drivers/net: request_irq - Remove unnecessary leading & from second arg
[deliverable/linux.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33
34 enum {NETDEV_STATS, E1000_STATS};
35
36 struct e1000_stats {
37 char stat_string[ETH_GSTRING_LEN];
38 int type;
39 int sizeof_stat;
40 int stat_offset;
41 };
42
43 #define E1000_STAT(m) E1000_STATS, \
44 sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47 sizeof(((struct net_device *)0)->m), \
48 offsetof(struct net_device, m)
49
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51 { "rx_packets", E1000_STAT(stats.gprc) },
52 { "tx_packets", E1000_STAT(stats.gptc) },
53 { "rx_bytes", E1000_STAT(stats.gorcl) },
54 { "tx_bytes", E1000_STAT(stats.gotcl) },
55 { "rx_broadcast", E1000_STAT(stats.bprc) },
56 { "tx_broadcast", E1000_STAT(stats.bptc) },
57 { "rx_multicast", E1000_STAT(stats.mprc) },
58 { "tx_multicast", E1000_STAT(stats.mptc) },
59 { "rx_errors", E1000_STAT(stats.rxerrc) },
60 { "tx_errors", E1000_STAT(stats.txerrc) },
61 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62 { "multicast", E1000_STAT(stats.mprc) },
63 { "collisions", E1000_STAT(stats.colc) },
64 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69 { "rx_missed_errors", E1000_STAT(stats.mpc) },
70 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74 { "tx_window_errors", E1000_STAT(stats.latecol) },
75 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76 { "tx_deferred_ok", E1000_STAT(stats.dc) },
77 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80 { "tx_restart_queue", E1000_STAT(restart_queue) },
81 { "rx_long_length_errors", E1000_STAT(stats.roc) },
82 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94 { "tx_smbus", E1000_STAT(stats.mgptc) },
95 { "rx_smbus", E1000_STAT(stats.mgprc) },
96 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
97 };
98
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
106 };
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
108
109 static int e1000_get_settings(struct net_device *netdev,
110 struct ethtool_cmd *ecmd)
111 {
112 struct e1000_adapter *adapter = netdev_priv(netdev);
113 struct e1000_hw *hw = &adapter->hw;
114
115 if (hw->media_type == e1000_media_type_copper) {
116
117 ecmd->supported = (SUPPORTED_10baseT_Half |
118 SUPPORTED_10baseT_Full |
119 SUPPORTED_100baseT_Half |
120 SUPPORTED_100baseT_Full |
121 SUPPORTED_1000baseT_Full|
122 SUPPORTED_Autoneg |
123 SUPPORTED_TP);
124 ecmd->advertising = ADVERTISED_TP;
125
126 if (hw->autoneg == 1) {
127 ecmd->advertising |= ADVERTISED_Autoneg;
128 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd->advertising |= hw->autoneg_advertised;
130 }
131
132 ecmd->port = PORT_TP;
133 ecmd->phy_address = hw->phy_addr;
134
135 if (hw->mac_type == e1000_82543)
136 ecmd->transceiver = XCVR_EXTERNAL;
137 else
138 ecmd->transceiver = XCVR_INTERNAL;
139
140 } else {
141 ecmd->supported = (SUPPORTED_1000baseT_Full |
142 SUPPORTED_FIBRE |
143 SUPPORTED_Autoneg);
144
145 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146 ADVERTISED_FIBRE |
147 ADVERTISED_Autoneg);
148
149 ecmd->port = PORT_FIBRE;
150
151 if (hw->mac_type >= e1000_82545)
152 ecmd->transceiver = XCVR_INTERNAL;
153 else
154 ecmd->transceiver = XCVR_EXTERNAL;
155 }
156
157 if (er32(STATUS) & E1000_STATUS_LU) {
158
159 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160 &adapter->link_duplex);
161 ecmd->speed = adapter->link_speed;
162
163 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF */
165
166 if (adapter->link_duplex == FULL_DUPLEX)
167 ecmd->duplex = DUPLEX_FULL;
168 else
169 ecmd->duplex = DUPLEX_HALF;
170 } else {
171 ecmd->speed = -1;
172 ecmd->duplex = -1;
173 }
174
175 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177 return 0;
178 }
179
180 static int e1000_set_settings(struct net_device *netdev,
181 struct ethtool_cmd *ecmd)
182 {
183 struct e1000_adapter *adapter = netdev_priv(netdev);
184 struct e1000_hw *hw = &adapter->hw;
185
186 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
187 msleep(1);
188
189 if (ecmd->autoneg == AUTONEG_ENABLE) {
190 hw->autoneg = 1;
191 if (hw->media_type == e1000_media_type_fiber)
192 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
193 ADVERTISED_FIBRE |
194 ADVERTISED_Autoneg;
195 else
196 hw->autoneg_advertised = ecmd->advertising |
197 ADVERTISED_TP |
198 ADVERTISED_Autoneg;
199 ecmd->advertising = hw->autoneg_advertised;
200 } else
201 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
202 clear_bit(__E1000_RESETTING, &adapter->flags);
203 return -EINVAL;
204 }
205
206 /* reset the link */
207
208 if (netif_running(adapter->netdev)) {
209 e1000_down(adapter);
210 e1000_up(adapter);
211 } else
212 e1000_reset(adapter);
213
214 clear_bit(__E1000_RESETTING, &adapter->flags);
215 return 0;
216 }
217
218 static void e1000_get_pauseparam(struct net_device *netdev,
219 struct ethtool_pauseparam *pause)
220 {
221 struct e1000_adapter *adapter = netdev_priv(netdev);
222 struct e1000_hw *hw = &adapter->hw;
223
224 pause->autoneg =
225 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
226
227 if (hw->fc == E1000_FC_RX_PAUSE)
228 pause->rx_pause = 1;
229 else if (hw->fc == E1000_FC_TX_PAUSE)
230 pause->tx_pause = 1;
231 else if (hw->fc == E1000_FC_FULL) {
232 pause->rx_pause = 1;
233 pause->tx_pause = 1;
234 }
235 }
236
237 static int e1000_set_pauseparam(struct net_device *netdev,
238 struct ethtool_pauseparam *pause)
239 {
240 struct e1000_adapter *adapter = netdev_priv(netdev);
241 struct e1000_hw *hw = &adapter->hw;
242 int retval = 0;
243
244 adapter->fc_autoneg = pause->autoneg;
245
246 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
247 msleep(1);
248
249 if (pause->rx_pause && pause->tx_pause)
250 hw->fc = E1000_FC_FULL;
251 else if (pause->rx_pause && !pause->tx_pause)
252 hw->fc = E1000_FC_RX_PAUSE;
253 else if (!pause->rx_pause && pause->tx_pause)
254 hw->fc = E1000_FC_TX_PAUSE;
255 else if (!pause->rx_pause && !pause->tx_pause)
256 hw->fc = E1000_FC_NONE;
257
258 hw->original_fc = hw->fc;
259
260 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
261 if (netif_running(adapter->netdev)) {
262 e1000_down(adapter);
263 e1000_up(adapter);
264 } else
265 e1000_reset(adapter);
266 } else
267 retval = ((hw->media_type == e1000_media_type_fiber) ?
