e1000: Remove 0x1000 as supported device
[deliverable/linux.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.1.9-k4"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44 *
45 * Last entry must be all 0s
46 *
47 * Macro expands to...
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 */
50 static struct pci_device_id e1000_pci_tbl[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1049),
76 INTEL_E1000_ETHERNET_DEVICE(0x104A),
77 INTEL_E1000_ETHERNET_DEVICE(0x104B),
78 INTEL_E1000_ETHERNET_DEVICE(0x104C),
79 INTEL_E1000_ETHERNET_DEVICE(0x104D),
80 INTEL_E1000_ETHERNET_DEVICE(0x105E),
81 INTEL_E1000_ETHERNET_DEVICE(0x105F),
82 INTEL_E1000_ETHERNET_DEVICE(0x1060),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x107D),
92 INTEL_E1000_ETHERNET_DEVICE(0x107E),
93 INTEL_E1000_ETHERNET_DEVICE(0x107F),
94 INTEL_E1000_ETHERNET_DEVICE(0x108A),
95 INTEL_E1000_ETHERNET_DEVICE(0x108B),
96 INTEL_E1000_ETHERNET_DEVICE(0x108C),
97 INTEL_E1000_ETHERNET_DEVICE(0x1096),
98 INTEL_E1000_ETHERNET_DEVICE(0x1098),
99 INTEL_E1000_ETHERNET_DEVICE(0x1099),
100 INTEL_E1000_ETHERNET_DEVICE(0x109A),
101 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
102 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
103 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
104 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
105 /* required last entry */
106 {0,}
107 };
108
109 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
110
111 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
112 struct e1000_tx_ring *txdr);
113 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rxdr);
115 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
116 struct e1000_tx_ring *tx_ring);
117 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
118 struct e1000_rx_ring *rx_ring);
119
120 /* Local Function Prototypes */
121
122 static int e1000_init_module(void);
123 static void e1000_exit_module(void);
124 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
125 static void __devexit e1000_remove(struct pci_dev *pdev);
126 static int e1000_alloc_queues(struct e1000_adapter *adapter);
127 static int e1000_sw_init(struct e1000_adapter *adapter);
128 static int e1000_open(struct net_device *netdev);
129 static int e1000_close(struct net_device *netdev);
130 static void e1000_configure_tx(struct e1000_adapter *adapter);
131 static void e1000_configure_rx(struct e1000_adapter *adapter);
132 static void e1000_setup_rctl(struct e1000_adapter *adapter);
133 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
134 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
135 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
136 struct e1000_tx_ring *tx_ring);
137 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring);
139 static void e1000_set_multi(struct net_device *netdev);
140 static void e1000_update_phy_info(unsigned long data);
141 static void e1000_watchdog(unsigned long data);
142 static void e1000_82547_tx_fifo_stall(unsigned long data);
143 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
144 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
145 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
146 static int e1000_set_mac(struct net_device *netdev, void *p);
147 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
148 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
149 struct e1000_tx_ring *tx_ring);
150 #ifdef CONFIG_E1000_NAPI
151 static int e1000_clean(struct net_device *poll_dev, int *budget);
152 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int *work_done, int work_to_do);
155 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int *work_done, int work_to_do);
158 #else
159 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
160 struct e1000_rx_ring *rx_ring);
161 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
162 struct e1000_rx_ring *rx_ring);
163 #endif
164 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
165 struct e1000_rx_ring *rx_ring,
166 int cleaned_count);
167 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
168 struct e1000_rx_ring *rx_ring,
169 int cleaned_count);
170 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
171 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
172 int cmd);
173 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
174 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
175 static void e1000_tx_timeout(struct net_device *dev);
176 static void e1000_reset_task(struct net_device *dev);
177 static void e1000_smartspeed(struct e1000_adapter *adapter);
178 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
179 struct sk_buff *skb);
180
181 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
182 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
183 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
184 static void e1000_restore_vlan(struct e1000_adapter *adapter);
185
186 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
187 #ifdef CONFIG_PM
188 static int e1000_resume(struct pci_dev *pdev);
189 #endif
190 static void e1000_shutdown(struct pci_dev *pdev);
191
192 #ifdef CONFIG_NET_POLL_CONTROLLER
193 /* for netdump / net console */
194 static void e1000_netpoll (struct net_device *netdev);
195 #endif
196
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201
202 static struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206 };
207
208 static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = __devexit_p(e1000_remove),
213 /* Power Managment Hooks */
214 .suspend = e1000_suspend,
215 #ifdef CONFIG_PM
216 .resume = e1000_resume,
217 #endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
220 };
221
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226
227 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
228 module_param(debug, int, 0);
229 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
230
231 /**
232 * e1000_init_module - Driver Registration Routine
233 *
234 * e1000_init_module is the first routine called when the driver is
235 * loaded. All it does is register with the PCI subsystem.
236 **/
237
238 static int __init
239 e1000_init_module(void)
240 {
241 int ret;
242 printk(KERN_INFO "%s - version %s\n",
243 e1000_driver_string, e1000_driver_version);
244
245 printk(KERN_INFO "%s\n", e1000_copyright);
246
247 ret = pci_module_init(&e1000_driver);
248
249 return ret;
250 }
251
252 module_init(e1000_init_module);
253
254 /**
255 * e1000_exit_module - Driver Exit Cleanup Routine
256 *
257 * e1000_exit_module is called just before the driver is removed
258 * from memory.
259 **/
260
261 static void __exit
262 e1000_exit_module(void)
263 {
264 pci_unregister_driver(&e1000_driver);
265 }
266
267 module_exit(e1000_exit_module);
268
269 static int e1000_request_irq(struct e1000_adapter *adapter)
270 {
271 struct net_device *netdev = adapter->netdev;
272 int flags, err = 0;
273
274 flags = IRQF_SHARED;
275 #ifdef CONFIG_PCI_MSI
276 if (adapter->hw.mac_type > e1000_82547_rev_2) {
277 adapter->have_msi = TRUE;
278 if ((err = pci_enable_msi(adapter->pdev))) {
279 DPRINTK(PROBE, ERR,
280 "Unable to allocate MSI interrupt Error: %d\n", err);
281 adapter->have_msi = FALSE;
282 }
283 }
284 if (adapter->have_msi)
285 flags &= ~IRQF_SHARED;
286 #endif
287 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
288 netdev->name, netdev)))
289 DPRINTK(PROBE, ERR,
290 "Unable to allocate interrupt Error: %d\n", err);
291
292 return err;
293 }
294
295 static void e1000_free_irq(struct e1000_adapter *adapter)
296 {
297 struct net_device *netdev = adapter->netdev;
298
299 free_irq(adapter->pdev->irq, netdev);
300
301 #ifdef CONFIG_PCI_MSI
302 if (adapter->have_msi)
303 pci_disable_msi(adapter->pdev);
304 #endif
305 }
306
307 /**
308 * e1000_irq_disable - Mask off interrupt generation on the NIC
309 * @adapter: board private structure
310 **/
311
312 static void
313 e1000_irq_disable(struct e1000_adapter *adapter)
314 {
315 atomic_inc(&adapter->irq_sem);
316 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
317 E1000_WRITE_FLUSH(&adapter->hw);
318 synchronize_irq(adapter->pdev->irq);
319 }
320
321 /**
322 * e1000_irq_enable - Enable default interrupt generation settings
323 * @adapter: board private structure
324 **/
325
326 static void
327 e1000_irq_enable(struct e1000_adapter *adapter)
328 {
329 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
330 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
331 E1000_WRITE_FLUSH(&adapter->hw);
332 }
333 }
334
335 static void
336 e1000_update_mng_vlan(struct e1000_adapter *adapter)
337 {
338 struct net_device *netdev = adapter->netdev;
339 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
340 uint16_t old_vid = adapter->mng_vlan_id;
341 if (adapter->vlgrp) {
342 if (!adapter->vlgrp->vlan_devices[vid]) {
343 if (adapter->hw.mng_cookie.status &
344 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
345 e1000_vlan_rx_add_vid(netdev, vid);
346 adapter->mng_vlan_id = vid;
347 } else
348 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
349
350 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
351 (vid != old_vid) &&
352 !adapter->vlgrp->vlan_devices[old_vid])
353 e1000_vlan_rx_kill_vid(netdev, old_vid);
354 } else
355 adapter->mng_vlan_id = vid;
356 }
357 }
358
359 /**
360 * e1000_release_hw_control - release control of the h/w to f/w
361 * @adapter: address of board private structure
362 *
363 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
364 * For ASF and Pass Through versions of f/w this means that the
365 * driver is no longer loaded. For AMT version (only with 82573) i
366 * of the f/w this means that the netowrk i/f is closed.
367 *
368 **/
369
370 static void
371 e1000_release_hw_control(struct e1000_adapter *adapter)
372 {
373 uint32_t ctrl_ext;
374 uint32_t swsm;
375 uint32_t extcnf;
376
377 /* Let firmware taken over control of h/w */
378 switch (adapter->hw.mac_type) {
379 case e1000_82571:
380 case e1000_82572:
381 case e1000_80003es2lan:
382 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
383 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
384 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
385 break;
386 case e1000_82573:
387 swsm = E1000_READ_REG(&adapter->hw, SWSM);
388 E1000_WRITE_REG(&adapter->hw, SWSM,
389 swsm & ~E1000_SWSM_DRV_LOAD);
390 case e1000_ich8lan:
391 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
392 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
393 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
394 break;
395 default:
396 break;
397 }
398 }
399
400 /**
401 * e1000_get_hw_control - get control of the h/w from f/w
402 * @adapter: address of board private structure
403 *
404 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
405 * For ASF and Pass Through versions of f/w this means that
406 * the driver is loaded. For AMT version (only with 82573)
407 * of the f/w this means that the netowrk i/f is open.
408 *
409 **/
410
411 static void
412 e1000_get_hw_control(struct e1000_adapter *adapter)
413 {
414 uint32_t ctrl_ext;
415 uint32_t swsm;
416 uint32_t extcnf;
417 /* Let firmware know the driver has taken over */
418 switch (adapter->hw.mac_type) {
419 case e1000_82571:
420 case e1000_82572:
421 case e1000_80003es2lan:
422 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
423 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
424 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
425 break;
426 case e1000_82573:
427 swsm = E1000_READ_REG(&adapter->hw, SWSM);
428 E1000_WRITE_REG(&adapter->hw, SWSM,
429 swsm | E1000_SWSM_DRV_LOAD);
430 break;
431 case e1000_ich8lan:
432 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
433 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
434 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
435 break;
436 default:
437 break;
438 }
439 }
440
441 int
442 e1000_up(struct e1000_adapter *adapter)
443 {
444 struct net_device *netdev = adapter->netdev;
445 int i;
446
447 /* hardware has been reset, we need to reload some things */
448
449 e1000_set_multi(netdev);
450
451 e1000_restore_vlan(adapter);
452
453 e1000_configure_tx(adapter);
454 e1000_setup_rctl(adapter);
455 e1000_configure_rx(adapter);
456 /* call E1000_DESC_UNUSED which always leaves
457 * at least 1 descriptor unused to make sure
458 * next_to_use != next_to_clean */
459 for (i = 0; i < adapter->num_rx_queues; i++) {
460 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
461 adapter->alloc_rx_buf(adapter, ring,
462 E1000_DESC_UNUSED(ring));
463 }
464
465 adapter->tx_queue_len = netdev->tx_queue_len;
466
467 mod_timer(&adapter->watchdog_timer, jiffies);
468
469 #ifdef CONFIG_E1000_NAPI
470 netif_poll_enable(netdev);
471 #endif
472 e1000_irq_enable(adapter);
473
474 return 0;
475 }
476
477 /**
478 * e1000_power_up_phy - restore link in case the phy was powered down
479 * @adapter: address of board private structure
480 *
481 * The phy may be powered down to save power and turn off link when the
482 * driver is unloaded and wake on lan is not enabled (among others)
483 * *** this routine MUST be followed by a call to e1000_reset ***
484 *
485 **/
486
487 static void e1000_power_up_phy(struct e1000_adapter *adapter)
488 {
489 uint16_t mii_reg = 0;
490
491 /* Just clear the power down bit to wake the phy back up */
492 if (adapter->hw.media_type == e1000_media_type_copper) {
493 /* according to the manual, the phy will retain its
494 * settings across a power-down/up cycle */
495 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
496 mii_reg &= ~MII_CR_POWER_DOWN;
497 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
498 }
499 }
500
501 static void e1000_power_down_phy(struct e1000_adapter *adapter)
502 {
503 boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
504 e1000_check_mng_mode(&adapter->hw);
505 /* Power down the PHY so no link is implied when interface is down
506 * The PHY cannot be powered down if any of the following is TRUE
507 * (a) WoL is enabled
508 * (b) AMT is active
509 * (c) SoL/IDER session is active */
510 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
511 adapter->hw.mac_type != e1000_ich8lan &&
512 adapter->hw.media_type == e1000_media_type_copper &&
513 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
514 !mng_mode_enabled &&
515 !e1000_check_phy_reset_block(&adapter->hw)) {
516 uint16_t mii_reg = 0;
517 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
518 mii_reg |= MII_CR_POWER_DOWN;
519 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
520 mdelay(1);
521 }
522 }
523
524 void
525 e1000_down(struct e1000_adapter *adapter)
526 {
527 struct net_device *netdev = adapter->netdev;
528
529 e1000_irq_disable(adapter);
530
531 del_timer_sync(&adapter->tx_fifo_stall_timer);
532 del_timer_sync(&adapter->watchdog_timer);
533 del_timer_sync(&adapter->phy_info_timer);
534
535 #ifdef CONFIG_E1000_NAPI
536 netif_poll_disable(netdev);
537 #endif
538 netdev->tx_queue_len = adapter->tx_queue_len;
539 adapter->link_speed = 0;
540 adapter->link_duplex = 0;
541 netif_carrier_off(netdev);
542 netif_stop_queue(netdev);
543
544 e1000_reset(adapter);
545 e1000_clean_all_tx_rings(adapter);
546 e1000_clean_all_rx_rings(adapter);
547 }
548
549 void
550 e1000_reinit_locked(struct e1000_adapter *adapter)
551 {
552 WARN_ON(in_interrupt());
553 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
554 msleep(1);
555 e1000_down(adapter);
556 e1000_up(adapter);
557 clear_bit(__E1000_RESETTING, &adapter->flags);
558 }
559
560 void
561 e1000_reset(struct e1000_adapter *adapter)
562 {
563 uint32_t pba, manc;
564 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
565
566 /* Repartition Pba for greater than 9k mtu
567 * To take effect CTRL.RST is required.
568 */
569
570 switch (adapter->hw.mac_type) {
571 case e1000_82547:
572 case e1000_82547_rev_2:
573 pba = E1000_PBA_30K;
574 break;
575 case e1000_82571:
576 case e1000_82572:
577 case e1000_80003es2lan:
578 pba = E1000_PBA_38K;
579 break;
580 case e1000_82573:
581 pba = E1000_PBA_12K;
582 break;
583 case e1000_ich8lan:
584 pba = E1000_PBA_8K;
585 break;
586 default:
587 pba = E1000_PBA_48K;
588 break;
589 }
590
591 if ((adapter->hw.mac_type != e1000_82573) &&
592 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
593 pba -= 8; /* allocate more FIFO for Tx */
594
595
596 if (adapter->hw.mac_type == e1000_82547) {
597 adapter->tx_fifo_head = 0;
598 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
599 adapter->tx_fifo_size =
600 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
601 atomic_set(&adapter->tx_fifo_stall, 0);
602 }
603
604 E1000_WRITE_REG(&adapter->hw, PBA, pba);
605
606 /* flow control settings */
607 /* Set the FC high water mark to 90% of the FIFO size.
608 * Required to clear last 3 LSB */
609 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
610 /* We can't use 90% on small FIFOs because the remainder
611 * would be less than 1 full frame. In this case, we size
612 * it to allow at least a full frame above the high water
613 * mark. */
614 if (pba < E1000_PBA_16K)
615 fc_high_water_mark = (pba * 1024) - 1600;
616
617 adapter->hw.fc_high_water = fc_high_water_mark;
618 adapter->hw.fc_low_water = fc_high_water_mark - 8;
619 if (adapter->hw.mac_type == e1000_80003es2lan)
620 adapter->hw.fc_pause_time = 0xFFFF;
621 else
622 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
623 adapter->hw.fc_send_xon = 1;
624 adapter->hw.fc = adapter->hw.original_fc;
625
626 /* Allow time for pending master requests to run */
627 e1000_reset_hw(&adapter->hw);
628 if (adapter->hw.mac_type >= e1000_82544)
629 E1000_WRITE_REG(&adapter->hw, WUC, 0);
630 if (e1000_init_hw(&adapter->hw))
631 DPRINTK(PROBE, ERR, "Hardware Error\n");
632 e1000_update_mng_vlan(adapter);
633 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
634 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
635
636 e1000_reset_adaptive(&adapter->hw);
637 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
638
639 if (!adapter->smart_power_down &&
640 (adapter->hw.mac_type == e1000_82571 ||
641 adapter->hw.mac_type == e1000_82572)) {
642 uint16_t phy_data = 0;
643 /* speed up time to link by disabling smart power down, ignore
644 * the return value of this function because there is nothing
645 * different we would do if it failed */
646 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
647 &phy_data);
648 phy_data &= ~IGP02E1000_PM_SPD;
649 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
650 phy_data);
651 }
652
653 if (adapter->hw.mac_type < e1000_ich8lan)
654 /* FIXME: this code is duplicate and wrong for PCI Express */
655 if (adapter->en_mng_pt) {
656 manc = E1000_READ_REG(&adapter->hw, MANC);
657 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
658 E1000_WRITE_REG(&adapter->hw, MANC, manc);
659 }
660 }
661
662 /**
663 * e1000_probe - Device Initialization Routine
664 * @pdev: PCI device information struct
665 * @ent: entry in e1000_pci_tbl
666 *
667 * Returns 0 on success, negative on failure
668 *
669 * e1000_probe initializes an adapter identified by a pci_dev structure.
670 * The OS initialization, configuring of the adapter private structure,
671 * and a hardware reset occur.
