Merge branches 'x86/apic', 'x86/cleanups', 'x86/cpufeature', 'x86/crashdump', 'x86...
[deliverable/linux.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33
34 struct e1000_stats {
35 char stat_string[ETH_GSTRING_LEN];
36 int sizeof_stat;
37 int stat_offset;
38 };
39
40 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
41 offsetof(struct e1000_adapter, m)
42 static const struct e1000_stats e1000_gstrings_stats[] = {
43 { "rx_packets", E1000_STAT(stats.gprc) },
44 { "tx_packets", E1000_STAT(stats.gptc) },
45 { "rx_bytes", E1000_STAT(stats.gorcl) },
46 { "tx_bytes", E1000_STAT(stats.gotcl) },
47 { "rx_broadcast", E1000_STAT(stats.bprc) },
48 { "tx_broadcast", E1000_STAT(stats.bptc) },
49 { "rx_multicast", E1000_STAT(stats.mprc) },
50 { "tx_multicast", E1000_STAT(stats.mptc) },
51 { "rx_errors", E1000_STAT(stats.rxerrc) },
52 { "tx_errors", E1000_STAT(stats.txerrc) },
53 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
54 { "multicast", E1000_STAT(stats.mprc) },
55 { "collisions", E1000_STAT(stats.colc) },
56 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
57 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
58 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
59 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
60 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
61 { "rx_missed_errors", E1000_STAT(stats.mpc) },
62 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
63 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
64 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
65 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
66 { "tx_window_errors", E1000_STAT(stats.latecol) },
67 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
68 { "tx_deferred_ok", E1000_STAT(stats.dc) },
69 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
70 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
71 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
72 { "tx_restart_queue", E1000_STAT(restart_queue) },
73 { "rx_long_length_errors", E1000_STAT(stats.roc) },
74 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
75 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
76 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
77 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
78 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
79 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
80 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
81 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
82 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
83 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
84 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
85 { "rx_header_split", E1000_STAT(rx_hdr_split) },
86 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
87 { "tx_smbus", E1000_STAT(stats.mgptc) },
88 { "rx_smbus", E1000_STAT(stats.mgprc) },
89 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
90 };
91
92 #define E1000_QUEUE_STATS_LEN 0
93 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
94 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
95 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
96 "Register test (offline)", "Eeprom test (offline)",
97 "Interrupt test (offline)", "Loopback test (offline)",
98 "Link test (on/offline)"
99 };
100 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
101
102 static int e1000_get_settings(struct net_device *netdev,
103 struct ethtool_cmd *ecmd)
104 {
105 struct e1000_adapter *adapter = netdev_priv(netdev);
106 struct e1000_hw *hw = &adapter->hw;
107
108 if (hw->media_type == e1000_media_type_copper) {
109
110 ecmd->supported = (SUPPORTED_10baseT_Half |
111 SUPPORTED_10baseT_Full |
112 SUPPORTED_100baseT_Half |
113 SUPPORTED_100baseT_Full |
114 SUPPORTED_1000baseT_Full|
115 SUPPORTED_Autoneg |
116 SUPPORTED_TP);
117 if (hw->phy_type == e1000_phy_ife)
118 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
119 ecmd->advertising = ADVERTISED_TP;
120
121 if (hw->autoneg == 1) {
122 ecmd->advertising |= ADVERTISED_Autoneg;
123 /* the e1000 autoneg seems to match ethtool nicely */
124 ecmd->advertising |= hw->autoneg_advertised;
125 }
126
127 ecmd->port = PORT_TP;
128 ecmd->phy_address = hw->phy_addr;
129
130 if (hw->mac_type == e1000_82543)
131 ecmd->transceiver = XCVR_EXTERNAL;
132 else
133 ecmd->transceiver = XCVR_INTERNAL;
134
135 } else {
136 ecmd->supported = (SUPPORTED_1000baseT_Full |
137 SUPPORTED_FIBRE |
138 SUPPORTED_Autoneg);
139
140 ecmd->advertising = (ADVERTISED_1000baseT_Full |
141 ADVERTISED_FIBRE |
142 ADVERTISED_Autoneg);
143
144 ecmd->port = PORT_FIBRE;
145
146 if (hw->mac_type >= e1000_82545)
147 ecmd->transceiver = XCVR_INTERNAL;
148 else
149 ecmd->transceiver = XCVR_EXTERNAL;
150 }
151
152 if (er32(STATUS) & E1000_STATUS_LU) {
153
154 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
155 &adapter->link_duplex);
156 ecmd->speed = adapter->link_speed;
157
158 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
159 * and HALF_DUPLEX != DUPLEX_HALF */
160
161 if (adapter->link_duplex == FULL_DUPLEX)
162 ecmd->duplex = DUPLEX_FULL;
163 else
164 ecmd->duplex = DUPLEX_HALF;
165 } else {
166 ecmd->speed = -1;
167 ecmd->duplex = -1;
168 }
169
170 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
171 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
172 return 0;
173 }
174
175 static int e1000_set_settings(struct net_device *netdev,
176 struct ethtool_cmd *ecmd)
177 {
178 struct e1000_adapter *adapter = netdev_priv(netdev);
179 struct e1000_hw *hw = &adapter->hw;
180
181 /* When SoL/IDER sessions are active, autoneg/speed/duplex
182 * cannot be changed */
183 if (e1000_check_phy_reset_block(hw)) {
184 DPRINTK(DRV, ERR, "Cannot change link characteristics "
185 "when SoL/IDER is active.\n");
186 return -EINVAL;
187 }
188
189 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190 msleep(1);
191
192 if (ecmd->autoneg == AUTONEG_ENABLE) {
193 hw->autoneg = 1;
194 if (hw->media_type == e1000_media_type_fiber)
195 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196 ADVERTISED_FIBRE |
197 ADVERTISED_Autoneg;
198 else
199 hw->autoneg_advertised = ecmd->advertising |
200 ADVERTISED_TP |
201 ADVERTISED_Autoneg;
202 ecmd->advertising = hw->autoneg_advertised;
203 } else
204 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
205 clear_bit(__E1000_RESETTING, &adapter->flags);
206 return -EINVAL;
207 }
208
209 /* reset the link */
210
211 if (netif_running(adapter->netdev)) {
212 e1000_down(adapter);
213 e1000_up(adapter);
214 } else
215 e1000_reset(adapter);
216
217 clear_bit(__E1000_RESETTING, &adapter->flags);
218 return 0;
219 }
220
221 static void e1000_get_pauseparam(struct net_device *netdev,
222 struct ethtool_pauseparam *pause)
223 {
224 struct e1000_adapter *adapter = netdev_priv(netdev);
225 struct e1000_hw *hw = &adapter->hw;
226
227 pause->autoneg =
228 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
229
230 if (hw->fc == E1000_FC_RX_PAUSE)
231 pause->rx_pause = 1;
232 else if (hw->fc == E1000_FC_TX_PAUSE)
233 pause->tx_pause = 1;
234 else if (hw->fc == E1000_FC_FULL) {
235 pause->rx_pause = 1;
236 pause->tx_pause = 1;
237 }
238 }
239
240 static int e1000_set_pauseparam(struct net_device *netdev,
241 struct ethtool_pauseparam *pause)
242 {
243 struct e1000_adapter *adapter = netdev_priv(netdev);
244 struct e1000_hw *hw = &adapter->hw;
245 int retval = 0;
246
247 adapter->fc_autoneg = pause->autoneg;
248
249 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
250 msleep(1);
251
252 if (pause->rx_pause && pause->tx_pause)
253 hw->fc = E1000_FC_FULL;
254 else if (pause->rx_pause && !pause->tx_pause)
255 hw->fc = E1000_FC_RX_PAUSE;
256 else if (!pause->rx_pause && pause->tx_pause)
257 hw->fc = E1000_FC_TX_PAUSE;
258 else if (!pause->rx_pause && !pause->tx_pause)
259 hw->fc = E1000_FC_NONE;
260
261 hw->original_fc = hw->fc;
262
263 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
264 if (netif_running(adapter->netdev)) {
265 e1000_down(adapter);
266 e1000_up(adapter);
267 } else
268 e1000_reset(adapter);
269 } else
270 retval = ((hw->media_type == e1000_media_type_fiber) ?
