net/mlx5e: Placement changed for carrier state updates
[deliverable/linux.git] / drivers / net / dsa / bcm_sf2.c
1 /*
2 * Broadcom Starfighter 2 DSA switch driver
3 *
4 * Copyright (C) 2014, Broadcom Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/interrupt.h>
16 #include <linux/platform_device.h>
17 #include <linux/of.h>
18 #include <linux/phy.h>
19 #include <linux/phy_fixed.h>
20 #include <linux/mii.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/of_net.h>
25 #include <net/dsa.h>
26 #include <linux/ethtool.h>
27 #include <linux/if_bridge.h>
28 #include <linux/brcmphy.h>
29 #include <linux/etherdevice.h>
30 #include <net/switchdev.h>
31
32 #include "bcm_sf2.h"
33 #include "bcm_sf2_regs.h"
34
35 /* String, offset, and register size in bytes if different from 4 bytes */
36 static const struct bcm_sf2_hw_stats bcm_sf2_mib[] = {
37 { "TxOctets", 0x000, 8 },
38 { "TxDropPkts", 0x020 },
39 { "TxQPKTQ0", 0x030 },
40 { "TxBroadcastPkts", 0x040 },
41 { "TxMulticastPkts", 0x050 },
42 { "TxUnicastPKts", 0x060 },
43 { "TxCollisions", 0x070 },
44 { "TxSingleCollision", 0x080 },
45 { "TxMultipleCollision", 0x090 },
46 { "TxDeferredCollision", 0x0a0 },
47 { "TxLateCollision", 0x0b0 },
48 { "TxExcessiveCollision", 0x0c0 },
49 { "TxFrameInDisc", 0x0d0 },
50 { "TxPausePkts", 0x0e0 },
51 { "TxQPKTQ1", 0x0f0 },
52 { "TxQPKTQ2", 0x100 },
53 { "TxQPKTQ3", 0x110 },
54 { "TxQPKTQ4", 0x120 },
55 { "TxQPKTQ5", 0x130 },
56 { "RxOctets", 0x140, 8 },
57 { "RxUndersizePkts", 0x160 },
58 { "RxPausePkts", 0x170 },
59 { "RxPkts64Octets", 0x180 },
60 { "RxPkts65to127Octets", 0x190 },
61 { "RxPkts128to255Octets", 0x1a0 },
62 { "RxPkts256to511Octets", 0x1b0 },
63 { "RxPkts512to1023Octets", 0x1c0 },
64 { "RxPkts1024toMaxPktsOctets", 0x1d0 },
65 { "RxOversizePkts", 0x1e0 },
66 { "RxJabbers", 0x1f0 },
67 { "RxAlignmentErrors", 0x200 },
68 { "RxFCSErrors", 0x210 },
69 { "RxGoodOctets", 0x220, 8 },
70 { "RxDropPkts", 0x240 },
71 { "RxUnicastPkts", 0x250 },
72 { "RxMulticastPkts", 0x260 },
73 { "RxBroadcastPkts", 0x270 },
74 { "RxSAChanges", 0x280 },
75 { "RxFragments", 0x290 },
76 { "RxJumboPkt", 0x2a0 },
77 { "RxSymblErr", 0x2b0 },
78 { "InRangeErrCount", 0x2c0 },
79 { "OutRangeErrCount", 0x2d0 },
80 { "EEELpiEvent", 0x2e0 },
81 { "EEELpiDuration", 0x2f0 },
82 { "RxDiscard", 0x300, 8 },
83 { "TxQPKTQ6", 0x320 },
84 { "TxQPKTQ7", 0x330 },
85 { "TxPkts64Octets", 0x340 },
86 { "TxPkts65to127Octets", 0x350 },
87 { "TxPkts128to255Octets", 0x360 },
88 { "TxPkts256to511Ocets", 0x370 },
89 { "TxPkts512to1023Ocets", 0x380 },
90 { "TxPkts1024toMaxPktOcets", 0x390 },
91 };
92
93 #define BCM_SF2_STATS_SIZE ARRAY_SIZE(bcm_sf2_mib)
94
95 static void bcm_sf2_sw_get_strings(struct dsa_switch *ds,
96 int port, uint8_t *data)
97 {
98 unsigned int i;
99
100 for (i = 0; i < BCM_SF2_STATS_SIZE; i++)
101 memcpy(data + i * ETH_GSTRING_LEN,
102 bcm_sf2_mib[i].string, ETH_GSTRING_LEN);
103 }
104
105 static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds,
106 int port, uint64_t *data)
107 {
108 struct bcm_sf2_priv *priv = ds_to_priv(ds);
109 const struct bcm_sf2_hw_stats *s;
110 unsigned int i;
111 u64 val = 0;
112 u32 offset;
113
114 mutex_lock(&priv->stats_mutex);
115
116 /* Now fetch the per-port counters */
117 for (i = 0; i < BCM_SF2_STATS_SIZE; i++) {
118 s = &bcm_sf2_mib[i];
119
120 /* Do a latched 64-bit read if needed */
121 offset = s->reg + CORE_P_MIB_OFFSET(port);
122 if (s->sizeof_stat == 8)
123 val = core_readq(priv, offset);
124 else
125 val = core_readl(priv, offset);
126
127 data[i] = (u64)val;
128 }
129
130 mutex_unlock(&priv->stats_mutex);
131 }
132
133 static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds)
134 {
135 return BCM_SF2_STATS_SIZE;
136 }
137
138 static char *bcm_sf2_sw_probe(struct device *host_dev, int sw_addr)
139 {
140 return "Broadcom Starfighter 2";
141 }
142
143 static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
144 {
145 struct bcm_sf2_priv *priv = ds_to_priv(ds);
146 unsigned int i;
147 u32 reg;
148
149 /* Enable the IMP Port to be in the same VLAN as the other ports
150 * on a per-port basis such that we only have Port i and IMP in
151 * the same VLAN.