672 **/
673
674 static int __devinit
675 e1000_probe(struct pci_dev *pdev,
676 const struct pci_device_id *ent)
677 {
678 struct net_device *netdev;
679 struct e1000_adapter *adapter;
680 unsigned long mmio_start, mmio_len;
681 unsigned long flash_start, flash_len;
682
683 static int cards_found = 0;
684 static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
685 int i, err, pci_using_dac;
686 uint16_t eeprom_data;
687 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
688 if ((err = pci_enable_device(pdev)))
689 return err;
690
691 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
692 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
693 pci_using_dac = 1;
694 } else {
695 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
696 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
697 E1000_ERR("No usable DMA configuration, aborting\n");
698 return err;
699 }
700 pci_using_dac = 0;
701 }
702
703 if ((err = pci_request_regions(pdev, e1000_driver_name)))
704 return err;
705
706 pci_set_master(pdev);
707
708 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
709 if (!netdev) {
710 err = -ENOMEM;
711 goto err_alloc_etherdev;
712 }
713
714 SET_MODULE_OWNER(netdev);
715 SET_NETDEV_DEV(netdev, &pdev->dev);
716
717 pci_set_drvdata(pdev, netdev);
718 adapter = netdev_priv(netdev);
719 adapter->netdev = netdev;
720 adapter->pdev = pdev;
721 adapter->hw.back = adapter;
722 adapter->msg_enable = (1 << debug) - 1;
723
724 mmio_start = pci_resource_start(pdev, BAR_0);
725 mmio_len = pci_resource_len(pdev, BAR_0);
726
727 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
728 if (!adapter->hw.hw_addr) {
729 err = -EIO;
730 goto err_ioremap;
731 }
732
733 for (i = BAR_1; i <= BAR_5; i++) {
734 if (pci_resource_len(pdev, i) == 0)
735 continue;
736 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
737 adapter->hw.io_base = pci_resource_start(pdev, i);
738 break;
739 }
740 }
741
742 netdev->open = &e1000_open;
743 netdev->stop = &e1000_close;
744 netdev->hard_start_xmit = &e1000_xmit_frame;
745 netdev->get_stats = &e1000_get_stats;
746 netdev->set_multicast_list = &e1000_set_multi;
747 netdev->set_mac_address = &e1000_set_mac;
748 netdev->change_mtu = &e1000_change_mtu;
749 netdev->do_ioctl = &e1000_ioctl;
750 e1000_set_ethtool_ops(netdev);
751 netdev->tx_timeout = &e1000_tx_timeout;
752 netdev->watchdog_timeo = 5 * HZ;
753 #ifdef CONFIG_E1000_NAPI
754 netdev->poll = &e1000_clean;
755 netdev->weight = 64;
756 #endif
757 netdev->vlan_rx_register = e1000_vlan_rx_register;
758 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
759 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
760 #ifdef CONFIG_NET_POLL_CONTROLLER
761 netdev->poll_controller = e1000_netpoll;
762 #endif
763 strcpy(netdev->name, pci_name(pdev));
764
765 netdev->mem_start = mmio_start;
766 netdev->mem_end = mmio_start + mmio_len;
767 netdev->base_addr = adapter->hw.io_base;
768
769 adapter->bd_number = cards_found;
770
771 /* setup the private structure */
772
773 if ((err = e1000_sw_init(adapter)))
774 goto err_sw_init;
775
776 /* Flash BAR mapping must happen after e1000_sw_init
777 * because it depends on mac_type */
778 if ((adapter->hw.mac_type == e1000_ich8lan) &&
779 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
780 flash_start = pci_resource_start(pdev, 1);
781 flash_len = pci_resource_len(pdev, 1);
782 adapter->hw.flash_address = ioremap(flash_start, flash_len);
783 if (!adapter->hw.flash_address) {
784 err = -EIO;
785 goto err_flashmap;
786 }
787 }
788
789 if ((err = e1000_check_phy_reset_block(&adapter->hw)))
790 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
791
792 /* if ksp3, indicate if it's port a being setup */
793 if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
794 e1000_ksp3_port_a == 0)
795 adapter->ksp3_port_a = 1;
796 e1000_ksp3_port_a++;
797 /* Reset for multiple KP3 adapters */
798 if (e1000_ksp3_port_a == 4)
799 e1000_ksp3_port_a = 0;
800
801 if (adapter->hw.mac_type >= e1000_82543) {
802 netdev->features = NETIF_F_SG |
803 NETIF_F_HW_CSUM |
804 NETIF_F_HW_VLAN_TX |
805 NETIF_F_HW_VLAN_RX |
806 NETIF_F_HW_VLAN_FILTER;
807 if (adapter->hw.mac_type == e1000_ich8lan)
808 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
809 }
810
811 #ifdef NETIF_F_TSO
812 if ((adapter->hw.mac_type >= e1000_82544) &&
813 (adapter->hw.mac_type != e1000_82547))
814 netdev->features |= NETIF_F_TSO;
815
816 #ifdef NETIF_F_TSO_IPV6
817 if (adapter->hw.mac_type > e1000_82547_rev_2)
818 netdev->features |= NETIF_F_TSO_IPV6;
819 #endif
820 #endif
821 if (pci_using_dac)
822 netdev->features |= NETIF_F_HIGHDMA;
823
824 netdev->features |= NETIF_F_LLTX;
825
826 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
827
828 /* initialize eeprom parameters */
829
830 if (e1000_init_eeprom_params(&adapter->hw)) {
831 E1000_ERR("EEPROM initialization failed\n");
832 return -EIO;
833 }
834
835 /* before reading the EEPROM, reset the controller to
836 * put the device in a known good starting state */
837
838 e1000_reset_hw(&adapter->hw);
839
840 /* make sure the EEPROM is good */
841
842 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
843 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
844 err = -EIO;
845 goto err_eeprom;
846 }
847
848 /* copy the MAC address out of the EEPROM */
849
850 if (e1000_read_mac_addr(&adapter->hw))
851 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
852 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
853 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
854
855 if (!is_valid_ether_addr(netdev->perm_addr)) {
856 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
857 err = -EIO;
858 goto err_eeprom;
859 }
860
861 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
862
863 e1000_get_bus_info(&adapter->hw);
864
865 init_timer(&adapter->tx_fifo_stall_timer);
866 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
867 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
868
869 init_timer(&adapter->watchdog_timer);
870 adapter->watchdog_timer.function = &e1000_watchdog;
871 adapter->watchdog_timer.data = (unsigned long) adapter;
872
873 init_timer(&adapter->phy_info_timer);
874 adapter->phy_info_timer.function = &e1000_update_phy_info;
875 adapter->phy_info_timer.data = (unsigned long) adapter;
876
877 INIT_WORK(&adapter->reset_task,
878 (void (*)(void *))e1000_reset_task, netdev);
879
880 /* we're going to reset, so assume we have no link for now */
881
882 netif_carrier_off(netdev);
883 netif_stop_queue(netdev);
884
885 e1000_check_options(adapter);
886
887 /* Initial Wake on LAN setting
888 * If APM wake is enabled in the EEPROM,
889 * enable the ACPI Magic Packet filter
890 */
891
892 switch (adapter->hw.mac_type) {
893 case e1000_82542_rev2_0:
894 case e1000_82542_rev2_1:
895 case e1000_82543:
896 break;
897 case e1000_82544:
898 e1000_read_eeprom(&adapter->hw,
899 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
900 eeprom_apme_mask = E1000_EEPROM_82544_APM;
901 break;
902 case e1000_ich8lan:
903 e1000_read_eeprom(&adapter->hw,
904 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
905 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
906 break;
907 case e1000_82546:
908 case e1000_82546_rev_3:
909 case e1000_82571:
910 case e1000_80003es2lan:
911 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
912 e1000_read_eeprom(&adapter->hw,
913 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
914 break;
915 }
916 /* Fall Through */
917 default:
918 e1000_read_eeprom(&adapter->hw,
919 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
920 break;
921 }
922 if (eeprom_data & eeprom_apme_mask)
923 adapter->wol |= E1000_WUFC_MAG;
924
925 /* print bus type/speed/width info */
926 {
927 struct e1000_hw *hw = &adapter->hw;
928 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
929 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
930 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
931 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
932 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
933 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
934 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
935 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
936 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
937 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
938 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
939 "32-bit"));
940 }
941
942 for (i = 0; i < 6; i++)
943 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
944
945 /* reset the hardware with the new settings */
946 e1000_reset(adapter);
947
948 /* If the controller is 82573 and f/w is AMT, do not set
949 * DRV_LOAD until the interface is up. For all other cases,
950 * let the f/w know that the h/w is now under the control
951 * of the driver. */
952 if (adapter->hw.mac_type != e1000_82573 ||
953 !e1000_check_mng_mode(&adapter->hw))
954 e1000_get_hw_control(adapter);
955
956 strcpy(netdev->name, "eth%d");
957 if ((err = register_netdev(netdev)))
958 goto err_register;
959
960 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
961
962 cards_found++;
963 return 0;
964
965 err_register:
966 if (adapter->hw.flash_address)
967 iounmap(adapter->hw.flash_address);
968 err_flashmap:
969 err_sw_init:
970 err_eeprom:
971 iounmap(adapter->hw.hw_addr);
972 err_ioremap:
973 free_netdev(netdev);
974 err_alloc_etherdev:
975 pci_release_regions(pdev);
976 return err;
977 }
978
979 /**
980 * e1000_remove - Device Removal Routine
981 * @pdev: PCI device information struct
982 *
983 * e1000_remove is called by the PCI subsystem to alert the driver
984 * that it should release a PCI device. The could be caused by a
985 * Hot-Plug event, or because the driver is going to be removed from
986 * memory.
987 **/
988
989 static void __devexit
990 e1000_remove(struct pci_dev *pdev)
991 {
992 struct net_device *netdev = pci_get_drvdata(pdev);
993 struct e1000_adapter *adapter = netdev_priv(netdev);
994 uint32_t manc;
995 #ifdef CONFIG_E1000_NAPI
996 int i;
997 #endif
998
999 flush_scheduled_work();
1000
1001 if (adapter->hw.mac_type >= e1000_82540 &&
1002 adapter->hw.mac_type != e1000_ich8lan &&
1003 adapter->hw.media_type == e1000_media_type_copper) {
1004 manc = E1000_READ_REG(&adapter->hw, MANC);
1005 if (manc & E1000_MANC_SMBUS_EN) {
1006 manc |= E1000_MANC_ARP_EN;
1007 E1000_WRITE_REG(&adapter->hw, MANC, manc);
1008 }
1009 }
1010
1011 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1012 * would have already happened in close and is redundant. */
1013 e1000_release_hw_control(adapter);
1014
1015 unregister_netdev(netdev);
1016 #ifdef CONFIG_E1000_NAPI
1017 for (i = 0; i < adapter->num_rx_queues; i++)
1018 dev_put(&adapter->polling_netdev[i]);
1019 #endif
1020
1021 if (!e1000_check_phy_reset_block(&adapter->hw))
1022 e1000_phy_hw_reset(&adapter->hw);
1023
1024 kfree(adapter->tx_ring);
1025 kfree(adapter->rx_ring);
1026 #ifdef CONFIG_E1000_NAPI
1027 kfree(adapter->polling_netdev);
1028 #endif
1029
1030 iounmap(adapter->hw.hw_addr);
1031 if (adapter->hw.flash_address)
1032 iounmap(adapter->hw.flash_address);
1033 pci_release_regions(pdev);
1034
1035 free_netdev(netdev);
1036
1037 pci_disable_device(pdev);
1038 }
1039
1040 /**
1041 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1042 * @adapter: board private structure to initialize
1043 *
1044 * e1000_sw_init initializes the Adapter private data structure.
1045 * Fields are initialized based on PCI device information and
1046 * OS network device settings (MTU size).
1047 **/
1048
1049 static int __devinit
1050 e1000_sw_init(struct e1000_adapter *adapter)
1051 {
1052 struct e1000_hw *hw = &adapter->hw;
1053 struct net_device *netdev = adapter->netdev;
1054 struct pci_dev *pdev = adapter->pdev;
1055 #ifdef CONFIG_E1000_NAPI
1056 int i;
1057 #endif
1058
1059 /* PCI config space info */
1060
1061 hw->vendor_id = pdev->vendor;
1062 hw->device_id = pdev->device;
1063 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1064 hw->subsystem_id = pdev->subsystem_device;
1065
1066 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1067
1068 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1069
1070 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1071 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1072 hw->max_frame_size = netdev->mtu +
1073 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1074 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1075
1076 /* identify the MAC */
1077
1078 if (e1000_set_mac_type(hw)) {
1079 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1080 return -EIO;
1081 }
1082
1083 switch (hw->mac_type) {
1084 default:
1085 break;
1086 case e1000_82541:
1087 case e1000_82547:
1088 case e1000_82541_rev_2:
1089 case e1000_82547_rev_2:
1090 hw->phy_init_script = 1;
1091 break;
1092 }
1093
1094 e1000_set_media_type(hw);
1095
1096 hw->wait_autoneg_complete = FALSE;
1097 hw->tbi_compatibility_en = TRUE;
1098 hw->adaptive_ifs = TRUE;
1099
1100 /* Copper options */
1101
1102 if (hw->media_type == e1000_media_type_copper) {
1103 hw->mdix = AUTO_ALL_MODES;
1104 hw->disable_polarity_correction = FALSE;
1105 hw->master_slave = E1000_MASTER_SLAVE;
1106 }
1107
1108 adapter->num_tx_queues = 1;
1109 adapter->num_rx_queues = 1;
1110
1111 if (e1000_alloc_queues(adapter)) {
1112 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1113 return -ENOMEM;
1114 }
1115
1116 #ifdef CONFIG_E1000_NAPI
1117 for (i = 0; i < adapter->num_rx_queues; i++) {
1118 adapter->polling_netdev[i].priv = adapter;
1119 adapter->polling_netdev[i].poll = &e1000_clean;
1120 adapter->polling_netdev[i].weight = 64;
1121 dev_hold(&adapter->polling_netdev[i]);
1122 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1123 }
1124 spin_lock_init(&adapter->tx_queue_lock);
1125 #endif
1126
1127 atomic_set(&adapter->irq_sem, 1);
1128 spin_lock_init(&adapter->stats_lock);
1129
1130 return 0;
1131 }
1132
1133 /**
1134 * e1000_alloc_queues - Allocate memory for all rings
1135 * @adapter: board private structure to initialize
1136 *
1137 * We allocate one ring per queue at run-time since we don't know the
1138 * number of queues at compile-time. The polling_netdev array is
1139 * intended for Multiqueue, but should work fine with a single queue.
1140 **/
1141
1142 static int __devinit
1143 e1000_alloc_queues(struct e1000_adapter *adapter)
1144 {
1145 int size;
1146
1147 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1148 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1149 if (!adapter->tx_ring)
1150 return -ENOMEM;
1151 memset(adapter->tx_ring, 0, size);
1152
1153 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1154 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1155 if (!adapter->rx_ring) {
1156 kfree(adapter->tx_ring);
1157 return -ENOMEM;
1158 }
1159 memset(adapter->rx_ring, 0, size);
1160
1161 #ifdef CONFIG_E1000_NAPI
1162 size = sizeof(struct net_device) * adapter->num_rx_queues;
1163 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1164 if (!adapter->polling_netdev) {
1165 kfree(adapter->tx_ring);
1166 kfree(adapter->rx_ring);
1167 return -ENOMEM;
1168 }
1169 memset(adapter->polling_netdev, 0, size);
1170 #endif
1171
1172 return E1000_SUCCESS;
1173 }
1174
1175 /**
1176 * e1000_open - Called when a network interface is made active
1177 * @netdev: network interface device structure
1178 *
1179 * Returns 0 on success, negative value on failure
1180 *
1181 * The open entry point is called when a network interface is made
1182 * active by the system (IFF_UP). At this point all resources needed
1183 * for transmit and receive operations are allocated, the interrupt
1184 * handler is registered with the OS, the watchdog timer is started,
1185 * and the stack is notified that the interface is ready.
1186 **/
1187
1188 static int
1189 e1000_open(struct net_device *netdev)
1190 {
1191 struct e1000_adapter *adapter = netdev_priv(netdev);
1192 int err;
1193
1194 /* disallow open during test */
1195 if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1196 return -EBUSY;
1197
1198 /* allocate transmit descriptors */
1199
1200 if ((err = e1000_setup_all_tx_resources(adapter)))
1201 goto err_setup_tx;
1202
1203 /* allocate receive descriptors */
1204
1205 if ((err = e1000_setup_all_rx_resources(adapter)))
1206 goto err_setup_rx;
1207
1208 err = e1000_request_irq(adapter);
1209 if (err)
1210 goto err_up;
1211
1212 e1000_power_up_phy(adapter);
1213
1214 if ((err = e1000_up(adapter)))
1215 goto err_up;
1216 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1217 if ((adapter->hw.mng_cookie.status &
1218 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1219 e1000_update_mng_vlan(adapter);
1220 }
1221
1222 /* If AMT is enabled, let the firmware know that the network
1223 * interface is now open */
1224 if (adapter->hw.mac_type == e1000_82573 &&
1225 e1000_check_mng_mode(&adapter->hw))
1226 e1000_get_hw_control(adapter);
1227
1228 return E1000_SUCCESS;
1229
1230 err_up:
1231 e1000_free_all_rx_resources(adapter);
1232 err_setup_rx:
1233 e1000_free_all_tx_resources(adapter);
1234 err_setup_tx:
1235 e1000_reset(adapter);
1236
1237 return err;
1238 }
1239
1240 /**
1241 * e1000_close - Disables a network interface
1242 * @netdev: network interface device structure
1243 *
1244 * Returns 0, this is not allowed to fail
1245 *
1246 * The close entry point is called when an interface is de-activated
1247 * by the OS. The hardware is still under the drivers control, but
1248 * needs to be disabled. A global MAC reset is issued to stop the
1249 * hardware, and all transmit and receive resources are freed.