271 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
272
273 clear_bit(__E1000_RESETTING, &adapter->flags);
274 return retval;
275 }
276
277 static u32 e1000_get_rx_csum(struct net_device *netdev)
278 {
279 struct e1000_adapter *adapter = netdev_priv(netdev);
280 return adapter->rx_csum;
281 }
282
283 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
284 {
285 struct e1000_adapter *adapter = netdev_priv(netdev);
286 adapter->rx_csum = data;
287
288 if (netif_running(netdev))
289 e1000_reinit_locked(adapter);
290 else
291 e1000_reset(adapter);
292 return 0;
293 }
294
295 static u32 e1000_get_tx_csum(struct net_device *netdev)
296 {
297 return (netdev->features & NETIF_F_HW_CSUM) != 0;
298 }
299
300 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
301 {
302 struct e1000_adapter *adapter = netdev_priv(netdev);
303 struct e1000_hw *hw = &adapter->hw;
304
305 if (hw->mac_type < e1000_82543) {
306 if (!data)
307 return -EINVAL;
308 return 0;
309 }
310
311 if (data)
312 netdev->features |= NETIF_F_HW_CSUM;
313 else
314 netdev->features &= ~NETIF_F_HW_CSUM;
315
316 return 0;
317 }
318
319 static int e1000_set_tso(struct net_device *netdev, u32 data)
320 {
321 struct e1000_adapter *adapter = netdev_priv(netdev);
322 struct e1000_hw *hw = &adapter->hw;
323
324 if ((hw->mac_type < e1000_82544) ||
325 (hw->mac_type == e1000_82547))
326 return data ? -EINVAL : 0;
327
328 if (data)
329 netdev->features |= NETIF_F_TSO;
330 else
331 netdev->features &= ~NETIF_F_TSO;
332
333 if (data && (adapter->hw.mac_type > e1000_82547_rev_2))
334 netdev->features |= NETIF_F_TSO6;
335 else
336 netdev->features &= ~NETIF_F_TSO6;
337
338 DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
339 adapter->tso_force = true;
340 return 0;
341 }
342
343 static u32 e1000_get_msglevel(struct net_device *netdev)
344 {
345 struct e1000_adapter *adapter = netdev_priv(netdev);
346 return adapter->msg_enable;
347 }
348
349 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
350 {
351 struct e1000_adapter *adapter = netdev_priv(netdev);
352 adapter->msg_enable = data;
353 }
354
355 static int e1000_get_regs_len(struct net_device *netdev)
356 {
357 #define E1000_REGS_LEN 32
358 return E1000_REGS_LEN * sizeof(u32);
359 }
360
361 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
362 void *p)
363 {
364 struct e1000_adapter *adapter = netdev_priv(netdev);
365 struct e1000_hw *hw = &adapter->hw;
366 u32 *regs_buff = p;
367 u16 phy_data;
368
369 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
370
371 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
372
373 regs_buff[0] = er32(CTRL);
374 regs_buff[1] = er32(STATUS);
375
376 regs_buff[2] = er32(RCTL);
377 regs_buff[3] = er32(RDLEN);
378 regs_buff[4] = er32(RDH);
379 regs_buff[5] = er32(RDT);
380 regs_buff[6] = er32(RDTR);
381
382 regs_buff[7] = er32(TCTL);
383 regs_buff[8] = er32(TDLEN);
384 regs_buff[9] = er32(TDH);
385 regs_buff[10] = er32(TDT);
386 regs_buff[11] = er32(TIDV);
387
388 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
389 if (hw->phy_type == e1000_phy_igp) {
390 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
391 IGP01E1000_PHY_AGC_A);
392 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
393 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
394 regs_buff[13] = (u32)phy_data; /* cable length */
395 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
396 IGP01E1000_PHY_AGC_B);
397 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
398 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
399 regs_buff[14] = (u32)phy_data; /* cable length */
400 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
401 IGP01E1000_PHY_AGC_C);
402 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
403 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
404 regs_buff[15] = (u32)phy_data; /* cable length */
405 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
406 IGP01E1000_PHY_AGC_D);
407 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
408 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
409 regs_buff[16] = (u32)phy_data; /* cable length */
410 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
411 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
412 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
413 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414 regs_buff[18] = (u32)phy_data; /* cable polarity */
415 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
416 IGP01E1000_PHY_PCS_INIT_REG);
417 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
418 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
419 regs_buff[19] = (u32)phy_data; /* cable polarity */
420 regs_buff[20] = 0; /* polarity correction enabled (always) */
421 regs_buff[22] = 0; /* phy receive errors (unavailable) */
422 regs_buff[23] = regs_buff[18]; /* mdix mode */
423 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
424 } else {
425 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
426 regs_buff[13] = (u32)phy_data; /* cable length */
427 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
428 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
429 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
430 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
431 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
432 regs_buff[18] = regs_buff[13]; /* cable polarity */
433 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
434 regs_buff[20] = regs_buff[17]; /* polarity correction */
435 /* phy receive errors */
436 regs_buff[22] = adapter->phy_stats.receive_errors;
437 regs_buff[23] = regs_buff[13]; /* mdix mode */
438 }
439 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
440 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
441 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
442 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
443 if (hw->mac_type >= e1000_82540 &&
444 hw->mac_type < e1000_82571 &&
445 hw->media_type == e1000_media_type_copper) {
446 regs_buff[26] = er32(MANC);
447 }
448 }
449
450 static int e1000_get_eeprom_len(struct net_device *netdev)
451 {
452 struct e1000_adapter *adapter = netdev_priv(netdev);
453 struct e1000_hw *hw = &adapter->hw;
454
455 return hw->eeprom.word_size * 2;
456 }
457
458 static int e1000_get_eeprom(struct net_device *netdev,
459 struct ethtool_eeprom *eeprom, u8 *bytes)
460 {
461 struct e1000_adapter *adapter = netdev_priv(netdev);
462 struct e1000_hw *hw = &adapter->hw;
463 u16 *eeprom_buff;
464 int first_word, last_word;
465 int ret_val = 0;
466 u16 i;
467
468 if (eeprom->len == 0)
469 return -EINVAL;
470
471 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
472
473 first_word = eeprom->offset >> 1;
474 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
475
476 eeprom_buff = kmalloc(sizeof(u16) *
477 (last_word - first_word + 1), GFP_KERNEL);
478 if (!eeprom_buff)
479 return -ENOMEM;
480
481 if (hw->eeprom.type == e1000_eeprom_spi)
482 ret_val = e1000_read_eeprom(hw, first_word,
483 last_word - first_word + 1,
484 eeprom_buff);
485 else {
486 for (i = 0; i < last_word - first_word + 1; i++) {
487 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
488 &eeprom_buff[i]);
489 if (ret_val)
490 break;
491 }
492 }
493
494 /* Device's eeprom is always little-endian, word addressable */
495 for (i = 0; i < last_word - first_word + 1; i++)
496 le16_to_cpus(&eeprom_buff[i]);
497
498 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
499 eeprom->len);
500 kfree(eeprom_buff);
501
502 return ret_val;
503 }
504
505 static int e1000_set_eeprom(struct net_device *netdev,
506 struct ethtool_eeprom *eeprom, u8 *bytes)
507 {
508 struct e1000_adapter *adapter = netdev_priv(netdev);
509 struct e1000_hw *hw = &adapter->hw;
510 u16 *eeprom_buff;
511 void *ptr;
512 int max_len, first_word, last_word, ret_val = 0;
513 u16 i;
514
515 if (eeprom->len == 0)
516 return -EOPNOTSUPP;
517
518 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
