Merge branch 'linux-2.6.33'
[deliverable/linux.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k5-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39 *
40 * Last entry must be all 0s
41 *
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44 */
45 static struct pci_device_id e1000_pci_tbl[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
129 struct net_device *netdev);
130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
132 static int e1000_set_mac(struct net_device *netdev, void *p);
133 static irqreturn_t e1000_intr(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int *work_done, int work_to_do);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
144 struct e1000_rx_ring *rx_ring,
145 int cleaned_count);
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring,
148 int cleaned_count);
149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
151 int cmd);
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_tx_timeout(struct net_device *dev);
155 static void e1000_reset_task(struct work_struct *work);
156 static void e1000_smartspeed(struct e1000_adapter *adapter);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158 struct sk_buff *skb);
159
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
164
165 #ifdef CONFIG_PM
166 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
169 static void e1000_shutdown(struct pci_dev *pdev);
170
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device *netdev);
174 #endif
175
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
178 module_param(copybreak, uint, 0644);
179 MODULE_PARM_DESC(copybreak,
180 "Maximum size of packet that is copied to a new buffer on receive");
181
182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
183 pci_channel_state_t state);
184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
185 static void e1000_io_resume(struct pci_dev *pdev);
186
187 static struct pci_error_handlers e1000_err_handler = {
188 .error_detected = e1000_io_error_detected,
189 .slot_reset = e1000_io_slot_reset,
190 .resume = e1000_io_resume,
191 };
192
193 static struct pci_driver e1000_driver = {
194 .name = e1000_driver_name,
195 .id_table = e1000_pci_tbl,
196 .probe = e1000_probe,
197 .remove = __devexit_p(e1000_remove),
198 #ifdef CONFIG_PM
199 /* Power Managment Hooks */
200 .suspend = e1000_suspend,
201 .resume = e1000_resume,
202 #endif
203 .shutdown = e1000_shutdown,
204 .err_handler = &e1000_err_handler
205 };
206
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION);
211
212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
213 module_param(debug, int, 0);
214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
215
216 /**
217 * e1000_init_module - Driver Registration Routine
218 *
219 * e1000_init_module is the first routine called when the driver is
220 * loaded. All it does is register with the PCI subsystem.
221 **/
222
223 static int __init e1000_init_module(void)
224 {
225 int ret;
226 printk(KERN_INFO "%s - version %s\n",
227 e1000_driver_string, e1000_driver_version);
228
229 printk(KERN_INFO "%s\n", e1000_copyright);
230
231 ret = pci_register_driver(&e1000_driver);
232 if (copybreak != COPYBREAK_DEFAULT) {
233 if (copybreak == 0)
234 printk(KERN_INFO "e1000: copybreak disabled\n");
235 else
236 printk(KERN_INFO "e1000: copybreak enabled for "
237 "packets <= %u bytes\n", copybreak);
238 }
239 return ret;
240 }
241
242 module_init(e1000_init_module);
243
244 /**
245 * e1000_exit_module - Driver Exit Cleanup Routine
246 *
247 * e1000_exit_module is called just before the driver is removed
248 * from memory.
249 **/
250
251 static void __exit e1000_exit_module(void)
252 {
253 pci_unregister_driver(&e1000_driver);
254 }
255
256 module_exit(e1000_exit_module);
257
258 static int e1000_request_irq(struct e1000_adapter *adapter)
259 {
260 struct net_device *netdev = adapter->netdev;
261 irq_handler_t handler = e1000_intr;
262 int irq_flags = IRQF_SHARED;
263 int err;
264
265 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
266 netdev);
267 if (err) {
268 DPRINTK(PROBE, ERR,
269 "Unable to allocate interrupt Error: %d\n", err);
270 }
271
272 return err;
273 }
274
275 static void e1000_free_irq(struct e1000_adapter *adapter)
276 {
277 struct net_device *netdev = adapter->netdev;
278
279 free_irq(adapter->pdev->irq, netdev);
280 }
281
282 /**
283 * e1000_irq_disable - Mask off interrupt generation on the NIC
284 * @adapter: board private structure
285 **/
286
287 static void e1000_irq_disable(struct e1000_adapter *adapter)
288 {
289 struct e1000_hw *hw = &adapter->hw;
290
291 ew32(IMC, ~0);
292 E1000_WRITE_FLUSH();
293 synchronize_irq(adapter->pdev->irq);
294 }
295
296 /**
297 * e1000_irq_enable - Enable default interrupt generation settings
298 * @adapter: board private structure
299 **/
300
301 static void e1000_irq_enable(struct e1000_adapter *adapter)
302 {
303 struct e1000_hw *hw = &adapter->hw;
304
305 ew32(IMS, IMS_ENABLE_MASK);
306 E1000_WRITE_FLUSH();
307 }
308
309 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
310 {
311 struct e1000_hw *hw = &adapter->hw;
312 struct net_device *netdev = adapter->netdev;
313 u16 vid = hw->mng_cookie.vlan_id;
314 u16 old_vid = adapter->mng_vlan_id;
315 if (adapter->vlgrp) {
316 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
317 if (hw->mng_cookie.status &
318 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
319 e1000_vlan_rx_add_vid(netdev, vid);
320 adapter->mng_vlan_id = vid;
321 } else
322 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
323
324 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
325 (vid != old_vid) &&
326 !vlan_group_get_device(adapter->vlgrp, old_vid))
327 e1000_vlan_rx_kill_vid(netdev, old_vid);
328 } else
329 adapter->mng_vlan_id = vid;
330 }
331 }
332
333 static void e1000_init_manageability(struct e1000_adapter *adapter)
334 {
335 struct e1000_hw *hw = &adapter->hw;
336
337 if (adapter->en_mng_pt) {
338 u32 manc = er32(MANC);
339
340 /* disable hardware interception of ARP */
341 manc &= ~(E1000_MANC_ARP_EN);
342
343 ew32(MANC, manc);
344 }
345 }
346
347 static void e1000_release_manageability(struct e1000_adapter *adapter)
348 {
349 struct e1000_hw *hw = &adapter->hw;
350
351 if (adapter->en_mng_pt) {
352 u32 manc = er32(MANC);
353
354 /* re-enable hardware interception of ARP */
355 manc |= E1000_MANC_ARP_EN;
356
357 ew32(MANC, manc);
358 }
359 }
360
361 /**
362 * e1000_configure - configure the hardware for RX and TX
363 * @adapter = private board structure
364 **/
365 static void e1000_configure(struct e1000_adapter *adapter)
366 {
367 struct net_device *netdev = adapter->netdev;
368 int i;
369
370 e1000_set_rx_mode(netdev);
371
372 e1000_restore_vlan(adapter);
373 e1000_init_manageability(adapter);
374
375 e1000_configure_tx(adapter);
376 e1000_setup_rctl(adapter);
377 e1000_configure_rx(adapter);
378 /* call E1000_DESC_UNUSED which always leaves
379 * at least 1 descriptor unused to make sure
380 * next_to_use != next_to_clean */
381 for (i = 0; i < adapter->num_rx_queues; i++) {
382 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
383 adapter->alloc_rx_buf(adapter, ring,
384 E1000_DESC_UNUSED(ring));
385 }
386
387 adapter->tx_queue_len = netdev->tx_queue_len;
388 }
389
390 int e1000_up(struct e1000_adapter *adapter)
391 {
392 struct e1000_hw *hw = &adapter->hw;
393
394 /* hardware has been reset, we need to reload some things */
395 e1000_configure(adapter);
396
397 clear_bit(__E1000_DOWN, &adapter->flags);
398
399 napi_enable(&adapter->napi);
400
401 e1000_irq_enable(adapter);
402
403 netif_wake_queue(adapter->netdev);
404
405 /* fire a link change interrupt to start the watchdog */
406 ew32(ICS, E1000_ICS_LSC);
407 return 0;
408 }
409
410 /**
411 * e1000_power_up_phy - restore link in case the phy was powered down
412 * @adapter: address of board private structure
413 *
414 * The phy may be powered down to save power and turn off link when the
415 * driver is unloaded and wake on lan is not enabled (among others)
416 * *** this routine MUST be followed by a call to e1000_reset ***
417 *
418 **/
419
420 void e1000_power_up_phy(struct e1000_adapter *adapter)
421 {
422 struct e1000_hw *hw = &adapter->hw;
423 u16 mii_reg = 0;
424
425 /* Just clear the power down bit to wake the phy back up */
426 if (hw->media_type == e1000_media_type_copper) {
427 /* according to the manual, the phy will retain its
428 * settings across a power-down/up cycle */
429 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
430 mii_reg &= ~MII_CR_POWER_DOWN;
431 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
432 }
433 }
434
435 static void e1000_power_down_phy(struct e1000_adapter *adapter)
436 {
437 struct e1000_hw *hw = &adapter->hw;
438
439 /* Power down the PHY so no link is implied when interface is down *
440 * The PHY cannot be powered down if any of the following is true *
441 * (a) WoL is enabled
442 * (b) AMT is active
443 * (c) SoL/IDER session is active */
444 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
445 hw->media_type == e1000_media_type_copper) {
446 u16 mii_reg = 0;
447
448 switch (hw->mac_type) {
449 case e1000_82540:
450 case e1000_82545:
451 case e1000_82545_rev_3:
452 case e1000_82546:
453 case e1000_82546_rev_3:
454 case e1000_82541:
455 case e1000_82541_rev_2:
456 case e1000_82547:
457 case e1000_82547_rev_2:
458 if (er32(MANC) & E1000_MANC_SMBUS_EN)
459 goto out;
460 break;
461 default:
462 goto out;
463 }
464 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
465 mii_reg |= MII_CR_POWER_DOWN;
466 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
467 mdelay(1);
468 }
469 out:
470 return;
471 }
472
473 void e1000_down(struct e1000_adapter *adapter)
474 {
475 struct e1000_hw *hw = &adapter->hw;
476 struct net_device *netdev = adapter->netdev;
477 u32 rctl, tctl;
478
479 /* signal that we're down so the interrupt handler does not
480 * reschedule our watchdog timer */
481 set_bit(__E1000_DOWN, &adapter->flags);
482
483 /* disable receives in the hardware */
484 rctl = er32(RCTL);
485 ew32(RCTL, rctl & ~E1000_RCTL_EN);
486 /* flush and sleep below */
487
488 netif_tx_disable(netdev);
489
490 /* disable transmits in the hardware */
491 tctl = er32(TCTL);
492 tctl &= ~E1000_TCTL_EN;
493 ew32(TCTL, tctl);
494 /* flush both disables and wait for them to finish */
495 E1000_WRITE_FLUSH();
496 msleep(10);
497
498 napi_disable(&adapter->napi);
499
500 e1000_irq_disable(adapter);
501
502 del_timer_sync(&adapter->tx_fifo_stall_timer);
503 del_timer_sync(&adapter->watchdog_timer);
504 del_timer_sync(&adapter->phy_info_timer);
505
506 netdev->tx_queue_len = adapter->tx_queue_len;
507 adapter->link_speed = 0;
508 adapter->link_duplex = 0;
509 netif_carrier_off(netdev);
510
511 e1000_reset(adapter);
512 e1000_clean_all_tx_rings(adapter);
513 e1000_clean_all_rx_rings(adapter);
514 }
515
516 void e1000_reinit_locked(struct e1000_adapter *adapter)
517 {
518 WARN_ON(in_interrupt());
519 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
520 msleep(1);
521 e1000_down(adapter);
522 e1000_up(adapter);
523 clear_bit(__E1000_RESETTING, &adapter->flags);
524 }
525
526 void e1000_reset(struct e1000_adapter *adapter)
527 {
528 struct e1000_hw *hw = &adapter->hw;
529 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
530 bool legacy_pba_adjust = false;
531 u16 hwm;
532
533 /* Repartition Pba for greater than 9k mtu
534 * To take effect CTRL.RST is required.
535 */
536
537 switch (hw->mac_type) {
538 case e1000_82542_rev2_0:
539 case e1000_82542_rev2_1:
540 case e1000_82543:
541 case e1000_82544:
542 case e1000_82540:
543 case e1000_82541:
544 case e1000_82541_rev_2:
545 legacy_pba_adjust = true;
546 pba = E1000_PBA_48K;
547 break;
548 case e1000_82545:
549 case e1000_82545_rev_3:
550 case e1000_82546:
551 case e1000_82546_rev_3:
552 pba = E1000_PBA_48K;
553 break;
554 case e1000_82547:
555 case e1000_82547_rev_2:
556 legacy_pba_adjust = true;
557 pba = E1000_PBA_30K;
558 break;
559 case e1000_undefined:
560 case e1000_num_macs:
561 break;
562 }
563
564 if (legacy_pba_adjust) {
565 if (hw->max_frame_size > E1000_RXBUFFER_8192)
566 pba -= 8; /* allocate more FIFO for Tx */
567
568 if (hw->mac_type == e1000_82547) {
569 adapter->tx_fifo_head = 0;
570 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
571 adapter->tx_fifo_size =
572 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
573 atomic_set(&adapter->tx_fifo_stall, 0);
574 }
575 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
576 /* adjust PBA for jumbo frames */
577 ew32(PBA, pba);
578
579 /* To maintain wire speed transmits, the Tx FIFO should be
580 * large enough to accommodate two full transmit packets,
581 * rounded up to the next 1KB and expressed in KB. Likewise,
582 * the Rx FIFO should be large enough to accommodate at least
583 * one full receive packet and is similarly rounded up and
584 * expressed in KB. */
585 pba = er32(PBA);
586 /* upper 16 bits has Tx packet buffer allocation size in KB */
587 tx_space = pba >> 16;
588 /* lower 16 bits has Rx packet buffer allocation size in KB */
589 pba &= 0xffff;
590 /*
591 * the tx fifo also stores 16 bytes of information about the tx
592 * but don't include ethernet FCS because hardware appends it
593 */
594 min_tx_space = (hw->max_frame_size +
595 sizeof(struct e1000_tx_desc) -
596 ETH_FCS_LEN) * 2;
597 min_tx_space = ALIGN(min_tx_space, 1024);
598 min_tx_space >>= 10;
599 /* software strips receive CRC, so leave room for it */
600 min_rx_space = hw->max_frame_size;
601 min_rx_space = ALIGN(min_rx_space, 1024);
602 min_rx_space >>= 10;
603
604 /* If current Tx allocation is less than the min Tx FIFO size,
605 * and the min Tx FIFO size is less than the current Rx FIFO
606 * allocation, take space away from current Rx allocation */
607 if (tx_space < min_tx_space &&
608 ((min_tx_space - tx_space) < pba)) {
609 pba = pba - (min_tx_space - tx_space);
610
611 /* PCI/PCIx hardware has PBA alignment constraints */
612 switch (hw->mac_type) {
613 case e1000_82545 ... e1000_82546_rev_3:
614 pba &= ~(E1000_PBA_8K - 1);
615 break;
616 default:
617 break;
618 }
619
620 /* if short on rx space, rx wins and must trump tx
621 * adjustment or use Early Receive if available */
622 if (pba < min_rx_space)
623 pba = min_rx_space;
624 }
625 }
626
627 ew32(PBA, pba);
628
629 /*
630 * flow control settings:
631 * The high water mark must be low enough to fit one full frame
632 * (or the size used for early receive) above it in the Rx FIFO.
633 * Set it to the lower of:
634 * - 90% of the Rx FIFO size, and
635 * - the full Rx FIFO size minus the early receive size (for parts
636 * with ERT support assuming ERT set to E1000_ERT_2048), or
637 * - the full Rx FIFO size minus one full frame
638 */
639 hwm = min(((pba << 10) * 9 / 10),
640 ((pba << 10) - hw->max_frame_size));
641
642 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
643 hw->fc_low_water = hw->fc_high_water - 8;
644 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
645 hw->fc_send_xon = 1;
646 hw->fc = hw->original_fc;
647
648 /* Allow time for pending master requests to run */
649 e1000_reset_hw(hw);
650 if (hw->mac_type >= e1000_82544)
651 ew32(WUC, 0);
652
653 if (e1000_init_hw(hw))
654 DPRINTK(PROBE, ERR, "Hardware Error\n");
655 e1000_update_mng_vlan(adapter);
656
657 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
658 if (hw->mac_type >= e1000_82544 &&
659 hw->autoneg == 1 &&
660 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
661 u32 ctrl = er32(CTRL);
662 /* clear phy power management bit if we are in gig only mode,
663 * which if enabled will attempt negotiation to 100Mb, which
664 * can cause a loss of link at power off or driver unload */
665 ctrl &= ~E1000_CTRL_SWDPIN3;
666 ew32(CTRL, ctrl);
667 }
668
669 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
670 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
671
672 e1000_reset_adaptive(hw);
673 e1000_phy_get_info(hw, &adapter->phy_info);
674
675 e1000_release_manageability(adapter);
676 }
677
678 /**
679 * Dump the eeprom for users having checksum issues
680 **/
681 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
682 {
683 struct net_device *netdev = adapter->netdev;
684 struct ethtool_eeprom eeprom;
685 const struct ethtool_ops *ops = netdev->ethtool_ops;
686 u8 *data;
687 int i;
688 u16 csum_old, csum_new = 0;
689
690 eeprom.len = ops->get_eeprom_len(netdev);
691 eeprom.offset = 0;
692
693 data = kmalloc(eeprom.len, GFP_KERNEL);
694 if (!data) {
695 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
696 " data\n");
697 return;
698 }
699
700 ops->get_eeprom(netdev, &eeprom, data);
701
702 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
703 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
704 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
705 csum_new += data[i] + (data[i + 1] << 8);
706 csum_new = EEPROM_SUM - csum_new;
707
708 printk(KERN_ERR "/*********************/\n");
709 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
710 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
711
712 printk(KERN_ERR "Offset Values\n");
713 printk(KERN_ERR "======== ======\n");
714 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
715
716 printk(KERN_ERR "Include this output when contacting your support "
717 "provider.\n");
718 printk(KERN_ERR "This is not a software error! Something bad "
719 "happened to your hardware or\n");
720 printk(KERN_ERR "EEPROM image. Ignoring this "
721 "problem could result in further problems,\n");
722 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
723 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
724 "which is invalid\n");
725 printk(KERN_ERR "and requires you to set the proper MAC "
726 "address manually before continuing\n");
727 printk(KERN_ERR "to enable this network device.\n");
728 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
729 "to your hardware vendor\n");
730 printk(KERN_ERR "or Intel Customer Support.\n");
731 printk(KERN_ERR "/*********************/\n");
732
733 kfree(data);
734 }
735
736 /**
737 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
738 * @pdev: PCI device information struct
739 *
740 * Return true if an adapter needs ioport resources
741 **/
742 static int e1000_is_need_ioport(struct pci_dev *pdev)
743 {
744 switch (pdev->device) {
745 case E1000_DEV_ID_82540EM:
746 case E1000_DEV_ID_82540EM_LOM:
747 case E1000_DEV_ID_82540EP:
748 case E1000_DEV_ID_82540EP_LOM:
749 case E1000_DEV_ID_82540EP_LP:
750 case E1000_DEV_ID_82541EI:
751 case E1000_DEV_ID_82541EI_MOBILE:
752 case E1000_DEV_ID_82541ER:
753 case E1000_DEV_ID_82541ER_LOM:
754 case E1000_DEV_ID_82541GI:
755 case E1000_DEV_ID_82541GI_LF:
756 case E1000_DEV_ID_82541GI_MOBILE:
757 case E1000_DEV_ID_82544EI_COPPER:
758 case E1000_DEV_ID_82544EI_FIBER:
759 case E1000_DEV_ID_82544GC_COPPER:
760 case E1000_DEV_ID_82544GC_LOM:
761 case E1000_DEV_ID_82545EM_COPPER:
762 case E1000_DEV_ID_82545EM_FIBER:
763 case E1000_DEV_ID_82546EB_COPPER:
764 case E1000_DEV_ID_82546EB_FIBER:
765 case E1000_DEV_ID_82546EB_QUAD_COPPER:
766 return true;
767 default:
768 return false;
769 }
770 }
771
772 static const struct net_device_ops e1000_netdev_ops = {
773 .ndo_open = e1000_open,
774 .ndo_stop = e1000_close,
775 .ndo_start_xmit = e1000_xmit_frame,
776 .ndo_get_stats = e1000_get_stats,
777 .ndo_set_rx_mode = e1000_set_rx_mode,
778 .ndo_set_mac_address = e1000_set_mac,
779 .ndo_tx_timeout = e1000_tx_timeout,
780 .ndo_change_mtu = e1000_change_mtu,
781 .ndo_do_ioctl = e1000_ioctl,
782 .ndo_validate_addr = eth_validate_addr,
783
784 .ndo_vlan_rx_register = e1000_vlan_rx_register,
785 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
786 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
787 #ifdef CONFIG_NET_POLL_CONTROLLER
788 .ndo_poll_controller = e1000_netpoll,
789 #endif
790 };
791
792 /**
793 * e1000_probe - Device Initialization Routine
794 * @pdev: PCI device information struct
795 * @ent: entry in e1000_pci_tbl
796 *
797 * Returns 0 on success, negative on failure
798 *
799 * e1000_probe initializes an adapter identified by a pci_dev structure.
