e1000e: increase driver version number
[deliverable/linux.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37
38 #include "e1000.h"
39
40 enum {NETDEV_STATS, E1000_STATS};
41
42 struct e1000_stats {
43 char stat_string[ETH_GSTRING_LEN];
44 int type;
45 int sizeof_stat;
46 int stat_offset;
47 };
48
49 #define E1000_STAT(str, m) { \
50 .stat_string = str, \
51 .type = E1000_STATS, \
52 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
53 .stat_offset = offsetof(struct e1000_adapter, m) }
54 #define E1000_NETDEV_STAT(str, m) { \
55 .stat_string = str, \
56 .type = NETDEV_STATS, \
57 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
58 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
59
60 static const struct e1000_stats e1000_gstrings_stats[] = {
61 E1000_STAT("rx_packets", stats.gprc),
62 E1000_STAT("tx_packets", stats.gptc),
63 E1000_STAT("rx_bytes", stats.gorc),
64 E1000_STAT("tx_bytes", stats.gotc),
65 E1000_STAT("rx_broadcast", stats.bprc),
66 E1000_STAT("tx_broadcast", stats.bptc),
67 E1000_STAT("rx_multicast", stats.mprc),
68 E1000_STAT("tx_multicast", stats.mptc),
69 E1000_NETDEV_STAT("rx_errors", rx_errors),
70 E1000_NETDEV_STAT("tx_errors", tx_errors),
71 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
72 E1000_STAT("multicast", stats.mprc),
73 E1000_STAT("collisions", stats.colc),
74 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
75 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
76 E1000_STAT("rx_crc_errors", stats.crcerrs),
77 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
78 E1000_STAT("rx_no_buffer_count", stats.rnbc),
79 E1000_STAT("rx_missed_errors", stats.mpc),
80 E1000_STAT("tx_aborted_errors", stats.ecol),
81 E1000_STAT("tx_carrier_errors", stats.tncrs),
82 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
83 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
84 E1000_STAT("tx_window_errors", stats.latecol),
85 E1000_STAT("tx_abort_late_coll", stats.latecol),
86 E1000_STAT("tx_deferred_ok", stats.dc),
87 E1000_STAT("tx_single_coll_ok", stats.scc),
88 E1000_STAT("tx_multi_coll_ok", stats.mcc),
89 E1000_STAT("tx_timeout_count", tx_timeout_count),
90 E1000_STAT("tx_restart_queue", restart_queue),
91 E1000_STAT("rx_long_length_errors", stats.roc),
92 E1000_STAT("rx_short_length_errors", stats.ruc),
93 E1000_STAT("rx_align_errors", stats.algnerrc),
94 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
95 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
96 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
97 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
98 E1000_STAT("tx_flow_control_xon", stats.xontxc),
99 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
100 E1000_STAT("rx_long_byte_count", stats.gorc),
101 E1000_STAT("rx_csum_offload_good", hw_csum_good),
102 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
103 E1000_STAT("rx_header_split", rx_hdr_split),
104 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
105 E1000_STAT("tx_smbus", stats.mgptc),
106 E1000_STAT("rx_smbus", stats.mgprc),
107 E1000_STAT("dropped_smbus", stats.mgpdc),
108 E1000_STAT("rx_dma_failed", rx_dma_failed),
109 E1000_STAT("tx_dma_failed", tx_dma_failed),
110 };
111
112 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
113 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
114 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
115 "Register test (offline)", "Eeprom test (offline)",
116 "Interrupt test (offline)", "Loopback test (offline)",
117 "Link test (on/offline)"
118 };
119 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
120
121 static int e1000_get_settings(struct net_device *netdev,
122 struct ethtool_cmd *ecmd)
123 {
124 struct e1000_adapter *adapter = netdev_priv(netdev);
125 struct e1000_hw *hw = &adapter->hw;
126 u32 speed;
127
128 if (hw->phy.media_type == e1000_media_type_copper) {
129
130 ecmd->supported = (SUPPORTED_10baseT_Half |
131 SUPPORTED_10baseT_Full |
132 SUPPORTED_100baseT_Half |
133 SUPPORTED_100baseT_Full |
134 SUPPORTED_1000baseT_Full |
135 SUPPORTED_Autoneg |
136 SUPPORTED_TP);
137 if (hw->phy.type == e1000_phy_ife)
138 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
139 ecmd->advertising = ADVERTISED_TP;
140
141 if (hw->mac.autoneg == 1) {
142 ecmd->advertising |= ADVERTISED_Autoneg;
143 /* the e1000 autoneg seems to match ethtool nicely */
144 ecmd->advertising |= hw->phy.autoneg_advertised;
145 }
146
147 ecmd->port = PORT_TP;
148 ecmd->phy_address = hw->phy.addr;