519 return -EFAULT;
520
521 max_len = hw->eeprom.word_size * 2;
522
523 first_word = eeprom->offset >> 1;
524 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
525 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
526 if (!eeprom_buff)
527 return -ENOMEM;
528
529 ptr = (void *)eeprom_buff;
530
531 if (eeprom->offset & 1) {
532 /* need read/modify/write of first changed EEPROM word */
533 /* only the second byte of the word is being modified */
534 ret_val = e1000_read_eeprom(hw, first_word, 1,
535 &eeprom_buff[0]);
536 ptr++;
537 }
538 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
539 /* need read/modify/write of last changed EEPROM word */
540 /* only the first byte of the word is being modified */
541 ret_val = e1000_read_eeprom(hw, last_word, 1,
542 &eeprom_buff[last_word - first_word]);
543 }
544
545 /* Device's eeprom is always little-endian, word addressable */
546 for (i = 0; i < last_word - first_word + 1; i++)
547 le16_to_cpus(&eeprom_buff[i]);
548
549 memcpy(ptr, bytes, eeprom->len);
550
551 for (i = 0; i < last_word - first_word + 1; i++)
552 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
553
554 ret_val = e1000_write_eeprom(hw, first_word,
555 last_word - first_word + 1, eeprom_buff);
556
557 /* Update the checksum over the first part of the EEPROM if needed
558 * and flush shadow RAM for 82573 conrollers */
559 if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
560 (hw->mac_type == e1000_82573)))
561 e1000_update_eeprom_checksum(hw);
562
563 kfree(eeprom_buff);
564 return ret_val;
565 }
566
567 static void e1000_get_drvinfo(struct net_device *netdev,
568 struct ethtool_drvinfo *drvinfo)
569 {
570 struct e1000_adapter *adapter = netdev_priv(netdev);
571 struct e1000_hw *hw = &adapter->hw;
572 char firmware_version[32];
573 u16 eeprom_data;
574
575 strncpy(drvinfo->driver, e1000_driver_name, 32);
576 strncpy(drvinfo->version, e1000_driver_version, 32);
577
578 /* EEPROM image version # is reported as firmware version # for
579 * 8257{1|2|3} controllers */
580 e1000_read_eeprom(hw, 5, 1, &eeprom_data);
581 switch (hw->mac_type) {
582 case e1000_82571:
583 case e1000_82572:
584 case e1000_82573:
585 case e1000_80003es2lan:
586 case e1000_ich8lan:
587 sprintf(firmware_version, "%d.%d-%d",
588 (eeprom_data & 0xF000) >> 12,
589 (eeprom_data & 0x0FF0) >> 4,
590 eeprom_data & 0x000F);
591 break;
592 default:
593 sprintf(firmware_version, "N/A");
594 }
595
596 strncpy(drvinfo->fw_version, firmware_version, 32);
597 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
598 drvinfo->regdump_len = e1000_get_regs_len(netdev);
599 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
600 }
601
602 static void e1000_get_ringparam(struct net_device *netdev,
603 struct ethtool_ringparam *ring)
604 {
605 struct e1000_adapter *adapter = netdev_priv(netdev);
606 struct e1000_hw *hw = &adapter->hw;
607 e1000_mac_type mac_type = hw->mac_type;
608 struct e1000_tx_ring *txdr = adapter->tx_ring;
609 struct e1000_rx_ring *rxdr = adapter->rx_ring;
610
611 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
612 E1000_MAX_82544_RXD;
613 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
614 E1000_MAX_82544_TXD;
615 ring->rx_mini_max_pending = 0;
616 ring->rx_jumbo_max_pending = 0;
617 ring->rx_pending = rxdr->count;
618 ring->tx_pending = txdr->count;
619 ring->rx_mini_pending = 0;
620 ring->rx_jumbo_pending = 0;
621 }
622
623 static int e1000_set_ringparam(struct net_device *netdev,
624 struct ethtool_ringparam *ring)
625 {
626 struct e1000_adapter *adapter = netdev_priv(netdev);
627 struct e1000_hw *hw = &adapter->hw;
628 e1000_mac_type mac_type = hw->mac_type;
629 struct e1000_tx_ring *txdr, *tx_old;
630 struct e1000_rx_ring *rxdr, *rx_old;
631 int i, err;
632
633 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
634 return -EINVAL;
635
636 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
637 msleep(1);
638
639 if (netif_running(adapter->netdev))
640 e1000_down(adapter);
641
642 tx_old = adapter->tx_ring;
643 rx_old = adapter->rx_ring;
644
645 err = -ENOMEM;
646 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
647 if (!txdr)
648 goto err_alloc_tx;
649
650 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
651 if (!rxdr)
652 goto err_alloc_rx;
653
654 adapter->tx_ring = txdr;
655 adapter->rx_ring = rxdr;
656
657 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
658 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
659 E1000_MAX_RXD : E1000_MAX_82544_RXD));
660 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
661
662 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
663 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
664 E1000_MAX_TXD : E1000_MAX_82544_TXD));
665 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
666
667 for (i = 0; i < adapter->num_tx_queues; i++)
668 txdr[i].count = txdr->count;
669 for (i = 0; i < adapter->num_rx_queues; i++)
670 rxdr[i].count = rxdr->count;
671
672 if (netif_running(adapter->netdev)) {
673 /* Try to get new resources before deleting old */
674 err = e1000_setup_all_rx_resources(adapter);
675 if (err)
676 goto err_setup_rx;
677 err = e1000_setup_all_tx_resources(adapter);
678 if (err)
679 goto err_setup_tx;
680
681 /* save the new, restore the old in order to free it,
682 * then restore the new back again */
683
684 adapter->rx_ring = rx_old;
685 adapter->tx_ring = tx_old;
686 e1000_free_all_rx_resources(adapter);
687 e1000_free_all_tx_resources(adapter);
688 kfree(tx_old);
689 kfree(rx_old);
690 adapter->rx_ring = rxdr;
691 adapter->tx_ring = txdr;
692 err = e1000_up(adapter);
693 if (err)
694 goto err_setup;
695 }
696
697 clear_bit(__E1000_RESETTING, &adapter->flags);
698 return 0;
699 err_setup_tx:
700 e1000_free_all_rx_resources(adapter);
701 err_setup_rx:
702 adapter->rx_ring = rx_old;
703 adapter->tx_ring = tx_old;
704 kfree(rxdr);
705 err_alloc_rx:
706 kfree(txdr);
707 err_alloc_tx:
708 e1000_up(adapter);
709 err_setup:
710 clear_bit(__E1000_RESETTING, &adapter->flags);
711 return err;
712 }
713
714 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
715 u32 mask, u32 write)
716 {
717 struct e1000_hw *hw = &adapter->hw;
718 static const u32 test[] =
719 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
720 u8 __iomem *address = hw->hw_addr + reg;
721 u32 read;
722 int i;
723
724 for (i = 0; i < ARRAY_SIZE(test); i++) {
725 writel(write & test[i], address);
726 read = readl(address);
727 if (read != (write & test[i] & mask)) {
728 DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
729 "got 0x%08X expected 0x%08X\n",
730 reg, read, (write & test[i] & mask));
731 *data = reg;
732 return true;
733 }
734 }
735 return false;
736 }
737
738 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
739 u32 mask, u32 write)
740 {
741 struct e1000_hw *hw = &adapter->hw;
742 u8 __iomem *address = hw->hw_addr + reg;
743 u32 read;
744
745 writel(write & mask, address);
746 read = readl(address);
747 if ((read & mask) != (write & mask)) {
748 DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
749 "got 0x%08X expected 0x%08X\n",
750 reg, (read & mask), (write & mask));
751 *data = reg;
752 return true;
753 }
754 return false;
755 }
756
757 #define REG_PATTERN_TEST(reg, mask, write) \
758 do { \
759 if (reg_pattern_test(adapter, data, \
760 (hw->mac_type >= e1000_82543) \
761 ? E1000_##reg : E1000_82542_##reg, \
762 mask, write)) \
763 return 1; \
764 } while (0)
765
766 #define REG_SET_AND_CHECK(reg, mask, write) \
767 do { \
768 if (reg_set_and_check(adapter, data, \
769 (hw->mac_type >= e1000_82543) \
770 ? E1000_##reg : E1000_82542_##reg, \
771 mask, write)) \
772 return 1; \
773 } while (0)
774
775 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
776 {
777 u32 value, before, after;
778 u32 i, toggle;
779 struct e1000_hw *hw = &adapter->hw;
780
781 /* The status register is Read Only, so a write should fail.