152 */
153 for (i = 0; i < priv->hw_params.num_ports; i++) {
154 if (!((1 << i) & ds->phys_port_mask))
155 continue;
156
157 reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
158 reg |= (1 << cpu_port);
159 core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
160 }
161 }
162
163 static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
164 {
165 struct bcm_sf2_priv *priv = ds_to_priv(ds);
166 u32 reg, val;
167
168 /* Enable the port memories */
169 reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
170 reg &= ~P_TXQ_PSM_VDD(port);
171 core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
172
173 /* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
174 reg = core_readl(priv, CORE_IMP_CTL);
175 reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
176 reg &= ~(RX_DIS | TX_DIS);
177 core_writel(priv, reg, CORE_IMP_CTL);
178
179 /* Enable forwarding */
180 core_writel(priv, SW_FWDG_EN, CORE_SWMODE);
181
182 /* Enable IMP port in dumb mode */
183 reg = core_readl(priv, CORE_SWITCH_CTRL);
184 reg |= MII_DUMB_FWDG_EN;
185 core_writel(priv, reg, CORE_SWITCH_CTRL);
186
187 /* Resolve which bit controls the Broadcom tag */
188 switch (port) {
189 case 8:
190 val = BRCM_HDR_EN_P8;
191 break;
192 case 7:
193 val = BRCM_HDR_EN_P7;
194 break;
195 case 5:
196 val = BRCM_HDR_EN_P5;
197 break;
198 default:
199 val = 0;
200 break;
201 }
202
203 /* Enable Broadcom tags for IMP port */
204 reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
205 reg |= val;
206 core_writel(priv, reg, CORE_BRCM_HDR_CTRL);
207
208 /* Enable reception Broadcom tag for CPU TX (switch RX) to
209 * allow us to tag outgoing frames
210 */
211 reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
212 reg &= ~(1 << port);
213 core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);
214
215 /* Enable transmission of Broadcom tags from the switch (CPU RX) to
216 * allow delivering frames to the per-port net_devices
217 */
218 reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
219 reg &= ~(1 << port);
220 core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);
221
222 /* Force link status for IMP port */
223 reg = core_readl(priv, CORE_STS_OVERRIDE_IMP);
224 reg |= (MII_SW_OR | LINK_STS);
225 core_writel(priv, reg, CORE_STS_OVERRIDE_IMP);
226 }
227
228 static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
229 {
230 struct bcm_sf2_priv *priv = ds_to_priv(ds);
231 u32 reg;
232
233 reg = core_readl(priv, CORE_EEE_EN_CTRL);
234 if (enable)
235 reg |= 1 << port;
236 else
237 reg &= ~(1 << port);
238 core_writel(priv, reg, CORE_EEE_EN_CTRL);
239 }
240
241 static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
242 {
243 struct bcm_sf2_priv *priv = ds_to_priv(ds);
244 u32 reg;
245
246 reg = reg_readl(priv, REG_SPHY_CNTRL);
247 if (enable) {
248 reg |= PHY_RESET;
249 reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS);
250 reg_writel(priv, reg, REG_SPHY_CNTRL);
251 udelay(21);
252 reg = reg_readl(priv, REG_SPHY_CNTRL);
253 reg &= ~PHY_RESET;
254 } else {
255 reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
256 reg_writel(priv, reg, REG_SPHY_CNTRL);
257 mdelay(1);
258 reg |= CK25_DIS;
259 }
260 reg_writel(priv, reg, REG_SPHY_CNTRL);
261
262 /* Use PHY-driven LED signaling */
263 if (!enable) {
264 reg = reg_readl(priv, REG_LED_CNTRL(0));
265 reg |= SPDLNK_SRC_SEL;
266 reg_writel(priv, reg, REG_LED_CNTRL(0));
267 }
268 }
269
270 static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
271 int port)
272 {
273 unsigned int off;
274
275 switch (port) {
276 case 7:
277 off = P7_IRQ_OFF;
278 break;
279 case 0:
280 /* Port 0 interrupts are located on the first bank */
281 intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
282 return;
283 default:
284 off = P_IRQ_OFF(port);
285 break;
286 }
287
288 intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
289 }
290
291 static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
292 int port)
293 {
294 unsigned int off;
295
296 switch (port) {
297 case 7:
298 off = P7_IRQ_OFF;
299 break;
300 case 0:
301 /* Port 0 interrupts are located on the first bank */
302 intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
303 intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
304 return;
305 default:
306 off = P_IRQ_OFF(port);
307 break;
308 }
309
310 intrl2_1_mask_set(priv, P_IRQ_MASK(off));
311 intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
312 }
313
314 static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
315 struct phy_device *phy)
316 {
317 struct bcm_sf2_priv *priv = ds_to_priv(ds);
318 s8 cpu_port = ds->dst[ds->index].cpu_port;
319 u32 reg;
320
321 /* Clear the memory power down */
322 reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
323 reg &= ~P_TXQ_PSM_VDD(port);
324 core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
325
326 /* Clear the Rx and Tx disable bits and set to no spanning tree */
327 core_writel(priv, 0, CORE_G_PCTL_PORT(port));
328
329 /* Re-enable the GPHY and re-apply workarounds */
330 if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
331 bcm_sf2_gphy_enable_set(ds, true);
332 if (phy) {
333 /* if phy_stop() has been called before, phy
334 * will be in halted state, and phy_start()
335 * will call resume.
336 *
337 * the resume path does not configure back
338 * autoneg settings, and since we hard reset
339 * the phy manually here, we need to reset the
340 * state machine also.
341 */
342 phy->state = PHY_READY;
343 phy_init_hw(phy);
344 }
345 }
346
347 /* Enable MoCA port interrupts to get notified */
348 if (port == priv->moca_port)
349 bcm_sf2_port_intr_enable(priv, port);
350
351 /* Set this port, and only this one to be in the default VLAN,
352 * if member of a bridge, restore its membership prior to
353 * bringing down this port.