149 ecmd->transceiver = XCVR_INTERNAL;
150
151 } else {
152 ecmd->supported = (SUPPORTED_1000baseT_Full |
153 SUPPORTED_FIBRE |
154 SUPPORTED_Autoneg);
155
156 ecmd->advertising = (ADVERTISED_1000baseT_Full |
157 ADVERTISED_FIBRE |
158 ADVERTISED_Autoneg);
159
160 ecmd->port = PORT_FIBRE;
161 ecmd->transceiver = XCVR_EXTERNAL;
162 }
163
164 speed = -1;
165 ecmd->duplex = -1;
166
167 if (netif_running(netdev)) {
168 if (netif_carrier_ok(netdev)) {
169 speed = adapter->link_speed;
170 ecmd->duplex = adapter->link_duplex - 1;
171 }
172 } else {
173 u32 status = er32(STATUS);
174 if (status & E1000_STATUS_LU) {
175 if (status & E1000_STATUS_SPEED_1000)
176 speed = SPEED_1000;
177 else if (status & E1000_STATUS_SPEED_100)
178 speed = SPEED_100;
179 else
180 speed = SPEED_10;
181
182 if (status & E1000_STATUS_FD)
183 ecmd->duplex = DUPLEX_FULL;
184 else
185 ecmd->duplex = DUPLEX_HALF;
186 }
187 }
188
189 ethtool_cmd_speed_set(ecmd, speed);
190 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
191 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
192
193 /* MDI-X => 2; MDI =>1; Invalid =>0 */
194 if ((hw->phy.media_type == e1000_media_type_copper) &&
195 netif_carrier_ok(netdev))
196 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
197 ETH_TP_MDI;
198 else
199 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
200
201 return 0;
202 }
203
204 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
205 {
206 struct e1000_mac_info *mac = &adapter->hw.mac;
207
208 mac->autoneg = 0;
209
210 /* Make sure dplx is at most 1 bit and lsb of speed is not set
211 * for the switch() below to work */
212 if ((spd & 1) || (dplx & ~1))
213 goto err_inval;
214
215 /* Fiber NICs only allow 1000 gbps Full duplex */
216 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
217 spd != SPEED_1000 &&
218 dplx != DUPLEX_FULL) {
219 goto err_inval;
220 }
221
222 switch (spd + dplx) {
223 case SPEED_10 + DUPLEX_HALF:
224 mac->forced_speed_duplex = ADVERTISE_10_HALF;
225 break;
226 case SPEED_10 + DUPLEX_FULL:
227 mac->forced_speed_duplex = ADVERTISE_10_FULL;
228 break;
229 case SPEED_100 + DUPLEX_HALF:
230 mac->forced_speed_duplex = ADVERTISE_100_HALF;
231 break;
232 case SPEED_100 + DUPLEX_FULL:
233 mac->forced_speed_duplex = ADVERTISE_100_FULL;
234 break;
235 case SPEED_1000 + DUPLEX_FULL:
236 mac->autoneg = 1;
237 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
238 break;
239 case SPEED_1000 + DUPLEX_HALF: /* not supported */
240 default:
241 goto err_inval;
242 }
243 return 0;
244
245 err_inval:
246 e_err("Unsupported Speed/Duplex configuration\n");
247 return -EINVAL;
248 }
249
250 static int e1000_set_settings(struct net_device *netdev,
251 struct ethtool_cmd *ecmd)
252 {
253 struct e1000_adapter *adapter = netdev_priv(netdev);
254 struct e1000_hw *hw = &adapter->hw;
255
256 /*
257 * When SoL/IDER sessions are active, autoneg/speed/duplex
258 * cannot be changed
259 */
260 if (e1000_check_reset_block(hw)) {
261 e_err("Cannot change link characteristics when SoL/IDER is "
262 "active.\n");
263 return -EINVAL;
264 }
265
266 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
267 usleep_range(1000, 2000);
268
269 if (ecmd->autoneg == AUTONEG_ENABLE) {
270 hw->mac.autoneg = 1;
271 if (hw->phy.media_type == e1000_media_type_fiber)
272 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
273 ADVERTISED_FIBRE |
274 ADVERTISED_Autoneg;
275 else
276 hw->phy.autoneg_advertised = ecmd->advertising |
277 ADVERTISED_TP |
278 ADVERTISED_Autoneg;
279 ecmd->advertising = hw->phy.autoneg_advertised;
280 if (adapter->fc_autoneg)
281 hw->fc.requested_mode = e1000_fc_default;
282 } else {
283 u32 speed = ethtool_cmd_speed(ecmd);
284 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
285 clear_bit(__E1000_RESETTING, &adapter->state);
286 return -EINVAL;
287 }
288 }
289
290 /* reset the link */
291
292 if (netif_running(adapter->netdev)) {
293 e1000e_down(adapter);
294 e1000e_up(adapter);
295 } else {
296 e1000e_reset(adapter);
297 }
298
299 clear_bit(__E1000_RESETTING, &adapter->state);
300 return 0;
301 }
302
303 static void e1000_get_pauseparam(struct net_device *netdev,
304 struct ethtool_pauseparam *pause)
305 {
306 struct e1000_adapter *adapter = netdev_priv(netdev);
307 struct e1000_hw *hw = &adapter->hw;
308
309 pause->autoneg =
310 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
311
312 if (hw->fc.current_mode == e1000_fc_rx_pause) {
313 pause->rx_pause = 1;
