12f1ee25052277a23df257e093316a6e49b312af
[deliverable/linux.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36
37 #include "e1000.h"
38
39 enum {NETDEV_STATS, E1000_STATS};
40
41 struct e1000_stats {
42 char stat_string[ETH_GSTRING_LEN];
43 int type;
44 int sizeof_stat;
45 int stat_offset;
46 };
47
48 #define E1000_STAT(str, m) { \
49 .stat_string = str, \
50 .type = E1000_STATS, \
51 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
52 .stat_offset = offsetof(struct e1000_adapter, m) }
53 #define E1000_NETDEV_STAT(str, m) { \
54 .stat_string = str, \
55 .type = NETDEV_STATS, \
56 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
57 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
58
59 static const struct e1000_stats e1000_gstrings_stats[] = {
60 E1000_STAT("rx_packets", stats.gprc),
61 E1000_STAT("tx_packets", stats.gptc),
62 E1000_STAT("rx_bytes", stats.gorc),
63 E1000_STAT("tx_bytes", stats.gotc),
64 E1000_STAT("rx_broadcast", stats.bprc),
65 E1000_STAT("tx_broadcast", stats.bptc),
66 E1000_STAT("rx_multicast", stats.mprc),
67 E1000_STAT("tx_multicast", stats.mptc),
68 E1000_NETDEV_STAT("rx_errors", rx_errors),
69 E1000_NETDEV_STAT("tx_errors", tx_errors),
70 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
71 E1000_STAT("multicast", stats.mprc),
72 E1000_STAT("collisions", stats.colc),
73 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
74 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
75 E1000_STAT("rx_crc_errors", stats.crcerrs),
76 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
77 E1000_STAT("rx_no_buffer_count", stats.rnbc),
78 E1000_STAT("rx_missed_errors", stats.mpc),
79 E1000_STAT("tx_aborted_errors", stats.ecol),
80 E1000_STAT("tx_carrier_errors", stats.tncrs),
81 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
82 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
83 E1000_STAT("tx_window_errors", stats.latecol),
84 E1000_STAT("tx_abort_late_coll", stats.latecol),
85 E1000_STAT("tx_deferred_ok", stats.dc),
86 E1000_STAT("tx_single_coll_ok", stats.scc),
87 E1000_STAT("tx_multi_coll_ok", stats.mcc),
88 E1000_STAT("tx_timeout_count", tx_timeout_count),
89 E1000_STAT("tx_restart_queue", restart_queue),
90 E1000_STAT("rx_long_length_errors", stats.roc),
91 E1000_STAT("rx_short_length_errors", stats.ruc),
92 E1000_STAT("rx_align_errors", stats.algnerrc),
93 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
94 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
95 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
96 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
97 E1000_STAT("tx_flow_control_xon", stats.xontxc),
98 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
99 E1000_STAT("rx_long_byte_count", stats.gorc),
100 E1000_STAT("rx_csum_offload_good", hw_csum_good),
101 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
102 E1000_STAT("rx_header_split", rx_hdr_split),
103 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
104 E1000_STAT("tx_smbus", stats.mgptc),
105 E1000_STAT("rx_smbus", stats.mgprc),
106 E1000_STAT("dropped_smbus", stats.mgpdc),
107 E1000_STAT("rx_dma_failed", rx_dma_failed),
108 E1000_STAT("tx_dma_failed", tx_dma_failed),
109 };
110
111 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
112 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
113 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
114 "Register test (offline)", "Eeprom test (offline)",
115 "Interrupt test (offline)", "Loopback test (offline)",
116 "Link test (on/offline)"
117 };
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119
120 static int e1000_get_settings(struct net_device *netdev,
121 struct ethtool_cmd *ecmd)
122 {
123 struct e1000_adapter *adapter = netdev_priv(netdev);
124 struct e1000_hw *hw = &adapter->hw;
125 u32 speed;
126
127 if (hw->phy.media_type == e1000_media_type_copper) {
128
129 ecmd->supported = (SUPPORTED_10baseT_Half |
130 SUPPORTED_10baseT_Full |
131 SUPPORTED_100baseT_Half |
132 SUPPORTED_100baseT_Full |
133 SUPPORTED_1000baseT_Full |
134 SUPPORTED_Autoneg |
135 SUPPORTED_TP);
136 if (hw->phy.type == e1000_phy_ife)
137 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
138 ecmd->advertising = ADVERTISED_TP;
139
140 if (hw->mac.autoneg == 1) {
141 ecmd->advertising |= ADVERTISED_Autoneg;
142 /* the e1000 autoneg seems to match ethtool nicely */
143 ecmd->advertising |= hw->phy.autoneg_advertised;
144 }
145
146 ecmd->port = PORT_TP;
147 ecmd->phy_address = hw->phy.addr;
148 ecmd->transceiver = XCVR_INTERNAL;
149
150 } else {
151 ecmd->supported = (SUPPORTED_1000baseT_Full |
152 SUPPORTED_FIBRE |
153 SUPPORTED_Autoneg);
154
155 ecmd->advertising = (ADVERTISED_1000baseT_Full |
156 ADVERTISED_FIBRE |
157 ADVERTISED_Autoneg);
158
159 ecmd->port = PORT_FIBRE;
160 ecmd->transceiver = XCVR_EXTERNAL;
161 }
162
163 speed = -1;
164 ecmd->duplex = -1;
165
166 if (netif_running(netdev)) {
167 if (netif_carrier_ok(netdev)) {
168 speed = adapter->link_speed;
169 ecmd->duplex = adapter->link_duplex - 1;
170 }
171 } else {
172 u32 status = er32(STATUS);
173 if (status & E1000_STATUS_LU) {
174 if (status & E1000_STATUS_SPEED_1000)
175 speed = SPEED_1000;
176 else if (status & E1000_STATUS_SPEED_100)
177 speed = SPEED_100;
178 else
179 speed = SPEED_10;
180
181 if (status & E1000_STATUS_FD)
182 ecmd->duplex = DUPLEX_FULL;
183 else
184 ecmd->duplex = DUPLEX_HALF;
185 }
186 }
187
188 ethtool_cmd_speed_set(ecmd, speed);
189 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
190 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
191
192 /* MDI-X => 2; MDI =>1; Invalid =>0 */
193 if ((hw->phy.media_type == e1000_media_type_copper) &&
194 netif_carrier_ok(netdev))
195 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
196 ETH_TP_MDI;
197 else
198 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
199
200 return 0;
201 }
202
203 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
204 {
205 struct e1000_mac_info *mac = &adapter->hw.mac;
206
207 mac->autoneg = 0;
208
209 /* Fiber NICs only allow 1000 gbps Full duplex */
210 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
211 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
212 e_err("Unsupported Speed/Duplex configuration\n");
213 return -EINVAL;
214 }
215
216 switch (spddplx) {
217 case SPEED_10 + DUPLEX_HALF:
218 mac->forced_speed_duplex = ADVERTISE_10_HALF;
219 break;
220 case SPEED_10 + DUPLEX_FULL:
221 mac->forced_speed_duplex = ADVERTISE_10_FULL;
222 break;
223 case SPEED_100 + DUPLEX_HALF:
224 mac->forced_speed_duplex = ADVERTISE_100_HALF;
225 break;
226 case SPEED_100 + DUPLEX_FULL:
227 mac->forced_speed_duplex = ADVERTISE_100_FULL;
228 break;
229 case SPEED_1000 + DUPLEX_FULL:
230 mac->autoneg = 1;
231 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
232 break;
233 case SPEED_1000 + DUPLEX_HALF: /* not supported */
234 default:
235 e_err("Unsupported Speed/Duplex configuration\n");
236 return -EINVAL;
237 }
238 return 0;
239 }
240
241 static int e1000_set_settings(struct net_device *netdev,
242 struct ethtool_cmd *ecmd)
243 {
244 struct e1000_adapter *adapter = netdev_priv(netdev);
245 struct e1000_hw *hw = &adapter->hw;
246
247 /*
248 * When SoL/IDER sessions are active, autoneg/speed/duplex
249 * cannot be changed
250 */
251 if (e1000_check_reset_block(hw)) {
252 e_err("Cannot change link characteristics when SoL/IDER is "
253 "active.\n");
254 return -EINVAL;
255 }
256
257 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
258 usleep_range(1000, 2000);
259
260 if (ecmd->autoneg == AUTONEG_ENABLE) {
261 hw->mac.autoneg = 1;
262 if (hw->phy.media_type == e1000_media_type_fiber)
263 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
264 ADVERTISED_FIBRE |
265 ADVERTISED_Autoneg;
266 else
267 hw->phy.autoneg_advertised = ecmd->advertising |
268 ADVERTISED_TP |
269 ADVERTISED_Autoneg;
270 ecmd->advertising = hw->phy.autoneg_advertised;
