Fix spelling of 'platform' in comments and doc
[deliverable/linux.git] / drivers / net / cxgb3 / sge.c
1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <net/arp.h>
40 #include "common.h"
41 #include "regs.h"
42 #include "sge_defs.h"
43 #include "t3_cpl.h"
44 #include "firmware_exports.h"
45
46 #define USE_GTS 0
47
48 #define SGE_RX_SM_BUF_SIZE 1536
49
50 #define SGE_RX_COPY_THRES 256
51 #define SGE_RX_PULL_LEN 128
52
53 #define SGE_PG_RSVD SMP_CACHE_BYTES
54 /*
55 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
56 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
57 * directly.
58 */
59 #define FL0_PG_CHUNK_SIZE 2048
60 #define FL0_PG_ORDER 0
61 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
62 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
63 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
64 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
65
66 #define SGE_RX_DROP_THRES 16
67 #define RX_RECLAIM_PERIOD (HZ/4)
68
69 /*
70 * Max number of Rx buffers we replenish at a time.
71 */
72 #define MAX_RX_REFILL 16U
73 /*
74 * Period of the Tx buffer reclaim timer. This timer does not need to run
75 * frequently as Tx buffers are usually reclaimed by new Tx packets.
76 */
77 #define TX_RECLAIM_PERIOD (HZ / 4)
78 #define TX_RECLAIM_TIMER_CHUNK 64U
79 #define TX_RECLAIM_CHUNK 16U
80
81 /* WR size in bytes */
82 #define WR_LEN (WR_FLITS * 8)
83
84 /*
85 * Types of Tx queues in each queue set. Order here matters, do not change.
86 */
87 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
88
89 /* Values for sge_txq.flags */
90 enum {
91 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
92 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
93 };
94
95 struct tx_desc {
96 __be64 flit[TX_DESC_FLITS];
97 };
98
99 struct rx_desc {
100 __be32 addr_lo;
101 __be32 len_gen;
102 __be32 gen2;
103 __be32 addr_hi;
104 };
105
106 struct tx_sw_desc { /* SW state per Tx descriptor */
107 struct sk_buff *skb;
108 u8 eop; /* set if last descriptor for packet */
109 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
110 u8 fragidx; /* first page fragment associated with descriptor */
111 s8 sflit; /* start flit of first SGL entry in descriptor */
112 };
113
114 struct rx_sw_desc { /* SW state per Rx descriptor */
115 union {
116 struct sk_buff *skb;
117 struct fl_pg_chunk pg_chunk;
118 };
119 DECLARE_PCI_UNMAP_ADDR(dma_addr);
120 };
121
122 struct rsp_desc { /* response queue descriptor */
123 struct rss_header rss_hdr;
124 __be32 flags;
125 __be32 len_cq;
126 u8 imm_data[47];
127 u8 intr_gen;
128 };
129
130 /*
131 * Holds unmapping information for Tx packets that need deferred unmapping.
132 * This structure lives at skb->head and must be allocated by callers.
133 */
134 struct deferred_unmap_info {
135 struct pci_dev *pdev;
136 dma_addr_t addr[MAX_SKB_FRAGS + 1];
137 };
138
139 /*
140 * Maps a number of flits to the number of Tx descriptors that can hold them.
141 * The formula is
142 *
143 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
144 *
145 * HW allows up to 4 descriptors to be combined into a WR.
146 */
147 static u8 flit_desc_map[] = {
148 0,
149 #if SGE_NUM_GENBITS == 1
150 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
151 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
152 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
153 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
154 #elif SGE_NUM_GENBITS == 2
155 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
156 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
157 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
158 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
159 #else
160 # error "SGE_NUM_GENBITS must be 1 or 2"
161 #endif
162 };
163
164 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
165 {
166 return container_of(q, struct sge_qset, fl[qidx]);
167 }
168
169 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
170 {
171 return container_of(q, struct sge_qset, rspq);
172 }
173
174 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
175 {
176 return container_of(q, struct sge_qset, txq[qidx]);
177 }
178
179 /**
180 * refill_rspq - replenish an SGE response queue
181 * @adapter: the adapter
182 * @q: the response queue to replenish
183 * @credits: how many new responses to make available
184 *
185 * Replenishes a response queue by making the supplied number of responses
186 * available to HW.
187 */
188 static inline void refill_rspq(struct adapter *adapter,
189 const struct sge_rspq *q, unsigned int credits)
190 {
191 rmb();
192 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
193 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
194 }
195
196 /**
197 * need_skb_unmap - does the platform need unmapping of sk_buffs?
198 *
199 * Returns true if the platform needs sk_buff unmapping. The compiler
200 * optimizes away unecessary code if this returns true.
201 */
202 static inline int need_skb_unmap(void)
203 {
204 /*
205 * This structure is used to tell if the platform needs buffer
206 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
207 */
208 struct dummy {
209 DECLARE_PCI_UNMAP_ADDR(addr);
210 };
211
212 return sizeof(struct dummy) != 0;
213 }
214
215 /**
216 * unmap_skb - unmap a packet main body and its page fragments
217 * @skb: the packet
218 * @q: the Tx queue containing Tx descriptors for the packet
219 * @cidx: index of Tx descriptor
220 * @pdev: the PCI device
221 *
222 * Unmap the main body of an sk_buff and its page fragments, if any.
223 * Because of the fairly complicated structure of our SGLs and the desire
224 * to conserve space for metadata, the information necessary to unmap an
225 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
226 * descriptors (the physical addresses of the various data buffers), and
227 * the SW descriptor state (assorted indices). The send functions
228 * initialize the indices for the first packet descriptor so we can unmap
229 * the buffers held in the first Tx descriptor here, and we have enough
230 * information at this point to set the state for the next Tx descriptor.
231 *
232 * Note that it is possible to clean up the first descriptor of a packet
233 * before the send routines have written the next descriptors, but this
234 * race does not cause any problem. We just end up writing the unmapping
235 * info for the descriptor first.
236 */
237 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
238 unsigned int cidx, struct pci_dev *pdev)
239 {
240 const struct sg_ent *sgp;
241 struct tx_sw_desc *d = &q->sdesc[cidx];
242 int nfrags, frag_idx, curflit, j = d->addr_idx;
243
244 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
245 frag_idx = d->fragidx;
246
247 if (frag_idx == 0 && skb_headlen(skb)) {
248 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
249 skb_headlen(skb), PCI_DMA_TODEVICE);
250 j = 1;
251 }
252
253 curflit = d->sflit + 1 + j;
254 nfrags = skb_shinfo(skb)->nr_frags;
255
256 while (frag_idx < nfrags && curflit < WR_FLITS) {
257 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
258 skb_shinfo(skb)->frags[frag_idx].size,
259 PCI_DMA_TODEVICE);
260 j ^= 1;
261 if (j == 0) {
262 sgp++;
263 curflit++;
264 }
265 curflit++;
266 frag_idx++;
267 }
268
269 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
270 d = cidx + 1 == q->size ? q->sdesc : d + 1;
271 d->fragidx = frag_idx;
272 d->addr_idx = j;
273 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
274 }
275 }
276
277 /**
278 * free_tx_desc - reclaims Tx descriptors and their buffers
279 * @adapter: the adapter
280 * @q: the Tx queue to reclaim descriptors from
281 * @n: the number of descriptors to reclaim
282 *
283 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
284 * Tx buffers. Called with the Tx queue lock held.
285 */
286 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
287 unsigned int n)
288 {
289 struct tx_sw_desc *d;
290 struct pci_dev *pdev = adapter->pdev;
291 unsigned int cidx = q->cidx;
292
293 const int need_unmap = need_skb_unmap() &&
294 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
295
296 d = &q->sdesc[cidx];
297 while (n--) {
298 if (d->skb) { /* an SGL is present */
299 if (need_unmap)
300 unmap_skb(d->skb, q, cidx, pdev);
301 if (d->eop)
302 kfree_skb(d->skb);
303 }
304 ++d;
305 if (++cidx == q->size) {
306 cidx = 0;
307 d = q->sdesc;
308 }
309 }
310 q->cidx = cidx;
311 }
312
313 /**
314 * reclaim_completed_tx - reclaims completed Tx descriptors
315 * @adapter: the adapter
316 * @q: the Tx queue to reclaim completed descriptors from
317 * @chunk: maximum number of descriptors to reclaim
318 *
319 * Reclaims Tx descriptors that the SGE has indicated it has processed,
320 * and frees the associated buffers if possible. Called with the Tx
321 * queue's lock held.
322 */
323 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
324 struct sge_txq *q,
325 unsigned int chunk)
326 {
327 unsigned int reclaim = q->processed - q->cleaned;
328
329 reclaim = min(chunk, reclaim);
330 if (reclaim) {
331 free_tx_desc(adapter, q, reclaim);
332 q->cleaned += reclaim;
333 q->in_use -= reclaim;
334 }
335 return q->processed - q->cleaned;
336 }
337
338 /**
339 * should_restart_tx - are there enough resources to restart a Tx queue?
340 * @q: the Tx queue
341 *
342 * Checks if there are enough descriptors to restart a suspended Tx queue.
343 */
344 static inline int should_restart_tx(const struct sge_txq *q)
345 {
346 unsigned int r = q->processed - q->cleaned;
347
348 return q->in_use - r < (q->size >> 1);
349 }
350
351 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
352 struct rx_sw_desc *d)
353 {
354 if (q->use_pages && d->pg_chunk.page) {
355 (*d->pg_chunk.p_cnt)--;
356 if (!*d->pg_chunk.p_cnt)
357 pci_unmap_page(pdev,
358 d->pg_chunk.mapping,
359 q->alloc_size, PCI_DMA_FROMDEVICE);
360
361 put_page(d->pg_chunk.page);
362 d->pg_chunk.page = NULL;
363 } else {
364 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
365 q->buf_size, PCI_DMA_FROMDEVICE);
366 kfree_skb(d->skb);
367 d->skb = NULL;
368 }
369 }
370
371 /**
372 * free_rx_bufs - free the Rx buffers on an SGE free list
373 * @pdev: the PCI device associated with the adapter
374 * @rxq: the SGE free list to clean up
375 *
376 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
377 * this queue should be stopped before calling this function.
378 */
379 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
380 {
381 unsigned int cidx = q->cidx;
382
383 while (q->credits--) {
384 struct rx_sw_desc *d = &q->sdesc[cidx];
385
386
387 clear_rx_desc(pdev, q, d);
388 if (++cidx == q->size)
389 cidx = 0;
390 }
391
392 if (q->pg_chunk.page) {
393 __free_pages(q->pg_chunk.page, q->order);
394 q->pg_chunk.page = NULL;
395 }
396 }
397
398 /**
399 * add_one_rx_buf - add a packet buffer to a free-buffer list
400 * @va: buffer start VA
401 * @len: the buffer length
402 * @d: the HW Rx descriptor to write
403 * @sd: the SW Rx descriptor to write
404 * @gen: the generation bit value
405 * @pdev: the PCI device associated with the adapter
406 *
407 * Add a buffer of the given length to the supplied HW and SW Rx
408 * descriptors.
409 */
410 static inline int add_one_rx_buf(void *va, unsigned int len,
411 struct rx_desc *d, struct rx_sw_desc *sd,
412 unsigned int gen, struct pci_dev *pdev)
413 {
414 dma_addr_t mapping;
415
416 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
417 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
418 return -ENOMEM;
419
420 pci_unmap_addr_set(sd, dma_addr, mapping);
421
422 d->addr_lo = cpu_to_be32(mapping);
423 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
424 wmb();
425 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
426 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
427 return 0;
428 }
429
430 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
431 unsigned int gen)
432 {
433 d->addr_lo = cpu_to_be32(mapping);
434 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
435 wmb();
436 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
437 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
438 return 0;
439 }
440
441 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
442 struct rx_sw_desc *sd, gfp_t gfp,
443 unsigned int order)
444 {
445 if (!q->pg_chunk.page) {
446 dma_addr_t mapping;
447
448 q->pg_chunk.page = alloc_pages(gfp, order);
449 if (unlikely(!q->pg_chunk.page))
450 return -ENOMEM;
451 q->pg_chunk.va = page_address(q->pg_chunk.page);
452 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
453 SGE_PG_RSVD;
454 q->pg_chunk.offset = 0;
455 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
456 0, q->alloc_size, PCI_DMA_FROMDEVICE);
457 q->pg_chunk.mapping = mapping;
458 }
459 sd->pg_chunk = q->pg_chunk;
460
461 prefetch(sd->pg_chunk.p_cnt);
462
463 q->pg_chunk.offset += q->buf_size;
464 if (q->pg_chunk.offset == (PAGE_SIZE << order))
465 q->pg_chunk.page = NULL;
466 else {
467 q->pg_chunk.va += q->buf_size;
468 get_page(q->pg_chunk.page);
469 }
470
471 if (sd->pg_chunk.offset == 0)
472 *sd->pg_chunk.p_cnt = 1;
473 else
474 *sd->pg_chunk.p_cnt += 1;
475
476 return 0;
477 }
478
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 if (q->pend_cred >= q->credits / 4) {
482 q->pend_cred = 0;
483 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
484 }
485 }
486
487 /**
488 * refill_fl - refill an SGE free-buffer list
489 * @adapter: the adapter
490 * @q: the free-list to refill
491 * @n: the number of new buffers to allocate
492 * @gfp: the gfp flags for allocating new buffers
493 *
494 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
495 * allocated with the supplied gfp flags. The caller must assure that
496 * @n does not exceed the queue's capacity.