314 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
315 pause->tx_pause = 1;
316 } else if (hw->fc.current_mode == e1000_fc_full) {
317 pause->rx_pause = 1;
318 pause->tx_pause = 1;
319 }
320 }
321
322 static int e1000_set_pauseparam(struct net_device *netdev,
323 struct ethtool_pauseparam *pause)
324 {
325 struct e1000_adapter *adapter = netdev_priv(netdev);
326 struct e1000_hw *hw = &adapter->hw;
327 int retval = 0;
328
329 adapter->fc_autoneg = pause->autoneg;
330
331 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
332 usleep_range(1000, 2000);
333
334 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
335 hw->fc.requested_mode = e1000_fc_default;
336 if (netif_running(adapter->netdev)) {
337 e1000e_down(adapter);
338 e1000e_up(adapter);
339 } else {
340 e1000e_reset(adapter);
341 }
342 } else {
343 if (pause->rx_pause && pause->tx_pause)
344 hw->fc.requested_mode = e1000_fc_full;
345 else if (pause->rx_pause && !pause->tx_pause)
346 hw->fc.requested_mode = e1000_fc_rx_pause;
347 else if (!pause->rx_pause && pause->tx_pause)
348 hw->fc.requested_mode = e1000_fc_tx_pause;
349 else if (!pause->rx_pause && !pause->tx_pause)
350 hw->fc.requested_mode = e1000_fc_none;
351
352 hw->fc.current_mode = hw->fc.requested_mode;
353
354 if (hw->phy.media_type == e1000_media_type_fiber) {
355 retval = hw->mac.ops.setup_link(hw);
356 /* implicit goto out */
357 } else {
358 retval = e1000e_force_mac_fc(hw);
359 if (retval)
360 goto out;
361 e1000e_set_fc_watermarks(hw);
362 }
363 }
364
365 out:
366 clear_bit(__E1000_RESETTING, &adapter->state);
367 return retval;
368 }
369
370 static u32 e1000_get_rx_csum(struct net_device *netdev)
371 {
372 struct e1000_adapter *adapter = netdev_priv(netdev);
373 return adapter->flags & FLAG_RX_CSUM_ENABLED;
374 }
375
376 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
377 {
378 struct e1000_adapter *adapter = netdev_priv(netdev);
379
380 if (data)
381 adapter->flags |= FLAG_RX_CSUM_ENABLED;
382 else
383 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
384
385 if (netif_running(netdev))
386 e1000e_reinit_locked(adapter);
387 else
388 e1000e_reset(adapter);
389 return 0;
390 }
391
392 static u32 e1000_get_tx_csum(struct net_device *netdev)
393 {
394 return (netdev->features & NETIF_F_HW_CSUM) != 0;
395 }
396
397 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
398 {
399 if (data)
400 netdev->features |= NETIF_F_HW_CSUM;
401 else
402 netdev->features &= ~NETIF_F_HW_CSUM;
403
404 return 0;
405 }
406
407 static int e1000_set_tso(struct net_device *netdev, u32 data)
408 {
409 struct e1000_adapter *adapter = netdev_priv(netdev);
410
411 if (data) {
412 netdev->features |= NETIF_F_TSO;
413 netdev->features |= NETIF_F_TSO6;
414 } else {
415 netdev->features &= ~NETIF_F_TSO;
416 netdev->features &= ~NETIF_F_TSO6;
417 }
418
419 adapter->flags |= FLAG_TSO_FORCE;
420 return 0;
421 }
422
423 static u32 e1000_get_msglevel(struct net_device *netdev)
424 {
425 struct e1000_adapter *adapter = netdev_priv(netdev);
426 return adapter->msg_enable;
427 }
428
429 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
430 {
431 struct e1000_adapter *adapter = netdev_priv(netdev);
432 adapter->msg_enable = data;
433 }
434
435 static int e1000_get_regs_len(struct net_device *netdev)
436 {
437 #define E1000_REGS_LEN 32 /* overestimate */
438 return E1000_REGS_LEN * sizeof(u32);
439 }
440
441 static void e1000_get_regs(struct net_device *netdev,
442 struct ethtool_regs *regs, void *p)
443 {
444 struct e1000_adapter *adapter = netdev_priv(netdev);
445 struct e1000_hw *hw = &adapter->hw;
446 u32 *regs_buff = p;
447 u16 phy_data;
448
449 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
450
451 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
452 adapter->pdev->device;
453
454 regs_buff[0] = er32(CTRL);
455 regs_buff[1] = er32(STATUS);
456
457 regs_buff[2] = er32(RCTL);
458 regs_buff[3] = er32(RDLEN);
459 regs_buff[4] = er32(RDH);
460 regs_buff[5] = er32(RDT);
461 regs_buff[6] = er32(RDTR);
462
463 regs_buff[7] = er32(TCTL);
464 regs_buff[8] = er32(TDLEN);
465 regs_buff[9] = er32(TDH);
466 regs_buff[10] = er32(TDT);
467 regs_buff[11] = er32(TIDV);
468
469 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
470
471 /* ethtool doesn't use anything past this point, so all this
472 * code is likely legacy junk for apps that may or may not
473 * exist */
474 if (hw->phy.type == e1000_phy_m88) {
475 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