1250 **/
1251
1252 static int
1253 e1000_close(struct net_device *netdev)
1254 {
1255 struct e1000_adapter *adapter = netdev_priv(netdev);
1256
1257 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1258 e1000_down(adapter);
1259 e1000_power_down_phy(adapter);
1260 e1000_free_irq(adapter);
1261
1262 e1000_free_all_tx_resources(adapter);
1263 e1000_free_all_rx_resources(adapter);
1264
1265 if ((adapter->hw.mng_cookie.status &
1266 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1267 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1268 }
1269
1270 /* If AMT is enabled, let the firmware know that the network
1271 * interface is now closed */
1272 if (adapter->hw.mac_type == e1000_82573 &&
1273 e1000_check_mng_mode(&adapter->hw))
1274 e1000_release_hw_control(adapter);
1275
1276 return 0;
1277 }
1278
1279 /**
1280 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1281 * @adapter: address of board private structure
1282 * @start: address of beginning of memory
1283 * @len: length of memory
1284 **/
1285 static boolean_t
1286 e1000_check_64k_bound(struct e1000_adapter *adapter,
1287 void *start, unsigned long len)
1288 {
1289 unsigned long begin = (unsigned long) start;
1290 unsigned long end = begin + len;
1291
1292 /* First rev 82545 and 82546 need to not allow any memory
1293 * write location to cross 64k boundary due to errata 23 */
1294 if (adapter->hw.mac_type == e1000_82545 ||
1295 adapter->hw.mac_type == e1000_82546) {
1296 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1297 }
1298
1299 return TRUE;
1300 }
1301
1302 /**
1303 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1304 * @adapter: board private structure
1305 * @txdr: tx descriptor ring (for a specific queue) to setup
1306 *
1307 * Return 0 on success, negative on failure
1308 **/
1309
1310 static int
1311 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1312 struct e1000_tx_ring *txdr)
1313 {
1314 struct pci_dev *pdev = adapter->pdev;
1315 int size;
1316
1317 size = sizeof(struct e1000_buffer) * txdr->count;
1318 txdr->buffer_info = vmalloc(size);
1319 if (!txdr->buffer_info) {
1320 DPRINTK(PROBE, ERR,
1321 "Unable to allocate memory for the transmit descriptor ring\n");
1322 return -ENOMEM;
1323 }
1324 memset(txdr->buffer_info, 0, size);
1325
1326 /* round up to nearest 4K */
1327
1328 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1329 E1000_ROUNDUP(txdr->size, 4096);
1330
1331 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1332 if (!txdr->desc) {
1333 setup_tx_desc_die:
1334 vfree(txdr->buffer_info);
1335 DPRINTK(PROBE, ERR,
1336 "Unable to allocate memory for the transmit descriptor ring\n");
1337 return -ENOMEM;
1338 }
1339
1340 /* Fix for errata 23, can't cross 64kB boundary */
1341 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1342 void *olddesc = txdr->desc;
1343 dma_addr_t olddma = txdr->dma;
1344 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1345 "at %p\n", txdr->size, txdr->desc);
1346 /* Try again, without freeing the previous */
1347 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1348 /* Failed allocation, critical failure */
1349 if (!txdr->desc) {
1350 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1351 goto setup_tx_desc_die;
1352 }
1353
1354 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1355 /* give up */
1356 pci_free_consistent(pdev, txdr->size, txdr->desc,
1357 txdr->dma);
1358 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1359 DPRINTK(PROBE, ERR,
1360 "Unable to allocate aligned memory "
1361 "for the transmit descriptor ring\n");
1362 vfree(txdr->buffer_info);
1363 return -ENOMEM;
1364 } else {
1365 /* Free old allocation, new allocation was successful */
1366 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1367 }
1368 }
1369 memset(txdr->desc, 0, txdr->size);
1370
1371 txdr->next_to_use = 0;
1372 txdr->next_to_clean = 0;
1373 spin_lock_init(&txdr->tx_lock);
1374
1375 return 0;
1376 }
1377
1378 /**
1379 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1380 * (Descriptors) for all queues
1381 * @adapter: board private structure
1382 *
1383 * If this function returns with an error, then it's possible one or
1384 * more of the rings is populated (while the rest are not). It is the
1385 * callers duty to clean those orphaned rings.
1386 *
1387 * Return 0 on success, negative on failure
1388 **/
1389
1390 int
1391 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1392 {
1393 int i, err = 0;
1394
1395 for (i = 0; i < adapter->num_tx_queues; i++) {
1396 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1397 if (err) {
1398 DPRINTK(PROBE, ERR,
1399 "Allocation for Tx Queue %u failed\n", i);
1400 break;
1401 }
1402 }
1403
1404 return err;
1405 }
1406
1407 /**
1408 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1409 * @adapter: board private structure
1410 *
1411 * Configure the Tx unit of the MAC after a reset.
1412 **/
1413
1414 static void
1415 e1000_configure_tx(struct e1000_adapter *adapter)
1416 {
1417 uint64_t tdba;
1418 struct e1000_hw *hw = &adapter->hw;
1419 uint32_t tdlen, tctl, tipg, tarc;
1420 uint32_t ipgr1, ipgr2;
1421
1422 /* Setup the HW Tx Head and Tail descriptor pointers */
1423
1424 switch (adapter->num_tx_queues) {
1425 case 1:
1426 default:
1427 tdba = adapter->tx_ring[0].dma;
1428 tdlen = adapter->tx_ring[0].count *
1429 sizeof(struct e1000_tx_desc);
1430 E1000_WRITE_REG(hw, TDLEN, tdlen);
1431 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1432 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1433 E1000_WRITE_REG(hw, TDT, 0);
1434 E1000_WRITE_REG(hw, TDH, 0);
1435 adapter->tx_ring[0].tdh = E1000_TDH;
1436 adapter->tx_ring[0].tdt = E1000_TDT;
1437 break;
1438 }
1439
1440 /* Set the default values for the Tx Inter Packet Gap timer */
1441
1442 if (hw->media_type == e1000_media_type_fiber ||
1443 hw->media_type == e1000_media_type_internal_serdes)
1444 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1445 else
1446 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1447
1448 switch (hw->mac_type) {
1449 case e1000_82542_rev2_0:
1450 case e1000_82542_rev2_1:
1451 tipg = DEFAULT_82542_TIPG_IPGT;
1452 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1453 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1454 break;
1455 case e1000_80003es2lan:
1456 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1457 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1458 break;
1459 default:
1460 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1461 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1462 break;
1463 }
1464 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1465 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1466 E1000_WRITE_REG(hw, TIPG, tipg);
1467
1468 /* Set the Tx Interrupt Delay register */
1469
1470 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1471 if (hw->mac_type >= e1000_82540)
1472 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1473
1474 /* Program the Transmit Control Register */
1475
1476 tctl = E1000_READ_REG(hw, TCTL);
1477
1478 tctl &= ~E1000_TCTL_CT;
1479 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1480 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1481
1482 #ifdef DISABLE_MULR
1483 /* disable Multiple Reads for debugging */
1484 tctl &= ~E1000_TCTL_MULR;
1485 #endif
1486
1487 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1488 tarc = E1000_READ_REG(hw, TARC0);
1489 tarc |= ((1 << 25) | (1 << 21));
1490 E1000_WRITE_REG(hw, TARC0, tarc);
1491 tarc = E1000_READ_REG(hw, TARC1);
1492 tarc |= (1 << 25);
1493 if (tctl & E1000_TCTL_MULR)
1494 tarc &= ~(1 << 28);
1495 else
1496 tarc |= (1 << 28);
1497 E1000_WRITE_REG(hw, TARC1, tarc);
1498 } else if (hw->mac_type == e1000_80003es2lan) {
1499 tarc = E1000_READ_REG(hw, TARC0);
1500 tarc |= 1;
1501 if (hw->media_type == e1000_media_type_internal_serdes)
1502 tarc |= (1 << 20);
1503 E1000_WRITE_REG(hw, TARC0, tarc);
1504 tarc = E1000_READ_REG(hw, TARC1);
1505 tarc |= 1;
1506 E1000_WRITE_REG(hw, TARC1, tarc);
1507 }
1508
1509 e1000_config_collision_dist(hw);
1510
1511 /* Setup Transmit Descriptor Settings for eop descriptor */
1512 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1513 E1000_TXD_CMD_IFCS;
1514
1515 if (hw->mac_type < e1000_82543)
1516 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1517 else
1518 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1519
1520 /* Cache if we're 82544 running in PCI-X because we'll
1521 * need this to apply a workaround later in the send path. */
1522 if (hw->mac_type == e1000_82544 &&
1523 hw->bus_type == e1000_bus_type_pcix)
1524 adapter->pcix_82544 = 1;
1525
1526 E1000_WRITE_REG(hw, TCTL, tctl);
1527
1528 }
1529
1530 /**
1531 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1532 * @adapter: board private structure
1533 * @rxdr: rx descriptor ring (for a specific queue) to setup
1534 *
1535 * Returns 0 on success, negative on failure
1536 **/
1537
1538 static int
1539 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1540 struct e1000_rx_ring *rxdr)
1541 {
1542 struct pci_dev *pdev = adapter->pdev;
1543 int size, desc_len;
1544
1545 size = sizeof(struct e1000_buffer) * rxdr->count;
1546 rxdr->buffer_info = vmalloc(size);
1547 if (!rxdr->buffer_info) {
1548 DPRINTK(PROBE, ERR,
1549 "Unable to allocate memory for the receive descriptor ring\n");
1550 return -ENOMEM;
1551 }
1552 memset(rxdr->buffer_info, 0, size);
1553
1554 size = sizeof(struct e1000_ps_page) * rxdr->count;
1555 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1556 if (!rxdr->ps_page) {
1557 vfree(rxdr->buffer_info);
1558 DPRINTK(PROBE, ERR,
1559 "Unable to allocate memory for the receive descriptor ring\n");
1560 return -ENOMEM;
1561 }
1562 memset(rxdr->ps_page, 0, size);
1563
1564 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1565 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1566 if (!rxdr->ps_page_dma) {
1567 vfree(rxdr->buffer_info);
1568 kfree(rxdr->ps_page);
1569 DPRINTK(PROBE, ERR,
1570 "Unable to allocate memory for the receive descriptor ring\n");
1571 return -ENOMEM;
1572 }
1573 memset(rxdr->ps_page_dma, 0, size);
1574
1575 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1576 desc_len = sizeof(struct e1000_rx_desc);
1577 else
1578 desc_len = sizeof(union e1000_rx_desc_packet_split);
1579
1580 /* Round up to nearest 4K */
1581
1582 rxdr->size = rxdr->count * desc_len;
1583 E1000_ROUNDUP(rxdr->size, 4096);
1584
1585 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1586
1587 if (!rxdr->desc) {
1588 DPRINTK(PROBE, ERR,
1589 "Unable to allocate memory for the receive descriptor ring\n");
1590 setup_rx_desc_die:
1591 vfree(rxdr->buffer_info);
1592 kfree(rxdr->ps_page);
1593 kfree(rxdr->ps_page_dma);
1594 return -ENOMEM;
1595 }
1596
1597 /* Fix for errata 23, can't cross 64kB boundary */
1598 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1599 void *olddesc = rxdr->desc;
1600 dma_addr_t olddma = rxdr->dma;
1601 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1602 "at %p\n", rxdr->size, rxdr->desc);
1603 /* Try again, without freeing the previous */
1604 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1605 /* Failed allocation, critical failure */
1606 if (!rxdr->desc) {
1607 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1608 DPRINTK(PROBE, ERR,
1609 "Unable to allocate memory "
1610 "for the receive descriptor ring\n");
1611 goto setup_rx_desc_die;
1612 }
1613
1614 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1615 /* give up */
1616 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1617 rxdr->dma);
1618 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1619 DPRINTK(PROBE, ERR,
1620 "Unable to allocate aligned memory "
1621 "for the receive descriptor ring\n");
1622 goto setup_rx_desc_die;
1623 } else {
1624 /* Free old allocation, new allocation was successful */
1625 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1626 }
1627 }
1628 memset(rxdr->desc, 0, rxdr->size);
1629
1630 rxdr->next_to_clean = 0;
1631 rxdr->next_to_use = 0;
1632
1633 return 0;
1634 }
1635
1636 /**
1637 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1638 * (Descriptors) for all queues
1639 * @adapter: board private structure
1640 *
1641 * If this function returns with an error, then it's possible one or
1642 * more of the rings is populated (while the rest are not). It is the
1643 * callers duty to clean those orphaned rings.
1644 *
1645 * Return 0 on success, negative on failure
1646 **/
1647
1648 int
1649 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1650 {
1651 int i, err = 0;
1652
1653 for (i = 0; i < adapter->num_rx_queues; i++) {
1654 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1655 if (err) {
1656 DPRINTK(PROBE, ERR,
1657 "Allocation for Rx Queue %u failed\n", i);
1658 break;
1659 }
1660 }
1661
1662 return err;
1663 }
1664
1665 /**
1666 * e1000_setup_rctl - configure the receive control registers
1667 * @adapter: Board private structure
1668 **/
1669 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1670 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1671 static void
1672 e1000_setup_rctl(struct e1000_adapter *adapter)
1673 {
1674 uint32_t rctl, rfctl;
1675 uint32_t psrctl = 0;
1676 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1677 uint32_t pages = 0;
1678 #endif
1679
1680 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1681
1682 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1683
1684 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1685 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1686 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1687
1688 if (adapter->hw.tbi_compatibility_on == 1)
1689 rctl |= E1000_RCTL_SBP;
1690 else
1691 rctl &= ~E1000_RCTL_SBP;
1692
1693 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1694 rctl &= ~E1000_RCTL_LPE;
1695 else
1696 rctl |= E1000_RCTL_LPE;
1697
1698 /* Setup buffer sizes */
1699 rctl &= ~E1000_RCTL_SZ_4096;
1700 rctl |= E1000_RCTL_BSEX;
1701 switch (adapter->rx_buffer_len) {
1702 case E1000_RXBUFFER_256:
1703 rctl |= E1000_RCTL_SZ_256;
1704 rctl &= ~E1000_RCTL_BSEX;
1705 break;
1706 case E1000_RXBUFFER_512:
1707 rctl |= E1000_RCTL_SZ_512;
1708 rctl &= ~E1000_RCTL_BSEX;
1709 break;
1710 case E1000_RXBUFFER_1024:
1711 rctl |= E1000_RCTL_SZ_1024;
1712 rctl &= ~E1000_RCTL_BSEX;
1713 break;
1714 case E1000_RXBUFFER_2048:
1715 default:
1716 rctl |= E1000_RCTL_SZ_2048;
1717 rctl &= ~E1000_RCTL_BSEX;
1718 break;
1719 case E1000_RXBUFFER_4096:
1720 rctl |= E1000_RCTL_SZ_4096;
1721 break;
1722 case E1000_RXBUFFER_8192:
1723 rctl |= E1000_RCTL_SZ_8192;
1724 break;
1725 case E1000_RXBUFFER_16384:
1726 rctl |= E1000_RCTL_SZ_16384;
1727 break;
1728 }
1729
1730 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1731 /* 82571 and greater support packet-split where the protocol
1732 * header is placed in skb->data and the packet data is
1733 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1734 * In the case of a non-split, skb->data is linearly filled,
1735 * followed by the page buffers. Therefore, skb->data is
1736 * sized to hold the largest protocol header.
1737 */
1738 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1739 if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1740 PAGE_SIZE <= 16384)
1741 adapter->rx_ps_pages = pages;
1742 else
1743 adapter->rx_ps_pages = 0;
1744 #endif
1745 if (adapter->rx_ps_pages) {
1746 /* Configure extra packet-split registers */
1747 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1748 rfctl |= E1000_RFCTL_EXTEN;
1749 /* disable IPv6 packet split support */
1750 rfctl |= E1000_RFCTL_IPV6_DIS;
1751 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1752
1753 rctl |= E1000_RCTL_DTYP_PS;
1754
1755 psrctl |= adapter->rx_ps_bsize0 >>
1756 E1000_PSRCTL_BSIZE0_SHIFT;
1757
1758 switch (adapter->rx_ps_pages) {
1759 case 3:
1760 psrctl |= PAGE_SIZE <<
1761 E1000_PSRCTL_BSIZE3_SHIFT;
1762 case 2:
1763 psrctl |= PAGE_SIZE <<
1764 E1000_PSRCTL_BSIZE2_SHIFT;
1765 case 1:
1766 psrctl |= PAGE_SIZE >>
1767 E1000_PSRCTL_BSIZE1_SHIFT;
1768 break;
1769 }
1770
1771 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1772 }
1773
1774 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1775 }
1776
1777 /**
1778 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1779 * @adapter: board private structure
1780 *
1781 * Configure the Rx unit of the MAC after a reset.