497 */
498 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
499 {
500 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
501 struct rx_desc *d = &q->desc[q->pidx];
502 unsigned int count = 0;
503
504 while (n--) {
505 dma_addr_t mapping;
506 int err;
507
508 if (q->use_pages) {
509 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
510 q->order))) {
511 nomem: q->alloc_failed++;
512 break;
513 }
514 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
515 pci_unmap_addr_set(sd, dma_addr, mapping);
516
517 add_one_rx_chunk(mapping, d, q->gen);
518 pci_dma_sync_single_for_device(adap->pdev, mapping,
519 q->buf_size - SGE_PG_RSVD,
520 PCI_DMA_FROMDEVICE);
521 } else {
522 void *buf_start;
523
524 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
525 if (!skb)
526 goto nomem;
527
528 sd->skb = skb;
529 buf_start = skb->data;
530 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
531 q->gen, adap->pdev);
532 if (unlikely(err)) {
533 clear_rx_desc(adap->pdev, q, sd);
534 break;
535 }
536 }
537
538 d++;
539 sd++;
540 if (++q->pidx == q->size) {
541 q->pidx = 0;
542 q->gen ^= 1;
543 sd = q->sdesc;
544 d = q->desc;
545 }
546 count++;
547 }
548
549 q->credits += count;
550 q->pend_cred += count;
551 ring_fl_db(adap, q);
552
553 return count;
554 }
555
556 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
557 {
558 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
559 GFP_ATOMIC | __GFP_COMP);
560 }
561
562 /**
563 * recycle_rx_buf - recycle a receive buffer
564 * @adapter: the adapter
565 * @q: the SGE free list
566 * @idx: index of buffer to recycle
567 *
568 * Recycles the specified buffer on the given free list by adding it at
569 * the next available slot on the list.
570 */
571 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
572 unsigned int idx)
573 {
574 struct rx_desc *from = &q->desc[idx];
575 struct rx_desc *to = &q->desc[q->pidx];
576
577 q->sdesc[q->pidx] = q->sdesc[idx];
578 to->addr_lo = from->addr_lo; /* already big endian */
579 to->addr_hi = from->addr_hi; /* likewise */
580 wmb();
581 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
582 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
583
584 if (++q->pidx == q->size) {
585 q->pidx = 0;
586 q->gen ^= 1;
587 }
588
589 q->credits++;
590 q->pend_cred++;
591 ring_fl_db(adap, q);
592 }
593
594 /**
595 * alloc_ring - allocate resources for an SGE descriptor ring
596 * @pdev: the PCI device
597 * @nelem: the number of descriptors
598 * @elem_size: the size of each descriptor
599 * @sw_size: the size of the SW state associated with each ring element
600 * @phys: the physical address of the allocated ring
601 * @metadata: address of the array holding the SW state for the ring
602 *
603 * Allocates resources for an SGE descriptor ring, such as Tx queues,
604 * free buffer lists, or response queues. Each SGE ring requires
605 * space for its HW descriptors plus, optionally, space for the SW state
606 * associated with each HW entry (the metadata). The function returns
607 * three values: the virtual address for the HW ring (the return value
608 * of the function), the physical address of the HW ring, and the address
609 * of the SW ring.
610 */
611 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
612 size_t sw_size, dma_addr_t * phys, void *metadata)
613 {
614 size_t len = nelem * elem_size;
615 void *s = NULL;
616 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
617
618 if (!p)
619 return NULL;
620 if (sw_size && metadata) {
621 s = kcalloc(nelem, sw_size, GFP_KERNEL);
622
623 if (!s) {
624 dma_free_coherent(&pdev->dev, len, p, *phys);
625 return NULL;
626 }
627 *(void **)metadata = s;
628 }
629 memset(p, 0, len);
630 return p;
631 }
632
633 /**
634 * t3_reset_qset - reset a sge qset
635 * @q: the queue set
636 *
637 * Reset the qset structure.
638 * the NAPI structure is preserved in the event of
639 * the qset's reincarnation, for example during EEH recovery.
640 */
641 static void t3_reset_qset(struct sge_qset *q)
642 {
643 if (q->adap &&
644 !(q->adap->flags & NAPI_INIT)) {
645 memset(q, 0, sizeof(*q));
646 return;
647 }
648
649 q->adap = NULL;
650 memset(&q->rspq, 0, sizeof(q->rspq));
651 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
652 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
653 q->txq_stopped = 0;
654 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
655 q->rx_reclaim_timer.function = NULL;
656 q->nomem = 0;
657 napi_free_frags(&q->napi);
658 }
659
660
661 /**
662 * free_qset - free the resources of an SGE queue set
663 * @adapter: the adapter owning the queue set
664 * @q: the queue set
665 *
666 * Release the HW and SW resources associated with an SGE queue set, such
667 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
668 * queue set must be quiesced prior to calling this.
669 */
670 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
671 {
672 int i;
673 struct pci_dev *pdev = adapter->pdev;
674
675 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
676 if (q->fl[i].desc) {
677 spin_lock_irq(&adapter->sge.reg_lock);
678 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
679 spin_unlock_irq(&adapter->sge.reg_lock);
680 free_rx_bufs(pdev, &q->fl[i]);
681 kfree(q->fl[i].sdesc);
682 dma_free_coherent(&pdev->dev,
683 q->fl[i].size *
684 sizeof(struct rx_desc), q->fl[i].desc,
685 q->fl[i].phys_addr);
686 }
687
688 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
689 if (q->txq[i].desc) {
690 spin_lock_irq(&adapter->sge.reg_lock);
691 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
692 spin_unlock_irq(&adapter->sge.reg_lock);
693 if (q->txq[i].sdesc) {
694 free_tx_desc(adapter, &q->txq[i],
695 q->txq[i].in_use);
696 kfree(q->txq[i].sdesc);
697 }
698 dma_free_coherent(&pdev->dev,
699 q->txq[i].size *
700 sizeof(struct tx_desc),
701 q->txq[i].desc, q->txq[i].phys_addr);
702 __skb_queue_purge(&q->txq[i].sendq);
703 }
704
705 if (q->rspq.desc) {
706 spin_lock_irq(&adapter->sge.reg_lock);
707 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
708 spin_unlock_irq(&adapter->sge.reg_lock);
709 dma_free_coherent(&pdev->dev,
710 q->rspq.size * sizeof(struct rsp_desc),
711 q->rspq.desc, q->rspq.phys_addr);
712 }
713
714 t3_reset_qset(q);
715 }
716
717 /**
718 * init_qset_cntxt - initialize an SGE queue set context info
719 * @qs: the queue set
720 * @id: the queue set id
721 *
722 * Initializes the TIDs and context ids for the queues of a queue set.
723 */
724 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
725 {
726 qs->rspq.cntxt_id = id;
727 qs->fl[0].cntxt_id = 2 * id;
728 qs->fl[1].cntxt_id = 2 * id + 1;
729 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
730 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
731 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
732 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
733 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
734 }
735
736 /**
737 * sgl_len - calculates the size of an SGL of the given capacity
738 * @n: the number of SGL entries
739 *
740 * Calculates the number of flits needed for a scatter/gather list that
741 * can hold the given number of entries.
742 */
743 static inline unsigned int sgl_len(unsigned int n)
744 {
745 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
746 return (3 * n) / 2 + (n & 1);
747 }
748
749 /**
750 * flits_to_desc - returns the num of Tx descriptors for the given flits
751 * @n: the number of flits
752 *
753 * Calculates the number of Tx descriptors needed for the supplied number
754 * of flits.
755 */
756 static inline unsigned int flits_to_desc(unsigned int n)
757 {
758 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
759 return flit_desc_map[n];
760 }
761
762 /**
763 * get_packet - return the next ingress packet buffer from a free list
764 * @adap: the adapter that received the packet
765 * @fl: the SGE free list holding the packet
766 * @len: the packet length including any SGE padding
767 * @drop_thres: # of remaining buffers before we start dropping packets
768 *
769 * Get the next packet from a free list and complete setup of the
770 * sk_buff. If the packet is small we make a copy and recycle the
771 * original buffer, otherwise we use the original buffer itself. If a
772 * positive drop threshold is supplied packets are dropped and their
773 * buffers recycled if (a) the number of remaining buffers is under the
774 * threshold and the packet is too big to copy, or (b) the packet should
775 * be copied but there is no memory for the copy.
776 */
777 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
778 unsigned int len, unsigned int drop_thres)
779 {
780 struct sk_buff *skb = NULL;
781 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
782
783 prefetch(sd->skb->data);
784 fl->credits--;
785
786 if (len <= SGE_RX_COPY_THRES) {
787 skb = alloc_skb(len, GFP_ATOMIC);
788 if (likely(skb != NULL)) {
789 __skb_put(skb, len);
790 pci_dma_sync_single_for_cpu(adap->pdev,
791 pci_unmap_addr(sd, dma_addr), len,
792 PCI_DMA_FROMDEVICE);
793 memcpy(skb->data, sd->skb->data, len);
794 pci_dma_sync_single_for_device(adap->pdev,
795 pci_unmap_addr(sd, dma_addr), len,
796 PCI_DMA_FROMDEVICE);
797 } else if (!drop_thres)
798 goto use_orig_buf;
799 recycle:
800 recycle_rx_buf(adap, fl, fl->cidx);
801 return skb;
802 }
803
804 if (unlikely(fl->credits < drop_thres) &&
805 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
806 GFP_ATOMIC | __GFP_COMP) == 0)
807 goto recycle;
808
809 use_orig_buf:
810 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
811 fl->buf_size, PCI_DMA_FROMDEVICE);
812 skb = sd->skb;
813 skb_put(skb, len);
814 __refill_fl(adap, fl);
815 return skb;
816 }
817
818 /**
819 * get_packet_pg - return the next ingress packet buffer from a free list
820 * @adap: the adapter that received the packet
821 * @fl: the SGE free list holding the packet
822 * @len: the packet length including any SGE padding
823 * @drop_thres: # of remaining buffers before we start dropping packets
824 *
825 * Get the next packet from a free list populated with page chunks.
826 * If the packet is small we make a copy and recycle the original buffer,
827 * otherwise we attach the original buffer as a page fragment to a fresh
828 * sk_buff. If a positive drop threshold is supplied packets are dropped
829 * and their buffers recycled if (a) the number of remaining buffers is
830 * under the threshold and the packet is too big to copy, or (b) there's
831 * no system memory.
832 *
833 * Note: this function is similar to @get_packet but deals with Rx buffers
834 * that are page chunks rather than sk_buffs.
835 */
836 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
837 struct sge_rspq *q, unsigned int len,
838 unsigned int drop_thres)
839 {
840 struct sk_buff *newskb, *skb;
841 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
842
843 dma_addr_t dma_addr = pci_unmap_addr(sd, dma_addr);
844
845 newskb = skb = q->pg_skb;
846 if (!skb && (len <= SGE_RX_COPY_THRES)) {
847 newskb = alloc_skb(len, GFP_ATOMIC);
848 if (likely(newskb != NULL)) {
849 __skb_put(newskb, len);
850 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
851 PCI_DMA_FROMDEVICE);
852 memcpy(newskb->data, sd->pg_chunk.va, len);
853 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
854 len,
855 PCI_DMA_FROMDEVICE);
856 } else if (!drop_thres)
857 return NULL;
858 recycle:
859 fl->credits--;
860 recycle_rx_buf(adap, fl, fl->cidx);
861 q->rx_recycle_buf++;
862 return newskb;
863 }
864
865 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
866 goto recycle;
867
868 prefetch(sd->pg_chunk.p_cnt);
869
870 if (!skb)
871 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
872
873 if (unlikely(!newskb)) {
874 if (!drop_thres)
875 return NULL;
876 goto recycle;
877 }
878
879 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
880 PCI_DMA_FROMDEVICE);
881 (*sd->pg_chunk.p_cnt)--;
882 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
883 pci_unmap_page(adap->pdev,
884 sd->pg_chunk.mapping,
885 fl->alloc_size,
886 PCI_DMA_FROMDEVICE);
887 if (!skb) {
888 __skb_put(newskb, SGE_RX_PULL_LEN);
889 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
890 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
891 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
892 len - SGE_RX_PULL_LEN);
893 newskb->len = len;
894 newskb->data_len = len - SGE_RX_PULL_LEN;
895 newskb->truesize += newskb->data_len;
896 } else {
897 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
898 sd->pg_chunk.page,
899 sd->pg_chunk.offset, len);
900 newskb->len += len;
901 newskb->data_len += len;
902 newskb->truesize += len;
903 }
904
905 fl->credits--;
906 /*
907 * We do not refill FLs here, we let the caller do it to overlap a
908 * prefetch.