476 regs_buff[13] = (u32)phy_data; /* cable length */
477 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
478 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
479 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
480 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
481 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
482 regs_buff[18] = regs_buff[13]; /* cable polarity */
483 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
484 regs_buff[20] = regs_buff[17]; /* polarity correction */
485 /* phy receive errors */
486 regs_buff[22] = adapter->phy_stats.receive_errors;
487 regs_buff[23] = regs_buff[13]; /* mdix mode */
488 }
489 regs_buff[21] = 0; /* was idle_errors */
490 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
491 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
492 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
493 }
494
495 static int e1000_get_eeprom_len(struct net_device *netdev)
496 {
497 struct e1000_adapter *adapter = netdev_priv(netdev);
498 return adapter->hw.nvm.word_size * 2;
499 }
500
501 static int e1000_get_eeprom(struct net_device *netdev,
502 struct ethtool_eeprom *eeprom, u8 *bytes)
503 {
504 struct e1000_adapter *adapter = netdev_priv(netdev);
505 struct e1000_hw *hw = &adapter->hw;
506 u16 *eeprom_buff;
507 int first_word;
508 int last_word;
509 int ret_val = 0;
510 u16 i;
511
512 if (eeprom->len == 0)
513 return -EINVAL;
514
515 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
516
517 first_word = eeprom->offset >> 1;
518 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
519
520 eeprom_buff = kmalloc(sizeof(u16) *
521 (last_word - first_word + 1), GFP_KERNEL);
522 if (!eeprom_buff)
523 return -ENOMEM;
524
525 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
526 ret_val = e1000_read_nvm(hw, first_word,
527 last_word - first_word + 1,
528 eeprom_buff);
529 } else {
530 for (i = 0; i < last_word - first_word + 1; i++) {
531 ret_val = e1000_read_nvm(hw, first_word + i, 1,
532 &eeprom_buff[i]);
533 if (ret_val)
534 break;
535 }
536 }
537
538 if (ret_val) {
539 /* a read error occurred, throw away the result */
540 memset(eeprom_buff, 0xff, sizeof(u16) *
541 (last_word - first_word + 1));
542 } else {
543 /* Device's eeprom is always little-endian, word addressable */
544 for (i = 0; i < last_word - first_word + 1; i++)
545 le16_to_cpus(&eeprom_buff[i]);
546 }
547
548 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
549 kfree(eeprom_buff);
550
551 return ret_val;
552 }
553
554 static int e1000_set_eeprom(struct net_device *netdev,
555 struct ethtool_eeprom *eeprom, u8 *bytes)
556 {
557 struct e1000_adapter *adapter = netdev_priv(netdev);
558 struct e1000_hw *hw = &adapter->hw;
559 u16 *eeprom_buff;
560 void *ptr;
561 int max_len;
562 int first_word;
563 int last_word;
564 int ret_val = 0;
565 u16 i;
566
567 if (eeprom->len == 0)
568 return -EOPNOTSUPP;
569
570 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
571 return -EFAULT;
572
573 if (adapter->flags & FLAG_READ_ONLY_NVM)
574 return -EINVAL;
575
576 max_len = hw->nvm.word_size * 2;
577
578 first_word = eeprom->offset >> 1;
579 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
580 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
581 if (!eeprom_buff)
582 return -ENOMEM;
583
584 ptr = (void *)eeprom_buff;
585
586 if (eeprom->offset & 1) {
587 /* need read/modify/write of first changed EEPROM word */
588 /* only the second byte of the word is being modified */
589 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
590 ptr++;
591 }
592 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
593 /* need read/modify/write of last changed EEPROM word */
594 /* only the first byte of the word is being modified */
595 ret_val = e1000_read_nvm(hw, last_word, 1,
596 &eeprom_buff[last_word - first_word]);
597
598 if (ret_val)
599 goto out;
600
601 /* Device's eeprom is always little-endian, word addressable */
602 for (i = 0; i < last_word - first_word + 1; i++)
603 le16_to_cpus(&eeprom_buff[i]);
604
605 memcpy(ptr, bytes, eeprom->len);
606
607 for (i = 0; i < last_word - first_word + 1; i++)
608 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
609
610 ret_val = e1000_write_nvm(hw, first_word,
611 last_word - first_word + 1, eeprom_buff);
612
613 if (ret_val)
614 goto out;
615
616 /*
617 * Update the checksum over the first part of the EEPROM if needed
618 * and flush shadow RAM for applicable controllers