271 if (adapter->fc_autoneg)
272 hw->fc.requested_mode = e1000_fc_default;
273 } else {
274 u32 speed = ethtool_cmd_speed(ecmd);
275 if (e1000_set_spd_dplx(adapter, speed + ecmd->duplex)) {
276 clear_bit(__E1000_RESETTING, &adapter->state);
277 return -EINVAL;
278 }
279 }
280
281 /* reset the link */
282
283 if (netif_running(adapter->netdev)) {
284 e1000e_down(adapter);
285 e1000e_up(adapter);
286 } else {
287 e1000e_reset(adapter);
288 }
289
290 clear_bit(__E1000_RESETTING, &adapter->state);
291 return 0;
292 }
293
294 static void e1000_get_pauseparam(struct net_device *netdev,
295 struct ethtool_pauseparam *pause)
296 {
297 struct e1000_adapter *adapter = netdev_priv(netdev);
298 struct e1000_hw *hw = &adapter->hw;
299
300 pause->autoneg =
301 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
302
303 if (hw->fc.current_mode == e1000_fc_rx_pause) {
304 pause->rx_pause = 1;
305 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
306 pause->tx_pause = 1;
307 } else if (hw->fc.current_mode == e1000_fc_full) {
308 pause->rx_pause = 1;
309 pause->tx_pause = 1;
310 }
311 }
312
313 static int e1000_set_pauseparam(struct net_device *netdev,
314 struct ethtool_pauseparam *pause)
315 {
316 struct e1000_adapter *adapter = netdev_priv(netdev);
317 struct e1000_hw *hw = &adapter->hw;
318 int retval = 0;
319
320 adapter->fc_autoneg = pause->autoneg;
321
322 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
323 usleep_range(1000, 2000);
324
325 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
326 hw->fc.requested_mode = e1000_fc_default;
327 if (netif_running(adapter->netdev)) {
328 e1000e_down(adapter);
329 e1000e_up(adapter);
330 } else {
331 e1000e_reset(adapter);
332 }
333 } else {
334 if (pause->rx_pause && pause->tx_pause)
335 hw->fc.requested_mode = e1000_fc_full;
336 else if (pause->rx_pause && !pause->tx_pause)
337 hw->fc.requested_mode = e1000_fc_rx_pause;
338 else if (!pause->rx_pause && pause->tx_pause)
339 hw->fc.requested_mode = e1000_fc_tx_pause;
340 else if (!pause->rx_pause && !pause->tx_pause)
341 hw->fc.requested_mode = e1000_fc_none;
342
343 hw->fc.current_mode = hw->fc.requested_mode;
344
345 if (hw->phy.media_type == e1000_media_type_fiber) {
346 retval = hw->mac.ops.setup_link(hw);
347 /* implicit goto out */
348 } else {
349 retval = e1000e_force_mac_fc(hw);
350 if (retval)
351 goto out;
352 e1000e_set_fc_watermarks(hw);
353 }
354 }
355
356 out:
357 clear_bit(__E1000_RESETTING, &adapter->state);
358 return retval;
359 }
360
361 static u32 e1000_get_rx_csum(struct net_device *netdev)
362 {
363 struct e1000_adapter *adapter = netdev_priv(netdev);
364 return adapter->flags & FLAG_RX_CSUM_ENABLED;
365 }
366
367 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
368 {
369 struct e1000_adapter *adapter = netdev_priv(netdev);
370
371 if (data)
372 adapter->flags |= FLAG_RX_CSUM_ENABLED;
373 else
374 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
375
376 if (netif_running(netdev))
377 e1000e_reinit_locked(adapter);
378 else
379 e1000e_reset(adapter);
380 return 0;
381 }
382
383 static u32 e1000_get_tx_csum(struct net_device *netdev)
384 {
385 return (netdev->features & NETIF_F_HW_CSUM) != 0;
386 }
387
388 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
389 {
390 if (data)
391 netdev->features |= NETIF_F_HW_CSUM;
392 else
393 netdev->features &= ~NETIF_F_HW_CSUM;
394
395 return 0;
396 }
397
398 static int e1000_set_tso(struct net_device *netdev, u32 data)
399 {
400 struct e1000_adapter *adapter = netdev_priv(netdev);
401
402 if (data) {
403 netdev->features |= NETIF_F_TSO;
404 netdev->features |= NETIF_F_TSO6;
405 } else {
406 netdev->features &= ~NETIF_F_TSO;
407 netdev->features &= ~NETIF_F_TSO6;
408 }
409
410 adapter->flags |= FLAG_TSO_FORCE;
411 return 0;
412 }
413
414 static u32 e1000_get_msglevel(struct net_device *netdev)
415 {
416 struct e1000_adapter *adapter = netdev_priv(netdev);
417 return adapter->msg_enable;
418 }
419
420 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
421 {
422 struct e1000_adapter *adapter = netdev_priv(netdev);
423 adapter->msg_enable = data;
424 }
425
426 static int e1000_get_regs_len(struct net_device *netdev)
427 {
428 #define E1000_REGS_LEN 32 /* overestimate */
429 return E1000_REGS_LEN * sizeof(u32);
430 }
431
432 static void e1000_get_regs(struct net_device *netdev,
433 struct ethtool_regs *regs, void *p)
434 {
435 struct e1000_adapter *adapter = netdev_priv(netdev);
436 struct e1000_hw *hw = &adapter->hw;
437 u32 *regs_buff = p;
438 u16 phy_data;
439
440 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
441
442 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
443 adapter->pdev->device;
444
445 regs_buff[0] = er32(CTRL);
446 regs_buff[1] = er32(STATUS);
447
448 regs_buff[2] = er32(RCTL);
449 regs_buff[3] = er32(RDLEN);
450 regs_buff[4] = er32(RDH);
451 regs_buff[5] = er32(RDT);
452 regs_buff[6] = er32(RDTR);
453
454 regs_buff[7] = er32(TCTL);
455 regs_buff[8] = er32(TDLEN);
456 regs_buff[9] = er32(TDH);
457 regs_buff[10] = er32(TDT);
458 regs_buff[11] = er32(TIDV);
459
460 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
461
462 /* ethtool doesn't use anything past this point, so all this
463 * code is likely legacy junk for apps that may or may not
464 * exist */
465 if (hw->phy.type == e1000_phy_m88) {
466 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
467 regs_buff[13] = (u32)phy_data; /* cable length */
468 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
469 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
470 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
471 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
472 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
473 regs_buff[18] = regs_buff[13]; /* cable polarity */
474 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
475 regs_buff[20] = regs_buff[17]; /* polarity correction */
476 /* phy receive errors */
477 regs_buff[22] = adapter->phy_stats.receive_errors;
478 regs_buff[23] = regs_buff[13]; /* mdix mode */
479 }
480 regs_buff[21] = 0; /* was idle_errors */
481 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
482 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
483 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
484 }
485
486 static int e1000_get_eeprom_len(struct net_device *netdev)
487 {
488 struct e1000_adapter *adapter = netdev_priv(netdev);
489 return adapter->hw.nvm.word_size * 2;
490 }
491
492 static int e1000_get_eeprom(struct net_device *netdev,
493 struct ethtool_eeprom *eeprom, u8 *bytes)
494 {
495 struct e1000_adapter *adapter = netdev_priv(netdev);
496 struct e1000_hw *hw = &adapter->hw;
497 u16 *eeprom_buff;
498 int first_word;
499 int last_word;
500 int ret_val = 0;
501 u16 i;
502
503 if (eeprom->len == 0)
504 return -EINVAL;
505
506 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
507
508 first_word = eeprom->offset >> 1;
509 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
510
511 eeprom_buff = kmalloc(sizeof(u16) *
512 (last_word - first_word + 1), GFP_KERNEL);
513 if (!eeprom_buff)
514 return -ENOMEM;
515
516 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
517 ret_val = e1000_read_nvm(hw, first_word,
518 last_word - first_word + 1,
519 eeprom_buff);
520 } else {
521 for (i = 0; i < last_word - first_word + 1; i++) {
522 ret_val = e1000_read_nvm(hw, first_word + i, 1,
523 &eeprom_buff[i]);
524 if (ret_val)
525 break;
526 }
527 }
528
529 if (ret_val) {
530 /* a read error occurred, throw away the result */
531 memset(eeprom_buff, 0xff, sizeof(u16) *
532 (last_word - first_word + 1));
533 } else {
534 /* Device's eeprom is always little-endian, word addressable */
535 for (i = 0; i < last_word - first_word + 1; i++)
536 le16_to_cpus(&eeprom_buff[i]);
537 }
538
539 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
540 kfree(eeprom_buff);
541
542 return ret_val;
543 }