909 */
910 return newskb;
911 }
912
913 /**
914 * get_imm_packet - return the next ingress packet buffer from a response
915 * @resp: the response descriptor containing the packet data
916 *
917 * Return a packet containing the immediate data of the given response.
918 */
919 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
920 {
921 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
922
923 if (skb) {
924 __skb_put(skb, IMMED_PKT_SIZE);
925 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
926 }
927 return skb;
928 }
929
930 /**
931 * calc_tx_descs - calculate the number of Tx descriptors for a packet
932 * @skb: the packet
933 *
934 * Returns the number of Tx descriptors needed for the given Ethernet
935 * packet. Ethernet packets require addition of WR and CPL headers.
936 */
937 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
938 {
939 unsigned int flits;
940
941 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
942 return 1;
943
944 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
945 if (skb_shinfo(skb)->gso_size)
946 flits++;
947 return flits_to_desc(flits);
948 }
949
950 /**
951 * make_sgl - populate a scatter/gather list for a packet
952 * @skb: the packet
953 * @sgp: the SGL to populate
954 * @start: start address of skb main body data to include in the SGL
955 * @len: length of skb main body data to include in the SGL
956 * @pdev: the PCI device
957 *
958 * Generates a scatter/gather list for the buffers that make up a packet
959 * and returns the SGL size in 8-byte words. The caller must size the SGL
960 * appropriately.
961 */
962 static inline unsigned int make_sgl(const struct sk_buff *skb,
963 struct sg_ent *sgp, unsigned char *start,
964 unsigned int len, struct pci_dev *pdev)
965 {
966 dma_addr_t mapping;
967 unsigned int i, j = 0, nfrags;
968
969 if (len) {
970 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
971 sgp->len[0] = cpu_to_be32(len);
972 sgp->addr[0] = cpu_to_be64(mapping);
973 j = 1;
974 }
975
976 nfrags = skb_shinfo(skb)->nr_frags;
977 for (i = 0; i < nfrags; i++) {
978 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
979
980 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
981 frag->size, PCI_DMA_TODEVICE);
982 sgp->len[j] = cpu_to_be32(frag->size);
983 sgp->addr[j] = cpu_to_be64(mapping);
984 j ^= 1;
985 if (j == 0)
986 ++sgp;
987 }
988 if (j)
989 sgp->len[j] = 0;
990 return ((nfrags + (len != 0)) * 3) / 2 + j;
991 }
992
993 /**
994 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
995 * @adap: the adapter
996 * @q: the Tx queue
997 *
998 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
999 * where the HW is going to sleep just after we checked, however,
1000 * then the interrupt handler will detect the outstanding TX packet
1001 * and ring the doorbell for us.
1002 *
1003 * When GTS is disabled we unconditionally ring the doorbell.
1004 */
1005 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1006 {
1007 #if USE_GTS
1008 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1009 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1010 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1011 t3_write_reg(adap, A_SG_KDOORBELL,
1012 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1013 }
1014 #else
1015 wmb(); /* write descriptors before telling HW */
1016 t3_write_reg(adap, A_SG_KDOORBELL,
1017 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1018 #endif
1019 }
1020
1021 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1022 {
1023 #if SGE_NUM_GENBITS == 2
1024 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1025 #endif
1026 }
1027
1028 /**
1029 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1030 * @ndesc: number of Tx descriptors spanned by the SGL
1031 * @skb: the packet corresponding to the WR
1032 * @d: first Tx descriptor to be written
1033 * @pidx: index of above descriptors
1034 * @q: the SGE Tx queue
1035 * @sgl: the SGL
1036 * @flits: number of flits to the start of the SGL in the first descriptor
1037 * @sgl_flits: the SGL size in flits
1038 * @gen: the Tx descriptor generation
1039 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1040 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1041 *
1042 * Write a work request header and an associated SGL. If the SGL is
1043 * small enough to fit into one Tx descriptor it has already been written
1044 * and we just need to write the WR header. Otherwise we distribute the
1045 * SGL across the number of descriptors it spans.
1046 */
1047 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1048 struct tx_desc *d, unsigned int pidx,
1049 const struct sge_txq *q,
1050 const struct sg_ent *sgl,
1051 unsigned int flits, unsigned int sgl_flits,
1052 unsigned int gen, __be32 wr_hi,
1053 __be32 wr_lo)
1054 {
1055 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1056 struct tx_sw_desc *sd = &q->sdesc[pidx];
1057
1058 sd->skb = skb;
1059 if (need_skb_unmap()) {
1060 sd->fragidx = 0;
1061 sd->addr_idx = 0;
1062 sd->sflit = flits;
1063 }
1064
1065 if (likely(ndesc == 1)) {
1066 sd->eop = 1;
1067 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1068 V_WR_SGLSFLT(flits)) | wr_hi;
1069 wmb();
1070 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1071 V_WR_GEN(gen)) | wr_lo;
1072 wr_gen2(d, gen);
1073 } else {
1074 unsigned int ogen = gen;
1075 const u64 *fp = (const u64 *)sgl;
1076 struct work_request_hdr *wp = wrp;
1077
1078 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1079 V_WR_SGLSFLT(flits)) | wr_hi;
1080
1081 while (sgl_flits) {
1082 unsigned int avail = WR_FLITS - flits;
1083
1084 if (avail > sgl_flits)
1085 avail = sgl_flits;
1086 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1087 sgl_flits -= avail;
1088 ndesc--;
1089 if (!sgl_flits)
1090 break;
1091
1092 fp += avail;
1093 d++;
1094 sd->eop = 0;
1095 sd++;
1096 if (++pidx == q->size) {
1097 pidx = 0;
1098 gen ^= 1;
1099 d = q->desc;
1100 sd = q->sdesc;
1101 }
1102
1103 sd->skb = skb;
1104 wrp = (struct work_request_hdr *)d;
1105 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1106 V_WR_SGLSFLT(1)) | wr_hi;
1107 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1108 sgl_flits + 1)) |
1109 V_WR_GEN(gen)) | wr_lo;
1110 wr_gen2(d, gen);
1111 flits = 1;
1112 }
1113 sd->eop = 1;
1114 wrp->wr_hi |= htonl(F_WR_EOP);
1115 wmb();
1116 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1117 wr_gen2((struct tx_desc *)wp, ogen);
1118 WARN_ON(ndesc != 0);
1119 }
1120 }
1121
1122 /**
1123 * write_tx_pkt_wr - write a TX_PKT work request
1124 * @adap: the adapter
1125 * @skb: the packet to send
1126 * @pi: the egress interface
1127 * @pidx: index of the first Tx descriptor to write
1128 * @gen: the generation value to use
1129 * @q: the Tx queue
1130 * @ndesc: number of descriptors the packet will occupy
1131 * @compl: the value of the COMPL bit to use
1132 *
1133 * Generate a TX_PKT work request to send the supplied packet.
1134 */
1135 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1136 const struct port_info *pi,
1137 unsigned int pidx, unsigned int gen,
1138 struct sge_txq *q, unsigned int ndesc,
1139 unsigned int compl)
1140 {
1141 unsigned int flits, sgl_flits, cntrl, tso_info;
1142 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1143 struct tx_desc *d = &q->desc[pidx];
1144 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1145
1146 cpl->len = htonl(skb->len);
1147 cntrl = V_TXPKT_INTF(pi->port_id);
1148
1149 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1150 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1151
1152 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1153 if (tso_info) {
1154 int eth_type;
1155 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1156
1157 d->flit[2] = 0;
1158 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1159 hdr->cntrl = htonl(cntrl);
1160 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1161 CPL_ETH_II : CPL_ETH_II_VLAN;
1162 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1163 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1164 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1165 hdr->lso_info = htonl(tso_info);
1166 flits = 3;
1167 } else {
1168 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1169 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1170 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1171 cpl->cntrl = htonl(cntrl);
1172
1173 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1174 q->sdesc[pidx].skb = NULL;
1175 if (!skb->data_len)
1176 skb_copy_from_linear_data(skb, &d->flit[2],
1177 skb->len);
1178 else
1179 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1180
1181 flits = (skb->len + 7) / 8 + 2;
1182 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1183 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1184 | F_WR_SOP | F_WR_EOP | compl);
1185 wmb();
1186 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1187 V_WR_TID(q->token));
1188 wr_gen2(d, gen);
1189 kfree_skb(skb);
1190 return;
1191 }
1192
1193 flits = 2;
1194 }
1195
1196 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1197 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1198
1199 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1200 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1201 htonl(V_WR_TID(q->token)));
1202 }
1203
1204 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1205 struct sge_qset *qs, struct sge_txq *q)
1206 {
1207 netif_tx_stop_queue(txq);
1208 set_bit(TXQ_ETH, &qs->txq_stopped);
1209 q->stops++;
1210 }
1211
1212 /**
1213 * eth_xmit - add a packet to the Ethernet Tx queue
1214 * @skb: the packet
1215 * @dev: the egress net device
1216 *
1217 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1218 */
1219 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1220 {
1221 int qidx;
1222 unsigned int ndesc, pidx, credits, gen, compl;
1223 const struct port_info *pi = netdev_priv(dev);
1224 struct adapter *adap = pi->adapter;
1225 struct netdev_queue *txq;
1226 struct sge_qset *qs;
1227 struct sge_txq *q;
1228
1229 /*
1230 * The chip min packet length is 9 octets but play safe and reject
1231 * anything shorter than an Ethernet header.
1232 */
1233 if (unlikely(skb->len < ETH_HLEN)) {
1234 dev_kfree_skb(skb);
1235 return NETDEV_TX_OK;
1236 }
1237
1238 qidx = skb_get_queue_mapping(skb);
1239 qs = &pi->qs[qidx];
1240 q = &qs->txq[TXQ_ETH];
1241 txq = netdev_get_tx_queue(dev, qidx);
1242
1243 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1244
1245 credits = q->size - q->in_use;
1246 ndesc = calc_tx_descs(skb);
1247
1248 if (unlikely(credits < ndesc)) {
1249 t3_stop_tx_queue(txq, qs, q);
1250 dev_err(&adap->pdev->dev,
1251 "%s: Tx ring %u full while queue awake!\n",
1252 dev->name, q->cntxt_id & 7);
1253 return NETDEV_TX_BUSY;
1254 }
1255
1256 q->in_use += ndesc;
1257 if (unlikely(credits - ndesc < q->stop_thres)) {
1258 t3_stop_tx_queue(txq, qs, q);
1259
1260 if (should_restart_tx(q) &&
1261 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1262 q->restarts++;
1263 netif_tx_start_queue(txq);
1264 }
1265 }
1266
1267 gen = q->gen;
1268 q->unacked += ndesc;
1269 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1270 q->unacked &= 7;
1271 pidx = q->pidx;
1272 q->pidx += ndesc;
1273 if (q->pidx >= q->size) {
1274 q->pidx -= q->size;
1275 q->gen ^= 1;
1276 }
1277
1278 /* update port statistics */
1279 if (skb->ip_summed == CHECKSUM_COMPLETE)
1280 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1281 if (skb_shinfo(skb)->gso_size)
1282 qs->port_stats[SGE_PSTAT_TSO]++;
1283 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1284 qs->port_stats[SGE_PSTAT_VLANINS]++;
1285
1286 /*
1287 * We do not use Tx completion interrupts to free DMAd Tx packets.
1288 * This is good for performance but means that we rely on new Tx
1289 * packets arriving to run the destructors of completed packets,
1290 * which open up space in their sockets' send queues. Sometimes
1291 * we do not get such new packets causing Tx to stall. A single
1292 * UDP transmitter is a good example of this situation. We have
1293 * a clean up timer that periodically reclaims completed packets
1294 * but it doesn't run often enough (nor do we want it to) to prevent
1295 * lengthy stalls. A solution to this problem is to run the
1296 * destructor early, after the packet is queued but before it's DMAd.