782 * Some bits that get toggled are ignored.
783 */
784 switch (hw->mac_type) {
785 /* there are several bits on newer hardware that are r/w */
786 case e1000_82571:
787 case e1000_82572:
788 case e1000_80003es2lan:
789 toggle = 0x7FFFF3FF;
790 break;
791 case e1000_82573:
792 case e1000_ich8lan:
793 toggle = 0x7FFFF033;
794 break;
795 default:
796 toggle = 0xFFFFF833;
797 break;
798 }
799
800 before = er32(STATUS);
801 value = (er32(STATUS) & toggle);
802 ew32(STATUS, toggle);
803 after = er32(STATUS) & toggle;
804 if (value != after) {
805 DPRINTK(DRV, ERR, "failed STATUS register test got: "
806 "0x%08X expected: 0x%08X\n", after, value);
807 *data = 1;
808 return 1;
809 }
810 /* restore previous status */
811 ew32(STATUS, before);
812
813 if (hw->mac_type != e1000_ich8lan) {
814 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
815 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
816 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
817 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
818 }
819
820 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
821 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
822 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
823 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
824 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
825 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
826 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
827 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
828 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
829 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
830
831 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
832
833 before = (hw->mac_type == e1000_ich8lan ?
834 0x06C3B33E : 0x06DFB3FE);
835 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
836 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
837
838 if (hw->mac_type >= e1000_82543) {
839
840 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
841 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
842 if (hw->mac_type != e1000_ich8lan)
843 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
844 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
845 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
846 value = (hw->mac_type == e1000_ich8lan ?
847 E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
848 for (i = 0; i < value; i++) {
849 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
850 0xFFFFFFFF);
851 }
852
853 } else {
854
855 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
856 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
857 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
858 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
859
860 }
861
862 value = (hw->mac_type == e1000_ich8lan ?
863 E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
864 for (i = 0; i < value; i++)
865 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
866
867 *data = 0;
868 return 0;
869 }
870
871 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
872 {
873 struct e1000_hw *hw = &adapter->hw;
874 u16 temp;
875 u16 checksum = 0;
876 u16 i;
877
878 *data = 0;
879 /* Read and add up the contents of the EEPROM */
880 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
881 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
882 *data = 1;
883 break;
884 }
885 checksum += temp;
886 }
887
888 /* If Checksum is not Correct return error else test passed */
889 if ((checksum != (u16)EEPROM_SUM) && !(*data))
890 *data = 2;
891
892 return *data;
893 }
894
895 static irqreturn_t e1000_test_intr(int irq, void *data)
896 {
897 struct net_device *netdev = (struct net_device *)data;
898 struct e1000_adapter *adapter = netdev_priv(netdev);
899 struct e1000_hw *hw = &adapter->hw;
900
901 adapter->test_icr |= er32(ICR);
902
903 return IRQ_HANDLED;
904 }
905
906 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
907 {
908 struct net_device *netdev = adapter->netdev;
909 u32 mask, i = 0;
910 bool shared_int = true;
911 u32 irq = adapter->pdev->irq;
912 struct e1000_hw *hw = &adapter->hw;
913
914 *data = 0;
915
916 /* NOTE: we don't test MSI interrupts here, yet */
917 /* Hook up test interrupt handler just for this test */
918 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
919 netdev))
920 shared_int = false;
921 else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
922 netdev->name, netdev)) {
923 *data = 1;
924 return -1;
925 }
926 DPRINTK(HW, INFO, "testing %s interrupt\n",
927 (shared_int ? "shared" : "unshared"));
928
929 /* Disable all the interrupts */
930 ew32(IMC, 0xFFFFFFFF);
931 msleep(10);
932
933 /* Test each interrupt */
934 for (; i < 10; i++) {
935
936 if (hw->mac_type == e1000_ich8lan && i == 8)
937 continue;
938
939 /* Interrupt to test */
940 mask = 1 << i;
941
942 if (!shared_int) {
943 /* Disable the interrupt to be reported in
944 * the cause register and then force the same
945 * interrupt and see if one gets posted. If
946 * an interrupt was posted to the bus, the
947 * test failed.
948 */
949 adapter->test_icr = 0;
950 ew32(IMC, mask);
951 ew32(ICS, mask);
952 msleep(10);
953
954 if (adapter->test_icr & mask) {
955 *data = 3;
956 break;
957 }
958 }
959
960 /* Enable the interrupt to be reported in
961 * the cause register and then force the same
962 * interrupt and see if one gets posted. If
963 * an interrupt was not posted to the bus, the
964 * test failed.
965 */
966 adapter->test_icr = 0;
967 ew32(IMS, mask);
968 ew32(ICS, mask);
969 msleep(10);
970
971 if (!(adapter->test_icr & mask)) {
972 *data = 4;
973 break;
974 }
975
976 if (!shared_int) {
977 /* Disable the other interrupts to be reported in
978 * the cause register and then force the other
979 * interrupts and see if any get posted. If
980 * an interrupt was posted to the bus, the
981 * test failed.