544
545 static int e1000_set_eeprom(struct net_device *netdev,
546 struct ethtool_eeprom *eeprom, u8 *bytes)
547 {
548 struct e1000_adapter *adapter = netdev_priv(netdev);
549 struct e1000_hw *hw = &adapter->hw;
550 u16 *eeprom_buff;
551 void *ptr;
552 int max_len;
553 int first_word;
554 int last_word;
555 int ret_val = 0;
556 u16 i;
557
558 if (eeprom->len == 0)
559 return -EOPNOTSUPP;
560
561 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
562 return -EFAULT;
563
564 if (adapter->flags & FLAG_READ_ONLY_NVM)
565 return -EINVAL;
566
567 max_len = hw->nvm.word_size * 2;
568
569 first_word = eeprom->offset >> 1;
570 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
571 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
572 if (!eeprom_buff)
573 return -ENOMEM;
574
575 ptr = (void *)eeprom_buff;
576
577 if (eeprom->offset & 1) {
578 /* need read/modify/write of first changed EEPROM word */
579 /* only the second byte of the word is being modified */
580 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
581 ptr++;
582 }
583 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
584 /* need read/modify/write of last changed EEPROM word */
585 /* only the first byte of the word is being modified */
586 ret_val = e1000_read_nvm(hw, last_word, 1,
587 &eeprom_buff[last_word - first_word]);
588
589 if (ret_val)
590 goto out;
591
592 /* Device's eeprom is always little-endian, word addressable */
593 for (i = 0; i < last_word - first_word + 1; i++)
594 le16_to_cpus(&eeprom_buff[i]);
595
596 memcpy(ptr, bytes, eeprom->len);
597
598 for (i = 0; i < last_word - first_word + 1; i++)
599 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
600
601 ret_val = e1000_write_nvm(hw, first_word,
602 last_word - first_word + 1, eeprom_buff);
603
604 if (ret_val)
605 goto out;
606
607 /*
608 * Update the checksum over the first part of the EEPROM if needed
609 * and flush shadow RAM for applicable controllers
610 */
611 if ((first_word <= NVM_CHECKSUM_REG) ||
612 (hw->mac.type == e1000_82583) ||
613 (hw->mac.type == e1000_82574) ||
614 (hw->mac.type == e1000_82573))
615 ret_val = e1000e_update_nvm_checksum(hw);
616
617 out:
618 kfree(eeprom_buff);
619 return ret_val;
620 }
621
622 static void e1000_get_drvinfo(struct net_device *netdev,
623 struct ethtool_drvinfo *drvinfo)
624 {
625 struct e1000_adapter *adapter = netdev_priv(netdev);
626 char firmware_version[32];
627
628 strncpy(drvinfo->driver, e1000e_driver_name,
629 sizeof(drvinfo->driver) - 1);
630 strncpy(drvinfo->version, e1000e_driver_version,
631 sizeof(drvinfo->version) - 1);
632
633 /*
634 * EEPROM image version # is reported as firmware version # for
635 * PCI-E controllers
636 */
637 snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d",
638 (adapter->eeprom_vers & 0xF000) >> 12,
639 (adapter->eeprom_vers & 0x0FF0) >> 4,
640 (adapter->eeprom_vers & 0x000F));
641
642 strncpy(drvinfo->fw_version, firmware_version,
643 sizeof(drvinfo->fw_version) - 1);
644 strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
645 sizeof(drvinfo->bus_info) - 1);
646 drvinfo->regdump_len = e1000_get_regs_len(netdev);
647 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
648 }
649
650 static void e1000_get_ringparam(struct net_device *netdev,
651 struct ethtool_ringparam *ring)
652 {
653 struct e1000_adapter *adapter = netdev_priv(netdev);
654 struct e1000_ring *tx_ring = adapter->tx_ring;
655 struct e1000_ring *rx_ring = adapter->rx_ring;
656
657 ring->rx_max_pending = E1000_MAX_RXD;
658 ring->tx_max_pending = E1000_MAX_TXD;
659 ring->rx_mini_max_pending = 0;
660 ring->rx_jumbo_max_pending = 0;
661 ring->rx_pending = rx_ring->count;
662 ring->tx_pending = tx_ring->count;
663 ring->rx_mini_pending = 0;
664 ring->rx_jumbo_pending = 0;
665 }
666
667 static int e1000_set_ringparam(struct net_device *netdev,
668 struct ethtool_ringparam *ring)
669 {
670 struct e1000_adapter *adapter = netdev_priv(netdev);
671 struct e1000_ring *tx_ring, *tx_old;
672 struct e1000_ring *rx_ring, *rx_old;
673 int err;
674
675 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
676 return -EINVAL;
677
678 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
679 usleep_range(1000, 2000);
680
681 if (netif_running(adapter->netdev))
682 e1000e_down(adapter);
683
684 tx_old = adapter->tx_ring;
685 rx_old = adapter->rx_ring;
686
687 err = -ENOMEM;
688 tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL);
689 if (!tx_ring)
690 goto err_alloc_tx;
691
692 rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL);
693 if (!rx_ring)
694 goto err_alloc_rx;
695
696 adapter->tx_ring = tx_ring;
697 adapter->rx_ring = rx_ring;
698
699 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
700 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
701 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
702
703 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
704 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
705 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
706
707 if (netif_running(adapter->netdev)) {
708 /* Try to get new resources before deleting old */
709 err = e1000e_setup_rx_resources(adapter);
710 if (err)
711 goto err_setup_rx;
712 err = e1000e_setup_tx_resources(adapter);
713 if (err)
714 goto err_setup_tx;
715
716 /*
717 * restore the old in order to free it,
718 * then add in the new
719 */
720 adapter->rx_ring = rx_old;
721 adapter->tx_ring = tx_old;
722 e1000e_free_rx_resources(adapter);
723 e1000e_free_tx_resources(adapter);
724 kfree(tx_old);
725 kfree(rx_old);
726 adapter->rx_ring = rx_ring;
727 adapter->tx_ring = tx_ring;
728 err = e1000e_up(adapter);
729 if (err)
730 goto err_setup;
731 }
732
733 clear_bit(__E1000_RESETTING, &adapter->state);
734 return 0;
735 err_setup_tx:
736 e1000e_free_rx_resources(adapter);
737 err_setup_rx:
738 adapter->rx_ring = rx_old;
739 adapter->tx_ring = tx_old;
740 kfree(rx_ring);
741 err_alloc_rx:
742 kfree(tx_ring);
743 err_alloc_tx:
744 e1000e_up(adapter);
745 err_setup:
746 clear_bit(__E1000_RESETTING, &adapter->state);
747 return err;
748 }
749
750 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
751 int reg, int offset, u32 mask, u32 write)
752 {
753 u32 pat, val;
754 static const u32 test[] = {
755 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
756 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
757 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
758 (test[pat] & write));
759 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
760 if (val != (test[pat] & write & mask)) {
761 e_err("pattern test reg %04X failed: got 0x%08X "
762 "expected 0x%08X\n", reg + offset, val,
763 (test[pat] & write & mask));
764 *data = reg;
765 return 1;
766 }
767 }
768 return 0;
769 }
770
771 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
772 int reg, u32 mask, u32 write)
773 {
774 u32 val;
775 __ew32(&adapter->hw, reg, write & mask);
776 val = __er32(&adapter->hw, reg);
777 if ((write & mask) != (val & mask)) {
778 e_err("set/check reg %04X test failed: got 0x%08X "
779 "expected 0x%08X\n", reg, (val & mask), (write & mask));
780 *data = reg;
781 return 1;
782 }
783 return 0;
784 }
785 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
786 do { \
787 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
788 return 1; \
789 } while (0)
790 #define REG_PATTERN_TEST(reg, mask, write) \
791 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
792
793 #define REG_SET_AND_CHECK(reg, mask, write) \
794 do { \
795 if (reg_set_and_check(adapter, data, reg, mask, write)) \
796 return 1; \
797 } while (0)
798
799 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
800 {
801 struct e1000_hw *hw = &adapter->hw;
802 struct e1000_mac_info *mac = &adapter->hw.mac;
803 u32 value;
804 u32 before;
805 u32 after;
806 u32 i;
807 u32 toggle;
808 u32 mask;
809
810 /*
811 * The status register is Read Only, so a write should fail.
