net/igb/e1000/e1000e: more robust ethtool duplex/speed configuration
[deliverable/linux.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32
33 /* Intel Media SOC GbE MDIO physical base address */
34 static unsigned long ce4100_gbe_mdio_base_phy;
35 /* Intel Media SOC GbE MDIO virtual base address */
36 void __iomem *ce4100_gbe_mdio_base_virt;
37
38 char e1000_driver_name[] = "e1000";
39 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
40 #define DRV_VERSION "7.3.21-k8-NAPI"
41 const char e1000_driver_version[] = DRV_VERSION;
42 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
43
44 /* e1000_pci_tbl - PCI Device ID Table
45 *
46 * Last entry must be all 0s
47 *
48 * Macro expands to...
49 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
50 */
51 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
52 INTEL_E1000_ETHERNET_DEVICE(0x1000),
53 INTEL_E1000_ETHERNET_DEVICE(0x1001),
54 INTEL_E1000_ETHERNET_DEVICE(0x1004),
55 INTEL_E1000_ETHERNET_DEVICE(0x1008),
56 INTEL_E1000_ETHERNET_DEVICE(0x1009),
57 INTEL_E1000_ETHERNET_DEVICE(0x100C),
58 INTEL_E1000_ETHERNET_DEVICE(0x100D),
59 INTEL_E1000_ETHERNET_DEVICE(0x100E),
60 INTEL_E1000_ETHERNET_DEVICE(0x100F),
61 INTEL_E1000_ETHERNET_DEVICE(0x1010),
62 INTEL_E1000_ETHERNET_DEVICE(0x1011),
63 INTEL_E1000_ETHERNET_DEVICE(0x1012),
64 INTEL_E1000_ETHERNET_DEVICE(0x1013),
65 INTEL_E1000_ETHERNET_DEVICE(0x1014),
66 INTEL_E1000_ETHERNET_DEVICE(0x1015),
67 INTEL_E1000_ETHERNET_DEVICE(0x1016),
68 INTEL_E1000_ETHERNET_DEVICE(0x1017),
69 INTEL_E1000_ETHERNET_DEVICE(0x1018),
70 INTEL_E1000_ETHERNET_DEVICE(0x1019),
71 INTEL_E1000_ETHERNET_DEVICE(0x101A),
72 INTEL_E1000_ETHERNET_DEVICE(0x101D),
73 INTEL_E1000_ETHERNET_DEVICE(0x101E),
74 INTEL_E1000_ETHERNET_DEVICE(0x1026),
75 INTEL_E1000_ETHERNET_DEVICE(0x1027),
76 INTEL_E1000_ETHERNET_DEVICE(0x1028),
77 INTEL_E1000_ETHERNET_DEVICE(0x1075),
78 INTEL_E1000_ETHERNET_DEVICE(0x1076),
79 INTEL_E1000_ETHERNET_DEVICE(0x1077),
80 INTEL_E1000_ETHERNET_DEVICE(0x1078),
81 INTEL_E1000_ETHERNET_DEVICE(0x1079),
82 INTEL_E1000_ETHERNET_DEVICE(0x107A),
83 INTEL_E1000_ETHERNET_DEVICE(0x107B),
84 INTEL_E1000_ETHERNET_DEVICE(0x107C),
85 INTEL_E1000_ETHERNET_DEVICE(0x108A),
86 INTEL_E1000_ETHERNET_DEVICE(0x1099),
87 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
88 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
89 /* required last entry */
90 {0,}
91 };
92
93 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
94
95 int e1000_up(struct e1000_adapter *adapter);
96 void e1000_down(struct e1000_adapter *adapter);
97 void e1000_reinit_locked(struct e1000_adapter *adapter);
98 void e1000_reset(struct e1000_adapter *adapter);
99 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
100 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
101 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
102 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
103 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
104 struct e1000_tx_ring *txdr);
105 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
106 struct e1000_rx_ring *rxdr);
107 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
108 struct e1000_tx_ring *tx_ring);
109 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
110 struct e1000_rx_ring *rx_ring);
111 void e1000_update_stats(struct e1000_adapter *adapter);
112
113 static int e1000_init_module(void);
114 static void e1000_exit_module(void);
115 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
116 static void __devexit e1000_remove(struct pci_dev *pdev);
117 static int e1000_alloc_queues(struct e1000_adapter *adapter);
118 static int e1000_sw_init(struct e1000_adapter *adapter);
119 static int e1000_open(struct net_device *netdev);
120 static int e1000_close(struct net_device *netdev);
121 static void e1000_configure_tx(struct e1000_adapter *adapter);
122 static void e1000_configure_rx(struct e1000_adapter *adapter);
123 static void e1000_setup_rctl(struct e1000_adapter *adapter);
124 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
125 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
126 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
127 struct e1000_tx_ring *tx_ring);
128 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
129 struct e1000_rx_ring *rx_ring);
130 static void e1000_set_rx_mode(struct net_device *netdev);
131 static void e1000_update_phy_info(unsigned long data);
132 static void e1000_update_phy_info_task(struct work_struct *work);
133 static void e1000_watchdog(unsigned long data);
134 static void e1000_82547_tx_fifo_stall(unsigned long data);
135 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
136 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
137 struct net_device *netdev);
138 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
139 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
140 static int e1000_set_mac(struct net_device *netdev, void *p);
141 static irqreturn_t e1000_intr(int irq, void *data);
142 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
143 struct e1000_tx_ring *tx_ring);
144 static int e1000_clean(struct napi_struct *napi, int budget);
145 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
146 struct e1000_rx_ring *rx_ring,
147 int *work_done, int work_to_do);
148 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
149 struct e1000_rx_ring *rx_ring,
150 int *work_done, int work_to_do);
151 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
152 struct e1000_rx_ring *rx_ring,
153 int cleaned_count);
154 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
155 struct e1000_rx_ring *rx_ring,
156 int cleaned_count);
157 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
158 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
159 int cmd);
160 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
161 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_tx_timeout(struct net_device *dev);
163 static void e1000_reset_task(struct work_struct *work);
164 static void e1000_smartspeed(struct e1000_adapter *adapter);
165 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
166 struct sk_buff *skb);
167
168 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
169 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
170 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
171 static void e1000_restore_vlan(struct e1000_adapter *adapter);
172
173 #ifdef CONFIG_PM
174 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
175 static int e1000_resume(struct pci_dev *pdev);
176 #endif
177 static void e1000_shutdown(struct pci_dev *pdev);
178
179 #ifdef CONFIG_NET_POLL_CONTROLLER
180 /* for netdump / net console */
181 static void e1000_netpoll (struct net_device *netdev);
182 #endif
183
184 #define COPYBREAK_DEFAULT 256
185 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
186 module_param(copybreak, uint, 0644);
187 MODULE_PARM_DESC(copybreak,
188 "Maximum size of packet that is copied to a new buffer on receive");
189
190 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
191 pci_channel_state_t state);
192 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
193 static void e1000_io_resume(struct pci_dev *pdev);
194
195 static struct pci_error_handlers e1000_err_handler = {
196 .error_detected = e1000_io_error_detected,
197 .slot_reset = e1000_io_slot_reset,
198 .resume = e1000_io_resume,
199 };
200
201 static struct pci_driver e1000_driver = {
202 .name = e1000_driver_name,
203 .id_table = e1000_pci_tbl,
204 .probe = e1000_probe,
205 .remove = __devexit_p(e1000_remove),
206 #ifdef CONFIG_PM
207 /* Power Management Hooks */
208 .suspend = e1000_suspend,
209 .resume = e1000_resume,
210 #endif
211 .shutdown = e1000_shutdown,
212 .err_handler = &e1000_err_handler
213 };
214
215 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217 MODULE_LICENSE("GPL");
218 MODULE_VERSION(DRV_VERSION);
219
220 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
221 module_param(debug, int, 0);
222 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
223
224 /**
225 * e1000_get_hw_dev - return device
226 * used by hardware layer to print debugging information
227 *
228 **/
229 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
230 {
231 struct e1000_adapter *adapter = hw->back;
232 return adapter->netdev;
233 }
234
235 /**
236 * e1000_init_module - Driver Registration Routine
237 *
238 * e1000_init_module is the first routine called when the driver is
239 * loaded. All it does is register with the PCI subsystem.
240 **/
241
242 static int __init e1000_init_module(void)
243 {
244 int ret;
245 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
246
247 pr_info("%s\n", e1000_copyright);
248
249 ret = pci_register_driver(&e1000_driver);
250 if (copybreak != COPYBREAK_DEFAULT) {
251 if (copybreak == 0)
252 pr_info("copybreak disabled\n");
253 else
254 pr_info("copybreak enabled for "
255 "packets <= %u bytes\n", copybreak);
256 }
257 return ret;
258 }
259
260 module_init(e1000_init_module);
261
262 /**
263 * e1000_exit_module - Driver Exit Cleanup Routine
264 *
265 * e1000_exit_module is called just before the driver is removed
266 * from memory.
267 **/
268
269 static void __exit e1000_exit_module(void)
270 {
271 pci_unregister_driver(&e1000_driver);
272 }
273
274 module_exit(e1000_exit_module);
275
276 static int e1000_request_irq(struct e1000_adapter *adapter)
277 {
278 struct net_device *netdev = adapter->netdev;
279 irq_handler_t handler = e1000_intr;
280 int irq_flags = IRQF_SHARED;
281 int err;
282
283 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
284 netdev);
285 if (err) {
286 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
287 }
288
289 return err;
290 }
291
292 static void e1000_free_irq(struct e1000_adapter *adapter)
293 {
294 struct net_device *netdev = adapter->netdev;
295
296 free_irq(adapter->pdev->irq, netdev);
297 }
298
299 /**
300 * e1000_irq_disable - Mask off interrupt generation on the NIC
301 * @adapter: board private structure
302 **/
303
304 static void e1000_irq_disable(struct e1000_adapter *adapter)
305 {
306 struct e1000_hw *hw = &adapter->hw;
307
308 ew32(IMC, ~0);
309 E1000_WRITE_FLUSH();
310 synchronize_irq(adapter->pdev->irq);
311 }
312
313 /**
314 * e1000_irq_enable - Enable default interrupt generation settings
315 * @adapter: board private structure
316 **/
317
318 static void e1000_irq_enable(struct e1000_adapter *adapter)
319 {
320 struct e1000_hw *hw = &adapter->hw;
321
322 ew32(IMS, IMS_ENABLE_MASK);
323 E1000_WRITE_FLUSH();
324 }
325
326 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
327 {
328 struct e1000_hw *hw = &adapter->hw;
329 struct net_device *netdev = adapter->netdev;
330 u16 vid = hw->mng_cookie.vlan_id;
331 u16 old_vid = adapter->mng_vlan_id;
332 if (adapter->vlgrp) {
333 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
334 if (hw->mng_cookie.status &
335 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
336 e1000_vlan_rx_add_vid(netdev, vid);
337 adapter->mng_vlan_id = vid;
338 } else
339 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
340
341 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
342 (vid != old_vid) &&
343 !vlan_group_get_device(adapter->vlgrp, old_vid))
344 e1000_vlan_rx_kill_vid(netdev, old_vid);
345 } else
346 adapter->mng_vlan_id = vid;
347 }
348 }
349
350 static void e1000_init_manageability(struct e1000_adapter *adapter)
351 {
352 struct e1000_hw *hw = &adapter->hw;
353
354 if (adapter->en_mng_pt) {
355 u32 manc = er32(MANC);
356
357 /* disable hardware interception of ARP */
358 manc &= ~(E1000_MANC_ARP_EN);
359
360 ew32(MANC, manc);
361 }
362 }
363
364 static void e1000_release_manageability(struct e1000_adapter *adapter)
365 {
366 struct e1000_hw *hw = &adapter->hw;
367
368 if (adapter->en_mng_pt) {
369 u32 manc = er32(MANC);
370
371 /* re-enable hardware interception of ARP */
372 manc |= E1000_MANC_ARP_EN;
373
374 ew32(MANC, manc);
375 }
376 }
377
378 /**
379 * e1000_configure - configure the hardware for RX and TX
380 * @adapter = private board structure
381 **/
382 static void e1000_configure(struct e1000_adapter *adapter)
383 {
384 struct net_device *netdev = adapter->netdev;
385 int i;
386
387 e1000_set_rx_mode(netdev);
388
389 e1000_restore_vlan(adapter);
390 e1000_init_manageability(adapter);
391
392 e1000_configure_tx(adapter);
393 e1000_setup_rctl(adapter);
394 e1000_configure_rx(adapter);
395 /* call E1000_DESC_UNUSED which always leaves
396 * at least 1 descriptor unused to make sure
397 * next_to_use != next_to_clean */
398 for (i = 0; i < adapter->num_rx_queues; i++) {
399 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
400 adapter->alloc_rx_buf(adapter, ring,
401 E1000_DESC_UNUSED(ring));
402 }
403 }
404
405 int e1000_up(struct e1000_adapter *adapter)
406 {
407 struct e1000_hw *hw = &adapter->hw;
408
409 /* hardware has been reset, we need to reload some things */
410 e1000_configure(adapter);
411
412 clear_bit(__E1000_DOWN, &adapter->flags);
413
414 napi_enable(&adapter->napi);
415
416 e1000_irq_enable(adapter);
417
418 netif_wake_queue(adapter->netdev);
419
420 /* fire a link change interrupt to start the watchdog */
421 ew32(ICS, E1000_ICS_LSC);
422 return 0;
423 }
424
425 /**
426 * e1000_power_up_phy - restore link in case the phy was powered down
427 * @adapter: address of board private structure
428 *
429 * The phy may be powered down to save power and turn off link when the
430 * driver is unloaded and wake on lan is not enabled (among others)
431 * *** this routine MUST be followed by a call to e1000_reset ***
432 *
433 **/
434
435 void e1000_power_up_phy(struct e1000_adapter *adapter)
436 {
437 struct e1000_hw *hw = &adapter->hw;
438 u16 mii_reg = 0;
439
440 /* Just clear the power down bit to wake the phy back up */
441 if (hw->media_type == e1000_media_type_copper) {
442 /* according to the manual, the phy will retain its
443 * settings across a power-down/up cycle */
444 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
445 mii_reg &= ~MII_CR_POWER_DOWN;
446 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
447 }
448 }
449
450 static void e1000_power_down_phy(struct e1000_adapter *adapter)
451 {
452 struct e1000_hw *hw = &adapter->hw;
453
454 /* Power down the PHY so no link is implied when interface is down *
455 * The PHY cannot be powered down if any of the following is true *
456 * (a) WoL is enabled
457 * (b) AMT is active
458 * (c) SoL/IDER session is active */
459 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
460 hw->media_type == e1000_media_type_copper) {
461 u16 mii_reg = 0;
462
463 switch (hw->mac_type) {
464 case e1000_82540:
465 case e1000_82545:
466 case e1000_82545_rev_3:
467 case e1000_82546:
468 case e1000_ce4100:
469 case e1000_82546_rev_3:
470 case e1000_82541:
471 case e1000_82541_rev_2:
472 case e1000_82547:
473 case e1000_82547_rev_2:
474 if (er32(MANC) & E1000_MANC_SMBUS_EN)
475 goto out;
476 break;
477 default:
478 goto out;
479 }
480 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
481 mii_reg |= MII_CR_POWER_DOWN;
482 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
483 mdelay(1);
484 }
485 out:
486 return;
487 }
488
489 void e1000_down(struct e1000_adapter *adapter)
490 {
491 struct e1000_hw *hw = &adapter->hw;
492 struct net_device *netdev = adapter->netdev;
493 u32 rctl, tctl;
494
495
496 /* disable receives in the hardware */
497 rctl = er32(RCTL);
498 ew32(RCTL, rctl & ~E1000_RCTL_EN);
499 /* flush and sleep below */
500
501 netif_tx_disable(netdev);
502
503 /* disable transmits in the hardware */
504 tctl = er32(TCTL);
505 tctl &= ~E1000_TCTL_EN;
506 ew32(TCTL, tctl);
507 /* flush both disables and wait for them to finish */
508 E1000_WRITE_FLUSH();
509 msleep(10);
510
511 napi_disable(&adapter->napi);
512
513 e1000_irq_disable(adapter);
514
515 /*
516 * Setting DOWN must be after irq_disable to prevent
517 * a screaming interrupt. Setting DOWN also prevents
518 * timers and tasks from rescheduling.
519 */
520 set_bit(__E1000_DOWN, &adapter->flags);
521
522 del_timer_sync(&adapter->tx_fifo_stall_timer);
523 del_timer_sync(&adapter->watchdog_timer);
524 del_timer_sync(&adapter->phy_info_timer);
525
526 adapter->link_speed = 0;
527 adapter->link_duplex = 0;
528 netif_carrier_off(netdev);
529
530 e1000_reset(adapter);
531 e1000_clean_all_tx_rings(adapter);
532 e1000_clean_all_rx_rings(adapter);
533 }
534
535 static void e1000_reinit_safe(struct e1000_adapter *adapter)
536 {
537 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
538 msleep(1);
539 rtnl_lock();
540 e1000_down(adapter);
541 e1000_up(adapter);
542 rtnl_unlock();
543 clear_bit(__E1000_RESETTING, &adapter->flags);
544 }
545
546 void e1000_reinit_locked(struct e1000_adapter *adapter)
547 {
548 /* if rtnl_lock is not held the call path is bogus */
549 ASSERT_RTNL();
550 WARN_ON(in_interrupt());
551 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
552 msleep(1);
553 e1000_down(adapter);
554 e1000_up(adapter);
555 clear_bit(__E1000_RESETTING, &adapter->flags);
556 }
557
558 void e1000_reset(struct e1000_adapter *adapter)
559 {
560 struct e1000_hw *hw = &adapter->hw;
561 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
562 bool legacy_pba_adjust = false;
563 u16 hwm;
564
565 /* Repartition Pba for greater than 9k mtu
566 * To take effect CTRL.RST is required.
567 */
568
569 switch (hw->mac_type) {
570 case e1000_82542_rev2_0:
571 case e1000_82542_rev2_1:
572 case e1000_82543:
573 case e1000_82544:
574 case e1000_82540:
575 case e1000_82541:
576 case e1000_82541_rev_2:
577 legacy_pba_adjust = true;
578 pba = E1000_PBA_48K;
579 break;
580 case e1000_82545:
581 case e1000_82545_rev_3:
582 case e1000_82546:
583 case e1000_ce4100:
584 case e1000_82546_rev_3:
585 pba = E1000_PBA_48K;
586 break;
587 case e1000_82547:
588 case e1000_82547_rev_2:
589 legacy_pba_adjust = true;
590 pba = E1000_PBA_30K;
591 break;
592 case e1000_undefined:
593 case e1000_num_macs:
594 break;
595 }
596
597 if (legacy_pba_adjust) {
598 if (hw->max_frame_size > E1000_RXBUFFER_8192)
599 pba -= 8; /* allocate more FIFO for Tx */
600
601 if (hw->mac_type == e1000_82547) {
602 adapter->tx_fifo_head = 0;
603 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
604 adapter->tx_fifo_size =
605 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
606 atomic_set(&adapter->tx_fifo_stall, 0);
607 }
608 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
609 /* adjust PBA for jumbo frames */
610 ew32(PBA, pba);
611
612 /* To maintain wire speed transmits, the Tx FIFO should be
613 * large enough to accommodate two full transmit packets,
614 * rounded up to the next 1KB and expressed in KB. Likewise,
615 * the Rx FIFO should be large enough to accommodate at least
616 * one full receive packet and is similarly rounded up and
617 * expressed in KB. */
618 pba = er32(PBA);
619 /* upper 16 bits has Tx packet buffer allocation size in KB */
620 tx_space = pba >> 16;
621 /* lower 16 bits has Rx packet buffer allocation size in KB */
622 pba &= 0xffff;
623 /*
624 * the tx fifo also stores 16 bytes of information about the tx
625 * but don't include ethernet FCS because hardware appends it
626 */
627 min_tx_space = (hw->max_frame_size +
628 sizeof(struct e1000_tx_desc) -
629 ETH_FCS_LEN) * 2;
630 min_tx_space = ALIGN(min_tx_space, 1024);
631 min_tx_space >>= 10;
632 /* software strips receive CRC, so leave room for it */
633 min_rx_space = hw->max_frame_size;
634 min_rx_space = ALIGN(min_rx_space, 1024);
635 min_rx_space >>= 10;
636
637 /* If current Tx allocation is less than the min Tx FIFO size,
638 * and the min Tx FIFO size is less than the current Rx FIFO
639 * allocation, take space away from current Rx allocation */
640 if (tx_space < min_tx_space &&
641 ((min_tx_space - tx_space) < pba)) {
642 pba = pba - (min_tx_space - tx_space);
643
644 /* PCI/PCIx hardware has PBA alignment constraints */
645 switch (hw->mac_type) {
646 case e1000_82545 ... e1000_82546_rev_3:
647 pba &= ~(E1000_PBA_8K - 1);
648 break;
649 default:
650 break;
651 }
652
653 /* if short on rx space, rx wins and must trump tx
654 * adjustment or use Early Receive if available */
655 if (pba < min_rx_space)
656 pba = min_rx_space;
657 }
658 }
659
660 ew32(PBA, pba);
661
662 /*
663 * flow control settings:
664 * The high water mark must be low enough to fit one full frame
665 * (or the size used for early receive) above it in the Rx FIFO.