1782 **/
1783
1784 static void
1785 e1000_configure_rx(struct e1000_adapter *adapter)
1786 {
1787 uint64_t rdba;
1788 struct e1000_hw *hw = &adapter->hw;
1789 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1790
1791 if (adapter->rx_ps_pages) {
1792 /* this is a 32 byte descriptor */
1793 rdlen = adapter->rx_ring[0].count *
1794 sizeof(union e1000_rx_desc_packet_split);
1795 adapter->clean_rx = e1000_clean_rx_irq_ps;
1796 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1797 } else {
1798 rdlen = adapter->rx_ring[0].count *
1799 sizeof(struct e1000_rx_desc);
1800 adapter->clean_rx = e1000_clean_rx_irq;
1801 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1802 }
1803
1804 /* disable receives while setting up the descriptors */
1805 rctl = E1000_READ_REG(hw, RCTL);
1806 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1807
1808 /* set the Receive Delay Timer Register */
1809 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1810
1811 if (hw->mac_type >= e1000_82540) {
1812 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1813 if (adapter->itr > 1)
1814 E1000_WRITE_REG(hw, ITR,
1815 1000000000 / (adapter->itr * 256));
1816 }
1817
1818 if (hw->mac_type >= e1000_82571) {
1819 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1820 /* Reset delay timers after every interrupt */
1821 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1822 #ifdef CONFIG_E1000_NAPI
1823 /* Auto-Mask interrupts upon ICR read. */
1824 ctrl_ext |= E1000_CTRL_EXT_IAME;
1825 #endif
1826 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1827 E1000_WRITE_REG(hw, IAM, ~0);
1828 E1000_WRITE_FLUSH(hw);
1829 }
1830
1831 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1832 * the Base and Length of the Rx Descriptor Ring */
1833 switch (adapter->num_rx_queues) {
1834 case 1:
1835 default:
1836 rdba = adapter->rx_ring[0].dma;
1837 E1000_WRITE_REG(hw, RDLEN, rdlen);
1838 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1839 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1840 E1000_WRITE_REG(hw, RDT, 0);
1841 E1000_WRITE_REG(hw, RDH, 0);
1842 adapter->rx_ring[0].rdh = E1000_RDH;
1843 adapter->rx_ring[0].rdt = E1000_RDT;
1844 break;
1845 }
1846
1847 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1848 if (hw->mac_type >= e1000_82543) {
1849 rxcsum = E1000_READ_REG(hw, RXCSUM);
1850 if (adapter->rx_csum == TRUE) {
1851 rxcsum |= E1000_RXCSUM_TUOFL;
1852
1853 /* Enable 82571 IPv4 payload checksum for UDP fragments
1854 * Must be used in conjunction with packet-split. */
1855 if ((hw->mac_type >= e1000_82571) &&
1856 (adapter->rx_ps_pages)) {
1857 rxcsum |= E1000_RXCSUM_IPPCSE;
1858 }
1859 } else {
1860 rxcsum &= ~E1000_RXCSUM_TUOFL;
1861 /* don't need to clear IPPCSE as it defaults to 0 */
1862 }
1863 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1864 }
1865
1866 /* Enable Receives */
1867 E1000_WRITE_REG(hw, RCTL, rctl);
1868 }
1869
1870 /**
1871 * e1000_free_tx_resources - Free Tx Resources per Queue
1872 * @adapter: board private structure
1873 * @tx_ring: Tx descriptor ring for a specific queue
1874 *
1875 * Free all transmit software resources
1876 **/
1877
1878 static void
1879 e1000_free_tx_resources(struct e1000_adapter *adapter,
1880 struct e1000_tx_ring *tx_ring)
1881 {
1882 struct pci_dev *pdev = adapter->pdev;
1883
1884 e1000_clean_tx_ring(adapter, tx_ring);
1885
1886 vfree(tx_ring->buffer_info);
1887 tx_ring->buffer_info = NULL;
1888
1889 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1890
1891 tx_ring->desc = NULL;
1892 }
1893
1894 /**
1895 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1896 * @adapter: board private structure
1897 *
1898 * Free all transmit software resources
1899 **/
1900
1901 void
1902 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1903 {
1904 int i;
1905
1906 for (i = 0; i < adapter->num_tx_queues; i++)
1907 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1908 }
1909
1910 static void
1911 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1912 struct e1000_buffer *buffer_info)
1913 {
1914 if (buffer_info->dma) {
1915 pci_unmap_page(adapter->pdev,
1916 buffer_info->dma,
1917 buffer_info->length,
1918 PCI_DMA_TODEVICE);
1919 }
1920 if (buffer_info->skb)
1921 dev_kfree_skb_any(buffer_info->skb);
1922 memset(buffer_info, 0, sizeof(struct e1000_buffer));
1923 }
1924
1925 /**
1926 * e1000_clean_tx_ring - Free Tx Buffers
1927 * @adapter: board private structure
1928 * @tx_ring: ring to be cleaned
1929 **/
1930
1931 static void
1932 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1933 struct e1000_tx_ring *tx_ring)
1934 {
1935 struct e1000_buffer *buffer_info;
1936 unsigned long size;
1937 unsigned int i;
1938
1939 /* Free all the Tx ring sk_buffs */
1940
1941 for (i = 0; i < tx_ring->count; i++) {
1942 buffer_info = &tx_ring->buffer_info[i];
1943 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1944 }
1945
1946 size = sizeof(struct e1000_buffer) * tx_ring->count;
1947 memset(tx_ring->buffer_info, 0, size);
1948
1949 /* Zero out the descriptor ring */
1950
1951 memset(tx_ring->desc, 0, tx_ring->size);
1952
1953 tx_ring->next_to_use = 0;
1954 tx_ring->next_to_clean = 0;
1955 tx_ring->last_tx_tso = 0;
1956
1957 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1958 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1959 }
1960
1961 /**
1962 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1963 * @adapter: board private structure
1964 **/
1965
1966 static void
1967 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1968 {
1969 int i;
1970
1971 for (i = 0; i < adapter->num_tx_queues; i++)
1972 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1973 }
1974
1975 /**
1976 * e1000_free_rx_resources - Free Rx Resources
1977 * @adapter: board private structure
1978 * @rx_ring: ring to clean the resources from
1979 *
1980 * Free all receive software resources
1981 **/
1982
1983 static void
1984 e1000_free_rx_resources(struct e1000_adapter *adapter,
1985 struct e1000_rx_ring *rx_ring)
1986 {
1987 struct pci_dev *pdev = adapter->pdev;
1988
1989 e1000_clean_rx_ring(adapter, rx_ring);
1990
1991 vfree(rx_ring->buffer_info);
1992 rx_ring->buffer_info = NULL;
1993 kfree(rx_ring->ps_page);
1994 rx_ring->ps_page = NULL;
1995 kfree(rx_ring->ps_page_dma);
1996 rx_ring->ps_page_dma = NULL;
1997
1998 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1999
2000 rx_ring->desc = NULL;
2001 }
2002
2003 /**
2004 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2005 * @adapter: board private structure
2006 *
2007 * Free all receive software resources
2008 **/
2009
2010 void
2011 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2012 {
2013 int i;
2014
2015 for (i = 0; i < adapter->num_rx_queues; i++)
2016 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2017 }
2018
2019 /**
2020 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2021 * @adapter: board private structure
2022 * @rx_ring: ring to free buffers from
2023 **/
2024
2025 static void
2026 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2027 struct e1000_rx_ring *rx_ring)
2028 {
2029 struct e1000_buffer *buffer_info;
2030 struct e1000_ps_page *ps_page;
2031 struct e1000_ps_page_dma *ps_page_dma;
2032 struct pci_dev *pdev = adapter->pdev;
2033 unsigned long size;
2034 unsigned int i, j;
2035
2036 /* Free all the Rx ring sk_buffs */
2037 for (i = 0; i < rx_ring->count; i++) {
2038 buffer_info = &rx_ring->buffer_info[i];
2039 if (buffer_info->skb) {
2040 pci_unmap_single(pdev,
2041 buffer_info->dma,
2042 buffer_info->length,
2043 PCI_DMA_FROMDEVICE);
2044
2045 dev_kfree_skb(buffer_info->skb);
2046 buffer_info->skb = NULL;
2047 }
2048 ps_page = &rx_ring->ps_page[i];
2049 ps_page_dma = &rx_ring->ps_page_dma[i];
2050 for (j = 0; j < adapter->rx_ps_pages; j++) {
2051 if (!ps_page->ps_page[j]) break;
2052 pci_unmap_page(pdev,
2053 ps_page_dma->ps_page_dma[j],
2054 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2055 ps_page_dma->ps_page_dma[j] = 0;
2056 put_page(ps_page->ps_page[j]);
2057 ps_page->ps_page[j] = NULL;
2058 }
2059 }
2060
2061 size = sizeof(struct e1000_buffer) * rx_ring->count;
2062 memset(rx_ring->buffer_info, 0, size);
2063 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2064 memset(rx_ring->ps_page, 0, size);
2065 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2066 memset(rx_ring->ps_page_dma, 0, size);
2067
2068 /* Zero out the descriptor ring */
2069
2070 memset(rx_ring->desc, 0, rx_ring->size);
2071
2072 rx_ring->next_to_clean = 0;
2073 rx_ring->next_to_use = 0;
2074
2075 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2076 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2077 }
2078
2079 /**
2080 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2081 * @adapter: board private structure
2082 **/
2083
2084 static void
2085 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2086 {
2087 int i;
2088
2089 for (i = 0; i < adapter->num_rx_queues; i++)
2090 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2091 }
2092
2093 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2094 * and memory write and invalidate disabled for certain operations
2095 */
2096 static void
2097 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2098 {
2099 struct net_device *netdev = adapter->netdev;
2100 uint32_t rctl;
2101
2102 e1000_pci_clear_mwi(&adapter->hw);
2103
2104 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2105 rctl |= E1000_RCTL_RST;
2106 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2107 E1000_WRITE_FLUSH(&adapter->hw);
2108 mdelay(5);
2109
2110 if (netif_running(netdev))
2111 e1000_clean_all_rx_rings(adapter);
2112 }
2113
2114 static void
2115 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2116 {
2117 struct net_device *netdev = adapter->netdev;
2118 uint32_t rctl;
2119
2120 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2121 rctl &= ~E1000_RCTL_RST;
2122 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2123 E1000_WRITE_FLUSH(&adapter->hw);
2124 mdelay(5);
2125
2126 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2127 e1000_pci_set_mwi(&adapter->hw);
2128
2129 if (netif_running(netdev)) {
2130 /* No need to loop, because 82542 supports only 1 queue */
2131 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2132 e1000_configure_rx(adapter);
2133 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2134 }
2135 }
2136
2137 /**
2138 * e1000_set_mac - Change the Ethernet Address of the NIC
2139 * @netdev: network interface device structure
2140 * @p: pointer to an address structure
2141 *
2142 * Returns 0 on success, negative on failure
2143 **/
2144
2145 static int
2146 e1000_set_mac(struct net_device *netdev, void *p)
2147 {
2148 struct e1000_adapter *adapter = netdev_priv(netdev);
2149 struct sockaddr *addr = p;
2150
2151 if (!is_valid_ether_addr(addr->sa_data))
2152 return -EADDRNOTAVAIL;
2153
2154 /* 82542 2.0 needs to be in reset to write receive address registers */
2155
2156 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2157 e1000_enter_82542_rst(adapter);
2158
2159 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2160 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2161
2162 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2163
2164 /* With 82571 controllers, LAA may be overwritten (with the default)
2165 * due to controller reset from the other port. */
2166 if (adapter->hw.mac_type == e1000_82571) {
2167 /* activate the work around */
2168 adapter->hw.laa_is_present = 1;
2169
2170 /* Hold a copy of the LAA in RAR[14] This is done so that
2171 * between the time RAR[0] gets clobbered and the time it
2172 * gets fixed (in e1000_watchdog), the actual LAA is in one
2173 * of the RARs and no incoming packets directed to this port
2174 * are dropped. Eventaully the LAA will be in RAR[0] and
2175 * RAR[14] */
2176 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2177 E1000_RAR_ENTRIES - 1);
2178 }
2179
2180 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2181 e1000_leave_82542_rst(adapter);
2182
2183 return 0;
2184 }
2185
2186 /**
2187 * e1000_set_multi - Multicast and Promiscuous mode set
2188 * @netdev: network interface device structure
2189 *
2190 * The set_multi entry point is called whenever the multicast address
2191 * list or the network interface flags are updated. This routine is
2192 * responsible for configuring the hardware for proper multicast,
2193 * promiscuous mode, and all-multi behavior.
2194 **/
2195
2196 static void
2197 e1000_set_multi(struct net_device *netdev)
2198 {
2199 struct e1000_adapter *adapter = netdev_priv(netdev);
2200 struct e1000_hw *hw = &adapter->hw;
2201 struct dev_mc_list *mc_ptr;
2202 uint32_t rctl;
2203 uint32_t hash_value;
2204 int i, rar_entries = E1000_RAR_ENTRIES;
2205 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2206 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2207 E1000_NUM_MTA_REGISTERS;
2208
2209 if (adapter->hw.mac_type == e1000_ich8lan)
2210 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2211
2212 /* reserve RAR[14] for LAA over-write work-around */
2213 if (adapter->hw.mac_type == e1000_82571)
2214 rar_entries--;
2215
2216 /* Check for Promiscuous and All Multicast modes */
2217
2218 rctl = E1000_READ_REG(hw, RCTL);
2219
2220 if (netdev->flags & IFF_PROMISC) {
2221 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2222 } else if (netdev->flags & IFF_ALLMULTI) {
2223 rctl |= E1000_RCTL_MPE;
2224 rctl &= ~E1000_RCTL_UPE;
2225 } else {
2226 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2227 }
2228
2229 E1000_WRITE_REG(hw, RCTL, rctl);
2230
2231 /* 82542 2.0 needs to be in reset to write receive address registers */
2232
2233 if (hw->mac_type == e1000_82542_rev2_0)
2234 e1000_enter_82542_rst(adapter);
2235
2236 /* load the first 14 multicast address into the exact filters 1-14
2237 * RAR 0 is used for the station MAC adddress
2238 * if there are not 14 addresses, go ahead and clear the filters
2239 * -- with 82571 controllers only 0-13 entries are filled here
2240 */
2241 mc_ptr = netdev->mc_list;
2242
2243 for (i = 1; i < rar_entries; i++) {
2244 if (mc_ptr) {
2245 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2246 mc_ptr = mc_ptr->next;
2247 } else {
2248 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2249 E1000_WRITE_FLUSH(hw);
2250 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2251 E1000_WRITE_FLUSH(hw);
2252 }
2253 }
2254
2255 /* clear the old settings from the multicast hash table */
2256
2257 for (i = 0; i < mta_reg_count; i++) {
2258 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2259 E1000_WRITE_FLUSH(hw);
2260 }
2261
2262 /* load any remaining addresses into the hash table */
2263
2264 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2265 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2266 e1000_mta_set(hw, hash_value);
2267 }
2268
2269 if (hw->mac_type == e1000_82542_rev2_0)
2270 e1000_leave_82542_rst(adapter);
2271 }
2272
2273 /* Need to wait a few seconds after link up to get diagnostic information from
2274 * the phy */
2275
2276 static void
2277 e1000_update_phy_info(unsigned long data)
2278 {
2279 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2280 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2281 }
2282
2283 /**
2284 * e1000_82547_tx_fifo_stall - Timer Call-back
2285 * @data: pointer to adapter cast into an unsigned long
2286 **/
2287
2288 static void
2289 e1000_82547_tx_fifo_stall(unsigned long data)
2290 {
2291 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2292 struct net_device *netdev = adapter->netdev;
2293 uint32_t tctl;
2294
2295 if (atomic_read(&adapter->tx_fifo_stall)) {
2296 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2297 E1000_READ_REG(&adapter->hw, TDH)) &&
2298 (E1000_READ_REG(&adapter->hw, TDFT) ==
2299 E1000_READ_REG(&adapter->hw, TDFH)) &&
2300 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2301 E1000_READ_REG(&adapter->hw, TDFHS))) {
2302 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2303 E1000_WRITE_REG(&adapter->hw, TCTL,
2304 tctl & ~E1000_TCTL_EN);
2305 E1000_WRITE_REG(&adapter->hw, TDFT,
2306 adapter->tx_head_addr);
2307 E1000_WRITE_REG(&adapter->hw, TDFH,
2308 adapter->tx_head_addr);
2309 E1000_WRITE_REG(&adapter->hw, TDFTS,
2310 adapter->tx_head_addr);
2311 E1000_WRITE_REG(&adapter->hw, TDFHS,
2312 adapter->tx_head_addr);
2313 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2314 E1000_WRITE_FLUSH(&adapter->hw);
2315
2316 adapter->tx_fifo_head = 0;
2317 atomic_set(&adapter->tx_fifo_stall, 0);
2318 netif_wake_queue(netdev);
2319 } else {
2320 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2321 }
2322 }
2323 }
2324
2325 /**
2326 * e1000_watchdog - Timer Call-back
2327 * @data: pointer to adapter cast into an unsigned long
2328 **/
2329 static void
2330 e1000_watchdog(unsigned long data)
2331 {
2332 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2333 struct net_device *netdev = adapter->netdev;
2334 struct e1000_tx_ring *txdr = adapter->tx_ring;
2335 uint32_t link, tctl;
2336 int32_t ret_val;
2337
2338 ret_val = e1000_check_for_link(&adapter->hw);
2339 if ((ret_val == E1000_ERR_PHY) &&
2340 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2341 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2342 /* See e1000_kumeran_lock_loss_workaround() */
2343 DPRINTK(LINK, INFO,
2344 "Gigabit has been disabled, downgrading speed\n");
2345 }
2346 if (adapter->hw.mac_type == e1000_82573) {
2347 e1000_enable_tx_pkt_filtering(&adapter->hw);
2348 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2349 e1000_update_mng_vlan(adapter);
2350 }
2351
2352 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2353 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2354 link = !adapter->hw.serdes_link_down;
2355 else
2356 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2357
2358 if (link) {
2359 if (!netif_carrier_ok(netdev)) {
2360 boolean_t txb2b = 1;
2361 e1000_get_speed_and_duplex(&adapter->hw,
2362 &adapter->link_speed,
2363 &adapter->link_duplex);
2364
2365 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2366 adapter->link_speed,
2367 adapter->link_duplex == FULL_DUPLEX ?
2368 "Full Duplex" : "Half Duplex");
2369
2370 /* tweak tx_queue_len according to speed/duplex
2371 * and adjust the timeout factor */
2372 netdev->tx_queue_len = adapter->tx_queue_len;
2373 adapter->tx_timeout_factor = 1;
2374 switch (adapter->link_speed) {
2375 case SPEED_10:
2376 txb2b = 0;
2377 netdev->tx_queue_len = 10;
2378 adapter->tx_timeout_factor = 8;
2379 break;
2380 case SPEED_100:
2381 txb2b = 0;
2382 netdev->tx_queue_len = 100;
2383 /* maybe add some timeout factor ? */
2384 break;
2385 }
2386
2387 if ((adapter->hw.mac_type == e1000_82571 ||
2388 adapter->hw.mac_type == e1000_82572) &&
2389 txb2b == 0) {
2390 #define SPEED_MODE_BIT (1 << 21)
2391 uint32_t tarc0;
2392 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2393 tarc0 &= ~SPEED_MODE_BIT;
2394 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2395 }
2396
2397 #ifdef NETIF_F_TSO
2398 /* disable TSO for pcie and 10/100 speeds, to avoid
2399 * some hardware issues */
2400 if (!adapter->tso_force &&
2401 adapter->hw.bus_type == e1000_bus_type_pci_express){
2402 switch (adapter->link_speed) {
2403 case SPEED_10:
2404 case SPEED_100:
2405 DPRINTK(PROBE,INFO,
2406 "10/100 speed: disabling TSO\n");
2407 netdev->features &= ~NETIF_F_TSO;
2408 break;
2409 case SPEED_1000:
2410 netdev->features |= NETIF_F_TSO;
2411 break;
2412 default:
2413 /* oops */
2414 break;
2415 }
2416 }
2417 #endif
2418
2419 /* enable transmits in the hardware, need to do this
2420 * after setting TARC0 */
2421 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2422 tctl |= E1000_TCTL_EN;
2423 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2424
2425 netif_carrier_on(netdev);
2426 netif_wake_queue(netdev);
2427 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2428 adapter->smartspeed = 0;
2429 }
2430 } else {
2431 if (netif_carrier_ok(netdev)) {
2432 adapter->link_speed = 0;
2433 adapter->link_duplex = 0;
2434 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2435 netif_carrier_off(netdev);
2436 netif_stop_queue(netdev);
2437 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2438
2439 /* 80003ES2LAN workaround--
2440 * For packet buffer work-around on link down event;
2441 * disable receives in the ISR and
2442 * reset device here in the watchdog
2443 */
2444 if (adapter->hw.mac_type == e1000_80003es2lan) {
2445 /* reset device */
2446 schedule_work(&adapter->reset_task);
2447 }
2448 }
2449
2450 e1000_smartspeed(adapter);
2451 }
2452
2453 e1000_update_stats(adapter);
2454
2455 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2456 adapter->tpt_old = adapter->stats.tpt;
2457 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2458 adapter->colc_old = adapter->stats.colc;
2459
2460 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2461 adapter->gorcl_old = adapter->stats.gorcl;
2462 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2463 adapter->gotcl_old = adapter->stats.gotcl;
2464
2465 e1000_update_adaptive(&adapter->hw);
2466
2467 if (!netif_carrier_ok(netdev)) {
2468 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2469 /* We've lost link, so the controller stops DMA,
2470 * but we've got queued Tx work that's never going
2471 * to get done, so reset controller to flush Tx.