812 * Some bits that get toggled are ignored.
813 */
814 switch (mac->type) {
815 /* there are several bits on newer hardware that are r/w */
816 case e1000_82571:
817 case e1000_82572:
818 case e1000_80003es2lan:
819 toggle = 0x7FFFF3FF;
820 break;
821 default:
822 toggle = 0x7FFFF033;
823 break;
824 }
825
826 before = er32(STATUS);
827 value = (er32(STATUS) & toggle);
828 ew32(STATUS, toggle);
829 after = er32(STATUS) & toggle;
830 if (value != after) {
831 e_err("failed STATUS register test got: 0x%08X expected: "
832 "0x%08X\n", after, value);
833 *data = 1;
834 return 1;
835 }
836 /* restore previous status */
837 ew32(STATUS, before);
838
839 if (!(adapter->flags & FLAG_IS_ICH)) {
840 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
841 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
842 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
843 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
844 }
845
846 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
847 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
848 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
849 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
850 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
851 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
852 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
853 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
854 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
855 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
856
857 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
858
859 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
860 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
861 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
862
863 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
864 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
865 if (!(adapter->flags & FLAG_IS_ICH))
866 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
867 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
868 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
869 mask = 0x8003FFFF;
870 switch (mac->type) {
871 case e1000_ich10lan:
872 case e1000_pchlan:
873 case e1000_pch2lan:
874 mask |= (1 << 18);
875 break;
876 default:
877 break;
878 }
879 for (i = 0; i < mac->rar_entry_count; i++)
880 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
881 mask, 0xFFFFFFFF);
882
883 for (i = 0; i < mac->mta_reg_count; i++)
884 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
885
886 *data = 0;
887 return 0;
888 }
889
890 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
891 {
892 u16 temp;
893 u16 checksum = 0;
894 u16 i;
895
896 *data = 0;
897 /* Read and add up the contents of the EEPROM */
898 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
899 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
900 *data = 1;
901 return *data;
902 }
903 checksum += temp;
904 }
905
906 /* If Checksum is not Correct return error else test passed */
907 if ((checksum != (u16) NVM_SUM) && !(*data))
908 *data = 2;
909
910 return *data;
911 }
912
913 static irqreturn_t e1000_test_intr(int irq, void *data)
914 {
915 struct net_device *netdev = (struct net_device *) data;
916 struct e1000_adapter *adapter = netdev_priv(netdev);
917 struct e1000_hw *hw = &adapter->hw;
918
919 adapter->test_icr |= er32(ICR);
920
921 return IRQ_HANDLED;
922 }
923
924 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
925 {
926 struct net_device *netdev = adapter->netdev;
927 struct e1000_hw *hw = &adapter->hw;
928 u32 mask;
929 u32 shared_int = 1;
930 u32 irq = adapter->pdev->irq;
931 int i;
932 int ret_val = 0;
933 int int_mode = E1000E_INT_MODE_LEGACY;
934
935 *data = 0;
936
937 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
938 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
939 int_mode = adapter->int_mode;
940 e1000e_reset_interrupt_capability(adapter);
941 adapter->int_mode = E1000E_INT_MODE_LEGACY;
942 e1000e_set_interrupt_capability(adapter);
943 }
944 /* Hook up test interrupt handler just for this test */
945 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
946 netdev)) {
947 shared_int = 0;
948 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
949 netdev->name, netdev)) {
950 *data = 1;
951 ret_val = -1;
952 goto out;
953 }
954 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
955
956 /* Disable all the interrupts */
957 ew32(IMC, 0xFFFFFFFF);
958 usleep_range(10000, 20000);
959
960 /* Test each interrupt */
961 for (i = 0; i < 10; i++) {
962 /* Interrupt to test */
963 mask = 1 << i;
964
965 if (adapter->flags & FLAG_IS_ICH) {
966 switch (mask) {
967 case E1000_ICR_RXSEQ:
968 continue;
969 case 0x00000100:
970 if (adapter->hw.mac.type == e1000_ich8lan ||
971 adapter->hw.mac.type == e1000_ich9lan)
972 continue;
973 break;
974 default:
975 break;
976 }
977 }
978
979 if (!shared_int) {
980 /*
981 * Disable the interrupt to be reported in
982 * the cause register and then force the same
983 * interrupt and see if one gets posted. If
984 * an interrupt was posted to the bus, the
985 * test failed.
986 */
987 adapter->test_icr = 0;
988 ew32(IMC, mask);
989 ew32(ICS, mask);
990 usleep_range(10000, 20000);
991
992 if (adapter->test_icr & mask) {
993 *data = 3;
994 break;
995 }
996 }
997
998 /*
999 * Enable the interrupt to be reported in
1000 * the cause register and then force the same
1001 * interrupt and see if one gets posted. If
1002 * an interrupt was not posted to the bus, the
1003 * test failed.
1004 */
1005 adapter->test_icr = 0;
1006 ew32(IMS, mask);
1007 ew32(ICS, mask);
1008 usleep_range(10000, 20000);
1009
1010 if (!(adapter->test_icr & mask)) {
1011 *data = 4;
1012 break;
1013 }
1014
1015 if (!shared_int) {
1016 /*
1017 * Disable the other interrupts to be reported in
1018 * the cause register and then force the other
1019 * interrupts and see if any get posted. If
1020 * an interrupt was posted to the bus, the
1021 * test failed.