1297 * A cons is that we lie to socket memory accounting, but the amount
1298 * of extra memory is reasonable (limited by the number of Tx
1299 * descriptors), the packets do actually get freed quickly by new
1300 * packets almost always, and for protocols like TCP that wait for
1301 * acks to really free up the data the extra memory is even less.
1302 * On the positive side we run the destructors on the sending CPU
1303 * rather than on a potentially different completing CPU, usually a
1304 * good thing. We also run them without holding our Tx queue lock,
1305 * unlike what reclaim_completed_tx() would otherwise do.
1306 *
1307 * Run the destructor before telling the DMA engine about the packet
1308 * to make sure it doesn't complete and get freed prematurely.
1309 */
1310 if (likely(!skb_shared(skb)))
1311 skb_orphan(skb);
1312
1313 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1314 check_ring_tx_db(adap, q);
1315 return NETDEV_TX_OK;
1316 }
1317
1318 /**
1319 * write_imm - write a packet into a Tx descriptor as immediate data
1320 * @d: the Tx descriptor to write
1321 * @skb: the packet
1322 * @len: the length of packet data to write as immediate data
1323 * @gen: the generation bit value to write
1324 *
1325 * Writes a packet as immediate data into a Tx descriptor. The packet
1326 * contains a work request at its beginning. We must write the packet
1327 * carefully so the SGE doesn't read it accidentally before it's written
1328 * in its entirety.
1329 */
1330 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1331 unsigned int len, unsigned int gen)
1332 {
1333 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1334 struct work_request_hdr *to = (struct work_request_hdr *)d;
1335
1336 if (likely(!skb->data_len))
1337 memcpy(&to[1], &from[1], len - sizeof(*from));
1338 else
1339 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1340
1341 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1342 V_WR_BCNTLFLT(len & 7));
1343 wmb();
1344 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1345 V_WR_LEN((len + 7) / 8));
1346 wr_gen2(d, gen);
1347 kfree_skb(skb);
1348 }
1349
1350 /**
1351 * check_desc_avail - check descriptor availability on a send queue
1352 * @adap: the adapter
1353 * @q: the send queue
1354 * @skb: the packet needing the descriptors
1355 * @ndesc: the number of Tx descriptors needed
1356 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1357 *
1358 * Checks if the requested number of Tx descriptors is available on an
1359 * SGE send queue. If the queue is already suspended or not enough
1360 * descriptors are available the packet is queued for later transmission.
1361 * Must be called with the Tx queue locked.
1362 *
1363 * Returns 0 if enough descriptors are available, 1 if there aren't
1364 * enough descriptors and the packet has been queued, and 2 if the caller
1365 * needs to retry because there weren't enough descriptors at the
1366 * beginning of the call but some freed up in the mean time.
1367 */
1368 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1369 struct sk_buff *skb, unsigned int ndesc,
1370 unsigned int qid)
1371 {
1372 if (unlikely(!skb_queue_empty(&q->sendq))) {
1373 addq_exit:__skb_queue_tail(&q->sendq, skb);
1374 return 1;
1375 }
1376 if (unlikely(q->size - q->in_use < ndesc)) {
1377 struct sge_qset *qs = txq_to_qset(q, qid);
1378
1379 set_bit(qid, &qs->txq_stopped);
1380 smp_mb__after_clear_bit();
1381
1382 if (should_restart_tx(q) &&
1383 test_and_clear_bit(qid, &qs->txq_stopped))
1384 return 2;
1385
1386 q->stops++;
1387 goto addq_exit;
1388 }
1389 return 0;
1390 }
1391
1392 /**
1393 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1394 * @q: the SGE control Tx queue
1395 *
1396 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1397 * that send only immediate data (presently just the control queues) and
1398 * thus do not have any sk_buffs to release.
1399 */
1400 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1401 {
1402 unsigned int reclaim = q->processed - q->cleaned;
1403
1404 q->in_use -= reclaim;
1405 q->cleaned += reclaim;
1406 }
1407
1408 static inline int immediate(const struct sk_buff *skb)
1409 {
1410 return skb->len <= WR_LEN;
1411 }
1412
1413 /**
1414 * ctrl_xmit - send a packet through an SGE control Tx queue
1415 * @adap: the adapter
1416 * @q: the control queue
1417 * @skb: the packet
1418 *
1419 * Send a packet through an SGE control Tx queue. Packets sent through
1420 * a control queue must fit entirely as immediate data in a single Tx
1421 * descriptor and have no page fragments.
1422 */
1423 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1424 struct sk_buff *skb)
1425 {
1426 int ret;
1427 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1428
1429 if (unlikely(!immediate(skb))) {
1430 WARN_ON(1);
1431 dev_kfree_skb(skb);
1432 return NET_XMIT_SUCCESS;
1433 }
1434
1435 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1436 wrp->wr_lo = htonl(V_WR_TID(q->token));
1437
1438 spin_lock(&q->lock);
1439 again:reclaim_completed_tx_imm(q);
1440
1441 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1442 if (unlikely(ret)) {
1443 if (ret == 1) {
1444 spin_unlock(&q->lock);
1445 return NET_XMIT_CN;
1446 }
1447 goto again;
1448 }
1449
1450 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1451
1452 q->in_use++;
1453 if (++q->pidx >= q->size) {
1454 q->pidx = 0;
1455 q->gen ^= 1;
1456 }
1457 spin_unlock(&q->lock);
1458 wmb();
1459 t3_write_reg(adap, A_SG_KDOORBELL,
1460 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1461 return NET_XMIT_SUCCESS;
1462 }
1463
1464 /**
1465 * restart_ctrlq - restart a suspended control queue
1466 * @qs: the queue set cotaining the control queue
1467 *
1468 * Resumes transmission on a suspended Tx control queue.
1469 */
1470 static void restart_ctrlq(unsigned long data)
1471 {
1472 struct sk_buff *skb;
1473 struct sge_qset *qs = (struct sge_qset *)data;
1474 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1475
1476 spin_lock(&q->lock);
1477 again:reclaim_completed_tx_imm(q);
1478
1479 while (q->in_use < q->size &&
1480 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1481
1482 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1483
1484 if (++q->pidx >= q->size) {
1485 q->pidx = 0;
1486 q->gen ^= 1;
1487 }
1488 q->in_use++;
1489 }
1490
1491 if (!skb_queue_empty(&q->sendq)) {
1492 set_bit(TXQ_CTRL, &qs->txq_stopped);
1493 smp_mb__after_clear_bit();
1494
1495 if (should_restart_tx(q) &&
1496 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1497 goto again;
1498 q->stops++;
1499 }
1500
1501 spin_unlock(&q->lock);
1502 wmb();
1503 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1504 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1505 }
1506
1507 /*
1508 * Send a management message through control queue 0
1509 */
1510 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1511 {
1512 int ret;
1513 local_bh_disable();
1514 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1515 local_bh_enable();
1516
1517 return ret;
1518 }
1519
1520 /**
1521 * deferred_unmap_destructor - unmap a packet when it is freed
1522 * @skb: the packet
1523 *
1524 * This is the packet destructor used for Tx packets that need to remain
1525 * mapped until they are freed rather than until their Tx descriptors are
1526 * freed.
1527 */
1528 static void deferred_unmap_destructor(struct sk_buff *skb)
1529 {
1530 int i;
1531 const dma_addr_t *p;
1532 const struct skb_shared_info *si;
1533 const struct deferred_unmap_info *dui;
1534
1535 dui = (struct deferred_unmap_info *)skb->head;
1536 p = dui->addr;
1537
1538 if (skb->tail - skb->transport_header)
1539 pci_unmap_single(dui->pdev, *p++,
1540 skb->tail - skb->transport_header,
1541 PCI_DMA_TODEVICE);
1542
1543 si = skb_shinfo(skb);
1544 for (i = 0; i < si->nr_frags; i++)
1545 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1546 PCI_DMA_TODEVICE);
1547 }
1548
1549 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1550 const struct sg_ent *sgl, int sgl_flits)
1551 {
1552 dma_addr_t *p;
1553 struct deferred_unmap_info *dui;
1554
1555 dui = (struct deferred_unmap_info *)skb->head;
1556 dui->pdev = pdev;
1557 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1558 *p++ = be64_to_cpu(sgl->addr[0]);
1559 *p++ = be64_to_cpu(sgl->addr[1]);
1560 }
1561 if (sgl_flits)
1562 *p = be64_to_cpu(sgl->addr[0]);
1563 }
1564
1565 /**
1566 * write_ofld_wr - write an offload work request
1567 * @adap: the adapter
1568 * @skb: the packet to send
1569 * @q: the Tx queue
1570 * @pidx: index of the first Tx descriptor to write
1571 * @gen: the generation value to use
1572 * @ndesc: number of descriptors the packet will occupy
1573 *
1574 * Write an offload work request to send the supplied packet. The packet
1575 * data already carry the work request with most fields populated.
1576 */
1577 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1578 struct sge_txq *q, unsigned int pidx,
1579 unsigned int gen, unsigned int ndesc)
1580 {
1581 unsigned int sgl_flits, flits;
1582 struct work_request_hdr *from;
1583 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1584 struct tx_desc *d = &q->desc[pidx];
1585
1586 if (immediate(skb)) {
1587 q->sdesc[pidx].skb = NULL;
1588 write_imm(d, skb, skb->len, gen);
1589 return;
1590 }
1591
1592 /* Only TX_DATA builds SGLs */
1593
1594 from = (struct work_request_hdr *)skb->data;
1595 memcpy(&d->flit[1], &from[1],
1596 skb_transport_offset(skb) - sizeof(*from));
1597
1598 flits = skb_transport_offset(skb) / 8;
1599 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1600 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1601 skb->tail - skb->transport_header,
1602 adap->pdev);
1603 if (need_skb_unmap()) {
1604 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1605 skb->destructor = deferred_unmap_destructor;
1606 }
1607
1608 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1609 gen, from->wr_hi, from->wr_lo);
1610 }
1611
1612 /**
1613 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1614 * @skb: the packet
1615 *
1616 * Returns the number of Tx descriptors needed for the given offload
1617 * packet. These packets are already fully constructed.
1618 */
1619 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1620 {
1621 unsigned int flits, cnt;
1622
1623 if (skb->len <= WR_LEN)
1624 return 1; /* packet fits as immediate data */
1625
1626 flits = skb_transport_offset(skb) / 8; /* headers */
1627 cnt = skb_shinfo(skb)->nr_frags;
1628 if (skb->tail != skb->transport_header)
1629 cnt++;
1630 return flits_to_desc(flits + sgl_len(cnt));
1631 }
1632
1633 /**
1634 * ofld_xmit - send a packet through an offload queue
1635 * @adap: the adapter
1636 * @q: the Tx offload queue
1637 * @skb: the packet
1638 *
1639 * Send an offload packet through an SGE offload queue.
1640 */
1641 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1642 struct sk_buff *skb)
1643 {
1644 int ret;
1645 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1646
1647 spin_lock(&q->lock);
1648 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1649
1650 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1651 if (unlikely(ret)) {
1652 if (ret == 1) {
1653 skb->priority = ndesc; /* save for restart */
1654 spin_unlock(&q->lock);
1655 return NET_XMIT_CN;
1656 }
1657 goto again;
1658 }
1659
1660 gen = q->gen;
1661 q->in_use += ndesc;
1662 pidx = q->pidx;
1663 q->pidx += ndesc;
1664 if (q->pidx >= q->size) {
1665 q->pidx -= q->size;
1666 q->gen ^= 1;
1667 }
1668 spin_unlock(&q->lock);
1669
1670 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1671 check_ring_tx_db(adap, q);
1672 return NET_XMIT_SUCCESS;
1673 }
1674
1675 /**
1676 * restart_offloadq - restart a suspended offload queue
1677 * @qs: the queue set cotaining the offload queue
1678 *
1679 * Resumes transmission on a suspended Tx offload queue.