619 */
620 if ((first_word <= NVM_CHECKSUM_REG) ||
621 (hw->mac.type == e1000_82583) ||
622 (hw->mac.type == e1000_82574) ||
623 (hw->mac.type == e1000_82573))
624 ret_val = e1000e_update_nvm_checksum(hw);
625
626 out:
627 kfree(eeprom_buff);
628 return ret_val;
629 }
630
631 static void e1000_get_drvinfo(struct net_device *netdev,
632 struct ethtool_drvinfo *drvinfo)
633 {
634 struct e1000_adapter *adapter = netdev_priv(netdev);
635 char firmware_version[32];
636
637 strncpy(drvinfo->driver, e1000e_driver_name,
638 sizeof(drvinfo->driver) - 1);
639 strncpy(drvinfo->version, e1000e_driver_version,
640 sizeof(drvinfo->version) - 1);
641
642 /*
643 * EEPROM image version # is reported as firmware version # for
644 * PCI-E controllers
645 */
646 snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d",
647 (adapter->eeprom_vers & 0xF000) >> 12,
648 (adapter->eeprom_vers & 0x0FF0) >> 4,
649 (adapter->eeprom_vers & 0x000F));
650
651 strncpy(drvinfo->fw_version, firmware_version,
652 sizeof(drvinfo->fw_version) - 1);
653 strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
654 sizeof(drvinfo->bus_info) - 1);
655 drvinfo->regdump_len = e1000_get_regs_len(netdev);
656 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
657 }
658
659 static void e1000_get_ringparam(struct net_device *netdev,
660 struct ethtool_ringparam *ring)
661 {
662 struct e1000_adapter *adapter = netdev_priv(netdev);
663 struct e1000_ring *tx_ring = adapter->tx_ring;
664 struct e1000_ring *rx_ring = adapter->rx_ring;
665
666 ring->rx_max_pending = E1000_MAX_RXD;
667 ring->tx_max_pending = E1000_MAX_TXD;
668 ring->rx_mini_max_pending = 0;
669 ring->rx_jumbo_max_pending = 0;
670 ring->rx_pending = rx_ring->count;
671 ring->tx_pending = tx_ring->count;
672 ring->rx_mini_pending = 0;
673 ring->rx_jumbo_pending = 0;
674 }
675
676 static int e1000_set_ringparam(struct net_device *netdev,
677 struct ethtool_ringparam *ring)
678 {
679 struct e1000_adapter *adapter = netdev_priv(netdev);
680 struct e1000_ring *tx_ring, *tx_old;
681 struct e1000_ring *rx_ring, *rx_old;
682 int err;
683
684 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
685 return -EINVAL;
686
687 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
688 usleep_range(1000, 2000);
689
690 if (netif_running(adapter->netdev))
691 e1000e_down(adapter);
692
693 tx_old = adapter->tx_ring;
694 rx_old = adapter->rx_ring;
695
696 err = -ENOMEM;
697 tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL);
698 if (!tx_ring)
699 goto err_alloc_tx;
700
701 rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL);
702 if (!rx_ring)
703 goto err_alloc_rx;
704
705 adapter->tx_ring = tx_ring;
706 adapter->rx_ring = rx_ring;
707
708 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
709 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
710 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
711
712 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
713 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
714 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
715
716 if (netif_running(adapter->netdev)) {
717 /* Try to get new resources before deleting old */
718 err = e1000e_setup_rx_resources(adapter);
719 if (err)
720 goto err_setup_rx;
721 err = e1000e_setup_tx_resources(adapter);
722 if (err)
723 goto err_setup_tx;
724
725 /*
726 * restore the old in order to free it,
727 * then add in the new
728 */
729 adapter->rx_ring = rx_old;
730 adapter->tx_ring = tx_old;
731 e1000e_free_rx_resources(adapter);
732 e1000e_free_tx_resources(adapter);
733 kfree(tx_old);
734 kfree(rx_old);
735 adapter->rx_ring = rx_ring;
736 adapter->tx_ring = tx_ring;
737 err = e1000e_up(adapter);
738 if (err)
739 goto err_setup;
740 }
741
742 clear_bit(__E1000_RESETTING, &adapter->state);
743 return 0;
744 err_setup_tx:
745 e1000e_free_rx_resources(adapter);
746 err_setup_rx:
747 adapter->rx_ring = rx_old;
748 adapter->tx_ring = tx_old;
749 kfree(rx_ring);
750 err_alloc_rx:
751 kfree(tx_ring);
752 err_alloc_tx:
753 e1000e_up(adapter);
754 err_setup:
755 clear_bit(__E1000_RESETTING, &adapter->state);
756 return err;
757 }
758
759 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
760 int reg, int offset, u32 mask, u32 write)
761 {
762 u32 pat, val;
763 static const u32 test[] = {
764 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
765 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
766 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