354 */
355 reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
356 reg &= ~PORT_VLAN_CTRL_MASK;
357 reg |= (1 << port);
358 reg |= priv->port_sts[port].vlan_ctl_mask;
359 core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port));
360
361 bcm_sf2_imp_vlan_setup(ds, cpu_port);
362
363 /* If EEE was enabled, restore it */
364 if (priv->port_sts[port].eee.eee_enabled)
365 bcm_sf2_eee_enable_set(ds, port, true);
366
367 return 0;
368 }
369
370 static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
371 struct phy_device *phy)
372 {
373 struct bcm_sf2_priv *priv = ds_to_priv(ds);
374 u32 off, reg;
375
376 if (priv->wol_ports_mask & (1 << port))
377 return;
378
379 if (port == priv->moca_port)
380 bcm_sf2_port_intr_disable(priv, port);
381
382 if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
383 bcm_sf2_gphy_enable_set(ds, false);
384
385 if (dsa_is_cpu_port(ds, port))
386 off = CORE_IMP_CTL;
387 else
388 off = CORE_G_PCTL_PORT(port);
389
390 reg = core_readl(priv, off);
391 reg |= RX_DIS | TX_DIS;
392 core_writel(priv, reg, off);
393
394 /* Power down the port memory */
395 reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
396 reg |= P_TXQ_PSM_VDD(port);
397 core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
398 }
399
400 /* Returns 0 if EEE was not enabled, or 1 otherwise
401 */
402 static int bcm_sf2_eee_init(struct dsa_switch *ds, int port,
403 struct phy_device *phy)
404 {
405 struct bcm_sf2_priv *priv = ds_to_priv(ds);
406 struct ethtool_eee *p = &priv->port_sts[port].eee;
407 int ret;
408
409 p->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full);
410
411 ret = phy_init_eee(phy, 0);
412 if (ret)
413 return 0;
414
415 bcm_sf2_eee_enable_set(ds, port, true);
416
417 return 1;
418 }
419
420 static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port,
421 struct ethtool_eee *e)
422 {
423 struct bcm_sf2_priv *priv = ds_to_priv(ds);
424 struct ethtool_eee *p = &priv->port_sts[port].eee;
425 u32 reg;
426
427 reg = core_readl(priv, CORE_EEE_LPI_INDICATE);
428 e->eee_enabled = p->eee_enabled;
429 e->eee_active = !!(reg & (1 << port));
430
431 return 0;
432 }
433
434 static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port,
435 struct phy_device *phydev,
436 struct ethtool_eee *e)
437 {
438 struct bcm_sf2_priv *priv = ds_to_priv(ds);
439 struct ethtool_eee *p = &priv->port_sts[port].eee;
440
441 p->eee_enabled = e->eee_enabled;
442
443 if (!p->eee_enabled) {
444 bcm_sf2_eee_enable_set(ds, port, false);
445 } else {
446 p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev);
447 if (!p->eee_enabled)
448 return -EOPNOTSUPP;
449 }
450
451 return 0;
452 }
453
454 /* Fast-ageing of ARL entries for a given port, equivalent to an ARL
455 * flush for that port.
456 */
457 static int bcm_sf2_sw_fast_age_port(struct dsa_switch *ds, int port)
458 {
459 struct bcm_sf2_priv *priv = ds_to_priv(ds);
460 unsigned int timeout = 1000;
461 u32 reg;
462
463 core_writel(priv, port, CORE_FAST_AGE_PORT);
464
465 reg = core_readl(priv, CORE_FAST_AGE_CTRL);
466 reg |= EN_AGE_PORT | EN_AGE_DYNAMIC | FAST_AGE_STR_DONE;
467 core_writel(priv, reg, CORE_FAST_AGE_CTRL);
468
469 do {
470 reg = core_readl(priv, CORE_FAST_AGE_CTRL);
471 if (!(reg & FAST_AGE_STR_DONE))
472 break;
473
474 cpu_relax();
475 } while (timeout--);
476
477 if (!timeout)
478 return -ETIMEDOUT;
479
480 core_writel(priv, 0, CORE_FAST_AGE_CTRL);
481
482 return 0;
483 }
484
485 static int bcm_sf2_sw_br_join(struct dsa_switch *ds, int port,
486 struct net_device *bridge)
487 {
488 struct bcm_sf2_priv *priv = ds_to_priv(ds);
489 unsigned int i;
490 u32 reg, p_ctl;
491
492 priv->port_sts[port].bridge_dev = bridge;
493 p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
494
495 for (i = 0; i < priv->hw_params.num_ports; i++) {
496 if (priv->port_sts[i].bridge_dev != bridge)
497 continue;
498
499 /* Add this local port to the remote port VLAN control
500 * membership and update the remote port bitmask
501 */
502 reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
503 reg |= 1 << port;
504 core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
505 priv->port_sts[i].vlan_ctl_mask = reg;
506
507 p_ctl |= 1 << i;
508 }
509
510 /* Configure the local port VLAN control membership to include
511 * remote ports and update the local port bitmask
512 */
513 core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
514 priv->port_sts[port].vlan_ctl_mask = p_ctl;
515
516 return 0;
517 }
518
519 static int bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port)
520 {
521 struct bcm_sf2_priv *priv = ds_to_priv(ds);
522 struct net_device *bridge = priv->port_sts[port].bridge_dev;
523 unsigned int i;
524 u32 reg, p_ctl;
525
526 p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
527
528 for (i = 0; i < priv->hw_params.num_ports; i++) {
529 /* Don't touch the remaining ports */
530 if (priv->port_sts[i].bridge_dev != bridge)
531 continue;
532
533 reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
534 reg &= ~(1 << port);