1022 */
1023 adapter->test_icr = 0;
1024 ew32(IMC, ~mask & 0x00007FFF);
1025 ew32(ICS, ~mask & 0x00007FFF);
1026 usleep_range(10000, 20000);
1027
1028 if (adapter->test_icr) {
1029 *data = 5;
1030 break;
1031 }
1032 }
1033 }
1034
1035 /* Disable all the interrupts */
1036 ew32(IMC, 0xFFFFFFFF);
1037 usleep_range(10000, 20000);
1038
1039 /* Unhook test interrupt handler */
1040 free_irq(irq, netdev);
1041
1042 out:
1043 if (int_mode == E1000E_INT_MODE_MSIX) {
1044 e1000e_reset_interrupt_capability(adapter);
1045 adapter->int_mode = int_mode;
1046 e1000e_set_interrupt_capability(adapter);
1047 }
1048
1049 return ret_val;
1050 }
1051
1052 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1053 {
1054 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1055 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1056 struct pci_dev *pdev = adapter->pdev;
1057 int i;
1058
1059 if (tx_ring->desc && tx_ring->buffer_info) {
1060 for (i = 0; i < tx_ring->count; i++) {
1061 if (tx_ring->buffer_info[i].dma)
1062 dma_unmap_single(&pdev->dev,
1063 tx_ring->buffer_info[i].dma,
1064 tx_ring->buffer_info[i].length,
1065 DMA_TO_DEVICE);
1066 if (tx_ring->buffer_info[i].skb)
1067 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1068 }
1069 }
1070
1071 if (rx_ring->desc && rx_ring->buffer_info) {
1072 for (i = 0; i < rx_ring->count; i++) {
1073 if (rx_ring->buffer_info[i].dma)
1074 dma_unmap_single(&pdev->dev,
1075 rx_ring->buffer_info[i].dma,
1076 2048, DMA_FROM_DEVICE);
1077 if (rx_ring->buffer_info[i].skb)
1078 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1079 }
1080 }
1081
1082 if (tx_ring->desc) {
1083 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1084 tx_ring->dma);
1085 tx_ring->desc = NULL;
1086 }
1087 if (rx_ring->desc) {
1088 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1089 rx_ring->dma);
1090 rx_ring->desc = NULL;
1091 }
1092
1093 kfree(tx_ring->buffer_info);
1094 tx_ring->buffer_info = NULL;
1095 kfree(rx_ring->buffer_info);
1096 rx_ring->buffer_info = NULL;
1097 }
1098
1099 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1100 {
1101 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1102 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1103 struct pci_dev *pdev = adapter->pdev;
1104 struct e1000_hw *hw = &adapter->hw;
1105 u32 rctl;
1106 int i;
1107 int ret_val;
1108
1109 /* Setup Tx descriptor ring and Tx buffers */
1110
1111 if (!tx_ring->count)
1112 tx_ring->count = E1000_DEFAULT_TXD;
1113
1114 tx_ring->buffer_info = kcalloc(tx_ring->count,
1115 sizeof(struct e1000_buffer),
1116 GFP_KERNEL);
1117 if (!(tx_ring->buffer_info)) {
1118 ret_val = 1;
1119 goto err_nomem;
1120 }
1121
1122 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1123 tx_ring->size = ALIGN(tx_ring->size, 4096);
1124 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1125 &tx_ring->dma, GFP_KERNEL);
1126 if (!tx_ring->desc) {
1127 ret_val = 2;
1128 goto err_nomem;
1129 }
1130 tx_ring->next_to_use = 0;
1131 tx_ring->next_to_clean = 0;
1132
1133 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1134 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1135 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1136 ew32(TDH, 0);
1137 ew32(TDT, 0);
1138 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1139 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1140 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1141
1142 for (i = 0; i < tx_ring->count; i++) {
1143 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1144 struct sk_buff *skb;
1145 unsigned int skb_size = 1024;
1146
1147 skb = alloc_skb(skb_size, GFP_KERNEL);
1148 if (!skb) {
1149 ret_val = 3;
1150 goto err_nomem;
1151 }
1152 skb_put(skb, skb_size);
1153 tx_ring->buffer_info[i].skb = skb;
1154 tx_ring->buffer_info[i].length = skb->len;
1155 tx_ring->buffer_info[i].dma =
1156 dma_map_single(&pdev->dev, skb->data, skb->len,
1157 DMA_TO_DEVICE);
1158 if (dma_mapping_error(&pdev->dev,
1159 tx_ring->buffer_info[i].dma)) {
1160 ret_val = 4;
1161 goto err_nomem;
1162 }
1163 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1164 tx_desc->lower.data = cpu_to_le32(skb->len);
1165 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1166 E1000_TXD_CMD_IFCS |
1167 E1000_TXD_CMD_RS);
1168 tx_desc->upper.data = 0;
1169 }
1170
1171 /* Setup Rx descriptor ring and Rx buffers */
1172
1173 if (!rx_ring->count)
1174 rx_ring->count = E1000_DEFAULT_RXD;
1175
1176 rx_ring->buffer_info = kcalloc(rx_ring->count,
1177 sizeof(struct e1000_buffer),
1178 GFP_KERNEL);
1179 if (!(rx_ring->buffer_info)) {
1180 ret_val = 5;
1181 goto err_nomem;
1182 }
1183
1184 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1185 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1186 &rx_ring->dma, GFP_KERNEL);
1187 if (!rx_ring->desc) {
1188 ret_val = 6;
1189 goto err_nomem;
1190 }
1191 rx_ring->next_to_use = 0;
1192 rx_ring->next_to_clean = 0;
1193
1194 rctl = er32(RCTL);
1195 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1196 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1197 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1198 ew32(RDLEN, rx_ring->size);
1199 ew32(RDH, 0);
1200 ew32(RDT, 0);
1201 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1202 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1203 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1204 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1205 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1206 ew32(RCTL, rctl);
1207
1208 for (i = 0; i < rx_ring->count; i++) {
1209 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1210 struct sk_buff *skb;
1211
1212 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1213 if (!skb) {
1214 ret_val = 7;
1215 goto err_nomem;
1216 }
1217 skb_reserve(skb, NET_IP_ALIGN);
1218 rx_ring->buffer_info[i].skb = skb;
1219 rx_ring->buffer_info[i].dma =
1220 dma_map_single(&pdev->dev, skb->data, 2048,
1221 DMA_FROM_DEVICE);
1222 if (dma_mapping_error(&pdev->dev,
1223 rx_ring->buffer_info[i].dma)) {
1224 ret_val = 8;
1225 goto err_nomem;
1226 }
1227 rx_desc->buffer_addr =
1228 cpu_to_le64(rx_ring->buffer_info[i].dma);
1229 memset(skb->data, 0x00, skb->len);
1230 }
1231
1232 return 0;
1233
1234 err_nomem:
1235 e1000_free_desc_rings(adapter);
1236 return ret_val;
1237 }
1238
1239 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1240 {
1241 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1242 e1e_wphy(&adapter->hw, 29, 0x001F);
1243 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1244 e1e_wphy(&adapter->hw, 29, 0x001A);
1245 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1246 }
1247
1248 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1249 {
1250 struct e1000_hw *hw = &adapter->hw;
1251 u32 ctrl_reg = 0;
1252 u16 phy_reg = 0;
1253 s32 ret_val = 0;
1254
1255 hw->mac.autoneg = 0;
1256
1257 if (hw->phy.type == e1000_phy_ife) {
1258 /* force 100, set loopback */
1259 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1260
1261 /* Now set up the MAC to the same speed/duplex as the PHY. */
1262 ctrl_reg = er32(CTRL);
1263 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1264 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1265 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1266 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1267 E1000_CTRL_FD); /* Force Duplex to FULL */
1268
1269 ew32(CTRL, ctrl_reg);
1270 udelay(500);
1271
1272 return 0;
1273 }
1274
1275 /* Specific PHY configuration for loopback */
1276 switch (hw->phy.type) {
1277 case e1000_phy_m88:
1278 /* Auto-MDI/MDIX Off */
1279 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1280 /* reset to update Auto-MDI/MDIX */
1281 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1282 /* autoneg off */
1283 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1284 break;
1285 case e1000_phy_gg82563:
1286 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1287 break;
1288 case e1000_phy_bm:
1289 /* Set Default MAC Interface speed to 1GB */
1290 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1291 phy_reg &= ~0x0007;
1292 phy_reg |= 0x006;
1293 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1294 /* Assert SW reset for above settings to take effect */
1295 e1000e_commit_phy(hw);
1296 mdelay(1);
1297 /* Force Full Duplex */
1298 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1299 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1300 /* Set Link Up (in force link) */
1301 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1302 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1303 /* Force Link */
1304 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1305 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1306 /* Set Early Link Enable */
1307 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1308 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1309 break;
1310 case e1000_phy_82577:
1311 case e1000_phy_82578:
1312 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1313 ret_val = hw->phy.ops.acquire(hw);
1314 if (ret_val) {
1315 e_err("Cannot setup 1Gbps loopback.\n");
1316 return ret_val;
1317 }
1318 e1000_configure_k1_ich8lan(hw, false);
1319 hw->phy.ops.release(hw);
1320 break;
1321 case e1000_phy_82579:
1322 /* Disable PHY energy detect power down */
1323 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1324 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1325 /* Disable full chip energy detect */
1326 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1327 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1328 /* Enable loopback on the PHY */
1329 #define I82577_PHY_LBK_CTRL 19
1330 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1331 break;
1332 default:
1333 break;
1334 }
1335
1336 /* force 1000, set loopback */
1337 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1338 mdelay(250);
1339
1340 /* Now set up the MAC to the same speed/duplex as the PHY. */
1341 ctrl_reg = er32(CTRL);
1342 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1343 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1344 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1345 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1346 E1000_CTRL_FD); /* Force Duplex to FULL */
1347
1348 if (adapter->flags & FLAG_IS_ICH)
1349 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1350
1351 if (hw->phy.media_type == e1000_media_type_copper &&
1352 hw->phy.type == e1000_phy_m88) {
1353 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1354 } else {
1355 /*
1356 * Set the ILOS bit on the fiber Nic if half duplex link is
1357 * detected.