1680 */
1681 static void restart_offloadq(unsigned long data)
1682 {
1683 struct sk_buff *skb;
1684 struct sge_qset *qs = (struct sge_qset *)data;
1685 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1686 const struct port_info *pi = netdev_priv(qs->netdev);
1687 struct adapter *adap = pi->adapter;
1688
1689 spin_lock(&q->lock);
1690 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1691
1692 while ((skb = skb_peek(&q->sendq)) != NULL) {
1693 unsigned int gen, pidx;
1694 unsigned int ndesc = skb->priority;
1695
1696 if (unlikely(q->size - q->in_use < ndesc)) {
1697 set_bit(TXQ_OFLD, &qs->txq_stopped);
1698 smp_mb__after_clear_bit();
1699
1700 if (should_restart_tx(q) &&
1701 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1702 goto again;
1703 q->stops++;
1704 break;
1705 }
1706
1707 gen = q->gen;
1708 q->in_use += ndesc;
1709 pidx = q->pidx;
1710 q->pidx += ndesc;
1711 if (q->pidx >= q->size) {
1712 q->pidx -= q->size;
1713 q->gen ^= 1;
1714 }
1715 __skb_unlink(skb, &q->sendq);
1716 spin_unlock(&q->lock);
1717
1718 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1719 spin_lock(&q->lock);
1720 }
1721 spin_unlock(&q->lock);
1722
1723 #if USE_GTS
1724 set_bit(TXQ_RUNNING, &q->flags);
1725 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1726 #endif
1727 wmb();
1728 t3_write_reg(adap, A_SG_KDOORBELL,
1729 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1730 }
1731
1732 /**
1733 * queue_set - return the queue set a packet should use
1734 * @skb: the packet
1735 *
1736 * Maps a packet to the SGE queue set it should use. The desired queue
1737 * set is carried in bits 1-3 in the packet's priority.
1738 */
1739 static inline int queue_set(const struct sk_buff *skb)
1740 {
1741 return skb->priority >> 1;
1742 }
1743
1744 /**
1745 * is_ctrl_pkt - return whether an offload packet is a control packet
1746 * @skb: the packet
1747 *
1748 * Determines whether an offload packet should use an OFLD or a CTRL
1749 * Tx queue. This is indicated by bit 0 in the packet's priority.
1750 */
1751 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1752 {
1753 return skb->priority & 1;
1754 }
1755
1756 /**
1757 * t3_offload_tx - send an offload packet
1758 * @tdev: the offload device to send to
1759 * @skb: the packet
1760 *
1761 * Sends an offload packet. We use the packet priority to select the
1762 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1763 * should be sent as regular or control, bits 1-3 select the queue set.
1764 */
1765 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1766 {
1767 struct adapter *adap = tdev2adap(tdev);
1768 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1769
1770 if (unlikely(is_ctrl_pkt(skb)))
1771 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1772
1773 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1774 }
1775
1776 /**
1777 * offload_enqueue - add an offload packet to an SGE offload receive queue
1778 * @q: the SGE response queue
1779 * @skb: the packet
1780 *
1781 * Add a new offload packet to an SGE response queue's offload packet
1782 * queue. If the packet is the first on the queue it schedules the RX
1783 * softirq to process the queue.
1784 */
1785 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1786 {
1787 int was_empty = skb_queue_empty(&q->rx_queue);
1788
1789 __skb_queue_tail(&q->rx_queue, skb);
1790
1791 if (was_empty) {
1792 struct sge_qset *qs = rspq_to_qset(q);
1793
1794 napi_schedule(&qs->napi);
1795 }
1796 }
1797
1798 /**
1799 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1800 * @tdev: the offload device that will be receiving the packets
1801 * @q: the SGE response queue that assembled the bundle
1802 * @skbs: the partial bundle
1803 * @n: the number of packets in the bundle
1804 *
1805 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1806 */
1807 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1808 struct sge_rspq *q,
1809 struct sk_buff *skbs[], int n)
1810 {
1811 if (n) {
1812 q->offload_bundles++;
1813 tdev->recv(tdev, skbs, n);
1814 }
1815 }
1816
1817 /**
1818 * ofld_poll - NAPI handler for offload packets in interrupt mode
1819 * @dev: the network device doing the polling
1820 * @budget: polling budget
1821 *
1822 * The NAPI handler for offload packets when a response queue is serviced
1823 * by the hard interrupt handler, i.e., when it's operating in non-polling
1824 * mode. Creates small packet batches and sends them through the offload
1825 * receive handler. Batches need to be of modest size as we do prefetches
1826 * on the packets in each.
1827 */
1828 static int ofld_poll(struct napi_struct *napi, int budget)
1829 {
1830 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1831 struct sge_rspq *q = &qs->rspq;
1832 struct adapter *adapter = qs->adap;
1833 int work_done = 0;
1834
1835 while (work_done < budget) {
1836 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1837 struct sk_buff_head queue;
1838 int ngathered;
1839
1840 spin_lock_irq(&q->lock);
1841 __skb_queue_head_init(&queue);
1842 skb_queue_splice_init(&q->rx_queue, &queue);
1843 if (skb_queue_empty(&queue)) {
1844 napi_complete(napi);
1845 spin_unlock_irq(&q->lock);
1846 return work_done;
1847 }
1848 spin_unlock_irq(&q->lock);
1849
1850 ngathered = 0;
1851 skb_queue_walk_safe(&queue, skb, tmp) {
1852 if (work_done >= budget)
1853 break;
1854 work_done++;
1855
1856 __skb_unlink(skb, &queue);
1857 prefetch(skb->data);
1858 skbs[ngathered] = skb;
1859 if (++ngathered == RX_BUNDLE_SIZE) {
1860 q->offload_bundles++;
1861 adapter->tdev.recv(&adapter->tdev, skbs,
1862 ngathered);
1863 ngathered = 0;
1864 }
1865 }
1866 if (!skb_queue_empty(&queue)) {
1867 /* splice remaining packets back onto Rx queue */
1868 spin_lock_irq(&q->lock);
1869 skb_queue_splice(&queue, &q->rx_queue);
1870 spin_unlock_irq(&q->lock);
1871 }
1872 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1873 }
1874
1875 return work_done;
1876 }
1877
1878 /**
1879 * rx_offload - process a received offload packet
1880 * @tdev: the offload device receiving the packet
1881 * @rq: the response queue that received the packet
1882 * @skb: the packet
1883 * @rx_gather: a gather list of packets if we are building a bundle
1884 * @gather_idx: index of the next available slot in the bundle
1885 *
1886 * Process an ingress offload pakcet and add it to the offload ingress
1887 * queue. Returns the index of the next available slot in the bundle.
1888 */
1889 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1890 struct sk_buff *skb, struct sk_buff *rx_gather[],
1891 unsigned int gather_idx)
1892 {
1893 skb_reset_mac_header(skb);
1894 skb_reset_network_header(skb);
1895 skb_reset_transport_header(skb);
1896
1897 if (rq->polling) {
1898 rx_gather[gather_idx++] = skb;
1899 if (gather_idx == RX_BUNDLE_SIZE) {
1900 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1901 gather_idx = 0;
1902 rq->offload_bundles++;
1903 }
1904 } else
1905 offload_enqueue(rq, skb);
1906
1907 return gather_idx;
1908 }
1909
1910 /**
1911 * restart_tx - check whether to restart suspended Tx queues
1912 * @qs: the queue set to resume
1913 *
1914 * Restarts suspended Tx queues of an SGE queue set if they have enough
1915 * free resources to resume operation.
1916 */
1917 static void restart_tx(struct sge_qset *qs)
1918 {
1919 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1920 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1921 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1922 qs->txq[TXQ_ETH].restarts++;
1923 if (netif_running(qs->netdev))
1924 netif_tx_wake_queue(qs->tx_q);
1925 }
1926
1927 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1928 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1929 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1930 qs->txq[TXQ_OFLD].restarts++;
1931 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1932 }
1933 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1934 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1935 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1936 qs->txq[TXQ_CTRL].restarts++;
1937 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1938 }
1939 }
1940
1941 /**
1942 * cxgb3_arp_process - process an ARP request probing a private IP address
1943 * @adapter: the adapter
1944 * @skb: the skbuff containing the ARP request
1945 *
1946 * Check if the ARP request is probing the private IP address
1947 * dedicated to iSCSI, generate an ARP reply if so.
1948 */
1949 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
1950 {
1951 struct net_device *dev = skb->dev;
1952 struct arphdr *arp;
1953 unsigned char *arp_ptr;
1954 unsigned char *sha;
1955 __be32 sip, tip;
1956
1957 if (!dev)
1958 return;
1959
1960 skb_reset_network_header(skb);
1961 arp = arp_hdr(skb);
1962
1963 if (arp->ar_op != htons(ARPOP_REQUEST))
1964 return;
1965
1966 arp_ptr = (unsigned char *)(arp + 1);
1967 sha = arp_ptr;
1968 arp_ptr += dev->addr_len;
1969 memcpy(&sip, arp_ptr, sizeof(sip));
1970 arp_ptr += sizeof(sip);
1971 arp_ptr += dev->addr_len;
1972 memcpy(&tip, arp_ptr, sizeof(tip));
1973
1974 if (tip != pi->iscsi_ipv4addr)
1975 return;
1976
1977 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1978 pi->iscsic.mac_addr, sha);
1979
1980 }
1981
1982 static inline int is_arp(struct sk_buff *skb)
1983 {
1984 return skb->protocol == htons(ETH_P_ARP);
1985 }
1986
1987 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
1988 struct sk_buff *skb)
1989 {
1990 if (is_arp(skb)) {
1991 cxgb3_arp_process(pi, skb);
1992 return;
1993 }
1994
1995 if (pi->iscsic.recv)
1996 pi->iscsic.recv(pi, skb);
1997
1998 }
1999
2000 /**
2001 * rx_eth - process an ingress ethernet packet
2002 * @adap: the adapter
2003 * @rq: the response queue that received the packet
2004 * @skb: the packet
2005 * @pad: amount of padding at the start of the buffer
2006 *
2007 * Process an ingress ethernet pakcet and deliver it to the stack.
2008 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2009 * if it was immediate data in a response.
2010 */
2011 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2012 struct sk_buff *skb, int pad, int lro)
2013 {
2014 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2015 struct sge_qset *qs = rspq_to_qset(rq);
2016 struct port_info *pi;
2017
2018 skb_pull(skb, sizeof(*p) + pad);
2019 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2020 pi = netdev_priv(skb->dev);
2021 if ((pi->rx_offload & T3_RX_CSUM) && p->csum_valid &&
2022 p->csum == htons(0xffff) && !p->fragment) {
2023 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2024 skb->ip_summed = CHECKSUM_UNNECESSARY;
2025 } else
2026 skb->ip_summed = CHECKSUM_NONE;
2027 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
2028
2029 if (unlikely(p->vlan_valid)) {
2030 struct vlan_group *grp = pi->vlan_grp;
2031
2032 qs->port_stats[SGE_PSTAT_VLANEX]++;
2033 if (likely(grp))
2034 if (lro)
2035 vlan_gro_receive(&qs->napi, grp,
2036 ntohs(p->vlan), skb);
2037 else {
2038 if (unlikely(pi->iscsic.flags)) {
2039 unsigned short vtag = ntohs(p->vlan) &
2040 VLAN_VID_MASK;
2041 skb->dev = vlan_group_get_device(grp,
2042 vtag);
2043 cxgb3_process_iscsi_prov_pack(pi, skb);
2044 }
2045 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
2046 rq->polling);
2047 }
2048 else
2049 dev_kfree_skb_any(skb);
2050 } else if (rq->polling) {
2051 if (lro)
2052 napi_gro_receive(&qs->napi, skb);
2053 else {
2054 if (unlikely(pi->iscsic.flags))
2055 cxgb3_process_iscsi_prov_pack(pi, skb);
2056 netif_receive_skb(skb);
2057 }
2058 } else
2059 netif_rx(skb);
2060 }
2061
2062 static inline int is_eth_tcp(u32 rss)
2063 {
2064 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2065 }
2066
2067 /**
2068 * lro_add_page - add a page chunk to an LRO session
2069 * @adap: the adapter
2070 * @qs: the associated queue set
2071 * @fl: the free list containing the page chunk to add
2072 * @len: packet length
2073 * @complete: Indicates the last fragment of a frame
2074 *
2075 * Add a received packet contained in a page chunk to an existing LRO
2076 * session.