268 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
269
270 clear_bit(__E1000_RESETTING, &adapter->flags);
271 return retval;
272 }
273
274 static u32 e1000_get_rx_csum(struct net_device *netdev)
275 {
276 struct e1000_adapter *adapter = netdev_priv(netdev);
277 return adapter->rx_csum;
278 }
279
280 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
281 {
282 struct e1000_adapter *adapter = netdev_priv(netdev);
283 adapter->rx_csum = data;
284
285 if (netif_running(netdev))
286 e1000_reinit_locked(adapter);
287 else
288 e1000_reset(adapter);
289 return 0;
290 }
291
292 static u32 e1000_get_tx_csum(struct net_device *netdev)
293 {
294 return (netdev->features & NETIF_F_HW_CSUM) != 0;
295 }
296
297 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
298 {
299 struct e1000_adapter *adapter = netdev_priv(netdev);
300 struct e1000_hw *hw = &adapter->hw;
301
302 if (hw->mac_type < e1000_82543) {
303 if (!data)
304 return -EINVAL;
305 return 0;
306 }
307
308 if (data)
309 netdev->features |= NETIF_F_HW_CSUM;
310 else
311 netdev->features &= ~NETIF_F_HW_CSUM;
312
313 return 0;
314 }
315
316 static int e1000_set_tso(struct net_device *netdev, u32 data)
317 {
318 struct e1000_adapter *adapter = netdev_priv(netdev);
319 struct e1000_hw *hw = &adapter->hw;
320
321 if ((hw->mac_type < e1000_82544) ||
322 (hw->mac_type == e1000_82547))
323 return data ? -EINVAL : 0;
324
325 if (data)
326 netdev->features |= NETIF_F_TSO;
327 else
328 netdev->features &= ~NETIF_F_TSO;
329
330 netdev->features &= ~NETIF_F_TSO6;
331
332 DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
333 adapter->tso_force = true;
334 return 0;
335 }
336
337 static u32 e1000_get_msglevel(struct net_device *netdev)
338 {
339 struct e1000_adapter *adapter = netdev_priv(netdev);
340 return adapter->msg_enable;
341 }
342
343 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
344 {
345 struct e1000_adapter *adapter = netdev_priv(netdev);
346 adapter->msg_enable = data;
347 }
348
349 static int e1000_get_regs_len(struct net_device *netdev)
350 {
351 #define E1000_REGS_LEN 32
352 return E1000_REGS_LEN * sizeof(u32);
353 }
354
355 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
356 void *p)
357 {
358 struct e1000_adapter *adapter = netdev_priv(netdev);
359 struct e1000_hw *hw = &adapter->hw;
360 u32 *regs_buff = p;
361 u16 phy_data;
362
363 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
364
365 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
366
367 regs_buff[0] = er32(CTRL);
368 regs_buff[1] = er32(STATUS);
369
370 regs_buff[2] = er32(RCTL);
371 regs_buff[3] = er32(RDLEN);
372 regs_buff[4] = er32(RDH);
373 regs_buff[5] = er32(RDT);
374 regs_buff[6] = er32(RDTR);
375
376 regs_buff[7] = er32(TCTL);
377 regs_buff[8] = er32(TDLEN);
378 regs_buff[9] = er32(TDH);
379 regs_buff[10] = er32(TDT);
380 regs_buff[11] = er32(TIDV);
381
382 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
383 if (hw->phy_type == e1000_phy_igp) {
384 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385 IGP01E1000_PHY_AGC_A);
386 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
387 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388 regs_buff[13] = (u32)phy_data; /* cable length */
389 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390 IGP01E1000_PHY_AGC_B);
391 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
392 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393 regs_buff[14] = (u32)phy_data; /* cable length */
394 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
395 IGP01E1000_PHY_AGC_C);
396 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
397 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398 regs_buff[15] = (u32)phy_data; /* cable length */
399 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400 IGP01E1000_PHY_AGC_D);
401 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
402 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403 regs_buff[16] = (u32)phy_data; /* cable length */
404 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
405 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
406 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
407 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
408 regs_buff[18] = (u32)phy_data; /* cable polarity */
409 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
410 IGP01E1000_PHY_PCS_INIT_REG);
411 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
412 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
413 regs_buff[19] = (u32)phy_data; /* cable polarity */
414 regs_buff[20] = 0; /* polarity correction enabled (always) */
415 regs_buff[22] = 0; /* phy receive errors (unavailable) */
416 regs_buff[23] = regs_buff[18]; /* mdix mode */
417 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
418 } else {
419 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
420 regs_buff[13] = (u32)phy_data; /* cable length */
421 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
422 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
423 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
424 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
425 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
426 regs_buff[18] = regs_buff[13]; /* cable polarity */
427 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
428 regs_buff[20] = regs_buff[17]; /* polarity correction */
429 /* phy receive errors */
430 regs_buff[22] = adapter->phy_stats.receive_errors;
431 regs_buff[23] = regs_buff[13]; /* mdix mode */
432 }
433 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
434 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
435 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
436 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
437 if (hw->mac_type >= e1000_82540 &&
438 hw->media_type == e1000_media_type_copper) {
439 regs_buff[26] = er32(MANC);
440 }
441 }
442
443 static int e1000_get_eeprom_len(struct net_device *netdev)
444 {
445 struct e1000_adapter *adapter = netdev_priv(netdev);
446 struct e1000_hw *hw = &adapter->hw;
447
448 return hw->eeprom.word_size * 2;
449 }
450
451 static int e1000_get_eeprom(struct net_device *netdev,
452 struct ethtool_eeprom *eeprom, u8 *bytes)
453 {
454 struct e1000_adapter *adapter = netdev_priv(netdev);
455 struct e1000_hw *hw = &adapter->hw;
456 u16 *eeprom_buff;
457 int first_word, last_word;
458 int ret_val = 0;
459 u16 i;
460
461 if (eeprom->len == 0)
462 return -EINVAL;
463
464 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
465
466 first_word = eeprom->offset >> 1;
467 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
468
469 eeprom_buff = kmalloc(sizeof(u16) *
470 (last_word - first_word + 1), GFP_KERNEL);
471 if (!eeprom_buff)
472 return -ENOMEM;
473
474 if (hw->eeprom.type == e1000_eeprom_spi)
475 ret_val = e1000_read_eeprom(hw, first_word,
476 last_word - first_word + 1,
477 eeprom_buff);
478 else {
479 for (i = 0; i < last_word - first_word + 1; i++) {
480 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
481 &eeprom_buff[i]);
482 if (ret_val)
483 break;
484 }
485 }
486
487 /* Device's eeprom is always little-endian, word addressable */
488 for (i = 0; i < last_word - first_word + 1; i++)
489 le16_to_cpus(&eeprom_buff[i]);
490
491 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
492 eeprom->len);
493 kfree(eeprom_buff);
494
495 return ret_val;
496 }
497
498 static int e1000_set_eeprom(struct net_device *netdev,
499 struct ethtool_eeprom *eeprom, u8 *bytes)
500 {
501 struct e1000_adapter *adapter = netdev_priv(netdev);
