-clock this chip. */
1291
1292 if (mode & 2)
1293 return 0; /* show current mode. */
1294
1295 if ((adapter->t1powersave & 1) == (mode & 1))
1296 return -EALREADY; /* ASIC already running in mode. */
1297
1298 if ((mode & 1) == HCLOCK) {
1299 M_CORE_VAL = 0x14;
1300 M_MEM_VAL = 0x18;
1301 adapter->t1powersave = HCLOCK; /* overclock */
1302 } else {
1303 M_CORE_VAL = 0xe;
1304 M_MEM_VAL = 0x10;
1305 adapter->t1powersave = LCLOCK; /* underclock */
1306 }
1307
1308 /* Don't interrupt this serial stream! */
1309 spin_lock(&adapter->tpi_lock);
1310
1311 /* Initialize for ASIC core */
1312 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1313 val |= NP_LOAD;
1314 udelay(50);
1315 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1316 udelay(50);
1317 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1318 val &= ~S_LOAD_CORE;
1319 val &= ~S_CLOCK;
1320 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1321 udelay(50);
1322
1323 /* Serial program the ASIC clock synthesizer */
1324 bit_bang(adapter, T_CORE_VAL, T_CORE_BITS);
1325 bit_bang(adapter, N_CORE_VAL, N_CORE_BITS);
1326 bit_bang(adapter, M_CORE_VAL, M_CORE_BITS);
1327 udelay(50);
1328
1329 /* Finish ASIC core */
1330 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1331 val |= S_LOAD_CORE;
1332 udelay(50);
1333 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1334 udelay(50);
1335 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1336 val &= ~S_LOAD_CORE;
1337 udelay(50);
1338 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1339 udelay(50);
1340
1341 /* Initialize for memory */
1342 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1343 val |= NP_LOAD;
1344 udelay(50);
1345 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1346 udelay(50);
1347 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1348 val &= ~S_LOAD_MEM;
1349 val &= ~S_CLOCK;
1350 udelay(50);
1351 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1352 udelay(50);
1353
1354 /* Serial program the memory clock synthesizer */
1355 bit_bang(adapter, T_MEM_VAL, T_MEM_BITS);
1356 bit_bang(adapter, N_MEM_VAL, N_MEM_BITS);
1357 bit_bang(adapter, M_MEM_VAL, M_MEM_BITS);
1358 udelay(50);
1359
1360 /* Finish memory */
1361 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1362 val |= S_LOAD_MEM;
1363 udelay(50);
1364 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1365 udelay(50);
1366 __t1_tpi_read(adapter, A_ELMER0_GPO, &val);
1367 val &= ~S_LOAD_MEM;
1368 udelay(50);
1369 __t1_tpi_write(adapter, A_ELMER0_GPO, val);
1370
1371 spin_unlock(&adapter->tpi_lock);
1372
1373 return 0;
1374 }
1375
1376 static inline void t1_sw_reset(struct pci_dev *pdev)
1377 {
1378 pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 3);
1379 pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 0);
1380 }
1381
1382 static void __devexit remove_one(struct pci_dev *pdev)
1383 {
1384 struct net_device *dev = pci_get_drvdata(pdev);
1385 struct adapter *adapter = dev->priv;
1386 int i;
1387
1388 for_each_port(adapter, i) {
1389 if (test_bit(i, &adapter->registered_device_map))
1390 unregister_netdev(adapter->port[i].dev);
1391 }
1392
1393 t1_free_sw_modules(adapter);
1394 iounmap(adapter->regs);
1395
1396 while (--i >= 0) {
1397 if (adapter->port[i].dev)
1398 free_netdev(adapter->port[i].dev);
1399 }
1400
1401 pci_release_regions(pdev);
1402 pci_disable_device(pdev);
1403 pci_set_drvdata(pdev, NULL);
1404 t1_sw_reset(pdev);
1405 }
1406
1407 static struct pci_driver driver = {
1408 .name = DRV_NAME,
1409 .id_table = t1_pci_tbl,
1410 .probe = init_one,
1411 .remove = __devexit_p(remove_one),
1412 };
1413
1414 static int __init t1_init_module(void)
1415 {
1416 return pci_register_driver(&driver);
1417 }
1418
1419 static void __exit t1_cleanup_module(void)
1420 {
1421 pci_unregister_driver(&driver);
1422 }
1423
1424 module_init(t1_init_module);
1425 module_exit(t1_cleanup_module);
This page took 0.06011 seconds and 6 git commands to generate.