666 * Set it to the lower of:
667 * - 90% of the Rx FIFO size, and
668 * - the full Rx FIFO size minus the early receive size (for parts
669 * with ERT support assuming ERT set to E1000_ERT_2048), or
670 * - the full Rx FIFO size minus one full frame
671 */
672 hwm = min(((pba << 10) * 9 / 10),
673 ((pba << 10) - hw->max_frame_size));
674
675 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
676 hw->fc_low_water = hw->fc_high_water - 8;
677 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
678 hw->fc_send_xon = 1;
679 hw->fc = hw->original_fc;
680
681 /* Allow time for pending master requests to run */
682 e1000_reset_hw(hw);
683 if (hw->mac_type >= e1000_82544)
684 ew32(WUC, 0);
685
686 if (e1000_init_hw(hw))
687 e_dev_err("Hardware Error\n");
688 e1000_update_mng_vlan(adapter);
689
690 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
691 if (hw->mac_type >= e1000_82544 &&
692 hw->autoneg == 1 &&
693 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
694 u32 ctrl = er32(CTRL);
695 /* clear phy power management bit if we are in gig only mode,
696 * which if enabled will attempt negotiation to 100Mb, which
697 * can cause a loss of link at power off or driver unload */
698 ctrl &= ~E1000_CTRL_SWDPIN3;
699 ew32(CTRL, ctrl);
700 }
701
702 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
703 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
704
705 e1000_reset_adaptive(hw);
706 e1000_phy_get_info(hw, &adapter->phy_info);
707
708 e1000_release_manageability(adapter);
709 }
710
711 /**
712 * Dump the eeprom for users having checksum issues
713 **/
714 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
715 {
716 struct net_device *netdev = adapter->netdev;
717 struct ethtool_eeprom eeprom;
718 const struct ethtool_ops *ops = netdev->ethtool_ops;
719 u8 *data;
720 int i;
721 u16 csum_old, csum_new = 0;
722
723 eeprom.len = ops->get_eeprom_len(netdev);
724 eeprom.offset = 0;
725
726 data = kmalloc(eeprom.len, GFP_KERNEL);
727 if (!data) {
728 pr_err("Unable to allocate memory to dump EEPROM data\n");
729 return;
730 }
731
732 ops->get_eeprom(netdev, &eeprom, data);
733
734 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
735 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
736 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
737 csum_new += data[i] + (data[i + 1] << 8);
738 csum_new = EEPROM_SUM - csum_new;
739
740 pr_err("/*********************/\n");
741 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
742 pr_err("Calculated : 0x%04x\n", csum_new);
743
744 pr_err("Offset Values\n");
745 pr_err("======== ======\n");
746 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
747
748 pr_err("Include this output when contacting your support provider.\n");
749 pr_err("This is not a software error! Something bad happened to\n");
750 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
751 pr_err("result in further problems, possibly loss of data,\n");
752 pr_err("corruption or system hangs!\n");
753 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
754 pr_err("which is invalid and requires you to set the proper MAC\n");
755 pr_err("address manually before continuing to enable this network\n");
756 pr_err("device. Please inspect the EEPROM dump and report the\n");
757 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
758 pr_err("/*********************/\n");
759
760 kfree(data);
761 }
762
763 /**
764 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
765 * @pdev: PCI device information struct
766 *
767 * Return true if an adapter needs ioport resources
768 **/
769 static int e1000_is_need_ioport(struct pci_dev *pdev)
770 {
771 switch (pdev->device) {
772 case E1000_DEV_ID_82540EM:
773 case E1000_DEV_ID_82540EM_LOM:
774 case E1000_DEV_ID_82540EP:
775 case E1000_DEV_ID_82540EP_LOM:
776 case E1000_DEV_ID_82540EP_LP:
777 case E1000_DEV_ID_82541EI:
778 case E1000_DEV_ID_82541EI_MOBILE:
779 case E1000_DEV_ID_82541ER:
780 case E1000_DEV_ID_82541ER_LOM:
781 case E1000_DEV_ID_82541GI:
782 case E1000_DEV_ID_82541GI_LF:
783 case E1000_DEV_ID_82541GI_MOBILE:
784 case E1000_DEV_ID_82544EI_COPPER:
785 case E1000_DEV_ID_82544EI_FIBER:
786 case E1000_DEV_ID_82544GC_COPPER:
787 case E1000_DEV_ID_82544GC_LOM:
788 case E1000_DEV_ID_82545EM_COPPER:
789 case E1000_DEV_ID_82545EM_FIBER:
790 case E1000_DEV_ID_82546EB_COPPER:
791 case E1000_DEV_ID_82546EB_FIBER:
792 case E1000_DEV_ID_82546EB_QUAD_COPPER:
793 return true;
794 default:
795 return false;
796 }
797 }
798
799 static const struct net_device_ops e1000_netdev_ops = {
800 .ndo_open = e1000_open,
801 .ndo_stop = e1000_close,
802 .ndo_start_xmit = e1000_xmit_frame,
803 .ndo_get_stats = e1000_get_stats,
804 .ndo_set_rx_mode = e1000_set_rx_mode,
805 .ndo_set_mac_address = e1000_set_mac,
806 .ndo_tx_timeout = e1000_tx_timeout,
807 .ndo_change_mtu = e1000_change_mtu,
808 .ndo_do_ioctl = e1000_ioctl,
809 .ndo_validate_addr = eth_validate_addr,
810
811 .ndo_vlan_rx_register = e1000_vlan_rx_register,
812 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
813 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
814 #ifdef CONFIG_NET_POLL_CONTROLLER
815 .ndo_poll_controller = e1000_netpoll,
816 #endif
817 };
818
819 /**
820 * e1000_init_hw_struct - initialize members of hw struct
821 * @adapter: board private struct
822 * @hw: structure used by e1000_hw.c
823 *
824 * Factors out initialization of the e1000_hw struct to its own function
825 * that can be called very early at init (just after struct allocation).
826 * Fields are initialized based on PCI device information and
827 * OS network device settings (MTU size).
828 * Returns negative error codes if MAC type setup fails.
829 */
830 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
831 struct e1000_hw *hw)
832 {
833 struct pci_dev *pdev = adapter->pdev;
834
835 /* PCI config space info */
836 hw->vendor_id = pdev->vendor;
837 hw->device_id = pdev->device;
838 hw->subsystem_vendor_id = pdev->subsystem_vendor;
839 hw->subsystem_id = pdev->subsystem_device;
840 hw->revision_id = pdev->revision;
841
842 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
843
844 hw->max_frame_size = adapter->netdev->mtu +
845 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
846 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
847
848 /* identify the MAC */
849 if (e1000_set_mac_type(hw)) {
850 e_err(probe, "Unknown MAC Type\n");
851 return -EIO;
852 }
853
854 switch (hw->mac_type) {
855 default:
856 break;
857 case e1000_82541:
858 case e1000_82547:
859 case e1000_82541_rev_2:
860 case e1000_82547_rev_2:
861 hw->phy_init_script = 1;
862 break;
863 }
864
865 e1000_set_media_type(hw);
866 e1000_get_bus_info(hw);
867
868 hw->wait_autoneg_complete = false;
869 hw->tbi_compatibility_en = true;
870 hw->adaptive_ifs = true;
871
872 /* Copper options */
873
874 if (hw->media_type == e1000_media_type_copper) {
875 hw->mdix = AUTO_ALL_MODES;
876 hw->disable_polarity_correction = false;
877 hw->master_slave = E1000_MASTER_SLAVE;
878 }
879
880 return 0;
881 }
882
883 /**
884 * e1000_probe - Device Initialization Routine
885 * @pdev: PCI device information struct
886 * @ent: entry in e1000_pci_tbl
887 *
888 * Returns 0 on success, negative on failure
889 *
890 * e1000_probe initializes an adapter identified by a pci_dev structure.
891 * The OS initialization, configuring of the adapter private structure,
892 * and a hardware reset occur.
893 **/
894 static int __devinit e1000_probe(struct pci_dev *pdev,
895 const struct pci_device_id *ent)
896 {
897 struct net_device *netdev;
898 struct e1000_adapter *adapter;
899 struct e1000_hw *hw;
900
901 static int cards_found = 0;
902 static int global_quad_port_a = 0; /* global ksp3 port a indication */
903 int i, err, pci_using_dac;
904 u16 eeprom_data = 0;
905 u16 tmp = 0;
906 u16 eeprom_apme_mask = E1000_EEPROM_APME;
907 int bars, need_ioport;
908
909 /* do not allocate ioport bars when not needed */
910 need_ioport = e1000_is_need_ioport(pdev);
911 if (need_ioport) {
912 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
913 err = pci_enable_device(pdev);
914 } else {
915 bars = pci_select_bars(pdev, IORESOURCE_MEM);
916 err = pci_enable_device_mem(pdev);
917 }
918 if (err)
919 return err;
920
921 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
922 if (err)
923 goto err_pci_reg;
924
925 pci_set_master(pdev);
926 err = pci_save_state(pdev);
927 if (err)
928 goto err_alloc_etherdev;
929
930 err = -ENOMEM;
931 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
932 if (!netdev)
933 goto err_alloc_etherdev;
934
935 SET_NETDEV_DEV(netdev, &pdev->dev);
936
937 pci_set_drvdata(pdev, netdev);
938 adapter = netdev_priv(netdev);
939 adapter->netdev = netdev;
940 adapter->pdev = pdev;
941 adapter->msg_enable = (1 << debug) - 1;
942 adapter->bars = bars;
943 adapter->need_ioport = need_ioport;
944
945 hw = &adapter->hw;
946 hw->back = adapter;
947
948 err = -EIO;
949 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
950 if (!hw->hw_addr)
951 goto err_ioremap;
952
953 if (adapter->need_ioport) {
954 for (i = BAR_1; i <= BAR_5; i++) {
955 if (pci_resource_len(pdev, i) == 0)
956 continue;
957 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
958 hw->io_base = pci_resource_start(pdev, i);
959 break;
960 }
961 }
962 }
963
964 /* make ready for any if (hw->...) below */
965 err = e1000_init_hw_struct(adapter, hw);
966 if (err)
967 goto err_sw_init;
968
969 /*
970 * there is a workaround being applied below that limits
971 * 64-bit DMA addresses to 64-bit hardware. There are some
972 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
973 */
974 pci_using_dac = 0;
975 if ((hw->bus_type == e1000_bus_type_pcix) &&
976 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
977 /*
978 * according to DMA-API-HOWTO, coherent calls will always
979 * succeed if the set call did
980 */
981 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
982 pci_using_dac = 1;
983 } else {
984 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
985 if (err) {
986 pr_err("No usable DMA config, aborting\n");
987 goto err_dma;
988 }
989 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
990 }
991
992 netdev->netdev_ops = &e1000_netdev_ops;
993 e1000_set_ethtool_ops(netdev);
994 netdev->watchdog_timeo = 5 * HZ;
995 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
996
997 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
998
999 adapter->bd_number = cards_found;
1000
1001 /* setup the private structure */
1002
1003 err = e1000_sw_init(adapter);
1004 if (err)
1005 goto err_sw_init;
1006
1007 err = -EIO;
1008 if (hw->mac_type == e1000_ce4100) {
1009 ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1);
1010 ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy,
1011 pci_resource_len(pdev, BAR_1));
1012
1013 if (!ce4100_gbe_mdio_base_virt)
1014 goto err_mdio_ioremap;
1015 }
1016
1017 if (hw->mac_type >= e1000_82543) {
1018 netdev->features = NETIF_F_SG |
1019 NETIF_F_HW_CSUM |
1020 NETIF_F_HW_VLAN_TX |
1021 NETIF_F_HW_VLAN_RX |
1022 NETIF_F_HW_VLAN_FILTER;
1023 }
1024
1025 if ((hw->mac_type >= e1000_82544) &&
1026 (hw->mac_type != e1000_82547))
1027 netdev->features |= NETIF_F_TSO;
1028
1029 if (pci_using_dac) {
1030 netdev->features |= NETIF_F_HIGHDMA;
1031 netdev->vlan_features |= NETIF_F_HIGHDMA;
1032 }
1033
1034 netdev->vlan_features |= NETIF_F_TSO;
1035 netdev->vlan_features |= NETIF_F_HW_CSUM;
1036 netdev->vlan_features |= NETIF_F_SG;
1037
1038 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1039
1040 /* initialize eeprom parameters */
1041 if (e1000_init_eeprom_params(hw)) {
1042 e_err(probe, "EEPROM initialization failed\n");
1043 goto err_eeprom;
1044 }
1045
1046 /* before reading the EEPROM, reset the controller to
1047 * put the device in a known good starting state */
1048
1049 e1000_reset_hw(hw);
1050
1051 /* make sure the EEPROM is good */
1052 if (e1000_validate_eeprom_checksum(hw) < 0) {
1053 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1054 e1000_dump_eeprom(adapter);
1055 /*
1056 * set MAC address to all zeroes to invalidate and temporary
1057 * disable this device for the user. This blocks regular
1058 * traffic while still permitting ethtool ioctls from reaching
1059 * the hardware as well as allowing the user to run the
1060 * interface after manually setting a hw addr using
1061 * `ip set address`
1062 */
1063 memset(hw->mac_addr, 0, netdev->addr_len);
1064 } else {
1065 /* copy the MAC address out of the EEPROM */
1066 if (e1000_read_mac_addr(hw))
1067 e_err(probe, "EEPROM Read Error\n");
1068 }
1069 /* don't block initalization here due to bad MAC address */
1070 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1071 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1072
1073 if (!is_valid_ether_addr(netdev->perm_addr))
1074 e_err(probe, "Invalid MAC Address\n");
1075
1076 init_timer(&adapter->tx_fifo_stall_timer);
1077 adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
1078 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1079
1080 init_timer(&adapter->watchdog_timer);
1081 adapter->watchdog_timer.function = e1000_watchdog;
1082 adapter->watchdog_timer.data = (unsigned long) adapter;
1083
1084 init_timer(&adapter->phy_info_timer);
1085 adapter->phy_info_timer.function = e1000_update_phy_info;
1086 adapter->phy_info_timer.data = (unsigned long)adapter;
1087
1088 INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
1089 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1090 INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1091
1092 e1000_check_options(adapter);
1093
1094 /* Initial Wake on LAN setting
1095 * If APM wake is enabled in the EEPROM,
1096 * enable the ACPI Magic Packet filter
1097 */
1098
1099 switch (hw->mac_type) {
1100 case e1000_82542_rev2_0:
1101 case e1000_82542_rev2_1:
1102 case e1000_82543:
1103 break;
1104 case e1000_82544:
1105 e1000_read_eeprom(hw,
1106 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1107 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1108 break;
1109 case e1000_82546:
1110 case e1000_82546_rev_3:
1111 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1112 e1000_read_eeprom(hw,
1113 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1114 break;
1115 }
1116 /* Fall Through */
1117 default:
1118 e1000_read_eeprom(hw,
1119 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1120 break;
1121 }
1122 if (eeprom_data & eeprom_apme_mask)
1123 adapter->eeprom_wol |= E1000_WUFC_MAG;
1124
1125 /* now that we have the eeprom settings, apply the special cases
1126 * where the eeprom may be wrong or the board simply won't support
1127 * wake on lan on a particular port */
1128 switch (pdev->device) {
1129 case E1000_DEV_ID_82546GB_PCIE:
1130 adapter->eeprom_wol = 0;
1131 break;
1132 case E1000_DEV_ID_82546EB_FIBER:
1133 case E1000_DEV_ID_82546GB_FIBER:
1134 /* Wake events only supported on port A for dual fiber
1135 * regardless of eeprom setting */
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1137 adapter->eeprom_wol = 0;
1138 break;
1139 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1140 /* if quad port adapter, disable WoL on all but port A */
1141 if (global_quad_port_a != 0)
1142 adapter->eeprom_wol = 0;
1143 else
1144 adapter->quad_port_a = 1;
1145 /* Reset for multiple quad port adapters */
1146 if (++global_quad_port_a == 4)
1147 global_quad_port_a = 0;
1148 break;
1149 }
1150
1151 /* initialize the wol settings based on the eeprom settings */
1152 adapter->wol = adapter->eeprom_wol;
1153 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1154
1155 /* Auto detect PHY address */
1156 if (hw->mac_type == e1000_ce4100) {
1157 for (i = 0; i < 32; i++) {
1158 hw->phy_addr = i;
1159 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1160 if (tmp == 0 || tmp == 0xFF) {
1161 if (i == 31)
1162 goto err_eeprom;
1163 continue;
1164 } else
1165 break;
1166 }
1167 }
1168
1169 /* reset the hardware with the new settings */
1170 e1000_reset(adapter);
1171
1172 strcpy(netdev->name, "eth%d");
1173 err = register_netdev(netdev);
1174 if (err)
1175 goto err_register;
1176
1177 /* print bus type/speed/width info */
1178 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1179 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1180 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1181 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1182 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1183 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1184 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1185 netdev->dev_addr);
1186
1187 /* carrier off reporting is important to ethtool even BEFORE open */
1188 netif_carrier_off(netdev);
1189
1190 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1191
1192 cards_found++;
1193 return 0;
1194
1195 err_register:
1196 err_eeprom:
1197 e1000_phy_hw_reset(hw);
1198
1199 if (hw->flash_address)
1200 iounmap(hw->flash_address);
1201 kfree(adapter->tx_ring);
1202 kfree(adapter->rx_ring);
1203 err_dma:
1204 err_sw_init:
1205 err_mdio_ioremap:
1206 iounmap(ce4100_gbe_mdio_base_virt);
1207 iounmap(hw->hw_addr);
1208 err_ioremap:
1209 free_netdev(netdev);
1210 err_alloc_etherdev:
1211 pci_release_selected_regions(pdev, bars);
1212 err_pci_reg:
1213 pci_disable_device(pdev);
1214 return err;
1215 }
1216
1217 /**
1218 * e1000_remove - Device Removal Routine
1219 * @pdev: PCI device information struct
1220 *
1221 * e1000_remove is called by the PCI subsystem to alert the driver
1222 * that it should release a PCI device. The could be caused by a
1223 * Hot-Plug event, or because the driver is going to be removed from
1224 * memory.