535 core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
536 priv->port_sts[port].vlan_ctl_mask = reg;
537
538 /* Prevent self removal to preserve isolation */
539 if (port != i)
540 p_ctl &= ~(1 << i);
541 }
542
543 core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
544 priv->port_sts[port].vlan_ctl_mask = p_ctl;
545 priv->port_sts[port].bridge_dev = NULL;
546
547 return 0;
548 }
549
550 static int bcm_sf2_sw_br_set_stp_state(struct dsa_switch *ds, int port,
551 u8 state)
552 {
553 struct bcm_sf2_priv *priv = ds_to_priv(ds);
554 u8 hw_state, cur_hw_state;
555 int ret = 0;
556 u32 reg;
557
558 reg = core_readl(priv, CORE_G_PCTL_PORT(port));
559 cur_hw_state = reg & (G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
560
561 switch (state) {
562 case BR_STATE_DISABLED:
563 hw_state = G_MISTP_DIS_STATE;
564 break;
565 case BR_STATE_LISTENING:
566 hw_state = G_MISTP_LISTEN_STATE;
567 break;
568 case BR_STATE_LEARNING:
569 hw_state = G_MISTP_LEARN_STATE;
570 break;
571 case BR_STATE_FORWARDING:
572 hw_state = G_MISTP_FWD_STATE;
573 break;
574 case BR_STATE_BLOCKING:
575 hw_state = G_MISTP_BLOCK_STATE;
576 break;
577 default:
578 pr_err("%s: invalid STP state: %d\n", __func__, state);
579 return -EINVAL;
580 }
581
582 /* Fast-age ARL entries if we are moving a port from Learning or
583 * Forwarding (cur_hw_state) state to Disabled, Blocking or Listening
584 * state (hw_state)
585 */
586 if (cur_hw_state != hw_state) {
587 if (cur_hw_state >= G_MISTP_LEARN_STATE &&
588 hw_state <= G_MISTP_LISTEN_STATE) {
589 ret = bcm_sf2_sw_fast_age_port(ds, port);
590 if (ret) {
591 pr_err("%s: fast-ageing failed\n", __func__);
592 return ret;
593 }
594 }
595 }
596
597 reg = core_readl(priv, CORE_G_PCTL_PORT(port));
598 reg &= ~(G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
599 reg |= hw_state;
600 core_writel(priv, reg, CORE_G_PCTL_PORT(port));
601
602 return 0;
603 }
604
605 /* Address Resolution Logic routines */
606 static int bcm_sf2_arl_op_wait(struct bcm_sf2_priv *priv)
607 {
608 unsigned int timeout = 10;
609 u32 reg;
610
611 do {
612 reg = core_readl(priv, CORE_ARLA_RWCTL);
613 if (!(reg & ARL_STRTDN))
614 return 0;
615
616 usleep_range(1000, 2000);
617 } while (timeout--);
618
619 return -ETIMEDOUT;
620 }
621
622 static int bcm_sf2_arl_rw_op(struct bcm_sf2_priv *priv, unsigned int op)
623 {
624 u32 cmd;
625
626 if (op > ARL_RW)
627 return -EINVAL;
628
629 cmd = core_readl(priv, CORE_ARLA_RWCTL);
630 cmd &= ~IVL_SVL_SELECT;
631 cmd |= ARL_STRTDN;
632 if (op)
633 cmd |= ARL_RW;
634 else
635 cmd &= ~ARL_RW;
636 core_writel(priv, cmd, CORE_ARLA_RWCTL);
637
638 return bcm_sf2_arl_op_wait(priv);
639 }
640
641 static int bcm_sf2_arl_read(struct bcm_sf2_priv *priv, u64 mac,
642 u16 vid, struct bcm_sf2_arl_entry *ent, u8 *idx,
643 bool is_valid)
644 {
645 unsigned int i;
646 int ret;
647
648 ret = bcm_sf2_arl_op_wait(priv);
649 if (ret)
650 return ret;
651
652 /* Read the 4 bins */
653 for (i = 0; i < 4; i++) {
654 u64 mac_vid;
655 u32 fwd_entry;
656
657 mac_vid = core_readq(priv, CORE_ARLA_MACVID_ENTRY(i));
658 fwd_entry = core_readl(priv, CORE_ARLA_FWD_ENTRY(i));
659 bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
660
661 if (ent->is_valid && is_valid) {
662 *idx = i;
663 return 0;
664 }
665
666 /* This is the MAC we just deleted */
667 if (!is_valid && (mac_vid & mac))
668 return 0;
669 }
670
671 return -ENOENT;
672 }
673
674 static int bcm_sf2_arl_op(struct bcm_sf2_priv *priv, int op, int port,
675 const unsigned char *addr, u16 vid, bool is_valid)
676 {
677 struct bcm_sf2_arl_entry ent;
678 u32 fwd_entry;
679 u64 mac, mac_vid = 0;
680 u8 idx = 0;
681 int ret;
682
683 /* Convert the array into a 64-bit MAC */
684 mac = bcm_sf2_mac_to_u64(addr);
685
686 /* Perform a read for the given MAC and VID */
687 core_writeq(priv, mac, CORE_ARLA_MAC);
688 core_writel(priv, vid, CORE_ARLA_VID);
689
690 /* Issue a read operation for this MAC */
691 ret = bcm_sf2_arl_rw_op(priv, 1);
692 if (ret)
693 return ret;
694
695 ret = bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
696 /* If this is a read, just finish now */
697 if (op)
698 return ret;
699
700 /* We could not find a matching MAC, so reset to a new entry */
701 if (ret) {
702 fwd_entry = 0;
703 idx = 0;
704 }
705
706 memset(&ent, 0, sizeof(ent));
707 ent.port = port;
708 ent.is_valid = is_valid;
709 ent.vid = vid;
710 ent.is_static = true;
711 memcpy(ent.mac, addr, ETH_ALEN);
712 bcm_sf2_arl_from_entry(&mac_vid, &fwd_entry, &ent);
713
714 core_writeq(priv, mac_vid, CORE_ARLA_MACVID_ENTRY(idx));
715 core_writel(priv, fwd_entry, CORE_ARLA_FWD_ENTRY(idx));
716
717 ret = bcm_sf2_arl_rw_op(priv, 0);
718 if (ret)
719 return ret;
720
721 /* Re-read the entry to check */
722 return bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
723 }
724
725 static int bcm_sf2_sw_fdb_prepare(struct dsa_switch *ds, int port,
726 const struct switchdev_obj_port_fdb *fdb,
727 struct switchdev_trans *trans)
728 {
729 /* We do not need to do anything specific here yet */
730 return 0;