2472 * (Do the reset outside of interrupt context). */
2473 adapter->tx_timeout_count++;
2474 schedule_work(&adapter->reset_task);
2475 }
2476 }
2477
2478 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2479 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2480 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2481 * asymmetrical Tx or Rx gets ITR=8000; everyone
2482 * else is between 2000-8000. */
2483 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2484 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2485 adapter->gotcl - adapter->gorcl :
2486 adapter->gorcl - adapter->gotcl) / 10000;
2487 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2488 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2489 }
2490
2491 /* Cause software interrupt to ensure rx ring is cleaned */
2492 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2493
2494 /* Force detection of hung controller every watchdog period */
2495 adapter->detect_tx_hung = TRUE;
2496
2497 /* With 82571 controllers, LAA may be overwritten due to controller
2498 * reset from the other port. Set the appropriate LAA in RAR[0] */
2499 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2500 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2501
2502 /* Reset the timer */
2503 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2504 }
2505
2506 #define E1000_TX_FLAGS_CSUM 0x00000001
2507 #define E1000_TX_FLAGS_VLAN 0x00000002
2508 #define E1000_TX_FLAGS_TSO 0x00000004
2509 #define E1000_TX_FLAGS_IPV4 0x00000008
2510 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2511 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2512
2513 static int
2514 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2515 struct sk_buff *skb)
2516 {
2517 #ifdef NETIF_F_TSO
2518 struct e1000_context_desc *context_desc;
2519 struct e1000_buffer *buffer_info;
2520 unsigned int i;
2521 uint32_t cmd_length = 0;
2522 uint16_t ipcse = 0, tucse, mss;
2523 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2524 int err;
2525
2526 if (skb_is_gso(skb)) {
2527 if (skb_header_cloned(skb)) {
2528 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2529 if (err)
2530 return err;
2531 }
2532
2533 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2534 mss = skb_shinfo(skb)->gso_size;
2535 if (skb->protocol == htons(ETH_P_IP)) {
2536 skb->nh.iph->tot_len = 0;
2537 skb->nh.iph->check = 0;
2538 skb->h.th->check =
2539 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2540 skb->nh.iph->daddr,
2541 0,
2542 IPPROTO_TCP,
2543 0);
2544 cmd_length = E1000_TXD_CMD_IP;
2545 ipcse = skb->h.raw - skb->data - 1;
2546 #ifdef NETIF_F_TSO_IPV6
2547 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2548 skb->nh.ipv6h->payload_len = 0;
2549 skb->h.th->check =
2550 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2551 &skb->nh.ipv6h->daddr,
2552 0,
2553 IPPROTO_TCP,
2554 0);
2555 ipcse = 0;
2556 #endif
2557 }
2558 ipcss = skb->nh.raw - skb->data;
2559 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2560 tucss = skb->h.raw - skb->data;
2561 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2562 tucse = 0;
2563
2564 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2565 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2566
2567 i = tx_ring->next_to_use;
2568 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2569 buffer_info = &tx_ring->buffer_info[i];
2570
2571 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2572 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2573 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2574 context_desc->upper_setup.tcp_fields.tucss = tucss;
2575 context_desc->upper_setup.tcp_fields.tucso = tucso;
2576 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2577 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2578 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2579 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2580
2581 buffer_info->time_stamp = jiffies;
2582
2583 if (++i == tx_ring->count) i = 0;
2584 tx_ring->next_to_use = i;
2585
2586 return TRUE;
2587 }
2588 #endif
2589
2590 return FALSE;
2591 }
2592
2593 static boolean_t
2594 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2595 struct sk_buff *skb)
2596 {
2597 struct e1000_context_desc *context_desc;
2598 struct e1000_buffer *buffer_info;
2599 unsigned int i;
2600 uint8_t css;
2601
2602 if (likely(skb->ip_summed == CHECKSUM_HW)) {
2603 css = skb->h.raw - skb->data;
2604
2605 i = tx_ring->next_to_use;
2606 buffer_info = &tx_ring->buffer_info[i];
2607 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2608
2609 context_desc->upper_setup.tcp_fields.tucss = css;
2610 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2611 context_desc->upper_setup.tcp_fields.tucse = 0;
2612 context_desc->tcp_seg_setup.data = 0;
2613 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2614
2615 buffer_info->time_stamp = jiffies;
2616
2617 if (unlikely(++i == tx_ring->count)) i = 0;
2618 tx_ring->next_to_use = i;
2619
2620 return TRUE;
2621 }
2622
2623 return FALSE;
2624 }
2625
2626 #define E1000_MAX_TXD_PWR 12
2627 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2628
2629 static int
2630 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2631 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2632 unsigned int nr_frags, unsigned int mss)
2633 {
2634 struct e1000_buffer *buffer_info;
2635 unsigned int len = skb->len;
2636 unsigned int offset = 0, size, count = 0, i;
2637 unsigned int f;
2638 len -= skb->data_len;
2639
2640 i = tx_ring->next_to_use;
2641
2642 while (len) {
2643 buffer_info = &tx_ring->buffer_info[i];
2644 size = min(len, max_per_txd);
2645 #ifdef NETIF_F_TSO
2646 /* Workaround for Controller erratum --
2647 * descriptor for non-tso packet in a linear SKB that follows a
2648 * tso gets written back prematurely before the data is fully
2649 * DMA'd to the controller */
2650 if (!skb->data_len && tx_ring->last_tx_tso &&
2651 !skb_is_gso(skb)) {
2652 tx_ring->last_tx_tso = 0;
2653 size -= 4;
2654 }
2655
2656 /* Workaround for premature desc write-backs
2657 * in TSO mode. Append 4-byte sentinel desc */
2658 if (unlikely(mss && !nr_frags && size == len && size > 8))
2659 size -= 4;
2660 #endif
2661 /* work-around for errata 10 and it applies
2662 * to all controllers in PCI-X mode
2663 * The fix is to make sure that the first descriptor of a
2664 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2665 */
2666 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2667 (size > 2015) && count == 0))
2668 size = 2015;
2669
2670 /* Workaround for potential 82544 hang in PCI-X. Avoid
2671 * terminating buffers within evenly-aligned dwords. */
2672 if (unlikely(adapter->pcix_82544 &&
2673 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2674 size > 4))
2675 size -= 4;
2676
2677 buffer_info->length = size;
2678 buffer_info->dma =
2679 pci_map_single(adapter->pdev,
2680 skb->data + offset,
2681 size,
2682 PCI_DMA_TODEVICE);
2683 buffer_info->time_stamp = jiffies;
2684
2685 len -= size;
2686 offset += size;
2687 count++;
2688 if (unlikely(++i == tx_ring->count)) i = 0;
2689 }
2690
2691 for (f = 0; f < nr_frags; f++) {
2692 struct skb_frag_struct *frag;
2693
2694 frag = &skb_shinfo(skb)->frags[f];
2695 len = frag->size;
2696 offset = frag->page_offset;
2697
2698 while (len) {
2699 buffer_info = &tx_ring->buffer_info[i];
2700 size = min(len, max_per_txd);
2701 #ifdef NETIF_F_TSO
2702 /* Workaround for premature desc write-backs
2703 * in TSO mode. Append 4-byte sentinel desc */
2704 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2705 size -= 4;
2706 #endif
2707 /* Workaround for potential 82544 hang in PCI-X.
2708 * Avoid terminating buffers within evenly-aligned
2709 * dwords. */
2710 if (unlikely(adapter->pcix_82544 &&
2711 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2712 size > 4))
2713 size -= 4;
2714
2715 buffer_info->length = size;
2716 buffer_info->dma =
2717 pci_map_page(adapter->pdev,
2718 frag->page,
2719 offset,
2720 size,
2721 PCI_DMA_TODEVICE);
2722 buffer_info->time_stamp = jiffies;
2723
2724 len -= size;
2725 offset += size;
2726 count++;
2727 if (unlikely(++i == tx_ring->count)) i = 0;
2728 }
2729 }
2730
2731 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2732 tx_ring->buffer_info[i].skb = skb;
2733 tx_ring->buffer_info[first].next_to_watch = i;
2734
2735 return count;
2736 }
2737
2738 static void
2739 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2740 int tx_flags, int count)
2741 {
2742 struct e1000_tx_desc *tx_desc = NULL;
2743 struct e1000_buffer *buffer_info;
2744 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2745 unsigned int i;
2746
2747 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2748 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2749 E1000_TXD_CMD_TSE;
2750 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2751
2752 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2753 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2754 }
2755
2756 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2757 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2758 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2759 }
2760
2761 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2762 txd_lower |= E1000_TXD_CMD_VLE;
2763 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2764 }
2765
2766 i = tx_ring->next_to_use;
2767
2768 while (count--) {
2769 buffer_info = &tx_ring->buffer_info[i];
2770 tx_desc = E1000_TX_DESC(*tx_ring, i);
2771 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2772 tx_desc->lower.data =
2773 cpu_to_le32(txd_lower | buffer_info->length);
2774 tx_desc->upper.data = cpu_to_le32(txd_upper);
2775 if (unlikely(++i == tx_ring->count)) i = 0;
2776 }
2777
2778 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2779
2780 /* Force memory writes to complete before letting h/w
2781 * know there are new descriptors to fetch. (Only
2782 * applicable for weak-ordered memory model archs,
2783 * such as IA-64). */
2784 wmb();
2785
2786 tx_ring->next_to_use = i;
2787 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2788 }
2789
2790 /**
2791 * 82547 workaround to avoid controller hang in half-duplex environment.
2792 * The workaround is to avoid queuing a large packet that would span
2793 * the internal Tx FIFO ring boundary by notifying the stack to resend
2794 * the packet at a later time. This gives the Tx FIFO an opportunity to
2795 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2796 * to the beginning of the Tx FIFO.
2797 **/
2798
2799 #define E1000_FIFO_HDR 0x10
2800 #define E1000_82547_PAD_LEN 0x3E0
2801
2802 static int
2803 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2804 {
2805 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2806 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2807
2808 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2809
2810 if (adapter->link_duplex != HALF_DUPLEX)
2811 goto no_fifo_stall_required;
2812
2813 if (atomic_read(&adapter->tx_fifo_stall))
2814 return 1;
2815
2816 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2817 atomic_set(&adapter->tx_fifo_stall, 1);
2818 return 1;
2819 }
2820
2821 no_fifo_stall_required:
2822 adapter->tx_fifo_head += skb_fifo_len;
2823 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2824 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2825 return 0;
2826 }
2827
2828 #define MINIMUM_DHCP_PACKET_SIZE 282
2829 static int
2830 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2831 {
2832 struct e1000_hw *hw = &adapter->hw;
2833 uint16_t length, offset;
2834 if (vlan_tx_tag_present(skb)) {
2835 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2836 ( adapter->hw.mng_cookie.status &
2837 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2838 return 0;
2839 }
2840 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2841 struct ethhdr *eth = (struct ethhdr *) skb->data;
2842 if ((htons(ETH_P_IP) == eth->h_proto)) {
2843 const struct iphdr *ip =
2844 (struct iphdr *)((uint8_t *)skb->data+14);
2845 if (IPPROTO_UDP == ip->protocol) {
2846 struct udphdr *udp =
2847 (struct udphdr *)((uint8_t *)ip +
2848 (ip->ihl << 2));
2849 if (ntohs(udp->dest) == 67) {
2850 offset = (uint8_t *)udp + 8 - skb->data;
2851 length = skb->len - offset;
2852
2853 return e1000_mng_write_dhcp_info(hw,
2854 (uint8_t *)udp + 8,
2855 length);
2856 }
2857 }
2858 }
2859 }
2860 return 0;
2861 }
2862
2863 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2864 static int
2865 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2866 {
2867 struct e1000_adapter *adapter = netdev_priv(netdev);
2868 struct e1000_tx_ring *tx_ring;
2869 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2870 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2871 unsigned int tx_flags = 0;
2872 unsigned int len = skb->len;
2873 unsigned long flags;
2874 unsigned int nr_frags = 0;
2875 unsigned int mss = 0;
2876 int count = 0;
2877 int tso;
2878 unsigned int f;
2879 len -= skb->data_len;
2880
2881 tx_ring = adapter->tx_ring;
2882
2883 if (unlikely(skb->len <= 0)) {
2884 dev_kfree_skb_any(skb);
2885 return NETDEV_TX_OK;
2886 }
2887
2888 #ifdef NETIF_F_TSO
2889 mss = skb_shinfo(skb)->gso_size;
2890 /* The controller does a simple calculation to
2891 * make sure there is enough room in the FIFO before
2892 * initiating the DMA for each buffer. The calc is:
2893 * 4 = ceil(buffer len/mss). To make sure we don't
2894 * overrun the FIFO, adjust the max buffer len if mss
2895 * drops. */
2896 if (mss) {
2897 uint8_t hdr_len;
2898 max_per_txd = min(mss << 2, max_per_txd);
2899 max_txd_pwr = fls(max_per_txd) - 1;
2900
2901 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2902 * points to just header, pull a few bytes of payload from
2903 * frags into skb->data */
2904 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2905 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2906 switch (adapter->hw.mac_type) {
2907 unsigned int pull_size;
2908 case e1000_82571:
2909 case e1000_82572:
2910 case e1000_82573:
2911 case e1000_ich8lan:
2912 pull_size = min((unsigned int)4, skb->data_len);
2913 if (!__pskb_pull_tail(skb, pull_size)) {
2914 DPRINTK(DRV, ERR,
2915 "__pskb_pull_tail failed.\n");
2916 dev_kfree_skb_any(skb);
2917 return NETDEV_TX_OK;
2918 }
2919 len = skb->len - skb->data_len;
2920 break;
2921 default:
2922 /* do nothing */
2923 break;
2924 }
2925 }
2926 }
2927
2928 /* reserve a descriptor for the offload context */
2929 if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2930 count++;
2931 count++;
2932 #else
2933 if (skb->ip_summed == CHECKSUM_HW)
2934 count++;
2935 #endif
2936
2937 #ifdef NETIF_F_TSO
2938 /* Controller Erratum workaround */
2939 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2940 count++;
2941 #endif
2942
2943 count += TXD_USE_COUNT(len, max_txd_pwr);
2944
2945 if (adapter->pcix_82544)
2946 count++;
2947
2948 /* work-around for errata 10 and it applies to all controllers
2949 * in PCI-X mode, so add one more descriptor to the count
2950 */
2951 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2952 (len > 2015)))
2953 count++;
2954
2955 nr_frags = skb_shinfo(skb)->nr_frags;
2956 for (f = 0; f < nr_frags; f++)
2957 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2958 max_txd_pwr);
2959 if (adapter->pcix_82544)
2960 count += nr_frags;
2961
2962
2963 if (adapter->hw.tx_pkt_filtering &&
2964 (adapter->hw.mac_type == e1000_82573))
2965 e1000_transfer_dhcp_info(adapter, skb);
2966
2967 local_irq_save(flags);
2968 if (!spin_trylock(&tx_ring->tx_lock)) {
2969 /* Collision - tell upper layer to requeue */
2970 local_irq_restore(flags);
2971 return NETDEV_TX_LOCKED;
2972 }
2973
2974 /* need: count + 2 desc gap to keep tail from touching
2975 * head, otherwise try next time */
2976 if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2977 netif_stop_queue(netdev);
2978 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2979 return NETDEV_TX_BUSY;
2980 }
2981
2982 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2983 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2984 netif_stop_queue(netdev);
2985 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2986 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2987 return NETDEV_TX_BUSY;
2988 }
2989 }
2990
2991 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2992 tx_flags |= E1000_TX_FLAGS_VLAN;
2993 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2994 }
2995
2996 first = tx_ring->next_to_use;
2997
2998 tso = e1000_tso(adapter, tx_ring, skb);
2999 if (tso < 0) {
3000 dev_kfree_skb_any(skb);
3001 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3002 return NETDEV_TX_OK;
3003 }
3004
3005 if (likely(tso)) {
3006 tx_ring->last_tx_tso = 1;
3007 tx_flags |= E1000_TX_FLAGS_TSO;
3008 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3009 tx_flags |= E1000_TX_FLAGS_CSUM;
3010
3011 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3012 * 82571 hardware supports TSO capabilities for IPv6 as well...
3013 * no longer assume, we must. */
3014 if (likely(skb->protocol == htons(ETH_P_IP)))
3015 tx_flags |= E1000_TX_FLAGS_IPV4;
3016
3017 e1000_tx_queue(adapter, tx_ring, tx_flags,
3018 e1000_tx_map(adapter, tx_ring, skb, first,
3019 max_per_txd, nr_frags, mss));
3020
3021 netdev->trans_start = jiffies;
3022
3023 /* Make sure there is space in the ring for the next send. */
3024 if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
3025 netif_stop_queue(netdev);
3026
3027 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3028 return NETDEV_TX_OK;
3029 }
3030
3031 /**
3032 * e1000_tx_timeout - Respond to a Tx Hang
3033 * @netdev: network interface device structure
3034 **/
3035
3036 static void
3037 e1000_tx_timeout(struct net_device *netdev)
3038 {
3039 struct e1000_adapter *adapter = netdev_priv(netdev);
3040
3041 /* Do the reset outside of interrupt context */
3042 adapter->tx_timeout_count++;
3043 schedule_work(&adapter->reset_task);
3044 }
3045
3046 static void
3047 e1000_reset_task(struct net_device *netdev)
3048 {
3049 struct e1000_adapter *adapter = netdev_priv(netdev);
3050
3051 e1000_reinit_locked(adapter);
3052 }
3053
3054 /**
3055 * e1000_get_stats - Get System Network Statistics
3056 * @netdev: network interface device structure
3057 *
3058 * Returns the address of the device statistics structure.
3059 * The statistics are actually updated from the timer callback.