1225 **/
1226
1227 static void __devexit e1000_remove(struct pci_dev *pdev)
1228 {
1229 struct net_device *netdev = pci_get_drvdata(pdev);
1230 struct e1000_adapter *adapter = netdev_priv(netdev);
1231 struct e1000_hw *hw = &adapter->hw;
1232
1233 set_bit(__E1000_DOWN, &adapter->flags);
1234 del_timer_sync(&adapter->tx_fifo_stall_timer);
1235 del_timer_sync(&adapter->watchdog_timer);
1236 del_timer_sync(&adapter->phy_info_timer);
1237
1238 cancel_work_sync(&adapter->reset_task);
1239
1240 e1000_release_manageability(adapter);
1241
1242 unregister_netdev(netdev);
1243
1244 e1000_phy_hw_reset(hw);
1245
1246 kfree(adapter->tx_ring);
1247 kfree(adapter->rx_ring);
1248
1249 iounmap(hw->hw_addr);
1250 if (hw->flash_address)
1251 iounmap(hw->flash_address);
1252 pci_release_selected_regions(pdev, adapter->bars);
1253
1254 free_netdev(netdev);
1255
1256 pci_disable_device(pdev);
1257 }
1258
1259 /**
1260 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1261 * @adapter: board private structure to initialize
1262 *
1263 * e1000_sw_init initializes the Adapter private data structure.
1264 * e1000_init_hw_struct MUST be called before this function
1265 **/
1266
1267 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1268 {
1269 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1270
1271 adapter->num_tx_queues = 1;
1272 adapter->num_rx_queues = 1;
1273
1274 if (e1000_alloc_queues(adapter)) {
1275 e_err(probe, "Unable to allocate memory for queues\n");
1276 return -ENOMEM;
1277 }
1278
1279 /* Explicitly disable IRQ since the NIC can be in any state. */
1280 e1000_irq_disable(adapter);
1281
1282 spin_lock_init(&adapter->stats_lock);
1283
1284 set_bit(__E1000_DOWN, &adapter->flags);
1285
1286 return 0;
1287 }
1288
1289 /**
1290 * e1000_alloc_queues - Allocate memory for all rings
1291 * @adapter: board private structure to initialize
1292 *
1293 * We allocate one ring per queue at run-time since we don't know the
1294 * number of queues at compile-time.
1295 **/
1296
1297 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1298 {
1299 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1300 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1301 if (!adapter->tx_ring)
1302 return -ENOMEM;
1303
1304 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1305 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1306 if (!adapter->rx_ring) {
1307 kfree(adapter->tx_ring);
1308 return -ENOMEM;
1309 }
1310
1311 return E1000_SUCCESS;
1312 }
1313
1314 /**
1315 * e1000_open - Called when a network interface is made active
1316 * @netdev: network interface device structure
1317 *
1318 * Returns 0 on success, negative value on failure
1319 *
1320 * The open entry point is called when a network interface is made
1321 * active by the system (IFF_UP). At this point all resources needed
1322 * for transmit and receive operations are allocated, the interrupt
1323 * handler is registered with the OS, the watchdog timer is started,
1324 * and the stack is notified that the interface is ready.
1325 **/
1326
1327 static int e1000_open(struct net_device *netdev)
1328 {
1329 struct e1000_adapter *adapter = netdev_priv(netdev);
1330 struct e1000_hw *hw = &adapter->hw;
1331 int err;
1332
1333 /* disallow open during test */
1334 if (test_bit(__E1000_TESTING, &adapter->flags))
1335 return -EBUSY;
1336
1337 netif_carrier_off(netdev);
1338
1339 /* allocate transmit descriptors */
1340 err = e1000_setup_all_tx_resources(adapter);
1341 if (err)
1342 goto err_setup_tx;
1343
1344 /* allocate receive descriptors */
1345 err = e1000_setup_all_rx_resources(adapter);
1346 if (err)
1347 goto err_setup_rx;
1348
1349 e1000_power_up_phy(adapter);
1350
1351 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1352 if ((hw->mng_cookie.status &
1353 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1354 e1000_update_mng_vlan(adapter);
1355 }
1356
1357 /* before we allocate an interrupt, we must be ready to handle it.
1358 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1359 * as soon as we call pci_request_irq, so we have to setup our
1360 * clean_rx handler before we do so. */
1361 e1000_configure(adapter);
1362
1363 err = e1000_request_irq(adapter);
1364 if (err)
1365 goto err_req_irq;
1366
1367 /* From here on the code is the same as e1000_up() */
1368 clear_bit(__E1000_DOWN, &adapter->flags);
1369
1370 napi_enable(&adapter->napi);
1371
1372 e1000_irq_enable(adapter);
1373
1374 netif_start_queue(netdev);
1375
1376 /* fire a link status change interrupt to start the watchdog */
1377 ew32(ICS, E1000_ICS_LSC);
1378
1379 return E1000_SUCCESS;
1380
1381 err_req_irq:
1382 e1000_power_down_phy(adapter);
1383 e1000_free_all_rx_resources(adapter);
1384 err_setup_rx:
1385 e1000_free_all_tx_resources(adapter);
1386 err_setup_tx:
1387 e1000_reset(adapter);
1388
1389 return err;
1390 }
1391
1392 /**
1393 * e1000_close - Disables a network interface
1394 * @netdev: network interface device structure
1395 *
1396 * Returns 0, this is not allowed to fail
1397 *
1398 * The close entry point is called when an interface is de-activated
1399 * by the OS. The hardware is still under the drivers control, but
1400 * needs to be disabled. A global MAC reset is issued to stop the
1401 * hardware, and all transmit and receive resources are freed.
1402 **/
1403
1404 static int e1000_close(struct net_device *netdev)
1405 {
1406 struct e1000_adapter *adapter = netdev_priv(netdev);
1407 struct e1000_hw *hw = &adapter->hw;
1408
1409 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1410 e1000_down(adapter);
1411 e1000_power_down_phy(adapter);
1412 e1000_free_irq(adapter);
1413
1414 e1000_free_all_tx_resources(adapter);
1415 e1000_free_all_rx_resources(adapter);
1416
1417 /* kill manageability vlan ID if supported, but not if a vlan with
1418 * the same ID is registered on the host OS (let 8021q kill it) */
1419 if ((hw->mng_cookie.status &
1420 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1421 !(adapter->vlgrp &&
1422 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1423 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1424 }
1425
1426 return 0;
1427 }
1428
1429 /**
1430 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1431 * @adapter: address of board private structure
1432 * @start: address of beginning of memory
1433 * @len: length of memory
1434 **/
1435 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1436 unsigned long len)
1437 {
1438 struct e1000_hw *hw = &adapter->hw;
1439 unsigned long begin = (unsigned long)start;
1440 unsigned long end = begin + len;
1441
1442 /* First rev 82545 and 82546 need to not allow any memory
1443 * write location to cross 64k boundary due to errata 23 */
1444 if (hw->mac_type == e1000_82545 ||
1445 hw->mac_type == e1000_ce4100 ||
1446 hw->mac_type == e1000_82546) {
1447 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1448 }
1449
1450 return true;
1451 }
1452
1453 /**
1454 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1455 * @adapter: board private structure
1456 * @txdr: tx descriptor ring (for a specific queue) to setup
1457 *
1458 * Return 0 on success, negative on failure
1459 **/
1460
1461 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1462 struct e1000_tx_ring *txdr)
1463 {
1464 struct pci_dev *pdev = adapter->pdev;
1465 int size;
1466
1467 size = sizeof(struct e1000_buffer) * txdr->count;
1468 txdr->buffer_info = vzalloc(size);
1469 if (!txdr->buffer_info) {
1470 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1471 "ring\n");
1472 return -ENOMEM;
1473 }
1474
1475 /* round up to nearest 4K */
1476
1477 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1478 txdr->size = ALIGN(txdr->size, 4096);
1479
1480 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1481 GFP_KERNEL);
1482 if (!txdr->desc) {
1483 setup_tx_desc_die:
1484 vfree(txdr->buffer_info);
1485 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1486 "ring\n");
1487 return -ENOMEM;
1488 }
1489
1490 /* Fix for errata 23, can't cross 64kB boundary */
1491 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1492 void *olddesc = txdr->desc;
1493 dma_addr_t olddma = txdr->dma;
1494 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1495 txdr->size, txdr->desc);
1496 /* Try again, without freeing the previous */
1497 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1498 &txdr->dma, GFP_KERNEL);
1499 /* Failed allocation, critical failure */
1500 if (!txdr->desc) {
1501 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1502 olddma);
1503 goto setup_tx_desc_die;
1504 }
1505
1506 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1507 /* give up */
1508 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1509 txdr->dma);
1510 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1511 olddma);
1512 e_err(probe, "Unable to allocate aligned memory "
1513 "for the transmit descriptor ring\n");
1514 vfree(txdr->buffer_info);
1515 return -ENOMEM;
1516 } else {
1517 /* Free old allocation, new allocation was successful */
1518 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1519 olddma);
1520 }
1521 }
1522 memset(txdr->desc, 0, txdr->size);
1523
1524 txdr->next_to_use = 0;
1525 txdr->next_to_clean = 0;
1526
1527 return 0;
1528 }
1529
1530 /**
1531 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1532 * (Descriptors) for all queues
1533 * @adapter: board private structure
1534 *
1535 * Return 0 on success, negative on failure
1536 **/
1537
1538 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1539 {
1540 int i, err = 0;
1541
1542 for (i = 0; i < adapter->num_tx_queues; i++) {
1543 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1544 if (err) {
1545 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1546 for (i-- ; i >= 0; i--)
1547 e1000_free_tx_resources(adapter,
1548 &adapter->tx_ring[i]);
1549 break;
1550 }
1551 }
1552
1553 return err;
1554 }
1555
1556 /**
1557 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1558 * @adapter: board private structure
1559 *
1560 * Configure the Tx unit of the MAC after a reset.
1561 **/
1562
1563 static void e1000_configure_tx(struct e1000_adapter *adapter)
1564 {
1565 u64 tdba;
1566 struct e1000_hw *hw = &adapter->hw;
1567 u32 tdlen, tctl, tipg;
1568 u32 ipgr1, ipgr2;
1569
1570 /* Setup the HW Tx Head and Tail descriptor pointers */
1571
1572 switch (adapter->num_tx_queues) {
1573 case 1:
1574 default:
1575 tdba = adapter->tx_ring[0].dma;
1576 tdlen = adapter->tx_ring[0].count *
1577 sizeof(struct e1000_tx_desc);
1578 ew32(TDLEN, tdlen);
1579 ew32(TDBAH, (tdba >> 32));
1580 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1581 ew32(TDT, 0);
1582 ew32(TDH, 0);
1583 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1584 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1585 break;
1586 }
1587
1588 /* Set the default values for the Tx Inter Packet Gap timer */
1589 if ((hw->media_type == e1000_media_type_fiber ||
1590 hw->media_type == e1000_media_type_internal_serdes))
1591 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1592 else
1593 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1594
1595 switch (hw->mac_type) {
1596 case e1000_82542_rev2_0:
1597 case e1000_82542_rev2_1:
1598 tipg = DEFAULT_82542_TIPG_IPGT;
1599 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1600 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1601 break;
1602 default:
1603 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1604 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1605 break;
1606 }
1607 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1608 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1609 ew32(TIPG, tipg);
1610
1611 /* Set the Tx Interrupt Delay register */
1612
1613 ew32(TIDV, adapter->tx_int_delay);
1614 if (hw->mac_type >= e1000_82540)
1615 ew32(TADV, adapter->tx_abs_int_delay);
1616
1617 /* Program the Transmit Control Register */
1618
1619 tctl = er32(TCTL);
1620 tctl &= ~E1000_TCTL_CT;
1621 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1622 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1623
1624 e1000_config_collision_dist(hw);
1625
1626 /* Setup Transmit Descriptor Settings for eop descriptor */
1627 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1628
1629 /* only set IDE if we are delaying interrupts using the timers */
1630 if (adapter->tx_int_delay)
1631 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1632
1633 if (hw->mac_type < e1000_82543)
1634 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1635 else
1636 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1637
1638 /* Cache if we're 82544 running in PCI-X because we'll
1639 * need this to apply a workaround later in the send path. */
1640 if (hw->mac_type == e1000_82544 &&
1641 hw->bus_type == e1000_bus_type_pcix)
1642 adapter->pcix_82544 = 1;
1643
1644 ew32(TCTL, tctl);
1645
1646 }
1647
1648 /**
1649 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1650 * @adapter: board private structure
1651 * @rxdr: rx descriptor ring (for a specific queue) to setup
1652 *
1653 * Returns 0 on success, negative on failure
1654 **/
1655
1656 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1657 struct e1000_rx_ring *rxdr)
1658 {
1659 struct pci_dev *pdev = adapter->pdev;
1660 int size, desc_len;
1661
1662 size = sizeof(struct e1000_buffer) * rxdr->count;
1663 rxdr->buffer_info = vzalloc(size);
1664 if (!rxdr->buffer_info) {
1665 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1666 "ring\n");
1667 return -ENOMEM;
1668 }
1669
1670 desc_len = sizeof(struct e1000_rx_desc);
1671
1672 /* Round up to nearest 4K */
1673
1674 rxdr->size = rxdr->count * desc_len;
1675 rxdr->size = ALIGN(rxdr->size, 4096);
1676
1677 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1678 GFP_KERNEL);
1679
1680 if (!rxdr->desc) {
1681 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1682 "ring\n");
1683 setup_rx_desc_die:
1684 vfree(rxdr->buffer_info);
1685 return -ENOMEM;
1686 }
1687
1688 /* Fix for errata 23, can't cross 64kB boundary */
1689 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1690 void *olddesc = rxdr->desc;
1691 dma_addr_t olddma = rxdr->dma;
1692 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1693 rxdr->size, rxdr->desc);
1694 /* Try again, without freeing the previous */
1695 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1696 &rxdr->dma, GFP_KERNEL);
1697 /* Failed allocation, critical failure */
1698 if (!rxdr->desc) {
1699 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1700 olddma);
1701 e_err(probe, "Unable to allocate memory for the Rx "
1702 "descriptor ring\n");
1703 goto setup_rx_desc_die;
1704 }
1705
1706 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1707 /* give up */
1708 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1709 rxdr->dma);
1710 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1711 olddma);
1712 e_err(probe, "Unable to allocate aligned memory for "
1713 "the Rx descriptor ring\n");
1714 goto setup_rx_desc_die;
1715 } else {
1716 /* Free old allocation, new allocation was successful */
1717 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1718 olddma);
1719 }
1720 }
1721 memset(rxdr->desc, 0, rxdr->size);
1722
1723 rxdr->next_to_clean = 0;
1724 rxdr->next_to_use = 0;
1725 rxdr->rx_skb_top = NULL;
1726
1727 return 0;
1728 }
1729
1730 /**
1731 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1732 * (Descriptors) for all queues
1733 * @adapter: board private structure
1734 *
1735 * Return 0 on success, negative on failure
1736 **/
1737
1738 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1739 {
1740 int i, err = 0;
1741
1742 for (i = 0; i < adapter->num_rx_queues; i++) {
1743 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1744 if (err) {
1745 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1746 for (i-- ; i >= 0; i--)
1747 e1000_free_rx_resources(adapter,
1748 &adapter->rx_ring[i]);
1749 break;
1750 }
1751 }
1752
1753 return err;
1754 }
1755
1756 /**
1757 * e1000_setup_rctl - configure the receive control registers
1758 * @adapter: Board private structure
1759 **/
1760 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1761 {
1762 struct e1000_hw *hw = &adapter->hw;
1763 u32 rctl;
1764
1765 rctl = er32(RCTL);
1766
1767 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1768
1769 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1770 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1771 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1772
1773 if (hw->tbi_compatibility_on == 1)
1774 rctl |= E1000_RCTL_SBP;
1775 else
1776 rctl &= ~E1000_RCTL_SBP;
1777
1778 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1779 rctl &= ~E1000_RCTL_LPE;
1780 else
1781 rctl |= E1000_RCTL_LPE;
1782
1783 /* Setup buffer sizes */
1784 rctl &= ~E1000_RCTL_SZ_4096;
1785 rctl |= E1000_RCTL_BSEX;
1786 switch (adapter->rx_buffer_len) {
1787 case E1000_RXBUFFER_2048:
1788 default:
1789 rctl |= E1000_RCTL_SZ_2048;
1790 rctl &= ~E1000_RCTL_BSEX;
1791 break;
1792 case E1000_RXBUFFER_4096:
1793 rctl |= E1000_RCTL_SZ_4096;
1794 break;
1795 case E1000_RXBUFFER_8192:
1796 rctl |= E1000_RCTL_SZ_8192;
1797 break;
1798 case E1000_RXBUFFER_16384:
1799 rctl |= E1000_RCTL_SZ_16384;
1800 break;
1801 }
1802
1803 ew32(RCTL, rctl);
1804 }
1805
1806 /**
1807 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1808 * @adapter: board private structure
1809 *
1810 * Configure the Rx unit of the MAC after a reset.