731 }
732
733 static int bcm_sf2_sw_fdb_add(struct dsa_switch *ds, int port,
734 const struct switchdev_obj_port_fdb *fdb,
735 struct switchdev_trans *trans)
736 {
737 struct bcm_sf2_priv *priv = ds_to_priv(ds);
738
739 return bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, true);
740 }
741
742 static int bcm_sf2_sw_fdb_del(struct dsa_switch *ds, int port,
743 const struct switchdev_obj_port_fdb *fdb)
744 {
745 struct bcm_sf2_priv *priv = ds_to_priv(ds);
746
747 return bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, false);
748 }
749
750 static int bcm_sf2_arl_search_wait(struct bcm_sf2_priv *priv)
751 {
752 unsigned timeout = 1000;
753 u32 reg;
754
755 do {
756 reg = core_readl(priv, CORE_ARLA_SRCH_CTL);
757 if (!(reg & ARLA_SRCH_STDN))
758 return 0;
759
760 if (reg & ARLA_SRCH_VLID)
761 return 0;
762
763 usleep_range(1000, 2000);
764 } while (timeout--);
765
766 return -ETIMEDOUT;
767 }
768
769 static void bcm_sf2_arl_search_rd(struct bcm_sf2_priv *priv, u8 idx,
770 struct bcm_sf2_arl_entry *ent)
771 {
772 u64 mac_vid;
773 u32 fwd_entry;
774
775 mac_vid = core_readq(priv, CORE_ARLA_SRCH_RSLT_MACVID(idx));
776 fwd_entry = core_readl(priv, CORE_ARLA_SRCH_RSLT(idx));
777 bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
778 }
779
780 static int bcm_sf2_sw_fdb_copy(struct net_device *dev, int port,
781 const struct bcm_sf2_arl_entry *ent,
782 struct switchdev_obj_port_fdb *fdb,
783 int (*cb)(struct switchdev_obj *obj))
784 {
785 if (!ent->is_valid)
786 return 0;
787
788 if (port != ent->port)
789 return 0;
790
791 ether_addr_copy(fdb->addr, ent->mac);
792 fdb->vid = ent->vid;
793 fdb->ndm_state = ent->is_static ? NUD_NOARP : NUD_REACHABLE;
794
795 return cb(&fdb->obj);
796 }
797
798 static int bcm_sf2_sw_fdb_dump(struct dsa_switch *ds, int port,
799 struct switchdev_obj_port_fdb *fdb,
800 int (*cb)(struct switchdev_obj *obj))
801 {
802 struct bcm_sf2_priv *priv = ds_to_priv(ds);
803 struct net_device *dev = ds->ports[port];
804 struct bcm_sf2_arl_entry results[2];
805 unsigned int count = 0;
806 int ret;
807
808 /* Start search operation */
809 core_writel(priv, ARLA_SRCH_STDN, CORE_ARLA_SRCH_CTL);
810
811 do {
812 ret = bcm_sf2_arl_search_wait(priv);
813 if (ret)
814 return ret;
815
816 /* Read both entries, then return their values back */
817 bcm_sf2_arl_search_rd(priv, 0, &results[0]);
818 ret = bcm_sf2_sw_fdb_copy(dev, port, &results[0], fdb, cb);
819 if (ret)
820 return ret;
821
822 bcm_sf2_arl_search_rd(priv, 1, &results[1]);
823 ret = bcm_sf2_sw_fdb_copy(dev, port, &results[1], fdb, cb);
824 if (ret)
825 return ret;
826
827 if (!results[0].is_valid && !results[1].is_valid)
828 break;
829
830 } while (count++ < CORE_ARLA_NUM_ENTRIES);
831
832 return 0;
833 }
834
835 static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
836 {
837 struct bcm_sf2_priv *priv = dev_id;
838
839 priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
840 ~priv->irq0_mask;
841 intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
842
843 return IRQ_HANDLED;
844 }
845
846 static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
847 {
848 struct bcm_sf2_priv *priv = dev_id;
849
850 priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
851 ~priv->irq1_mask;
852 intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
853
854 if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF))
855 priv->port_sts[7].link = 1;
856 if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF))
857 priv->port_sts[7].link = 0;
858
859 return IRQ_HANDLED;
860 }
861
862 static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
863 {
864 unsigned int timeout = 1000;
865 u32 reg;
866
867 reg = core_readl(priv, CORE_WATCHDOG_CTRL);
868 reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
869 core_writel(priv, reg, CORE_WATCHDOG_CTRL);
870
871 do {
872 reg = core_readl(priv, CORE_WATCHDOG_CTRL);
873 if (!(reg & SOFTWARE_RESET))
874 break;
875
876 usleep_range(1000, 2000);
877 } while (timeout-- > 0);
878
879 if (timeout == 0)
880 return -ETIMEDOUT;
881
882 return 0;
883 }
884
885 static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
886 {
887 intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
888 intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
889 intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
890 intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
891 intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
892 intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
893 }
894
895 static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
896 struct device_node *dn)
897 {
898 struct device_node *port;
899 const char *phy_mode_str;
900 int mode;
901 unsigned int port_num;
902 int ret;
903
904 priv->moca_port = -1;
905
906 for_each_available_child_of_node(dn, port) {
907 if (of_property_read_u32(port, "reg", &port_num))
908 continue;
909
910 /* Internal PHYs get assigned a specific 'phy-mode' property
911 * value: "internal" to help flag them before MDIO probing