800 * The OS initialization, configuring of the adapter private structure,
801 * and a hardware reset occur.
802 **/
803 static int __devinit e1000_probe(struct pci_dev *pdev,
804 const struct pci_device_id *ent)
805 {
806 struct net_device *netdev;
807 struct e1000_adapter *adapter;
808 struct e1000_hw *hw;
809
810 static int cards_found = 0;
811 static int global_quad_port_a = 0; /* global ksp3 port a indication */
812 int i, err, pci_using_dac;
813 u16 eeprom_data = 0;
814 u16 eeprom_apme_mask = E1000_EEPROM_APME;
815 int bars, need_ioport;
816
817 /* do not allocate ioport bars when not needed */
818 need_ioport = e1000_is_need_ioport(pdev);
819 if (need_ioport) {
820 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
821 err = pci_enable_device(pdev);
822 } else {
823 bars = pci_select_bars(pdev, IORESOURCE_MEM);
824 err = pci_enable_device_mem(pdev);
825 }
826 if (err)
827 return err;
828
829 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
830 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
831 pci_using_dac = 1;
832 } else {
833 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
834 if (err) {
835 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
836 if (err) {
837 E1000_ERR("No usable DMA configuration, "
838 "aborting\n");
839 goto err_dma;
840 }
841 }
842 pci_using_dac = 0;
843 }
844
845 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
846 if (err)
847 goto err_pci_reg;
848
849 pci_set_master(pdev);
850
851 err = -ENOMEM;
852 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
853 if (!netdev)
854 goto err_alloc_etherdev;
855
856 SET_NETDEV_DEV(netdev, &pdev->dev);
857
858 pci_set_drvdata(pdev, netdev);
859 adapter = netdev_priv(netdev);
860 adapter->netdev = netdev;
861 adapter->pdev = pdev;
862 adapter->msg_enable = (1 << debug) - 1;
863 adapter->bars = bars;
864 adapter->need_ioport = need_ioport;
865
866 hw = &adapter->hw;
867 hw->back = adapter;
868
869 err = -EIO;
870 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
871 if (!hw->hw_addr)
872 goto err_ioremap;
873
874 if (adapter->need_ioport) {
875 for (i = BAR_1; i <= BAR_5; i++) {
876 if (pci_resource_len(pdev, i) == 0)
877 continue;
878 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
879 hw->io_base = pci_resource_start(pdev, i);
880 break;
881 }
882 }
883 }
884
885 netdev->netdev_ops = &e1000_netdev_ops;
886 e1000_set_ethtool_ops(netdev);
887 netdev->watchdog_timeo = 5 * HZ;
888 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
889
890 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
891
892 adapter->bd_number = cards_found;
893
894 /* setup the private structure */
895
896 err = e1000_sw_init(adapter);
897 if (err)
898 goto err_sw_init;
899
900 err = -EIO;
901
902 if (hw->mac_type >= e1000_82543) {
903 netdev->features = NETIF_F_SG |
904 NETIF_F_HW_CSUM |
905 NETIF_F_HW_VLAN_TX |
906 NETIF_F_HW_VLAN_RX |
907 NETIF_F_HW_VLAN_FILTER;
908 }
909
910 if ((hw->mac_type >= e1000_82544) &&
911 (hw->mac_type != e1000_82547))
912 netdev->features |= NETIF_F_TSO;
913
914 if (pci_using_dac)
915 netdev->features |= NETIF_F_HIGHDMA;
916
917 netdev->vlan_features |= NETIF_F_TSO;
918 netdev->vlan_features |= NETIF_F_HW_CSUM;
919 netdev->vlan_features |= NETIF_F_SG;
920
921 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
922
923 /* initialize eeprom parameters */
924 if (e1000_init_eeprom_params(hw)) {
925 E1000_ERR("EEPROM initialization failed\n");
926 goto err_eeprom;
927 }
928
929 /* before reading the EEPROM, reset the controller to
930 * put the device in a known good starting state */
931
932 e1000_reset_hw(hw);
933
934 /* make sure the EEPROM is good */
935 if (e1000_validate_eeprom_checksum(hw) < 0) {
936 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
937 e1000_dump_eeprom(adapter);
938 /*
939 * set MAC address to all zeroes to invalidate and temporary
940 * disable this device for the user. This blocks regular
941 * traffic while still permitting ethtool ioctls from reaching
942 * the hardware as well as allowing the user to run the
943 * interface after manually setting a hw addr using
944 * `ip set address`
945 */
946 memset(hw->mac_addr, 0, netdev->addr_len);
947 } else {
948 /* copy the MAC address out of the EEPROM */
949 if (e1000_read_mac_addr(hw))
950 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
951 }
952 /* don't block initalization here due to bad MAC address */
953 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
954 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
955
956 if (!is_valid_ether_addr(netdev->perm_addr))
957 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
958
959 e1000_get_bus_info(hw);
960
961 init_timer(&adapter->tx_fifo_stall_timer);
962 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
963 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
964
965 init_timer(&adapter->watchdog_timer);
966 adapter->watchdog_timer.function = &e1000_watchdog;
967 adapter->watchdog_timer.data = (unsigned long) adapter;
968
969 init_timer(&adapter->phy_info_timer);
970 adapter->phy_info_timer.function = &e1000_update_phy_info;
971 adapter->phy_info_timer.data = (unsigned long)adapter;
972
973 INIT_WORK(&adapter->reset_task, e1000_reset_task);
974
975 e1000_check_options(adapter);
976
977 /* Initial Wake on LAN setting
978 * If APM wake is enabled in the EEPROM,
979 * enable the ACPI Magic Packet filter
980 */
981
982 switch (hw->mac_type) {
983 case e1000_82542_rev2_0:
984 case e1000_82542_rev2_1:
985 case e1000_82543:
986 break;
987 case e1000_82544:
988 e1000_read_eeprom(hw,
989 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
990 eeprom_apme_mask = E1000_EEPROM_82544_APM;
991 break;
992 case e1000_82546:
993 case e1000_82546_rev_3:
994 if (er32(STATUS) & E1000_STATUS_FUNC_1){
995 e1000_read_eeprom(hw,
996 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
997 break;
998 }
999 /* Fall Through */
1000 default:
1001 e1000_read_eeprom(hw,
1002 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1003 break;
1004 }
1005 if (eeprom_data & eeprom_apme_mask)
1006 adapter->eeprom_wol |= E1000_WUFC_MAG;
1007
1008 /* now that we have the eeprom settings, apply the special cases
1009 * where the eeprom may be wrong or the board simply won't support
1010 * wake on lan on a particular port */
1011 switch (pdev->device) {
1012 case E1000_DEV_ID_82546GB_PCIE:
1013 adapter->eeprom_wol = 0;
1014 break;
1015 case E1000_DEV_ID_82546EB_FIBER:
1016 case E1000_DEV_ID_82546GB_FIBER:
1017 /* Wake events only supported on port A for dual fiber
1018 * regardless of eeprom setting */
1019 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1020 adapter->eeprom_wol = 0;
1021 break;
1022 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1023 /* if quad port adapter, disable WoL on all but port A */
1024 if (global_quad_port_a != 0)
1025 adapter->eeprom_wol = 0;
1026 else
1027 adapter->quad_port_a = 1;
1028 /* Reset for multiple quad port adapters */
1029 if (++global_quad_port_a == 4)
1030 global_quad_port_a = 0;
1031 break;
1032 }
1033
1034 /* initialize the wol settings based on the eeprom settings */
1035 adapter->wol = adapter->eeprom_wol;
1036 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1037
1038 /* print bus type/speed/width info */
1039 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1040 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1041 ((hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1042 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1043 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1044 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1045 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : "32-bit"));
1046
1047 printk("%pM\n", netdev->dev_addr);
1048
1049 /* reset the hardware with the new settings */
1050 e1000_reset(adapter);
1051
1052 strcpy(netdev->name, "eth%d");
1053 err = register_netdev(netdev);
1054 if (err)
1055 goto err_register;
1056
1057 /* carrier off reporting is important to ethtool even BEFORE open */
1058 netif_carrier_off(netdev);
1059
1060 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1061
1062 cards_found++;
1063 return 0;
1064
1065 err_register:
1066 err_eeprom:
1067 e1000_phy_hw_reset(hw);
1068
1069 if (hw->flash_address)
1070 iounmap(hw->flash_address);
1071 kfree(adapter->tx_ring);
1072 kfree(adapter->rx_ring);
1073 err_sw_init:
1074 iounmap(hw->hw_addr);
1075 err_ioremap:
1076 free_netdev(netdev);
1077 err_alloc_etherdev:
1078 pci_release_selected_regions(pdev, bars);
1079 err_pci_reg:
1080 err_dma:
1081 pci_disable_device(pdev);
1082 return err;
1083 }
1084
1085 /**
1086 * e1000_remove - Device Removal Routine
1087 * @pdev: PCI device information struct
1088 *
1089 * e1000_remove is called by the PCI subsystem to alert the driver
1090 * that it should release a PCI device. The could be caused by a
1091 * Hot-Plug event, or because the driver is going to be removed from
1092 * memory.
1093 **/
1094
1095 static void __devexit e1000_remove(struct pci_dev *pdev)
1096 {
1097 struct net_device *netdev = pci_get_drvdata(pdev);
1098 struct e1000_adapter *adapter = netdev_priv(netdev);
1099 struct e1000_hw *hw = &adapter->hw;
1100
1101 set_bit(__E1000_DOWN, &adapter->flags);
1102 del_timer_sync(&adapter->tx_fifo_stall_timer);
1103 del_timer_sync(&adapter->watchdog_timer);
1104 del_timer_sync(&adapter->phy_info_timer);
1105
1106 cancel_work_sync(&adapter->reset_task);
1107
1108 e1000_release_manageability(adapter);
1109
1110 unregister_netdev(netdev);
1111
1112 e1000_phy_hw_reset(hw);
1113
1114 kfree(adapter->tx_ring);
1115 kfree(adapter->rx_ring);
1116
1117 iounmap(hw->hw_addr);
1118 if (hw->flash_address)
1119 iounmap(hw->flash_address);
1120 pci_release_selected_regions(pdev, adapter->bars);
1121
1122 free_netdev(netdev);
1123
1124 pci_disable_device(pdev);
1125 }
1126
1127 /**
1128 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129 * @adapter: board private structure to initialize
1130 *
1131 * e1000_sw_init initializes the Adapter private data structure.
1132 * Fields are initialized based on PCI device information and
1133 * OS network device settings (MTU size).
1134 **/
1135
1136 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1137 {
1138 struct e1000_hw *hw = &adapter->hw;
1139 struct net_device *netdev = adapter->netdev;
1140 struct pci_dev *pdev = adapter->pdev;
1141
1142 /* PCI config space info */
1143
1144 hw->vendor_id = pdev->vendor;
1145 hw->device_id = pdev->device;
1146 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1147 hw->subsystem_id = pdev->subsystem_device;
1148 hw->revision_id = pdev->revision;
1149
1150 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1151
1152 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1153 hw->max_frame_size = netdev->mtu +
1154 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1155 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1156
1157 /* identify the MAC */
1158
1159 if (e1000_set_mac_type(hw)) {
1160 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1161 return -EIO;
1162 }
1163
1164 switch (hw->mac_type) {
1165 default:
1166 break;
1167 case e1000_82541:
1168 case e1000_82547:
1169 case e1000_82541_rev_2:
1170 case e1000_82547_rev_2:
1171 hw->phy_init_script = 1;
1172 break;
1173 }
1174
1175 e1000_set_media_type(hw);
1176
1177 hw->wait_autoneg_complete = false;
1178 hw->tbi_compatibility_en = true;
1179 hw->adaptive_ifs = true;
1180
1181 /* Copper options */
1182
1183 if (hw->media_type == e1000_media_type_copper) {
1184 hw->mdix = AUTO_ALL_MODES;
1185 hw->disable_polarity_correction = false;
1186 hw->master_slave = E1000_MASTER_SLAVE;
1187 }
1188
1189 adapter->num_tx_queues = 1;
1190 adapter->num_rx_queues = 1;
1191
1192 if (e1000_alloc_queues(adapter)) {
1193 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1194 return -ENOMEM;
1195 }
1196
1197 /* Explicitly disable IRQ since the NIC can be in any state. */
1198 e1000_irq_disable(adapter);
1199
1200 spin_lock_init(&adapter->stats_lock);
1201
1202 set_bit(__E1000_DOWN, &adapter->flags);
1203
1204 return 0;
1205 }
1206
1207 /**
1208 * e1000_alloc_queues - Allocate memory for all rings
1209 * @adapter: board private structure to initialize
1210 *
1211 * We allocate one ring per queue at run-time since we don't know the
1212 * number of queues at compile-time.
1213 **/
1214
1215 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1216 {
1217 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1218 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1219 if (!adapter->tx_ring)
1220 return -ENOMEM;
1221
1222 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1223 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1224 if (!adapter->rx_ring) {
1225 kfree(adapter->tx_ring);
1226 return -ENOMEM;
1227 }
1228
1229 return E1000_SUCCESS;
1230 }
1231
1232 /**
1233 * e1000_open - Called when a network interface is made active
1234 * @netdev: network interface device structure
1235 *
1236 * Returns 0 on success, negative value on failure
1237 *
1238 * The open entry point is called when a network interface is made
1239 * active by the system (IFF_UP). At this point all resources needed
1240 * for transmit and receive operations are allocated, the interrupt
1241 * handler is registered with the OS, the watchdog timer is started,
1242 * and the stack is notified that the interface is ready.
1243 **/
1244
1245 static int e1000_open(struct net_device *netdev)
1246 {
1247 struct e1000_adapter *adapter = netdev_priv(netdev);
1248 struct e1000_hw *hw = &adapter->hw;
1249 int err;
1250
1251 /* disallow open during test */
1252 if (test_bit(__E1000_TESTING, &adapter->flags))
1253 return -EBUSY;
1254
1255 netif_carrier_off(netdev);
1256
1257 /* allocate transmit descriptors */
1258 err = e1000_setup_all_tx_resources(adapter);
1259 if (err)
1260 goto err_setup_tx;
1261
1262 /* allocate receive descriptors */
1263 err = e1000_setup_all_rx_resources(adapter);
1264 if (err)
1265 goto err_setup_rx;
1266
1267 e1000_power_up_phy(adapter);
1268
1269 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1270 if ((hw->mng_cookie.status &
1271 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1272 e1000_update_mng_vlan(adapter);
1273 }
1274
1275 /* before we allocate an interrupt, we must be ready to handle it.
1276 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1277 * as soon as we call pci_request_irq, so we have to setup our
1278 * clean_rx handler before we do so. */
1279 e1000_configure(adapter);
1280
1281 err = e1000_request_irq(adapter);
1282 if (err)
1283 goto err_req_irq;
1284
1285 /* From here on the code is the same as e1000_up() */
1286 clear_bit(__E1000_DOWN, &adapter->flags);
1287
1288 napi_enable(&adapter->napi);
1289
1290 e1000_irq_enable(adapter);
1291
1292 netif_start_queue(netdev);
1293
1294 /* fire a link status change interrupt to start the watchdog */
1295 ew32(ICS, E1000_ICS_LSC);
1296
1297 return E1000_SUCCESS;
1298
1299 err_req_irq:
1300 e1000_power_down_phy(adapter);
1301 e1000_free_all_rx_resources(adapter);
1302 err_setup_rx:
1303 e1000_free_all_tx_resources(adapter);
1304 err_setup_tx:
1305 e1000_reset(adapter);
1306
1307 return err;
1308 }
1309
1310 /**
1311 * e1000_close - Disables a network interface
1312 * @netdev: network interface device structure
1313 *
1314 * Returns 0, this is not allowed to fail
1315 *
1316 * The close entry point is called when an interface is de-activated
1317 * by the OS. The hardware is still under the drivers control, but
1318 * needs to be disabled. A global MAC reset is issued to stop the
1319 * hardware, and all transmit and receive resources are freed.