2077 */
2078 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2079 struct sge_fl *fl, int len, int complete)
2080 {
2081 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2082 struct sk_buff *skb = NULL;
2083 struct cpl_rx_pkt *cpl;
2084 struct skb_frag_struct *rx_frag;
2085 int nr_frags;
2086 int offset = 0;
2087
2088 if (!qs->nomem) {
2089 skb = napi_get_frags(&qs->napi);
2090 qs->nomem = !skb;
2091 }
2092
2093 fl->credits--;
2094
2095 pci_dma_sync_single_for_cpu(adap->pdev,
2096 pci_unmap_addr(sd, dma_addr),
2097 fl->buf_size - SGE_PG_RSVD,
2098 PCI_DMA_FROMDEVICE);
2099
2100 (*sd->pg_chunk.p_cnt)--;
2101 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2102 pci_unmap_page(adap->pdev,
2103 sd->pg_chunk.mapping,
2104 fl->alloc_size,
2105 PCI_DMA_FROMDEVICE);
2106
2107 if (!skb) {
2108 put_page(sd->pg_chunk.page);
2109 if (complete)
2110 qs->nomem = 0;
2111 return;
2112 }
2113
2114 rx_frag = skb_shinfo(skb)->frags;
2115 nr_frags = skb_shinfo(skb)->nr_frags;
2116
2117 if (!nr_frags) {
2118 offset = 2 + sizeof(struct cpl_rx_pkt);
2119 qs->lro_va = sd->pg_chunk.va + 2;
2120 }
2121 len -= offset;
2122
2123 prefetch(qs->lro_va);
2124
2125 rx_frag += nr_frags;
2126 rx_frag->page = sd->pg_chunk.page;
2127 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2128 rx_frag->size = len;
2129
2130 skb->len += len;
2131 skb->data_len += len;
2132 skb->truesize += len;
2133 skb_shinfo(skb)->nr_frags++;
2134
2135 if (!complete)
2136 return;
2137
2138 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
2139 skb->ip_summed = CHECKSUM_UNNECESSARY;
2140 cpl = qs->lro_va;
2141
2142 if (unlikely(cpl->vlan_valid)) {
2143 struct net_device *dev = qs->netdev;
2144 struct port_info *pi = netdev_priv(dev);
2145 struct vlan_group *grp = pi->vlan_grp;
2146
2147 if (likely(grp != NULL)) {
2148 vlan_gro_frags(&qs->napi, grp, ntohs(cpl->vlan));
2149 return;
2150 }
2151 }
2152 napi_gro_frags(&qs->napi);
2153 }
2154
2155 /**
2156 * handle_rsp_cntrl_info - handles control information in a response
2157 * @qs: the queue set corresponding to the response
2158 * @flags: the response control flags
2159 *
2160 * Handles the control information of an SGE response, such as GTS
2161 * indications and completion credits for the queue set's Tx queues.
2162 * HW coalesces credits, we don't do any extra SW coalescing.
2163 */
2164 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2165 {
2166 unsigned int credits;
2167
2168 #if USE_GTS
2169 if (flags & F_RSPD_TXQ0_GTS)
2170 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2171 #endif
2172
2173 credits = G_RSPD_TXQ0_CR(flags);
2174 if (credits)
2175 qs->txq[TXQ_ETH].processed += credits;
2176
2177 credits = G_RSPD_TXQ2_CR(flags);
2178 if (credits)
2179 qs->txq[TXQ_CTRL].processed += credits;
2180
2181 # if USE_GTS
2182 if (flags & F_RSPD_TXQ1_GTS)
2183 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2184 # endif
2185 credits = G_RSPD_TXQ1_CR(flags);
2186 if (credits)
2187 qs->txq[TXQ_OFLD].processed += credits;
2188 }
2189
2190 /**
2191 * check_ring_db - check if we need to ring any doorbells
2192 * @adapter: the adapter
2193 * @qs: the queue set whose Tx queues are to be examined
2194 * @sleeping: indicates which Tx queue sent GTS
2195 *
2196 * Checks if some of a queue set's Tx queues need to ring their doorbells
2197 * to resume transmission after idling while they still have unprocessed
2198 * descriptors.
2199 */
2200 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2201 unsigned int sleeping)
2202 {
2203 if (sleeping & F_RSPD_TXQ0_GTS) {
2204 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2205
2206 if (txq->cleaned + txq->in_use != txq->processed &&
2207 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2208 set_bit(TXQ_RUNNING, &txq->flags);
2209 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2210 V_EGRCNTX(txq->cntxt_id));
2211 }
2212 }
2213
2214 if (sleeping & F_RSPD_TXQ1_GTS) {
2215 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2216
2217 if (txq->cleaned + txq->in_use != txq->processed &&
2218 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2219 set_bit(TXQ_RUNNING, &txq->flags);
2220 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2221 V_EGRCNTX(txq->cntxt_id));
2222 }
2223 }
2224 }
2225
2226 /**
2227 * is_new_response - check if a response is newly written
2228 * @r: the response descriptor
2229 * @q: the response queue
2230 *
2231 * Returns true if a response descriptor contains a yet unprocessed
2232 * response.
2233 */
2234 static inline int is_new_response(const struct rsp_desc *r,
2235 const struct sge_rspq *q)
2236 {
2237 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2238 }
2239
2240 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2241 {
2242 q->pg_skb = NULL;
2243 q->rx_recycle_buf = 0;
2244 }
2245
2246 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2247 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2248 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2249 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2250 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2251
2252 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2253 #define NOMEM_INTR_DELAY 2500
2254
2255 /**
2256 * process_responses - process responses from an SGE response queue
2257 * @adap: the adapter
2258 * @qs: the queue set to which the response queue belongs
2259 * @budget: how many responses can be processed in this round
2260 *
2261 * Process responses from an SGE response queue up to the supplied budget.
2262 * Responses include received packets as well as credits and other events
2263 * for the queues that belong to the response queue's queue set.
2264 * A negative budget is effectively unlimited.
2265 *
2266 * Additionally choose the interrupt holdoff time for the next interrupt
2267 * on this queue. If the system is under memory shortage use a fairly
2268 * long delay to help recovery.
2269 */
2270 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2271 int budget)
2272 {
2273 struct sge_rspq *q = &qs->rspq;
2274 struct rsp_desc *r = &q->desc[q->cidx];
2275 int budget_left = budget;
2276 unsigned int sleeping = 0;
2277 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2278 int ngathered = 0;
2279
2280 q->next_holdoff = q->holdoff_tmr;
2281
2282 while (likely(budget_left && is_new_response(r, q))) {
2283 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
2284 struct sk_buff *skb = NULL;
2285 u32 len, flags = ntohl(r->flags);
2286 __be32 rss_hi = *(const __be32 *)r,
2287 rss_lo = r->rss_hdr.rss_hash_val;
2288
2289 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2290
2291 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2292 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2293 if (!skb)
2294 goto no_mem;
2295
2296 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2297 skb->data[0] = CPL_ASYNC_NOTIF;
2298 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2299 q->async_notif++;
2300 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2301 skb = get_imm_packet(r);
2302 if (unlikely(!skb)) {
2303 no_mem:
2304 q->next_holdoff = NOMEM_INTR_DELAY;
2305 q->nomem++;
2306 /* consume one credit since we tried */
2307 budget_left--;
2308 break;
2309 }
2310 q->imm_data++;
2311 ethpad = 0;
2312 } else if ((len = ntohl(r->len_cq)) != 0) {
2313 struct sge_fl *fl;
2314
2315 lro &= eth && is_eth_tcp(rss_hi);
2316
2317 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2318 if (fl->use_pages) {
2319 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2320
2321 prefetch(addr);
2322 #if L1_CACHE_BYTES < 128
2323 prefetch(addr + L1_CACHE_BYTES);
2324 #endif
2325 __refill_fl(adap, fl);
2326 if (lro > 0) {
2327 lro_add_page(adap, qs, fl,
2328 G_RSPD_LEN(len),
2329 flags & F_RSPD_EOP);
2330 goto next_fl;
2331 }
2332
2333 skb = get_packet_pg(adap, fl, q,
2334 G_RSPD_LEN(len),
2335 eth ?
2336 SGE_RX_DROP_THRES : 0);
2337 q->pg_skb = skb;
2338 } else
2339 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2340 eth ? SGE_RX_DROP_THRES : 0);
2341 if (unlikely(!skb)) {
2342 if (!eth)
2343 goto no_mem;
2344 q->rx_drops++;
2345 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2346 __skb_pull(skb, 2);
2347 next_fl:
2348 if (++fl->cidx == fl->size)
2349 fl->cidx = 0;
2350 } else
2351 q->pure_rsps++;
2352
2353 if (flags & RSPD_CTRL_MASK) {
2354 sleeping |= flags & RSPD_GTS_MASK;
2355 handle_rsp_cntrl_info(qs, flags);
2356 }
2357
2358 r++;
2359 if (unlikely(++q->cidx == q->size)) {
2360 q->cidx = 0;
2361 q->gen ^= 1;
2362 r = q->desc;
2363 }
2364 prefetch(r);
2365
2366 if (++q->credits >= (q->size / 4)) {
2367 refill_rspq(adap, q, q->credits);
2368 q->credits = 0;
2369 }
2370
2371 packet_complete = flags &
2372 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2373 F_RSPD_ASYNC_NOTIF);
2374
2375 if (skb != NULL && packet_complete) {
2376 if (eth)
2377 rx_eth(adap, q, skb, ethpad, lro);
2378 else {
2379 q->offload_pkts++;
2380 /* Preserve the RSS info in csum & priority */
2381 skb->csum = rss_hi;
2382 skb->priority = rss_lo;
2383 ngathered = rx_offload(&adap->tdev, q, skb,
2384 offload_skbs,
2385 ngathered);
2386 }
2387
2388 if (flags & F_RSPD_EOP)
2389 clear_rspq_bufstate(q);
2390 }
2391 --budget_left;
2392 }
2393
2394 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2395
2396 if (sleeping)
2397 check_ring_db(adap, qs, sleeping);
2398
2399 smp_mb(); /* commit Tx queue .processed updates */
2400 if (unlikely(qs->txq_stopped != 0))
2401 restart_tx(qs);
2402
2403 budget -= budget_left;
2404 return budget;
2405 }
2406
2407 static inline int is_pure_response(const struct rsp_desc *r)
2408 {
2409 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2410
2411 return (n | r->len_cq) == 0;
2412 }
2413
2414 /**
2415 * napi_rx_handler - the NAPI handler for Rx processing
2416 * @napi: the napi instance
2417 * @budget: how many packets we can process in this round
2418 *
2419 * Handler for new data events when using NAPI.
2420 */
2421 static int napi_rx_handler(struct napi_struct *napi, int budget)
2422 {
2423 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2424 struct adapter *adap = qs->adap;
2425 int work_done = process_responses(adap, qs, budget);
2426
2427 if (likely(work_done < budget)) {
2428 napi_complete(napi);
2429
2430 /*
2431 * Because we don't atomically flush the following
2432 * write it is possible that in very rare cases it can
2433 * reach the device in a way that races with a new
2434 * response being written plus an error interrupt
2435 * causing the NAPI interrupt handler below to return
2436 * unhandled status to the OS. To protect against
2437 * this would require flushing the write and doing
2438 * both the write and the flush with interrupts off.
2439 * Way too expensive and unjustifiable given the
2440 * rarity of the race.
2441 *
2442 * The race cannot happen at all with MSI-X.
2443 */
2444 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2445 V_NEWTIMER(qs->rspq.next_holdoff) |
2446 V_NEWINDEX(qs->rspq.cidx));
2447 }
2448 return work_done;
2449 }
2450
2451 /*
2452 * Returns true if the device is already scheduled for polling.
2453 */
2454 static inline int napi_is_scheduled(struct napi_struct *napi)
2455 {
2456 return test_bit(NAPI_STATE_SCHED, &napi->state);
2457 }
2458
2459 /**
2460 * process_pure_responses - process pure responses from a response queue
2461 * @adap: the adapter
2462 * @qs: the queue set owning the response queue
2463 * @r: the first pure response to process
2464 *
2465 * A simpler version of process_responses() that handles only pure (i.e.,
2466 * non data-carrying) responses. Such respones are too light-weight to
2467 * justify calling a softirq under NAPI, so we handle them specially in
2468 * the interrupt handler. The function is called with a pointer to a
2469 * response, which the caller must ensure is a valid pure response.
2470 *
2471 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2472 */
2473 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2474 struct rsp_desc *r)
2475 {
2476 struct sge_rspq *q = &qs->rspq;
2477 unsigned int sleeping = 0;
2478
2479 do {
2480 u32 flags = ntohl(r->flags);
2481
2482 r++;
2483 if (unlikely(++q->cidx == q->size)) {
2484 q->cidx = 0;
2485 q->gen ^= 1;
2486 r = q->desc;
2487 }
2488 prefetch(r);
2489
2490 if (flags & RSPD_CTRL_MASK) {
2491 sleeping |= flags & RSPD_GTS_MASK;
2492 handle_rsp_cntrl_info(qs, flags);
2493 }
2494
2495 q->pure_rsps++;
2496 if (++q->credits >= (q->size / 4)) {
2497 refill_rspq(adap, q, q->credits);
2498 q->credits = 0;
2499 }
2500 } while (is_new_response(r, q) && is_pure_response(r));
2501
2502 if (sleeping)
2503 check_ring_db(adap, qs, sleeping);
2504
2505 smp_mb(); /* commit Tx queue .processed updates */
2506 if (unlikely(qs->txq_stopped != 0))
2507 restart_tx(qs);
2508
2509 return is_new_response(r, q);
2510 }
2511
2512 /**
2513 * handle_responses - decide what to do with new responses in NAPI mode
2514 * @adap: the adapter
2515 * @q: the response queue
2516 *
2517 * This is used by the NAPI interrupt handlers to decide what to do with
2518 * new SGE responses. If there are no new responses it returns -1. If
2519 * there are new responses and they are pure (i.e., non-data carrying)
2520 * it handles them straight in hard interrupt context as they are very
2521 * cheap and don't deliver any packets. Finally, if there are any data
2522 * signaling responses it schedules the NAPI handler. Returns 1 if it
2523 * schedules NAPI, 0 if all new responses were pure.