1811 **/
1812
1813 static void e1000_configure_rx(struct e1000_adapter *adapter)
1814 {
1815 u64 rdba;
1816 struct e1000_hw *hw = &adapter->hw;
1817 u32 rdlen, rctl, rxcsum;
1818
1819 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1820 rdlen = adapter->rx_ring[0].count *
1821 sizeof(struct e1000_rx_desc);
1822 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1823 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1824 } else {
1825 rdlen = adapter->rx_ring[0].count *
1826 sizeof(struct e1000_rx_desc);
1827 adapter->clean_rx = e1000_clean_rx_irq;
1828 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1829 }
1830
1831 /* disable receives while setting up the descriptors */
1832 rctl = er32(RCTL);
1833 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1834
1835 /* set the Receive Delay Timer Register */
1836 ew32(RDTR, adapter->rx_int_delay);
1837
1838 if (hw->mac_type >= e1000_82540) {
1839 ew32(RADV, adapter->rx_abs_int_delay);
1840 if (adapter->itr_setting != 0)
1841 ew32(ITR, 1000000000 / (adapter->itr * 256));
1842 }
1843
1844 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1845 * the Base and Length of the Rx Descriptor Ring */
1846 switch (adapter->num_rx_queues) {
1847 case 1:
1848 default:
1849 rdba = adapter->rx_ring[0].dma;
1850 ew32(RDLEN, rdlen);
1851 ew32(RDBAH, (rdba >> 32));
1852 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1853 ew32(RDT, 0);
1854 ew32(RDH, 0);
1855 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1856 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1857 break;
1858 }
1859
1860 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1861 if (hw->mac_type >= e1000_82543) {
1862 rxcsum = er32(RXCSUM);
1863 if (adapter->rx_csum)
1864 rxcsum |= E1000_RXCSUM_TUOFL;
1865 else
1866 /* don't need to clear IPPCSE as it defaults to 0 */
1867 rxcsum &= ~E1000_RXCSUM_TUOFL;
1868 ew32(RXCSUM, rxcsum);
1869 }
1870
1871 /* Enable Receives */
1872 ew32(RCTL, rctl);
1873 }
1874
1875 /**
1876 * e1000_free_tx_resources - Free Tx Resources per Queue
1877 * @adapter: board private structure
1878 * @tx_ring: Tx descriptor ring for a specific queue
1879 *
1880 * Free all transmit software resources
1881 **/
1882
1883 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1884 struct e1000_tx_ring *tx_ring)
1885 {
1886 struct pci_dev *pdev = adapter->pdev;
1887
1888 e1000_clean_tx_ring(adapter, tx_ring);
1889
1890 vfree(tx_ring->buffer_info);
1891 tx_ring->buffer_info = NULL;
1892
1893 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1894 tx_ring->dma);
1895
1896 tx_ring->desc = NULL;
1897 }
1898
1899 /**
1900 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1901 * @adapter: board private structure
1902 *
1903 * Free all transmit software resources
1904 **/
1905
1906 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1907 {
1908 int i;
1909
1910 for (i = 0; i < adapter->num_tx_queues; i++)
1911 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1912 }
1913
1914 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1915 struct e1000_buffer *buffer_info)
1916 {
1917 if (buffer_info->dma) {
1918 if (buffer_info->mapped_as_page)
1919 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1920 buffer_info->length, DMA_TO_DEVICE);
1921 else
1922 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1923 buffer_info->length,
1924 DMA_TO_DEVICE);
1925 buffer_info->dma = 0;
1926 }
1927 if (buffer_info->skb) {
1928 dev_kfree_skb_any(buffer_info->skb);
1929 buffer_info->skb = NULL;
1930 }
1931 buffer_info->time_stamp = 0;
1932 /* buffer_info must be completely set up in the transmit path */
1933 }
1934
1935 /**
1936 * e1000_clean_tx_ring - Free Tx Buffers
1937 * @adapter: board private structure
1938 * @tx_ring: ring to be cleaned
1939 **/
1940
1941 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1942 struct e1000_tx_ring *tx_ring)
1943 {
1944 struct e1000_hw *hw = &adapter->hw;
1945 struct e1000_buffer *buffer_info;
1946 unsigned long size;
1947 unsigned int i;
1948
1949 /* Free all the Tx ring sk_buffs */
1950
1951 for (i = 0; i < tx_ring->count; i++) {
1952 buffer_info = &tx_ring->buffer_info[i];
1953 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1954 }
1955
1956 size = sizeof(struct e1000_buffer) * tx_ring->count;
1957 memset(tx_ring->buffer_info, 0, size);
1958
1959 /* Zero out the descriptor ring */
1960
1961 memset(tx_ring->desc, 0, tx_ring->size);
1962
1963 tx_ring->next_to_use = 0;
1964 tx_ring->next_to_clean = 0;
1965 tx_ring->last_tx_tso = 0;
1966
1967 writel(0, hw->hw_addr + tx_ring->tdh);
1968 writel(0, hw->hw_addr + tx_ring->tdt);
1969 }
1970
1971 /**
1972 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1973 * @adapter: board private structure
1974 **/
1975
1976 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1977 {
1978 int i;
1979
1980 for (i = 0; i < adapter->num_tx_queues; i++)
1981 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1982 }
1983
1984 /**
1985 * e1000_free_rx_resources - Free Rx Resources
1986 * @adapter: board private structure
1987 * @rx_ring: ring to clean the resources from
1988 *
1989 * Free all receive software resources
1990 **/
1991
1992 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1993 struct e1000_rx_ring *rx_ring)
1994 {
1995 struct pci_dev *pdev = adapter->pdev;
1996
1997 e1000_clean_rx_ring(adapter, rx_ring);
1998
1999 vfree(rx_ring->buffer_info);
2000 rx_ring->buffer_info = NULL;
2001
2002 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2003 rx_ring->dma);
2004
2005 rx_ring->desc = NULL;
2006 }
2007
2008 /**
2009 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2010 * @adapter: board private structure
2011 *
2012 * Free all receive software resources
2013 **/
2014
2015 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2016 {
2017 int i;
2018
2019 for (i = 0; i < adapter->num_rx_queues; i++)
2020 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2021 }
2022
2023 /**
2024 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2025 * @adapter: board private structure
2026 * @rx_ring: ring to free buffers from
2027 **/
2028
2029 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2030 struct e1000_rx_ring *rx_ring)
2031 {
2032 struct e1000_hw *hw = &adapter->hw;
2033 struct e1000_buffer *buffer_info;
2034 struct pci_dev *pdev = adapter->pdev;
2035 unsigned long size;
2036 unsigned int i;
2037
2038 /* Free all the Rx ring sk_buffs */
2039 for (i = 0; i < rx_ring->count; i++) {
2040 buffer_info = &rx_ring->buffer_info[i];
2041 if (buffer_info->dma &&
2042 adapter->clean_rx == e1000_clean_rx_irq) {
2043 dma_unmap_single(&pdev->dev, buffer_info->dma,
2044 buffer_info->length,
2045 DMA_FROM_DEVICE);
2046 } else if (buffer_info->dma &&
2047 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2048 dma_unmap_page(&pdev->dev, buffer_info->dma,
2049 buffer_info->length,
2050 DMA_FROM_DEVICE);
2051 }
2052
2053 buffer_info->dma = 0;
2054 if (buffer_info->page) {
2055 put_page(buffer_info->page);
2056 buffer_info->page = NULL;
2057 }
2058 if (buffer_info->skb) {
2059 dev_kfree_skb(buffer_info->skb);
2060 buffer_info->skb = NULL;
2061 }
2062 }
2063
2064 /* there also may be some cached data from a chained receive */
2065 if (rx_ring->rx_skb_top) {
2066 dev_kfree_skb(rx_ring->rx_skb_top);
2067 rx_ring->rx_skb_top = NULL;
2068 }
2069
2070 size = sizeof(struct e1000_buffer) * rx_ring->count;
2071 memset(rx_ring->buffer_info, 0, size);
2072
2073 /* Zero out the descriptor ring */
2074 memset(rx_ring->desc, 0, rx_ring->size);
2075
2076 rx_ring->next_to_clean = 0;
2077 rx_ring->next_to_use = 0;
2078
2079 writel(0, hw->hw_addr + rx_ring->rdh);
2080 writel(0, hw->hw_addr + rx_ring->rdt);
2081 }
2082
2083 /**
2084 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2085 * @adapter: board private structure
2086 **/
2087
2088 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2089 {
2090 int i;
2091
2092 for (i = 0; i < adapter->num_rx_queues; i++)
2093 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2094 }
2095
2096 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2097 * and memory write and invalidate disabled for certain operations
2098 */
2099 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2100 {
2101 struct e1000_hw *hw = &adapter->hw;
2102 struct net_device *netdev = adapter->netdev;
2103 u32 rctl;
2104
2105 e1000_pci_clear_mwi(hw);
2106
2107 rctl = er32(RCTL);
2108 rctl |= E1000_RCTL_RST;
2109 ew32(RCTL, rctl);
2110 E1000_WRITE_FLUSH();
2111 mdelay(5);
2112
2113 if (netif_running(netdev))
2114 e1000_clean_all_rx_rings(adapter);
2115 }
2116
2117 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2118 {
2119 struct e1000_hw *hw = &adapter->hw;
2120 struct net_device *netdev = adapter->netdev;
2121 u32 rctl;
2122
2123 rctl = er32(RCTL);
2124 rctl &= ~E1000_RCTL_RST;
2125 ew32(RCTL, rctl);
2126 E1000_WRITE_FLUSH();
2127 mdelay(5);
2128
2129 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2130 e1000_pci_set_mwi(hw);
2131
2132 if (netif_running(netdev)) {
2133 /* No need to loop, because 82542 supports only 1 queue */
2134 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2135 e1000_configure_rx(adapter);
2136 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2137 }
2138 }
2139
2140 /**
2141 * e1000_set_mac - Change the Ethernet Address of the NIC
2142 * @netdev: network interface device structure
2143 * @p: pointer to an address structure
2144 *
2145 * Returns 0 on success, negative on failure
2146 **/
2147
2148 static int e1000_set_mac(struct net_device *netdev, void *p)
2149 {
2150 struct e1000_adapter *adapter = netdev_priv(netdev);
2151 struct e1000_hw *hw = &adapter->hw;
2152 struct sockaddr *addr = p;
2153
2154 if (!is_valid_ether_addr(addr->sa_data))
2155 return -EADDRNOTAVAIL;
2156
2157 /* 82542 2.0 needs to be in reset to write receive address registers */
2158
2159 if (hw->mac_type == e1000_82542_rev2_0)
2160 e1000_enter_82542_rst(adapter);
2161
2162 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2163 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2164
2165 e1000_rar_set(hw, hw->mac_addr, 0);
2166
2167 if (hw->mac_type == e1000_82542_rev2_0)
2168 e1000_leave_82542_rst(adapter);
2169
2170 return 0;
2171 }
2172
2173 /**
2174 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2175 * @netdev: network interface device structure
2176 *
2177 * The set_rx_mode entry point is called whenever the unicast or multicast
2178 * address lists or the network interface flags are updated. This routine is
2179 * responsible for configuring the hardware for proper unicast, multicast,
2180 * promiscuous mode, and all-multi behavior.
2181 **/
2182
2183 static void e1000_set_rx_mode(struct net_device *netdev)
2184 {
2185 struct e1000_adapter *adapter = netdev_priv(netdev);
2186 struct e1000_hw *hw = &adapter->hw;
2187 struct netdev_hw_addr *ha;
2188 bool use_uc = false;
2189 u32 rctl;
2190 u32 hash_value;
2191 int i, rar_entries = E1000_RAR_ENTRIES;
2192 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2193 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2194
2195 if (!mcarray) {
2196 e_err(probe, "memory allocation failed\n");
2197 return;
2198 }
2199
2200 /* Check for Promiscuous and All Multicast modes */
2201
2202 rctl = er32(RCTL);
2203
2204 if (netdev->flags & IFF_PROMISC) {
2205 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2206 rctl &= ~E1000_RCTL_VFE;
2207 } else {
2208 if (netdev->flags & IFF_ALLMULTI)
2209 rctl |= E1000_RCTL_MPE;
2210 else
2211 rctl &= ~E1000_RCTL_MPE;
2212 /* Enable VLAN filter if there is a VLAN */
2213 if (adapter->vlgrp)
2214 rctl |= E1000_RCTL_VFE;
2215 }
2216
2217 if (netdev_uc_count(netdev) > rar_entries - 1) {
2218 rctl |= E1000_RCTL_UPE;
2219 } else if (!(netdev->flags & IFF_PROMISC)) {
2220 rctl &= ~E1000_RCTL_UPE;
2221 use_uc = true;
2222 }
2223
2224 ew32(RCTL, rctl);
2225
2226 /* 82542 2.0 needs to be in reset to write receive address registers */
2227
2228 if (hw->mac_type == e1000_82542_rev2_0)
2229 e1000_enter_82542_rst(adapter);
2230
2231 /* load the first 14 addresses into the exact filters 1-14. Unicast
2232 * addresses take precedence to avoid disabling unicast filtering
2233 * when possible.
2234 *
2235 * RAR 0 is used for the station MAC address
2236 * if there are not 14 addresses, go ahead and clear the filters
2237 */
2238 i = 1;
2239 if (use_uc)
2240 netdev_for_each_uc_addr(ha, netdev) {
2241 if (i == rar_entries)
2242 break;
2243 e1000_rar_set(hw, ha->addr, i++);
2244 }
2245
2246 netdev_for_each_mc_addr(ha, netdev) {
2247 if (i == rar_entries) {
2248 /* load any remaining addresses into the hash table */
2249 u32 hash_reg, hash_bit, mta;
2250 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2251 hash_reg = (hash_value >> 5) & 0x7F;
2252 hash_bit = hash_value & 0x1F;
2253 mta = (1 << hash_bit);
2254 mcarray[hash_reg] |= mta;
2255 } else {
2256 e1000_rar_set(hw, ha->addr, i++);
2257 }
2258 }
2259
2260 for (; i < rar_entries; i++) {
2261 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2262 E1000_WRITE_FLUSH();
2263 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2264 E1000_WRITE_FLUSH();
2265 }
2266
2267 /* write the hash table completely, write from bottom to avoid
2268 * both stupid write combining chipsets, and flushing each write */
2269 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2270 /*
2271 * If we are on an 82544 has an errata where writing odd
2272 * offsets overwrites the previous even offset, but writing
2273 * backwards over the range solves the issue by always
2274 * writing the odd offset first
2275 */
2276 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2277 }
2278 E1000_WRITE_FLUSH();
2279
2280 if (hw->mac_type == e1000_82542_rev2_0)
2281 e1000_leave_82542_rst(adapter);
2282
2283 kfree(mcarray);
2284 }
2285
2286 /* Need to wait a few seconds after link up to get diagnostic information from
2287 * the phy */
2288
2289 static void e1000_update_phy_info(unsigned long data)
2290 {
2291 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2292 schedule_work(&adapter->phy_info_task);
2293 }
2294
2295 static void e1000_update_phy_info_task(struct work_struct *work)
2296 {
2297 struct e1000_adapter *adapter = container_of(work,
2298 struct e1000_adapter,
2299 phy_info_task);
2300 struct e1000_hw *hw = &adapter->hw;
2301
2302 rtnl_lock();
2303 e1000_phy_get_info(hw, &adapter->phy_info);
2304 rtnl_unlock();
2305 }
2306
2307 /**
2308 * e1000_82547_tx_fifo_stall - Timer Call-back
2309 * @data: pointer to adapter cast into an unsigned long
2310 **/
2311 static void e1000_82547_tx_fifo_stall(unsigned long data)
2312 {
2313 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2314 schedule_work(&adapter->fifo_stall_task);
2315 }
2316
2317 /**
2318 * e1000_82547_tx_fifo_stall_task - task to complete work
2319 * @work: work struct contained inside adapter struct
2320 **/
2321 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2322 {
2323 struct e1000_adapter *adapter = container_of(work,
2324 struct e1000_adapter,
2325 fifo_stall_task);
2326 struct e1000_hw *hw = &adapter->hw;
2327 struct net_device *netdev = adapter->netdev;
2328 u32 tctl;
2329
2330 rtnl_lock();
2331 if (atomic_read(&adapter->tx_fifo_stall)) {
2332 if ((er32(TDT) == er32(TDH)) &&
2333 (er32(TDFT) == er32(TDFH)) &&
2334 (er32(TDFTS) == er32(TDFHS))) {
2335 tctl = er32(TCTL);
2336 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2337 ew32(TDFT, adapter->tx_head_addr);
2338 ew32(TDFH, adapter->tx_head_addr);
2339 ew32(TDFTS, adapter->tx_head_addr);
2340 ew32(TDFHS, adapter->tx_head_addr);
2341 ew32(TCTL, tctl);
2342 E1000_WRITE_FLUSH();
2343
2344 adapter->tx_fifo_head = 0;
2345 atomic_set(&adapter->tx_fifo_stall, 0);
2346 netif_wake_queue(netdev);
2347 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2348 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2349 }
2350 }
2351 rtnl_unlock();
2352 }
2353
2354 bool e1000_has_link(struct e1000_adapter *adapter)
2355 {
2356 struct e1000_hw *hw = &adapter->hw;
2357 bool link_active = false;
2358
2359 /* get_link_status is set on LSC (link status) interrupt or
2360 * rx sequence error interrupt. get_link_status will stay
2361 * false until the e1000_check_for_link establishes link
2362 * for copper adapters ONLY
2363 */
2364 switch (hw->media_type) {
2365 case e1000_media_type_copper:
2366 if (hw->get_link_status) {
2367 e1000_check_for_link(hw);
2368 link_active = !hw->get_link_status;
2369 } else {
2370 link_active = true;
2371 }
2372 break;
2373 case e1000_media_type_fiber:
2374 e1000_check_for_link(hw);
2375 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2376 break;
2377 case e1000_media_type_internal_serdes:
2378 e1000_check_for_link(hw);
2379 link_active = hw->serdes_has_link;
2380 break;
2381 default:
2382 break;
2383 }
2384
2385 return link_active;
2386 }
2387
2388 /**
2389 * e1000_watchdog - Timer Call-back
2390 * @data: pointer to adapter cast into an unsigned long
2391 **/
2392 static void e1000_watchdog(unsigned long data)
2393 {
2394 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2395 struct e1000_hw *hw = &adapter->hw;
2396 struct net_device *netdev = adapter->netdev;
2397 struct e1000_tx_ring *txdr = adapter->tx_ring;
2398 u32 link, tctl;
2399
2400 link = e1000_has_link(adapter);
2401 if ((netif_carrier_ok(netdev)) && link)
2402 goto link_up;
2403
2404 if (link) {
2405 if (!netif_carrier_ok(netdev)) {
2406 u32 ctrl;
2407 bool txb2b = true;
2408 /* update snapshot of PHY registers on LSC */
2409 e1000_get_speed_and_duplex(hw,
2410 &adapter->link_speed,
2411 &adapter->link_duplex);
2412
2413 ctrl = er32(CTRL);
2414 pr_info("%s NIC Link is Up %d Mbps %s, "
2415 "Flow Control: %s\n",
2416 netdev->name,
2417 adapter->link_speed,
2418 adapter->link_duplex == FULL_DUPLEX ?
2419 "Full Duplex" : "Half Duplex",
2420 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2421 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2422 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2423 E1000_CTRL_TFCE) ? "TX" : "None")));
2424
2425 /* adjust timeout factor according to speed/duplex */
2426 adapter->tx_timeout_factor = 1;
2427 switch (adapter->link_speed) {
2428 case SPEED_10:
2429 txb2b = false;
2430 adapter->tx_timeout_factor = 16;
2431 break;
2432 case SPEED_100:
2433 txb2b = false;
2434 /* maybe add some timeout factor ? */
2435 break;
2436 }
2437
2438 /* enable transmits in the hardware */
2439 tctl = er32(TCTL);
2440 tctl |= E1000_TCTL_EN;
2441 ew32(TCTL, tctl);
2442
2443 netif_carrier_on(netdev);
2444 if (!test_bit(__E1000_DOWN, &adapter->flags))
2445 mod_timer(&adapter->phy_info_timer,
2446 round_jiffies(jiffies + 2 * HZ));
2447 adapter->smartspeed = 0;
2448 }
2449 } else {
2450 if (netif_carrier_ok(netdev)) {
2451 adapter->link_speed = 0;
2452 adapter->link_duplex = 0;
2453 pr_info("%s NIC Link is Down\n",
2454 netdev->name);
2455 netif_carrier_off(netdev);
2456
2457 if (!test_bit(__E1000_DOWN, &adapter->flags))
2458 mod_timer(&adapter->phy_info_timer,
2459 round_jiffies(jiffies + 2 * HZ));
2460 }
2461
2462 e1000_smartspeed(adapter);
2463 }
2464
2465 link_up:
2466 e1000_update_stats(adapter);
2467
2468 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2469 adapter->tpt_old = adapter->stats.tpt;
2470 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2471 adapter->colc_old = adapter->stats.colc;
2472
2473 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2474 adapter->gorcl_old = adapter->stats.gorcl;
2475 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2476 adapter->gotcl_old = adapter->stats.gotcl;
2477
2478 e1000_update_adaptive(hw);
2479
2480 if (!netif_carrier_ok(netdev)) {
2481 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2482 /* We've lost link, so the controller stops DMA,
2483 * but we've got queued Tx work that's never going
2484 * to get done, so reset controller to flush Tx.
2485 * (Do the reset outside of interrupt context). */
2486 adapter->tx_timeout_count++;
2487 schedule_work(&adapter->reset_task);
2488 /* return immediately since reset is imminent */
2489 return;
2490 }
2491 }
2492
2493 /* Simple mode for Interrupt Throttle Rate (ITR) */
2494 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2495 /*
2496 * Symmetric Tx/Rx gets a reduced ITR=2000;
2497 * Total asymmetrical Tx or Rx gets ITR=8000;
2498 * everyone else is between 2000-8000.
2499 */
2500 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2501 u32 dif = (adapter->gotcl > adapter->gorcl ?