1358 */
1359 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1360 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1361 }
1362
1363 ew32(CTRL, ctrl_reg);
1364
1365 /*
1366 * Disable the receiver on the PHY so when a cable is plugged in, the
1367 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1368 */
1369 if (hw->phy.type == e1000_phy_m88)
1370 e1000_phy_disable_receiver(adapter);
1371
1372 udelay(500);
1373
1374 return 0;
1375 }
1376
1377 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1378 {
1379 struct e1000_hw *hw = &adapter->hw;
1380 u32 ctrl = er32(CTRL);
1381 int link = 0;
1382
1383 /* special requirements for 82571/82572 fiber adapters */
1384
1385 /*
1386 * jump through hoops to make sure link is up because serdes
1387 * link is hardwired up
1388 */
1389 ctrl |= E1000_CTRL_SLU;
1390 ew32(CTRL, ctrl);
1391
1392 /* disable autoneg */
1393 ctrl = er32(TXCW);
1394 ctrl &= ~(1 << 31);
1395 ew32(TXCW, ctrl);
1396
1397 link = (er32(STATUS) & E1000_STATUS_LU);
1398
1399 if (!link) {
1400 /* set invert loss of signal */
1401 ctrl = er32(CTRL);
1402 ctrl |= E1000_CTRL_ILOS;
1403 ew32(CTRL, ctrl);
1404 }
1405
1406 /*
1407 * special write to serdes control register to enable SerDes analog
1408 * loopback
1409 */
1410 #define E1000_SERDES_LB_ON 0x410
1411 ew32(SCTL, E1000_SERDES_LB_ON);
1412 usleep_range(10000, 20000);
1413
1414 return 0;
1415 }
1416
1417 /* only call this for fiber/serdes connections to es2lan */
1418 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1419 {
1420 struct e1000_hw *hw = &adapter->hw;
1421 u32 ctrlext = er32(CTRL_EXT);
1422 u32 ctrl = er32(CTRL);
1423
1424 /*
1425 * save CTRL_EXT to restore later, reuse an empty variable (unused
1426 * on mac_type 80003es2lan)
1427 */
1428 adapter->tx_fifo_head = ctrlext;
1429
1430 /* clear the serdes mode bits, putting the device into mac loopback */
1431 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1432 ew32(CTRL_EXT, ctrlext);
1433
1434 /* force speed to 1000/FD, link up */
1435 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1436 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1437 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1438 ew32(CTRL, ctrl);
1439
1440 /* set mac loopback */
1441 ctrl = er32(RCTL);
1442 ctrl |= E1000_RCTL_LBM_MAC;
1443 ew32(RCTL, ctrl);
1444
1445 /* set testing mode parameters (no need to reset later) */
1446 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1447 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1448 ew32(KMRNCTRLSTA,
1449 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1450
1451 return 0;
1452 }
1453
1454 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1455 {
1456 struct e1000_hw *hw = &adapter->hw;
1457 u32 rctl;
1458
1459 if (hw->phy.media_type == e1000_media_type_fiber ||
1460 hw->phy.media_type == e1000_media_type_internal_serdes) {
1461 switch (hw->mac.type) {
1462 case e1000_80003es2lan:
1463 return e1000_set_es2lan_mac_loopback(adapter);
1464 break;
1465 case e1000_82571:
1466 case e1000_82572:
1467 return e1000_set_82571_fiber_loopback(adapter);
1468 break;
1469 default:
1470 rctl = er32(RCTL);
1471 rctl |= E1000_RCTL_LBM_TCVR;
1472 ew32(RCTL, rctl);
1473 return 0;
1474 }
1475 } else if (hw->phy.media_type == e1000_media_type_copper) {
1476 return e1000_integrated_phy_loopback(adapter);
1477 }
1478
1479 return 7;
1480 }
1481
1482 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1483 {
1484 struct e1000_hw *hw = &adapter->hw;
1485 u32 rctl;
1486 u16 phy_reg;
1487
1488 rctl = er32(RCTL);
1489 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1490 ew32(RCTL, rctl);
1491
1492 switch (hw->mac.type) {
1493 case e1000_80003es2lan:
1494 if (hw->phy.media_type == e1000_media_type_fiber ||
1495 hw->phy.media_type == e1000_media_type_internal_serdes) {
1496 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1497 ew32(CTRL_EXT, adapter->tx_fifo_head);
1498 adapter->tx_fifo_head = 0;
1499 }
1500 /* fall through */
1501 case e1000_82571:
1502 case e1000_82572:
1503 if (hw->phy.media_type == e1000_media_type_fiber ||
1504 hw->phy.media_type == e1000_media_type_internal_serdes) {
1505 #define E1000_SERDES_LB_OFF 0x400
1506 ew32(SCTL, E1000_SERDES_LB_OFF);
1507 usleep_range(10000, 20000);
1508 break;
1509 }
1510 /* Fall Through */
1511 default:
1512 hw->mac.autoneg = 1;
1513 if (hw->phy.type == e1000_phy_gg82563)
1514 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1515 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1516 if (phy_reg & MII_CR_LOOPBACK) {
1517 phy_reg &= ~MII_CR_LOOPBACK;
1518 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1519 e1000e_commit_phy(hw);
1520 }
1521 break;
1522 }
1523 }
1524
1525 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1526 unsigned int frame_size)
1527 {
1528 memset(skb->data, 0xFF, frame_size);
1529 frame_size &= ~1;
1530 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1531 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1532 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1533 }
1534
1535 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1536 unsigned int frame_size)
1537 {
1538 frame_size &= ~1;
1539 if (*(skb->data + 3) == 0xFF)
1540 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1541 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1542 return 0;
1543 return 13;
1544 }
1545
1546 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1547 {
1548 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1549 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1550 struct pci_dev *pdev = adapter->pdev;
1551 struct e1000_hw *hw = &adapter->hw;
1552 int i, j, k, l;
1553 int lc;
1554 int good_cnt;
1555 int ret_val = 0;
1556 unsigned long time;
1557
1558 ew32(RDT, rx_ring->count - 1);
1559
1560 /*
1561 * Calculate the loop count based on the largest descriptor ring
1562 * The idea is to wrap the largest ring a number of times using 64
1563 * send/receive pairs during each loop
1564 */
1565
1566 if (rx_ring->count <= tx_ring->count)
1567 lc = ((tx_ring->count / 64) * 2) + 1;
1568 else
1569 lc = ((rx_ring->count / 64) * 2) + 1;
1570
1571 k = 0;
1572 l = 0;
1573 for (j = 0; j <= lc; j++) { /* loop count loop */
1574 for (i = 0; i < 64; i++) { /* send the packets */
1575 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1576 1024);
1577 dma_sync_single_for_device(&pdev->dev,
1578 tx_ring->buffer_info[k].dma,
1579 tx_ring->buffer_info[k].length,
1580 DMA_TO_DEVICE);
1581 k++;
1582 if (k == tx_ring->count)
1583 k = 0;
1584 }
1585 ew32(TDT, k);
1586 msleep(200);
1587 time = jiffies; /* set the start time for the receive */
1588 good_cnt = 0;
1589 do { /* receive the sent packets */
1590 dma_sync_single_for_cpu(&pdev->dev,
1591 rx_ring->buffer_info[l].dma, 2048,
1592 DMA_FROM_DEVICE);
1593
1594 ret_val = e1000_check_lbtest_frame(
1595 rx_ring->buffer_info[l].skb, 1024);
1596 if (!ret_val)
1597 good_cnt++;
1598 l++;
1599 if (l == rx_ring->count)
1600 l = 0;
1601 /*
1602 * time + 20 msecs (200 msecs on 2.4) is more than
1603 * enough time to complete the receives, if it's
1604 * exceeded, break and error off
1605 */
1606 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1607 if (good_cnt != 64) {
1608 ret_val = 13; /* ret_val is the same as mis-compare */
1609 break;
1610 }
1611 if (jiffies >= (time + 20)) {
1612 ret_val = 14; /* error code for time out error */
1613 break;
1614 }
1615 } /* end loop count loop */
1616 return ret_val;
1617 }
1618
1619 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1620 {
1621 /*
1622 * PHY loopback cannot be performed if SoL/IDER
1623 * sessions are active
1624 */
1625 if (e1000_check_reset_block(&adapter->hw)) {
1626 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1627 *data = 0;
1628 goto out;
1629 }
1630
1631 *data = e1000_setup_desc_rings(adapter);
1632 if (*data)
1633 goto out;
1634
1635 *data = e1000_setup_loopback_test(adapter);
1636 if (*data)
1637 goto err_loopback;
1638
1639 *data = e1000_run_loopback_test(adapter);
1640 e1000_loopback_cleanup(adapter);
1641
1642 err_loopback:
1643 e1000_free_desc_rings(adapter);
1644 out:
1645 return *data;
1646 }
1647
1648 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1649 {
1650 struct e1000_hw *hw = &adapter->hw;
1651
1652 *data = 0;
1653 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1654 int i = 0;
1655 hw->mac.serdes_has_link = false;
1656
1657 /*
1658 * On some blade server designs, link establishment
1659 * could take as long as 2-3 minutes
1660 */
1661 do {
1662 hw->mac.ops.check_for_link(hw);
1663 if (hw->mac.serdes_has_link)
1664 return *data;
1665 msleep(20);
1666 } while (i++ < 3750);
1667
1668 *data = 1;
1669 } else {
1670 hw->mac.ops.check_for_link(hw);
1671 if (hw->mac.autoneg)
1672 /*
1673 * On some Phy/switch combinations, link establishment
1674 * can take a few seconds more than expected.