502 struct e1000_hw *hw = &adapter->hw;
503 u16 *eeprom_buff;
504 void *ptr;
505 int max_len, first_word, last_word, ret_val = 0;
506 u16 i;
507
508 if (eeprom->len == 0)
509 return -EOPNOTSUPP;
510
511 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
512 return -EFAULT;
513
514 max_len = hw->eeprom.word_size * 2;
515
516 first_word = eeprom->offset >> 1;
517 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
518 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
519 if (!eeprom_buff)
520 return -ENOMEM;
521
522 ptr = (void *)eeprom_buff;
523
524 if (eeprom->offset & 1) {
525 /* need read/modify/write of first changed EEPROM word */
526 /* only the second byte of the word is being modified */
527 ret_val = e1000_read_eeprom(hw, first_word, 1,
528 &eeprom_buff[0]);
529 ptr++;
530 }
531 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
532 /* need read/modify/write of last changed EEPROM word */
533 /* only the first byte of the word is being modified */
534 ret_val = e1000_read_eeprom(hw, last_word, 1,
535 &eeprom_buff[last_word - first_word]);
536 }
537
538 /* Device's eeprom is always little-endian, word addressable */
539 for (i = 0; i < last_word - first_word + 1; i++)
540 le16_to_cpus(&eeprom_buff[i]);
541
542 memcpy(ptr, bytes, eeprom->len);
543
544 for (i = 0; i < last_word - first_word + 1; i++)
545 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
546
547 ret_val = e1000_write_eeprom(hw, first_word,
548 last_word - first_word + 1, eeprom_buff);
549
550 /* Update the checksum over the first part of the EEPROM if needed */
551 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
552 e1000_update_eeprom_checksum(hw);
553
554 kfree(eeprom_buff);
555 return ret_val;
556 }
557
558 static void e1000_get_drvinfo(struct net_device *netdev,
559 struct ethtool_drvinfo *drvinfo)
560 {
561 struct e1000_adapter *adapter = netdev_priv(netdev);
562 char firmware_version[32];
563
564 strncpy(drvinfo->driver, e1000_driver_name, 32);
565 strncpy(drvinfo->version, e1000_driver_version, 32);
566
567 sprintf(firmware_version, "N/A");
568 strncpy(drvinfo->fw_version, firmware_version, 32);
569 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
570 drvinfo->regdump_len = e1000_get_regs_len(netdev);
571 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
572 }
573
574 static void e1000_get_ringparam(struct net_device *netdev,
575 struct ethtool_ringparam *ring)
576 {
577 struct e1000_adapter *adapter = netdev_priv(netdev);
578 struct e1000_hw *hw = &adapter->hw;
579 e1000_mac_type mac_type = hw->mac_type;
580 struct e1000_tx_ring *txdr = adapter->tx_ring;
581 struct e1000_rx_ring *rxdr = adapter->rx_ring;
582
583 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
584 E1000_MAX_82544_RXD;
585 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
586 E1000_MAX_82544_TXD;
587 ring->rx_mini_max_pending = 0;
588 ring->rx_jumbo_max_pending = 0;
589 ring->rx_pending = rxdr->count;
590 ring->tx_pending = txdr->count;
591 ring->rx_mini_pending = 0;
592 ring->rx_jumbo_pending = 0;
593 }
594
595 static int e1000_set_ringparam(struct net_device *netdev,
596 struct ethtool_ringparam *ring)
597 {
598 struct e1000_adapter *adapter = netdev_priv(netdev);
599 struct e1000_hw *hw = &adapter->hw;
600 e1000_mac_type mac_type = hw->mac_type;
601 struct e1000_tx_ring *txdr, *tx_old;
602 struct e1000_rx_ring *rxdr, *rx_old;
603 int i, err;
604
605 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
606 return -EINVAL;
607
608 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609 msleep(1);
610
611 if (netif_running(adapter->netdev))
612 e1000_down(adapter);
613
614 tx_old = adapter->tx_ring;
615 rx_old = adapter->rx_ring;
616
617 err = -ENOMEM;
618 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
619 if (!txdr)
620 goto err_alloc_tx;
621
622 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
623 if (!rxdr)
624 goto err_alloc_rx;
625
626 adapter->tx_ring = txdr;
627 adapter->rx_ring = rxdr;
628
629 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
630 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
631 E1000_MAX_RXD : E1000_MAX_82544_RXD));
632 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
633
634 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
635 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
636 E1000_MAX_TXD : E1000_MAX_82544_TXD));
637 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
638
639 for (i = 0; i < adapter->num_tx_queues; i++)
640 txdr[i].count = txdr->count;
641 for (i = 0; i < adapter->num_rx_queues; i++)
642 rxdr[i].count = rxdr->count;
643
644 if (netif_running(adapter->netdev)) {
645 /* Try to get new resources before deleting old */
646 err = e1000_setup_all_rx_resources(adapter);
647 if (err)
648 goto err_setup_rx;
649 err = e1000_setup_all_tx_resources(adapter);
650 if (err)
651 goto err_setup_tx;
652
653 /* save the new, restore the old in order to free it,
654 * then restore the new back again */
655
656 adapter->rx_ring = rx_old;
657 adapter->tx_ring = tx_old;
658 e1000_free_all_rx_resources(adapter);
659 e1000_free_all_tx_resources(adapter);
660 kfree(tx_old);
661 kfree(rx_old);
662 adapter->rx_ring = rxdr;
663 adapter->tx_ring = txdr;
664 err = e1000_up(adapter);
665 if (err)
666 goto err_setup;
667 }
668
669 clear_bit(__E1000_RESETTING, &adapter->flags);
670 return 0;
671 err_setup_tx:
672 e1000_free_all_rx_resources(adapter);
673 err_setup_rx:
674 adapter->rx_ring = rx_old;
675 adapter->tx_ring = tx_old;
676 kfree(rxdr);
677 err_alloc_rx:
678 kfree(txdr);
679 err_alloc_tx:
680 e1000_up(adapter);
681 err_setup:
682 clear_bit(__E1000_RESETTING, &adapter->flags);
683 return err;
684 }
685
686 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
687 u32 mask, u32 write)
688 {
689 struct e1000_hw *hw = &adapter->hw;
690 static const u32 test[] =
691 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
692 u8 __iomem *address = hw->hw_addr + reg;
693 u32 read;
694 int i;
695
696 for (i = 0; i < ARRAY_SIZE(test); i++) {
697 writel(write & test[i], address);
698 read = readl(address);
699 if (read != (write & test[i] & mask)) {
700 DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
701 "got 0x%08X expected 0x%08X\n",
702 reg, read, (write & test[i] & mask));
703 *data = reg;
704 return true;
705 }
706 }
707 return false;
708 }
709
710 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
711 u32 mask, u32 write)
712 {
713 struct e1000_hw *hw = &adapter->hw;
714 u8 __iomem *address = hw->hw_addr + reg;
715 u32 read;
716
717 writel(write & mask, address);
718 read = readl(address);
719 if ((read & mask) != (write & mask)) {
720 DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
721 "got 0x%08X expected 0x%08X\n",
722 reg, (read & mask), (write & mask));
723 *data = reg;
724 return true;
725 }
726 return false;
727 }
728
729 #define REG_PATTERN_TEST(reg, mask, write) \
730 do { \
731 if (reg_pattern_test(adapter, data, \
732 (hw->mac_type >= e1000_82543) \
733 ? E1000_##reg : E1000_82542_##reg, \
734 mask, write)) \
735 return 1; \
736 } while (0)
737
738 #define REG_SET_AND_CHECK(reg, mask, write) \
739 do { \
740 if (reg_set_and_check(adapter, data, \
741 (hw->mac_type >= e1000_82543) \
742 ? E1000_##reg : E1000_82542_##reg, \
743 mask, write)) \
744 return 1; \
745 } while (0)
746
747 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
748 {
749 u32 value, before, after;
750 u32 i, toggle;
751 struct e1000_hw *hw = &adapter->hw;
752
753 /* The status register is Read Only, so a write should fail.