3060 **/
3061
3062 static struct net_device_stats *
3063 e1000_get_stats(struct net_device *netdev)
3064 {
3065 struct e1000_adapter *adapter = netdev_priv(netdev);
3066
3067 /* only return the current stats */
3068 return &adapter->net_stats;
3069 }
3070
3071 /**
3072 * e1000_change_mtu - Change the Maximum Transfer Unit
3073 * @netdev: network interface device structure
3074 * @new_mtu: new value for maximum frame size
3075 *
3076 * Returns 0 on success, negative on failure
3077 **/
3078
3079 static int
3080 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3081 {
3082 struct e1000_adapter *adapter = netdev_priv(netdev);
3083 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3084 uint16_t eeprom_data = 0;
3085
3086 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3087 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3088 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3089 return -EINVAL;
3090 }
3091
3092 /* Adapter-specific max frame size limits. */
3093 switch (adapter->hw.mac_type) {
3094 case e1000_undefined ... e1000_82542_rev2_1:
3095 case e1000_ich8lan:
3096 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3097 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3098 return -EINVAL;
3099 }
3100 break;
3101 case e1000_82573:
3102 /* only enable jumbo frames if ASPM is disabled completely
3103 * this means both bits must be zero in 0x1A bits 3:2 */
3104 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3105 &eeprom_data);
3106 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3107 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3108 DPRINTK(PROBE, ERR,
3109 "Jumbo Frames not supported.\n");
3110 return -EINVAL;
3111 }
3112 break;
3113 }
3114 /* fall through to get support */
3115 case e1000_82571:
3116 case e1000_82572:
3117 case e1000_80003es2lan:
3118 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3119 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3120 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3121 return -EINVAL;
3122 }
3123 break;
3124 default:
3125 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3126 break;
3127 }
3128
3129 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3130 * means we reserve 2 more, this pushes us to allocate from the next
3131 * larger slab size
3132 * i.e. RXBUFFER_2048 --> size-4096 slab */
3133
3134 if (max_frame <= E1000_RXBUFFER_256)
3135 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3136 else if (max_frame <= E1000_RXBUFFER_512)
3137 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3138 else if (max_frame <= E1000_RXBUFFER_1024)
3139 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3140 else if (max_frame <= E1000_RXBUFFER_2048)
3141 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3142 else if (max_frame <= E1000_RXBUFFER_4096)
3143 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3144 else if (max_frame <= E1000_RXBUFFER_8192)
3145 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3146 else if (max_frame <= E1000_RXBUFFER_16384)
3147 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3148
3149 /* adjust allocation if LPE protects us, and we aren't using SBP */
3150 if (!adapter->hw.tbi_compatibility_on &&
3151 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3152 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3153 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3154
3155 netdev->mtu = new_mtu;
3156
3157 if (netif_running(netdev))
3158 e1000_reinit_locked(adapter);
3159
3160 adapter->hw.max_frame_size = max_frame;
3161
3162 return 0;
3163 }
3164
3165 /**
3166 * e1000_update_stats - Update the board statistics counters
3167 * @adapter: board private structure
3168 **/
3169
3170 void
3171 e1000_update_stats(struct e1000_adapter *adapter)
3172 {
3173 struct e1000_hw *hw = &adapter->hw;
3174 struct pci_dev *pdev = adapter->pdev;
3175 unsigned long flags;
3176 uint16_t phy_tmp;
3177
3178 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3179
3180 /*
3181 * Prevent stats update while adapter is being reset, or if the pci
3182 * connection is down.
3183 */
3184 if (adapter->link_speed == 0)
3185 return;
3186 if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3187 return;
3188
3189 spin_lock_irqsave(&adapter->stats_lock, flags);
3190
3191 /* these counters are modified from e1000_adjust_tbi_stats,
3192 * called from the interrupt context, so they must only
3193 * be written while holding adapter->stats_lock
3194 */
3195
3196 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3197 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3198 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3199 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3200 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3201 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3202 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3203
3204 if (adapter->hw.mac_type != e1000_ich8lan) {
3205 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3206 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3207 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3208 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3209 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3210 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3211 }
3212
3213 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3214 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3215 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3216 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3217 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3218 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3219 adapter->stats.dc += E1000_READ_REG(hw, DC);
3220 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3221 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3222 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3223 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3224 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3225 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3226 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3227 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3228 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3229 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3230 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3231 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3232 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3233 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3234 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3235 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3236 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3237 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3238 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3239
3240 if (adapter->hw.mac_type != e1000_ich8lan) {
3241 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3242 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3243 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3244 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3245 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3246 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3247 }
3248
3249 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3250 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3251
3252 /* used for adaptive IFS */
3253
3254 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3255 adapter->stats.tpt += hw->tx_packet_delta;
3256 hw->collision_delta = E1000_READ_REG(hw, COLC);
3257 adapter->stats.colc += hw->collision_delta;
3258
3259 if (hw->mac_type >= e1000_82543) {
3260 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3261 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3262 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3263 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3264 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3265 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3266 }
3267 if (hw->mac_type > e1000_82547_rev_2) {
3268 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3269 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3270
3271 if (adapter->hw.mac_type != e1000_ich8lan) {
3272 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3273 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3274 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3275 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3276 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3277 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3278 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3279 }
3280 }
3281
3282 /* Fill out the OS statistics structure */
3283
3284 adapter->net_stats.rx_packets = adapter->stats.gprc;
3285 adapter->net_stats.tx_packets = adapter->stats.gptc;
3286 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3287 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3288 adapter->net_stats.multicast = adapter->stats.mprc;
3289 adapter->net_stats.collisions = adapter->stats.colc;
3290
3291 /* Rx Errors */
3292
3293 /* RLEC on some newer hardware can be incorrect so build
3294 * our own version based on RUC and ROC */
3295 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3296 adapter->stats.crcerrs + adapter->stats.algnerrc +
3297 adapter->stats.ruc + adapter->stats.roc +
3298 adapter->stats.cexterr;
3299 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3300 adapter->stats.roc;
3301 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3302 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3303 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3304
3305 /* Tx Errors */
3306
3307 adapter->net_stats.tx_errors = adapter->stats.ecol +
3308 adapter->stats.latecol;
3309 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3310 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3311 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3312
3313 /* Tx Dropped needs to be maintained elsewhere */
3314
3315 /* Phy Stats */
3316
3317 if (hw->media_type == e1000_media_type_copper) {
3318 if ((adapter->link_speed == SPEED_1000) &&
3319 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3320 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3321 adapter->phy_stats.idle_errors += phy_tmp;
3322 }
3323
3324 if ((hw->mac_type <= e1000_82546) &&
3325 (hw->phy_type == e1000_phy_m88) &&
3326 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3327 adapter->phy_stats.receive_errors += phy_tmp;
3328 }
3329
3330 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3331 }
3332
3333 /**
3334 * e1000_intr - Interrupt Handler
3335 * @irq: interrupt number
3336 * @data: pointer to a network interface device structure
3337 * @pt_regs: CPU registers structure
3338 **/
3339
3340 static irqreturn_t
3341 e1000_intr(int irq, void *data, struct pt_regs *regs)
3342 {
3343 struct net_device *netdev = data;
3344 struct e1000_adapter *adapter = netdev_priv(netdev);
3345 struct e1000_hw *hw = &adapter->hw;
3346 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3347 #ifndef CONFIG_E1000_NAPI
3348 int i;
3349 #else
3350 /* Interrupt Auto-Mask...upon reading ICR,
3351 * interrupts are masked. No need for the
3352 * IMC write, but it does mean we should
3353 * account for it ASAP. */
3354 if (likely(hw->mac_type >= e1000_82571))
3355 atomic_inc(&adapter->irq_sem);
3356 #endif
3357
3358 if (unlikely(!icr)) {
3359 #ifdef CONFIG_E1000_NAPI
3360 if (hw->mac_type >= e1000_82571)
3361 e1000_irq_enable(adapter);
3362 #endif
3363 return IRQ_NONE; /* Not our interrupt */
3364 }
3365
3366 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3367 hw->get_link_status = 1;
3368 /* 80003ES2LAN workaround--
3369 * For packet buffer work-around on link down event;
3370 * disable receives here in the ISR and
3371 * reset adapter in watchdog
3372 */
3373 if (netif_carrier_ok(netdev) &&
3374 (adapter->hw.mac_type == e1000_80003es2lan)) {
3375 /* disable receives */
3376 rctl = E1000_READ_REG(hw, RCTL);
3377 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3378 }
3379 mod_timer(&adapter->watchdog_timer, jiffies);
3380 }
3381
3382 #ifdef CONFIG_E1000_NAPI
3383 if (unlikely(hw->mac_type < e1000_82571)) {
3384 atomic_inc(&adapter->irq_sem);
3385 E1000_WRITE_REG(hw, IMC, ~0);
3386 E1000_WRITE_FLUSH(hw);
3387 }
3388 if (likely(netif_rx_schedule_prep(netdev)))
3389 __netif_rx_schedule(netdev);
3390 else
3391 e1000_irq_enable(adapter);
3392 #else
3393 /* Writing IMC and IMS is needed for 82547.
3394 * Due to Hub Link bus being occupied, an interrupt
3395 * de-assertion message is not able to be sent.
3396 * When an interrupt assertion message is generated later,
3397 * two messages are re-ordered and sent out.
3398 * That causes APIC to think 82547 is in de-assertion
3399 * state, while 82547 is in assertion state, resulting
3400 * in dead lock. Writing IMC forces 82547 into
3401 * de-assertion state.
3402 */
3403 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3404 atomic_inc(&adapter->irq_sem);
3405 E1000_WRITE_REG(hw, IMC, ~0);
3406 }
3407
3408 for (i = 0; i < E1000_MAX_INTR; i++)
3409 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3410 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3411 break;
3412
3413 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3414 e1000_irq_enable(adapter);
3415
3416 #endif
3417
3418 return IRQ_HANDLED;
3419 }
3420
3421 #ifdef CONFIG_E1000_NAPI
3422 /**
3423 * e1000_clean - NAPI Rx polling callback
3424 * @adapter: board private structure
3425 **/
3426
3427 static int
3428 e1000_clean(struct net_device *poll_dev, int *budget)
3429 {
3430 struct e1000_adapter *adapter;
3431 int work_to_do = min(*budget, poll_dev->quota);
3432 int tx_cleaned = 0, work_done = 0;
3433
3434 /* Must NOT use netdev_priv macro here. */
3435 adapter = poll_dev->priv;
3436
3437 /* Keep link state information with original netdev */
3438 if (!netif_carrier_ok(poll_dev))
3439 goto quit_polling;
3440
3441 /* e1000_clean is called per-cpu. This lock protects
3442 * tx_ring[0] from being cleaned by multiple cpus
3443 * simultaneously. A failure obtaining the lock means
3444 * tx_ring[0] is currently being cleaned anyway. */
3445 if (spin_trylock(&adapter->tx_queue_lock)) {
3446 tx_cleaned = e1000_clean_tx_irq(adapter,
3447 &adapter->tx_ring[0]);
3448 spin_unlock(&adapter->tx_queue_lock);
3449 }
3450
3451 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3452 &work_done, work_to_do);
3453
3454 *budget -= work_done;
3455 poll_dev->quota -= work_done;
3456
3457 /* If no Tx and not enough Rx work done, exit the polling mode */
3458 if ((!tx_cleaned && (work_done == 0)) ||
3459 !netif_running(poll_dev)) {
3460 quit_polling:
3461 netif_rx_complete(poll_dev);
3462 e1000_irq_enable(adapter);
3463 return 0;
3464 }
3465
3466 return 1;
3467 }
3468
3469 #endif
3470 /**
3471 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3472 * @adapter: board private structure
3473 **/
3474
3475 static boolean_t
3476 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3477 struct e1000_tx_ring *tx_ring)
3478 {
3479 struct net_device *netdev = adapter->netdev;
3480 struct e1000_tx_desc *tx_desc, *eop_desc;
3481 struct e1000_buffer *buffer_info;
3482 unsigned int i, eop;
3483 #ifdef CONFIG_E1000_NAPI
3484 unsigned int count = 0;
3485 #endif
3486 boolean_t cleaned = FALSE;
3487
3488 i = tx_ring->next_to_clean;
3489 eop = tx_ring->buffer_info[i].next_to_watch;
3490 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3491
3492 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3493 for (cleaned = FALSE; !cleaned; ) {
3494 tx_desc = E1000_TX_DESC(*tx_ring, i);
3495 buffer_info = &tx_ring->buffer_info[i];
3496 cleaned = (i == eop);
3497
3498 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3499 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3500
3501 if (unlikely(++i == tx_ring->count)) i = 0;
3502 }
3503
3504
3505 eop = tx_ring->buffer_info[i].next_to_watch;
3506 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3507 #ifdef CONFIG_E1000_NAPI
3508 #define E1000_TX_WEIGHT 64
3509 /* weight of a sort for tx, to avoid endless transmit cleanup */
3510 if (count++ == E1000_TX_WEIGHT) break;
3511 #endif
3512 }
3513
3514 tx_ring->next_to_clean = i;
3515
3516 #define TX_WAKE_THRESHOLD 32
3517 if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3518 netif_carrier_ok(netdev))) {
3519 spin_lock(&tx_ring->tx_lock);
3520 if (netif_queue_stopped(netdev) &&
3521 (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3522 netif_wake_queue(netdev);
3523 spin_unlock(&tx_ring->tx_lock);
3524 }
3525
3526 if (adapter->detect_tx_hung) {
3527 /* Detect a transmit hang in hardware, this serializes the
3528 * check with the clearing of time_stamp and movement of i */
3529 adapter->detect_tx_hung = FALSE;
3530 if (tx_ring->buffer_info[eop].dma &&
3531 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3532 (adapter->tx_timeout_factor * HZ))
3533 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3534 E1000_STATUS_TXOFF)) {
3535
3536 /* detected Tx unit hang */
3537 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3538 " Tx Queue <%lu>\n"
3539 " TDH <%x>\n"
3540 " TDT <%x>\n"
3541 " next_to_use <%x>\n"
3542 " next_to_clean <%x>\n"
3543 "buffer_info[next_to_clean]\n"
3544 " time_stamp <%lx>\n"
3545 " next_to_watch <%x>\n"
3546 " jiffies <%lx>\n"
3547 " next_to_watch.status <%x>\n",
3548 (unsigned long)((tx_ring - adapter->tx_ring) /
3549 sizeof(struct e1000_tx_ring)),
3550 readl(adapter->hw.hw_addr + tx_ring->tdh),
3551 readl(adapter->hw.hw_addr + tx_ring->tdt),
3552 tx_ring->next_to_use,
3553 tx_ring->next_to_clean,
3554 tx_ring->buffer_info[eop].time_stamp,
3555 eop,
3556 jiffies,
3557 eop_desc->upper.fields.status);
3558 netif_stop_queue(netdev);
3559 }
3560 }
3561 return cleaned;
3562 }
3563
3564 /**
3565 * e1000_rx_checksum - Receive Checksum Offload for 82543
3566 * @adapter: board private structure
3567 * @status_err: receive descriptor status and error fields
3568 * @csum: receive descriptor csum field
3569 * @sk_buff: socket buffer with received data
3570 **/
3571
3572 static void
3573 e1000_rx_checksum(struct e1000_adapter *adapter,
3574 uint32_t status_err, uint32_t csum,
3575 struct sk_buff *skb)
3576 {
3577 uint16_t status = (uint16_t)status_err;
3578 uint8_t errors = (uint8_t)(status_err >> 24);
3579 skb->ip_summed = CHECKSUM_NONE;
3580
3581 /* 82543 or newer only */
3582 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3583 /* Ignore Checksum bit is set */
3584 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3585 /* TCP/UDP checksum error bit is set */
3586 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3587 /* let the stack verify checksum errors */
3588 adapter->hw_csum_err++;
3589 return;
3590 }
3591 /* TCP/UDP Checksum has not been calculated */
3592 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3593 if (!(status & E1000_RXD_STAT_TCPCS))
3594 return;
3595 } else {
3596 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3597 return;
3598 }
3599 /* It must be a TCP or UDP packet with a valid checksum */
3600 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3601 /* TCP checksum is good */
3602 skb->ip_summed = CHECKSUM_UNNECESSARY;
3603 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3604 /* IP fragment with UDP payload */
3605 /* Hardware complements the payload checksum, so we undo it
3606 * and then put the value in host order for further stack use.