2502 adapter->gotcl - adapter->gorcl :
2503 adapter->gorcl - adapter->gotcl) / 10000;
2504 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2505
2506 ew32(ITR, 1000000000 / (itr * 256));
2507 }
2508
2509 /* Cause software interrupt to ensure rx ring is cleaned */
2510 ew32(ICS, E1000_ICS_RXDMT0);
2511
2512 /* Force detection of hung controller every watchdog period */
2513 adapter->detect_tx_hung = true;
2514
2515 /* Reset the timer */
2516 if (!test_bit(__E1000_DOWN, &adapter->flags))
2517 mod_timer(&adapter->watchdog_timer,
2518 round_jiffies(jiffies + 2 * HZ));
2519 }
2520
2521 enum latency_range {
2522 lowest_latency = 0,
2523 low_latency = 1,
2524 bulk_latency = 2,
2525 latency_invalid = 255
2526 };
2527
2528 /**
2529 * e1000_update_itr - update the dynamic ITR value based on statistics
2530 * @adapter: pointer to adapter
2531 * @itr_setting: current adapter->itr
2532 * @packets: the number of packets during this measurement interval
2533 * @bytes: the number of bytes during this measurement interval
2534 *
2535 * Stores a new ITR value based on packets and byte
2536 * counts during the last interrupt. The advantage of per interrupt
2537 * computation is faster updates and more accurate ITR for the current
2538 * traffic pattern. Constants in this function were computed
2539 * based on theoretical maximum wire speed and thresholds were set based
2540 * on testing data as well as attempting to minimize response time
2541 * while increasing bulk throughput.
2542 * this functionality is controlled by the InterruptThrottleRate module
2543 * parameter (see e1000_param.c)
2544 **/
2545 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2546 u16 itr_setting, int packets, int bytes)
2547 {
2548 unsigned int retval = itr_setting;
2549 struct e1000_hw *hw = &adapter->hw;
2550
2551 if (unlikely(hw->mac_type < e1000_82540))
2552 goto update_itr_done;
2553
2554 if (packets == 0)
2555 goto update_itr_done;
2556
2557 switch (itr_setting) {
2558 case lowest_latency:
2559 /* jumbo frames get bulk treatment*/
2560 if (bytes/packets > 8000)
2561 retval = bulk_latency;
2562 else if ((packets < 5) && (bytes > 512))
2563 retval = low_latency;
2564 break;
2565 case low_latency: /* 50 usec aka 20000 ints/s */
2566 if (bytes > 10000) {
2567 /* jumbo frames need bulk latency setting */
2568 if (bytes/packets > 8000)
2569 retval = bulk_latency;
2570 else if ((packets < 10) || ((bytes/packets) > 1200))
2571 retval = bulk_latency;
2572 else if ((packets > 35))
2573 retval = lowest_latency;
2574 } else if (bytes/packets > 2000)
2575 retval = bulk_latency;
2576 else if (packets <= 2 && bytes < 512)
2577 retval = lowest_latency;
2578 break;
2579 case bulk_latency: /* 250 usec aka 4000 ints/s */
2580 if (bytes > 25000) {
2581 if (packets > 35)
2582 retval = low_latency;
2583 } else if (bytes < 6000) {
2584 retval = low_latency;
2585 }
2586 break;
2587 }
2588
2589 update_itr_done:
2590 return retval;
2591 }
2592
2593 static void e1000_set_itr(struct e1000_adapter *adapter)
2594 {
2595 struct e1000_hw *hw = &adapter->hw;
2596 u16 current_itr;
2597 u32 new_itr = adapter->itr;
2598
2599 if (unlikely(hw->mac_type < e1000_82540))
2600 return;
2601
2602 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2603 if (unlikely(adapter->link_speed != SPEED_1000)) {
2604 current_itr = 0;
2605 new_itr = 4000;
2606 goto set_itr_now;
2607 }
2608
2609 adapter->tx_itr = e1000_update_itr(adapter,
2610 adapter->tx_itr,
2611 adapter->total_tx_packets,
2612 adapter->total_tx_bytes);
2613 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2614 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2615 adapter->tx_itr = low_latency;
2616
2617 adapter->rx_itr = e1000_update_itr(adapter,
2618 adapter->rx_itr,
2619 adapter->total_rx_packets,
2620 adapter->total_rx_bytes);
2621 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2622 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2623 adapter->rx_itr = low_latency;
2624
2625 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2626
2627 switch (current_itr) {
2628 /* counts and packets in update_itr are dependent on these numbers */
2629 case lowest_latency:
2630 new_itr = 70000;
2631 break;
2632 case low_latency:
2633 new_itr = 20000; /* aka hwitr = ~200 */
2634 break;
2635 case bulk_latency:
2636 new_itr = 4000;
2637 break;
2638 default:
2639 break;
2640 }
2641
2642 set_itr_now:
2643 if (new_itr != adapter->itr) {
2644 /* this attempts to bias the interrupt rate towards Bulk
2645 * by adding intermediate steps when interrupt rate is
2646 * increasing */
2647 new_itr = new_itr > adapter->itr ?
2648 min(adapter->itr + (new_itr >> 2), new_itr) :
2649 new_itr;
2650 adapter->itr = new_itr;
2651 ew32(ITR, 1000000000 / (new_itr * 256));
2652 }
2653 }
2654
2655 #define E1000_TX_FLAGS_CSUM 0x00000001
2656 #define E1000_TX_FLAGS_VLAN 0x00000002
2657 #define E1000_TX_FLAGS_TSO 0x00000004
2658 #define E1000_TX_FLAGS_IPV4 0x00000008
2659 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2660 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2661
2662 static int e1000_tso(struct e1000_adapter *adapter,
2663 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2664 {
2665 struct e1000_context_desc *context_desc;
2666 struct e1000_buffer *buffer_info;
2667 unsigned int i;
2668 u32 cmd_length = 0;
2669 u16 ipcse = 0, tucse, mss;
2670 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2671 int err;
2672
2673 if (skb_is_gso(skb)) {
2674 if (skb_header_cloned(skb)) {
2675 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2676 if (err)
2677 return err;
2678 }
2679
2680 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2681 mss = skb_shinfo(skb)->gso_size;
2682 if (skb->protocol == htons(ETH_P_IP)) {
2683 struct iphdr *iph = ip_hdr(skb);
2684 iph->tot_len = 0;
2685 iph->check = 0;
2686 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2687 iph->daddr, 0,
2688 IPPROTO_TCP,
2689 0);
2690 cmd_length = E1000_TXD_CMD_IP;
2691 ipcse = skb_transport_offset(skb) - 1;
2692 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2693 ipv6_hdr(skb)->payload_len = 0;
2694 tcp_hdr(skb)->check =
2695 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2696 &ipv6_hdr(skb)->daddr,
2697 0, IPPROTO_TCP, 0);
2698 ipcse = 0;
2699 }
2700 ipcss = skb_network_offset(skb);
2701 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2702 tucss = skb_transport_offset(skb);
2703 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2704 tucse = 0;
2705
2706 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2707 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2708
2709 i = tx_ring->next_to_use;
2710 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2711 buffer_info = &tx_ring->buffer_info[i];
2712
2713 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2714 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2715 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2716 context_desc->upper_setup.tcp_fields.tucss = tucss;
2717 context_desc->upper_setup.tcp_fields.tucso = tucso;
2718 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2719 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2720 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2721 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2722
2723 buffer_info->time_stamp = jiffies;
2724 buffer_info->next_to_watch = i;
2725
2726 if (++i == tx_ring->count) i = 0;
2727 tx_ring->next_to_use = i;
2728
2729 return true;
2730 }
2731 return false;
2732 }
2733
2734 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2735 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2736 {
2737 struct e1000_context_desc *context_desc;
2738 struct e1000_buffer *buffer_info;
2739 unsigned int i;
2740 u8 css;
2741 u32 cmd_len = E1000_TXD_CMD_DEXT;
2742
2743 if (skb->ip_summed != CHECKSUM_PARTIAL)
2744 return false;
2745
2746 switch (skb->protocol) {
2747 case cpu_to_be16(ETH_P_IP):
2748 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2749 cmd_len |= E1000_TXD_CMD_TCP;
2750 break;
2751 case cpu_to_be16(ETH_P_IPV6):
2752 /* XXX not handling all IPV6 headers */
2753 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2754 cmd_len |= E1000_TXD_CMD_TCP;
2755 break;
2756 default:
2757 if (unlikely(net_ratelimit()))
2758 e_warn(drv, "checksum_partial proto=%x!\n",
2759 skb->protocol);
2760 break;
2761 }
2762
2763 css = skb_checksum_start_offset(skb);
2764
2765 i = tx_ring->next_to_use;
2766 buffer_info = &tx_ring->buffer_info[i];
2767 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2768
2769 context_desc->lower_setup.ip_config = 0;
2770 context_desc->upper_setup.tcp_fields.tucss = css;
2771 context_desc->upper_setup.tcp_fields.tucso =
2772 css + skb->csum_offset;
2773 context_desc->upper_setup.tcp_fields.tucse = 0;
2774 context_desc->tcp_seg_setup.data = 0;
2775 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2776
2777 buffer_info->time_stamp = jiffies;
2778 buffer_info->next_to_watch = i;
2779
2780 if (unlikely(++i == tx_ring->count)) i = 0;
2781 tx_ring->next_to_use = i;
2782
2783 return true;
2784 }
2785
2786 #define E1000_MAX_TXD_PWR 12
2787 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2788
2789 static int e1000_tx_map(struct e1000_adapter *adapter,
2790 struct e1000_tx_ring *tx_ring,
2791 struct sk_buff *skb, unsigned int first,
2792 unsigned int max_per_txd, unsigned int nr_frags,
2793 unsigned int mss)
2794 {
2795 struct e1000_hw *hw = &adapter->hw;
2796 struct pci_dev *pdev = adapter->pdev;
2797 struct e1000_buffer *buffer_info;
2798 unsigned int len = skb_headlen(skb);
2799 unsigned int offset = 0, size, count = 0, i;
2800 unsigned int f;
2801
2802 i = tx_ring->next_to_use;
2803
2804 while (len) {
2805 buffer_info = &tx_ring->buffer_info[i];
2806 size = min(len, max_per_txd);
2807 /* Workaround for Controller erratum --
2808 * descriptor for non-tso packet in a linear SKB that follows a
2809 * tso gets written back prematurely before the data is fully
2810 * DMA'd to the controller */
2811 if (!skb->data_len && tx_ring->last_tx_tso &&
2812 !skb_is_gso(skb)) {
2813 tx_ring->last_tx_tso = 0;
2814 size -= 4;
2815 }
2816
2817 /* Workaround for premature desc write-backs
2818 * in TSO mode. Append 4-byte sentinel desc */
2819 if (unlikely(mss && !nr_frags && size == len && size > 8))
2820 size -= 4;
2821 /* work-around for errata 10 and it applies
2822 * to all controllers in PCI-X mode
2823 * The fix is to make sure that the first descriptor of a
2824 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2825 */
2826 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2827 (size > 2015) && count == 0))
2828 size = 2015;
2829
2830 /* Workaround for potential 82544 hang in PCI-X. Avoid
2831 * terminating buffers within evenly-aligned dwords. */
2832 if (unlikely(adapter->pcix_82544 &&
2833 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2834 size > 4))
2835 size -= 4;
2836
2837 buffer_info->length = size;
2838 /* set time_stamp *before* dma to help avoid a possible race */
2839 buffer_info->time_stamp = jiffies;
2840 buffer_info->mapped_as_page = false;
2841 buffer_info->dma = dma_map_single(&pdev->dev,
2842 skb->data + offset,
2843 size, DMA_TO_DEVICE);
2844 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2845 goto dma_error;
2846 buffer_info->next_to_watch = i;
2847
2848 len -= size;
2849 offset += size;
2850 count++;
2851 if (len) {
2852 i++;
2853 if (unlikely(i == tx_ring->count))
2854 i = 0;
2855 }
2856 }
2857
2858 for (f = 0; f < nr_frags; f++) {
2859 struct skb_frag_struct *frag;
2860
2861 frag = &skb_shinfo(skb)->frags[f];
2862 len = frag->size;
2863 offset = frag->page_offset;
2864
2865 while (len) {
2866 i++;
2867 if (unlikely(i == tx_ring->count))
2868 i = 0;
2869
2870 buffer_info = &tx_ring->buffer_info[i];
2871 size = min(len, max_per_txd);
2872 /* Workaround for premature desc write-backs
2873 * in TSO mode. Append 4-byte sentinel desc */
2874 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2875 size -= 4;
2876 /* Workaround for potential 82544 hang in PCI-X.
2877 * Avoid terminating buffers within evenly-aligned
2878 * dwords. */
2879 if (unlikely(adapter->pcix_82544 &&
2880 !((unsigned long)(page_to_phys(frag->page) + offset
2881 + size - 1) & 4) &&
2882 size > 4))
2883 size -= 4;
2884
2885 buffer_info->length = size;
2886 buffer_info->time_stamp = jiffies;
2887 buffer_info->mapped_as_page = true;
2888 buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2889 offset, size,
2890 DMA_TO_DEVICE);
2891 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2892 goto dma_error;
2893 buffer_info->next_to_watch = i;
2894
2895 len -= size;
2896 offset += size;
2897 count++;
2898 }
2899 }
2900
2901 tx_ring->buffer_info[i].skb = skb;
2902 tx_ring->buffer_info[first].next_to_watch = i;
2903
2904 return count;
2905
2906 dma_error:
2907 dev_err(&pdev->dev, "TX DMA map failed\n");
2908 buffer_info->dma = 0;
2909 if (count)
2910 count--;
2911
2912 while (count--) {
2913 if (i==0)
2914 i += tx_ring->count;
2915 i--;
2916 buffer_info = &tx_ring->buffer_info[i];
2917 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2918 }
2919
2920 return 0;
2921 }
2922
2923 static void e1000_tx_queue(struct e1000_adapter *adapter,
2924 struct e1000_tx_ring *tx_ring, int tx_flags,
2925 int count)
2926 {
2927 struct e1000_hw *hw = &adapter->hw;
2928 struct e1000_tx_desc *tx_desc = NULL;
2929 struct e1000_buffer *buffer_info;
2930 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2931 unsigned int i;
2932
2933 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2934 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2935 E1000_TXD_CMD_TSE;
2936 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2937
2938 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2939 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2940 }
2941
2942 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2943 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2944 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2945 }
2946
2947 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2948 txd_lower |= E1000_TXD_CMD_VLE;
2949 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2950 }
2951
2952 i = tx_ring->next_to_use;
2953
2954 while (count--) {
2955 buffer_info = &tx_ring->buffer_info[i];
2956 tx_desc = E1000_TX_DESC(*tx_ring, i);
2957 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2958 tx_desc->lower.data =
2959 cpu_to_le32(txd_lower | buffer_info->length);
2960 tx_desc->upper.data = cpu_to_le32(txd_upper);
2961 if (unlikely(++i == tx_ring->count)) i = 0;
2962 }
2963
2964 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2965
2966 /* Force memory writes to complete before letting h/w
2967 * know there are new descriptors to fetch. (Only
2968 * applicable for weak-ordered memory model archs,
2969 * such as IA-64). */
2970 wmb();
2971
2972 tx_ring->next_to_use = i;
2973 writel(i, hw->hw_addr + tx_ring->tdt);
2974 /* we need this if more than one processor can write to our tail
2975 * at a time, it syncronizes IO on IA64/Altix systems */
2976 mmiowb();
2977 }
2978
2979 /**
2980 * 82547 workaround to avoid controller hang in half-duplex environment.
2981 * The workaround is to avoid queuing a large packet that would span
2982 * the internal Tx FIFO ring boundary by notifying the stack to resend
2983 * the packet at a later time. This gives the Tx FIFO an opportunity to
2984 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2985 * to the beginning of the Tx FIFO.
2986 **/
2987
2988 #define E1000_FIFO_HDR 0x10
2989 #define E1000_82547_PAD_LEN 0x3E0
2990
2991 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2992 struct sk_buff *skb)
2993 {
2994 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2995 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2996
2997 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2998
2999 if (adapter->link_duplex != HALF_DUPLEX)
3000 goto no_fifo_stall_required;
3001
3002 if (atomic_read(&adapter->tx_fifo_stall))
3003 return 1;
3004
3005 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3006 atomic_set(&adapter->tx_fifo_stall, 1);
3007 return 1;
3008 }
3009
3010 no_fifo_stall_required:
3011 adapter->tx_fifo_head += skb_fifo_len;
3012 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3013 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3014 return 0;
3015 }
3016
3017 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3018 {
3019 struct e1000_adapter *adapter = netdev_priv(netdev);
3020 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3021
3022 netif_stop_queue(netdev);
3023 /* Herbert's original patch had:
3024 * smp_mb__after_netif_stop_queue();
3025 * but since that doesn't exist yet, just open code it. */
3026 smp_mb();
3027
3028 /* We need to check again in a case another CPU has just
3029 * made room available. */
3030 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3031 return -EBUSY;
3032
3033 /* A reprieve! */
3034 netif_start_queue(netdev);
3035 ++adapter->restart_queue;
3036 return 0;
3037 }
3038
3039 static int e1000_maybe_stop_tx(struct net_device *netdev,
3040 struct e1000_tx_ring *tx_ring, int size)
3041 {
3042 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3043 return 0;
3044 return __e1000_maybe_stop_tx(netdev, size);
3045 }
3046
3047 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3048 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3049 struct net_device *netdev)
3050 {
3051 struct e1000_adapter *adapter = netdev_priv(netdev);
3052 struct e1000_hw *hw = &adapter->hw;
3053 struct e1000_tx_ring *tx_ring;
3054 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3055 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3056 unsigned int tx_flags = 0;
3057 unsigned int len = skb_headlen(skb);
3058 unsigned int nr_frags;
3059 unsigned int mss;
3060 int count = 0;
3061 int tso;
3062 unsigned int f;
3063
3064 /* This goes back to the question of how to logically map a tx queue
3065 * to a flow. Right now, performance is impacted slightly negatively
3066 * if using multiple tx queues. If the stack breaks away from a
3067 * single qdisc implementation, we can look at this again. */
3068 tx_ring = adapter->tx_ring;
3069
3070 if (unlikely(skb->len <= 0)) {
3071 dev_kfree_skb_any(skb);
3072 return NETDEV_TX_OK;
3073 }
3074
3075 mss = skb_shinfo(skb)->gso_size;
3076 /* The controller does a simple calculation to
3077 * make sure there is enough room in the FIFO before
3078 * initiating the DMA for each buffer. The calc is:
3079 * 4 = ceil(buffer len/mss). To make sure we don't
3080 * overrun the FIFO, adjust the max buffer len if mss
3081 * drops. */
3082 if (mss) {
3083 u8 hdr_len;
3084 max_per_txd = min(mss << 2, max_per_txd);
3085 max_txd_pwr = fls(max_per_txd) - 1;
3086
3087 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3088 if (skb->data_len && hdr_len == len) {
3089 switch (hw->mac_type) {
3090 unsigned int pull_size;
3091 case e1000_82544:
3092 /* Make sure we have room to chop off 4 bytes,
3093 * and that the end alignment will work out to
3094 * this hardware's requirements
3095 * NOTE: this is a TSO only workaround
3096 * if end byte alignment not correct move us
3097 * into the next dword */
3098 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3099 break;
3100 /* fall through */
3101 pull_size = min((unsigned int)4, skb->data_len);
3102 if (!__pskb_pull_tail(skb, pull_size)) {
3103 e_err(drv, "__pskb_pull_tail "
3104 "failed.\n");
3105 dev_kfree_skb_any(skb);
3106 return NETDEV_TX_OK;
3107 }
3108 len = skb_headlen(skb);
3109 break;
3110 default:
3111 /* do nothing */
3112 break;
3113 }
3114 }
3115 }
3116
3117 /* reserve a descriptor for the offload context */
3118 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3119 count++;
3120 count++;
3121
3122 /* Controller Erratum workaround */
3123 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3124 count++;
3125
3126 count += TXD_USE_COUNT(len, max_txd_pwr);
3127
3128 if (adapter->pcix_82544)
3129 count++;
3130
3131 /* work-around for errata 10 and it applies to all controllers
3132 * in PCI-X mode, so add one more descriptor to the count
3133 */
3134 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3135 (len > 2015)))
3136 count++;
3137
3138 nr_frags = skb_shinfo(skb)->nr_frags;
3139 for (f = 0; f < nr_frags; f++)
3140 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3141 max_txd_pwr);
3142 if (adapter->pcix_82544)
3143 count += nr_frags;
3144
3145 /* need: count + 2 desc gap to keep tail from touching
3146 * head, otherwise try next time */
3147 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3148 return NETDEV_TX_BUSY;
3149
3150 if (unlikely(hw->mac_type == e1000_82547)) {
3151 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3152 netif_stop_queue(netdev);
3153 if (!test_bit(__E1000_DOWN, &adapter->flags))
3154 mod_timer(&adapter->tx_fifo_stall_timer,
3155 jiffies + 1);
3156 return NETDEV_TX_BUSY;
3157 }
3158 }
3159
3160 if (unlikely(vlan_tx_tag_present(skb))) {
3161 tx_flags |= E1000_TX_FLAGS_VLAN;
3162 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3163 }
3164
3165 first = tx_ring->next_to_use;
3166
3167 tso = e1000_tso(adapter, tx_ring, skb);
3168 if (tso < 0) {
3169 dev_kfree_skb_any(skb);
3170 return NETDEV_TX_OK;
3171 }
3172
3173 if (likely(tso)) {
3174 if (likely(hw->mac_type != e1000_82544))
3175 tx_ring->last_tx_tso = 1;
3176 tx_flags |= E1000_TX_FLAGS_TSO;
3177 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3178 tx_flags |= E1000_TX_FLAGS_CSUM;
3179
3180 if (likely(skb->protocol == htons(ETH_P_IP)))
3181 tx_flags |= E1000_TX_FLAGS_IPV4;
3182
3183 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3184 nr_frags, mss);
3185
3186 if (count) {
3187 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3188 /* Make sure there is space in the ring for the next send. */
3189 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3190
3191 } else {
3192 dev_kfree_skb_any(skb);
3193 tx_ring->buffer_info[first].time_stamp = 0;
3194 tx_ring->next_to_use = first;
3195 }
3196
3197 return NETDEV_TX_OK;
3198 }
3199
3200 /**
3201 * e1000_tx_timeout - Respond to a Tx Hang
3202 * @netdev: network interface device structure
3203 **/
3204
3205 static void e1000_tx_timeout(struct net_device *netdev)
3206 {
3207 struct e1000_adapter *adapter = netdev_priv(netdev);
3208
3209 /* Do the reset outside of interrupt context */
3210 adapter->tx_timeout_count++;
3211 schedule_work(&adapter->reset_task);
3212 }
3213
3214 static void e1000_reset_task(struct work_struct *work)
3215 {
3216 struct e1000_adapter *adapter =
3217 container_of(work, struct e1000_adapter, reset_task);
3218
3219 e1000_reinit_safe(adapter);
3220 }
3221
3222 /**
3223 * e1000_get_stats - Get System Network Statistics
3224 * @netdev: network interface device structure
3225 *
3226 * Returns the address of the device statistics structure.