1320 **/
1321
1322 static int e1000_close(struct net_device *netdev)
1323 {
1324 struct e1000_adapter *adapter = netdev_priv(netdev);
1325 struct e1000_hw *hw = &adapter->hw;
1326
1327 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1328 e1000_down(adapter);
1329 e1000_power_down_phy(adapter);
1330 e1000_free_irq(adapter);
1331
1332 e1000_free_all_tx_resources(adapter);
1333 e1000_free_all_rx_resources(adapter);
1334
1335 /* kill manageability vlan ID if supported, but not if a vlan with
1336 * the same ID is registered on the host OS (let 8021q kill it) */
1337 if ((hw->mng_cookie.status &
1338 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1339 !(adapter->vlgrp &&
1340 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1341 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1342 }
1343
1344 return 0;
1345 }
1346
1347 /**
1348 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1349 * @adapter: address of board private structure
1350 * @start: address of beginning of memory
1351 * @len: length of memory
1352 **/
1353 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1354 unsigned long len)
1355 {
1356 struct e1000_hw *hw = &adapter->hw;
1357 unsigned long begin = (unsigned long)start;
1358 unsigned long end = begin + len;
1359
1360 /* First rev 82545 and 82546 need to not allow any memory
1361 * write location to cross 64k boundary due to errata 23 */
1362 if (hw->mac_type == e1000_82545 ||
1363 hw->mac_type == e1000_82546) {
1364 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1365 }
1366
1367 return true;
1368 }
1369
1370 /**
1371 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1372 * @adapter: board private structure
1373 * @txdr: tx descriptor ring (for a specific queue) to setup
1374 *
1375 * Return 0 on success, negative on failure
1376 **/
1377
1378 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1379 struct e1000_tx_ring *txdr)
1380 {
1381 struct pci_dev *pdev = adapter->pdev;
1382 int size;
1383
1384 size = sizeof(struct e1000_buffer) * txdr->count;
1385 txdr->buffer_info = vmalloc(size);
1386 if (!txdr->buffer_info) {
1387 DPRINTK(PROBE, ERR,
1388 "Unable to allocate memory for the transmit descriptor ring\n");
1389 return -ENOMEM;
1390 }
1391 memset(txdr->buffer_info, 0, size);
1392
1393 /* round up to nearest 4K */
1394
1395 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1396 txdr->size = ALIGN(txdr->size, 4096);
1397
1398 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1399 if (!txdr->desc) {
1400 setup_tx_desc_die:
1401 vfree(txdr->buffer_info);
1402 DPRINTK(PROBE, ERR,
1403 "Unable to allocate memory for the transmit descriptor ring\n");
1404 return -ENOMEM;
1405 }
1406
1407 /* Fix for errata 23, can't cross 64kB boundary */
1408 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1409 void *olddesc = txdr->desc;
1410 dma_addr_t olddma = txdr->dma;
1411 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1412 "at %p\n", txdr->size, txdr->desc);
1413 /* Try again, without freeing the previous */
1414 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1415 /* Failed allocation, critical failure */
1416 if (!txdr->desc) {
1417 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1418 goto setup_tx_desc_die;
1419 }
1420
1421 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1422 /* give up */
1423 pci_free_consistent(pdev, txdr->size, txdr->desc,
1424 txdr->dma);
1425 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1426 DPRINTK(PROBE, ERR,
1427 "Unable to allocate aligned memory "
1428 "for the transmit descriptor ring\n");
1429 vfree(txdr->buffer_info);
1430 return -ENOMEM;
1431 } else {
1432 /* Free old allocation, new allocation was successful */
1433 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1434 }
1435 }
1436 memset(txdr->desc, 0, txdr->size);
1437
1438 txdr->next_to_use = 0;
1439 txdr->next_to_clean = 0;
1440
1441 return 0;
1442 }
1443
1444 /**
1445 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1446 * (Descriptors) for all queues
1447 * @adapter: board private structure
1448 *
1449 * Return 0 on success, negative on failure
1450 **/
1451
1452 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1453 {
1454 int i, err = 0;
1455
1456 for (i = 0; i < adapter->num_tx_queues; i++) {
1457 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1458 if (err) {
1459 DPRINTK(PROBE, ERR,
1460 "Allocation for Tx Queue %u failed\n", i);
1461 for (i-- ; i >= 0; i--)
1462 e1000_free_tx_resources(adapter,
1463 &adapter->tx_ring[i]);
1464 break;
1465 }
1466 }
1467
1468 return err;
1469 }
1470
1471 /**
1472 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1473 * @adapter: board private structure
1474 *
1475 * Configure the Tx unit of the MAC after a reset.
1476 **/
1477
1478 static void e1000_configure_tx(struct e1000_adapter *adapter)
1479 {
1480 u64 tdba;
1481 struct e1000_hw *hw = &adapter->hw;
1482 u32 tdlen, tctl, tipg;
1483 u32 ipgr1, ipgr2;
1484
1485 /* Setup the HW Tx Head and Tail descriptor pointers */
1486
1487 switch (adapter->num_tx_queues) {
1488 case 1:
1489 default:
1490 tdba = adapter->tx_ring[0].dma;
1491 tdlen = adapter->tx_ring[0].count *
1492 sizeof(struct e1000_tx_desc);
1493 ew32(TDLEN, tdlen);
1494 ew32(TDBAH, (tdba >> 32));
1495 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1496 ew32(TDT, 0);
1497 ew32(TDH, 0);
1498 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1499 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1500 break;
1501 }
1502
1503 /* Set the default values for the Tx Inter Packet Gap timer */
1504 if ((hw->media_type == e1000_media_type_fiber ||
1505 hw->media_type == e1000_media_type_internal_serdes))
1506 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1507 else
1508 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1509
1510 switch (hw->mac_type) {
1511 case e1000_82542_rev2_0:
1512 case e1000_82542_rev2_1:
1513 tipg = DEFAULT_82542_TIPG_IPGT;
1514 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1515 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1516 break;
1517 default:
1518 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1519 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1520 break;
1521 }
1522 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1523 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1524 ew32(TIPG, tipg);
1525
1526 /* Set the Tx Interrupt Delay register */
1527
1528 ew32(TIDV, adapter->tx_int_delay);
1529 if (hw->mac_type >= e1000_82540)
1530 ew32(TADV, adapter->tx_abs_int_delay);
1531
1532 /* Program the Transmit Control Register */
1533
1534 tctl = er32(TCTL);
1535 tctl &= ~E1000_TCTL_CT;
1536 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1537 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1538
1539 e1000_config_collision_dist(hw);
1540
1541 /* Setup Transmit Descriptor Settings for eop descriptor */
1542 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1543
1544 /* only set IDE if we are delaying interrupts using the timers */
1545 if (adapter->tx_int_delay)
1546 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1547
1548 if (hw->mac_type < e1000_82543)
1549 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1550 else
1551 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1552
1553 /* Cache if we're 82544 running in PCI-X because we'll
1554 * need this to apply a workaround later in the send path. */
1555 if (hw->mac_type == e1000_82544 &&
1556 hw->bus_type == e1000_bus_type_pcix)
1557 adapter->pcix_82544 = 1;
1558
1559 ew32(TCTL, tctl);
1560
1561 }
1562
1563 /**
1564 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1565 * @adapter: board private structure
1566 * @rxdr: rx descriptor ring (for a specific queue) to setup
1567 *
1568 * Returns 0 on success, negative on failure
1569 **/
1570
1571 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1572 struct e1000_rx_ring *rxdr)
1573 {
1574 struct pci_dev *pdev = adapter->pdev;
1575 int size, desc_len;
1576
1577 size = sizeof(struct e1000_buffer) * rxdr->count;
1578 rxdr->buffer_info = vmalloc(size);
1579 if (!rxdr->buffer_info) {
1580 DPRINTK(PROBE, ERR,
1581 "Unable to allocate memory for the receive descriptor ring\n");
1582 return -ENOMEM;
1583 }
1584 memset(rxdr->buffer_info, 0, size);
1585
1586 desc_len = sizeof(struct e1000_rx_desc);
1587
1588 /* Round up to nearest 4K */
1589
1590 rxdr->size = rxdr->count * desc_len;
1591 rxdr->size = ALIGN(rxdr->size, 4096);
1592
1593 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1594
1595 if (!rxdr->desc) {
1596 DPRINTK(PROBE, ERR,
1597 "Unable to allocate memory for the receive descriptor ring\n");
1598 setup_rx_desc_die:
1599 vfree(rxdr->buffer_info);
1600 return -ENOMEM;
1601 }
1602
1603 /* Fix for errata 23, can't cross 64kB boundary */
1604 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1605 void *olddesc = rxdr->desc;
1606 dma_addr_t olddma = rxdr->dma;
1607 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1608 "at %p\n", rxdr->size, rxdr->desc);
1609 /* Try again, without freeing the previous */
1610 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1611 /* Failed allocation, critical failure */
1612 if (!rxdr->desc) {
1613 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1614 DPRINTK(PROBE, ERR,
1615 "Unable to allocate memory "
1616 "for the receive descriptor ring\n");
1617 goto setup_rx_desc_die;
1618 }
1619
1620 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1621 /* give up */
1622 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1623 rxdr->dma);
1624 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1625 DPRINTK(PROBE, ERR,
1626 "Unable to allocate aligned memory "
1627 "for the receive descriptor ring\n");
1628 goto setup_rx_desc_die;
1629 } else {
1630 /* Free old allocation, new allocation was successful */
1631 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1632 }
1633 }
1634 memset(rxdr->desc, 0, rxdr->size);
1635
1636 rxdr->next_to_clean = 0;
1637 rxdr->next_to_use = 0;
1638 rxdr->rx_skb_top = NULL;
1639
1640 return 0;
1641 }
1642
1643 /**
1644 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1645 * (Descriptors) for all queues
1646 * @adapter: board private structure
1647 *
1648 * Return 0 on success, negative on failure
1649 **/
1650
1651 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1652 {
1653 int i, err = 0;
1654
1655 for (i = 0; i < adapter->num_rx_queues; i++) {
1656 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1657 if (err) {
1658 DPRINTK(PROBE, ERR,
1659 "Allocation for Rx Queue %u failed\n", i);
1660 for (i-- ; i >= 0; i--)
1661 e1000_free_rx_resources(adapter,
1662 &adapter->rx_ring[i]);
1663 break;
1664 }
1665 }
1666
1667 return err;
1668 }
1669
1670 /**
1671 * e1000_setup_rctl - configure the receive control registers
1672 * @adapter: Board private structure
1673 **/
1674 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1675 {
1676 struct e1000_hw *hw = &adapter->hw;
1677 u32 rctl;
1678
1679 rctl = er32(RCTL);
1680
1681 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1682
1683 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1684 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1685 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1686
1687 if (hw->tbi_compatibility_on == 1)
1688 rctl |= E1000_RCTL_SBP;
1689 else
1690 rctl &= ~E1000_RCTL_SBP;
1691
1692 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1693 rctl &= ~E1000_RCTL_LPE;
1694 else
1695 rctl |= E1000_RCTL_LPE;
1696
1697 /* Setup buffer sizes */
1698 rctl &= ~E1000_RCTL_SZ_4096;
1699 rctl |= E1000_RCTL_BSEX;
1700 switch (adapter->rx_buffer_len) {
1701 case E1000_RXBUFFER_2048:
1702 default:
1703 rctl |= E1000_RCTL_SZ_2048;
1704 rctl &= ~E1000_RCTL_BSEX;
1705 break;
1706 case E1000_RXBUFFER_4096:
1707 rctl |= E1000_RCTL_SZ_4096;
1708 break;
1709 case E1000_RXBUFFER_8192:
1710 rctl |= E1000_RCTL_SZ_8192;
1711 break;
1712 case E1000_RXBUFFER_16384:
1713 rctl |= E1000_RCTL_SZ_16384;
1714 break;
1715 }
1716
1717 ew32(RCTL, rctl);
1718 }
1719
1720 /**
1721 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1722 * @adapter: board private structure
1723 *
1724 * Configure the Rx unit of the MAC after a reset.
1725 **/
1726
1727 static void e1000_configure_rx(struct e1000_adapter *adapter)
1728 {
1729 u64 rdba;
1730 struct e1000_hw *hw = &adapter->hw;
1731 u32 rdlen, rctl, rxcsum;
1732
1733 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1734 rdlen = adapter->rx_ring[0].count *
1735 sizeof(struct e1000_rx_desc);
1736 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1737 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1738 } else {
1739 rdlen = adapter->rx_ring[0].count *
1740 sizeof(struct e1000_rx_desc);
1741 adapter->clean_rx = e1000_clean_rx_irq;
1742 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1743 }
1744
1745 /* disable receives while setting up the descriptors */
1746 rctl = er32(RCTL);
1747 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1748
1749 /* set the Receive Delay Timer Register */
1750 ew32(RDTR, adapter->rx_int_delay);
1751
1752 if (hw->mac_type >= e1000_82540) {
1753 ew32(RADV, adapter->rx_abs_int_delay);
1754 if (adapter->itr_setting != 0)
1755 ew32(ITR, 1000000000 / (adapter->itr * 256));
1756 }
1757
1758 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1759 * the Base and Length of the Rx Descriptor Ring */
1760 switch (adapter->num_rx_queues) {
1761 case 1:
1762 default:
1763 rdba = adapter->rx_ring[0].dma;
1764 ew32(RDLEN, rdlen);
1765 ew32(RDBAH, (rdba >> 32));
1766 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1767 ew32(RDT, 0);
1768 ew32(RDH, 0);
1769 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1770 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1771 break;
1772 }
1773
1774 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1775 if (hw->mac_type >= e1000_82543) {
1776 rxcsum = er32(RXCSUM);
1777 if (adapter->rx_csum)
1778 rxcsum |= E1000_RXCSUM_TUOFL;
1779 else
1780 /* don't need to clear IPPCSE as it defaults to 0 */
1781 rxcsum &= ~E1000_RXCSUM_TUOFL;
1782 ew32(RXCSUM, rxcsum);
1783 }
1784
1785 /* Enable Receives */
1786 ew32(RCTL, rctl);
1787 }
1788
1789 /**
1790 * e1000_free_tx_resources - Free Tx Resources per Queue
1791 * @adapter: board private structure
1792 * @tx_ring: Tx descriptor ring for a specific queue
1793 *
1794 * Free all transmit software resources
1795 **/
1796
1797 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1798 struct e1000_tx_ring *tx_ring)
1799 {
1800 struct pci_dev *pdev = adapter->pdev;
1801
1802 e1000_clean_tx_ring(adapter, tx_ring);
1803
1804 vfree(tx_ring->buffer_info);
1805 tx_ring->buffer_info = NULL;
1806
1807 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1808
1809 tx_ring->desc = NULL;
1810 }
1811
1812 /**
1813 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1814 * @adapter: board private structure
1815 *
1816 * Free all transmit software resources
1817 **/
1818
1819 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1820 {
1821 int i;
1822
1823 for (i = 0; i < adapter->num_tx_queues; i++)
1824 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1825 }
1826
1827 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1828 struct e1000_buffer *buffer_info)
1829 {
1830 if (buffer_info->dma) {
1831 if (buffer_info->mapped_as_page)
1832 pci_unmap_page(adapter->pdev, buffer_info->dma,
1833 buffer_info->length, PCI_DMA_TODEVICE);
1834 else
1835 pci_unmap_single(adapter->pdev, buffer_info->dma,
1836 buffer_info->length,
1837 PCI_DMA_TODEVICE);
1838 buffer_info->dma = 0;
1839 }
1840 if (buffer_info->skb) {
1841 dev_kfree_skb_any(buffer_info->skb);
1842 buffer_info->skb = NULL;
1843 }
1844 buffer_info->time_stamp = 0;
1845 /* buffer_info must be completely set up in the transmit path */
1846 }
1847
1848 /**
1849 * e1000_clean_tx_ring - Free Tx Buffers
1850 * @adapter: board private structure
1851 * @tx_ring: ring to be cleaned
1852 **/
1853
1854 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1855 struct e1000_tx_ring *tx_ring)
1856 {
1857 struct e1000_hw *hw = &adapter->hw;
1858 struct e1000_buffer *buffer_info;
1859 unsigned long size;
1860 unsigned int i;
1861
1862 /* Free all the Tx ring sk_buffs */
1863
1864 for (i = 0; i < tx_ring->count; i++) {
1865 buffer_info = &tx_ring->buffer_info[i];
1866 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1867 }
1868
1869 size = sizeof(struct e1000_buffer) * tx_ring->count;
1870 memset(tx_ring->buffer_info, 0, size);
1871
1872 /* Zero out the descriptor ring */
1873
1874 memset(tx_ring->desc, 0, tx_ring->size);
1875
1876 tx_ring->next_to_use = 0;
1877 tx_ring->next_to_clean = 0;
1878 tx_ring->last_tx_tso = 0;
1879
1880 writel(0, hw->hw_addr + tx_ring->tdh);
1881 writel(0, hw->hw_addr + tx_ring->tdt);
1882 }
1883
1884 /**
1885 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1886 * @adapter: board private structure
1887 **/
1888
1889 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1890 {
1891 int i;
1892
1893 for (i = 0; i < adapter->num_tx_queues; i++)
1894 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1895 }
1896
1897 /**
1898 * e1000_free_rx_resources - Free Rx Resources
1899 * @adapter: board private structure
1900 * @rx_ring: ring to clean the resources from
1901 *
1902 * Free all receive software resources
1903 **/
1904
1905 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1906 struct e1000_rx_ring *rx_ring)
1907 {
1908 struct pci_dev *pdev = adapter->pdev;
1909
1910 e1000_clean_rx_ring(adapter, rx_ring);
1911
1912 vfree(rx_ring->buffer_info);
1913 rx_ring->buffer_info = NULL;
1914
1915 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1916
1917 rx_ring->desc = NULL;
1918 }
1919
1920 /**
1921 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1922 * @adapter: board private structure
1923 *
1924 * Free all receive software resources
1925 **/
1926
1927 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1928 {
1929 int i;
1930
1931 for (i = 0; i < adapter->num_rx_queues; i++)
1932 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1933 }
1934
1935 /**
1936 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1937 * @adapter: board private structure
1938 * @rx_ring: ring to free buffers from
1939 **/
1940
1941 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1942 struct e1000_rx_ring *rx_ring)
1943 {
1944 struct e1000_hw *hw = &adapter->hw;
1945 struct e1000_buffer *buffer_info;
1946 struct pci_dev *pdev = adapter->pdev;
1947 unsigned long size;
1948 unsigned int i;
1949
1950 /* Free all the Rx ring sk_buffs */
1951 for (i = 0; i < rx_ring->count; i++) {
1952 buffer_info = &rx_ring->buffer_info[i];
1953 if (buffer_info->dma &&
1954 adapter->clean_rx == e1000_clean_rx_irq) {
1955 pci_unmap_single(pdev, buffer_info->dma,
1956 buffer_info->length,
1957 PCI_DMA_FROMDEVICE);
1958 } else if (buffer_info->dma &&
1959 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
1960 pci_unmap_page(pdev, buffer_info->dma,
1961 buffer_info->length,
1962 PCI_DMA_FROMDEVICE);
1963 }
1964
1965 buffer_info->dma = 0;
1966 if (buffer_info->page) {
1967 put_page(buffer_info->page);
1968 buffer_info->page = NULL;
1969 }
1970 if (buffer_info->skb) {
1971 dev_kfree_skb(buffer_info->skb);
1972 buffer_info->skb = NULL;
1973 }
1974 }
1975
1976 /* there also may be some cached data from a chained receive */
1977 if (rx_ring->rx_skb_top) {
1978 dev_kfree_skb(rx_ring->rx_skb_top);
1979 rx_ring->rx_skb_top = NULL;
1980 }
1981
1982 size = sizeof(struct e1000_buffer) * rx_ring->count;
1983 memset(rx_ring->buffer_info, 0, size);
1984
1985 /* Zero out the descriptor ring */
1986 memset(rx_ring->desc, 0, rx_ring->size);
1987
1988 rx_ring->next_to_clean = 0;
1989 rx_ring->next_to_use = 0;
1990
1991 writel(0, hw->hw_addr + rx_ring->rdh);
1992 writel(0, hw->hw_addr + rx_ring->rdt);
1993 }
1994
1995 /**
1996 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1997 * @adapter: board private structure
1998 **/
1999
2000 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2001 {
2002 int i;
2003
2004 for (i = 0; i < adapter->num_rx_queues; i++)
2005 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2006 }
2007
2008 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2009 * and memory write and invalidate disabled for certain operations
2010 */
2011 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2012 {
2013 struct e1000_hw *hw = &adapter->hw;
2014 struct net_device *netdev = adapter->netdev;
2015 u32 rctl;
2016
2017 e1000_pci_clear_mwi(hw);
2018
2019 rctl = er32(RCTL);
2020 rctl |= E1000_RCTL_RST;
2021 ew32(RCTL, rctl);
2022 E1000_WRITE_FLUSH();
2023 mdelay(5);
2024
2025 if (netif_running(netdev))
2026 e1000_clean_all_rx_rings(adapter);
2027 }
2028
2029 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2030 {
2031 struct e1000_hw *hw = &adapter->hw;
2032 struct net_device *netdev = adapter->netdev;
2033 u32 rctl;
2034
2035 rctl = er32(RCTL);
2036 rctl &= ~E1000_RCTL_RST;
2037 ew32(RCTL, rctl);
2038 E1000_WRITE_FLUSH();
2039 mdelay(5);
2040
2041 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2042 e1000_pci_set_mwi(hw);
2043
2044 if (netif_running(netdev)) {
2045 /* No need to loop, because 82542 supports only 1 queue */
2046 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2047 e1000_configure_rx(adapter);
2048 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2049 }
2050 }
2051
2052 /**
2053 * e1000_set_mac - Change the Ethernet Address of the NIC
2054 * @netdev: network interface device structure
2055 * @p: pointer to an address structure
2056 *
2057 * Returns 0 on success, negative on failure
2058 **/
2059
2060 static int e1000_set_mac(struct net_device *netdev, void *p)
2061 {
2062 struct e1000_adapter *adapter = netdev_priv(netdev);
2063 struct e1000_hw *hw = &adapter->hw;
2064 struct sockaddr *addr = p;
2065
2066 if (!is_valid_ether_addr(addr->sa_data))
2067 return -EADDRNOTAVAIL;
2068
2069 /* 82542 2.0 needs to be in reset to write receive address registers */
2070
2071 if (hw->mac_type == e1000_82542_rev2_0)
2072 e1000_enter_82542_rst(adapter);
2073
2074 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2075 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2076
2077 e1000_rar_set(hw, hw->mac_addr, 0);
2078
2079 if (hw->mac_type == e1000_82542_rev2_0)
2080 e1000_leave_82542_rst(adapter);
2081
2082 return 0;
2083 }
2084
2085 /**
2086 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2087 * @netdev: network interface device structure
2088 *
2089 * The set_rx_mode entry point is called whenever the unicast or multicast
2090 * address lists or the network interface flags are updated. This routine is
2091 * responsible for configuring the hardware for proper unicast, multicast,
2092 * promiscuous mode, and all-multi behavior.