767 (test[pat] & write));
768 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
769 if (val != (test[pat] & write & mask)) {
770 e_err("pattern test reg %04X failed: got 0x%08X "
771 "expected 0x%08X\n", reg + offset, val,
772 (test[pat] & write & mask));
773 *data = reg;
774 return 1;
775 }
776 }
777 return 0;
778 }
779
780 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
781 int reg, u32 mask, u32 write)
782 {
783 u32 val;
784 __ew32(&adapter->hw, reg, write & mask);
785 val = __er32(&adapter->hw, reg);
786 if ((write & mask) != (val & mask)) {
787 e_err("set/check reg %04X test failed: got 0x%08X "
788 "expected 0x%08X\n", reg, (val & mask), (write & mask));
789 *data = reg;
790 return 1;
791 }
792 return 0;
793 }
794 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
795 do { \
796 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
797 return 1; \
798 } while (0)
799 #define REG_PATTERN_TEST(reg, mask, write) \
800 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
801
802 #define REG_SET_AND_CHECK(reg, mask, write) \
803 do { \
804 if (reg_set_and_check(adapter, data, reg, mask, write)) \
805 return 1; \
806 } while (0)
807
808 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
809 {
810 struct e1000_hw *hw = &adapter->hw;
811 struct e1000_mac_info *mac = &adapter->hw.mac;
812 u32 value;
813 u32 before;
814 u32 after;
815 u32 i;
816 u32 toggle;
817 u32 mask;
818
819 /*
820 * The status register is Read Only, so a write should fail.
821 * Some bits that get toggled are ignored.
822 */
823 switch (mac->type) {
824 /* there are several bits on newer hardware that are r/w */
825 case e1000_82571:
826 case e1000_82572:
827 case e1000_80003es2lan:
828 toggle = 0x7FFFF3FF;
829 break;
830 default:
831 toggle = 0x7FFFF033;
832 break;
833 }
834
835 before = er32(STATUS);
836 value = (er32(STATUS) & toggle);
837 ew32(STATUS, toggle);
838 after = er32(STATUS) & toggle;
839 if (value != after) {
840 e_err("failed STATUS register test got: 0x%08X expected: "
841 "0x%08X\n", after, value);
842 *data = 1;
843 return 1;
844 }
845 /* restore previous status */
846 ew32(STATUS, before);
847
848 if (!(adapter->flags & FLAG_IS_ICH)) {
849 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
850 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
851 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
852 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
853 }
854
855 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
856 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
857 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
858 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
859 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
860 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
861 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
862 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
863 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
864 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
865
866 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
867
868 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
869 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
870 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
871
872 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
873 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
874 if (!(adapter->flags & FLAG_IS_ICH))
875 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
876 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
877 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
878 mask = 0x8003FFFF;
879 switch (mac->type) {
880 case e1000_ich10lan:
881 case e1000_pchlan:
882 case e1000_pch2lan:
883 mask |= (1 << 18);
884 break;
885 default:
886 break;
887 }
888 for (i = 0; i < mac->rar_entry_count; i++)
889 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
890 mask, 0xFFFFFFFF);
891
892 for (i = 0; i < mac->mta_reg_count; i++)
893 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
894
895 *data = 0;
896 return 0;
897 }
898
899 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
900 {
901 u16 temp;
902 u16 checksum = 0;
903 u16 i;
904
905 *data = 0;
906 /* Read and add up the contents of the EEPROM */
907 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
908 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
909 *data = 1;
910 return *data;
911 }
912 checksum += temp;
913 }
914
915 /* If Checksum is not Correct return error else test passed */