2524 *
2525 * The caller must ascertain NAPI is not already running.
2526 */
2527 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2528 {
2529 struct sge_qset *qs = rspq_to_qset(q);
2530 struct rsp_desc *r = &q->desc[q->cidx];
2531
2532 if (!is_new_response(r, q))
2533 return -1;
2534 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2535 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2536 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2537 return 0;
2538 }
2539 napi_schedule(&qs->napi);
2540 return 1;
2541 }
2542
2543 /*
2544 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2545 * (i.e., response queue serviced in hard interrupt).
2546 */
2547 irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2548 {
2549 struct sge_qset *qs = cookie;
2550 struct adapter *adap = qs->adap;
2551 struct sge_rspq *q = &qs->rspq;
2552
2553 spin_lock(&q->lock);
2554 if (process_responses(adap, qs, -1) == 0)
2555 q->unhandled_irqs++;
2556 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2557 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2558 spin_unlock(&q->lock);
2559 return IRQ_HANDLED;
2560 }
2561
2562 /*
2563 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2564 * (i.e., response queue serviced by NAPI polling).
2565 */
2566 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2567 {
2568 struct sge_qset *qs = cookie;
2569 struct sge_rspq *q = &qs->rspq;
2570
2571 spin_lock(&q->lock);
2572
2573 if (handle_responses(qs->adap, q) < 0)
2574 q->unhandled_irqs++;
2575 spin_unlock(&q->lock);
2576 return IRQ_HANDLED;
2577 }
2578
2579 /*
2580 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2581 * SGE response queues as well as error and other async events as they all use
2582 * the same MSI vector. We use one SGE response queue per port in this mode
2583 * and protect all response queues with queue 0's lock.
2584 */
2585 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2586 {
2587 int new_packets = 0;
2588 struct adapter *adap = cookie;
2589 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2590
2591 spin_lock(&q->lock);
2592
2593 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2594 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2595 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2596 new_packets = 1;
2597 }
2598
2599 if (adap->params.nports == 2 &&
2600 process_responses(adap, &adap->sge.qs[1], -1)) {
2601 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2602
2603 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2604 V_NEWTIMER(q1->next_holdoff) |
2605 V_NEWINDEX(q1->cidx));
2606 new_packets = 1;
2607 }
2608
2609 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2610 q->unhandled_irqs++;
2611
2612 spin_unlock(&q->lock);
2613 return IRQ_HANDLED;
2614 }
2615
2616 static int rspq_check_napi(struct sge_qset *qs)
2617 {
2618 struct sge_rspq *q = &qs->rspq;
2619
2620 if (!napi_is_scheduled(&qs->napi) &&
2621 is_new_response(&q->desc[q->cidx], q)) {
2622 napi_schedule(&qs->napi);
2623 return 1;
2624 }
2625 return 0;
2626 }
2627
2628 /*
2629 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2630 * by NAPI polling). Handles data events from SGE response queues as well as
2631 * error and other async events as they all use the same MSI vector. We use
2632 * one SGE response queue per port in this mode and protect all response
2633 * queues with queue 0's lock.
2634 */
2635 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2636 {
2637 int new_packets;
2638 struct adapter *adap = cookie;
2639 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2640
2641 spin_lock(&q->lock);
2642
2643 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2644 if (adap->params.nports == 2)
2645 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2646 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2647 q->unhandled_irqs++;
2648
2649 spin_unlock(&q->lock);
2650 return IRQ_HANDLED;
2651 }
2652
2653 /*
2654 * A helper function that processes responses and issues GTS.
2655 */
2656 static inline int process_responses_gts(struct adapter *adap,
2657 struct sge_rspq *rq)
2658 {
2659 int work;
2660
2661 work = process_responses(adap, rspq_to_qset(rq), -1);
2662 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2663 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2664 return work;
2665 }
2666
2667 /*
2668 * The legacy INTx interrupt handler. This needs to handle data events from
2669 * SGE response queues as well as error and other async events as they all use
2670 * the same interrupt pin. We use one SGE response queue per port in this mode
2671 * and protect all response queues with queue 0's lock.
2672 */
2673 static irqreturn_t t3_intr(int irq, void *cookie)
2674 {
2675 int work_done, w0, w1;
2676 struct adapter *adap = cookie;
2677 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2678 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2679
2680 spin_lock(&q0->lock);
2681
2682 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2683 w1 = adap->params.nports == 2 &&
2684 is_new_response(&q1->desc[q1->cidx], q1);
2685
2686 if (likely(w0 | w1)) {
2687 t3_write_reg(adap, A_PL_CLI, 0);
2688 t3_read_reg(adap, A_PL_CLI); /* flush */
2689
2690 if (likely(w0))
2691 process_responses_gts(adap, q0);
2692
2693 if (w1)
2694 process_responses_gts(adap, q1);
2695
2696 work_done = w0 | w1;
2697 } else
2698 work_done = t3_slow_intr_handler(adap);
2699
2700 spin_unlock(&q0->lock);
2701 return IRQ_RETVAL(work_done != 0);
2702 }
2703
2704 /*
2705 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2706 * Handles data events from SGE response queues as well as error and other
2707 * async events as they all use the same interrupt pin. We use one SGE
2708 * response queue per port in this mode and protect all response queues with
2709 * queue 0's lock.
2710 */
2711 static irqreturn_t t3b_intr(int irq, void *cookie)
2712 {
2713 u32 map;
2714 struct adapter *adap = cookie;
2715 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2716
2717 t3_write_reg(adap, A_PL_CLI, 0);
2718 map = t3_read_reg(adap, A_SG_DATA_INTR);
2719
2720 if (unlikely(!map)) /* shared interrupt, most likely */
2721 return IRQ_NONE;
2722
2723 spin_lock(&q0->lock);
2724
2725 if (unlikely(map & F_ERRINTR))
2726 t3_slow_intr_handler(adap);
2727
2728 if (likely(map & 1))
2729 process_responses_gts(adap, q0);
2730
2731 if (map & 2)
2732 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2733
2734 spin_unlock(&q0->lock);
2735 return IRQ_HANDLED;
2736 }
2737
2738 /*
2739 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2740 * Handles data events from SGE response queues as well as error and other
2741 * async events as they all use the same interrupt pin. We use one SGE
2742 * response queue per port in this mode and protect all response queues with
2743 * queue 0's lock.
2744 */
2745 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2746 {
2747 u32 map;
2748 struct adapter *adap = cookie;
2749 struct sge_qset *qs0 = &adap->sge.qs[0];
2750 struct sge_rspq *q0 = &qs0->rspq;
2751
2752 t3_write_reg(adap, A_PL_CLI, 0);
2753 map = t3_read_reg(adap, A_SG_DATA_INTR);
2754
2755 if (unlikely(!map)) /* shared interrupt, most likely */
2756 return IRQ_NONE;
2757
2758 spin_lock(&q0->lock);
2759
2760 if (unlikely(map & F_ERRINTR))
2761 t3_slow_intr_handler(adap);
2762
2763 if (likely(map & 1))
2764 napi_schedule(&qs0->napi);
2765
2766 if (map & 2)
2767 napi_schedule(&adap->sge.qs[1].napi);
2768
2769 spin_unlock(&q0->lock);
2770 return IRQ_HANDLED;
2771 }
2772
2773 /**
2774 * t3_intr_handler - select the top-level interrupt handler
2775 * @adap: the adapter
2776 * @polling: whether using NAPI to service response queues
2777 *
2778 * Selects the top-level interrupt handler based on the type of interrupts
2779 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2780 * response queues.
2781 */
2782 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2783 {
2784 if (adap->flags & USING_MSIX)
2785 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2786 if (adap->flags & USING_MSI)
2787 return polling ? t3_intr_msi_napi : t3_intr_msi;
2788 if (adap->params.rev > 0)
2789 return polling ? t3b_intr_napi : t3b_intr;
2790 return t3_intr;
2791 }
2792
2793 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2794 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2795 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2796 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2797 F_HIRCQPARITYERROR)
2798 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2799 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2800 F_RSPQDISABLED)
2801
2802 /**
2803 * t3_sge_err_intr_handler - SGE async event interrupt handler
2804 * @adapter: the adapter
2805 *
2806 * Interrupt handler for SGE asynchronous (non-data) events.
2807 */
2808 void t3_sge_err_intr_handler(struct adapter *adapter)
2809 {
2810 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2811 ~F_FLEMPTY;
2812
2813 if (status & SGE_PARERR)
2814 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2815 status & SGE_PARERR);
2816 if (status & SGE_FRAMINGERR)
2817 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2818 status & SGE_FRAMINGERR);
2819
2820 if (status & F_RSPQCREDITOVERFOW)
2821 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2822
2823 if (status & F_RSPQDISABLED) {
2824 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2825
2826 CH_ALERT(adapter,
2827 "packet delivered to disabled response queue "
2828 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2829 }
2830
2831 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2832 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2833 status & F_HIPIODRBDROPERR ? "high" : "lo");
2834
2835 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2836 if (status & SGE_FATALERR)
2837 t3_fatal_err(adapter);
2838 }
2839
2840 /**
2841 * sge_timer_tx - perform periodic maintenance of an SGE qset
2842 * @data: the SGE queue set to maintain
2843 *
2844 * Runs periodically from a timer to perform maintenance of an SGE queue
2845 * set. It performs two tasks:
2846 *
2847 * Cleans up any completed Tx descriptors that may still be pending.
2848 * Normal descriptor cleanup happens when new packets are added to a Tx
2849 * queue so this timer is relatively infrequent and does any cleanup only
2850 * if the Tx queue has not seen any new packets in a while. We make a
2851 * best effort attempt to reclaim descriptors, in that we don't wait
2852 * around if we cannot get a queue's lock (which most likely is because
2853 * someone else is queueing new packets and so will also handle the clean
2854 * up). Since control queues use immediate data exclusively we don't
2855 * bother cleaning them up here.
2856 *
2857 */
2858 static void sge_timer_tx(unsigned long data)
2859 {
2860 struct sge_qset *qs = (struct sge_qset *)data;
2861 struct port_info *pi = netdev_priv(qs->netdev);
2862 struct adapter *adap = pi->adapter;
2863 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2864 unsigned long next_period;
2865
2866 if (__netif_tx_trylock(qs->tx_q)) {
2867 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2868 TX_RECLAIM_TIMER_CHUNK);
2869 __netif_tx_unlock(qs->tx_q);
2870 }
2871
2872 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2873 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2874 TX_RECLAIM_TIMER_CHUNK);
2875 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2876 }
2877
2878 next_period = TX_RECLAIM_PERIOD >>
2879 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2880 TX_RECLAIM_TIMER_CHUNK);
2881 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2882 }
2883
2884 /*
2885 * sge_timer_rx - perform periodic maintenance of an SGE qset
2886 * @data: the SGE queue set to maintain
2887 *
2888 * a) Replenishes Rx queues that have run out due to memory shortage.
2889 * Normally new Rx buffers are added when existing ones are consumed but
2890 * when out of memory a queue can become empty. We try to add only a few
2891 * buffers here, the queue will be replenished fully as these new buffers
2892 * are used up if memory shortage has subsided.
2893 *
2894 * b) Return coalesced response queue credits in case a response queue is
2895 * starved.
2896 *
2897 */
2898 static void sge_timer_rx(unsigned long data)
2899 {
2900 spinlock_t *lock;
2901 struct sge_qset *qs = (struct sge_qset *)data;
2902 struct port_info *pi = netdev_priv(qs->netdev);
2903 struct adapter *adap = pi->adapter;
2904 u32 status;
2905
2906 lock = adap->params.rev > 0 ?