754 * Some bits that get toggled are ignored.
755 */
756
757 /* there are several bits on newer hardware that are r/w */
758 toggle = 0xFFFFF833;
759
760 before = er32(STATUS);
761 value = (er32(STATUS) & toggle);
762 ew32(STATUS, toggle);
763 after = er32(STATUS) & toggle;
764 if (value != after) {
765 DPRINTK(DRV, ERR, "failed STATUS register test got: "
766 "0x%08X expected: 0x%08X\n", after, value);
767 *data = 1;
768 return 1;
769 }
770 /* restore previous status */
771 ew32(STATUS, before);
772
773 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
774 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
775 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
776 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
777
778 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
779 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
780 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
781 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
782 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
783 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
784 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
785 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
786 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
787 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
788
789 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
790
791 before = 0x06DFB3FE;
792 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
793 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
794
795 if (hw->mac_type >= e1000_82543) {
796
797 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
798 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
799 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
800 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
801 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
802 value = E1000_RAR_ENTRIES;
803 for (i = 0; i < value; i++) {
804 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
805 0xFFFFFFFF);
806 }
807
808 } else {
809
810 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
811 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
812 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
813 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
814
815 }
816
817 value = E1000_MC_TBL_SIZE;
818 for (i = 0; i < value; i++)
819 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
820
821 *data = 0;
822 return 0;
823 }
824
825 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
826 {
827 struct e1000_hw *hw = &adapter->hw;
828 u16 temp;
829 u16 checksum = 0;
830 u16 i;
831
832 *data = 0;
833 /* Read and add up the contents of the EEPROM */
834 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
835 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
836 *data = 1;
837 break;
838 }
839 checksum += temp;
840 }
841
842 /* If Checksum is not Correct return error else test passed */
843 if ((checksum != (u16)EEPROM_SUM) && !(*data))
844 *data = 2;
845
846 return *data;
847 }
848
849 static irqreturn_t e1000_test_intr(int irq, void *data)
850 {
851 struct net_device *netdev = (struct net_device *)data;
852 struct e1000_adapter *adapter = netdev_priv(netdev);
853 struct e1000_hw *hw = &adapter->hw;
854
855 adapter->test_icr |= er32(ICR);
856
857 return IRQ_HANDLED;
858 }
859
860 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
861 {
862 struct net_device *netdev = adapter->netdev;
863 u32 mask, i = 0;
864 bool shared_int = true;
865 u32 irq = adapter->pdev->irq;
866 struct e1000_hw *hw = &adapter->hw;
867
868 *data = 0;
869
870 /* NOTE: we don't test MSI interrupts here, yet */
871 /* Hook up test interrupt handler just for this test */
872 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
873 netdev))
874 shared_int = false;
875 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
876 netdev->name, netdev)) {
877 *data = 1;
878 return -1;
879 }
880 DPRINTK(HW, INFO, "testing %s interrupt\n",
881 (shared_int ? "shared" : "unshared"));
882
883 /* Disable all the interrupts */
884 ew32(IMC, 0xFFFFFFFF);
885 msleep(10);
886
887 /* Test each interrupt */
888 for (; i < 10; i++) {
889
890 /* Interrupt to test */
891 mask = 1 << i;
892
893 if (!shared_int) {
894 /* Disable the interrupt to be reported in
895 * the cause register and then force the same
896 * interrupt and see if one gets posted. If
897 * an interrupt was posted to the bus, the
898 * test failed.
899 */
900 adapter->test_icr = 0;
901 ew32(IMC, mask);
902 ew32(ICS, mask);
903 msleep(10);
904
905 if (adapter->test_icr & mask) {
906 *data = 3;
907 break;
908 }
909 }
910
911 /* Enable the interrupt to be reported in
912 * the cause register and then force the same
913 * interrupt and see if one gets posted. If
914 * an interrupt was not posted to the bus, the
915 * test failed.
916 */
917 adapter->test_icr = 0;
918 ew32(IMS, mask);
919 ew32(ICS, mask);
920 msleep(10);
921
922 if (!(adapter->test_icr & mask)) {
923 *data = 4;
924 break;
925 }
926
927 if (!shared_int) {
928 /* Disable the other interrupts to be reported in
929 * the cause register and then force the other
930 * interrupts and see if any get posted. If
931 * an interrupt was posted to the bus, the
932 * test failed.
933 */
934 adapter->test_icr = 0;
935 ew32(IMC, ~mask & 0x00007FFF);
936 ew32(ICS, ~mask & 0x00007FFF);
937 msleep(10);
938
939 if (adapter->test_icr) {
940 *data = 5;
941 break;
942 }
943 }
944 }
945
946 /* Disable all the interrupts */
947 ew32(IMC, 0xFFFFFFFF);
948 msleep(10);
949
950 /* Unhook test interrupt handler */
951 free_irq(irq, netdev);
952
953 return *data;
954 }
955
956 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
957 {
958 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
959 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
960 struct pci_dev *pdev = adapter->pdev;
961 int i;
962
963 if (txdr->desc && txdr->buffer_info) {
964 for (i = 0; i < txdr->count; i++) {
965 if (txdr->buffer_info[i].dma)
966 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
967 txdr->buffer_info[i].length,
968 PCI_DMA_TODEVICE);
969 if (txdr->buffer_info[i].skb)
970 dev_kfree_skb(txdr->buffer_info[i].skb);
971 }
972 }
973
974 if (rxdr->desc && rxdr->buffer_info) {
975 for (i = 0; i < rxdr->count; i++) {
976 if (rxdr->buffer_info[i].dma)
977 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
978 rxdr->buffer_info[i].length,
979 PCI_DMA_FROMDEVICE);
980 if (rxdr->buffer_info[i].skb)
981 dev_kfree_skb(rxdr->buffer_info[i].skb);
982 }
983 }
984
985 if (txdr->desc) {
986 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
987 txdr->desc = NULL;
988 }
989 if (rxdr->desc) {
990 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
991 rxdr->desc = NULL;
992 }
993
994 kfree(txdr->buffer_info);
995 txdr->buffer_info = NULL;
996 kfree(rxdr->buffer_info);
997 rxdr->buffer_info = NULL;
998
999 return;
1000 }
1001
1002 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1003 {
1004 struct e1000_hw *hw = &adapter->hw;
1005 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1006 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1007 struct pci_dev *pdev = adapter->pdev;
1008 u32 rctl;
1009 int i, ret_val;
1010
1011 /* Setup Tx descriptor ring and Tx buffers */
1012
1013 if (!txdr->count)
1014 txdr->count = E1000_DEFAULT_TXD;
1015
1016 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1017 GFP_KERNEL);
1018 if (!txdr->buffer_info) {
1019 ret_val = 1;
1020 goto err_nomem;
1021 }
1022
1023 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1024 txdr->size = ALIGN(txdr->size, 4096);
1025 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1026 if (!txdr->desc) {
1027 ret_val = 2;
1028 goto err_nomem;
1029 }
1030 memset(txdr->desc, 0, txdr->size);
1031 txdr->next_to_use = txdr->next_to_clean = 0;
1032
1033 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1034 ew32(TDBAH, ((u64)txdr->dma >> 32));
1035 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1036 ew32(TDH, 0);
1037 ew32(TDT, 0);