3607 */
3608 csum = ntohl(csum ^ 0xFFFF);
3609 skb->csum = csum;
3610 skb->ip_summed = CHECKSUM_HW;
3611 }
3612 adapter->hw_csum_good++;
3613 }
3614
3615 /**
3616 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3617 * @adapter: board private structure
3618 **/
3619
3620 static boolean_t
3621 #ifdef CONFIG_E1000_NAPI
3622 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3623 struct e1000_rx_ring *rx_ring,
3624 int *work_done, int work_to_do)
3625 #else
3626 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3627 struct e1000_rx_ring *rx_ring)
3628 #endif
3629 {
3630 struct net_device *netdev = adapter->netdev;
3631 struct pci_dev *pdev = adapter->pdev;
3632 struct e1000_rx_desc *rx_desc, *next_rxd;
3633 struct e1000_buffer *buffer_info, *next_buffer;
3634 unsigned long flags;
3635 uint32_t length;
3636 uint8_t last_byte;
3637 unsigned int i;
3638 int cleaned_count = 0;
3639 boolean_t cleaned = FALSE;
3640
3641 i = rx_ring->next_to_clean;
3642 rx_desc = E1000_RX_DESC(*rx_ring, i);
3643 buffer_info = &rx_ring->buffer_info[i];
3644
3645 while (rx_desc->status & E1000_RXD_STAT_DD) {
3646 struct sk_buff *skb;
3647 u8 status;
3648 #ifdef CONFIG_E1000_NAPI
3649 if (*work_done >= work_to_do)
3650 break;
3651 (*work_done)++;
3652 #endif
3653 status = rx_desc->status;
3654 skb = buffer_info->skb;
3655 buffer_info->skb = NULL;
3656
3657 prefetch(skb->data - NET_IP_ALIGN);
3658
3659 if (++i == rx_ring->count) i = 0;
3660 next_rxd = E1000_RX_DESC(*rx_ring, i);
3661 prefetch(next_rxd);
3662
3663 next_buffer = &rx_ring->buffer_info[i];
3664
3665 cleaned = TRUE;
3666 cleaned_count++;
3667 pci_unmap_single(pdev,
3668 buffer_info->dma,
3669 buffer_info->length,
3670 PCI_DMA_FROMDEVICE);
3671
3672 length = le16_to_cpu(rx_desc->length);
3673
3674 /* adjust length to remove Ethernet CRC */
3675 length -= 4;
3676
3677 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3678 /* All receives must fit into a single buffer */
3679 E1000_DBG("%s: Receive packet consumed multiple"
3680 " buffers\n", netdev->name);
3681 /* recycle */
3682 buffer_info-> skb = skb;
3683 goto next_desc;
3684 }
3685
3686 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3687 last_byte = *(skb->data + length - 1);
3688 if (TBI_ACCEPT(&adapter->hw, status,
3689 rx_desc->errors, length, last_byte)) {
3690 spin_lock_irqsave(&adapter->stats_lock, flags);
3691 e1000_tbi_adjust_stats(&adapter->hw,
3692 &adapter->stats,
3693 length, skb->data);
3694 spin_unlock_irqrestore(&adapter->stats_lock,
3695 flags);
3696 length--;
3697 } else {
3698 /* recycle */
3699 buffer_info->skb = skb;
3700 goto next_desc;
3701 }
3702 }
3703
3704 /* code added for copybreak, this should improve
3705 * performance for small packets with large amounts
3706 * of reassembly being done in the stack */
3707 #define E1000_CB_LENGTH 256
3708 if (length < E1000_CB_LENGTH) {
3709 struct sk_buff *new_skb =
3710 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3711 if (new_skb) {
3712 skb_reserve(new_skb, NET_IP_ALIGN);
3713 new_skb->dev = netdev;
3714 memcpy(new_skb->data - NET_IP_ALIGN,
3715 skb->data - NET_IP_ALIGN,
3716 length + NET_IP_ALIGN);
3717 /* save the skb in buffer_info as good */
3718 buffer_info->skb = skb;
3719 skb = new_skb;
3720 skb_put(skb, length);
3721 }
3722 } else
3723 skb_put(skb, length);
3724
3725 /* end copybreak code */
3726
3727 /* Receive Checksum Offload */
3728 e1000_rx_checksum(adapter,
3729 (uint32_t)(status) |
3730 ((uint32_t)(rx_desc->errors) << 24),
3731 le16_to_cpu(rx_desc->csum), skb);
3732
3733 skb->protocol = eth_type_trans(skb, netdev);
3734 #ifdef CONFIG_E1000_NAPI
3735 if (unlikely(adapter->vlgrp &&
3736 (status & E1000_RXD_STAT_VP))) {
3737 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3738 le16_to_cpu(rx_desc->special) &
3739 E1000_RXD_SPC_VLAN_MASK);
3740 } else {
3741 netif_receive_skb(skb);
3742 }
3743 #else /* CONFIG_E1000_NAPI */
3744 if (unlikely(adapter->vlgrp &&
3745 (status & E1000_RXD_STAT_VP))) {
3746 vlan_hwaccel_rx(skb, adapter->vlgrp,
3747 le16_to_cpu(rx_desc->special) &
3748 E1000_RXD_SPC_VLAN_MASK);
3749 } else {
3750 netif_rx(skb);
3751 }
3752 #endif /* CONFIG_E1000_NAPI */
3753 netdev->last_rx = jiffies;
3754
3755 next_desc:
3756 rx_desc->status = 0;
3757
3758 /* return some buffers to hardware, one at a time is too slow */
3759 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3760 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3761 cleaned_count = 0;
3762 }
3763
3764 /* use prefetched values */
3765 rx_desc = next_rxd;
3766 buffer_info = next_buffer;
3767 }
3768 rx_ring->next_to_clean = i;
3769
3770 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3771 if (cleaned_count)
3772 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3773
3774 return cleaned;
3775 }
3776
3777 /**
3778 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3779 * @adapter: board private structure
3780 **/
3781
3782 static boolean_t
3783 #ifdef CONFIG_E1000_NAPI
3784 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3785 struct e1000_rx_ring *rx_ring,
3786 int *work_done, int work_to_do)
3787 #else
3788 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3789 struct e1000_rx_ring *rx_ring)
3790 #endif
3791 {
3792 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3793 struct net_device *netdev = adapter->netdev;
3794 struct pci_dev *pdev = adapter->pdev;
3795 struct e1000_buffer *buffer_info, *next_buffer;
3796 struct e1000_ps_page *ps_page;
3797 struct e1000_ps_page_dma *ps_page_dma;
3798 struct sk_buff *skb;
3799 unsigned int i, j;
3800 uint32_t length, staterr;
3801 int cleaned_count = 0;
3802 boolean_t cleaned = FALSE;
3803
3804 i = rx_ring->next_to_clean;
3805 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3806 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3807 buffer_info = &rx_ring->buffer_info[i];
3808
3809 while (staterr & E1000_RXD_STAT_DD) {
3810 ps_page = &rx_ring->ps_page[i];
3811 ps_page_dma = &rx_ring->ps_page_dma[i];
3812 #ifdef CONFIG_E1000_NAPI
3813 if (unlikely(*work_done >= work_to_do))
3814 break;
3815 (*work_done)++;
3816 #endif
3817 skb = buffer_info->skb;
3818
3819 /* in the packet split case this is header only */
3820 prefetch(skb->data - NET_IP_ALIGN);
3821
3822 if (++i == rx_ring->count) i = 0;
3823 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3824 prefetch(next_rxd);
3825
3826 next_buffer = &rx_ring->buffer_info[i];
3827
3828 cleaned = TRUE;
3829 cleaned_count++;
3830 pci_unmap_single(pdev, buffer_info->dma,
3831 buffer_info->length,
3832 PCI_DMA_FROMDEVICE);
3833
3834 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3835 E1000_DBG("%s: Packet Split buffers didn't pick up"
3836 " the full packet\n", netdev->name);
3837 dev_kfree_skb_irq(skb);
3838 goto next_desc;
3839 }
3840
3841 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3842 dev_kfree_skb_irq(skb);
3843 goto next_desc;
3844 }
3845
3846 length = le16_to_cpu(rx_desc->wb.middle.length0);
3847
3848 if (unlikely(!length)) {
3849 E1000_DBG("%s: Last part of the packet spanning"
3850 " multiple descriptors\n", netdev->name);
3851 dev_kfree_skb_irq(skb);
3852 goto next_desc;
3853 }
3854
3855 /* Good Receive */
3856 skb_put(skb, length);
3857
3858 {
3859 /* this looks ugly, but it seems compiler issues make it
3860 more efficient than reusing j */
3861 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3862
3863 /* page alloc/put takes too long and effects small packet
3864 * throughput, so unsplit small packets and save the alloc/put*/
3865 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3866 u8 *vaddr;
3867 /* there is no documentation about how to call
3868 * kmap_atomic, so we can't hold the mapping
3869 * very long */
3870 pci_dma_sync_single_for_cpu(pdev,
3871 ps_page_dma->ps_page_dma[0],
3872 PAGE_SIZE,
3873 PCI_DMA_FROMDEVICE);
3874 vaddr = kmap_atomic(ps_page->ps_page[0],
3875 KM_SKB_DATA_SOFTIRQ);
3876 memcpy(skb->tail, vaddr, l1);
3877 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3878 pci_dma_sync_single_for_device(pdev,
3879 ps_page_dma->ps_page_dma[0],
3880 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3881 /* remove the CRC */
3882 l1 -= 4;
3883 skb_put(skb, l1);
3884 goto copydone;
3885 } /* if */
3886 }
3887
3888 for (j = 0; j < adapter->rx_ps_pages; j++) {
3889 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3890 break;
3891 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3892 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3893 ps_page_dma->ps_page_dma[j] = 0;
3894 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3895 length);
3896 ps_page->ps_page[j] = NULL;
3897 skb->len += length;
3898 skb->data_len += length;
3899 skb->truesize += length;
3900 }
3901
3902 /* strip the ethernet crc, problem is we're using pages now so
3903 * this whole operation can get a little cpu intensive */
3904 pskb_trim(skb, skb->len - 4);
3905
3906 copydone:
3907 e1000_rx_checksum(adapter, staterr,
3908 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3909 skb->protocol = eth_type_trans(skb, netdev);
3910
3911 if (likely(rx_desc->wb.upper.header_status &
3912 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3913 adapter->rx_hdr_split++;
3914 #ifdef CONFIG_E1000_NAPI
3915 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3916 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3917 le16_to_cpu(rx_desc->wb.middle.vlan) &
3918 E1000_RXD_SPC_VLAN_MASK);
3919 } else {
3920 netif_receive_skb(skb);
3921 }
3922 #else /* CONFIG_E1000_NAPI */
3923 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3924 vlan_hwaccel_rx(skb, adapter->vlgrp,
3925 le16_to_cpu(rx_desc->wb.middle.vlan) &
3926 E1000_RXD_SPC_VLAN_MASK);
3927 } else {
3928 netif_rx(skb);
3929 }
3930 #endif /* CONFIG_E1000_NAPI */
3931 netdev->last_rx = jiffies;
3932
3933 next_desc:
3934 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3935 buffer_info->skb = NULL;
3936
3937 /* return some buffers to hardware, one at a time is too slow */
3938 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3939 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3940 cleaned_count = 0;
3941 }
3942
3943 /* use prefetched values */
3944 rx_desc = next_rxd;
3945 buffer_info = next_buffer;
3946
3947 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3948 }
3949 rx_ring->next_to_clean = i;
3950
3951 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3952 if (cleaned_count)
3953 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3954
3955 return cleaned;
3956 }
3957
3958 /**
3959 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3960 * @adapter: address of board private structure
3961 **/
3962
3963 static void
3964 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3965 struct e1000_rx_ring *rx_ring,
3966 int cleaned_count)
3967 {
3968 struct net_device *netdev = adapter->netdev;
3969 struct pci_dev *pdev = adapter->pdev;
3970 struct e1000_rx_desc *rx_desc;
3971 struct e1000_buffer *buffer_info;
3972 struct sk_buff *skb;
3973 unsigned int i;
3974 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3975
3976 i = rx_ring->next_to_use;
3977 buffer_info = &rx_ring->buffer_info[i];
3978
3979 while (cleaned_count--) {
3980 if (!(skb = buffer_info->skb))
3981 skb = netdev_alloc_skb(netdev, bufsz);
3982 else {
3983 skb_trim(skb, 0);
3984 goto map_skb;
3985 }
3986
3987 if (unlikely(!skb)) {
3988 /* Better luck next round */
3989 adapter->alloc_rx_buff_failed++;
3990 break;
3991 }
3992
3993 /* Fix for errata 23, can't cross 64kB boundary */
3994 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3995 struct sk_buff *oldskb = skb;
3996 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3997 "at %p\n", bufsz, skb->data);
3998 /* Try again, without freeing the previous */
3999 skb = netdev_alloc_skb(netdev, bufsz);
4000 /* Failed allocation, critical failure */
4001 if (!skb) {
4002 dev_kfree_skb(oldskb);
4003 break;
4004 }
4005
4006 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4007 /* give up */
4008 dev_kfree_skb(skb);
4009 dev_kfree_skb(oldskb);
4010 break; /* while !buffer_info->skb */
4011 } else {
4012 /* Use new allocation */
4013 dev_kfree_skb(oldskb);
4014 }
4015 }
4016 /* Make buffer alignment 2 beyond a 16 byte boundary
4017 * this will result in a 16 byte aligned IP header after
4018 * the 14 byte MAC header is removed
4019 */
4020 skb_reserve(skb, NET_IP_ALIGN);
4021
4022 skb->dev = netdev;
4023
4024 buffer_info->skb = skb;
4025 buffer_info->length = adapter->rx_buffer_len;
4026 map_skb:
4027 buffer_info->dma = pci_map_single(pdev,
4028 skb->data,
4029 adapter->rx_buffer_len,
4030 PCI_DMA_FROMDEVICE);
4031
4032 /* Fix for errata 23, can't cross 64kB boundary */
4033 if (!e1000_check_64k_bound(adapter,
4034 (void *)(unsigned long)buffer_info->dma,
4035 adapter->rx_buffer_len)) {
4036 DPRINTK(RX_ERR, ERR,
4037 "dma align check failed: %u bytes at %p\n",
4038 adapter->rx_buffer_len,
4039 (void *)(unsigned long)buffer_info->dma);
4040 dev_kfree_skb(skb);
4041 buffer_info->skb = NULL;
4042
4043 pci_unmap_single(pdev, buffer_info->dma,
4044 adapter->rx_buffer_len,
4045 PCI_DMA_FROMDEVICE);
4046
4047 break; /* while !buffer_info->skb */
4048 }
4049 rx_desc = E1000_RX_DESC(*rx_ring, i);
4050 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4051
4052 if (unlikely(++i == rx_ring->count))
4053 i = 0;
4054 buffer_info = &rx_ring->buffer_info[i];
4055 }
4056
4057 if (likely(rx_ring->next_to_use != i)) {
4058 rx_ring->next_to_use = i;
4059 if (unlikely(i-- == 0))
4060 i = (rx_ring->count - 1);
4061
4062 /* Force memory writes to complete before letting h/w
4063 * know there are new descriptors to fetch. (Only
4064 * applicable for weak-ordered memory model archs,
4065 * such as IA-64). */
4066 wmb();
4067 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4068 }
4069 }
4070
4071 /**
4072 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4073 * @adapter: address of board private structure
4074 **/
4075
4076 static void
4077 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4078 struct e1000_rx_ring *rx_ring,
4079 int cleaned_count)
4080 {
4081 struct net_device *netdev = adapter->netdev;
4082 struct pci_dev *pdev = adapter->pdev;
4083 union e1000_rx_desc_packet_split *rx_desc;
4084 struct e1000_buffer *buffer_info;
4085 struct e1000_ps_page *ps_page;
4086 struct e1000_ps_page_dma *ps_page_dma;
4087 struct sk_buff *skb;
4088 unsigned int i, j;
4089
4090 i = rx_ring->next_to_use;
4091 buffer_info = &rx_ring->buffer_info[i];
4092 ps_page = &rx_ring->ps_page[i];
4093 ps_page_dma = &rx_ring->ps_page_dma[i];
4094
4095 while (cleaned_count--) {
4096 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4097
4098 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4099 if (j < adapter->rx_ps_pages) {
4100 if (likely(!ps_page->ps_page[j])) {
4101 ps_page->ps_page[j] =
4102 alloc_page(GFP_ATOMIC);
4103 if (unlikely(!ps_page->ps_page[j])) {
4104 adapter->alloc_rx_buff_failed++;
4105 goto no_buffers;
4106 }
4107 ps_page_dma->ps_page_dma[j] =
4108 pci_map_page(pdev,
4109 ps_page->ps_page[j],
4110 0, PAGE_SIZE,
4111 PCI_DMA_FROMDEVICE);
4112 }
4113 /* Refresh the desc even if buffer_addrs didn't
4114 * change because each write-back erases
4115 * this info.
4116 */
4117 rx_desc->read.buffer_addr[j+1] =
4118 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4119 } else
4120 rx_desc->read.buffer_addr[j+1] = ~0;
4121 }
4122
4123 skb = netdev_alloc_skb(netdev,
4124 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4125
4126 if (unlikely(!skb)) {
4127 adapter->alloc_rx_buff_failed++;
4128 break;
4129 }
4130
4131 /* Make buffer alignment 2 beyond a 16 byte boundary
4132 * this will result in a 16 byte aligned IP header after
4133 * the 14 byte MAC header is removed
4134 */
4135 skb_reserve(skb, NET_IP_ALIGN);
4136
4137 skb->dev = netdev;
4138
4139 buffer_info->skb = skb;
4140 buffer_info->length = adapter->rx_ps_bsize0;
4141 buffer_info->dma = pci_map_single(pdev, skb->data,
4142 adapter->rx_ps_bsize0,
4143 PCI_DMA_FROMDEVICE);
4144
4145 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4146
4147 if (unlikely(++i == rx_ring->count)) i = 0;
4148 buffer_info = &rx_ring->buffer_info[i];
4149 ps_page = &rx_ring->ps_page[i];
4150 ps_page_dma = &rx_ring->ps_page_dma[i];
4151 }
4152
4153 no_buffers:
4154 if (likely(rx_ring->next_to_use != i)) {
4155 rx_ring->next_to_use = i;
4156 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4157
4158 /* Force memory writes to complete before letting h/w
4159 * know there are new descriptors to fetch. (Only
4160 * applicable for weak-ordered memory model archs,
4161 * such as IA-64). */
4162 wmb();
4163 /* Hardware increments by 16 bytes, but packet split
4164 * descriptors are 32 bytes...so we increment tail
4165 * twice as much.