2093 **/
2094
2095 static void e1000_set_rx_mode(struct net_device *netdev)
2096 {
2097 struct e1000_adapter *adapter = netdev_priv(netdev);
2098 struct e1000_hw *hw = &adapter->hw;
2099 struct netdev_hw_addr *ha;
2100 bool use_uc = false;
2101 struct dev_addr_list *mc_ptr;
2102 u32 rctl;
2103 u32 hash_value;
2104 int i, rar_entries = E1000_RAR_ENTRIES;
2105 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2106 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2107
2108 if (!mcarray) {
2109 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2110 return;
2111 }
2112
2113 /* Check for Promiscuous and All Multicast modes */
2114
2115 rctl = er32(RCTL);
2116
2117 if (netdev->flags & IFF_PROMISC) {
2118 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2119 rctl &= ~E1000_RCTL_VFE;
2120 } else {
2121 if (netdev->flags & IFF_ALLMULTI)
2122 rctl |= E1000_RCTL_MPE;
2123 else
2124 rctl &= ~E1000_RCTL_MPE;
2125 /* Enable VLAN filter if there is a VLAN */
2126 if (adapter->vlgrp)
2127 rctl |= E1000_RCTL_VFE;
2128 }
2129
2130 if (netdev->uc.count > rar_entries - 1) {
2131 rctl |= E1000_RCTL_UPE;
2132 } else if (!(netdev->flags & IFF_PROMISC)) {
2133 rctl &= ~E1000_RCTL_UPE;
2134 use_uc = true;
2135 }
2136
2137 ew32(RCTL, rctl);
2138
2139 /* 82542 2.0 needs to be in reset to write receive address registers */
2140
2141 if (hw->mac_type == e1000_82542_rev2_0)
2142 e1000_enter_82542_rst(adapter);
2143
2144 /* load the first 14 addresses into the exact filters 1-14. Unicast
2145 * addresses take precedence to avoid disabling unicast filtering
2146 * when possible.
2147 *
2148 * RAR 0 is used for the station MAC adddress
2149 * if there are not 14 addresses, go ahead and clear the filters
2150 */
2151 i = 1;
2152 if (use_uc)
2153 list_for_each_entry(ha, &netdev->uc.list, list) {
2154 if (i == rar_entries)
2155 break;
2156 e1000_rar_set(hw, ha->addr, i++);
2157 }
2158
2159 WARN_ON(i == rar_entries);
2160
2161 mc_ptr = netdev->mc_list;
2162
2163 for (; i < rar_entries; i++) {
2164 if (mc_ptr) {
2165 e1000_rar_set(hw, mc_ptr->da_addr, i);
2166 mc_ptr = mc_ptr->next;
2167 } else {
2168 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2169 E1000_WRITE_FLUSH();
2170 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2171 E1000_WRITE_FLUSH();
2172 }
2173 }
2174
2175 /* load any remaining addresses into the hash table */
2176
2177 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2178 u32 hash_reg, hash_bit, mta;
2179 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2180 hash_reg = (hash_value >> 5) & 0x7F;
2181 hash_bit = hash_value & 0x1F;
2182 mta = (1 << hash_bit);
2183 mcarray[hash_reg] |= mta;
2184 }
2185
2186 /* write the hash table completely, write from bottom to avoid
2187 * both stupid write combining chipsets, and flushing each write */
2188 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2189 /*
2190 * If we are on an 82544 has an errata where writing odd
2191 * offsets overwrites the previous even offset, but writing
2192 * backwards over the range solves the issue by always
2193 * writing the odd offset first
2194 */
2195 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2196 }
2197 E1000_WRITE_FLUSH();
2198
2199 if (hw->mac_type == e1000_82542_rev2_0)
2200 e1000_leave_82542_rst(adapter);
2201
2202 kfree(mcarray);
2203 }
2204
2205 /* Need to wait a few seconds after link up to get diagnostic information from
2206 * the phy */
2207
2208 static void e1000_update_phy_info(unsigned long data)
2209 {
2210 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2211 struct e1000_hw *hw = &adapter->hw;
2212 e1000_phy_get_info(hw, &adapter->phy_info);
2213 }
2214
2215 /**
2216 * e1000_82547_tx_fifo_stall - Timer Call-back
2217 * @data: pointer to adapter cast into an unsigned long
2218 **/
2219
2220 static void e1000_82547_tx_fifo_stall(unsigned long data)
2221 {
2222 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2223 struct e1000_hw *hw = &adapter->hw;
2224 struct net_device *netdev = adapter->netdev;
2225 u32 tctl;
2226
2227 if (atomic_read(&adapter->tx_fifo_stall)) {
2228 if ((er32(TDT) == er32(TDH)) &&
2229 (er32(TDFT) == er32(TDFH)) &&
2230 (er32(TDFTS) == er32(TDFHS))) {
2231 tctl = er32(TCTL);
2232 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2233 ew32(TDFT, adapter->tx_head_addr);
2234 ew32(TDFH, adapter->tx_head_addr);
2235 ew32(TDFTS, adapter->tx_head_addr);
2236 ew32(TDFHS, adapter->tx_head_addr);
2237 ew32(TCTL, tctl);
2238 E1000_WRITE_FLUSH();
2239
2240 adapter->tx_fifo_head = 0;
2241 atomic_set(&adapter->tx_fifo_stall, 0);
2242 netif_wake_queue(netdev);
2243 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2244 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2245 }
2246 }
2247 }
2248
2249 static bool e1000_has_link(struct e1000_adapter *adapter)
2250 {
2251 struct e1000_hw *hw = &adapter->hw;
2252 bool link_active = false;
2253
2254 /* get_link_status is set on LSC (link status) interrupt or
2255 * rx sequence error interrupt. get_link_status will stay
2256 * false until the e1000_check_for_link establishes link
2257 * for copper adapters ONLY
2258 */
2259 switch (hw->media_type) {
2260 case e1000_media_type_copper:
2261 if (hw->get_link_status) {
2262 e1000_check_for_link(hw);
2263 link_active = !hw->get_link_status;
2264 } else {
2265 link_active = true;
2266 }
2267 break;
2268 case e1000_media_type_fiber:
2269 e1000_check_for_link(hw);
2270 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2271 break;
2272 case e1000_media_type_internal_serdes:
2273 e1000_check_for_link(hw);
2274 link_active = hw->serdes_has_link;
2275 break;
2276 default:
2277 break;
2278 }
2279
2280 return link_active;
2281 }
2282
2283 /**
2284 * e1000_watchdog - Timer Call-back
2285 * @data: pointer to adapter cast into an unsigned long
2286 **/
2287 static void e1000_watchdog(unsigned long data)
2288 {
2289 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2290 struct e1000_hw *hw = &adapter->hw;
2291 struct net_device *netdev = adapter->netdev;
2292 struct e1000_tx_ring *txdr = adapter->tx_ring;
2293 u32 link, tctl;
2294
2295 link = e1000_has_link(adapter);
2296 if ((netif_carrier_ok(netdev)) && link)
2297 goto link_up;
2298
2299 if (link) {
2300 if (!netif_carrier_ok(netdev)) {
2301 u32 ctrl;
2302 bool txb2b = true;
2303 /* update snapshot of PHY registers on LSC */
2304 e1000_get_speed_and_duplex(hw,
2305 &adapter->link_speed,
2306 &adapter->link_duplex);
2307
2308 ctrl = er32(CTRL);
2309 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2310 "Flow Control: %s\n",
2311 netdev->name,
2312 adapter->link_speed,
2313 adapter->link_duplex == FULL_DUPLEX ?
2314 "Full Duplex" : "Half Duplex",
2315 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2316 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2317 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2318 E1000_CTRL_TFCE) ? "TX" : "None" )));
2319
2320 /* tweak tx_queue_len according to speed/duplex
2321 * and adjust the timeout factor */
2322 netdev->tx_queue_len = adapter->tx_queue_len;
2323 adapter->tx_timeout_factor = 1;
2324 switch (adapter->link_speed) {
2325 case SPEED_10:
2326 txb2b = false;
2327 netdev->tx_queue_len = 10;
2328 adapter->tx_timeout_factor = 16;
2329 break;
2330 case SPEED_100:
2331 txb2b = false;
2332 netdev->tx_queue_len = 100;
2333 /* maybe add some timeout factor ? */
2334 break;
2335 }
2336
2337 /* enable transmits in the hardware */
2338 tctl = er32(TCTL);
2339 tctl |= E1000_TCTL_EN;
2340 ew32(TCTL, tctl);
2341
2342 netif_carrier_on(netdev);
2343 if (!test_bit(__E1000_DOWN, &adapter->flags))
2344 mod_timer(&adapter->phy_info_timer,
2345 round_jiffies(jiffies + 2 * HZ));
2346 adapter->smartspeed = 0;
2347 }
2348 } else {
2349 if (netif_carrier_ok(netdev)) {
2350 adapter->link_speed = 0;
2351 adapter->link_duplex = 0;
2352 printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2353 netdev->name);
2354 netif_carrier_off(netdev);
2355
2356 if (!test_bit(__E1000_DOWN, &adapter->flags))
2357 mod_timer(&adapter->phy_info_timer,
2358 round_jiffies(jiffies + 2 * HZ));
2359 }
2360
2361 e1000_smartspeed(adapter);
2362 }
2363
2364 link_up:
2365 e1000_update_stats(adapter);
2366
2367 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2368 adapter->tpt_old = adapter->stats.tpt;
2369 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2370 adapter->colc_old = adapter->stats.colc;
2371
2372 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2373 adapter->gorcl_old = adapter->stats.gorcl;
2374 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2375 adapter->gotcl_old = adapter->stats.gotcl;
2376
2377 e1000_update_adaptive(hw);
2378
2379 if (!netif_carrier_ok(netdev)) {
2380 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2381 /* We've lost link, so the controller stops DMA,
2382 * but we've got queued Tx work that's never going
2383 * to get done, so reset controller to flush Tx.
2384 * (Do the reset outside of interrupt context). */
2385 adapter->tx_timeout_count++;
2386 schedule_work(&adapter->reset_task);
2387 /* return immediately since reset is imminent */
2388 return;
2389 }
2390 }
2391
2392 /* Cause software interrupt to ensure rx ring is cleaned */
2393 ew32(ICS, E1000_ICS_RXDMT0);
2394
2395 /* Force detection of hung controller every watchdog period */
2396 adapter->detect_tx_hung = true;
2397
2398 /* Reset the timer */
2399 if (!test_bit(__E1000_DOWN, &adapter->flags))
2400 mod_timer(&adapter->watchdog_timer,
2401 round_jiffies(jiffies + 2 * HZ));
2402 }
2403
2404 enum latency_range {
2405 lowest_latency = 0,
2406 low_latency = 1,
2407 bulk_latency = 2,
2408 latency_invalid = 255
2409 };
2410
2411 /**
2412 * e1000_update_itr - update the dynamic ITR value based on statistics
2413 * @adapter: pointer to adapter
2414 * @itr_setting: current adapter->itr
2415 * @packets: the number of packets during this measurement interval
2416 * @bytes: the number of bytes during this measurement interval
2417 *
2418 * Stores a new ITR value based on packets and byte
2419 * counts during the last interrupt. The advantage of per interrupt
2420 * computation is faster updates and more accurate ITR for the current
2421 * traffic pattern. Constants in this function were computed
2422 * based on theoretical maximum wire speed and thresholds were set based
2423 * on testing data as well as attempting to minimize response time
2424 * while increasing bulk throughput.
2425 * this functionality is controlled by the InterruptThrottleRate module
2426 * parameter (see e1000_param.c)
2427 **/
2428 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2429 u16 itr_setting, int packets, int bytes)
2430 {
2431 unsigned int retval = itr_setting;
2432 struct e1000_hw *hw = &adapter->hw;
2433
2434 if (unlikely(hw->mac_type < e1000_82540))
2435 goto update_itr_done;
2436
2437 if (packets == 0)
2438 goto update_itr_done;
2439
2440 switch (itr_setting) {
2441 case lowest_latency:
2442 /* jumbo frames get bulk treatment*/
2443 if (bytes/packets > 8000)
2444 retval = bulk_latency;
2445 else if ((packets < 5) && (bytes > 512))
2446 retval = low_latency;
2447 break;
2448 case low_latency: /* 50 usec aka 20000 ints/s */
2449 if (bytes > 10000) {
2450 /* jumbo frames need bulk latency setting */
2451 if (bytes/packets > 8000)
2452 retval = bulk_latency;
2453 else if ((packets < 10) || ((bytes/packets) > 1200))
2454 retval = bulk_latency;
2455 else if ((packets > 35))
2456 retval = lowest_latency;
2457 } else if (bytes/packets > 2000)
2458 retval = bulk_latency;
2459 else if (packets <= 2 && bytes < 512)
2460 retval = lowest_latency;
2461 break;
2462 case bulk_latency: /* 250 usec aka 4000 ints/s */
2463 if (bytes > 25000) {
2464 if (packets > 35)
2465 retval = low_latency;
2466 } else if (bytes < 6000) {
2467 retval = low_latency;
2468 }
2469 break;
2470 }
2471
2472 update_itr_done:
2473 return retval;
2474 }
2475
2476 static void e1000_set_itr(struct e1000_adapter *adapter)
2477 {
2478 struct e1000_hw *hw = &adapter->hw;
2479 u16 current_itr;
2480 u32 new_itr = adapter->itr;
2481
2482 if (unlikely(hw->mac_type < e1000_82540))
2483 return;
2484
2485 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2486 if (unlikely(adapter->link_speed != SPEED_1000)) {
2487 current_itr = 0;
2488 new_itr = 4000;
2489 goto set_itr_now;
2490 }
2491
2492 adapter->tx_itr = e1000_update_itr(adapter,
2493 adapter->tx_itr,
2494 adapter->total_tx_packets,
2495 adapter->total_tx_bytes);
2496 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2497 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2498 adapter->tx_itr = low_latency;
2499
2500 adapter->rx_itr = e1000_update_itr(adapter,
2501 adapter->rx_itr,
2502 adapter->total_rx_packets,
2503 adapter->total_rx_bytes);
2504 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2505 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2506 adapter->rx_itr = low_latency;
2507
2508 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2509
2510 switch (current_itr) {
2511 /* counts and packets in update_itr are dependent on these numbers */
2512 case lowest_latency:
2513 new_itr = 70000;
2514 break;
2515 case low_latency:
2516 new_itr = 20000; /* aka hwitr = ~200 */
2517 break;
2518 case bulk_latency:
2519 new_itr = 4000;
2520 break;
2521 default:
2522 break;
2523 }
2524
2525 set_itr_now:
2526 if (new_itr != adapter->itr) {
2527 /* this attempts to bias the interrupt rate towards Bulk
2528 * by adding intermediate steps when interrupt rate is
2529 * increasing */
2530 new_itr = new_itr > adapter->itr ?