1038 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1039 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1040 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1041
1042 for (i = 0; i < txdr->count; i++) {
1043 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1044 struct sk_buff *skb;
1045 unsigned int size = 1024;
1046
1047 skb = alloc_skb(size, GFP_KERNEL);
1048 if (!skb) {
1049 ret_val = 3;
1050 goto err_nomem;
1051 }
1052 skb_put(skb, size);
1053 txdr->buffer_info[i].skb = skb;
1054 txdr->buffer_info[i].length = skb->len;
1055 txdr->buffer_info[i].dma =
1056 pci_map_single(pdev, skb->data, skb->len,
1057 PCI_DMA_TODEVICE);
1058 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1059 tx_desc->lower.data = cpu_to_le32(skb->len);
1060 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1061 E1000_TXD_CMD_IFCS |
1062 E1000_TXD_CMD_RPS);
1063 tx_desc->upper.data = 0;
1064 }
1065
1066 /* Setup Rx descriptor ring and Rx buffers */
1067
1068 if (!rxdr->count)
1069 rxdr->count = E1000_DEFAULT_RXD;
1070
1071 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1072 GFP_KERNEL);
1073 if (!rxdr->buffer_info) {
1074 ret_val = 4;
1075 goto err_nomem;
1076 }
1077
1078 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1079 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1080 if (!rxdr->desc) {
1081 ret_val = 5;
1082 goto err_nomem;
1083 }
1084 memset(rxdr->desc, 0, rxdr->size);
1085 rxdr->next_to_use = rxdr->next_to_clean = 0;
1086
1087 rctl = er32(RCTL);
1088 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1089 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1090 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1091 ew32(RDLEN, rxdr->size);
1092 ew32(RDH, 0);
1093 ew32(RDT, 0);
1094 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1095 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1096 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1097 ew32(RCTL, rctl);
1098
1099 for (i = 0; i < rxdr->count; i++) {
1100 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1101 struct sk_buff *skb;
1102
1103 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1104 if (!skb) {
1105 ret_val = 6;
1106 goto err_nomem;
1107 }
1108 skb_reserve(skb, NET_IP_ALIGN);
1109 rxdr->buffer_info[i].skb = skb;
1110 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1111 rxdr->buffer_info[i].dma =
1112 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1113 PCI_DMA_FROMDEVICE);
1114 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1115 memset(skb->data, 0x00, skb->len);
1116 }
1117
1118 return 0;
1119
1120 err_nomem:
1121 e1000_free_desc_rings(adapter);
1122 return ret_val;
1123 }
1124
1125 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1126 {
1127 struct e1000_hw *hw = &adapter->hw;
1128
1129 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1130 e1000_write_phy_reg(hw, 29, 0x001F);
1131 e1000_write_phy_reg(hw, 30, 0x8FFC);
1132 e1000_write_phy_reg(hw, 29, 0x001A);
1133 e1000_write_phy_reg(hw, 30, 0x8FF0);
1134 }
1135
1136 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1137 {
1138 struct e1000_hw *hw = &adapter->hw;
1139 u16 phy_reg;
1140
1141 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1142 * Extended PHY Specific Control Register to 25MHz clock. This
1143 * value defaults back to a 2.5MHz clock when the PHY is reset.
1144 */
1145 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1146 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1147 e1000_write_phy_reg(hw,
1148 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1149
1150 /* In addition, because of the s/w reset above, we need to enable
1151 * CRS on TX. This must be set for both full and half duplex
1152 * operation.
1153 */
1154 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1155 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1156 e1000_write_phy_reg(hw,
1157 M88E1000_PHY_SPEC_CTRL, phy_reg);
1158 }
1159
1160 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1161 {
1162 struct e1000_hw *hw = &adapter->hw;
1163 u32 ctrl_reg;
1164 u16 phy_reg;
1165
1166 /* Setup the Device Control Register for PHY loopback test. */
1167
1168 ctrl_reg = er32(CTRL);
1169 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1170 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1171 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1172 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1173 E1000_CTRL_FD); /* Force Duplex to FULL */
1174
1175 ew32(CTRL, ctrl_reg);
1176
1177 /* Read the PHY Specific Control Register (0x10) */
1178 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1179
1180 /* Clear Auto-Crossover bits in PHY Specific Control Register
1181 * (bits 6:5).
1182 */
1183 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1184 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1185
1186 /* Perform software reset on the PHY */
1187 e1000_phy_reset(hw);
1188
1189 /* Have to setup TX_CLK and TX_CRS after software reset */
1190 e1000_phy_reset_clk_and_crs(adapter);
1191
1192 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1193
1194 /* Wait for reset to complete. */
1195 udelay(500);
1196
1197 /* Have to setup TX_CLK and TX_CRS after software reset */
1198 e1000_phy_reset_clk_and_crs(adapter);
1199
1200 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1201 e1000_phy_disable_receiver(adapter);
1202
1203 /* Set the loopback bit in the PHY control register. */
1204 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1205 phy_reg |= MII_CR_LOOPBACK;
1206 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1207
1208 /* Setup TX_CLK and TX_CRS one more time. */
1209 e1000_phy_reset_clk_and_crs(adapter);
1210
1211 /* Check Phy Configuration */
1212 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1213 if (phy_reg != 0x4100)
1214 return 9;
1215
1216 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1217 if (phy_reg != 0x0070)
1218 return 10;
1219
1220 e1000_read_phy_reg(hw, 29, &phy_reg);
1221 if (phy_reg != 0x001A)
1222 return 11;
1223
1224 return 0;
1225 }
1226
1227 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1228 {
1229 struct e1000_hw *hw = &adapter->hw;
1230 u32 ctrl_reg = 0;
1231 u32 stat_reg = 0;
1232
1233 hw->autoneg = false;
1234
1235 if (hw->phy_type == e1000_phy_m88) {
1236 /* Auto-MDI/MDIX Off */
1237 e1000_write_phy_reg(hw,
1238 M88E1000_PHY_SPEC_CTRL, 0x0808);
1239 /* reset to update Auto-MDI/MDIX */
1240 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1241 /* autoneg off */
1242 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1243 }
1244
1245 ctrl_reg = er32(CTRL);
1246
1247 /* force 1000, set loopback */
1248 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1249
1250 /* Now set up the MAC to the same speed/duplex as the PHY. */
1251 ctrl_reg = er32(CTRL);
1252 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1253 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1254 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1255 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1256 E1000_CTRL_FD); /* Force Duplex to FULL */
1257
1258 if (hw->media_type == e1000_media_type_copper &&
1259 hw->phy_type == e1000_phy_m88)
1260 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1261 else {
1262 /* Set the ILOS bit on the fiber Nic is half
1263 * duplex link is detected. */
1264 stat_reg = er32(STATUS);
1265 if ((stat_reg & E1000_STATUS_FD) == 0)
1266 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1267 }
1268
1269 ew32(CTRL, ctrl_reg);
1270
1271 /* Disable the receiver on the PHY so when a cable is plugged in, the
1272 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1273 */
1274 if (hw->phy_type == e1000_phy_m88)
1275 e1000_phy_disable_receiver(adapter);
1276
1277 udelay(500);
1278
1279 return 0;
1280 }
1281
1282 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1283 {
1284 struct e1000_hw *hw = &adapter->hw;
1285 u16 phy_reg = 0;
1286 u16 count = 0;
1287
1288 switch (hw->mac_type) {
1289 case e1000_82543:
1290 if (hw->media_type == e1000_media_type_copper) {
1291 /* Attempt to setup Loopback mode on Non-integrated PHY.