3227 * The statistics are actually updated from the timer callback.
3228 **/
3229
3230 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3231 {
3232 /* only return the current stats */
3233 return &netdev->stats;
3234 }
3235
3236 /**
3237 * e1000_change_mtu - Change the Maximum Transfer Unit
3238 * @netdev: network interface device structure
3239 * @new_mtu: new value for maximum frame size
3240 *
3241 * Returns 0 on success, negative on failure
3242 **/
3243
3244 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3245 {
3246 struct e1000_adapter *adapter = netdev_priv(netdev);
3247 struct e1000_hw *hw = &adapter->hw;
3248 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3249
3250 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3251 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3252 e_err(probe, "Invalid MTU setting\n");
3253 return -EINVAL;
3254 }
3255
3256 /* Adapter-specific max frame size limits. */
3257 switch (hw->mac_type) {
3258 case e1000_undefined ... e1000_82542_rev2_1:
3259 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3260 e_err(probe, "Jumbo Frames not supported.\n");
3261 return -EINVAL;
3262 }
3263 break;
3264 default:
3265 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3266 break;
3267 }
3268
3269 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3270 msleep(1);
3271 /* e1000_down has a dependency on max_frame_size */
3272 hw->max_frame_size = max_frame;
3273 if (netif_running(netdev))
3274 e1000_down(adapter);
3275
3276 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3277 * means we reserve 2 more, this pushes us to allocate from the next
3278 * larger slab size.
3279 * i.e. RXBUFFER_2048 --> size-4096 slab
3280 * however with the new *_jumbo_rx* routines, jumbo receives will use
3281 * fragmented skbs */
3282
3283 if (max_frame <= E1000_RXBUFFER_2048)
3284 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3285 else
3286 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3287 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3288 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3289 adapter->rx_buffer_len = PAGE_SIZE;
3290 #endif
3291
3292 /* adjust allocation if LPE protects us, and we aren't using SBP */
3293 if (!hw->tbi_compatibility_on &&
3294 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3295 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3296 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3297
3298 pr_info("%s changing MTU from %d to %d\n",
3299 netdev->name, netdev->mtu, new_mtu);
3300 netdev->mtu = new_mtu;
3301
3302 if (netif_running(netdev))
3303 e1000_up(adapter);
3304 else
3305 e1000_reset(adapter);
3306
3307 clear_bit(__E1000_RESETTING, &adapter->flags);
3308
3309 return 0;
3310 }
3311
3312 /**
3313 * e1000_update_stats - Update the board statistics counters
3314 * @adapter: board private structure
3315 **/
3316
3317 void e1000_update_stats(struct e1000_adapter *adapter)
3318 {
3319 struct net_device *netdev = adapter->netdev;
3320 struct e1000_hw *hw = &adapter->hw;
3321 struct pci_dev *pdev = adapter->pdev;
3322 unsigned long flags;
3323 u16 phy_tmp;
3324
3325 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3326
3327 /*
3328 * Prevent stats update while adapter is being reset, or if the pci
3329 * connection is down.
3330 */
3331 if (adapter->link_speed == 0)
3332 return;
3333 if (pci_channel_offline(pdev))
3334 return;
3335
3336 spin_lock_irqsave(&adapter->stats_lock, flags);
3337
3338 /* these counters are modified from e1000_tbi_adjust_stats,
3339 * called from the interrupt context, so they must only
3340 * be written while holding adapter->stats_lock
3341 */
3342
3343 adapter->stats.crcerrs += er32(CRCERRS);
3344 adapter->stats.gprc += er32(GPRC);
3345 adapter->stats.gorcl += er32(GORCL);
3346 adapter->stats.gorch += er32(GORCH);
3347 adapter->stats.bprc += er32(BPRC);
3348 adapter->stats.mprc += er32(MPRC);
3349 adapter->stats.roc += er32(ROC);
3350
3351 adapter->stats.prc64 += er32(PRC64);
3352 adapter->stats.prc127 += er32(PRC127);
3353 adapter->stats.prc255 += er32(PRC255);
3354 adapter->stats.prc511 += er32(PRC511);
3355 adapter->stats.prc1023 += er32(PRC1023);
3356 adapter->stats.prc1522 += er32(PRC1522);
3357
3358 adapter->stats.symerrs += er32(SYMERRS);
3359 adapter->stats.mpc += er32(MPC);
3360 adapter->stats.scc += er32(SCC);
3361 adapter->stats.ecol += er32(ECOL);
3362 adapter->stats.mcc += er32(MCC);
3363 adapter->stats.latecol += er32(LATECOL);
3364 adapter->stats.dc += er32(DC);
3365 adapter->stats.sec += er32(SEC);
3366 adapter->stats.rlec += er32(RLEC);
3367 adapter->stats.xonrxc += er32(XONRXC);
3368 adapter->stats.xontxc += er32(XONTXC);
3369 adapter->stats.xoffrxc += er32(XOFFRXC);
3370 adapter->stats.xofftxc += er32(XOFFTXC);
3371 adapter->stats.fcruc += er32(FCRUC);
3372 adapter->stats.gptc += er32(GPTC);
3373 adapter->stats.gotcl += er32(GOTCL);
3374 adapter->stats.gotch += er32(GOTCH);
3375 adapter->stats.rnbc += er32(RNBC);
3376 adapter->stats.ruc += er32(RUC);
3377 adapter->stats.rfc += er32(RFC);
3378 adapter->stats.rjc += er32(RJC);
3379 adapter->stats.torl += er32(TORL);
3380 adapter->stats.torh += er32(TORH);
3381 adapter->stats.totl += er32(TOTL);
3382 adapter->stats.toth += er32(TOTH);
3383 adapter->stats.tpr += er32(TPR);
3384
3385 adapter->stats.ptc64 += er32(PTC64);
3386 adapter->stats.ptc127 += er32(PTC127);
3387 adapter->stats.ptc255 += er32(PTC255);
3388 adapter->stats.ptc511 += er32(PTC511);
3389 adapter->stats.ptc1023 += er32(PTC1023);
3390 adapter->stats.ptc1522 += er32(PTC1522);
3391
3392 adapter->stats.mptc += er32(MPTC);
3393 adapter->stats.bptc += er32(BPTC);
3394
3395 /* used for adaptive IFS */
3396
3397 hw->tx_packet_delta = er32(TPT);
3398 adapter->stats.tpt += hw->tx_packet_delta;
3399 hw->collision_delta = er32(COLC);
3400 adapter->stats.colc += hw->collision_delta;
3401
3402 if (hw->mac_type >= e1000_82543) {
3403 adapter->stats.algnerrc += er32(ALGNERRC);
3404 adapter->stats.rxerrc += er32(RXERRC);
3405 adapter->stats.tncrs += er32(TNCRS);
3406 adapter->stats.cexterr += er32(CEXTERR);
3407 adapter->stats.tsctc += er32(TSCTC);
3408 adapter->stats.tsctfc += er32(TSCTFC);
3409 }
3410
3411 /* Fill out the OS statistics structure */
3412 netdev->stats.multicast = adapter->stats.mprc;
3413 netdev->stats.collisions = adapter->stats.colc;
3414
3415 /* Rx Errors */
3416
3417 /* RLEC on some newer hardware can be incorrect so build
3418 * our own version based on RUC and ROC */
3419 netdev->stats.rx_errors = adapter->stats.rxerrc +
3420 adapter->stats.crcerrs + adapter->stats.algnerrc +
3421 adapter->stats.ruc + adapter->stats.roc +
3422 adapter->stats.cexterr;
3423 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3424 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3425 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3426 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3427 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3428
3429 /* Tx Errors */
3430 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3431 netdev->stats.tx_errors = adapter->stats.txerrc;
3432 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3433 netdev->stats.tx_window_errors = adapter->stats.latecol;
3434 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3435 if (hw->bad_tx_carr_stats_fd &&
3436 adapter->link_duplex == FULL_DUPLEX) {
3437 netdev->stats.tx_carrier_errors = 0;
3438 adapter->stats.tncrs = 0;
3439 }
3440
3441 /* Tx Dropped needs to be maintained elsewhere */
3442
3443 /* Phy Stats */
3444 if (hw->media_type == e1000_media_type_copper) {
3445 if ((adapter->link_speed == SPEED_1000) &&
3446 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3447 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3448 adapter->phy_stats.idle_errors += phy_tmp;
3449 }
3450
3451 if ((hw->mac_type <= e1000_82546) &&
3452 (hw->phy_type == e1000_phy_m88) &&
3453 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3454 adapter->phy_stats.receive_errors += phy_tmp;
3455 }
3456
3457 /* Management Stats */
3458 if (hw->has_smbus) {
3459 adapter->stats.mgptc += er32(MGTPTC);
3460 adapter->stats.mgprc += er32(MGTPRC);
3461 adapter->stats.mgpdc += er32(MGTPDC);
3462 }
3463
3464 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3465 }
3466
3467 /**
3468 * e1000_intr - Interrupt Handler
3469 * @irq: interrupt number
3470 * @data: pointer to a network interface device structure
3471 **/
3472
3473 static irqreturn_t e1000_intr(int irq, void *data)
3474 {
3475 struct net_device *netdev = data;
3476 struct e1000_adapter *adapter = netdev_priv(netdev);
3477 struct e1000_hw *hw = &adapter->hw;
3478 u32 icr = er32(ICR);
3479
3480 if (unlikely((!icr)))
3481 return IRQ_NONE; /* Not our interrupt */
3482
3483 /*
3484 * we might have caused the interrupt, but the above
3485 * read cleared it, and just in case the driver is
3486 * down there is nothing to do so return handled
3487 */
3488 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3489 return IRQ_HANDLED;
3490
3491 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3492 hw->get_link_status = 1;
3493 /* guard against interrupt when we're going down */
3494 if (!test_bit(__E1000_DOWN, &adapter->flags))
3495 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3496 }
3497
3498 /* disable interrupts, without the synchronize_irq bit */
3499 ew32(IMC, ~0);
3500 E1000_WRITE_FLUSH();
3501
3502 if (likely(napi_schedule_prep(&adapter->napi))) {
3503 adapter->total_tx_bytes = 0;
3504 adapter->total_tx_packets = 0;
3505 adapter->total_rx_bytes = 0;
3506 adapter->total_rx_packets = 0;
3507 __napi_schedule(&adapter->napi);
3508 } else {
3509 /* this really should not happen! if it does it is basically a
3510 * bug, but not a hard error, so enable ints and continue */
3511 if (!test_bit(__E1000_DOWN, &adapter->flags))
3512 e1000_irq_enable(adapter);
3513 }
3514
3515 return IRQ_HANDLED;
3516 }
3517
3518 /**
3519 * e1000_clean - NAPI Rx polling callback
3520 * @adapter: board private structure
3521 **/
3522 static int e1000_clean(struct napi_struct *napi, int budget)
3523 {
3524 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3525 int tx_clean_complete = 0, work_done = 0;
3526
3527 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3528
3529 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3530
3531 if (!tx_clean_complete)
3532 work_done = budget;
3533
3534 /* If budget not fully consumed, exit the polling mode */
3535 if (work_done < budget) {
3536 if (likely(adapter->itr_setting & 3))
3537 e1000_set_itr(adapter);
3538 napi_complete(napi);
3539 if (!test_bit(__E1000_DOWN, &adapter->flags))
3540 e1000_irq_enable(adapter);
3541 }
3542
3543 return work_done;
3544 }
3545
3546 /**
3547 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3548 * @adapter: board private structure
3549 **/
3550 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3551 struct e1000_tx_ring *tx_ring)
3552 {
3553 struct e1000_hw *hw = &adapter->hw;
3554 struct net_device *netdev = adapter->netdev;
3555 struct e1000_tx_desc *tx_desc, *eop_desc;
3556 struct e1000_buffer *buffer_info;
3557 unsigned int i, eop;
3558 unsigned int count = 0;
3559 unsigned int total_tx_bytes=0, total_tx_packets=0;
3560
3561 i = tx_ring->next_to_clean;
3562 eop = tx_ring->buffer_info[i].next_to_watch;
3563 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3564
3565 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3566 (count < tx_ring->count)) {
3567 bool cleaned = false;
3568 rmb(); /* read buffer_info after eop_desc */
3569 for ( ; !cleaned; count++) {
3570 tx_desc = E1000_TX_DESC(*tx_ring, i);
3571 buffer_info = &tx_ring->buffer_info[i];
3572 cleaned = (i == eop);
3573
3574 if (cleaned) {
3575 struct sk_buff *skb = buffer_info->skb;
3576 unsigned int segs, bytecount;
3577 segs = skb_shinfo(skb)->gso_segs ?: 1;
3578 /* multiply data chunks by size of headers */
3579 bytecount = ((segs - 1) * skb_headlen(skb)) +
3580 skb->len;
3581 total_tx_packets += segs;
3582 total_tx_bytes += bytecount;
3583 }
3584 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3585 tx_desc->upper.data = 0;
3586
3587 if (unlikely(++i == tx_ring->count)) i = 0;
3588 }
3589
3590 eop = tx_ring->buffer_info[i].next_to_watch;
3591 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3592 }
3593
3594 tx_ring->next_to_clean = i;
3595
3596 #define TX_WAKE_THRESHOLD 32
3597 if (unlikely(count && netif_carrier_ok(netdev) &&
3598 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3599 /* Make sure that anybody stopping the queue after this
3600 * sees the new next_to_clean.