2531 min(adapter->itr + (new_itr >> 2), new_itr) :
2532 new_itr;
2533 adapter->itr = new_itr;
2534 ew32(ITR, 1000000000 / (new_itr * 256));
2535 }
2536
2537 return;
2538 }
2539
2540 #define E1000_TX_FLAGS_CSUM 0x00000001
2541 #define E1000_TX_FLAGS_VLAN 0x00000002
2542 #define E1000_TX_FLAGS_TSO 0x00000004
2543 #define E1000_TX_FLAGS_IPV4 0x00000008
2544 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2545 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2546
2547 static int e1000_tso(struct e1000_adapter *adapter,
2548 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2549 {
2550 struct e1000_context_desc *context_desc;
2551 struct e1000_buffer *buffer_info;
2552 unsigned int i;
2553 u32 cmd_length = 0;
2554 u16 ipcse = 0, tucse, mss;
2555 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2556 int err;
2557
2558 if (skb_is_gso(skb)) {
2559 if (skb_header_cloned(skb)) {
2560 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2561 if (err)
2562 return err;
2563 }
2564
2565 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2566 mss = skb_shinfo(skb)->gso_size;
2567 if (skb->protocol == htons(ETH_P_IP)) {
2568 struct iphdr *iph = ip_hdr(skb);
2569 iph->tot_len = 0;
2570 iph->check = 0;
2571 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2572 iph->daddr, 0,
2573 IPPROTO_TCP,
2574 0);
2575 cmd_length = E1000_TXD_CMD_IP;
2576 ipcse = skb_transport_offset(skb) - 1;
2577 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2578 ipv6_hdr(skb)->payload_len = 0;
2579 tcp_hdr(skb)->check =
2580 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2581 &ipv6_hdr(skb)->daddr,
2582 0, IPPROTO_TCP, 0);
2583 ipcse = 0;
2584 }
2585 ipcss = skb_network_offset(skb);
2586 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2587 tucss = skb_transport_offset(skb);
2588 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2589 tucse = 0;
2590
2591 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2592 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2593
2594 i = tx_ring->next_to_use;
2595 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2596 buffer_info = &tx_ring->buffer_info[i];
2597
2598 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2599 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2600 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2601 context_desc->upper_setup.tcp_fields.tucss = tucss;
2602 context_desc->upper_setup.tcp_fields.tucso = tucso;
2603 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2604 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2605 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2606 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2607
2608 buffer_info->time_stamp = jiffies;
2609 buffer_info->next_to_watch = i;
2610
2611 if (++i == tx_ring->count) i = 0;
2612 tx_ring->next_to_use = i;
2613
2614 return true;
2615 }
2616 return false;
2617 }
2618
2619 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2620 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2621 {
2622 struct e1000_context_desc *context_desc;
2623 struct e1000_buffer *buffer_info;
2624 unsigned int i;
2625 u8 css;
2626 u32 cmd_len = E1000_TXD_CMD_DEXT;
2627
2628 if (skb->ip_summed != CHECKSUM_PARTIAL)
2629 return false;
2630
2631 switch (skb->protocol) {
2632 case cpu_to_be16(ETH_P_IP):
2633 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2634 cmd_len |= E1000_TXD_CMD_TCP;
2635 break;
2636 case cpu_to_be16(ETH_P_IPV6):
2637 /* XXX not handling all IPV6 headers */
2638 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2639 cmd_len |= E1000_TXD_CMD_TCP;
2640 break;
2641 default:
2642 if (unlikely(net_ratelimit()))
2643 DPRINTK(DRV, WARNING,
2644 "checksum_partial proto=%x!\n", skb->protocol);
2645 break;
2646 }
2647
2648 css = skb_transport_offset(skb);
2649
2650 i = tx_ring->next_to_use;
2651 buffer_info = &tx_ring->buffer_info[i];
2652 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2653
2654 context_desc->lower_setup.ip_config = 0;
2655 context_desc->upper_setup.tcp_fields.tucss = css;
2656 context_desc->upper_setup.tcp_fields.tucso =
2657 css + skb->csum_offset;
2658 context_desc->upper_setup.tcp_fields.tucse = 0;
2659 context_desc->tcp_seg_setup.data = 0;
2660 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2661
2662 buffer_info->time_stamp = jiffies;
2663 buffer_info->next_to_watch = i;
2664
2665 if (unlikely(++i == tx_ring->count)) i = 0;
2666 tx_ring->next_to_use = i;
2667
2668 return true;
2669 }
2670
2671 #define E1000_MAX_TXD_PWR 12
2672 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2673
2674 static int e1000_tx_map(struct e1000_adapter *adapter,
2675 struct e1000_tx_ring *tx_ring,
2676 struct sk_buff *skb, unsigned int first,
2677 unsigned int max_per_txd, unsigned int nr_frags,
2678 unsigned int mss)
2679 {
2680 struct e1000_hw *hw = &adapter->hw;
2681 struct pci_dev *pdev = adapter->pdev;
2682 struct e1000_buffer *buffer_info;
2683 unsigned int len = skb_headlen(skb);
2684 unsigned int offset = 0, size, count = 0, i;
2685 unsigned int f;
2686
2687 i = tx_ring->next_to_use;
2688
2689 while (len) {
2690 buffer_info = &tx_ring->buffer_info[i];
2691 size = min(len, max_per_txd);
2692 /* Workaround for Controller erratum --
2693 * descriptor for non-tso packet in a linear SKB that follows a
2694 * tso gets written back prematurely before the data is fully
2695 * DMA'd to the controller */
2696 if (!skb->data_len && tx_ring->last_tx_tso &&
2697 !skb_is_gso(skb)) {
2698 tx_ring->last_tx_tso = 0;
2699 size -= 4;
2700 }
2701
2702 /* Workaround for premature desc write-backs
2703 * in TSO mode. Append 4-byte sentinel desc */
2704 if (unlikely(mss && !nr_frags && size == len && size > 8))
2705 size -= 4;
2706 /* work-around for errata 10 and it applies
2707 * to all controllers in PCI-X mode
2708 * The fix is to make sure that the first descriptor of a
2709 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2710 */
2711 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2712 (size > 2015) && count == 0))
2713 size = 2015;
2714
2715 /* Workaround for potential 82544 hang in PCI-X. Avoid
2716 * terminating buffers within evenly-aligned dwords. */
2717 if (unlikely(adapter->pcix_82544 &&
2718 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2719 size > 4))
2720 size -= 4;
2721
2722 buffer_info->length = size;
2723 /* set time_stamp *before* dma to help avoid a possible race */
2724 buffer_info->time_stamp = jiffies;
2725 buffer_info->mapped_as_page = false;
2726 buffer_info->dma = pci_map_single(pdev, skb->data + offset,
2727 size, PCI_DMA_TODEVICE);
2728 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2729 goto dma_error;
2730 buffer_info->next_to_watch = i;
2731
2732 len -= size;
2733 offset += size;
2734 count++;
2735 if (len) {
2736 i++;
2737 if (unlikely(i == tx_ring->count))
2738 i = 0;
2739 }
2740 }
2741
2742 for (f = 0; f < nr_frags; f++) {
2743 struct skb_frag_struct *frag;
2744
2745 frag = &skb_shinfo(skb)->frags[f];
2746 len = frag->size;
2747 offset = frag->page_offset;
2748
2749 while (len) {
2750 i++;
2751 if (unlikely(i == tx_ring->count))
2752 i = 0;
2753
2754 buffer_info = &tx_ring->buffer_info[i];
2755 size = min(len, max_per_txd);
2756 /* Workaround for premature desc write-backs
2757 * in TSO mode. Append 4-byte sentinel desc */
2758 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2759 size -= 4;
2760 /* Workaround for potential 82544 hang in PCI-X.
2761 * Avoid terminating buffers within evenly-aligned
2762 * dwords. */
2763 if (unlikely(adapter->pcix_82544 &&
2764 !((unsigned long)(page_to_phys(frag->page) + offset
2765 + size - 1) & 4) &&
2766 size > 4))
2767 size -= 4;
2768
2769 buffer_info->length = size;
2770 buffer_info->time_stamp = jiffies;
2771 buffer_info->mapped_as_page = true;
2772 buffer_info->dma = pci_map_page(pdev, frag->page,
2773 offset, size,
2774 PCI_DMA_TODEVICE);
2775 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2776 goto dma_error;
2777 buffer_info->next_to_watch = i;
2778
2779 len -= size;
2780 offset += size;
2781 count++;
2782 }
2783 }
2784
2785 tx_ring->buffer_info[i].skb = skb;
2786 tx_ring->buffer_info[first].next_to_watch = i;
2787
2788 return count;
2789
2790 dma_error:
2791 dev_err(&pdev->dev, "TX DMA map failed\n");
2792 buffer_info->dma = 0;
2793 if (count)
2794 count--;
2795
2796 while (count--) {
2797 if (i==0)
2798 i += tx_ring->count;
2799 i--;
2800 buffer_info = &tx_ring->buffer_info[i];
2801 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2802 }
2803
2804 return 0;
2805 }
2806
2807 static void e1000_tx_queue(struct e1000_adapter *adapter,
2808 struct e1000_tx_ring *tx_ring, int tx_flags,
2809 int count)
2810 {
2811 struct e1000_hw *hw = &adapter->hw;
2812 struct e1000_tx_desc *tx_desc = NULL;
2813 struct e1000_buffer *buffer_info;
2814 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2815 unsigned int i;
2816
2817 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2818 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2819 E1000_TXD_CMD_TSE;
2820 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2821
2822 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2823 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2824 }
2825
2826 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2827 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2828 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2829 }
2830
2831 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2832 txd_lower |= E1000_TXD_CMD_VLE;
2833 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2834 }
2835
2836 i = tx_ring->next_to_use;
2837
2838 while (count--) {
2839 buffer_info = &tx_ring->buffer_info[i];
2840 tx_desc = E1000_TX_DESC(*tx_ring, i);
2841 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2842 tx_desc->lower.data =
2843 cpu_to_le32(txd_lower | buffer_info->length);
2844 tx_desc->upper.data = cpu_to_le32(txd_upper);
2845 if (unlikely(++i == tx_ring->count)) i = 0;
2846 }
2847
2848 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2849
2850 /* Force memory writes to complete before letting h/w
2851 * know there are new descriptors to fetch. (Only
2852 * applicable for weak-ordered memory model archs,
2853 * such as IA-64). */
2854 wmb();
2855
2856 tx_ring->next_to_use = i;
2857 writel(i, hw->hw_addr + tx_ring->tdt);
2858 /* we need this if more than one processor can write to our tail
2859 * at a time, it syncronizes IO on IA64/Altix systems */
2860 mmiowb();
2861 }
2862
2863 /**
2864 * 82547 workaround to avoid controller hang in half-duplex environment.
2865 * The workaround is to avoid queuing a large packet that would span
2866 * the internal Tx FIFO ring boundary by notifying the stack to resend
2867 * the packet at a later time. This gives the Tx FIFO an opportunity to
2868 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2869 * to the beginning of the Tx FIFO.
2870 **/
2871
2872 #define E1000_FIFO_HDR 0x10
2873 #define E1000_82547_PAD_LEN 0x3E0
2874
2875 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2876 struct sk_buff *skb)
2877 {
2878 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2879 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2880
2881 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2882
2883 if (adapter->link_duplex != HALF_DUPLEX)
2884 goto no_fifo_stall_required;
2885
2886 if (atomic_read(&adapter->tx_fifo_stall))
2887 return 1;
2888
2889 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2890 atomic_set(&adapter->tx_fifo_stall, 1);
2891 return 1;
2892 }
2893
2894 no_fifo_stall_required:
2895 adapter->tx_fifo_head += skb_fifo_len;
2896 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2897 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2898 return 0;
2899 }
2900
2901 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2902 {
2903 struct e1000_adapter *adapter = netdev_priv(netdev);
2904 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2905
2906 netif_stop_queue(netdev);
2907 /* Herbert's original patch had:
2908 * smp_mb__after_netif_stop_queue();
2909 * but since that doesn't exist yet, just open code it. */
2910 smp_mb();
2911
2912 /* We need to check again in a case another CPU has just
2913 * made room available. */
2914 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2915 return -EBUSY;
2916
2917 /* A reprieve! */
2918 netif_start_queue(netdev);
2919 ++adapter->restart_queue;
2920 return 0;
2921 }
2922
2923 static int e1000_maybe_stop_tx(struct net_device *netdev,
2924 struct e1000_tx_ring *tx_ring, int size)
2925 {
2926 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2927 return 0;
2928 return __e1000_maybe_stop_tx(netdev, size);
2929 }
2930
2931 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2932 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
2933 struct net_device *netdev)
2934 {
2935 struct e1000_adapter *adapter = netdev_priv(netdev);
2936 struct e1000_hw *hw = &adapter->hw;
2937 struct e1000_tx_ring *tx_ring;
2938 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2939 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2940 unsigned int tx_flags = 0;
2941 unsigned int len = skb->len - skb->data_len;
2942 unsigned int nr_frags;
2943 unsigned int mss;
2944 int count = 0;
2945 int tso;
2946 unsigned int f;
2947
2948 /* This goes back to the question of how to logically map a tx queue
2949 * to a flow. Right now, performance is impacted slightly negatively
2950 * if using multiple tx queues. If the stack breaks away from a
2951 * single qdisc implementation, we can look at this again. */
2952 tx_ring = adapter->tx_ring;
2953
2954 if (unlikely(skb->len <= 0)) {
2955 dev_kfree_skb_any(skb);
2956 return NETDEV_TX_OK;
2957 }
2958
2959 mss = skb_shinfo(skb)->gso_size;
2960 /* The controller does a simple calculation to
2961 * make sure there is enough room in the FIFO before
2962 * initiating the DMA for each buffer. The calc is:
2963 * 4 = ceil(buffer len/mss). To make sure we don't
2964 * overrun the FIFO, adjust the max buffer len if mss
2965 * drops. */
2966 if (mss) {
2967 u8 hdr_len;
2968 max_per_txd = min(mss << 2, max_per_txd);
2969 max_txd_pwr = fls(max_per_txd) - 1;
2970
2971 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2972 if (skb->data_len && hdr_len == len) {
2973 switch (hw->mac_type) {
2974 unsigned int pull_size;
2975 case e1000_82544:
2976 /* Make sure we have room to chop off 4 bytes,
2977 * and that the end alignment will work out to
2978 * this hardware's requirements
2979 * NOTE: this is a TSO only workaround
2980 * if end byte alignment not correct move us
2981 * into the next dword */
2982 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
2983 break;
2984 /* fall through */
2985 pull_size = min((unsigned int)4, skb->data_len);
2986 if (!__pskb_pull_tail(skb, pull_size)) {
2987 DPRINTK(DRV, ERR,
2988 "__pskb_pull_tail failed.\n");
2989 dev_kfree_skb_any(skb);
2990 return NETDEV_TX_OK;
2991 }
2992 len = skb->len - skb->data_len;
2993 break;
2994 default:
2995 /* do nothing */
2996 break;
2997 }
2998 }
2999 }
3000
3001 /* reserve a descriptor for the offload context */
3002 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3003 count++;
3004 count++;
3005
3006 /* Controller Erratum workaround */
3007 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3008 count++;
3009
3010 count += TXD_USE_COUNT(len, max_txd_pwr);
3011
3012 if (adapter->pcix_82544)
3013 count++;
3014
3015 /* work-around for errata 10 and it applies to all controllers
3016 * in PCI-X mode, so add one more descriptor to the count
3017 */
3018 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3019 (len > 2015)))
3020 count++;
3021
3022 nr_frags = skb_shinfo(skb)->nr_frags;
3023 for (f = 0; f < nr_frags; f++)
3024 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3025 max_txd_pwr);
3026 if (adapter->pcix_82544)
3027 count += nr_frags;
3028
3029 /* need: count + 2 desc gap to keep tail from touching
3030 * head, otherwise try next time */
3031 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3032 return NETDEV_TX_BUSY;
3033
3034 if (unlikely(hw->mac_type == e1000_82547)) {
3035 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3036 netif_stop_queue(netdev);
3037 if (!test_bit(__E1000_DOWN, &adapter->flags))
3038 mod_timer(&adapter->tx_fifo_stall_timer,
3039 jiffies + 1);
3040 return NETDEV_TX_BUSY;
3041 }
3042 }
3043
3044 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3045 tx_flags |= E1000_TX_FLAGS_VLAN;
3046 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3047 }
3048
3049 first = tx_ring->next_to_use;
3050
3051 tso = e1000_tso(adapter, tx_ring, skb);
3052 if (tso < 0) {
3053 dev_kfree_skb_any(skb);
3054 return NETDEV_TX_OK;
3055 }
3056
3057 if (likely(tso)) {
3058 if (likely(hw->mac_type != e1000_82544))
3059 tx_ring->last_tx_tso = 1;
3060 tx_flags |= E1000_TX_FLAGS_TSO;
3061 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3062 tx_flags |= E1000_TX_FLAGS_CSUM;
3063
3064 if (likely(skb->protocol == htons(ETH_P_IP)))
3065 tx_flags |= E1000_TX_FLAGS_IPV4;
3066
3067 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3068 nr_frags, mss);
3069
3070 if (count) {
3071 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3072 /* Make sure there is space in the ring for the next send. */
3073 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3074
3075 } else {
3076 dev_kfree_skb_any(skb);
3077 tx_ring->buffer_info[first].time_stamp = 0;
3078 tx_ring->next_to_use = first;
3079 }
3080
3081 return NETDEV_TX_OK;
3082 }
3083
3084 /**
3085 * e1000_tx_timeout - Respond to a Tx Hang
3086 * @netdev: network interface device structure
3087 **/
3088
3089 static void e1000_tx_timeout(struct net_device *netdev)
3090 {
3091 struct e1000_adapter *adapter = netdev_priv(netdev);
3092
3093 /* Do the reset outside of interrupt context */
3094 adapter->tx_timeout_count++;
3095 schedule_work(&adapter->reset_task);
3096 }
3097
3098 static void e1000_reset_task(struct work_struct *work)
3099 {
3100 struct e1000_adapter *adapter =
3101 container_of(work, struct e1000_adapter, reset_task);
3102
3103 e1000_reinit_locked(adapter);
3104 }
3105
3106 /**
3107 * e1000_get_stats - Get System Network Statistics
3108 * @netdev: network interface device structure
3109 *
3110 * Returns the address of the device statistics structure.