1292 * Some PHY registers get corrupted at random, so
1293 * attempt this 10 times.
1294 */
1295 while (e1000_nonintegrated_phy_loopback(adapter) &&
1296 count++ < 10);
1297 if (count < 11)
1298 return 0;
1299 }
1300 break;
1301
1302 case e1000_82544:
1303 case e1000_82540:
1304 case e1000_82545:
1305 case e1000_82545_rev_3:
1306 case e1000_82546:
1307 case e1000_82546_rev_3:
1308 case e1000_82541:
1309 case e1000_82541_rev_2:
1310 case e1000_82547:
1311 case e1000_82547_rev_2:
1312 return e1000_integrated_phy_loopback(adapter);
1313 break;
1314 default:
1315 /* Default PHY loopback work is to read the MII
1316 * control register and assert bit 14 (loopback mode).
1317 */
1318 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1319 phy_reg |= MII_CR_LOOPBACK;
1320 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1321 return 0;
1322 break;
1323 }
1324
1325 return 8;
1326 }
1327
1328 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1329 {
1330 struct e1000_hw *hw = &adapter->hw;
1331 u32 rctl;
1332
1333 if (hw->media_type == e1000_media_type_fiber ||
1334 hw->media_type == e1000_media_type_internal_serdes) {
1335 switch (hw->mac_type) {
1336 case e1000_82545:
1337 case e1000_82546:
1338 case e1000_82545_rev_3:
1339 case e1000_82546_rev_3:
1340 return e1000_set_phy_loopback(adapter);
1341 break;
1342 default:
1343 rctl = er32(RCTL);
1344 rctl |= E1000_RCTL_LBM_TCVR;
1345 ew32(RCTL, rctl);
1346 return 0;
1347 }
1348 } else if (hw->media_type == e1000_media_type_copper)
1349 return e1000_set_phy_loopback(adapter);
1350
1351 return 7;
1352 }
1353
1354 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1355 {
1356 struct e1000_hw *hw = &adapter->hw;
1357 u32 rctl;
1358 u16 phy_reg;
1359
1360 rctl = er32(RCTL);
1361 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1362 ew32(RCTL, rctl);
1363
1364 switch (hw->mac_type) {
1365 case e1000_82545:
1366 case e1000_82546:
1367 case e1000_82545_rev_3:
1368 case e1000_82546_rev_3:
1369 default:
1370 hw->autoneg = true;
1371 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1372 if (phy_reg & MII_CR_LOOPBACK) {
1373 phy_reg &= ~MII_CR_LOOPBACK;
1374 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1375 e1000_phy_reset(hw);
1376 }
1377 break;
1378 }
1379 }
1380
1381 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1382 unsigned int frame_size)
1383 {
1384 memset(skb->data, 0xFF, frame_size);
1385 frame_size &= ~1;
1386 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1387 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1388 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1389 }
1390
1391 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1392 unsigned int frame_size)
1393 {
1394 frame_size &= ~1;
1395 if (*(skb->data + 3) == 0xFF) {
1396 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1397 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1398 return 0;
1399 }
1400 }
1401 return 13;
1402 }
1403
1404 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1405 {
1406 struct e1000_hw *hw = &adapter->hw;
1407 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1408 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1409 struct pci_dev *pdev = adapter->pdev;
1410 int i, j, k, l, lc, good_cnt, ret_val=0;
1411 unsigned long time;
1412
1413 ew32(RDT, rxdr->count - 1);
1414
1415 /* Calculate the loop count based on the largest descriptor ring
1416 * The idea is to wrap the largest ring a number of times using 64
1417 * send/receive pairs during each loop
1418 */
1419
1420 if (rxdr->count <= txdr->count)
1421 lc = ((txdr->count / 64) * 2) + 1;
1422 else
1423 lc = ((rxdr->count / 64) * 2) + 1;
1424
1425 k = l = 0;
1426 for (j = 0; j <= lc; j++) { /* loop count loop */
1427 for (i = 0; i < 64; i++) { /* send the packets */
1428 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1429 1024);
1430 pci_dma_sync_single_for_device(pdev,
1431 txdr->buffer_info[k].dma,
1432 txdr->buffer_info[k].length,
1433 PCI_DMA_TODEVICE);
1434 if (unlikely(++k == txdr->count)) k = 0;
1435 }
1436 ew32(TDT, k);
1437 msleep(200);
1438 time = jiffies; /* set the start time for the receive */
1439 good_cnt = 0;
1440 do { /* receive the sent packets */
1441 pci_dma_sync_single_for_cpu(pdev,
1442 rxdr->buffer_info[l].dma,
1443 rxdr->buffer_info[l].length,
1444 PCI_DMA_FROMDEVICE);
1445
1446 ret_val = e1000_check_lbtest_frame(
1447 rxdr->buffer_info[l].skb,
1448 1024);
1449 if (!ret_val)
1450 good_cnt++;
1451 if (unlikely(++l == rxdr->count)) l = 0;
1452 /* time + 20 msecs (200 msecs on 2.4) is more than
1453 * enough time to complete the receives, if it's
1454 * exceeded, break and error off
1455 */
1456 } while (good_cnt < 64 && jiffies < (time + 20));
1457 if (good_cnt != 64) {
1458 ret_val = 13; /* ret_val is the same as mis-compare */
1459 break;
1460 }
1461 if (jiffies >= (time + 2)) {
1462 ret_val = 14; /* error code for time out error */
1463 break;
1464 }
1465 } /* end loop count loop */
1466 return ret_val;
1467 }
1468
1469 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1470 {
1471 *data = e1000_setup_desc_rings(adapter);
1472 if (*data)
1473 goto out;
1474 *data = e1000_setup_loopback_test(adapter);
1475 if (*data)
1476 goto err_loopback;
1477 *data = e1000_run_loopback_test(adapter);
1478 e1000_loopback_cleanup(adapter);
1479
1480 err_loopback:
1481 e1000_free_desc_rings(adapter);
1482 out:
1483 return *data;
1484 }
1485
1486 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1487 {
1488 struct e1000_hw *hw = &adapter->hw;
1489 *data = 0;
1490 if (hw->media_type == e1000_media_type_internal_serdes) {
1491 int i = 0;
1492 hw->serdes_has_link = false;
1493
1494 /* On some blade server designs, link establishment
1495 * could take as long as 2-3 minutes */
1496 do {
1497 e1000_check_for_link(hw);
1498 if (hw->serdes_has_link)
1499 return *data;
1500 msleep(20);
1501 } while (i++ < 3750);
1502
1503 *data = 1;
1504 } else {
1505 e1000_check_for_link(hw);
1506 if (hw->autoneg) /* if auto_neg is set wait for it */
1507 msleep(4000);
1508
1509 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1510 *data = 1;
1511 }
1512 }