3601 */
3602 smp_mb();
3603
3604 if (netif_queue_stopped(netdev) &&
3605 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3606 netif_wake_queue(netdev);
3607 ++adapter->restart_queue;
3608 }
3609 }
3610
3611 if (adapter->detect_tx_hung) {
3612 /* Detect a transmit hang in hardware, this serializes the
3613 * check with the clearing of time_stamp and movement of i */
3614 adapter->detect_tx_hung = false;
3615 if (tx_ring->buffer_info[eop].time_stamp &&
3616 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3617 (adapter->tx_timeout_factor * HZ)) &&
3618 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3619
3620 /* detected Tx unit hang */
3621 e_err(drv, "Detected Tx Unit Hang\n"
3622 " Tx Queue <%lu>\n"
3623 " TDH <%x>\n"
3624 " TDT <%x>\n"
3625 " next_to_use <%x>\n"
3626 " next_to_clean <%x>\n"
3627 "buffer_info[next_to_clean]\n"
3628 " time_stamp <%lx>\n"
3629 " next_to_watch <%x>\n"
3630 " jiffies <%lx>\n"
3631 " next_to_watch.status <%x>\n",
3632 (unsigned long)((tx_ring - adapter->tx_ring) /
3633 sizeof(struct e1000_tx_ring)),
3634 readl(hw->hw_addr + tx_ring->tdh),
3635 readl(hw->hw_addr + tx_ring->tdt),
3636 tx_ring->next_to_use,
3637 tx_ring->next_to_clean,
3638 tx_ring->buffer_info[eop].time_stamp,
3639 eop,
3640 jiffies,
3641 eop_desc->upper.fields.status);
3642 netif_stop_queue(netdev);
3643 }
3644 }
3645 adapter->total_tx_bytes += total_tx_bytes;
3646 adapter->total_tx_packets += total_tx_packets;
3647 netdev->stats.tx_bytes += total_tx_bytes;
3648 netdev->stats.tx_packets += total_tx_packets;
3649 return count < tx_ring->count;
3650 }
3651
3652 /**
3653 * e1000_rx_checksum - Receive Checksum Offload for 82543
3654 * @adapter: board private structure
3655 * @status_err: receive descriptor status and error fields
3656 * @csum: receive descriptor csum field
3657 * @sk_buff: socket buffer with received data
3658 **/
3659
3660 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3661 u32 csum, struct sk_buff *skb)
3662 {
3663 struct e1000_hw *hw = &adapter->hw;
3664 u16 status = (u16)status_err;
3665 u8 errors = (u8)(status_err >> 24);
3666
3667 skb_checksum_none_assert(skb);
3668
3669 /* 82543 or newer only */
3670 if (unlikely(hw->mac_type < e1000_82543)) return;
3671 /* Ignore Checksum bit is set */
3672 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3673 /* TCP/UDP checksum error bit is set */
3674 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3675 /* let the stack verify checksum errors */
3676 adapter->hw_csum_err++;
3677 return;
3678 }
3679 /* TCP/UDP Checksum has not been calculated */
3680 if (!(status & E1000_RXD_STAT_TCPCS))
3681 return;
3682
3683 /* It must be a TCP or UDP packet with a valid checksum */
3684 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3685 /* TCP checksum is good */
3686 skb->ip_summed = CHECKSUM_UNNECESSARY;
3687 }
3688 adapter->hw_csum_good++;
3689 }
3690
3691 /**
3692 * e1000_consume_page - helper function
3693 **/
3694 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3695 u16 length)
3696 {
3697 bi->page = NULL;
3698 skb->len += length;
3699 skb->data_len += length;
3700 skb->truesize += length;
3701 }
3702
3703 /**
3704 * e1000_receive_skb - helper function to handle rx indications
3705 * @adapter: board private structure
3706 * @status: descriptor status field as written by hardware
3707 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3708 * @skb: pointer to sk_buff to be indicated to stack
3709 */
3710 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3711 __le16 vlan, struct sk_buff *skb)
3712 {
3713 skb->protocol = eth_type_trans(skb, adapter->netdev);
3714
3715 if ((unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))))
3716 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
3717 le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK,
3718 skb);
3719 else
3720 napi_gro_receive(&adapter->napi, skb);
3721 }
3722
3723 /**
3724 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3725 * @adapter: board private structure
3726 * @rx_ring: ring to clean
3727 * @work_done: amount of napi work completed this call
3728 * @work_to_do: max amount of work allowed for this call to do
3729 *
3730 * the return value indicates whether actual cleaning was done, there
3731 * is no guarantee that everything was cleaned
3732 */
3733 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3734 struct e1000_rx_ring *rx_ring,
3735 int *work_done, int work_to_do)
3736 {
3737 struct e1000_hw *hw = &adapter->hw;
3738 struct net_device *netdev = adapter->netdev;
3739 struct pci_dev *pdev = adapter->pdev;
3740 struct e1000_rx_desc *rx_desc, *next_rxd;
3741 struct e1000_buffer *buffer_info, *next_buffer;
3742 unsigned long irq_flags;
3743 u32 length;
3744 unsigned int i;
3745 int cleaned_count = 0;
3746 bool cleaned = false;
3747 unsigned int total_rx_bytes=0, total_rx_packets=0;
3748
3749 i = rx_ring->next_to_clean;
3750 rx_desc = E1000_RX_DESC(*rx_ring, i);
3751 buffer_info = &rx_ring->buffer_info[i];
3752
3753 while (rx_desc->status & E1000_RXD_STAT_DD) {
3754 struct sk_buff *skb;
3755 u8 status;
3756
3757 if (*work_done >= work_to_do)
3758 break;
3759 (*work_done)++;
3760 rmb(); /* read descriptor and rx_buffer_info after status DD */
3761
3762 status = rx_desc->status;
3763 skb = buffer_info->skb;
3764 buffer_info->skb = NULL;
3765
3766 if (++i == rx_ring->count) i = 0;
3767 next_rxd = E1000_RX_DESC(*rx_ring, i);
3768 prefetch(next_rxd);
3769
3770 next_buffer = &rx_ring->buffer_info[i];
3771
3772 cleaned = true;
3773 cleaned_count++;
3774 dma_unmap_page(&pdev->dev, buffer_info->dma,
3775 buffer_info->length, DMA_FROM_DEVICE);
3776 buffer_info->dma = 0;
3777
3778 length = le16_to_cpu(rx_desc->length);
3779
3780 /* errors is only valid for DD + EOP descriptors */
3781 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3782 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3783 u8 last_byte = *(skb->data + length - 1);
3784 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3785 last_byte)) {
3786 spin_lock_irqsave(&adapter->stats_lock,
3787 irq_flags);
3788 e1000_tbi_adjust_stats(hw, &adapter->stats,
3789 length, skb->data);
3790 spin_unlock_irqrestore(&adapter->stats_lock,
3791 irq_flags);
3792 length--;
3793 } else {
3794 /* recycle both page and skb */
3795 buffer_info->skb = skb;
3796 /* an error means any chain goes out the window
3797 * too */
3798 if (rx_ring->rx_skb_top)
3799 dev_kfree_skb(rx_ring->rx_skb_top);
3800 rx_ring->rx_skb_top = NULL;
3801 goto next_desc;
3802 }
3803 }
3804
3805 #define rxtop rx_ring->rx_skb_top
3806 if (!(status & E1000_RXD_STAT_EOP)) {
3807 /* this descriptor is only the beginning (or middle) */
3808 if (!rxtop) {
3809 /* this is the beginning of a chain */
3810 rxtop = skb;
3811 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3812 0, length);
3813 } else {
3814 /* this is the middle of a chain */
3815 skb_fill_page_desc(rxtop,
3816 skb_shinfo(rxtop)->nr_frags,
3817 buffer_info->page, 0, length);
3818 /* re-use the skb, only consumed the page */
3819 buffer_info->skb = skb;
3820 }
3821 e1000_consume_page(buffer_info, rxtop, length);
3822 goto next_desc;
3823 } else {
3824 if (rxtop) {
3825 /* end of the chain */
3826 skb_fill_page_desc(rxtop,
3827 skb_shinfo(rxtop)->nr_frags,
3828 buffer_info->page, 0, length);
3829 /* re-use the current skb, we only consumed the
3830 * page */
3831 buffer_info->skb = skb;
3832 skb = rxtop;
3833 rxtop = NULL;
3834 e1000_consume_page(buffer_info, skb, length);
3835 } else {
3836 /* no chain, got EOP, this buf is the packet
3837 * copybreak to save the put_page/alloc_page */
3838 if (length <= copybreak &&
3839 skb_tailroom(skb) >= length) {
3840 u8 *vaddr;
3841 vaddr = kmap_atomic(buffer_info->page,
3842 KM_SKB_DATA_SOFTIRQ);
3843 memcpy(skb_tail_pointer(skb), vaddr, length);
3844 kunmap_atomic(vaddr,
3845 KM_SKB_DATA_SOFTIRQ);
3846 /* re-use the page, so don't erase
3847 * buffer_info->page */
3848 skb_put(skb, length);
3849 } else {
3850 skb_fill_page_desc(skb, 0,
3851 buffer_info->page, 0,
3852 length);
3853 e1000_consume_page(buffer_info, skb,
3854 length);
3855 }
3856 }
3857 }
3858
3859 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3860 e1000_rx_checksum(adapter,
3861 (u32)(status) |
3862 ((u32)(rx_desc->errors) << 24),
3863 le16_to_cpu(rx_desc->csum), skb);
3864
3865 pskb_trim(skb, skb->len - 4);
3866
3867 /* probably a little skewed due to removing CRC */
3868 total_rx_bytes += skb->len;
3869 total_rx_packets++;
3870
3871 /* eth type trans needs skb->data to point to something */
3872 if (!pskb_may_pull(skb, ETH_HLEN)) {
3873 e_err(drv, "pskb_may_pull failed.\n");
3874 dev_kfree_skb(skb);
3875 goto next_desc;
3876 }
3877
3878 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3879
3880 next_desc:
3881 rx_desc->status = 0;
3882
3883 /* return some buffers to hardware, one at a time is too slow */
3884 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3885 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3886 cleaned_count = 0;
3887 }
3888
3889 /* use prefetched values */
3890 rx_desc = next_rxd;
3891 buffer_info = next_buffer;
3892 }
3893 rx_ring->next_to_clean = i;
3894
3895 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3896 if (cleaned_count)
3897 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3898
3899 adapter->total_rx_packets += total_rx_packets;
3900 adapter->total_rx_bytes += total_rx_bytes;
3901 netdev->stats.rx_bytes += total_rx_bytes;
3902 netdev->stats.rx_packets += total_rx_packets;
3903 return cleaned;
3904 }
3905
3906 /*
3907 * this should improve performance for small packets with large amounts
3908 * of reassembly being done in the stack
3909 */
3910 static void e1000_check_copybreak(struct net_device *netdev,
3911 struct e1000_buffer *buffer_info,
3912 u32 length, struct sk_buff **skb)
3913 {
3914 struct sk_buff *new_skb;
3915
3916 if (length > copybreak)
3917 return;
3918
3919 new_skb = netdev_alloc_skb_ip_align(netdev, length);
3920 if (!new_skb)
3921 return;
3922
3923 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3924 (*skb)->data - NET_IP_ALIGN,
3925 length + NET_IP_ALIGN);
3926 /* save the skb in buffer_info as good */
3927 buffer_info->skb = *skb;
3928 *skb = new_skb;
3929 }
3930
3931 /**
3932 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3933 * @adapter: board private structure
3934 * @rx_ring: ring to clean
3935 * @work_done: amount of napi work completed this call
3936 * @work_to_do: max amount of work allowed for this call to do
3937 */
3938 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3939 struct e1000_rx_ring *rx_ring,
3940 int *work_done, int work_to_do)
3941 {
3942 struct e1000_hw *hw = &adapter->hw;
3943 struct net_device *netdev = adapter->netdev;
3944 struct pci_dev *pdev = adapter->pdev;
3945 struct e1000_rx_desc *rx_desc, *next_rxd;
3946 struct e1000_buffer *buffer_info, *next_buffer;
3947 unsigned long flags;
3948 u32 length;
3949 unsigned int i;
3950 int cleaned_count = 0;
3951 bool cleaned = false;
3952 unsigned int total_rx_bytes=0, total_rx_packets=0;
3953
3954 i = rx_ring->next_to_clean;
3955 rx_desc = E1000_RX_DESC(*rx_ring, i);
3956 buffer_info = &rx_ring->buffer_info[i];
3957
3958 while (rx_desc->status & E1000_RXD_STAT_DD) {
3959 struct sk_buff *skb;
3960 u8 status;
3961
3962 if (*work_done >= work_to_do)
3963 break;
3964 (*work_done)++;
3965 rmb(); /* read descriptor and rx_buffer_info after status DD */
3966
3967 status = rx_desc->status;
3968 skb = buffer_info->skb;
3969 buffer_info->skb = NULL;
3970
3971 prefetch(skb->data - NET_IP_ALIGN);
3972
3973 if (++i == rx_ring->count) i = 0;
3974 next_rxd = E1000_RX_DESC(*rx_ring, i);
3975 prefetch(next_rxd);
3976
3977 next_buffer = &rx_ring->buffer_info[i];
3978
3979 cleaned = true;
3980 cleaned_count++;
3981 dma_unmap_single(&pdev->dev, buffer_info->dma,
3982 buffer_info->length, DMA_FROM_DEVICE);
3983 buffer_info->dma = 0;
3984
3985 length = le16_to_cpu(rx_desc->length);
3986 /* !EOP means multiple descriptors were used to store a single
3987 * packet, if thats the case we need to toss it. In fact, we
3988 * to toss every packet with the EOP bit clear and the next
3989 * frame that _does_ have the EOP bit set, as it is by
3990 * definition only a frame fragment
3991 */
3992 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3993 adapter->discarding = true;
3994
3995 if (adapter->discarding) {
3996 /* All receives must fit into a single buffer */
3997 e_dbg("Receive packet consumed multiple buffers\n");
3998 /* recycle */
3999 buffer_info->skb = skb;
4000 if (status & E1000_RXD_STAT_EOP)
4001 adapter->discarding = false;
4002 goto next_desc;
4003 }
4004
4005 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4006 u8 last_byte = *(skb->data + length - 1);
4007 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4008 last_byte)) {
4009 spin_lock_irqsave(&adapter->stats_lock, flags);
4010 e1000_tbi_adjust_stats(hw, &adapter->stats,
4011 length, skb->data);
4012 spin_unlock_irqrestore(&adapter->stats_lock,
4013 flags);
4014 length--;
4015 } else {
4016 /* recycle */
4017 buffer_info->skb = skb;
4018 goto next_desc;
4019 }
4020 }
4021
4022 /* adjust length to remove Ethernet CRC, this must be
4023 * done after the TBI_ACCEPT workaround above */
4024 length -= 4;
4025
4026 /* probably a little skewed due to removing CRC */
4027 total_rx_bytes += length;
4028 total_rx_packets++;
4029
4030 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4031
4032 skb_put(skb, length);
4033
4034 /* Receive Checksum Offload */
4035 e1000_rx_checksum(adapter,
4036 (u32)(status) |
4037 ((u32)(rx_desc->errors) << 24),
4038 le16_to_cpu(rx_desc->csum), skb);
4039
4040 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4041
4042 next_desc:
4043 rx_desc->status = 0;
4044
4045 /* return some buffers to hardware, one at a time is too slow */
4046 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4047 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4048 cleaned_count = 0;
4049 }
4050
4051 /* use prefetched values */
4052 rx_desc = next_rxd;
4053 buffer_info = next_buffer;
4054 }
4055 rx_ring->next_to_clean = i;
4056
4057 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4058 if (cleaned_count)
4059 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4060
4061 adapter->total_rx_packets += total_rx_packets;
4062 adapter->total_rx_bytes += total_rx_bytes;
4063 netdev->stats.rx_bytes += total_rx_bytes;
4064 netdev->stats.rx_packets += total_rx_packets;
4065 return cleaned;
4066 }
4067
4068 /**
4069 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4070 * @adapter: address of board private structure
4071 * @rx_ring: pointer to receive ring structure
4072 * @cleaned_count: number of buffers to allocate this pass
4073 **/
4074
4075 static void
4076 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4077 struct e1000_rx_ring *rx_ring, int cleaned_count)
4078 {
4079 struct net_device *netdev = adapter->netdev;
4080 struct pci_dev *pdev = adapter->pdev;
4081 struct e1000_rx_desc *rx_desc;
4082 struct e1000_buffer *buffer_info;
4083 struct sk_buff *skb;
4084 unsigned int i;
4085 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4086
4087 i = rx_ring->next_to_use;
4088 buffer_info = &rx_ring->buffer_info[i];
4089
4090 while (cleaned_count--) {
4091 skb = buffer_info->skb;
4092 if (skb) {
4093 skb_trim(skb, 0);
4094 goto check_page;
4095 }
4096
4097 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4098 if (unlikely(!skb)) {
4099 /* Better luck next round */
4100 adapter->alloc_rx_buff_failed++;
4101 break;
4102 }
4103
4104 /* Fix for errata 23, can't cross 64kB boundary */
4105 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4106 struct sk_buff *oldskb = skb;
4107 e_err(rx_err, "skb align check failed: %u bytes at "
4108 "%p\n", bufsz, skb->data);
4109 /* Try again, without freeing the previous */
4110 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4111 /* Failed allocation, critical failure */
4112 if (!skb) {
4113 dev_kfree_skb(oldskb);
4114 adapter->alloc_rx_buff_failed++;
4115 break;
4116 }
4117
4118 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4119 /* give up */
4120 dev_kfree_skb(skb);
4121 dev_kfree_skb(oldskb);
4122 break; /* while (cleaned_count--) */
4123 }
4124
4125 /* Use new allocation */
4126 dev_kfree_skb(oldskb);
4127 }
4128 buffer_info->skb = skb;
4129 buffer_info->length = adapter->rx_buffer_len;
4130 check_page:
4131 /* allocate a new page if necessary */
4132 if (!buffer_info->page) {
4133 buffer_info->page = alloc_page(GFP_ATOMIC);
4134 if (unlikely(!buffer_info->page)) {
4135 adapter->alloc_rx_buff_failed++;
4136 break;
4137 }
4138 }
4139
4140 if (!buffer_info->dma) {
4141 buffer_info->dma = dma_map_page(&pdev->dev,
4142 buffer_info->page, 0,
4143 buffer_info->length,
4144 DMA_FROM_DEVICE);
4145 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4146 put_page(buffer_info->page);
4147 dev_kfree_skb(skb);
4148 buffer_info->page = NULL;
4149 buffer_info->skb = NULL;
4150 buffer_info->dma = 0;
4151 adapter->alloc_rx_buff_failed++;
4152 break; /* while !buffer_info->skb */
4153 }
4154 }
4155
4156 rx_desc = E1000_RX_DESC(*rx_ring, i);
4157 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4158
4159 if (unlikely(++i == rx_ring->count))
4160 i = 0;
4161 buffer_info = &rx_ring->buffer_info[i];
4162 }
4163
4164 if (likely(rx_ring->next_to_use != i)) {
4165 rx_ring->next_to_use = i;
4166 if (unlikely(i-- == 0))
4167 i = (rx_ring->count - 1);
4168
4169 /* Force memory writes to complete before letting h/w
4170 * know there are new descriptors to fetch. (Only
4171 * applicable for weak-ordered memory model archs,
4172 * such as IA-64). */
4173 wmb();
4174 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4175 }
4176 }
4177
4178 /**
4179 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4180 * @adapter: address of board private structure
4181 **/
4182
4183 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4184 struct e1000_rx_ring *rx_ring,
4185 int cleaned_count)
4186 {
4187 struct e1000_hw *hw = &adapter->hw;
4188 struct net_device *netdev = adapter->netdev;
4189 struct pci_dev *pdev = adapter->pdev;
4190 struct e1000_rx_desc *rx_desc;
4191 struct e1000_buffer *buffer_info;
4192 struct sk_buff *skb;
4193 unsigned int i;
4194 unsigned int bufsz = adapter->rx_buffer_len;
4195
4196 i = rx_ring->next_to_use;
4197 buffer_info = &rx_ring->buffer_info[i];
4198
4199 while (cleaned_count--) {
4200 skb = buffer_info->skb;
4201 if (skb) {
4202 skb_trim(skb, 0);
4203 goto map_skb;
4204 }
4205
4206 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4207 if (unlikely(!skb)) {
4208 /* Better luck next round */
4209 adapter->alloc_rx_buff_failed++;
4210 break;
4211 }
4212
4213 /* Fix for errata 23, can't cross 64kB boundary */
4214 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4215 struct sk_buff *oldskb = skb;
4216 e_err(rx_err, "skb align check failed: %u bytes at "
4217 "%p\n", bufsz, skb->data);