982 */
983 adapter->test_icr = 0;
984 ew32(IMC, ~mask & 0x00007FFF);
985 ew32(ICS, ~mask & 0x00007FFF);
986 msleep(10);
987
988 if (adapter->test_icr) {
989 *data = 5;
990 break;
991 }
992 }
993 }
994
995 /* Disable all the interrupts */
996 ew32(IMC, 0xFFFFFFFF);
997 msleep(10);
998
999 /* Unhook test interrupt handler */
1000 free_irq(irq, netdev);
1001
1002 return *data;
1003 }
1004
1005 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1006 {
1007 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1008 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1009 struct pci_dev *pdev = adapter->pdev;
1010 int i;
1011
1012 if (txdr->desc && txdr->buffer_info) {
1013 for (i = 0; i < txdr->count; i++) {
1014 if (txdr->buffer_info[i].dma)
1015 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1016 txdr->buffer_info[i].length,
1017 PCI_DMA_TODEVICE);
1018 if (txdr->buffer_info[i].skb)
1019 dev_kfree_skb(txdr->buffer_info[i].skb);
1020 }
1021 }
1022
1023 if (rxdr->desc && rxdr->buffer_info) {
1024 for (i = 0; i < rxdr->count; i++) {
1025 if (rxdr->buffer_info[i].dma)
1026 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1027 rxdr->buffer_info[i].length,
1028 PCI_DMA_FROMDEVICE);
1029 if (rxdr->buffer_info[i].skb)
1030 dev_kfree_skb(rxdr->buffer_info[i].skb);
1031 }
1032 }
1033
1034 if (txdr->desc) {
1035 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1036 txdr->desc = NULL;
1037 }
1038 if (rxdr->desc) {
1039 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1040 rxdr->desc = NULL;
1041 }
1042
1043 kfree(txdr->buffer_info);
1044 txdr->buffer_info = NULL;
1045 kfree(rxdr->buffer_info);
1046 rxdr->buffer_info = NULL;
1047
1048 return;
1049 }
1050
1051 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1052 {
1053 struct e1000_hw *hw = &adapter->hw;
1054 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1055 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1056 struct pci_dev *pdev = adapter->pdev;
1057 u32 rctl;
1058 int i, ret_val;
1059
1060 /* Setup Tx descriptor ring and Tx buffers */
1061
1062 if (!txdr->count)
1063 txdr->count = E1000_DEFAULT_TXD;
1064
1065 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1066 GFP_KERNEL);
1067 if (!txdr->buffer_info) {
1068 ret_val = 1;
1069 goto err_nomem;
1070 }
1071
1072 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1073 txdr->size = ALIGN(txdr->size, 4096);
1074 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1075 if (!txdr->desc) {
1076 ret_val = 2;
1077 goto err_nomem;
1078 }
1079 memset(txdr->desc, 0, txdr->size);
1080 txdr->next_to_use = txdr->next_to_clean = 0;
1081
1082 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1083 ew32(TDBAH, ((u64)txdr->dma >> 32));
1084 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1085 ew32(TDH, 0);
1086 ew32(TDT, 0);
1087 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1088 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1089 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1090
1091 for (i = 0; i < txdr->count; i++) {
1092 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1093 struct sk_buff *skb;
1094 unsigned int size = 1024;
1095
1096 skb = alloc_skb(size, GFP_KERNEL);
1097 if (!skb) {
1098 ret_val = 3;
1099 goto err_nomem;
1100 }
1101 skb_put(skb, size);
1102 txdr->buffer_info[i].skb = skb;
1103 txdr->buffer_info[i].length = skb->len;
1104 txdr->buffer_info[i].dma =
1105 pci_map_single(pdev, skb->data, skb->len,
1106 PCI_DMA_TODEVICE);
1107 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1108 tx_desc->lower.data = cpu_to_le32(skb->len);
1109 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1110 E1000_TXD_CMD_IFCS |
1111 E1000_TXD_CMD_RPS);
1112 tx_desc->upper.data = 0;
1113 }
1114
1115 /* Setup Rx descriptor ring and Rx buffers */
1116
1117 if (!rxdr->count)
1118 rxdr->count = E1000_DEFAULT_RXD;
1119
1120 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1121 GFP_KERNEL);
1122 if (!rxdr->buffer_info) {
1123 ret_val = 4;
1124 goto err_nomem;
1125 }
1126
1127 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1128 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1129 if (!rxdr->desc) {
1130 ret_val = 5;
1131 goto err_nomem;
1132 }
1133 memset(rxdr->desc, 0, rxdr->size);
1134 rxdr->next_to_use = rxdr->next_to_clean = 0;
1135
1136 rctl = er32(RCTL);
1137 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1138 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1139 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1140 ew32(RDLEN, rxdr->size);
1141 ew32(RDH, 0);
1142 ew32(RDT, 0);
1143 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1144 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1145 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1146 ew32(RCTL, rctl);
1147
1148 for (i = 0; i < rxdr->count; i++) {
1149 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1150 struct sk_buff *skb;
1151
1152 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1153 if (!skb) {
1154 ret_val = 6;
1155 goto err_nomem;
1156 }
1157 skb_reserve(skb, NET_IP_ALIGN);
1158 rxdr->buffer_info[i].skb = skb;
1159 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1160 rxdr->buffer_info[i].dma =
1161 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1162 PCI_DMA_FROMDEVICE);
1163 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1164 memset(skb->data, 0x00, skb->len);
1165 }
1166
1167 return 0;
1168
1169 err_nomem:
1170 e1000_free_desc_rings(adapter);
1171 return ret_val;
1172 }
1173
1174 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1175 {
1176 struct e1000_hw *hw = &adapter->hw;
1177
1178 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1179 e1000_write_phy_reg(hw, 29, 0x001F);
1180 e1000_write_phy_reg(hw, 30, 0x8FFC);
1181 e1000_write_phy_reg(hw, 29, 0x001A);
1182 e1000_write_phy_reg(hw, 30, 0x8FF0);
1183 }
1184
1185 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1186 {
1187 struct e1000_hw *hw = &adapter->hw;
1188 u16 phy_reg;
1189
1190 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1191 * Extended PHY Specific Control Register to 25MHz clock. This
1192 * value defaults back to a 2.5MHz clock when the PHY is reset.
1193 */
1194 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1195 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1196 e1000_write_phy_reg(hw,
1197 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1198
1199 /* In addition, because of the s/w reset above, we need to enable
1200 * CRS on TX. This must be set for both full and half duplex
1201 * operation.
1202 */
1203 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1204 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1205 e1000_write_phy_reg(hw,
1206 M88E1000_PHY_SPEC_CTRL, phy_reg);
1207 }
1208
1209 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1210 {
1211 struct e1000_hw *hw = &adapter->hw;
1212 u32 ctrl_reg;
1213 u16 phy_reg;
1214
1215 /* Setup the Device Control Register for PHY loopback test. */
1216
1217 ctrl_reg = er32(CTRL);
1218 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1219 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1220 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1221 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1222 E1000_CTRL_FD); /* Force Duplex to FULL */
1223
1224 ew32(CTRL, ctrl_reg);
1225
1226 /* Read the PHY Specific Control Register (0x10) */
1227 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1228
1229 /* Clear Auto-Crossover bits in PHY Specific Control Register
1230 * (bits 6:5).
1231 */
1232 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1233 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1234
1235 /* Perform software reset on the PHY */
1236 e1000_phy_reset(hw);
1237
1238 /* Have to setup TX_CLK and TX_CRS after software reset */
1239 e1000_phy_reset_clk_and_crs(adapter);
1240
1241 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1242
1243 /* Wait for reset to complete. */
1244 udelay(500);
1245
1246 /* Have to setup TX_CLK and TX_CRS after software reset */
1247 e1000_phy_reset_clk_and_crs(adapter);
1248
1249 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1250 e1000_phy_disable_receiver(adapter);
1251
1252 /* Set the loopback bit in the PHY control register. */
1253 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1254 phy_reg |= MII_CR_LOOPBACK;
1255 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1256
1257 /* Setup TX_CLK and TX_CRS one more time. */
1258 e1000_phy_reset_clk_and_crs(adapter);
1259
1260 /* Check Phy Configuration */
1261 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1262 if (phy_reg != 0x4100)
1263 return 9;
1264
1265 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1266 if (phy_reg != 0x0070)
1267 return 10;
1268
1269 e1000_read_phy_reg(hw, 29, &phy_reg);
1270 if (phy_reg != 0x001A)
1271 return 11;
1272
1273 return 0;
1274 }
1275
1276 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1277 {
1278 struct e1000_hw *hw = &adapter->hw;
1279 u32 ctrl_reg = 0;
1280 u32 stat_reg = 0;
1281
1282 hw->autoneg = false;
1283
1284 if (hw->phy_type == e1000_phy_m88) {
1285 /* Auto-MDI/MDIX Off */
1286 e1000_write_phy_reg(hw,
1287 M88E1000_PHY_SPEC_CTRL, 0x0808);
1288 /* reset to update Auto-MDI/MDIX */
1289 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1290 /* autoneg off */
1291 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1292 } else if (hw->phy_type == e1000_phy_gg82563)
1293 e1000_write_phy_reg(hw,
1294 GG82563_PHY_KMRN_MODE_CTRL,
1295 0x1CC);
1296
1297 ctrl_reg = er32(CTRL);
1298
1299 if (hw->phy_type == e1000_phy_ife) {
1300 /* force 100, set loopback */
1301 e1000_write_phy_reg(hw, PHY_CTRL, 0x6100);
1302
1303 /* Now set up the MAC to the same speed/duplex as the PHY. */
1304 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1305 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1306 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1307 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1308 E1000_CTRL_FD); /* Force Duplex to FULL */
1309 } else {
1310 /* force 1000, set loopback */
1311 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1312
1313 /* Now set up the MAC to the same speed/duplex as the PHY. */
1314 ctrl_reg = er32(CTRL);
1315 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1316 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1317 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1318 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1319 E1000_CTRL_FD); /* Force Duplex to FULL */
1320 }
1321
1322 if (hw->media_type == e1000_media_type_copper &&
1323 hw->phy_type == e1000_phy_m88)
1324 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1325 else {
1326 /* Set the ILOS bit on the fiber Nic is half
1327 * duplex link is detected. */
1328 stat_reg = er32(STATUS);
1329 if ((stat_reg & E1000_STATUS_FD) == 0)
1330 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1331 }
1332
1333 ew32(CTRL, ctrl_reg);
1334
1335 /* Disable the receiver on the PHY so when a cable is plugged in, the
1336 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1337 */
1338 if (hw->phy_type == e1000_phy_m88)
1339 e1000_phy_disable_receiver(adapter);
1340
1341 udelay(500);
1342
1343 return 0;
1344 }
1345
1346 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1347 {
1348 struct e1000_hw *hw = &adapter->hw;
1349 u16 phy_reg = 0;
1350 u16 count = 0;
1351
1352 switch (hw->mac_type) {
1353 case e1000_82543:
1354 if (hw->media_type == e1000_media_type_copper) {
1355 /* Attempt to setup Loopback mode on Non-integrated PHY.