916 if ((checksum != (u16) NVM_SUM) && !(*data))
917 *data = 2;
918
919 return *data;
920 }
921
922 static irqreturn_t e1000_test_intr(int irq, void *data)
923 {
924 struct net_device *netdev = (struct net_device *) data;
925 struct e1000_adapter *adapter = netdev_priv(netdev);
926 struct e1000_hw *hw = &adapter->hw;
927
928 adapter->test_icr |= er32(ICR);
929
930 return IRQ_HANDLED;
931 }
932
933 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
934 {
935 struct net_device *netdev = adapter->netdev;
936 struct e1000_hw *hw = &adapter->hw;
937 u32 mask;
938 u32 shared_int = 1;
939 u32 irq = adapter->pdev->irq;
940 int i;
941 int ret_val = 0;
942 int int_mode = E1000E_INT_MODE_LEGACY;
943
944 *data = 0;
945
946 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
947 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
948 int_mode = adapter->int_mode;
949 e1000e_reset_interrupt_capability(adapter);
950 adapter->int_mode = E1000E_INT_MODE_LEGACY;
951 e1000e_set_interrupt_capability(adapter);
952 }
953 /* Hook up test interrupt handler just for this test */
954 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
955 netdev)) {
956 shared_int = 0;
957 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
958 netdev->name, netdev)) {
959 *data = 1;
960 ret_val = -1;
961 goto out;
962 }
963 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
964
965 /* Disable all the interrupts */
966 ew32(IMC, 0xFFFFFFFF);
967 e1e_flush();
968 usleep_range(10000, 20000);
969
970 /* Test each interrupt */
971 for (i = 0; i < 10; i++) {
972 /* Interrupt to test */
973 mask = 1 << i;
974
975 if (adapter->flags & FLAG_IS_ICH) {
976 switch (mask) {
977 case E1000_ICR_RXSEQ:
978 continue;
979 case 0x00000100:
980 if (adapter->hw.mac.type == e1000_ich8lan ||
981 adapter->hw.mac.type == e1000_ich9lan)
982 continue;
983 break;
984 default:
985 break;
986 }
987 }
988
989 if (!shared_int) {
990 /*
991 * Disable the interrupt to be reported in
992 * the cause register and then force the same
993 * interrupt and see if one gets posted. If
994 * an interrupt was posted to the bus, the
995 * test failed.
996 */
997 adapter->test_icr = 0;
998 ew32(IMC, mask);
999 ew32(ICS, mask);
1000 e1e_flush();
1001 usleep_range(10000, 20000);
1002
1003 if (adapter->test_icr & mask) {
1004 *data = 3;
1005 break;
1006 }
1007 }
1008
1009 /*
1010 * Enable the interrupt to be reported in
1011 * the cause register and then force the same
1012 * interrupt and see if one gets posted. If
1013 * an interrupt was not posted to the bus, the
1014 * test failed.
1015 */
1016 adapter->test_icr = 0;
1017 ew32(IMS, mask);
1018 ew32(ICS, mask);
1019 e1e_flush();
1020 usleep_range(10000, 20000);
1021
1022 if (!(adapter->test_icr & mask)) {
1023 *data = 4;
1024 break;
1025 }
1026
1027 if (!shared_int) {
1028 /*
1029 * Disable the other interrupts to be reported in
1030 * the cause register and then force the other
1031 * interrupts and see if any get posted. If
1032 * an interrupt was posted to the bus, the
1033 * test failed.
1034 */
1035 adapter->test_icr = 0;
1036 ew32(IMC, ~mask & 0x00007FFF);
1037 ew32(ICS, ~mask & 0x00007FFF);
1038 e1e_flush();
1039 usleep_range(10000, 20000);
1040
1041 if (adapter->test_icr) {
1042 *data = 5;
1043 break;
1044 }
1045 }
1046 }
1047
1048 /* Disable all the interrupts */
1049 ew32(IMC, 0xFFFFFFFF);
1050 e1e_flush();
1051 usleep_range(10000, 20000);
1052
1053 /* Unhook test interrupt handler */
1054 free_irq(irq, netdev);
1055
1056 out:
1057 if (int_mode == E1000E_INT_MODE_MSIX) {
1058 e1000e_reset_interrupt_capability(adapter);
1059 adapter->int_mode = int_mode;
1060 e1000e_set_interrupt_capability(adapter);
1061 }
1062
1063 return ret_val;
1064 }
1065
1066 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1067 {
1068 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1069 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1070 struct pci_dev *pdev = adapter->pdev;
1071 int i;
1072
1073 if (tx_ring->desc && tx_ring->buffer_info) {
1074 for (i = 0; i < tx_ring->count; i++) {
1075 if (tx_ring->buffer_info[i].dma)
1076 dma_unmap_single(&pdev->dev,
1077 tx_ring->buffer_info[i].dma,
1078 tx_ring->buffer_info[i].length,
1079 DMA_TO_DEVICE);
1080 if (tx_ring->buffer_info[i].skb)
1081 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1082 }
1083 }
1084
1085 if (rx_ring->desc && rx_ring->buffer_info) {
1086 for (i = 0; i < rx_ring->count; i++) {
1087 if (rx_ring->buffer_info[i].dma)