3111 * The statistics are actually updated from the timer callback.
3112 **/
3113
3114 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3115 {
3116 /* only return the current stats */
3117 return &netdev->stats;
3118 }
3119
3120 /**
3121 * e1000_change_mtu - Change the Maximum Transfer Unit
3122 * @netdev: network interface device structure
3123 * @new_mtu: new value for maximum frame size
3124 *
3125 * Returns 0 on success, negative on failure
3126 **/
3127
3128 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3129 {
3130 struct e1000_adapter *adapter = netdev_priv(netdev);
3131 struct e1000_hw *hw = &adapter->hw;
3132 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3133
3134 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3135 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3136 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3137 return -EINVAL;
3138 }
3139
3140 /* Adapter-specific max frame size limits. */
3141 switch (hw->mac_type) {
3142 case e1000_undefined ... e1000_82542_rev2_1:
3143 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3144 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3145 return -EINVAL;
3146 }
3147 break;
3148 default:
3149 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3150 break;
3151 }
3152
3153 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3154 msleep(1);
3155 /* e1000_down has a dependency on max_frame_size */
3156 hw->max_frame_size = max_frame;
3157 if (netif_running(netdev))
3158 e1000_down(adapter);
3159
3160 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3161 * means we reserve 2 more, this pushes us to allocate from the next
3162 * larger slab size.
3163 * i.e. RXBUFFER_2048 --> size-4096 slab
3164 * however with the new *_jumbo_rx* routines, jumbo receives will use
3165 * fragmented skbs */
3166
3167 if (max_frame <= E1000_RXBUFFER_2048)
3168 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3169 else
3170 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3171 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3172 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3173 adapter->rx_buffer_len = PAGE_SIZE;
3174 #endif
3175
3176 /* adjust allocation if LPE protects us, and we aren't using SBP */
3177 if (!hw->tbi_compatibility_on &&
3178 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3179 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3180 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3181
3182 printk(KERN_INFO "e1000: %s changing MTU from %d to %d\n",
3183 netdev->name, netdev->mtu, new_mtu);
3184 netdev->mtu = new_mtu;
3185
3186 if (netif_running(netdev))
3187 e1000_up(adapter);
3188 else
3189 e1000_reset(adapter);
3190
3191 clear_bit(__E1000_RESETTING, &adapter->flags);
3192
3193 return 0;
3194 }
3195
3196 /**
3197 * e1000_update_stats - Update the board statistics counters
3198 * @adapter: board private structure
3199 **/
3200
3201 void e1000_update_stats(struct e1000_adapter *adapter)
3202 {
3203 struct net_device *netdev = adapter->netdev;
3204 struct e1000_hw *hw = &adapter->hw;
3205 struct pci_dev *pdev = adapter->pdev;
3206 unsigned long flags;
3207 u16 phy_tmp;
3208
3209 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3210
3211 /*
3212 * Prevent stats update while adapter is being reset, or if the pci
3213 * connection is down.
3214 */
3215 if (adapter->link_speed == 0)
3216 return;
3217 if (pci_channel_offline(pdev))
3218 return;
3219
3220 spin_lock_irqsave(&adapter->stats_lock, flags);
3221
3222 /* these counters are modified from e1000_tbi_adjust_stats,
3223 * called from the interrupt context, so they must only
3224 * be written while holding adapter->stats_lock
3225 */
3226
3227 adapter->stats.crcerrs += er32(CRCERRS);
3228 adapter->stats.gprc += er32(GPRC);
3229 adapter->stats.gorcl += er32(GORCL);
3230 adapter->stats.gorch += er32(GORCH);
3231 adapter->stats.bprc += er32(BPRC);
3232 adapter->stats.mprc += er32(MPRC);
3233 adapter->stats.roc += er32(ROC);
3234
3235 adapter->stats.prc64 += er32(PRC64);
3236 adapter->stats.prc127 += er32(PRC127);
3237 adapter->stats.prc255 += er32(PRC255);
3238 adapter->stats.prc511 += er32(PRC511);
3239 adapter->stats.prc1023 += er32(PRC1023);
3240 adapter->stats.prc1522 += er32(PRC1522);
3241
3242 adapter->stats.symerrs += er32(SYMERRS);
3243 adapter->stats.mpc += er32(MPC);
3244 adapter->stats.scc += er32(SCC);
3245 adapter->stats.ecol += er32(ECOL);
3246 adapter->stats.mcc += er32(MCC);
3247 adapter->stats.latecol += er32(LATECOL);
3248 adapter->stats.dc += er32(DC);
3249 adapter->stats.sec += er32(SEC);
3250 adapter->stats.rlec += er32(RLEC);
3251 adapter->stats.xonrxc += er32(XONRXC);
3252 adapter->stats.xontxc += er32(XONTXC);
3253 adapter->stats.xoffrxc += er32(XOFFRXC);
3254 adapter->stats.xofftxc += er32(XOFFTXC);
3255 adapter->stats.fcruc += er32(FCRUC);
3256 adapter->stats.gptc += er32(GPTC);
3257 adapter->stats.gotcl += er32(GOTCL);
3258 adapter->stats.gotch += er32(GOTCH);
3259 adapter->stats.rnbc += er32(RNBC);
3260 adapter->stats.ruc += er32(RUC);
3261 adapter->stats.rfc += er32(RFC);
3262 adapter->stats.rjc += er32(RJC);
3263 adapter->stats.torl += er32(TORL);
3264 adapter->stats.torh += er32(TORH);
3265 adapter->stats.totl += er32(TOTL);
3266 adapter->stats.toth += er32(TOTH);
3267 adapter->stats.tpr += er32(TPR);
3268
3269 adapter->stats.ptc64 += er32(PTC64);
3270 adapter->stats.ptc127 += er32(PTC127);
3271 adapter->stats.ptc255 += er32(PTC255);
3272 adapter->stats.ptc511 += er32(PTC511);
3273 adapter->stats.ptc1023 += er32(PTC1023);
3274 adapter->stats.ptc1522 += er32(PTC1522);
3275
3276 adapter->stats.mptc += er32(MPTC);
3277 adapter->stats.bptc += er32(BPTC);
3278
3279 /* used for adaptive IFS */
3280
3281 hw->tx_packet_delta = er32(TPT);
3282 adapter->stats.tpt += hw->tx_packet_delta;
3283 hw->collision_delta = er32(COLC);
3284 adapter->stats.colc += hw->collision_delta;
3285
3286 if (hw->mac_type >= e1000_82543) {
3287 adapter->stats.algnerrc += er32(ALGNERRC);
3288 adapter->stats.rxerrc += er32(RXERRC);
3289 adapter->stats.tncrs += er32(TNCRS);
3290 adapter->stats.cexterr += er32(CEXTERR);
3291 adapter->stats.tsctc += er32(TSCTC);
3292 adapter->stats.tsctfc += er32(TSCTFC);
3293 }
3294
3295 /* Fill out the OS statistics structure */
3296 netdev->stats.multicast = adapter->stats.mprc;
3297 netdev->stats.collisions = adapter->stats.colc;
3298
3299 /* Rx Errors */
3300
3301 /* RLEC on some newer hardware can be incorrect so build
3302 * our own version based on RUC and ROC */
3303 netdev->stats.rx_errors = adapter->stats.rxerrc +
3304 adapter->stats.crcerrs + adapter->stats.algnerrc +
3305 adapter->stats.ruc + adapter->stats.roc +
3306 adapter->stats.cexterr;
3307 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3308 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3309 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3310 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3311 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3312
3313 /* Tx Errors */
3314 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3315 netdev->stats.tx_errors = adapter->stats.txerrc;
3316 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3317 netdev->stats.tx_window_errors = adapter->stats.latecol;
3318 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3319 if (hw->bad_tx_carr_stats_fd &&
3320 adapter->link_duplex == FULL_DUPLEX) {
3321 netdev->stats.tx_carrier_errors = 0;
3322 adapter->stats.tncrs = 0;
3323 }
3324
3325 /* Tx Dropped needs to be maintained elsewhere */
3326
3327 /* Phy Stats */
3328 if (hw->media_type == e1000_media_type_copper) {
3329 if ((adapter->link_speed == SPEED_1000) &&
3330 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3331 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3332 adapter->phy_stats.idle_errors += phy_tmp;
3333 }
3334
3335 if ((hw->mac_type <= e1000_82546) &&
3336 (hw->phy_type == e1000_phy_m88) &&
3337 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3338 adapter->phy_stats.receive_errors += phy_tmp;
3339 }
3340
3341 /* Management Stats */
3342 if (hw->has_smbus) {
3343 adapter->stats.mgptc += er32(MGTPTC);
3344 adapter->stats.mgprc += er32(MGTPRC);
3345 adapter->stats.mgpdc += er32(MGTPDC);
3346 }
3347
3348 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3349 }
3350
3351 /**
3352 * e1000_intr - Interrupt Handler
3353 * @irq: interrupt number
3354 * @data: pointer to a network interface device structure
3355 **/
3356
3357 static irqreturn_t e1000_intr(int irq, void *data)
3358 {
3359 struct net_device *netdev = data;
3360 struct e1000_adapter *adapter = netdev_priv(netdev);
3361 struct e1000_hw *hw = &adapter->hw;
3362 u32 icr = er32(ICR);
3363
3364 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3365 return IRQ_NONE; /* Not our interrupt */
3366
3367 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3368 hw->get_link_status = 1;
3369 /* guard against interrupt when we're going down */
3370 if (!test_bit(__E1000_DOWN, &adapter->flags))
3371 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3372 }
3373
3374 /* disable interrupts, without the synchronize_irq bit */
3375 ew32(IMC, ~0);
3376 E1000_WRITE_FLUSH();
3377
3378 if (likely(napi_schedule_prep(&adapter->napi))) {
3379 adapter->total_tx_bytes = 0;
3380 adapter->total_tx_packets = 0;
3381 adapter->total_rx_bytes = 0;
3382 adapter->total_rx_packets = 0;
3383 __napi_schedule(&adapter->napi);
3384 } else {
3385 /* this really should not happen! if it does it is basically a
3386 * bug, but not a hard error, so enable ints and continue */
3387 if (!test_bit(__E1000_DOWN, &adapter->flags))
3388 e1000_irq_enable(adapter);
3389 }
3390
3391 return IRQ_HANDLED;
3392 }
3393
3394 /**
3395 * e1000_clean - NAPI Rx polling callback
3396 * @adapter: board private structure
3397 **/
3398 static int e1000_clean(struct napi_struct *napi, int budget)
3399 {
3400 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3401 int tx_clean_complete = 0, work_done = 0;
3402
3403 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3404
3405 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3406
3407 if (!tx_clean_complete)
3408 work_done = budget;
3409
3410 /* If budget not fully consumed, exit the polling mode */
3411 if (work_done < budget) {
3412 if (likely(adapter->itr_setting & 3))
3413 e1000_set_itr(adapter);
3414 napi_complete(napi);
3415 if (!test_bit(__E1000_DOWN, &adapter->flags))
3416 e1000_irq_enable(adapter);
3417 }
3418
3419 return work_done;
3420 }
3421
3422 /**
3423 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3424 * @adapter: board private structure
3425 **/
3426 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3427 struct e1000_tx_ring *tx_ring)
3428 {
3429 struct e1000_hw *hw = &adapter->hw;
3430 struct net_device *netdev = adapter->netdev;
3431 struct e1000_tx_desc *tx_desc, *eop_desc;
3432 struct e1000_buffer *buffer_info;
3433 unsigned int i, eop;
3434 unsigned int count = 0;
3435 unsigned int total_tx_bytes=0, total_tx_packets=0;
3436
3437 i = tx_ring->next_to_clean;
3438 eop = tx_ring->buffer_info[i].next_to_watch;
3439 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3440
3441 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3442 (count < tx_ring->count)) {
3443 bool cleaned = false;
3444 for ( ; !cleaned; count++) {
3445 tx_desc = E1000_TX_DESC(*tx_ring, i);
3446 buffer_info = &tx_ring->buffer_info[i];
3447 cleaned = (i == eop);
3448
3449 if (cleaned) {
3450 struct sk_buff *skb = buffer_info->skb;
3451 unsigned int segs, bytecount;
3452 segs = skb_shinfo(skb)->gso_segs ?: 1;
3453 /* multiply data chunks by size of headers */
3454 bytecount = ((segs - 1) * skb_headlen(skb)) +
3455 skb->len;
3456 total_tx_packets += segs;
3457 total_tx_bytes += bytecount;
3458 }
3459 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3460 tx_desc->upper.data = 0;
3461
3462 if (unlikely(++i == tx_ring->count)) i = 0;
3463 }
3464
3465 eop = tx_ring->buffer_info[i].next_to_watch;
3466 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3467 }
3468
3469 tx_ring->next_to_clean = i;
3470
3471 #define TX_WAKE_THRESHOLD 32
3472 if (unlikely(count && netif_carrier_ok(netdev) &&
3473 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3474 /* Make sure that anybody stopping the queue after this
3475 * sees the new next_to_clean.