1356 * Some PHY registers get corrupted at random, so
1357 * attempt this 10 times.
1358 */
1359 while (e1000_nonintegrated_phy_loopback(adapter) &&
1360 count++ < 10);
1361 if (count < 11)
1362 return 0;
1363 }
1364 break;
1365
1366 case e1000_82544:
1367 case e1000_82540:
1368 case e1000_82545:
1369 case e1000_82545_rev_3:
1370 case e1000_82546:
1371 case e1000_82546_rev_3:
1372 case e1000_82541:
1373 case e1000_82541_rev_2:
1374 case e1000_82547:
1375 case e1000_82547_rev_2:
1376 case e1000_82571:
1377 case e1000_82572:
1378 case e1000_82573:
1379 case e1000_80003es2lan:
1380 case e1000_ich8lan:
1381 return e1000_integrated_phy_loopback(adapter);
1382 break;
1383
1384 default:
1385 /* Default PHY loopback work is to read the MII
1386 * control register and assert bit 14 (loopback mode).
1387 */
1388 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1389 phy_reg |= MII_CR_LOOPBACK;
1390 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1391 return 0;
1392 break;
1393 }
1394
1395 return 8;
1396 }
1397
1398 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1399 {
1400 struct e1000_hw *hw = &adapter->hw;
1401 u32 rctl;
1402
1403 if (hw->media_type == e1000_media_type_fiber ||
1404 hw->media_type == e1000_media_type_internal_serdes) {
1405 switch (hw->mac_type) {
1406 case e1000_82545:
1407 case e1000_82546:
1408 case e1000_82545_rev_3:
1409 case e1000_82546_rev_3:
1410 return e1000_set_phy_loopback(adapter);
1411 break;
1412 case e1000_82571:
1413 case e1000_82572:
1414 #define E1000_SERDES_LB_ON 0x410
1415 e1000_set_phy_loopback(adapter);
1416 ew32(SCTL, E1000_SERDES_LB_ON);
1417 msleep(10);
1418 return 0;
1419 break;
1420 default:
1421 rctl = er32(RCTL);
1422 rctl |= E1000_RCTL_LBM_TCVR;
1423 ew32(RCTL, rctl);
1424 return 0;
1425 }
1426 } else if (hw->media_type == e1000_media_type_copper)
1427 return e1000_set_phy_loopback(adapter);
1428
1429 return 7;
1430 }
1431
1432 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1433 {
1434 struct e1000_hw *hw = &adapter->hw;
1435 u32 rctl;
1436 u16 phy_reg;
1437
1438 rctl = er32(RCTL);
1439 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1440 ew32(RCTL, rctl);
1441
1442 switch (hw->mac_type) {
1443 case e1000_82571:
1444 case e1000_82572:
1445 if (hw->media_type == e1000_media_type_fiber ||
1446 hw->media_type == e1000_media_type_internal_serdes) {
1447 #define E1000_SERDES_LB_OFF 0x400
1448 ew32(SCTL, E1000_SERDES_LB_OFF);
1449 msleep(10);
1450 break;
1451 }
1452 /* Fall Through */
1453 case e1000_82545:
1454 case e1000_82546:
1455 case e1000_82545_rev_3:
1456 case e1000_82546_rev_3:
1457 default:
1458 hw->autoneg = true;
1459 if (hw->phy_type == e1000_phy_gg82563)
1460 e1000_write_phy_reg(hw,
1461 GG82563_PHY_KMRN_MODE_CTRL,
1462 0x180);
1463 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1464 if (phy_reg & MII_CR_LOOPBACK) {
1465 phy_reg &= ~MII_CR_LOOPBACK;
1466 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1467 e1000_phy_reset(hw);
1468 }
1469 break;
1470 }
1471 }
1472
1473 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1474 unsigned int frame_size)
1475 {
1476 memset(skb->data, 0xFF, frame_size);
1477 frame_size &= ~1;
1478 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1479 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1480 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1481 }
1482
1483 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1484 unsigned int frame_size)
1485 {
1486 frame_size &= ~1;
1487 if (*(skb->data + 3) == 0xFF) {
1488 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1489 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1490 return 0;
1491 }
1492 }
1493 return 13;
1494 }
1495
1496 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1497 {
1498 struct e1000_hw *hw = &adapter->hw;
1499 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1500 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1501 struct pci_dev *pdev = adapter->pdev;
1502 int i, j, k, l, lc, good_cnt, ret_val=0;
1503 unsigned long time;
1504
1505 ew32(RDT, rxdr->count - 1);
1506
1507 /* Calculate the loop count based on the largest descriptor ring
1508 * The idea is to wrap the largest ring a number of times using 64
1509 * send/receive pairs during each loop
1510 */
1511
1512 if (rxdr->count <= txdr->count)
1513 lc = ((txdr->count / 64) * 2) + 1;
1514 else
1515 lc = ((rxdr->count / 64) * 2) + 1;
1516
1517 k = l = 0;
1518 for (j = 0; j <= lc; j++) { /* loop count loop */
1519 for (i = 0; i < 64; i++) { /* send the packets */
1520 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1521 1024);
1522 pci_dma_sync_single_for_device(pdev,
1523 txdr->buffer_info[k].dma,
1524 txdr->buffer_info[k].length,
1525 PCI_DMA_TODEVICE);
1526 if (unlikely(++k == txdr->count)) k = 0;
1527 }
1528 ew32(TDT, k);
1529 msleep(200);
1530 time = jiffies; /* set the start time for the receive */
1531 good_cnt = 0;
1532 do { /* receive the sent packets */
1533 pci_dma_sync_single_for_cpu(pdev,
1534 rxdr->buffer_info[l].dma,
1535 rxdr->buffer_info[l].length,
1536 PCI_DMA_FROMDEVICE);
1537
1538 ret_val = e1000_check_lbtest_frame(
1539 rxdr->buffer_info[l].skb,
1540 1024);
1541 if (!ret_val)
1542 good_cnt++;
1543 if (unlikely(++l == rxdr->count)) l = 0;
1544 /* time + 20 msecs (200 msecs on 2.4) is more than
1545 * enough time to complete the receives, if it's
1546 * exceeded, break and error off
1547 */
1548 } while (good_cnt < 64 && jiffies < (time + 20));
1549 if (good_cnt != 64) {
1550 ret_val = 13; /* ret_val is the same as mis-compare */
1551 break;
1552 }
1553 if (jiffies >= (time + 2)) {
1554 ret_val = 14; /* error code for time out error */
1555 break;
1556 }
1557 } /* end loop count loop */
1558 return ret_val;
1559 }
1560
1561 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1562 {
1563 struct e1000_hw *hw = &adapter->hw;
1564
1565 /* PHY loopback cannot be performed if SoL/IDER
1566 * sessions are active */
1567 if (e1000_check_phy_reset_block(hw)) {
1568 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1569 "when SoL/IDER is active.\n");
1570 *data = 0;
1571 goto out;
1572 }
1573
1574 *data = e1000_setup_desc_rings(adapter);
1575 if (*data)
1576 goto out;
1577 *data = e1000_setup_loopback_test(adapter);
1578 if (*data)
1579 goto err_loopback;