1513 return *data;
1514 }
1515
1516 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1517 {
1518 switch (sset) {
1519 case ETH_SS_TEST:
1520 return E1000_TEST_LEN;
1521 case ETH_SS_STATS:
1522 return E1000_STATS_LEN;
1523 default:
1524 return -EOPNOTSUPP;
1525 }
1526 }
1527
1528 static void e1000_diag_test(struct net_device *netdev,
1529 struct ethtool_test *eth_test, u64 *data)
1530 {
1531 struct e1000_adapter *adapter = netdev_priv(netdev);
1532 struct e1000_hw *hw = &adapter->hw;
1533 bool if_running = netif_running(netdev);
1534
1535 set_bit(__E1000_TESTING, &adapter->flags);
1536 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1537 /* Offline tests */
1538
1539 /* save speed, duplex, autoneg settings */
1540 u16 autoneg_advertised = hw->autoneg_advertised;
1541 u8 forced_speed_duplex = hw->forced_speed_duplex;
1542 u8 autoneg = hw->autoneg;
1543
1544 DPRINTK(HW, INFO, "offline testing starting\n");
1545
1546 /* Link test performed before hardware reset so autoneg doesn't
1547 * interfere with test result */
1548 if (e1000_link_test(adapter, &data[4]))
1549 eth_test->flags |= ETH_TEST_FL_FAILED;
1550
1551 if (if_running)
1552 /* indicate we're in test mode */
1553 dev_close(netdev);
1554 else
1555 e1000_reset(adapter);
1556
1557 if (e1000_reg_test(adapter, &data[0]))
1558 eth_test->flags |= ETH_TEST_FL_FAILED;
1559
1560 e1000_reset(adapter);
1561 if (e1000_eeprom_test(adapter, &data[1]))
1562 eth_test->flags |= ETH_TEST_FL_FAILED;
1563
1564 e1000_reset(adapter);
1565 if (e1000_intr_test(adapter, &data[2]))
1566 eth_test->flags |= ETH_TEST_FL_FAILED;
1567
1568 e1000_reset(adapter);
1569 /* make sure the phy is powered up */
1570 e1000_power_up_phy(adapter);
1571 if (e1000_loopback_test(adapter, &data[3]))
1572 eth_test->flags |= ETH_TEST_FL_FAILED;
1573
1574 /* restore speed, duplex, autoneg settings */
1575 hw->autoneg_advertised = autoneg_advertised;
1576 hw->forced_speed_duplex = forced_speed_duplex;
1577 hw->autoneg = autoneg;
1578
1579 e1000_reset(adapter);
1580 clear_bit(__E1000_TESTING, &adapter->flags);
1581 if (if_running)
1582 dev_open(netdev);
1583 } else {
1584 DPRINTK(HW, INFO, "online testing starting\n");
1585 /* Online tests */
1586 if (e1000_link_test(adapter, &data[4]))
1587 eth_test->flags |= ETH_TEST_FL_FAILED;
1588
1589 /* Online tests aren't run; pass by default */
1590 data[0] = 0;
1591 data[1] = 0;
1592 data[2] = 0;
1593 data[3] = 0;
1594
1595 clear_bit(__E1000_TESTING, &adapter->flags);
1596 }
1597 msleep_interruptible(4 * 1000);
1598 }
1599
1600 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1601 struct ethtool_wolinfo *wol)
1602 {
1603 struct e1000_hw *hw = &adapter->hw;
1604 int retval = 1; /* fail by default */
1605
1606 switch (hw->device_id) {
1607 case E1000_DEV_ID_82542:
1608 case E1000_DEV_ID_82543GC_FIBER:
1609 case E1000_DEV_ID_82543GC_COPPER:
1610 case E1000_DEV_ID_82544EI_FIBER:
1611 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1612 case E1000_DEV_ID_82545EM_FIBER:
1613 case E1000_DEV_ID_82545EM_COPPER:
1614 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1615 case E1000_DEV_ID_82546GB_PCIE:
1616 /* these don't support WoL at all */
1617 wol->supported = 0;
1618 break;
1619 case E1000_DEV_ID_82546EB_FIBER:
1620 case E1000_DEV_ID_82546GB_FIBER:
1621 /* Wake events not supported on port B */
1622 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1623 wol->supported = 0;
1624 break;
1625 }
1626 /* return success for non excluded adapter ports */
1627 retval = 0;
1628 break;
1629 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1630 /* quad port adapters only support WoL on port A */
1631 if (!adapter->quad_port_a) {
1632 wol->supported = 0;
1633 break;
1634 }
1635 /* return success for non excluded adapter ports */
1636 retval = 0;
1637 break;
1638 default:
1639 /* dual port cards only support WoL on port A from now on
1640 * unless it was enabled in the eeprom for port B
1641 * so exclude FUNC_1 ports from having WoL enabled */
1642 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1643 !adapter->eeprom_wol) {
1644 wol->supported = 0;
1645 break;
1646 }
1647
1648 retval = 0;
1649 }
1650
1651 return retval;
1652 }
1653
1654 static void e1000_get_wol(struct net_device *netdev,
1655 struct ethtool_wolinfo *wol)
1656 {
1657 struct e1000_adapter *adapter = netdev_priv(netdev);
1658 struct e1000_hw *hw = &adapter->hw;
1659
1660 wol->supported = WAKE_UCAST | WAKE_MCAST |
1661 WAKE_BCAST | WAKE_MAGIC;
1662 wol->wolopts = 0;
1663
1664 /* this function will set ->supported = 0 and return 1 if wol is not
1665 * supported by this hardware */
1666 if (e1000_wol_exclusion(adapter, wol) ||
1667 !device_can_wakeup(&adapter->pdev->dev))
1668 return;
1669
1670 /* apply any specific unsupported masks here */
1671 switch (hw->device_id) {
1672 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1673 /* KSP3 does not suppport UCAST wake-ups */
1674 wol->supported &= ~WAKE_UCAST;
1675
1676 if (adapter->wol & E1000_WUFC_EX)
1677 DPRINTK(DRV, ERR, "Interface does not support "
1678 "directed (unicast) frame wake-up packets\n");
1679 break;
1680 default:
1681 break;
1682 }
1683
1684 if (adapter->wol & E1000_WUFC_EX)
1685 wol->wolopts |= WAKE_UCAST;
1686 if (adapter->wol & E1000_WUFC_MC)
1687 wol->wolopts |= WAKE_MCAST;
1688 if (adapter->wol & E1000_WUFC_BC)
1689 wol->wolopts |= WAKE_BCAST;
1690 if (adapter->wol & E1000_WUFC_MAG)
1691 wol->wolopts |= WAKE_MAGIC;
1692
1693 return;
1694 }
1695
1696 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1697 {
1698 struct e1000_adapter *adapter = netdev_priv(netdev);
1699 struct e1000_hw *hw = &adapter->hw;
1700
1701 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1702 return -EOPNOTSUPP;
1703
1704 if (e1000_wol_exclusion(adapter, wol) ||
1705 !device_can_wakeup(&adapter->pdev->dev))
1706 return wol->wolopts ? -EOPNOTSUPP : 0;
1707
1708 switch (hw->device_id) {
1709 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1710 if (wol->wolopts & WAKE_UCAST) {
1711 DPRINTK(DRV, ERR, "Interface does not support "
1712 "directed (unicast) frame wake-up packets\n");
1713 return -EOPNOTSUPP;
1714 }