3476 */
3477 smp_mb();
3478
3479 if (netif_queue_stopped(netdev) &&
3480 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3481 netif_wake_queue(netdev);
3482 ++adapter->restart_queue;
3483 }
3484 }
3485
3486 if (adapter->detect_tx_hung) {
3487 /* Detect a transmit hang in hardware, this serializes the
3488 * check with the clearing of time_stamp and movement of i */
3489 adapter->detect_tx_hung = false;
3490 if (tx_ring->buffer_info[eop].time_stamp &&
3491 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3492 (adapter->tx_timeout_factor * HZ)) &&
3493 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3494
3495 /* detected Tx unit hang */
3496 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3497 " Tx Queue <%lu>\n"
3498 " TDH <%x>\n"
3499 " TDT <%x>\n"
3500 " next_to_use <%x>\n"
3501 " next_to_clean <%x>\n"
3502 "buffer_info[next_to_clean]\n"
3503 " time_stamp <%lx>\n"
3504 " next_to_watch <%x>\n"
3505 " jiffies <%lx>\n"
3506 " next_to_watch.status <%x>\n",
3507 (unsigned long)((tx_ring - adapter->tx_ring) /
3508 sizeof(struct e1000_tx_ring)),
3509 readl(hw->hw_addr + tx_ring->tdh),
3510 readl(hw->hw_addr + tx_ring->tdt),
3511 tx_ring->next_to_use,
3512 tx_ring->next_to_clean,
3513 tx_ring->buffer_info[eop].time_stamp,
3514 eop,
3515 jiffies,
3516 eop_desc->upper.fields.status);
3517 netif_stop_queue(netdev);
3518 }
3519 }
3520 adapter->total_tx_bytes += total_tx_bytes;
3521 adapter->total_tx_packets += total_tx_packets;
3522 netdev->stats.tx_bytes += total_tx_bytes;
3523 netdev->stats.tx_packets += total_tx_packets;
3524 return (count < tx_ring->count);
3525 }
3526
3527 /**
3528 * e1000_rx_checksum - Receive Checksum Offload for 82543
3529 * @adapter: board private structure
3530 * @status_err: receive descriptor status and error fields
3531 * @csum: receive descriptor csum field
3532 * @sk_buff: socket buffer with received data
3533 **/
3534
3535 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3536 u32 csum, struct sk_buff *skb)
3537 {
3538 struct e1000_hw *hw = &adapter->hw;
3539 u16 status = (u16)status_err;
3540 u8 errors = (u8)(status_err >> 24);
3541 skb->ip_summed = CHECKSUM_NONE;
3542
3543 /* 82543 or newer only */
3544 if (unlikely(hw->mac_type < e1000_82543)) return;
3545 /* Ignore Checksum bit is set */
3546 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3547 /* TCP/UDP checksum error bit is set */
3548 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3549 /* let the stack verify checksum errors */
3550 adapter->hw_csum_err++;
3551 return;
3552 }
3553 /* TCP/UDP Checksum has not been calculated */
3554 if (!(status & E1000_RXD_STAT_TCPCS))
3555 return;
3556
3557 /* It must be a TCP or UDP packet with a valid checksum */
3558 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3559 /* TCP checksum is good */
3560 skb->ip_summed = CHECKSUM_UNNECESSARY;
3561 }
3562 adapter->hw_csum_good++;
3563 }
3564
3565 /**
3566 * e1000_consume_page - helper function
3567 **/
3568 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3569 u16 length)
3570 {
3571 bi->page = NULL;
3572 skb->len += length;
3573 skb->data_len += length;
3574 skb->truesize += length;
3575 }
3576
3577 /**
3578 * e1000_receive_skb - helper function to handle rx indications
3579 * @adapter: board private structure
3580 * @status: descriptor status field as written by hardware
3581 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3582 * @skb: pointer to sk_buff to be indicated to stack
3583 */
3584 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3585 __le16 vlan, struct sk_buff *skb)
3586 {
3587 if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
3588 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3589 le16_to_cpu(vlan) &
3590 E1000_RXD_SPC_VLAN_MASK);
3591 } else {
3592 netif_receive_skb(skb);
3593 }
3594 }
3595
3596 /**
3597 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3598 * @adapter: board private structure
3599 * @rx_ring: ring to clean
3600 * @work_done: amount of napi work completed this call
3601 * @work_to_do: max amount of work allowed for this call to do
3602 *
3603 * the return value indicates whether actual cleaning was done, there
3604 * is no guarantee that everything was cleaned
3605 */
3606 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3607 struct e1000_rx_ring *rx_ring,
3608 int *work_done, int work_to_do)
3609 {
3610 struct e1000_hw *hw = &adapter->hw;
3611 struct net_device *netdev = adapter->netdev;
3612 struct pci_dev *pdev = adapter->pdev;
3613 struct e1000_rx_desc *rx_desc, *next_rxd;
3614 struct e1000_buffer *buffer_info, *next_buffer;
3615 unsigned long irq_flags;
3616 u32 length;
3617 unsigned int i;
3618 int cleaned_count = 0;
3619 bool cleaned = false;
3620 unsigned int total_rx_bytes=0, total_rx_packets=0;
3621
3622 i = rx_ring->next_to_clean;
3623 rx_desc = E1000_RX_DESC(*rx_ring, i);
3624 buffer_info = &rx_ring->buffer_info[i];
3625
3626 while (rx_desc->status & E1000_RXD_STAT_DD) {
3627 struct sk_buff *skb;
3628 u8 status;
3629
3630 if (*work_done >= work_to_do)
3631 break;
3632 (*work_done)++;
3633
3634 status = rx_desc->status;
3635 skb = buffer_info->skb;
3636 buffer_info->skb = NULL;
3637
3638 if (++i == rx_ring->count) i = 0;
3639 next_rxd = E1000_RX_DESC(*rx_ring, i);
3640 prefetch(next_rxd);
3641
3642 next_buffer = &rx_ring->buffer_info[i];
3643
3644 cleaned = true;
3645 cleaned_count++;
3646 pci_unmap_page(pdev, buffer_info->dma, buffer_info->length,
3647 PCI_DMA_FROMDEVICE);
3648 buffer_info->dma = 0;
3649
3650 length = le16_to_cpu(rx_desc->length);
3651
3652 /* errors is only valid for DD + EOP descriptors */
3653 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3654 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3655 u8 last_byte = *(skb->data + length - 1);
3656 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3657 last_byte)) {
3658 spin_lock_irqsave(&adapter->stats_lock,
3659 irq_flags);
3660 e1000_tbi_adjust_stats(hw, &adapter->stats,
3661 length, skb->data);
3662 spin_unlock_irqrestore(&adapter->stats_lock,
3663 irq_flags);
3664 length--;
3665 } else {
3666 /* recycle both page and skb */
3667 buffer_info->skb = skb;
3668 /* an error means any chain goes out the window
3669 * too */
3670 if (rx_ring->rx_skb_top)
3671 dev_kfree_skb(rx_ring->rx_skb_top);
3672 rx_ring->rx_skb_top = NULL;
3673 goto next_desc;
3674 }
3675 }
3676
3677 #define rxtop rx_ring->rx_skb_top
3678 if (!(status & E1000_RXD_STAT_EOP)) {
3679 /* this descriptor is only the beginning (or middle) */
3680 if (!rxtop) {
3681 /* this is the beginning of a chain */
3682 rxtop = skb;
3683 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3684 0, length);
3685 } else {
3686 /* this is the middle of a chain */
3687 skb_fill_page_desc(rxtop,
3688 skb_shinfo(rxtop)->nr_frags,
3689 buffer_info->page, 0, length);
3690 /* re-use the skb, only consumed the page */
3691 buffer_info->skb = skb;
3692 }
3693 e1000_consume_page(buffer_info, rxtop, length);
3694 goto next_desc;
3695 } else {
3696 if (rxtop) {
3697 /* end of the chain */
3698 skb_fill_page_desc(rxtop,
3699 skb_shinfo(rxtop)->nr_frags,
3700 buffer_info->page, 0, length);
3701 /* re-use the current skb, we only consumed the
3702 * page */
3703 buffer_info->skb = skb;
3704 skb = rxtop;
3705 rxtop = NULL;
3706 e1000_consume_page(buffer_info, skb, length);
3707 } else {
3708 /* no chain, got EOP, this buf is the packet
3709 * copybreak to save the put_page/alloc_page */
3710 if (length <= copybreak &&
3711 skb_tailroom(skb) >= length) {
3712 u8 *vaddr;
3713 vaddr = kmap_atomic(buffer_info->page,
3714 KM_SKB_DATA_SOFTIRQ);
3715 memcpy(skb_tail_pointer(skb), vaddr, length);
3716 kunmap_atomic(vaddr,
3717 KM_SKB_DATA_SOFTIRQ);
3718 /* re-use the page, so don't erase
3719 * buffer_info->page */
3720 skb_put(skb, length);
3721 } else {
3722 skb_fill_page_desc(skb, 0,
3723 buffer_info->page, 0,
3724 length);
3725 e1000_consume_page(buffer_info, skb,
3726 length);
3727 }
3728 }
3729 }
3730
3731 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3732 e1000_rx_checksum(adapter,
3733 (u32)(status) |
3734 ((u32)(rx_desc->errors) << 24),
3735 le16_to_cpu(rx_desc->csum), skb);
3736
3737 pskb_trim(skb, skb->len - 4);
3738
3739 /* probably a little skewed due to removing CRC */
3740 total_rx_bytes += skb->len;
3741 total_rx_packets++;
3742
3743 /* eth type trans needs skb->data to point to something */
3744 if (!pskb_may_pull(skb, ETH_HLEN)) {
3745 DPRINTK(DRV, ERR, "pskb_may_pull failed.\n");
3746 dev_kfree_skb(skb);
3747 goto next_desc;
3748 }
3749
3750 skb->protocol = eth_type_trans(skb, netdev);
3751
3752 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3753
3754 next_desc:
3755 rx_desc->status = 0;
3756
3757 /* return some buffers to hardware, one at a time is too slow */
3758 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3759 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3760 cleaned_count = 0;
3761 }
3762
3763 /* use prefetched values */
3764 rx_desc = next_rxd;
3765 buffer_info = next_buffer;
3766 }
3767 rx_ring->next_to_clean = i;
3768
3769 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3770 if (cleaned_count)
3771 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3772
3773 adapter->total_rx_packets += total_rx_packets;
3774 adapter->total_rx_bytes += total_rx_bytes;
3775 netdev->stats.rx_bytes += total_rx_bytes;
3776 netdev->stats.rx_packets += total_rx_packets;
3777 return cleaned;
3778 }
3779
3780 /**
3781 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3782 * @adapter: board private structure
3783 * @rx_ring: ring to clean
3784 * @work_done: amount of napi work completed this call
3785 * @work_to_do: max amount of work allowed for this call to do
3786 */
3787 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3788 struct e1000_rx_ring *rx_ring,
3789 int *work_done, int work_to_do)
3790 {
3791 struct e1000_hw *hw = &adapter->hw;
3792 struct net_device *netdev = adapter->netdev;
3793 struct pci_dev *pdev = adapter->pdev;
3794 struct e1000_rx_desc *rx_desc, *next_rxd;
3795 struct e1000_buffer *buffer_info, *next_buffer;
3796 unsigned long flags;
3797 u32 length;
3798 unsigned int i;
3799 int cleaned_count = 0;
3800 bool cleaned = false;
3801 unsigned int total_rx_bytes=0, total_rx_packets=0;
3802
3803 i = rx_ring->next_to_clean;
3804 rx_desc = E1000_RX_DESC(*rx_ring, i);
3805 buffer_info = &rx_ring->buffer_info[i];
3806
3807 while (rx_desc->status & E1000_RXD_STAT_DD) {
3808 struct sk_buff *skb;
3809 u8 status;
3810
3811 if (*work_done >= work_to_do)
3812 break;
3813 (*work_done)++;
3814
3815 status = rx_desc->status;
3816 skb = buffer_info->skb;
3817 buffer_info->skb = NULL;
3818
3819 prefetch(skb->data - NET_IP_ALIGN);
3820
3821 if (++i == rx_ring->count) i = 0;
3822 next_rxd = E1000_RX_DESC(*rx_ring, i);
3823 prefetch(next_rxd);
3824
3825 next_buffer = &rx_ring->buffer_info[i];
3826
3827 cleaned = true;
3828 cleaned_count++;
3829 pci_unmap_single(pdev, buffer_info->dma, buffer_info->length,
3830 PCI_DMA_FROMDEVICE);
3831 buffer_info->dma = 0;
3832
3833 length = le16_to_cpu(rx_desc->length);
3834 /* !EOP means multiple descriptors were used to store a single
3835 * packet, if thats the case we need to toss it. In fact, we
3836 * to toss every packet with the EOP bit clear and the next
3837 * frame that _does_ have the EOP bit set, as it is by
3838 * definition only a frame fragment
3839 */
3840 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3841 adapter->discarding = true;
3842
3843 if (adapter->discarding) {
3844 /* All receives must fit into a single buffer */
3845 E1000_DBG("%s: Receive packet consumed multiple"
3846 " buffers\n", netdev->name);
3847 /* recycle */
3848 buffer_info->skb = skb;
3849 if (status & E1000_RXD_STAT_EOP)
3850 adapter->discarding = false;
3851 goto next_desc;
3852 }
3853
3854 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3855 u8 last_byte = *(skb->data + length - 1);
3856 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3857 last_byte)) {
3858 spin_lock_irqsave(&adapter->stats_lock, flags);
3859 e1000_tbi_adjust_stats(hw, &adapter->stats,
3860 length, skb->data);
3861 spin_unlock_irqrestore(&adapter->stats_lock,
3862 flags);
3863 length--;
3864 } else {
3865 /* recycle */
3866 buffer_info->skb = skb;
3867 goto next_desc;
3868 }
3869 }
3870
3871 /* adjust length to remove Ethernet CRC, this must be
3872 * done after the TBI_ACCEPT workaround above */
3873 length -= 4;
3874
3875 /* probably a little skewed due to removing CRC */
3876 total_rx_bytes += length;
3877 total_rx_packets++;
3878
3879 /* code added for copybreak, this should improve
3880 * performance for small packets with large amounts
3881 * of reassembly being done in the stack */
3882 if (length < copybreak) {
3883 struct sk_buff *new_skb =
3884 netdev_alloc_skb_ip_align(netdev, length);
3885 if (new_skb) {
3886 skb_copy_to_linear_data_offset(new_skb,
3887 -NET_IP_ALIGN,
3888 (skb->data -
3889 NET_IP_ALIGN),
3890 (length +
3891 NET_IP_ALIGN));
3892 /* save the skb in buffer_info as good */
3893 buffer_info->skb = skb;
3894 skb = new_skb;
3895 }
3896 /* else just continue with the old one */
3897 }
3898 /* end copybreak code */
3899 skb_put(skb, length);
3900
3901 /* Receive Checksum Offload */
3902 e1000_rx_checksum(adapter,
3903 (u32)(status) |
3904 ((u32)(rx_desc->errors) << 24),
3905 le16_to_cpu(rx_desc->csum), skb);
3906
3907 skb->protocol = eth_type_trans(skb, netdev);
3908
3909 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3910
3911 next_desc:
3912 rx_desc->status = 0;
3913
3914 /* return some buffers to hardware, one at a time is too slow */
3915 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3916 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3917 cleaned_count = 0;
3918 }
3919
3920 /* use prefetched values */
3921 rx_desc = next_rxd;
3922 buffer_info = next_buffer;
3923 }
3924 rx_ring->next_to_clean = i;
3925
3926 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3927 if (cleaned_count)
3928 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3929
3930 adapter->total_rx_packets += total_rx_packets;
3931 adapter->total_rx_bytes += total_rx_bytes;
3932 netdev->stats.rx_bytes += total_rx_bytes;
3933 netdev->stats.rx_packets += total_rx_packets;
3934 return cleaned;
3935 }
3936
3937 /**
3938 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3939 * @adapter: address of board private structure
3940 * @rx_ring: pointer to receive ring structure
3941 * @cleaned_count: number of buffers to allocate this pass
3942 **/
3943
3944 static void
3945 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
3946 struct e1000_rx_ring *rx_ring, int cleaned_count)
3947 {
3948 struct net_device *netdev = adapter->netdev;
3949 struct pci_dev *pdev = adapter->pdev;
3950 struct e1000_rx_desc *rx_desc;
3951 struct e1000_buffer *buffer_info;
3952 struct sk_buff *skb;
3953 unsigned int i;
3954 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
3955
3956 i = rx_ring->next_to_use;
3957 buffer_info = &rx_ring->buffer_info[i];
3958
3959 while (cleaned_count--) {
3960 skb = buffer_info->skb;
3961 if (skb) {
3962 skb_trim(skb, 0);
3963 goto check_page;
3964 }
3965
3966 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3967 if (unlikely(!skb)) {
3968 /* Better luck next round */
3969 adapter->alloc_rx_buff_failed++;
3970 break;
3971 }
3972
3973 /* Fix for errata 23, can't cross 64kB boundary */
3974 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3975 struct sk_buff *oldskb = skb;
3976 DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
3977 "at %p\n", bufsz, skb->data);
3978 /* Try again, without freeing the previous */
3979 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3980 /* Failed allocation, critical failure */
3981 if (!skb) {
3982 dev_kfree_skb(oldskb);
3983 adapter->alloc_rx_buff_failed++;
3984 break;
3985 }
3986
3987 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3988 /* give up */
3989 dev_kfree_skb(skb);
3990 dev_kfree_skb(oldskb);
3991 break; /* while (cleaned_count--) */
3992 }
3993
3994 /* Use new allocation */
3995 dev_kfree_skb(oldskb);
3996 }
3997 buffer_info->skb = skb;
3998 buffer_info->length = adapter->rx_buffer_len;
3999 check_page:
4000 /* allocate a new page if necessary */
4001 if (!buffer_info->page) {
4002 buffer_info->page = alloc_page(GFP_ATOMIC);
4003 if (unlikely(!buffer_info->page)) {
4004 adapter->alloc_rx_buff_failed++;
4005 break;
4006 }
4007 }
4008
4009 if (!buffer_info->dma) {
4010 buffer_info->dma = pci_map_page(pdev,
4011 buffer_info->page, 0,
4012 buffer_info->length,
4013 PCI_DMA_FROMDEVICE);
4014 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
4015 put_page(buffer_info->page);
4016 dev_kfree_skb(skb);
4017 buffer_info->page = NULL;
4018 buffer_info->skb = NULL;
4019 buffer_info->dma = 0;
4020 adapter->alloc_rx_buff_failed++;
4021 break; /* while !buffer_info->skb */
4022 }
4023 }
4024
4025 rx_desc = E1000_RX_DESC(*rx_ring, i);
4026 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4027
4028 if (unlikely(++i == rx_ring->count))
4029 i = 0;
4030 buffer_info = &rx_ring->buffer_info[i];
4031 }
4032
4033 if (likely(rx_ring->next_to_use != i)) {
4034 rx_ring->next_to_use = i;
4035 if (unlikely(i-- == 0))
4036 i = (rx_ring->count - 1);
4037
4038 /* Force memory writes to complete before letting h/w
4039 * know there are new descriptors to fetch. (Only
4040 * applicable for weak-ordered memory model archs,
4041 * such as IA-64). */
4042 wmb();
4043 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4044 }
4045 }
4046
4047 /**
4048 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4049 * @adapter: address of board private structure
4050 **/
4051
4052 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4053 struct e1000_rx_ring *rx_ring,
4054 int cleaned_count)
4055 {
4056 struct e1000_hw *hw = &adapter->hw;
4057 struct net_device *netdev = adapter->netdev;
4058 struct pci_dev *pdev = adapter->pdev;
4059 struct e1000_rx_desc *rx_desc;
4060 struct e1000_buffer *buffer_info;
4061 struct sk_buff *skb;
4062 unsigned int i;
4063 unsigned int bufsz = adapter->rx_buffer_len;
4064
4065 i = rx_ring->next_to_use;
4066 buffer_info = &rx_ring->buffer_info[i];
4067
4068 while (cleaned_count--) {
4069 skb = buffer_info->skb;
4070 if (skb) {
4071 skb_trim(skb, 0);
4072 goto map_skb;
4073 }
4074
4075 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4076 if (unlikely(!skb)) {
4077 /* Better luck next round */
4078 adapter->alloc_rx_buff_failed++;
4079 break;
4080 }
4081
4082 /* Fix for errata 23, can't cross 64kB boundary */
4083 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4084 struct sk_buff *oldskb = skb;
4085 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4086 "at %p\n", bufsz, skb->data);
4087 /* Try again, without freeing the previous */