1580 *data = e1000_run_loopback_test(adapter);
1581 e1000_loopback_cleanup(adapter);
1582
1583 err_loopback:
1584 e1000_free_desc_rings(adapter);
1585 out:
1586 return *data;
1587 }
1588
1589 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1590 {
1591 struct e1000_hw *hw = &adapter->hw;
1592 *data = 0;
1593 if (hw->media_type == e1000_media_type_internal_serdes) {
1594 int i = 0;
1595 hw->serdes_link_down = true;
1596
1597 /* On some blade server designs, link establishment
1598 * could take as long as 2-3 minutes */
1599 do {
1600 e1000_check_for_link(hw);
1601 if (!hw->serdes_link_down)
1602 return *data;
1603 msleep(20);
1604 } while (i++ < 3750);
1605
1606 *data = 1;
1607 } else {
1608 e1000_check_for_link(hw);
1609 if (hw->autoneg) /* if auto_neg is set wait for it */
1610 msleep(4000);
1611
1612 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1613 *data = 1;
1614 }
1615 }
1616 return *data;
1617 }
1618
1619 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1620 {
1621 switch (sset) {
1622 case ETH_SS_TEST:
1623 return E1000_TEST_LEN;
1624 case ETH_SS_STATS:
1625 return E1000_STATS_LEN;
1626 default:
1627 return -EOPNOTSUPP;
1628 }
1629 }
1630
1631 static void e1000_diag_test(struct net_device *netdev,
1632 struct ethtool_test *eth_test, u64 *data)
1633 {
1634 struct e1000_adapter *adapter = netdev_priv(netdev);
1635 struct e1000_hw *hw = &adapter->hw;
1636 bool if_running = netif_running(netdev);
1637
1638 set_bit(__E1000_TESTING, &adapter->flags);
1639 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1640 /* Offline tests */
1641
1642 /* save speed, duplex, autoneg settings */
1643 u16 autoneg_advertised = hw->autoneg_advertised;
1644 u8 forced_speed_duplex = hw->forced_speed_duplex;
1645 u8 autoneg = hw->autoneg;
1646
1647 DPRINTK(HW, INFO, "offline testing starting\n");
1648
1649 /* Link test performed before hardware reset so autoneg doesn't
1650 * interfere with test result */
1651 if (e1000_link_test(adapter, &data[4]))
1652 eth_test->flags |= ETH_TEST_FL_FAILED;
1653
1654 if (if_running)
1655 /* indicate we're in test mode */
1656 dev_close(netdev);
1657 else
1658 e1000_reset(adapter);
1659
1660 if (e1000_reg_test(adapter, &data[0]))
1661 eth_test->flags |= ETH_TEST_FL_FAILED;
1662
1663 e1000_reset(adapter);
1664 if (e1000_eeprom_test(adapter, &data[1]))
1665 eth_test->flags |= ETH_TEST_FL_FAILED;
1666
1667 e1000_reset(adapter);
1668 if (e1000_intr_test(adapter, &data[2]))
1669 eth_test->flags |= ETH_TEST_FL_FAILED;
1670
1671 e1000_reset(adapter);
1672 /* make sure the phy is powered up */
1673 e1000_power_up_phy(adapter);
1674 if (e1000_loopback_test(adapter, &data[3]))
1675 eth_test->flags |= ETH_TEST_FL_FAILED;
1676
1677 /* restore speed, duplex, autoneg settings */
1678 hw->autoneg_advertised = autoneg_advertised;
1679 hw->forced_speed_duplex = forced_speed_duplex;
1680 hw->autoneg = autoneg;
1681
1682 e1000_reset(adapter);
1683 clear_bit(__E1000_TESTING, &adapter->flags);
1684 if (if_running)
1685 dev_open(netdev);
1686 } else {
1687 DPRINTK(HW, INFO, "online testing starting\n");
1688 /* Online tests */
1689 if (e1000_link_test(adapter, &data[4]))
1690 eth_test->flags |= ETH_TEST_FL_FAILED;
1691
1692 /* Online tests aren't run; pass by default */
1693 data[0] = 0;
1694 data[1] = 0;
1695 data[2] = 0;
1696 data[3] = 0;
1697
1698 clear_bit(__E1000_TESTING, &adapter->flags);
1699 }
1700 msleep_interruptible(4 * 1000);
1701 }
1702
1703 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1704 struct ethtool_wolinfo *wol)
1705 {
1706 struct e1000_hw *hw = &adapter->hw;
1707 int retval = 1; /* fail by default */
1708
1709 switch (hw->device_id) {
1710 case E1000_DEV_ID_82542:
1711 case E1000_DEV_ID_82543GC_FIBER:
1712 case E1000_DEV_ID_82543GC_COPPER:
1713 case E1000_DEV_ID_82544EI_FIBER:
1714 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1715 case E1000_DEV_ID_82545EM_FIBER:
1716 case E1000_DEV_ID_82545EM_COPPER:
1717 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1718 case E1000_DEV_ID_82546GB_PCIE:
1719 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1720 /* these don't support WoL at all */
1721 wol->supported = 0;
1722 break;
1723 case E1000_DEV_ID_82546EB_FIBER:
1724 case E1000_DEV_ID_82546GB_FIBER:
1725 case E1000_DEV_ID_82571EB_FIBER:
1726 case E1000_DEV_ID_82571EB_SERDES:
1727 case E1000_DEV_ID_82571EB_COPPER:
1728 /* Wake events not supported on port B */
1729 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1730 wol->supported = 0;
1731 break;
1732 }
1733 /* return success for non excluded adapter ports */
1734 retval = 0;
1735 break;
1736 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1737 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1738 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1739 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1740 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1741 /* quad port adapters only support WoL on port A */
1742 if (!adapter->quad_port_a) {
1743 wol->supported = 0;
1744 break;
1745 }
1746 /* return success for non excluded adapter ports */
1747 retval = 0;
1748 break;
1749 default:
1750 /* dual port cards only support WoL on port A from now on
1751 * unless it was enabled in the eeprom for port B
1752 * so exclude FUNC_1 ports from having WoL enabled */
1753 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1754 !adapter->eeprom_wol) {
1755 wol->supported = 0;
1756 break;
1757 }
1758
1759 retval = 0;
1760 }
1761
1762 return retval;
1763 }
1764
1765 static void e1000_get_wol(struct net_device *netdev,
1766 struct ethtool_wolinfo *wol)
1767 {
1768 struct e1000_adapter *adapter = netdev_priv(netdev);
1769 struct e1000_hw *hw = &adapter->hw;
1770
1771 wol->supported = WAKE_UCAST | WAKE_MCAST |
1772 WAKE_BCAST | WAKE_MAGIC;
1773 wol->wolopts = 0;
1774
1775 /* this function will set ->supported = 0 and return 1 if wol is not
1776 * supported by this hardware */
1777 if (e1000_wol_exclusion(adapter, wol) ||
1778 !device_can_wakeup(&adapter->pdev->dev))
1779 return;
1780
1781 /* apply any specific unsupported masks here */
1782 switch (hw->device_id) {
1783 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1784 /* KSP3 does not suppport UCAST wake-ups */
1785 wol->supported &= ~WAKE_UCAST;