4166 */
4167 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4168 }
4169 }
4170
4171 /**
4172 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4173 * @adapter:
4174 **/
4175
4176 static void
4177 e1000_smartspeed(struct e1000_adapter *adapter)
4178 {
4179 uint16_t phy_status;
4180 uint16_t phy_ctrl;
4181
4182 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4183 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4184 return;
4185
4186 if (adapter->smartspeed == 0) {
4187 /* If Master/Slave config fault is asserted twice,
4188 * we assume back-to-back */
4189 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4190 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4191 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4192 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4193 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4194 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4195 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4196 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4197 phy_ctrl);
4198 adapter->smartspeed++;
4199 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4200 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4201 &phy_ctrl)) {
4202 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4203 MII_CR_RESTART_AUTO_NEG);
4204 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4205 phy_ctrl);
4206 }
4207 }
4208 return;
4209 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4210 /* If still no link, perhaps using 2/3 pair cable */
4211 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4212 phy_ctrl |= CR_1000T_MS_ENABLE;
4213 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4214 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4215 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4216 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4217 MII_CR_RESTART_AUTO_NEG);
4218 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4219 }
4220 }
4221 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4222 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4223 adapter->smartspeed = 0;
4224 }
4225
4226 /**
4227 * e1000_ioctl -
4228 * @netdev:
4229 * @ifreq:
4230 * @cmd:
4231 **/
4232
4233 static int
4234 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4235 {
4236 switch (cmd) {
4237 case SIOCGMIIPHY:
4238 case SIOCGMIIREG:
4239 case SIOCSMIIREG:
4240 return e1000_mii_ioctl(netdev, ifr, cmd);
4241 default:
4242 return -EOPNOTSUPP;
4243 }
4244 }
4245
4246 /**
4247 * e1000_mii_ioctl -
4248 * @netdev:
4249 * @ifreq:
4250 * @cmd:
4251 **/
4252
4253 static int
4254 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4255 {
4256 struct e1000_adapter *adapter = netdev_priv(netdev);
4257 struct mii_ioctl_data *data = if_mii(ifr);
4258 int retval;
4259 uint16_t mii_reg;
4260 uint16_t spddplx;
4261 unsigned long flags;
4262
4263 if (adapter->hw.media_type != e1000_media_type_copper)
4264 return -EOPNOTSUPP;
4265
4266 switch (cmd) {
4267 case SIOCGMIIPHY:
4268 data->phy_id = adapter->hw.phy_addr;
4269 break;
4270 case SIOCGMIIREG:
4271 if (!capable(CAP_NET_ADMIN))
4272 return -EPERM;
4273 spin_lock_irqsave(&adapter->stats_lock, flags);
4274 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4275 &data->val_out)) {
4276 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4277 return -EIO;
4278 }
4279 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4280 break;
4281 case SIOCSMIIREG:
4282 if (!capable(CAP_NET_ADMIN))
4283 return -EPERM;
4284 if (data->reg_num & ~(0x1F))
4285 return -EFAULT;
4286 mii_reg = data->val_in;
4287 spin_lock_irqsave(&adapter->stats_lock, flags);
4288 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4289 mii_reg)) {
4290 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4291 return -EIO;
4292 }
4293 if (adapter->hw.media_type == e1000_media_type_copper) {
4294 switch (data->reg_num) {
4295 case PHY_CTRL:
4296 if (mii_reg & MII_CR_POWER_DOWN)
4297 break;
4298 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4299 adapter->hw.autoneg = 1;
4300 adapter->hw.autoneg_advertised = 0x2F;
4301 } else {
4302 if (mii_reg & 0x40)
4303 spddplx = SPEED_1000;
4304 else if (mii_reg & 0x2000)
4305 spddplx = SPEED_100;
4306 else
4307 spddplx = SPEED_10;
4308 spddplx += (mii_reg & 0x100)
4309 ? DUPLEX_FULL :
4310 DUPLEX_HALF;
4311 retval = e1000_set_spd_dplx(adapter,
4312 spddplx);
4313 if (retval) {
4314 spin_unlock_irqrestore(
4315 &adapter->stats_lock,
4316 flags);
4317 return retval;
4318 }
4319 }
4320 if (netif_running(adapter->netdev))
4321 e1000_reinit_locked(adapter);
4322 else
4323 e1000_reset(adapter);
4324 break;
4325 case M88E1000_PHY_SPEC_CTRL:
4326 case M88E1000_EXT_PHY_SPEC_CTRL:
4327 if (e1000_phy_reset(&adapter->hw)) {
4328 spin_unlock_irqrestore(
4329 &adapter->stats_lock, flags);
4330 return -EIO;
4331 }
4332 break;
4333 }
4334 } else {
4335 switch (data->reg_num) {
4336 case PHY_CTRL:
4337 if (mii_reg & MII_CR_POWER_DOWN)
4338 break;
4339 if (netif_running(adapter->netdev))
4340 e1000_reinit_locked(adapter);
4341 else
4342 e1000_reset(adapter);
4343 break;
4344 }
4345 }
4346 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4347 break;
4348 default:
4349 return -EOPNOTSUPP;
4350 }
4351 return E1000_SUCCESS;
4352 }
4353
4354 void
4355 e1000_pci_set_mwi(struct e1000_hw *hw)
4356 {
4357 struct e1000_adapter *adapter = hw->back;
4358 int ret_val = pci_set_mwi(adapter->pdev);
4359
4360 if (ret_val)
4361 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4362 }
4363
4364 void
4365 e1000_pci_clear_mwi(struct e1000_hw *hw)
4366 {
4367 struct e1000_adapter *adapter = hw->back;
4368
4369 pci_clear_mwi(adapter->pdev);
4370 }
4371
4372 void
4373 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4374 {
4375 struct e1000_adapter *adapter = hw->back;
4376
4377 pci_read_config_word(adapter->pdev, reg, value);
4378 }
4379
4380 void
4381 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4382 {
4383 struct e1000_adapter *adapter = hw->back;
4384
4385 pci_write_config_word(adapter->pdev, reg, *value);
4386 }
4387
4388 uint32_t
4389 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4390 {
4391 return inl(port);
4392 }
4393
4394 void
4395 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4396 {
4397 outl(value, port);
4398 }
4399
4400 static void
4401 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4402 {
4403 struct e1000_adapter *adapter = netdev_priv(netdev);
4404 uint32_t ctrl, rctl;
4405
4406 e1000_irq_disable(adapter);
4407 adapter->vlgrp = grp;
4408
4409 if (grp) {
4410 /* enable VLAN tag insert/strip */
4411 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4412 ctrl |= E1000_CTRL_VME;
4413 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4414
4415 if (adapter->hw.mac_type != e1000_ich8lan) {
4416 /* enable VLAN receive filtering */
4417 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4418 rctl |= E1000_RCTL_VFE;
4419 rctl &= ~E1000_RCTL_CFIEN;
4420 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4421 e1000_update_mng_vlan(adapter);
4422 }
4423 } else {
4424 /* disable VLAN tag insert/strip */
4425 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4426 ctrl &= ~E1000_CTRL_VME;
4427 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4428
4429 if (adapter->hw.mac_type != e1000_ich8lan) {
4430 /* disable VLAN filtering */
4431 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4432 rctl &= ~E1000_RCTL_VFE;
4433 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4434 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4435 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4436 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4437 }
4438 }
4439 }
4440
4441 e1000_irq_enable(adapter);
4442 }
4443
4444 static void
4445 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4446 {
4447 struct e1000_adapter *adapter = netdev_priv(netdev);
4448 uint32_t vfta, index;
4449
4450 if ((adapter->hw.mng_cookie.status &
4451 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4452 (vid == adapter->mng_vlan_id))
4453 return;
4454 /* add VID to filter table */
4455 index = (vid >> 5) & 0x7F;
4456 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4457 vfta |= (1 << (vid & 0x1F));
4458 e1000_write_vfta(&adapter->hw, index, vfta);
4459 }
4460
4461 static void
4462 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4463 {
4464 struct e1000_adapter *adapter = netdev_priv(netdev);
4465 uint32_t vfta, index;
4466
4467 e1000_irq_disable(adapter);
4468
4469 if (adapter->vlgrp)
4470 adapter->vlgrp->vlan_devices[vid] = NULL;
4471
4472 e1000_irq_enable(adapter);
4473
4474 if ((adapter->hw.mng_cookie.status &
4475 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4476 (vid == adapter->mng_vlan_id)) {
4477 /* release control to f/w */
4478 e1000_release_hw_control(adapter);
4479 return;
4480 }
4481
4482 /* remove VID from filter table */
4483 index = (vid >> 5) & 0x7F;
4484 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4485 vfta &= ~(1 << (vid & 0x1F));
4486 e1000_write_vfta(&adapter->hw, index, vfta);
4487 }
4488
4489 static void
4490 e1000_restore_vlan(struct e1000_adapter *adapter)
4491 {
4492 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4493
4494 if (adapter->vlgrp) {
4495 uint16_t vid;
4496 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4497 if (!adapter->vlgrp->vlan_devices[vid])
4498 continue;
4499 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4500 }
4501 }
4502 }
4503
4504 int
4505 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4506 {
4507 adapter->hw.autoneg = 0;
4508
4509 /* Fiber NICs only allow 1000 gbps Full duplex */
4510 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4511 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4512 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4513 return -EINVAL;
4514 }
4515
4516 switch (spddplx) {
4517 case SPEED_10 + DUPLEX_HALF:
4518 adapter->hw.forced_speed_duplex = e1000_10_half;
4519 break;
4520 case SPEED_10 + DUPLEX_FULL:
4521 adapter->hw.forced_speed_duplex = e1000_10_full;
4522 break;
4523 case SPEED_100 + DUPLEX_HALF:
4524 adapter->hw.forced_speed_duplex = e1000_100_half;
4525 break;
4526 case SPEED_100 + DUPLEX_FULL:
4527 adapter->hw.forced_speed_duplex = e1000_100_full;
4528 break;
4529 case SPEED_1000 + DUPLEX_FULL:
4530 adapter->hw.autoneg = 1;
4531 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4532 break;
4533 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4534 default:
4535 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4536 return -EINVAL;
4537 }
4538 return 0;
4539 }
4540
4541 #ifdef CONFIG_PM
4542 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4543 * bus we're on (PCI(X) vs. PCI-E)
4544 */
4545 #define PCIE_CONFIG_SPACE_LEN 256
4546 #define PCI_CONFIG_SPACE_LEN 64
4547 static int
4548 e1000_pci_save_state(struct e1000_adapter *adapter)
4549 {
4550 struct pci_dev *dev = adapter->pdev;
4551 int size;
4552 int i;
4553
4554 if (adapter->hw.mac_type >= e1000_82571)
4555 size = PCIE_CONFIG_SPACE_LEN;
4556 else
4557 size = PCI_CONFIG_SPACE_LEN;
4558
4559 WARN_ON(adapter->config_space != NULL);
4560
4561 adapter->config_space = kmalloc(size, GFP_KERNEL);
4562 if (!adapter->config_space) {
4563 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4564 return -ENOMEM;
4565 }
4566 for (i = 0; i < (size / 4); i++)
4567 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4568 return 0;
4569 }
4570
4571 static void
4572 e1000_pci_restore_state(struct e1000_adapter *adapter)
4573 {
4574 struct pci_dev *dev = adapter->pdev;
4575 int size;
4576 int i;
4577
4578 if (adapter->config_space == NULL)
4579 return;
4580
4581 if (adapter->hw.mac_type >= e1000_82571)
4582 size = PCIE_CONFIG_SPACE_LEN;
4583 else
4584 size = PCI_CONFIG_SPACE_LEN;
4585 for (i = 0; i < (size / 4); i++)
4586 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4587 kfree(adapter->config_space);
4588 adapter->config_space = NULL;
4589 return;
4590 }
4591 #endif /* CONFIG_PM */
4592
4593 static int
4594 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4595 {
4596 struct net_device *netdev = pci_get_drvdata(pdev);
4597 struct e1000_adapter *adapter = netdev_priv(netdev);
4598 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4599 uint32_t wufc = adapter->wol;
4600 #ifdef CONFIG_PM
4601 int retval = 0;
4602 #endif
4603
4604 netif_device_detach(netdev);
4605
4606 if (netif_running(netdev)) {
4607 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4608 e1000_down(adapter);
4609 }
4610
4611 #ifdef CONFIG_PM
4612 /* Implement our own version of pci_save_state(pdev) because pci-
4613 * express adapters have 256-byte config spaces. */
4614 retval = e1000_pci_save_state(adapter);
4615 if (retval)
4616 return retval;
4617 #endif
4618
4619 status = E1000_READ_REG(&adapter->hw, STATUS);
4620 if (status & E1000_STATUS_LU)
4621 wufc &= ~E1000_WUFC_LNKC;
4622
4623 if (wufc) {
4624 e1000_setup_rctl(adapter);
4625 e1000_set_multi(netdev);
4626
4627 /* turn on all-multi mode if wake on multicast is enabled */
4628 if (adapter->wol & E1000_WUFC_MC) {
4629 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4630 rctl |= E1000_RCTL_MPE;
4631 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4632 }
4633
4634 if (adapter->hw.mac_type >= e1000_82540) {
4635 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4636 /* advertise wake from D3Cold */
4637 #define E1000_CTRL_ADVD3WUC 0x00100000
4638 /* phy power management enable */
4639 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4640 ctrl |= E1000_CTRL_ADVD3WUC |
4641 E1000_CTRL_EN_PHY_PWR_MGMT;
4642 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4643 }
4644
4645 if (adapter->hw.media_type == e1000_media_type_fiber ||
4646 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4647 /* keep the laser running in D3 */
4648 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4649 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4650 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4651 }
4652
4653 /* Allow time for pending master requests to run */
4654 e1000_disable_pciex_master(&adapter->hw);
4655
4656 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4657 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4658 pci_enable_wake(pdev, PCI_D3hot, 1);
4659 pci_enable_wake(pdev, PCI_D3cold, 1);
4660 } else {
4661 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4662 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4663 pci_enable_wake(pdev, PCI_D3hot, 0);
4664 pci_enable_wake(pdev, PCI_D3cold, 0);
4665 }
4666
4667 /* FIXME: this code is incorrect for PCI Express */
4668 if (adapter->hw.mac_type >= e1000_82540 &&
4669 adapter->hw.mac_type != e1000_ich8lan &&
4670 adapter->hw.media_type == e1000_media_type_copper) {
4671 manc = E1000_READ_REG(&adapter->hw, MANC);
4672 if (manc & E1000_MANC_SMBUS_EN) {
4673 manc |= E1000_MANC_ARP_EN;
4674 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4675 pci_enable_wake(pdev, PCI_D3hot, 1);
4676 pci_enable_wake(pdev, PCI_D3cold, 1);
4677 }
4678 }
4679
4680 if (adapter->hw.phy_type == e1000_phy_igp_3)
4681 e1000_phy_powerdown_workaround(&adapter->hw);
4682
4683 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4684 * would have already happened in close and is redundant. */
4685 e1000_release_hw_control(adapter);
4686
4687 pci_disable_device(pdev);
4688
4689 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4690
4691 return 0;
4692 }
4693
4694 #ifdef CONFIG_PM
4695 static int
4696 e1000_resume(struct pci_dev *pdev)
4697 {
4698 struct net_device *netdev = pci_get_drvdata(pdev);
4699 struct e1000_adapter *adapter = netdev_priv(netdev);
4700 uint32_t manc, ret_val;
4701
4702 pci_set_power_state(pdev, PCI_D0);
4703 e1000_pci_restore_state(adapter);
4704 ret_val = pci_enable_device(pdev);
4705 pci_set_master(pdev);
4706
4707 pci_enable_wake(pdev, PCI_D3hot, 0);
4708 pci_enable_wake(pdev, PCI_D3cold, 0);
4709
4710 e1000_reset(adapter);
4711 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4712
4713 if (netif_running(netdev))
4714 e1000_up(adapter);
4715
4716 netif_device_attach(netdev);
4717
4718 /* FIXME: this code is incorrect for PCI Express */
4719 if (adapter->hw.mac_type >= e1000_82540 &&
4720 adapter->hw.mac_type != e1000_ich8lan &&
4721 adapter->hw.media_type == e1000_media_type_copper) {
4722 manc = E1000_READ_REG(&adapter->hw, MANC);
4723 manc &= ~(E1000_MANC_ARP_EN);
4724 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4725 }
4726
4727 /* If the controller is 82573 and f/w is AMT, do not set
4728 * DRV_LOAD until the interface is up. For all other cases,
4729 * let the f/w know that the h/w is now under the control
4730 * of the driver. */
4731 if (adapter->hw.mac_type != e1000_82573 ||
4732 !e1000_check_mng_mode(&adapter->hw))
4733 e1000_get_hw_control(adapter);
4734
4735 return 0;
4736 }
4737 #endif
4738
4739 static void e1000_shutdown(struct pci_dev *pdev)
4740 {
4741 e1000_suspend(pdev, PMSG_SUSPEND);
4742 }
4743
4744 #ifdef CONFIG_NET_POLL_CONTROLLER
4745 /*
4746 * Polling 'interrupt' - used by things like netconsole to send skbs
4747 * without having to re-enable interrupts. It's not called while
4748 * the interrupt routine is executing.
4749 */
4750 static void
4751 e1000_netpoll(struct net_device *netdev)
4752 {
4753 struct e1000_adapter *adapter = netdev_priv(netdev);
4754
4755 disable_irq(adapter->pdev->irq);
4756 e1000_intr(adapter->pdev->irq, netdev, NULL);
4757 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4758 #ifndef CONFIG_E1000_NAPI
4759 adapter->clean_rx(adapter, adapter->rx_ring);
4760 #endif
4761 enable_irq(adapter->pdev->irq);
4762 }
4763 #endif
4764
4765 /**
4766 * e1000_io_error_detected - called when PCI error is detected
4767 * @pdev: Pointer to PCI device
4768 * @state: The current pci conneection state
4769 *
4770 * This function is called after a PCI bus error affecting
4771 * this device has been detected.
4772 */
4773 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4774 {
4775 struct net_device *netdev = pci_get_drvdata(pdev);
4776 struct e1000_adapter *adapter = netdev->priv;
4777
4778 netif_device_detach(netdev);
4779
4780 if (netif_running(netdev))
4781 e1000_down(adapter);
4782
4783 /* Request a slot slot reset. */
4784 return PCI_ERS_RESULT_NEED_RESET;
4785 }
4786
4787 /**
4788 * e1000_io_slot_reset - called after the pci bus has been reset.
4789 * @pdev: Pointer to PCI device
4790 *
4791 * Restart the card from scratch, as if from a cold-boot. Implementation
4792 * resembles the first-half of the e1000_resume routine.
4793 */
4794 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4795 {
4796 struct net_device *netdev = pci_get_drvdata(pdev);
4797 struct e1000_adapter *adapter = netdev->priv;
4798
4799 if (pci_enable_device(pdev)) {
4800 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4801 return PCI_ERS_RESULT_DISCONNECT;
4802 }
4803 pci_set_master(pdev);
4804
4805 pci_enable_wake(pdev, 3, 0);
4806 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4807
4808 /* Perform card reset only on one instance of the card */
4809 if (PCI_FUNC (pdev->devfn) != 0)
4810 return PCI_ERS_RESULT_RECOVERED;
4811
4812 e1000_reset(adapter);
4813 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4814
4815 return PCI_ERS_RESULT_RECOVERED;
4816 }
4817
4818 /**
4819 * e1000_io_resume - called when traffic can start flowing again.
4820 * @pdev: Pointer to PCI device
4821 *
4822 * This callback is called when the error recovery driver tells us that
4823 * its OK to resume normal operation. Implementation resembles the
4824 * second-half of the e1000_resume routine.
4825 */
4826 static void e1000_io_resume(struct pci_dev *pdev)
4827 {
4828 struct net_device *netdev = pci_get_drvdata(pdev);
4829 struct e1000_adapter *adapter = netdev->priv;
4830 uint32_t manc, swsm;
4831
4832 if (netif_running(netdev)) {
4833 if (e1000_up(adapter)) {
4834 printk("e1000: can't bring device back up after reset\n");
4835 return;
4836 }
4837 }
4838
4839 netif_device_attach(netdev);
4840
4841 if (adapter->hw.mac_type >= e1000_82540 &&
4842 adapter->hw.media_type == e1000_media_type_copper) {
4843 manc = E1000_READ_REG(&adapter->hw, MANC);
4844 manc &= ~(E1000_MANC_ARP_EN);
4845 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4846 }
4847
4848 switch (adapter->hw.mac_type) {
4849 case e1000_82573:
4850 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4851 E1000_WRITE_REG(&adapter->hw, SWSM,
4852 swsm | E1000_SWSM_DRV_LOAD);
4853 break;
4854 default:
4855 break;
4856 }
4857
4858 if (netif_running(netdev))
4859 mod_timer(&adapter->watchdog_timer, jiffies);
4860 }
4861
4862 /* e1000_main.c */
This page took 0.894132 seconds and 6 git commands to generate.