1715 break;
1716 default:
1717 break;
1718 }
1719
1720 /* these settings will always override what we currently have */
1721 adapter->wol = 0;
1722
1723 if (wol->wolopts & WAKE_UCAST)
1724 adapter->wol |= E1000_WUFC_EX;
1725 if (wol->wolopts & WAKE_MCAST)
1726 adapter->wol |= E1000_WUFC_MC;
1727 if (wol->wolopts & WAKE_BCAST)
1728 adapter->wol |= E1000_WUFC_BC;
1729 if (wol->wolopts & WAKE_MAGIC)
1730 adapter->wol |= E1000_WUFC_MAG;
1731
1732 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1733
1734 return 0;
1735 }
1736
1737 /* toggle LED 4 times per second = 2 "blinks" per second */
1738 #define E1000_ID_INTERVAL (HZ/4)
1739
1740 /* bit defines for adapter->led_status */
1741 #define E1000_LED_ON 0
1742
1743 static void e1000_led_blink_callback(unsigned long data)
1744 {
1745 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1746 struct e1000_hw *hw = &adapter->hw;
1747
1748 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1749 e1000_led_off(hw);
1750 else
1751 e1000_led_on(hw);
1752
1753 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1754 }
1755
1756 static int e1000_phys_id(struct net_device *netdev, u32 data)
1757 {
1758 struct e1000_adapter *adapter = netdev_priv(netdev);
1759 struct e1000_hw *hw = &adapter->hw;
1760
1761 if (!data)
1762 data = INT_MAX;
1763
1764 if (!adapter->blink_timer.function) {
1765 init_timer(&adapter->blink_timer);
1766 adapter->blink_timer.function = e1000_led_blink_callback;
1767 adapter->blink_timer.data = (unsigned long)adapter;
1768 }
1769 e1000_setup_led(hw);
1770 mod_timer(&adapter->blink_timer, jiffies);
1771 msleep_interruptible(data * 1000);
1772 del_timer_sync(&adapter->blink_timer);
1773
1774 e1000_led_off(hw);
1775 clear_bit(E1000_LED_ON, &adapter->led_status);
1776 e1000_cleanup_led(hw);
1777
1778 return 0;
1779 }
1780
1781 static int e1000_get_coalesce(struct net_device *netdev,
1782 struct ethtool_coalesce *ec)
1783 {
1784 struct e1000_adapter *adapter = netdev_priv(netdev);
1785
1786 if (adapter->hw.mac_type < e1000_82545)
1787 return -EOPNOTSUPP;
1788
1789 if (adapter->itr_setting <= 3)
1790 ec->rx_coalesce_usecs = adapter->itr_setting;
1791 else
1792 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1793
1794 return 0;
1795 }
1796
1797 static int e1000_set_coalesce(struct net_device *netdev,
1798 struct ethtool_coalesce *ec)
1799 {
1800 struct e1000_adapter *adapter = netdev_priv(netdev);
1801 struct e1000_hw *hw = &adapter->hw;
1802
1803 if (hw->mac_type < e1000_82545)
1804 return -EOPNOTSUPP;
1805
1806 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1807 ((ec->rx_coalesce_usecs > 3) &&
1808 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1809 (ec->rx_coalesce_usecs == 2))
1810 return -EINVAL;
1811
1812 if (ec->rx_coalesce_usecs <= 3) {
1813 adapter->itr = 20000;
1814 adapter->itr_setting = ec->rx_coalesce_usecs;
1815 } else {
1816 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1817 adapter->itr_setting = adapter->itr & ~3;
1818 }
1819
1820 if (adapter->itr_setting != 0)
1821 ew32(ITR, 1000000000 / (adapter->itr * 256));
1822 else
1823 ew32(ITR, 0);
1824
1825 return 0;
1826 }
1827
1828 static int e1000_nway_reset(struct net_device *netdev)
1829 {
1830 struct e1000_adapter *adapter = netdev_priv(netdev);
1831 if (netif_running(netdev))
1832 e1000_reinit_locked(adapter);
1833 return 0;
1834 }
1835
1836 static void e1000_get_ethtool_stats(struct net_device *netdev,
1837 struct ethtool_stats *stats, u64 *data)
1838 {
1839 struct e1000_adapter *adapter = netdev_priv(netdev);
1840 int i;
1841 char *p = NULL;
1842
1843 e1000_update_stats(adapter);
1844 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1845 switch (e1000_gstrings_stats[i].type) {
1846 case NETDEV_STATS:
1847 p = (char *) netdev +
1848 e1000_gstrings_stats[i].stat_offset;
1849 break;
1850 case E1000_STATS:
1851 p = (char *) adapter +
1852 e1000_gstrings_stats[i].stat_offset;
1853 break;
1854 }
1855
1856 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1857 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1858 }
1859 /* BUG_ON(i != E1000_STATS_LEN); */
1860 }
1861
1862 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1863 u8 *data)
1864 {
1865 u8 *p = data;
1866 int i;
1867
1868 switch (stringset) {
1869 case ETH_SS_TEST:
1870 memcpy(data, *e1000_gstrings_test,
1871 sizeof(e1000_gstrings_test));
1872 break;
1873 case ETH_SS_STATS:
1874 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1875 memcpy(p, e1000_gstrings_stats[i].stat_string,
1876 ETH_GSTRING_LEN);
1877 p += ETH_GSTRING_LEN;
1878 }
1879 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1880 break;
1881 }
1882 }
1883
1884 static const struct ethtool_ops e1000_ethtool_ops = {
1885 .get_settings = e1000_get_settings,
1886 .set_settings = e1000_set_settings,
1887 .get_drvinfo = e1000_get_drvinfo,
1888 .get_regs_len = e1000_get_regs_len,
1889 .get_regs = e1000_get_regs,
1890 .get_wol = e1000_get_wol,
1891 .set_wol = e1000_set_wol,
1892 .get_msglevel = e1000_get_msglevel,
1893 .set_msglevel = e1000_set_msglevel,
1894 .nway_reset = e1000_nway_reset,
1895 .get_link = ethtool_op_get_link,
1896 .get_eeprom_len = e1000_get_eeprom_len,
1897 .get_eeprom = e1000_get_eeprom,
1898 .set_eeprom = e1000_set_eeprom,
1899 .get_ringparam = e1000_get_ringparam,
1900 .set_ringparam = e1000_set_ringparam,
1901 .get_pauseparam = e1000_get_pauseparam,
1902 .set_pauseparam = e1000_set_pauseparam,
1903 .get_rx_csum = e1000_get_rx_csum,
1904 .set_rx_csum = e1000_set_rx_csum,
1905 .get_tx_csum = e1000_get_tx_csum,
1906 .set_tx_csum = e1000_set_tx_csum,
1907 .set_sg = ethtool_op_set_sg,
1908 .set_tso = e1000_set_tso,
1909 .self_test = e1000_diag_test,
1910 .get_strings = e1000_get_strings,
1911 .phys_id = e1000_phys_id,
1912 .get_ethtool_stats = e1000_get_ethtool_stats,
1913 .get_sset_count = e1000_get_sset_count,
1914 .get_coalesce = e1000_get_coalesce,
1915 .set_coalesce = e1000_set_coalesce,
1916 };
1917
1918 void e1000_set_ethtool_ops(struct net_device *netdev)
1919 {
1920 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1921 }
This page took 0.074937 seconds and 5 git commands to generate.