1786
1787 if (adapter->wol & E1000_WUFC_EX)
1788 DPRINTK(DRV, ERR, "Interface does not support "
1789 "directed (unicast) frame wake-up packets\n");
1790 break;
1791 default:
1792 break;
1793 }
1794
1795 if (adapter->wol & E1000_WUFC_EX)
1796 wol->wolopts |= WAKE_UCAST;
1797 if (adapter->wol & E1000_WUFC_MC)
1798 wol->wolopts |= WAKE_MCAST;
1799 if (adapter->wol & E1000_WUFC_BC)
1800 wol->wolopts |= WAKE_BCAST;
1801 if (adapter->wol & E1000_WUFC_MAG)
1802 wol->wolopts |= WAKE_MAGIC;
1803
1804 return;
1805 }
1806
1807 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1808 {
1809 struct e1000_adapter *adapter = netdev_priv(netdev);
1810 struct e1000_hw *hw = &adapter->hw;
1811
1812 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1813 return -EOPNOTSUPP;
1814
1815 if (e1000_wol_exclusion(adapter, wol) ||
1816 !device_can_wakeup(&adapter->pdev->dev))
1817 return wol->wolopts ? -EOPNOTSUPP : 0;
1818
1819 switch (hw->device_id) {
1820 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1821 if (wol->wolopts & WAKE_UCAST) {
1822 DPRINTK(DRV, ERR, "Interface does not support "
1823 "directed (unicast) frame wake-up packets\n");
1824 return -EOPNOTSUPP;
1825 }
1826 break;
1827 default:
1828 break;
1829 }
1830
1831 /* these settings will always override what we currently have */
1832 adapter->wol = 0;
1833
1834 if (wol->wolopts & WAKE_UCAST)
1835 adapter->wol |= E1000_WUFC_EX;
1836 if (wol->wolopts & WAKE_MCAST)
1837 adapter->wol |= E1000_WUFC_MC;
1838 if (wol->wolopts & WAKE_BCAST)
1839 adapter->wol |= E1000_WUFC_BC;
1840 if (wol->wolopts & WAKE_MAGIC)
1841 adapter->wol |= E1000_WUFC_MAG;
1842
1843 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1844
1845 return 0;
1846 }
1847
1848 /* toggle LED 4 times per second = 2 "blinks" per second */
1849 #define E1000_ID_INTERVAL (HZ/4)
1850
1851 /* bit defines for adapter->led_status */
1852 #define E1000_LED_ON 0
1853
1854 static void e1000_led_blink_callback(unsigned long data)
1855 {
1856 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1857 struct e1000_hw *hw = &adapter->hw;
1858
1859 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1860 e1000_led_off(hw);
1861 else
1862 e1000_led_on(hw);
1863
1864 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1865 }
1866
1867 static int e1000_phys_id(struct net_device *netdev, u32 data)
1868 {
1869 struct e1000_adapter *adapter = netdev_priv(netdev);
1870 struct e1000_hw *hw = &adapter->hw;
1871
1872 if (!data)
1873 data = INT_MAX;
1874
1875 if (hw->mac_type < e1000_82571) {
1876 if (!adapter->blink_timer.function) {
1877 init_timer(&adapter->blink_timer);
1878 adapter->blink_timer.function = e1000_led_blink_callback;
1879 adapter->blink_timer.data = (unsigned long)adapter;
1880 }
1881 e1000_setup_led(hw);
1882 mod_timer(&adapter->blink_timer, jiffies);
1883 msleep_interruptible(data * 1000);
1884 del_timer_sync(&adapter->blink_timer);
1885 } else if (hw->phy_type == e1000_phy_ife) {
1886 if (!adapter->blink_timer.function) {
1887 init_timer(&adapter->blink_timer);
1888 adapter->blink_timer.function = e1000_led_blink_callback;
1889 adapter->blink_timer.data = (unsigned long)adapter;
1890 }
1891 mod_timer(&adapter->blink_timer, jiffies);
1892 msleep_interruptible(data * 1000);
1893 del_timer_sync(&adapter->blink_timer);
1894 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1895 } else {
1896 e1000_blink_led_start(hw);
1897 msleep_interruptible(data * 1000);
1898 }
1899
1900 e1000_led_off(hw);
1901 clear_bit(E1000_LED_ON, &adapter->led_status);
1902 e1000_cleanup_led(hw);
1903
1904 return 0;
1905 }
1906
1907 static int e1000_nway_reset(struct net_device *netdev)
1908 {
1909 struct e1000_adapter *adapter = netdev_priv(netdev);
1910 if (netif_running(netdev))
1911 e1000_reinit_locked(adapter);
1912 return 0;
1913 }
1914
1915 static void e1000_get_ethtool_stats(struct net_device *netdev,
1916 struct ethtool_stats *stats, u64 *data)
1917 {
1918 struct e1000_adapter *adapter = netdev_priv(netdev);
1919 int i;
1920
1921 e1000_update_stats(adapter);
1922 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1923 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1924 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1925 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1926 }
1927 /* BUG_ON(i != E1000_STATS_LEN); */
1928 }
1929
1930 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1931 u8 *data)
1932 {
1933 u8 *p = data;
1934 int i;
1935
1936 switch (stringset) {
1937 case ETH_SS_TEST:
1938 memcpy(data, *e1000_gstrings_test,
1939 sizeof(e1000_gstrings_test));
1940 break;
1941 case ETH_SS_STATS:
1942 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1943 memcpy(p, e1000_gstrings_stats[i].stat_string,
1944 ETH_GSTRING_LEN);
1945 p += ETH_GSTRING_LEN;
1946 }
1947 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1948 break;
1949 }
1950 }
1951
1952 static const struct ethtool_ops e1000_ethtool_ops = {
1953 .get_settings = e1000_get_settings,
1954 .set_settings = e1000_set_settings,
1955 .get_drvinfo = e1000_get_drvinfo,
1956 .get_regs_len = e1000_get_regs_len,
1957 .get_regs = e1000_get_regs,
1958 .get_wol = e1000_get_wol,
1959 .set_wol = e1000_set_wol,
1960 .get_msglevel = e1000_get_msglevel,
1961 .set_msglevel = e1000_set_msglevel,
1962 .nway_reset = e1000_nway_reset,
1963 .get_link = ethtool_op_get_link,
1964 .get_eeprom_len = e1000_get_eeprom_len,
1965 .get_eeprom = e1000_get_eeprom,
1966 .set_eeprom = e1000_set_eeprom,
1967 .get_ringparam = e1000_get_ringparam,
1968 .set_ringparam = e1000_set_ringparam,
1969 .get_pauseparam = e1000_get_pauseparam,
1970 .set_pauseparam = e1000_set_pauseparam,
1971 .get_rx_csum = e1000_get_rx_csum,
1972 .set_rx_csum = e1000_set_rx_csum,
1973 .get_tx_csum = e1000_get_tx_csum,
1974 .set_tx_csum = e1000_set_tx_csum,
1975 .set_sg = ethtool_op_set_sg,
1976 .set_tso = e1000_set_tso,
1977 .self_test = e1000_diag_test,
1978 .get_strings = e1000_get_strings,
1979 .phys_id = e1000_phys_id,
1980 .get_ethtool_stats = e1000_get_ethtool_stats,
1981 .get_sset_count = e1000_get_sset_count,
1982 };
1983
1984 void e1000_set_ethtool_ops(struct net_device *netdev)
1985 {
1986 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1987 }
This page took 0.13427 seconds and 5 git commands to generate.