2907 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2908
2909 if (!spin_trylock_irq(lock))
2910 goto out;
2911
2912 if (napi_is_scheduled(&qs->napi))
2913 goto unlock;
2914
2915 if (adap->params.rev < 4) {
2916 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2917
2918 if (status & (1 << qs->rspq.cntxt_id)) {
2919 qs->rspq.starved++;
2920 if (qs->rspq.credits) {
2921 qs->rspq.credits--;
2922 refill_rspq(adap, &qs->rspq, 1);
2923 qs->rspq.restarted++;
2924 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2925 1 << qs->rspq.cntxt_id);
2926 }
2927 }
2928 }
2929
2930 if (qs->fl[0].credits < qs->fl[0].size)
2931 __refill_fl(adap, &qs->fl[0]);
2932 if (qs->fl[1].credits < qs->fl[1].size)
2933 __refill_fl(adap, &qs->fl[1]);
2934
2935 unlock:
2936 spin_unlock_irq(lock);
2937 out:
2938 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2939 }
2940
2941 /**
2942 * t3_update_qset_coalesce - update coalescing settings for a queue set
2943 * @qs: the SGE queue set
2944 * @p: new queue set parameters
2945 *
2946 * Update the coalescing settings for an SGE queue set. Nothing is done
2947 * if the queue set is not initialized yet.
2948 */
2949 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2950 {
2951 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2952 qs->rspq.polling = p->polling;
2953 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2954 }
2955
2956 /**
2957 * t3_sge_alloc_qset - initialize an SGE queue set
2958 * @adapter: the adapter
2959 * @id: the queue set id
2960 * @nports: how many Ethernet ports will be using this queue set
2961 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2962 * @p: configuration parameters for this queue set
2963 * @ntxq: number of Tx queues for the queue set
2964 * @netdev: net device associated with this queue set
2965 * @netdevq: net device TX queue associated with this queue set
2966 *
2967 * Allocate resources and initialize an SGE queue set. A queue set
2968 * comprises a response queue, two Rx free-buffer queues, and up to 3
2969 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2970 * queue, offload queue, and control queue.
2971 */
2972 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2973 int irq_vec_idx, const struct qset_params *p,
2974 int ntxq, struct net_device *dev,
2975 struct netdev_queue *netdevq)
2976 {
2977 int i, avail, ret = -ENOMEM;
2978 struct sge_qset *q = &adapter->sge.qs[id];
2979
2980 init_qset_cntxt(q, id);
2981 setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
2982 setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
2983
2984 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2985 sizeof(struct rx_desc),
2986 sizeof(struct rx_sw_desc),
2987 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2988 if (!q->fl[0].desc)
2989 goto err;
2990
2991 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2992 sizeof(struct rx_desc),
2993 sizeof(struct rx_sw_desc),
2994 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2995 if (!q->fl[1].desc)
2996 goto err;
2997
2998 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2999 sizeof(struct rsp_desc), 0,
3000 &q->rspq.phys_addr, NULL);
3001 if (!q->rspq.desc)
3002 goto err;
3003
3004 for (i = 0; i < ntxq; ++i) {
3005 /*
3006 * The control queue always uses immediate data so does not
3007 * need to keep track of any sk_buffs.
3008 */
3009 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3010
3011 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3012 sizeof(struct tx_desc), sz,
3013 &q->txq[i].phys_addr,
3014 &q->txq[i].sdesc);
3015 if (!q->txq[i].desc)
3016 goto err;
3017
3018 q->txq[i].gen = 1;
3019 q->txq[i].size = p->txq_size[i];
3020 spin_lock_init(&q->txq[i].lock);
3021 skb_queue_head_init(&q->txq[i].sendq);
3022 }
3023
3024 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3025 (unsigned long)q);
3026 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3027 (unsigned long)q);
3028
3029 q->fl[0].gen = q->fl[1].gen = 1;
3030 q->fl[0].size = p->fl_size;
3031 q->fl[1].size = p->jumbo_size;
3032
3033 q->rspq.gen = 1;
3034 q->rspq.size = p->rspq_size;
3035 spin_lock_init(&q->rspq.lock);
3036 skb_queue_head_init(&q->rspq.rx_queue);
3037
3038 q->txq[TXQ_ETH].stop_thres = nports *
3039 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3040
3041 #if FL0_PG_CHUNK_SIZE > 0
3042 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3043 #else
3044 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3045 #endif
3046 #if FL1_PG_CHUNK_SIZE > 0
3047 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3048 #else
3049 q->fl[1].buf_size = is_offload(adapter) ?
3050 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3051 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3052 #endif
3053
3054 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3055 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3056 q->fl[0].order = FL0_PG_ORDER;
3057 q->fl[1].order = FL1_PG_ORDER;
3058 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3059 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3060
3061 spin_lock_irq(&adapter->sge.reg_lock);
3062
3063 /* FL threshold comparison uses < */
3064 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3065 q->rspq.phys_addr, q->rspq.size,
3066 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3067 if (ret)
3068 goto err_unlock;
3069
3070 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3071 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3072 q->fl[i].phys_addr, q->fl[i].size,
3073 q->fl[i].buf_size - SGE_PG_RSVD,
3074 p->cong_thres, 1, 0);
3075 if (ret)
3076 goto err_unlock;
3077 }
3078
3079 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3080 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3081 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3082 1, 0);
3083 if (ret)
3084 goto err_unlock;
3085
3086 if (ntxq > 1) {
3087 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3088 USE_GTS, SGE_CNTXT_OFLD, id,
3089 q->txq[TXQ_OFLD].phys_addr,
3090 q->txq[TXQ_OFLD].size, 0, 1, 0);
3091 if (ret)
3092 goto err_unlock;
3093 }
3094
3095 if (ntxq > 2) {
3096 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3097 SGE_CNTXT_CTRL, id,
3098 q->txq[TXQ_CTRL].phys_addr,
3099 q->txq[TXQ_CTRL].size,
3100 q->txq[TXQ_CTRL].token, 1, 0);
3101 if (ret)
3102 goto err_unlock;
3103 }
3104
3105 spin_unlock_irq(&adapter->sge.reg_lock);
3106
3107 q->adap = adapter;
3108 q->netdev = dev;
3109 q->tx_q = netdevq;
3110 t3_update_qset_coalesce(q, p);
3111
3112 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3113 GFP_KERNEL | __GFP_COMP);
3114 if (!avail) {
3115 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3116 goto err;
3117 }
3118 if (avail < q->fl[0].size)
3119 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3120 avail);
3121
3122 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3123 GFP_KERNEL | __GFP_COMP);
3124 if (avail < q->fl[1].size)
3125 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3126 avail);
3127 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3128
3129 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3130 V_NEWTIMER(q->rspq.holdoff_tmr));
3131
3132 return 0;
3133
3134 err_unlock:
3135 spin_unlock_irq(&adapter->sge.reg_lock);
3136 err:
3137 t3_free_qset(adapter, q);
3138 return ret;
3139 }
3140
3141 /**
3142 * t3_start_sge_timers - start SGE timer call backs
3143 * @adap: the adapter
3144 *
3145 * Starts each SGE queue set's timer call back
3146 */
3147 void t3_start_sge_timers(struct adapter *adap)
3148 {
3149 int i;
3150
3151 for (i = 0; i < SGE_QSETS; ++i) {
3152 struct sge_qset *q = &adap->sge.qs[i];
3153
3154 if (q->tx_reclaim_timer.function)
3155 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3156
3157 if (q->rx_reclaim_timer.function)
3158 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3159 }
3160 }
3161
3162 /**
3163 * t3_stop_sge_timers - stop SGE timer call backs
3164 * @adap: the adapter
3165 *
3166 * Stops each SGE queue set's timer call back
3167 */
3168 void t3_stop_sge_timers(struct adapter *adap)
3169 {
3170 int i;
3171
3172 for (i = 0; i < SGE_QSETS; ++i) {
3173 struct sge_qset *q = &adap->sge.qs[i];
3174
3175 if (q->tx_reclaim_timer.function)
3176 del_timer_sync(&q->tx_reclaim_timer);
3177 if (q->rx_reclaim_timer.function)
3178 del_timer_sync(&q->rx_reclaim_timer);
3179 }
3180 }
3181
3182 /**
3183 * t3_free_sge_resources - free SGE resources
3184 * @adap: the adapter
3185 *
3186 * Frees resources used by the SGE queue sets.
3187 */
3188 void t3_free_sge_resources(struct adapter *adap)
3189 {
3190 int i;
3191
3192 for (i = 0; i < SGE_QSETS; ++i)
3193 t3_free_qset(adap, &adap->sge.qs[i]);
3194 }
3195
3196 /**
3197 * t3_sge_start - enable SGE
3198 * @adap: the adapter
3199 *
3200 * Enables the SGE for DMAs. This is the last step in starting packet
3201 * transfers.
3202 */
3203 void t3_sge_start(struct adapter *adap)
3204 {
3205 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3206 }
3207
3208 /**
3209 * t3_sge_stop - disable SGE operation
3210 * @adap: the adapter
3211 *
3212 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3213 * from error interrupts) or from normal process context. In the latter
3214 * case it also disables any pending queue restart tasklets. Note that
3215 * if it is called in interrupt context it cannot disable the restart
3216 * tasklets as it cannot wait, however the tasklets will have no effect
3217 * since the doorbells are disabled and the driver will call this again
3218 * later from process context, at which time the tasklets will be stopped
3219 * if they are still running.
3220 */
3221 void t3_sge_stop(struct adapter *adap)
3222 {
3223 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3224 if (!in_interrupt()) {
3225 int i;
3226
3227 for (i = 0; i < SGE_QSETS; ++i) {
3228 struct sge_qset *qs = &adap->sge.qs[i];
3229
3230 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3231 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3232 }
3233 }
3234 }
3235
3236 /**
3237 * t3_sge_init - initialize SGE
3238 * @adap: the adapter
3239 * @p: the SGE parameters
3240 *
3241 * Performs SGE initialization needed every time after a chip reset.
3242 * We do not initialize any of the queue sets here, instead the driver
3243 * top-level must request those individually. We also do not enable DMA
3244 * here, that should be done after the queues have been set up.
3245 */
3246 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3247 {
3248 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3249
3250 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3251 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3252 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3253 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3254 #if SGE_NUM_GENBITS == 1
3255 ctrl |= F_EGRGENCTRL;
3256 #endif
3257 if (adap->params.rev > 0) {
3258 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3259 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3260 }
3261 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3262 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3263 V_LORCQDRBTHRSH(512));
3264 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3265 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3266 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3267 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3268 adap->params.rev < T3_REV_C ? 1000 : 500);
3269 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3270 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3271 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3272 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3273 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3274 }
3275
3276 /**
3277 * t3_sge_prep - one-time SGE initialization
3278 * @adap: the associated adapter
3279 * @p: SGE parameters
3280 *
3281 * Performs one-time initialization of SGE SW state. Includes determining
3282 * defaults for the assorted SGE parameters, which admins can change until
3283 * they are used to initialize the SGE.
3284 */
3285 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3286 {
3287 int i;
3288
3289 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3290 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3291
3292 for (i = 0; i < SGE_QSETS; ++i) {
3293 struct qset_params *q = p->qset + i;
3294
3295 q->polling = adap->params.rev > 0;
3296 q->coalesce_usecs = 5;
3297 q->rspq_size = 1024;
3298 q->fl_size = 1024;
3299 q->jumbo_size = 512;
3300 q->txq_size[TXQ_ETH] = 1024;
3301 q->txq_size[TXQ_OFLD] = 1024;
3302 q->txq_size[TXQ_CTRL] = 256;
3303 q->cong_thres = 0;
3304 }
3305
3306 spin_lock_init(&adap->sge.reg_lock);
3307 }
3308
3309 /**
3310 * t3_get_desc - dump an SGE descriptor for debugging purposes
3311 * @qs: the queue set
3312 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3313 * @idx: the descriptor index in the queue
3314 * @data: where to dump the descriptor contents
3315 *
3316 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3317 * size of the descriptor.
3318 */
3319 int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3320 unsigned char *data)
3321 {
3322 if (qnum >= 6)
3323 return -EINVAL;
3324
3325 if (qnum < 3) {
3326 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3327 return -EINVAL;
3328 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3329 return sizeof(struct tx_desc);
3330 }
3331
3332 if (qnum == 3) {
3333 if (!qs->rspq.desc || idx >= qs->rspq.size)
3334 return -EINVAL;
3335 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3336 return sizeof(struct rsp_desc);
3337 }
3338
3339 qnum -= 4;
3340 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3341 return -EINVAL;
3342 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3343 return sizeof(struct rx_desc);
3344 }
This page took 0.156822 seconds and 5 git commands to generate.