1675 */
1676 msleep(5000);
1677
1678 if (!(er32(STATUS) & E1000_STATUS_LU))
1679 *data = 1;
1680 }
1681 return *data;
1682 }
1683
1684 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1685 {
1686 switch (sset) {
1687 case ETH_SS_TEST:
1688 return E1000_TEST_LEN;
1689 case ETH_SS_STATS:
1690 return E1000_STATS_LEN;
1691 default:
1692 return -EOPNOTSUPP;
1693 }
1694 }
1695
1696 static void e1000_diag_test(struct net_device *netdev,
1697 struct ethtool_test *eth_test, u64 *data)
1698 {
1699 struct e1000_adapter *adapter = netdev_priv(netdev);
1700 u16 autoneg_advertised;
1701 u8 forced_speed_duplex;
1702 u8 autoneg;
1703 bool if_running = netif_running(netdev);
1704
1705 set_bit(__E1000_TESTING, &adapter->state);
1706
1707 if (!if_running) {
1708 /* Get control of and reset hardware */
1709 if (adapter->flags & FLAG_HAS_AMT)
1710 e1000e_get_hw_control(adapter);
1711
1712 e1000e_power_up_phy(adapter);
1713
1714 adapter->hw.phy.autoneg_wait_to_complete = 1;
1715 e1000e_reset(adapter);
1716 adapter->hw.phy.autoneg_wait_to_complete = 0;
1717 }
1718
1719 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1720 /* Offline tests */
1721
1722 /* save speed, duplex, autoneg settings */
1723 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1724 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1725 autoneg = adapter->hw.mac.autoneg;
1726
1727 e_info("offline testing starting\n");
1728
1729 if (if_running)
1730 /* indicate we're in test mode */
1731 dev_close(netdev);
1732
1733 if (e1000_reg_test(adapter, &data[0]))
1734 eth_test->flags |= ETH_TEST_FL_FAILED;
1735
1736 e1000e_reset(adapter);
1737 if (e1000_eeprom_test(adapter, &data[1]))
1738 eth_test->flags |= ETH_TEST_FL_FAILED;
1739
1740 e1000e_reset(adapter);
1741 if (e1000_intr_test(adapter, &data[2]))
1742 eth_test->flags |= ETH_TEST_FL_FAILED;
1743
1744 e1000e_reset(adapter);
1745 if (e1000_loopback_test(adapter, &data[3]))
1746 eth_test->flags |= ETH_TEST_FL_FAILED;
1747
1748 /* force this routine to wait until autoneg complete/timeout */
1749 adapter->hw.phy.autoneg_wait_to_complete = 1;
1750 e1000e_reset(adapter);
1751 adapter->hw.phy.autoneg_wait_to_complete = 0;
1752
1753 if (e1000_link_test(adapter, &data[4]))
1754 eth_test->flags |= ETH_TEST_FL_FAILED;
1755
1756 /* restore speed, duplex, autoneg settings */
1757 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1758 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1759 adapter->hw.mac.autoneg = autoneg;
1760 e1000e_reset(adapter);
1761
1762 clear_bit(__E1000_TESTING, &adapter->state);
1763 if (if_running)
1764 dev_open(netdev);
1765 } else {
1766 /* Online tests */
1767
1768 e_info("online testing starting\n");
1769
1770 /* register, eeprom, intr and loopback tests not run online */
1771 data[0] = 0;
1772 data[1] = 0;
1773 data[2] = 0;
1774 data[3] = 0;
1775
1776 if (e1000_link_test(adapter, &data[4]))
1777 eth_test->flags |= ETH_TEST_FL_FAILED;
1778
1779 clear_bit(__E1000_TESTING, &adapter->state);
1780 }
1781
1782 if (!if_running) {
1783 e1000e_reset(adapter);
1784
1785 if (adapter->flags & FLAG_HAS_AMT)
1786 e1000e_release_hw_control(adapter);
1787 }
1788
1789 msleep_interruptible(4 * 1000);
1790 }
1791
1792 static void e1000_get_wol(struct net_device *netdev,
1793 struct ethtool_wolinfo *wol)
1794 {
1795 struct e1000_adapter *adapter = netdev_priv(netdev);
1796
1797 wol->supported = 0;
1798 wol->wolopts = 0;
1799
1800 if (!(adapter->flags & FLAG_HAS_WOL) ||
1801 !device_can_wakeup(&adapter->pdev->dev))
1802 return;
1803
1804 wol->supported = WAKE_UCAST | WAKE_MCAST |
1805 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1806
1807 /* apply any specific unsupported masks here */
1808 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1809 wol->supported &= ~WAKE_UCAST;
1810
1811 if (adapter->wol & E1000_WUFC_EX)
1812 e_err("Interface does not support directed (unicast) "
1813 "frame wake-up packets\n");
1814 }
1815
1816 if (adapter->wol & E1000_WUFC_EX)
1817 wol->wolopts |= WAKE_UCAST;
1818 if (adapter->wol & E1000_WUFC_MC)
1819 wol->wolopts |= WAKE_MCAST;
1820 if (adapter->wol & E1000_WUFC_BC)
1821 wol->wolopts |= WAKE_BCAST;
1822 if (adapter->wol & E1000_WUFC_MAG)
1823 wol->wolopts |= WAKE_MAGIC;
1824 if (adapter->wol & E1000_WUFC_LNKC)
1825 wol->wolopts |= WAKE_PHY;
1826 }
1827
1828 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1829 {
1830 struct e1000_adapter *adapter = netdev_priv(netdev);
1831
1832 if (!(adapter->flags & FLAG_HAS_WOL) ||
1833 !device_can_wakeup(&adapter->pdev->dev) ||
1834 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1835 WAKE_MAGIC | WAKE_PHY)))
1836 return -EOPNOTSUPP;
1837
1838 /* these settings will always override what we currently have */
1839 adapter->wol = 0;
1840
1841 if (wol->wolopts & WAKE_UCAST)
1842 adapter->wol |= E1000_WUFC_EX;
1843 if (wol->wolopts & WAKE_MCAST)
1844 adapter->wol |= E1000_WUFC_MC;
1845 if (wol->wolopts & WAKE_BCAST)
1846 adapter->wol |= E1000_WUFC_BC;
1847 if (wol->wolopts & WAKE_MAGIC)
1848 adapter->wol |= E1000_WUFC_MAG;
1849 if (wol->wolopts & WAKE_PHY)
1850 adapter->wol |= E1000_WUFC_LNKC;
1851
1852 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1853
1854 return 0;
1855 }
1856
1857 static int e1000_set_phys_id(struct net_device *netdev,
1858 enum ethtool_phys_id_state state)
1859 {
1860 struct e1000_adapter *adapter = netdev_priv(netdev);
1861 struct e1000_hw *hw = &adapter->hw;
1862
1863 switch (state) {
1864 case ETHTOOL_ID_ACTIVE:
1865 if (!hw->mac.ops.blink_led)
1866 return 2; /* cycle on/off twice per second */
1867