4218 /* Try again, without freeing the previous */
4219 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4220 /* Failed allocation, critical failure */
4221 if (!skb) {
4222 dev_kfree_skb(oldskb);
4223 adapter->alloc_rx_buff_failed++;
4224 break;
4225 }
4226
4227 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4228 /* give up */
4229 dev_kfree_skb(skb);
4230 dev_kfree_skb(oldskb);
4231 adapter->alloc_rx_buff_failed++;
4232 break; /* while !buffer_info->skb */
4233 }
4234
4235 /* Use new allocation */
4236 dev_kfree_skb(oldskb);
4237 }
4238 buffer_info->skb = skb;
4239 buffer_info->length = adapter->rx_buffer_len;
4240 map_skb:
4241 buffer_info->dma = dma_map_single(&pdev->dev,
4242 skb->data,
4243 buffer_info->length,
4244 DMA_FROM_DEVICE);
4245 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4246 dev_kfree_skb(skb);
4247 buffer_info->skb = NULL;
4248 buffer_info->dma = 0;
4249 adapter->alloc_rx_buff_failed++;
4250 break; /* while !buffer_info->skb */
4251 }
4252
4253 /*
4254 * XXX if it was allocated cleanly it will never map to a
4255 * boundary crossing
4256 */
4257
4258 /* Fix for errata 23, can't cross 64kB boundary */
4259 if (!e1000_check_64k_bound(adapter,
4260 (void *)(unsigned long)buffer_info->dma,
4261 adapter->rx_buffer_len)) {
4262 e_err(rx_err, "dma align check failed: %u bytes at "
4263 "%p\n", adapter->rx_buffer_len,
4264 (void *)(unsigned long)buffer_info->dma);
4265 dev_kfree_skb(skb);
4266 buffer_info->skb = NULL;
4267
4268 dma_unmap_single(&pdev->dev, buffer_info->dma,
4269 adapter->rx_buffer_len,
4270 DMA_FROM_DEVICE);
4271 buffer_info->dma = 0;
4272
4273 adapter->alloc_rx_buff_failed++;
4274 break; /* while !buffer_info->skb */
4275 }
4276 rx_desc = E1000_RX_DESC(*rx_ring, i);
4277 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4278
4279 if (unlikely(++i == rx_ring->count))
4280 i = 0;
4281 buffer_info = &rx_ring->buffer_info[i];
4282 }
4283
4284 if (likely(rx_ring->next_to_use != i)) {
4285 rx_ring->next_to_use = i;
4286 if (unlikely(i-- == 0))
4287 i = (rx_ring->count - 1);
4288
4289 /* Force memory writes to complete before letting h/w
4290 * know there are new descriptors to fetch. (Only
4291 * applicable for weak-ordered memory model archs,
4292 * such as IA-64). */
4293 wmb();
4294 writel(i, hw->hw_addr + rx_ring->rdt);
4295 }
4296 }
4297
4298 /**
4299 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4300 * @adapter:
4301 **/
4302
4303 static void e1000_smartspeed(struct e1000_adapter *adapter)
4304 {
4305 struct e1000_hw *hw = &adapter->hw;
4306 u16 phy_status;
4307 u16 phy_ctrl;
4308
4309 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4310 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4311 return;
4312
4313 if (adapter->smartspeed == 0) {
4314 /* If Master/Slave config fault is asserted twice,
4315 * we assume back-to-back */
4316 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4317 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4318 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4319 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4320 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4321 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4322 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4323 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4324 phy_ctrl);
4325 adapter->smartspeed++;
4326 if (!e1000_phy_setup_autoneg(hw) &&
4327 !e1000_read_phy_reg(hw, PHY_CTRL,
4328 &phy_ctrl)) {
4329 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4330 MII_CR_RESTART_AUTO_NEG);
4331 e1000_write_phy_reg(hw, PHY_CTRL,
4332 phy_ctrl);
4333 }
4334 }
4335 return;
4336 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4337 /* If still no link, perhaps using 2/3 pair cable */
4338 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4339 phy_ctrl |= CR_1000T_MS_ENABLE;
4340 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4341 if (!e1000_phy_setup_autoneg(hw) &&
4342 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4343 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4344 MII_CR_RESTART_AUTO_NEG);
4345 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4346 }
4347 }
4348 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4349 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4350 adapter->smartspeed = 0;
4351 }
4352
4353 /**
4354 * e1000_ioctl -
4355 * @netdev:
4356 * @ifreq:
4357 * @cmd:
4358 **/
4359
4360 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4361 {
4362 switch (cmd) {
4363 case SIOCGMIIPHY:
4364 case SIOCGMIIREG:
4365 case SIOCSMIIREG:
4366 return e1000_mii_ioctl(netdev, ifr, cmd);
4367 default:
4368 return -EOPNOTSUPP;
4369 }
4370 }
4371
4372 /**
4373 * e1000_mii_ioctl -
4374 * @netdev:
4375 * @ifreq:
4376 * @cmd:
4377 **/
4378
4379 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4380 int cmd)
4381 {
4382 struct e1000_adapter *adapter = netdev_priv(netdev);
4383 struct e1000_hw *hw = &adapter->hw;
4384 struct mii_ioctl_data *data = if_mii(ifr);
4385 int retval;
4386 u16 mii_reg;
4387 unsigned long flags;
4388
4389 if (hw->media_type != e1000_media_type_copper)
4390 return -EOPNOTSUPP;
4391
4392 switch (cmd) {
4393 case SIOCGMIIPHY:
4394 data->phy_id = hw->phy_addr;
4395 break;
4396 case SIOCGMIIREG:
4397 spin_lock_irqsave(&adapter->stats_lock, flags);
4398 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4399 &data->val_out)) {
4400 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4401 return -EIO;
4402 }
4403 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4404 break;
4405 case SIOCSMIIREG:
4406 if (data->reg_num & ~(0x1F))
4407 return -EFAULT;
4408 mii_reg = data->val_in;
4409 spin_lock_irqsave(&adapter->stats_lock, flags);
4410 if (e1000_write_phy_reg(hw, data->reg_num,
4411 mii_reg)) {
4412 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4413 return -EIO;
4414 }
4415 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4416 if (hw->media_type == e1000_media_type_copper) {
4417 switch (data->reg_num) {
4418 case PHY_CTRL:
4419 if (mii_reg & MII_CR_POWER_DOWN)
4420 break;
4421 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4422 hw->autoneg = 1;
4423 hw->autoneg_advertised = 0x2F;
4424 } else {
4425 u32 speed;
4426 if (mii_reg & 0x40)
4427 speed = SPEED_1000;
4428 else if (mii_reg & 0x2000)
4429 speed = SPEED_100;
4430 else
4431 speed = SPEED_10;
4432 retval = e1000_set_spd_dplx(
4433 adapter, speed,
4434 ((mii_reg & 0x100)
4435 ? DUPLEX_FULL :
4436 DUPLEX_HALF));
4437 if (retval)
4438 return retval;
4439 }
4440 if (netif_running(adapter->netdev))
4441 e1000_reinit_locked(adapter);
4442 else
4443 e1000_reset(adapter);
4444 break;
4445 case M88E1000_PHY_SPEC_CTRL:
4446 case M88E1000_EXT_PHY_SPEC_CTRL:
4447 if (e1000_phy_reset(hw))
4448 return -EIO;
4449 break;
4450 }
4451 } else {
4452 switch (data->reg_num) {
4453 case PHY_CTRL:
4454 if (mii_reg & MII_CR_POWER_DOWN)
4455 break;
4456 if (netif_running(adapter->netdev))
4457 e1000_reinit_locked(adapter);
4458 else
4459 e1000_reset(adapter);
4460 break;
4461 }
4462 }
4463 break;
4464 default:
4465 return -EOPNOTSUPP;
4466 }
4467 return E1000_SUCCESS;
4468 }
4469
4470 void e1000_pci_set_mwi(struct e1000_hw *hw)
4471 {
4472 struct e1000_adapter *adapter = hw->back;
4473 int ret_val = pci_set_mwi(adapter->pdev);
4474
4475 if (ret_val)
4476 e_err(probe, "Error in setting MWI\n");
4477 }
4478
4479 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4480 {
4481 struct e1000_adapter *adapter = hw->back;
4482
4483 pci_clear_mwi(adapter->pdev);
4484 }
4485
4486 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4487 {
4488 struct e1000_adapter *adapter = hw->back;
4489 return pcix_get_mmrbc(adapter->pdev);
4490 }
4491
4492 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4493 {
4494 struct e1000_adapter *adapter = hw->back;
4495 pcix_set_mmrbc(adapter->pdev, mmrbc);
4496 }
4497
4498 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4499 {
4500 outl(value, port);
4501 }
4502
4503 static void e1000_vlan_rx_register(struct net_device *netdev,
4504 struct vlan_group *grp)
4505 {
4506 struct e1000_adapter *adapter = netdev_priv(netdev);
4507 struct e1000_hw *hw = &adapter->hw;
4508 u32 ctrl, rctl;
4509
4510 if (!test_bit(__E1000_DOWN, &adapter->flags))
4511 e1000_irq_disable(adapter);
4512 adapter->vlgrp = grp;
4513
4514 if (grp) {
4515 /* enable VLAN tag insert/strip */
4516 ctrl = er32(CTRL);
4517 ctrl |= E1000_CTRL_VME;
4518 ew32(CTRL, ctrl);
4519
4520 /* enable VLAN receive filtering */
4521 rctl = er32(RCTL);
4522 rctl &= ~E1000_RCTL_CFIEN;
4523 if (!(netdev->flags & IFF_PROMISC))
4524 rctl |= E1000_RCTL_VFE;
4525 ew32(RCTL, rctl);
4526 e1000_update_mng_vlan(adapter);
4527 } else {
4528 /* disable VLAN tag insert/strip */
4529 ctrl = er32(CTRL);
4530 ctrl &= ~E1000_CTRL_VME;
4531 ew32(CTRL, ctrl);
4532
4533 /* disable VLAN receive filtering */
4534 rctl = er32(RCTL);
4535 rctl &= ~E1000_RCTL_VFE;
4536 ew32(RCTL, rctl);
4537
4538 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4539 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4540 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4541 }
4542 }
4543
4544 if (!test_bit(__E1000_DOWN, &adapter->flags))
4545 e1000_irq_enable(adapter);
4546 }
4547
4548 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4549 {
4550 struct e1000_adapter *adapter = netdev_priv(netdev);
4551 struct e1000_hw *hw = &adapter->hw;
4552 u32 vfta, index;
4553
4554 if ((hw->mng_cookie.status &
4555 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4556 (vid == adapter->mng_vlan_id))
4557 return;
4558 /* add VID to filter table */
4559 index = (vid >> 5) & 0x7F;
4560 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4561 vfta |= (1 << (vid & 0x1F));
4562 e1000_write_vfta(hw, index, vfta);
4563 }
4564
4565 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4566 {
4567 struct e1000_adapter *adapter = netdev_priv(netdev);
4568 struct e1000_hw *hw = &adapter->hw;
4569 u32 vfta, index;
4570
4571 if (!test_bit(__E1000_DOWN, &adapter->flags))
4572 e1000_irq_disable(adapter);
4573 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4574 if (!test_bit(__E1000_DOWN, &adapter->flags))
4575 e1000_irq_enable(adapter);
4576
4577 /* remove VID from filter table */
4578 index = (vid >> 5) & 0x7F;
4579 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4580 vfta &= ~(1 << (vid & 0x1F));
4581 e1000_write_vfta(hw, index, vfta);
4582 }
4583
4584 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4585 {
4586 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4587
4588 if (adapter->vlgrp) {
4589 u16 vid;
4590 for (vid = 0; vid < VLAN_N_VID; vid++) {
4591 if (!vlan_group_get_device(adapter->vlgrp, vid))
4592 continue;
4593 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4594 }
4595 }
4596 }
4597
4598 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4599 {
4600 struct e1000_hw *hw = &adapter->hw;
4601
4602 hw->autoneg = 0;
4603
4604 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4605 * for the switch() below to work */
4606 if ((spd & 1) || (dplx & ~1))
4607 goto err_inval;
4608
4609 /* Fiber NICs only allow 1000 gbps Full duplex */
4610 if ((hw->media_type == e1000_media_type_fiber) &&
4611 spd != SPEED_1000 &&
4612 dplx != DUPLEX_FULL)
4613 goto err_inval;
4614
4615 switch (spd + dplx) {
4616 case SPEED_10 + DUPLEX_HALF:
4617 hw->forced_speed_duplex = e1000_10_half;
4618 break;
4619 case SPEED_10 + DUPLEX_FULL:
4620 hw->forced_speed_duplex = e1000_10_full;
4621 break;
4622 case SPEED_100 + DUPLEX_HALF:
4623 hw->forced_speed_duplex = e1000_100_half;
4624 break;
4625 case SPEED_100 + DUPLEX_FULL:
4626 hw->forced_speed_duplex = e1000_100_full;
4627 break;
4628 case SPEED_1000 + DUPLEX_FULL:
4629 hw->autoneg = 1;
4630 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4631 break;
4632 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4633 default:
4634 goto err_inval;
4635 }
4636 return 0;
4637
4638 err_inval:
4639 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4640 return -EINVAL;
4641 }
4642
4643 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4644 {
4645 struct net_device *netdev = pci_get_drvdata(pdev);
4646 struct e1000_adapter *adapter = netdev_priv(netdev);
4647 struct e1000_hw *hw = &adapter->hw;
4648 u32 ctrl, ctrl_ext, rctl, status;
4649 u32 wufc = adapter->wol;
4650 #ifdef CONFIG_PM
4651 int retval = 0;
4652 #endif
4653
4654 netif_device_detach(netdev);
4655
4656 if (netif_running(netdev)) {
4657 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4658 e1000_down(adapter);
4659 }
4660
4661 #ifdef CONFIG_PM
4662 retval = pci_save_state(pdev);
4663 if (retval)
4664 return retval;
4665 #endif
4666
4667 status = er32(STATUS);
4668 if (status & E1000_STATUS_LU)
4669 wufc &= ~E1000_WUFC_LNKC;
4670
4671 if (wufc) {
4672 e1000_setup_rctl(adapter);
4673 e1000_set_rx_mode(netdev);
4674
4675 /* turn on all-multi mode if wake on multicast is enabled */
4676 if (wufc & E1000_WUFC_MC) {
4677 rctl = er32(RCTL);
4678 rctl |= E1000_RCTL_MPE;
4679 ew32(RCTL, rctl);
4680 }
4681
4682 if (hw->mac_type >= e1000_82540) {
4683 ctrl = er32(CTRL);
4684 /* advertise wake from D3Cold */
4685 #define E1000_CTRL_ADVD3WUC 0x00100000
4686 /* phy power management enable */
4687 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4688 ctrl |= E1000_CTRL_ADVD3WUC |
4689 E1000_CTRL_EN_PHY_PWR_MGMT;
4690 ew32(CTRL, ctrl);
4691 }
4692
4693 if (hw->media_type == e1000_media_type_fiber ||
4694 hw->media_type == e1000_media_type_internal_serdes) {
4695 /* keep the laser running in D3 */
4696 ctrl_ext = er32(CTRL_EXT);
4697 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4698 ew32(CTRL_EXT, ctrl_ext);
4699 }
4700
4701 ew32(WUC, E1000_WUC_PME_EN);
4702 ew32(WUFC, wufc);
4703 } else {
4704 ew32(WUC, 0);
4705 ew32(WUFC, 0);
4706 }
4707
4708 e1000_release_manageability(adapter);
4709
4710 *enable_wake = !!wufc;
4711
4712 /* make sure adapter isn't asleep if manageability is enabled */
4713 if (adapter->en_mng_pt)
4714 *enable_wake = true;
4715
4716 if (netif_running(netdev))
4717 e1000_free_irq(adapter);
4718
4719 pci_disable_device(pdev);
4720
4721 return 0;
4722 }
4723
4724 #ifdef CONFIG_PM
4725 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4726 {
4727 int retval;
4728 bool wake;
4729
4730 retval = __e1000_shutdown(pdev, &wake);
4731 if (retval)
4732 return retval;
4733
4734 if (wake) {
4735 pci_prepare_to_sleep(pdev);
4736 } else {
4737 pci_wake_from_d3(pdev, false);
4738 pci_set_power_state(pdev, PCI_D3hot);
4739 }
4740
4741 return 0;
4742 }
4743
4744 static int e1000_resume(struct pci_dev *pdev)
4745 {
4746 struct net_device *netdev = pci_get_drvdata(pdev);
4747 struct e1000_adapter *adapter = netdev_priv(netdev);
4748 struct e1000_hw *hw = &adapter->hw;
4749 u32 err;
4750
4751 pci_set_power_state(pdev, PCI_D0);
4752 pci_restore_state(pdev);
4753 pci_save_state(pdev);
4754
4755 if (adapter->need_ioport)
4756 err = pci_enable_device(pdev);
4757 else
4758 err = pci_enable_device_mem(pdev);
4759 if (err) {
4760 pr_err("Cannot enable PCI device from suspend\n");
4761 return err;
4762 }
4763 pci_set_master(pdev);
4764
4765 pci_enable_wake(pdev, PCI_D3hot, 0);
4766 pci_enable_wake(pdev, PCI_D3cold, 0);
4767
4768 if (netif_running(netdev)) {
4769 err = e1000_request_irq(adapter);
4770 if (err)
4771 return err;
4772 }
4773
4774 e1000_power_up_phy(adapter);
4775 e1000_reset(adapter);
4776 ew32(WUS, ~0);
4777
4778 e1000_init_manageability(adapter);
4779
4780 if (netif_running(netdev))
4781 e1000_up(adapter);
4782
4783 netif_device_attach(netdev);
4784
4785 return 0;
4786 }
4787 #endif
4788
4789 static void e1000_shutdown(struct pci_dev *pdev)
4790 {
4791 bool wake;
4792
4793 __e1000_shutdown(pdev, &wake);
4794
4795 if (system_state == SYSTEM_POWER_OFF) {
4796 pci_wake_from_d3(pdev, wake);
4797 pci_set_power_state(pdev, PCI_D3hot);
4798 }
4799 }
4800
4801 #ifdef CONFIG_NET_POLL_CONTROLLER
4802 /*
4803 * Polling 'interrupt' - used by things like netconsole to send skbs
4804 * without having to re-enable interrupts. It's not called while
4805 * the interrupt routine is executing.
4806 */
4807 static void e1000_netpoll(struct net_device *netdev)
4808 {
4809 struct e1000_adapter *adapter = netdev_priv(netdev);
4810
4811 disable_irq(adapter->pdev->irq);
4812 e1000_intr(adapter->pdev->irq, netdev);
4813 enable_irq(adapter->pdev->irq);
4814 }
4815 #endif
4816
4817 /**
4818 * e1000_io_error_detected - called when PCI error is detected
4819 * @pdev: Pointer to PCI device
4820 * @state: The current pci connection state
4821 *
4822 * This function is called after a PCI bus error affecting
4823 * this device has been detected.
4824 */
4825 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4826 pci_channel_state_t state)
4827 {
4828 struct net_device *netdev = pci_get_drvdata(pdev);
4829 struct e1000_adapter *adapter = netdev_priv(netdev);
4830
4831 netif_device_detach(netdev);
4832
4833 if (state == pci_channel_io_perm_failure)
4834 return PCI_ERS_RESULT_DISCONNECT;
4835
4836 if (netif_running(netdev))
4837 e1000_down(adapter);
4838 pci_disable_device(pdev);
4839
4840 /* Request a slot slot reset. */
4841 return PCI_ERS_RESULT_NEED_RESET;
4842 }
4843
4844 /**
4845 * e1000_io_slot_reset - called after the pci bus has been reset.
4846 * @pdev: Pointer to PCI device
4847 *
4848 * Restart the card from scratch, as if from a cold-boot. Implementation
4849 * resembles the first-half of the e1000_resume routine.
4850 */
4851 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4852 {
4853 struct net_device *netdev = pci_get_drvdata(pdev);
4854 struct e1000_adapter *adapter = netdev_priv(netdev);
4855 struct e1000_hw *hw = &adapter->hw;
4856 int err;
4857
4858 if (adapter->need_ioport)
4859 err = pci_enable_device(pdev);
4860 else
4861 err = pci_enable_device_mem(pdev);
4862 if (err) {
4863 pr_err("Cannot re-enable PCI device after reset.\n");
4864 return PCI_ERS_RESULT_DISCONNECT;
4865 }
4866 pci_set_master(pdev);
4867
4868 pci_enable_wake(pdev, PCI_D3hot, 0);
4869 pci_enable_wake(pdev, PCI_D3cold, 0);
4870
4871 e1000_reset(adapter);
4872 ew32(WUS, ~0);
4873
4874 return PCI_ERS_RESULT_RECOVERED;
4875 }
4876
4877 /**
4878 * e1000_io_resume - called when traffic can start flowing again.
4879 * @pdev: Pointer to PCI device
4880 *
4881 * This callback is called when the error recovery driver tells us that
4882 * its OK to resume normal operation. Implementation resembles the
4883 * second-half of the e1000_resume routine.
4884 */
4885 static void e1000_io_resume(struct pci_dev *pdev)
4886 {
4887 struct net_device *netdev = pci_get_drvdata(pdev);
4888 struct e1000_adapter *adapter = netdev_priv(netdev);
4889
4890 e1000_init_manageability(adapter);
4891
4892 if (netif_running(netdev)) {
4893 if (e1000_up(adapter)) {
4894 pr_info("can't bring device back up after reset\n");
4895 return;
4896 }
4897 }
4898
4899 netif_device_attach(netdev);
4900 }
4901
4902 /* e1000_main.c */
This page took 0.168801 seconds and 5 git commands to generate.