912 * has completed, since they might be turned off at that
913 * time
914 */
915 mode = of_get_phy_mode(port);
916 if (mode < 0) {
917 ret = of_property_read_string(port, "phy-mode",
918 &phy_mode_str);
919 if (ret < 0)
920 continue;
921
922 if (!strcasecmp(phy_mode_str, "internal"))
923 priv->int_phy_mask |= 1 << port_num;
924 }
925
926 if (mode == PHY_INTERFACE_MODE_MOCA)
927 priv->moca_port = port_num;
928 }
929 }
930
931 static int bcm_sf2_sw_setup(struct dsa_switch *ds)
932 {
933 const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
934 struct bcm_sf2_priv *priv = ds_to_priv(ds);
935 struct device_node *dn;
936 void __iomem **base;
937 unsigned int port;
938 unsigned int i;
939 u32 reg, rev;
940 int ret;
941
942 spin_lock_init(&priv->indir_lock);
943 mutex_init(&priv->stats_mutex);
944
945 /* All the interesting properties are at the parent device_node
946 * level
947 */
948 dn = ds->pd->of_node->parent;
949 bcm_sf2_identify_ports(priv, ds->pd->of_node);
950
951 priv->irq0 = irq_of_parse_and_map(dn, 0);
952 priv->irq1 = irq_of_parse_and_map(dn, 1);
953
954 base = &priv->core;
955 for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
956 *base = of_iomap(dn, i);
957 if (*base == NULL) {
958 pr_err("unable to find register: %s\n", reg_names[i]);
959 ret = -ENOMEM;
960 goto out_unmap;
961 }
962 base++;
963 }
964
965 ret = bcm_sf2_sw_rst(priv);
966 if (ret) {
967 pr_err("unable to software reset switch: %d\n", ret);
968 goto out_unmap;
969 }
970
971 /* Disable all interrupts and request them */
972 bcm_sf2_intr_disable(priv);
973
974 ret = request_irq(priv->irq0, bcm_sf2_switch_0_isr, 0,
975 "switch_0", priv);
976 if (ret < 0) {
977 pr_err("failed to request switch_0 IRQ\n");
978 goto out_unmap;
979 }
980
981 ret = request_irq(priv->irq1, bcm_sf2_switch_1_isr, 0,
982 "switch_1", priv);
983 if (ret < 0) {
984 pr_err("failed to request switch_1 IRQ\n");
985 goto out_free_irq0;
986 }
987
988 /* Reset the MIB counters */
989 reg = core_readl(priv, CORE_GMNCFGCFG);
990 reg |= RST_MIB_CNT;
991 core_writel(priv, reg, CORE_GMNCFGCFG);
992 reg &= ~RST_MIB_CNT;
993 core_writel(priv, reg, CORE_GMNCFGCFG);
994
995 /* Get the maximum number of ports for this switch */
996 priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
997 if (priv->hw_params.num_ports > DSA_MAX_PORTS)
998 priv->hw_params.num_ports = DSA_MAX_PORTS;
999
1000 /* Assume a single GPHY setup if we can't read that property */
1001 if (of_property_read_u32(dn, "brcm,num-gphy",
1002 &priv->hw_params.num_gphy))
1003 priv->hw_params.num_gphy = 1;
1004
1005 /* Enable all valid ports and disable those unused */
1006 for (port = 0; port < priv->hw_params.num_ports; port++) {
1007 /* IMP port receives special treatment */
1008 if ((1 << port) & ds->phys_port_mask)
1009 bcm_sf2_port_setup(ds, port, NULL);
1010 else if (dsa_is_cpu_port(ds, port))
1011 bcm_sf2_imp_setup(ds, port);
1012 else
1013 bcm_sf2_port_disable(ds, port, NULL);
1014 }
1015
1016 /* Include the pseudo-PHY address and the broadcast PHY address to
1017 * divert reads towards our workaround. This is only required for
1018 * 7445D0, since 7445E0 disconnects the internal switch pseudo-PHY such
1019 * that we can use the regular SWITCH_MDIO master controller instead.
1020 *
1021 * By default, DSA initializes ds->phys_mii_mask to ds->phys_port_mask
1022 * to have a 1:1 mapping between Port address and PHY address in order
1023 * to utilize the slave_mii_bus instance to read from Port PHYs. This is
1024 * not what we want here, so we initialize phys_mii_mask 0 to always
1025 * utilize the "master" MDIO bus backed by the "mdio-unimac" driver.
1026 */
1027 if (of_machine_is_compatible("brcm,bcm7445d0"))
1028 ds->phys_mii_mask |= ((1 << BRCM_PSEUDO_PHY_ADDR) | (1 << 0));
1029 else
1030 ds->phys_mii_mask = 0;
1031
1032 rev = reg_readl(priv, REG_SWITCH_REVISION);
1033 priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
1034 SWITCH_TOP_REV_MASK;
1035 priv->hw_params.core_rev = (rev & SF2_REV_MASK);
1036
1037 rev = reg_readl(priv, REG_PHY_REVISION);
1038 priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;
1039
1040 pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
1041 priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
1042 priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
1043 priv->core, priv->irq0, priv->irq1);
1044
1045 return 0;
1046
1047 out_free_irq0:
1048 free_irq(priv->irq0, priv);
1049 out_unmap:
1050 base = &priv->core;
1051 for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
1052 if (*base)
1053 iounmap(*base);
1054 base++;
1055 }
1056 return ret;
1057 }
1058
1059 static int bcm_sf2_sw_set_addr(struct dsa_switch *ds, u8 *addr)
1060 {
1061 return 0;
1062 }
1063
1064 static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
1065 {
1066 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1067
1068 /* The BCM7xxx PHY driver expects to find the integrated PHY revision
1069 * in bits 15:8 and the patch level in bits 7:0 which is exactly what
1070 * the REG_PHY_REVISION register layout is.