4088 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4089 /* Failed allocation, critical failure */
4090 if (!skb) {
4091 dev_kfree_skb(oldskb);
4092 adapter->alloc_rx_buff_failed++;
4093 break;
4094 }
4095
4096 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4097 /* give up */
4098 dev_kfree_skb(skb);
4099 dev_kfree_skb(oldskb);
4100 adapter->alloc_rx_buff_failed++;
4101 break; /* while !buffer_info->skb */
4102 }
4103
4104 /* Use new allocation */
4105 dev_kfree_skb(oldskb);
4106 }
4107 buffer_info->skb = skb;
4108 buffer_info->length = adapter->rx_buffer_len;
4109 map_skb:
4110 buffer_info->dma = pci_map_single(pdev,
4111 skb->data,
4112 buffer_info->length,
4113 PCI_DMA_FROMDEVICE);
4114 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
4115 dev_kfree_skb(skb);
4116 buffer_info->skb = NULL;
4117 buffer_info->dma = 0;
4118 adapter->alloc_rx_buff_failed++;
4119 break; /* while !buffer_info->skb */
4120 }
4121
4122 /*
4123 * XXX if it was allocated cleanly it will never map to a
4124 * boundary crossing
4125 */
4126
4127 /* Fix for errata 23, can't cross 64kB boundary */
4128 if (!e1000_check_64k_bound(adapter,
4129 (void *)(unsigned long)buffer_info->dma,
4130 adapter->rx_buffer_len)) {
4131 DPRINTK(RX_ERR, ERR,
4132 "dma align check failed: %u bytes at %p\n",
4133 adapter->rx_buffer_len,
4134 (void *)(unsigned long)buffer_info->dma);
4135 dev_kfree_skb(skb);
4136 buffer_info->skb = NULL;
4137
4138 pci_unmap_single(pdev, buffer_info->dma,
4139 adapter->rx_buffer_len,
4140 PCI_DMA_FROMDEVICE);
4141 buffer_info->dma = 0;
4142
4143 adapter->alloc_rx_buff_failed++;
4144 break; /* while !buffer_info->skb */
4145 }
4146 rx_desc = E1000_RX_DESC(*rx_ring, i);
4147 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4148
4149 if (unlikely(++i == rx_ring->count))
4150 i = 0;
4151 buffer_info = &rx_ring->buffer_info[i];
4152 }
4153
4154 if (likely(rx_ring->next_to_use != i)) {
4155 rx_ring->next_to_use = i;
4156 if (unlikely(i-- == 0))
4157 i = (rx_ring->count - 1);
4158
4159 /* Force memory writes to complete before letting h/w
4160 * know there are new descriptors to fetch. (Only
4161 * applicable for weak-ordered memory model archs,
4162 * such as IA-64). */
4163 wmb();
4164 writel(i, hw->hw_addr + rx_ring->rdt);
4165 }
4166 }
4167
4168 /**
4169 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4170 * @adapter:
4171 **/
4172
4173 static void e1000_smartspeed(struct e1000_adapter *adapter)
4174 {
4175 struct e1000_hw *hw = &adapter->hw;
4176 u16 phy_status;
4177 u16 phy_ctrl;
4178
4179 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4180 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4181 return;
4182
4183 if (adapter->smartspeed == 0) {
4184 /* If Master/Slave config fault is asserted twice,
4185 * we assume back-to-back */
4186 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4187 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4188 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4189 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4190 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4191 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4192 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4193 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4194 phy_ctrl);
4195 adapter->smartspeed++;
4196 if (!e1000_phy_setup_autoneg(hw) &&
4197 !e1000_read_phy_reg(hw, PHY_CTRL,
4198 &phy_ctrl)) {
4199 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4200 MII_CR_RESTART_AUTO_NEG);
4201 e1000_write_phy_reg(hw, PHY_CTRL,
4202 phy_ctrl);
4203 }
4204 }
4205 return;
4206 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4207 /* If still no link, perhaps using 2/3 pair cable */
4208 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4209 phy_ctrl |= CR_1000T_MS_ENABLE;
4210 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4211 if (!e1000_phy_setup_autoneg(hw) &&
4212 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4213 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4214 MII_CR_RESTART_AUTO_NEG);
4215 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4216 }
4217 }
4218 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4219 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4220 adapter->smartspeed = 0;
4221 }
4222
4223 /**
4224 * e1000_ioctl -
4225 * @netdev:
4226 * @ifreq:
4227 * @cmd:
4228 **/
4229
4230 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4231 {
4232 switch (cmd) {
4233 case SIOCGMIIPHY:
4234 case SIOCGMIIREG:
4235 case SIOCSMIIREG:
4236 return e1000_mii_ioctl(netdev, ifr, cmd);
4237 default:
4238 return -EOPNOTSUPP;
4239 }
4240 }
4241
4242 /**
4243 * e1000_mii_ioctl -
4244 * @netdev:
4245 * @ifreq:
4246 * @cmd:
4247 **/
4248
4249 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4250 int cmd)
4251 {
4252 struct e1000_adapter *adapter = netdev_priv(netdev);
4253 struct e1000_hw *hw = &adapter->hw;
4254 struct mii_ioctl_data *data = if_mii(ifr);
4255 int retval;
4256 u16 mii_reg;
4257 u16 spddplx;
4258 unsigned long flags;
4259
4260 if (hw->media_type != e1000_media_type_copper)
4261 return -EOPNOTSUPP;
4262
4263 switch (cmd) {
4264 case SIOCGMIIPHY:
4265 data->phy_id = hw->phy_addr;
4266 break;
4267 case SIOCGMIIREG:
4268 spin_lock_irqsave(&adapter->stats_lock, flags);
4269 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4270 &data->val_out)) {
4271 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4272 return -EIO;
4273 }
4274 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4275 break;
4276 case SIOCSMIIREG:
4277 if (data->reg_num & ~(0x1F))
4278 return -EFAULT;
4279 mii_reg = data->val_in;
4280 spin_lock_irqsave(&adapter->stats_lock, flags);
4281 if (e1000_write_phy_reg(hw, data->reg_num,
4282 mii_reg)) {
4283 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4284 return -EIO;
4285 }
4286 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4287 if (hw->media_type == e1000_media_type_copper) {
4288 switch (data->reg_num) {
4289 case PHY_CTRL:
4290 if (mii_reg & MII_CR_POWER_DOWN)
4291 break;
4292 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4293 hw->autoneg = 1;
4294 hw->autoneg_advertised = 0x2F;
4295 } else {
4296 if (mii_reg & 0x40)
4297 spddplx = SPEED_1000;
4298 else if (mii_reg & 0x2000)
4299 spddplx = SPEED_100;
4300 else
4301 spddplx = SPEED_10;
4302 spddplx += (mii_reg & 0x100)
4303 ? DUPLEX_FULL :
4304 DUPLEX_HALF;
4305 retval = e1000_set_spd_dplx(adapter,
4306 spddplx);
4307 if (retval)
4308 return retval;
4309 }
4310 if (netif_running(adapter->netdev))
4311 e1000_reinit_locked(adapter);
4312 else
4313 e1000_reset(adapter);
4314 break;
4315 case M88E1000_PHY_SPEC_CTRL:
4316 case M88E1000_EXT_PHY_SPEC_CTRL:
4317 if (e1000_phy_reset(hw))
4318 return -EIO;
4319 break;
4320 }
4321 } else {
4322 switch (data->reg_num) {
4323 case PHY_CTRL:
4324 if (mii_reg & MII_CR_POWER_DOWN)
4325 break;
4326 if (netif_running(adapter->netdev))
4327 e1000_reinit_locked(adapter);
4328 else
4329 e1000_reset(adapter);
4330 break;
4331 }
4332 }
4333 break;
4334 default:
4335 return -EOPNOTSUPP;
4336 }
4337 return E1000_SUCCESS;
4338 }
4339
4340 void e1000_pci_set_mwi(struct e1000_hw *hw)
4341 {
4342 struct e1000_adapter *adapter = hw->back;
4343 int ret_val = pci_set_mwi(adapter->pdev);
4344
4345 if (ret_val)
4346 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4347 }
4348
4349 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4350 {
4351 struct e1000_adapter *adapter = hw->back;
4352
4353 pci_clear_mwi(adapter->pdev);
4354 }
4355
4356 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4357 {
4358 struct e1000_adapter *adapter = hw->back;
4359 return pcix_get_mmrbc(adapter->pdev);
4360 }
4361
4362 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4363 {
4364 struct e1000_adapter *adapter = hw->back;
4365 pcix_set_mmrbc(adapter->pdev, mmrbc);
4366 }
4367
4368 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4369 {
4370 outl(value, port);
4371 }
4372
4373 static void e1000_vlan_rx_register(struct net_device *netdev,
4374 struct vlan_group *grp)
4375 {
4376 struct e1000_adapter *adapter = netdev_priv(netdev);
4377 struct e1000_hw *hw = &adapter->hw;
4378 u32 ctrl, rctl;
4379
4380 if (!test_bit(__E1000_DOWN, &adapter->flags))
4381 e1000_irq_disable(adapter);
4382 adapter->vlgrp = grp;
4383
4384 if (grp) {
4385 /* enable VLAN tag insert/strip */
4386 ctrl = er32(CTRL);
4387 ctrl |= E1000_CTRL_VME;
4388 ew32(CTRL, ctrl);
4389
4390 /* enable VLAN receive filtering */
4391 rctl = er32(RCTL);
4392 rctl &= ~E1000_RCTL_CFIEN;
4393 if (!(netdev->flags & IFF_PROMISC))
4394 rctl |= E1000_RCTL_VFE;
4395 ew32(RCTL, rctl);
4396 e1000_update_mng_vlan(adapter);
4397 } else {
4398 /* disable VLAN tag insert/strip */
4399 ctrl = er32(CTRL);
4400 ctrl &= ~E1000_CTRL_VME;
4401 ew32(CTRL, ctrl);
4402
4403 /* disable VLAN receive filtering */
4404 rctl = er32(RCTL);
4405 rctl &= ~E1000_RCTL_VFE;
4406 ew32(RCTL, rctl);
4407
4408 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4409 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4410 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4411 }
4412 }
4413
4414 if (!test_bit(__E1000_DOWN, &adapter->flags))
4415 e1000_irq_enable(adapter);
4416 }
4417
4418 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4419 {
4420 struct e1000_adapter *adapter = netdev_priv(netdev);
4421 struct e1000_hw *hw = &adapter->hw;
4422 u32 vfta, index;
4423
4424 if ((hw->mng_cookie.status &
4425 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4426 (vid == adapter->mng_vlan_id))
4427 return;
4428 /* add VID to filter table */
4429 index = (vid >> 5) & 0x7F;
4430 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4431 vfta |= (1 << (vid & 0x1F));
4432 e1000_write_vfta(hw, index, vfta);
4433 }
4434
4435 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4436 {
4437 struct e1000_adapter *adapter = netdev_priv(netdev);
4438 struct e1000_hw *hw = &adapter->hw;
4439 u32 vfta, index;
4440
4441 if (!test_bit(__E1000_DOWN, &adapter->flags))
4442 e1000_irq_disable(adapter);
4443 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4444 if (!test_bit(__E1000_DOWN, &adapter->flags))
4445 e1000_irq_enable(adapter);
4446
4447 /* remove VID from filter table */
4448 index = (vid >> 5) & 0x7F;
4449 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4450 vfta &= ~(1 << (vid & 0x1F));
4451 e1000_write_vfta(hw, index, vfta);
4452 }
4453
4454 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4455 {
4456 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4457
4458 if (adapter->vlgrp) {
4459 u16 vid;
4460 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4461 if (!vlan_group_get_device(adapter->vlgrp, vid))
4462 continue;
4463 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4464 }
4465 }
4466 }
4467
4468 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4469 {
4470 struct e1000_hw *hw = &adapter->hw;
4471
4472 hw->autoneg = 0;
4473
4474 /* Fiber NICs only allow 1000 gbps Full duplex */
4475 if ((hw->media_type == e1000_media_type_fiber) &&
4476 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4477 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4478 return -EINVAL;
4479 }
4480
4481 switch (spddplx) {
4482 case SPEED_10 + DUPLEX_HALF:
4483 hw->forced_speed_duplex = e1000_10_half;
4484 break;
4485 case SPEED_10 + DUPLEX_FULL:
4486 hw->forced_speed_duplex = e1000_10_full;
4487 break;
4488 case SPEED_100 + DUPLEX_HALF:
4489 hw->forced_speed_duplex = e1000_100_half;
4490 break;
4491 case SPEED_100 + DUPLEX_FULL:
4492 hw->forced_speed_duplex = e1000_100_full;
4493 break;
4494 case SPEED_1000 + DUPLEX_FULL:
4495 hw->autoneg = 1;
4496 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4497 break;
4498 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4499 default:
4500 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4501 return -EINVAL;
4502 }
4503 return 0;
4504 }
4505
4506 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4507 {
4508 struct net_device *netdev = pci_get_drvdata(pdev);
4509 struct e1000_adapter *adapter = netdev_priv(netdev);
4510 struct e1000_hw *hw = &adapter->hw;
4511 u32 ctrl, ctrl_ext, rctl, status;
4512 u32 wufc = adapter->wol;
4513 #ifdef CONFIG_PM
4514 int retval = 0;
4515 #endif
4516
4517 netif_device_detach(netdev);
4518
4519 if (netif_running(netdev)) {
4520 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4521 e1000_down(adapter);
4522 }
4523
4524 #ifdef CONFIG_PM
4525 retval = pci_save_state(pdev);
4526 if (retval)
4527 return retval;
4528 #endif
4529
4530 status = er32(STATUS);
4531 if (status & E1000_STATUS_LU)
4532 wufc &= ~E1000_WUFC_LNKC;
4533
4534 if (wufc) {
4535 e1000_setup_rctl(adapter);
4536 e1000_set_rx_mode(netdev);
4537
4538 /* turn on all-multi mode if wake on multicast is enabled */
4539 if (wufc & E1000_WUFC_MC) {
4540 rctl = er32(RCTL);
4541 rctl |= E1000_RCTL_MPE;
4542 ew32(RCTL, rctl);
4543 }
4544
4545 if (hw->mac_type >= e1000_82540) {
4546 ctrl = er32(CTRL);
4547 /* advertise wake from D3Cold */
4548 #define E1000_CTRL_ADVD3WUC 0x00100000
4549 /* phy power management enable */
4550 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4551 ctrl |= E1000_CTRL_ADVD3WUC |
4552 E1000_CTRL_EN_PHY_PWR_MGMT;
4553 ew32(CTRL, ctrl);
4554 }
4555
4556 if (hw->media_type == e1000_media_type_fiber ||
4557 hw->media_type == e1000_media_type_internal_serdes) {
4558 /* keep the laser running in D3 */
4559 ctrl_ext = er32(CTRL_EXT);
4560 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4561 ew32(CTRL_EXT, ctrl_ext);
4562 }
4563
4564 ew32(WUC, E1000_WUC_PME_EN);
4565 ew32(WUFC, wufc);
4566 } else {
4567 ew32(WUC, 0);
4568 ew32(WUFC, 0);
4569 }
4570
4571 e1000_release_manageability(adapter);
4572
4573 *enable_wake = !!wufc;
4574
4575 /* make sure adapter isn't asleep if manageability is enabled */
4576 if (adapter->en_mng_pt)
4577 *enable_wake = true;
4578
4579 if (netif_running(netdev))
4580 e1000_free_irq(adapter);
4581
4582 pci_disable_device(pdev);
4583
4584 return 0;
4585 }
4586
4587 #ifdef CONFIG_PM
4588 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4589 {
4590 int retval;
4591 bool wake;
4592
4593 retval = __e1000_shutdown(pdev, &wake);
4594 if (retval)
4595 return retval;
4596
4597 if (wake) {
4598 pci_prepare_to_sleep(pdev);
4599 } else {
4600 pci_wake_from_d3(pdev, false);
4601 pci_set_power_state(pdev, PCI_D3hot);
4602 }
4603
4604 return 0;
4605 }
4606
4607 static int e1000_resume(struct pci_dev *pdev)
4608 {
4609 struct net_device *netdev = pci_get_drvdata(pdev);
4610 struct e1000_adapter *adapter = netdev_priv(netdev);
4611 struct e1000_hw *hw = &adapter->hw;
4612 u32 err;
4613
4614 pci_set_power_state(pdev, PCI_D0);
4615 pci_restore_state(pdev);
4616
4617 if (adapter->need_ioport)
4618 err = pci_enable_device(pdev);
4619 else
4620 err = pci_enable_device_mem(pdev);
4621 if (err) {
4622 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4623 return err;
4624 }
4625 pci_set_master(pdev);
4626
4627 pci_enable_wake(pdev, PCI_D3hot, 0);
4628 pci_enable_wake(pdev, PCI_D3cold, 0);
4629
4630 if (netif_running(netdev)) {
4631 err = e1000_request_irq(adapter);
4632 if (err)
4633 return err;
4634 }
4635
4636 e1000_power_up_phy(adapter);
4637 e1000_reset(adapter);
4638 ew32(WUS, ~0);
4639
4640 e1000_init_manageability(adapter);
4641
4642 if (netif_running(netdev))
4643 e1000_up(adapter);
4644
4645 netif_device_attach(netdev);
4646
4647 return 0;
4648 }
4649 #endif
4650
4651 static void e1000_shutdown(struct pci_dev *pdev)
4652 {
4653 bool wake;
4654
4655 __e1000_shutdown(pdev, &wake);
4656
4657 if (system_state == SYSTEM_POWER_OFF) {
4658 pci_wake_from_d3(pdev, wake);
4659 pci_set_power_state(pdev, PCI_D3hot);
4660 }
4661 }
4662
4663 #ifdef CONFIG_NET_POLL_CONTROLLER
4664 /*
4665 * Polling 'interrupt' - used by things like netconsole to send skbs
4666 * without having to re-enable interrupts. It's not called while
4667 * the interrupt routine is executing.
4668 */
4669 static void e1000_netpoll(struct net_device *netdev)
4670 {
4671 struct e1000_adapter *adapter = netdev_priv(netdev);
4672
4673 disable_irq(adapter->pdev->irq);
4674 e1000_intr(adapter->pdev->irq, netdev);
4675 enable_irq(adapter->pdev->irq);
4676 }
4677 #endif
4678
4679 /**
4680 * e1000_io_error_detected - called when PCI error is detected
4681 * @pdev: Pointer to PCI device
4682 * @state: The current pci connection state
4683 *
4684 * This function is called after a PCI bus error affecting
4685 * this device has been detected.
4686 */
4687 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4688 pci_channel_state_t state)
4689 {
4690 struct net_device *netdev = pci_get_drvdata(pdev);
4691 struct e1000_adapter *adapter = netdev_priv(netdev);
4692
4693 netif_device_detach(netdev);
4694
4695 if (state == pci_channel_io_perm_failure)
4696 return PCI_ERS_RESULT_DISCONNECT;
4697
4698 if (netif_running(netdev))
4699 e1000_down(adapter);
4700 pci_disable_device(pdev);
4701
4702 /* Request a slot slot reset. */
4703 return PCI_ERS_RESULT_NEED_RESET;
4704 }
4705
4706 /**
4707 * e1000_io_slot_reset - called after the pci bus has been reset.
4708 * @pdev: Pointer to PCI device
4709 *
4710 * Restart the card from scratch, as if from a cold-boot. Implementation
4711 * resembles the first-half of the e1000_resume routine.
4712 */
4713 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4714 {
4715 struct net_device *netdev = pci_get_drvdata(pdev);
4716 struct e1000_adapter *adapter = netdev_priv(netdev);
4717 struct e1000_hw *hw = &adapter->hw;
4718 int err;
4719
4720 if (adapter->need_ioport)
4721 err = pci_enable_device(pdev);
4722 else
4723 err = pci_enable_device_mem(pdev);
4724 if (err) {
4725 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4726 return PCI_ERS_RESULT_DISCONNECT;
4727 }
4728 pci_set_master(pdev);
4729
4730 pci_enable_wake(pdev, PCI_D3hot, 0);
4731 pci_enable_wake(pdev, PCI_D3cold, 0);
4732
4733 e1000_reset(adapter);
4734 ew32(WUS, ~0);
4735
4736 return PCI_ERS_RESULT_RECOVERED;
4737 }
4738
4739 /**
4740 * e1000_io_resume - called when traffic can start flowing again.
4741 * @pdev: Pointer to PCI device
4742 *
4743 * This callback is called when the error recovery driver tells us that
4744 * its OK to resume normal operation. Implementation resembles the
4745 * second-half of the e1000_resume routine.
4746 */
4747 static void e1000_io_resume(struct pci_dev *pdev)
4748 {
4749 struct net_device *netdev = pci_get_drvdata(pdev);
4750 struct e1000_adapter *adapter = netdev_priv(netdev);
4751
4752 e1000_init_manageability(adapter);
4753
4754 if (netif_running(netdev)) {
4755 if (e1000_up(adapter)) {
4756 printk("e1000: can't bring device back up after reset\n");
4757 return;
4758 }
4759 }
4760
4761 netif_device_attach(netdev);
4762 }
4763
4764 /* e1000_main.c */
This page took 0.133663 seconds and 5 git commands to generate.