1868 hw->mac.ops.blink_led(hw);
1869 break;
1870
1871 case ETHTOOL_ID_INACTIVE:
1872 if (hw->phy.type == e1000_phy_ife)
1873 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1874 hw->mac.ops.led_off(hw);
1875 hw->mac.ops.cleanup_led(hw);
1876 break;
1877
1878 case ETHTOOL_ID_ON:
1879 adapter->hw.mac.ops.led_on(&adapter->hw);
1880 break;
1881
1882 case ETHTOOL_ID_OFF:
1883 adapter->hw.mac.ops.led_off(&adapter->hw);
1884 break;
1885 }
1886 return 0;
1887 }
1888
1889 static int e1000_get_coalesce(struct net_device *netdev,
1890 struct ethtool_coalesce *ec)
1891 {
1892 struct e1000_adapter *adapter = netdev_priv(netdev);
1893
1894 if (adapter->itr_setting <= 4)
1895 ec->rx_coalesce_usecs = adapter->itr_setting;
1896 else
1897 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1898
1899 return 0;
1900 }
1901
1902 static int e1000_set_coalesce(struct net_device *netdev,
1903 struct ethtool_coalesce *ec)
1904 {
1905 struct e1000_adapter *adapter = netdev_priv(netdev);
1906 struct e1000_hw *hw = &adapter->hw;
1907
1908 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1909 ((ec->rx_coalesce_usecs > 4) &&
1910 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1911 (ec->rx_coalesce_usecs == 2))
1912 return -EINVAL;
1913
1914 if (ec->rx_coalesce_usecs == 4) {
1915 adapter->itr = adapter->itr_setting = 4;
1916 } else if (ec->rx_coalesce_usecs <= 3) {
1917 adapter->itr = 20000;
1918 adapter->itr_setting = ec->rx_coalesce_usecs;
1919 } else {
1920 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1921 adapter->itr_setting = adapter->itr & ~3;
1922 }
1923
1924 if (adapter->itr_setting != 0)
1925 ew32(ITR, 1000000000 / (adapter->itr * 256));
1926 else
1927 ew32(ITR, 0);
1928
1929 return 0;
1930 }
1931
1932 static int e1000_nway_reset(struct net_device *netdev)
1933 {
1934 struct e1000_adapter *adapter = netdev_priv(netdev);
1935
1936 if (!netif_running(netdev))
1937 return -EAGAIN;
1938
1939 if (!adapter->hw.mac.autoneg)
1940 return -EINVAL;
1941
1942 e1000e_reinit_locked(adapter);
1943
1944 return 0;
1945 }
1946
1947 static void e1000_get_ethtool_stats(struct net_device *netdev,
1948 struct ethtool_stats *stats,
1949 u64 *data)
1950 {
1951 struct e1000_adapter *adapter = netdev_priv(netdev);
1952 struct rtnl_link_stats64 net_stats;
1953 int i;
1954 char *p = NULL;
1955
1956 e1000e_get_stats64(netdev, &net_stats);
1957 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1958 switch (e1000_gstrings_stats[i].type) {
1959 case NETDEV_STATS:
1960 p = (char *) &net_stats +
1961 e1000_gstrings_stats[i].stat_offset;
1962 break;
1963 case E1000_STATS:
1964 p = (char *) adapter +
1965 e1000_gstrings_stats[i].stat_offset;
1966 break;
1967 default:
1968 data[i] = 0;
1969 continue;
1970 }
1971
1972 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1973 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1974 }
1975 }
1976
1977 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1978 u8 *data)
1979 {
1980 u8 *p = data;
1981 int i;
1982
1983 switch (stringset) {
1984 case ETH_SS_TEST:
1985 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1986 break;
1987 case ETH_SS_STATS:
1988 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1989 memcpy(p, e1000_gstrings_stats[i].stat_string,
1990 ETH_GSTRING_LEN);
1991 p += ETH_GSTRING_LEN;
1992 }
1993 break;
1994 }
1995 }
1996
1997 static int e1000e_set_flags(struct net_device *netdev, u32 data)
1998 {
1999 struct e1000_adapter *adapter = netdev_priv(netdev);
2000 bool need_reset = false;
2001 int rc;
2002
2003 need_reset = (data & ETH_FLAG_RXVLAN) !=
2004 (netdev->features & NETIF_F_HW_VLAN_RX);
2005
2006 rc = ethtool_op_set_flags(netdev, data, ETH_FLAG_RXVLAN |
2007 ETH_FLAG_TXVLAN);
2008
2009 if (rc)
2010 return rc;
2011
2012 if (need_reset) {
2013 if (netif_running(netdev))
2014 e1000e_reinit_locked(adapter);
2015 else
2016 e1000e_reset(adapter);
2017 }
2018
2019 return 0;
2020 }
2021
2022 static const struct ethtool_ops e1000_ethtool_ops = {
2023 .get_settings = e1000_get_settings,
2024 .set_settings = e1000_set_settings,
2025 .get_drvinfo = e1000_get_drvinfo,
2026 .get_regs_len = e1000_get_regs_len,
2027 .get_regs = e1000_get_regs,
2028 .get_wol = e1000_get_wol,
2029 .set_wol = e1000_set_wol,
2030 .get_msglevel = e1000_get_msglevel,
2031 .set_msglevel = e1000_set_msglevel,
2032 .nway_reset = e1000_nway_reset,
2033 .get_link = ethtool_op_get_link,
2034 .get_eeprom_len = e1000_get_eeprom_len,
2035 .get_eeprom = e1000_get_eeprom,
2036 .set_eeprom = e1000_set_eeprom,
2037 .get_ringparam = e1000_get_ringparam,
2038 .set_ringparam = e1000_set_ringparam,
2039 .get_pauseparam = e1000_get_pauseparam,
2040 .set_pauseparam = e1000_set_pauseparam,
2041 .get_rx_csum = e1000_get_rx_csum,
2042 .set_rx_csum = e1000_set_rx_csum,
2043 .get_tx_csum = e1000_get_tx_csum,
2044 .set_tx_csum = e1000_set_tx_csum,
2045 .get_sg = ethtool_op_get_sg,
2046 .set_sg = ethtool_op_set_sg,
2047 .get_tso = ethtool_op_get_tso,
2048 .set_tso = e1000_set_tso,
2049 .self_test = e1000_diag_test,
2050 .get_strings = e1000_get_strings,
2051 .set_phys_id = e1000_set_phys_id,
2052 .get_ethtool_stats = e1000_get_ethtool_stats,
2053 .get_sset_count = e1000e_get_sset_count,
2054 .get_coalesce = e1000_get_coalesce,
2055 .set_coalesce = e1000_set_coalesce,
2056 .get_flags = ethtool_op_get_flags,
2057 .set_flags = e1000e_set_flags,
2058 };
2059
2060 void e1000e_set_ethtool_ops(struct net_device *netdev)
2061 {
2062 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2063 }
This page took 0.071305 seconds and 4 git commands to generate.