1071 */
1072
1073 return priv->hw_params.gphy_rev;
1074 }
1075
1076 static int bcm_sf2_sw_indir_rw(struct dsa_switch *ds, int op, int addr,
1077 int regnum, u16 val)
1078 {
1079 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1080 int ret = 0;
1081 u32 reg;
1082
1083 reg = reg_readl(priv, REG_SWITCH_CNTRL);
1084 reg |= MDIO_MASTER_SEL;
1085 reg_writel(priv, reg, REG_SWITCH_CNTRL);
1086
1087 /* Page << 8 | offset */
1088 reg = 0x70;
1089 reg <<= 2;
1090 core_writel(priv, addr, reg);
1091
1092 /* Page << 8 | offset */
1093 reg = 0x80 << 8 | regnum << 1;
1094 reg <<= 2;
1095
1096 if (op)
1097 ret = core_readl(priv, reg);
1098 else
1099 core_writel(priv, val, reg);
1100
1101 reg = reg_readl(priv, REG_SWITCH_CNTRL);
1102 reg &= ~MDIO_MASTER_SEL;
1103 reg_writel(priv, reg, REG_SWITCH_CNTRL);
1104
1105 return ret & 0xffff;
1106 }
1107
1108 static int bcm_sf2_sw_phy_read(struct dsa_switch *ds, int addr, int regnum)
1109 {
1110 /* Intercept reads from the MDIO broadcast address or Broadcom
1111 * pseudo-PHY address
1112 */
1113 switch (addr) {
1114 case 0:
1115 case BRCM_PSEUDO_PHY_ADDR:
1116 return bcm_sf2_sw_indir_rw(ds, 1, addr, regnum, 0);
1117 default:
1118 return 0xffff;
1119 }
1120 }
1121
1122 static int bcm_sf2_sw_phy_write(struct dsa_switch *ds, int addr, int regnum,
1123 u16 val)
1124 {
1125 /* Intercept writes to the MDIO broadcast address or Broadcom
1126 * pseudo-PHY address
1127 */
1128 switch (addr) {
1129 case 0:
1130 case BRCM_PSEUDO_PHY_ADDR:
1131 bcm_sf2_sw_indir_rw(ds, 0, addr, regnum, val);
1132 break;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
1139 struct phy_device *phydev)
1140 {
1141 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1142 u32 id_mode_dis = 0, port_mode;
1143 const char *str = NULL;
1144 u32 reg;
1145
1146 switch (phydev->interface) {
1147 case PHY_INTERFACE_MODE_RGMII:
1148 str = "RGMII (no delay)";
1149 id_mode_dis = 1;
1150 case PHY_INTERFACE_MODE_RGMII_TXID:
1151 if (!str)
1152 str = "RGMII (TX delay)";
1153 port_mode = EXT_GPHY;
1154 break;
1155 case PHY_INTERFACE_MODE_MII:
1156 str = "MII";
1157 port_mode = EXT_EPHY;
1158 break;
1159 case PHY_INTERFACE_MODE_REVMII:
1160 str = "Reverse MII";
1161 port_mode = EXT_REVMII;
1162 break;
1163 default:
1164 /* All other PHYs: internal and MoCA */
1165 goto force_link;
1166 }
1167
1168 /* If the link is down, just disable the interface to conserve power */
1169 if (!phydev->link) {
1170 reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
1171 reg &= ~RGMII_MODE_EN;
1172 reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
1173 goto force_link;
1174 }
1175
1176 /* Clear id_mode_dis bit, and the existing port mode, but
1177 * make sure we enable the RGMII block for data to pass
1178 */
1179 reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
1180 reg &= ~ID_MODE_DIS;
1181 reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
1182 reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
1183
1184 reg |= port_mode | RGMII_MODE_EN;
1185 if (id_mode_dis)
1186 reg |= ID_MODE_DIS;
1187
1188 if (phydev->pause) {
1189 if (phydev->asym_pause)
1190 reg |= TX_PAUSE_EN;
1191 reg |= RX_PAUSE_EN;
1192 }
1193
1194 reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
1195
1196 pr_info("Port %d configured for %s\n", port, str);
1197
1198 force_link:
1199 /* Force link settings detected from the PHY */
1200 reg = SW_OVERRIDE;
1201 switch (phydev->speed) {
1202 case SPEED_1000:
1203 reg |= SPDSTS_1000 << SPEED_SHIFT;
1204 break;
1205 case SPEED_100:
1206 reg |= SPDSTS_100 << SPEED_SHIFT;
1207 break;
1208 }
1209
1210 if (phydev->link)
1211 reg |= LINK_STS;
1212 if (phydev->duplex == DUPLEX_FULL)
1213 reg |= DUPLX_MODE;
1214
1215 core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
1216 }
1217
1218 static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
1219 struct fixed_phy_status *status)
1220 {
1221 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1222 u32 duplex, pause;
1223 u32 reg;
1224
1225 duplex = core_readl(priv, CORE_DUPSTS);
1226 pause = core_readl(priv, CORE_PAUSESTS);
1227
1228 status->link = 0;
1229
1230 /* MoCA port is special as we do not get link status from CORE_LNKSTS,
1231 * which means that we need to force the link at the port override
1232 * level to get the data to flow. We do use what the interrupt handler
1233 * did determine before.
1234 *
1235 * For the other ports, we just force the link status, since this is
1236 * a fixed PHY device.
1237 */
1238 if (port == priv->moca_port) {
1239 status->link = priv->port_sts[port].link;
1240 /* For MoCA interfaces, also force a link down notification
1241 * since some version of the user-space daemon (mocad) use
1242 * cmd->autoneg to force the link, which messes up the PHY
1243 * state machine and make it go in PHY_FORCING state instead.
1244 */
1245 if (!status->link)
1246 netif_carrier_off(ds->ports[port]);
1247 status->duplex = 1;
1248 } else {
1249 status->link = 1;
1250 status->duplex = !!(duplex & (1 << port));
1251 }
1252
1253 reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port));
1254 reg |= SW_OVERRIDE;
1255 if (status->link)
1256 reg |= LINK_STS;
1257 else
1258 reg &= ~LINK_STS;
1259 core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
1260
1261 if ((pause & (1 << port)) &&
1262 (pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) {
1263 status->asym_pause = 1;
1264 status->pause = 1;
1265 }
1266
1267 if (pause & (1 << port))
1268 status->pause = 1;
1269 }
1270
1271 static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
1272 {
1273 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1274 unsigned int port;
1275
1276 bcm_sf2_intr_disable(priv);
1277
1278 /* Disable all ports physically present including the IMP
1279 * port, the other ones have already been disabled during
1280 * bcm_sf2_sw_setup
1281 */
1282 for (port = 0; port < DSA_MAX_PORTS; port++) {
1283 if ((1 << port) & ds->phys_port_mask ||
1284 dsa_is_cpu_port(ds, port))
1285 bcm_sf2_port_disable(ds, port, NULL);
1286 }
1287
1288 return 0;
1289 }
1290
1291 static int bcm_sf2_sw_resume(struct dsa_switch *ds)
1292 {
1293 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1294 unsigned int port;
1295 int ret;
1296
1297 ret = bcm_sf2_sw_rst(priv);
1298 if (ret) {
1299 pr_err("%s: failed to software reset switch\n", __func__);
1300 return ret;
1301 }
1302
1303 if (priv->hw_params.num_gphy == 1)
1304 bcm_sf2_gphy_enable_set(ds, true);
1305
1306 for (port = 0; port < DSA_MAX_PORTS; port++) {
1307 if ((1 << port) & ds->phys_port_mask)
1308 bcm_sf2_port_setup(ds, port, NULL);
1309 else if (dsa_is_cpu_port(ds, port))
1310 bcm_sf2_imp_setup(ds, port);
1311 }
1312
1313 return 0;
1314 }
1315
1316 static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
1317 struct ethtool_wolinfo *wol)
1318 {
1319 struct net_device *p = ds->dst[ds->index].master_netdev;
1320 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1321 struct ethtool_wolinfo pwol;
1322
1323 /* Get the parent device WoL settings */
1324 p->ethtool_ops->get_wol(p, &pwol);
1325
1326 /* Advertise the parent device supported settings */
1327 wol->supported = pwol.supported;
1328 memset(&wol->sopass, 0, sizeof(wol->sopass));
1329
1330 if (pwol.wolopts & WAKE_MAGICSECURE)
1331 memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));
1332
1333 if (priv->wol_ports_mask & (1 << port))
1334 wol->wolopts = pwol.wolopts;
1335 else
1336 wol->wolopts = 0;
1337 }
1338
1339 static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
1340 struct ethtool_wolinfo *wol)
1341 {
1342 struct net_device *p = ds->dst[ds->index].master_netdev;
1343 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1344 s8 cpu_port = ds->dst[ds->index].cpu_port;
1345 struct ethtool_wolinfo pwol;
1346
1347 p->ethtool_ops->get_wol(p, &pwol);
1348 if (wol->wolopts & ~pwol.supported)
1349 return -EINVAL;
1350
1351 if (wol->wolopts)
1352 priv->wol_ports_mask |= (1 << port);
1353 else
1354 priv->wol_ports_mask &= ~(1 << port);
1355
1356 /* If we have at least one port enabled, make sure the CPU port
1357 * is also enabled. If the CPU port is the last one enabled, we disable
1358 * it since this configuration does not make sense.
1359 */
1360 if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
1361 priv->wol_ports_mask |= (1 << cpu_port);
1362 else
1363 priv->wol_ports_mask &= ~(1 << cpu_port);
1364
1365 return p->ethtool_ops->set_wol(p, wol);
1366 }
1367
1368 static struct dsa_switch_driver bcm_sf2_switch_driver = {
1369 .tag_protocol = DSA_TAG_PROTO_BRCM,
1370 .priv_size = sizeof(struct bcm_sf2_priv),
1371 .probe = bcm_sf2_sw_probe,
1372 .setup = bcm_sf2_sw_setup,
1373 .set_addr = bcm_sf2_sw_set_addr,
1374 .get_phy_flags = bcm_sf2_sw_get_phy_flags,
1375 .phy_read = bcm_sf2_sw_phy_read,
1376 .phy_write = bcm_sf2_sw_phy_write,
1377 .get_strings = bcm_sf2_sw_get_strings,
1378 .get_ethtool_stats = bcm_sf2_sw_get_ethtool_stats,
1379 .get_sset_count = bcm_sf2_sw_get_sset_count,
1380 .adjust_link = bcm_sf2_sw_adjust_link,
1381 .fixed_link_update = bcm_sf2_sw_fixed_link_update,
1382 .suspend = bcm_sf2_sw_suspend,
1383 .resume = bcm_sf2_sw_resume,
1384 .get_wol = bcm_sf2_sw_get_wol,
1385 .set_wol = bcm_sf2_sw_set_wol,
1386 .port_enable = bcm_sf2_port_setup,
1387 .port_disable = bcm_sf2_port_disable,
1388 .get_eee = bcm_sf2_sw_get_eee,
1389 .set_eee = bcm_sf2_sw_set_eee,
1390 .port_join_bridge = bcm_sf2_sw_br_join,
1391 .port_leave_bridge = bcm_sf2_sw_br_leave,
1392 .port_stp_update = bcm_sf2_sw_br_set_stp_state,
1393 .port_fdb_prepare = bcm_sf2_sw_fdb_prepare,
1394 .port_fdb_add = bcm_sf2_sw_fdb_add,
1395 .port_fdb_del = bcm_sf2_sw_fdb_del,
1396 .port_fdb_dump = bcm_sf2_sw_fdb_dump,
1397 };
1398
1399 static int __init bcm_sf2_init(void)
1400 {
1401 register_switch_driver(&bcm_sf2_switch_driver);
1402
1403 return 0;
1404 }
1405 module_init(bcm_sf2_init);
1406
1407 static void __exit bcm_sf2_exit(void)
1408 {
1409 unregister_switch_driver(&bcm_sf2_switch_driver);
1410 }
1411 module_exit(bcm_sf2_exit);
1412
1413 MODULE_AUTHOR("Broadcom Corporation");
1414 MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
1415 MODULE_LICENSE("GPL");
1416 MODULE_ALIAS("platform:brcm-sf2");
This page took 0.068993 seconds and 5 git commands to generate.