1088 dma_unmap_single(&pdev->dev,
1089 rx_ring->buffer_info[i].dma,
1090 2048, DMA_FROM_DEVICE);
1091 if (rx_ring->buffer_info[i].skb)
1092 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1093 }
1094 }
1095
1096 if (tx_ring->desc) {
1097 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1098 tx_ring->dma);
1099 tx_ring->desc = NULL;
1100 }
1101 if (rx_ring->desc) {
1102 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1103 rx_ring->dma);
1104 rx_ring->desc = NULL;
1105 }
1106
1107 kfree(tx_ring->buffer_info);
1108 tx_ring->buffer_info = NULL;
1109 kfree(rx_ring->buffer_info);
1110 rx_ring->buffer_info = NULL;
1111 }
1112
1113 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1114 {
1115 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1116 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1117 struct pci_dev *pdev = adapter->pdev;
1118 struct e1000_hw *hw = &adapter->hw;
1119 u32 rctl;
1120 int i;
1121 int ret_val;
1122
1123 /* Setup Tx descriptor ring and Tx buffers */
1124
1125 if (!tx_ring->count)
1126 tx_ring->count = E1000_DEFAULT_TXD;
1127
1128 tx_ring->buffer_info = kcalloc(tx_ring->count,
1129 sizeof(struct e1000_buffer),
1130 GFP_KERNEL);
1131 if (!(tx_ring->buffer_info)) {
1132 ret_val = 1;
1133 goto err_nomem;
1134 }
1135
1136 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1137 tx_ring->size = ALIGN(tx_ring->size, 4096);
1138 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1139 &tx_ring->dma, GFP_KERNEL);
1140 if (!tx_ring->desc) {
1141 ret_val = 2;
1142 goto err_nomem;
1143 }
1144 tx_ring->next_to_use = 0;
1145 tx_ring->next_to_clean = 0;
1146
1147 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1148 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1149 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1150 ew32(TDH, 0);
1151 ew32(TDT, 0);
1152 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1153 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1154 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1155
1156 for (i = 0; i < tx_ring->count; i++) {
1157 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1158 struct sk_buff *skb;
1159 unsigned int skb_size = 1024;
1160
1161 skb = alloc_skb(skb_size, GFP_KERNEL);
1162 if (!skb) {
1163 ret_val = 3;
1164 goto err_nomem;
1165 }
1166 skb_put(skb, skb_size);
1167 tx_ring->buffer_info[i].skb = skb;
1168 tx_ring->buffer_info[i].length = skb->len;
1169 tx_ring->buffer_info[i].dma =
1170 dma_map_single(&pdev->dev, skb->data, skb->len,
1171 DMA_TO_DEVICE);
1172 if (dma_mapping_error(&pdev->dev,
1173 tx_ring->buffer_info[i].dma)) {
1174 ret_val = 4;
1175 goto err_nomem;
1176 }
1177 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1178 tx_desc->lower.data = cpu_to_le32(skb->len);
1179 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1180 E1000_TXD_CMD_IFCS |
1181 E1000_TXD_CMD_RS);
1182 tx_desc->upper.data = 0;
1183 }
1184
1185 /* Setup Rx descriptor ring and Rx buffers */
1186
1187 if (!rx_ring->count)
1188 rx_ring->count = E1000_DEFAULT_RXD;
1189
1190 rx_ring->buffer_info = kcalloc(rx_ring->count,
1191 sizeof(struct e1000_buffer),
1192 GFP_KERNEL);
1193 if (!(rx_ring->buffer_info)) {
1194 ret_val = 5;
1195 goto err_nomem;
1196 }
1197
1198 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1199 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1200 &rx_ring->dma, GFP_KERNEL);
1201 if (!rx_ring->desc) {
1202 ret_val = 6;
1203 goto err_nomem;
1204 }
1205 rx_ring->next_to_use = 0;
1206 rx_ring->next_to_clean = 0;
1207
1208 rctl = er32(RCTL);
1209 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1210 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1211 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1212 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1213 ew32(RDLEN, rx_ring->size);
1214 ew32(RDH, 0);
1215 ew32(RDT, 0);
1216 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1217 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1218 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1219 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1220 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1221 ew32(RCTL, rctl);
1222
1223 for (i = 0; i < rx_ring->count; i++) {
1224 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1225 struct sk_buff *skb;
1226
1227 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1228 if (!skb) {
1229 ret_val = 7;
1230 goto err_nomem;
1231 }
1232 skb_reserve(skb, NET_IP_ALIGN);
1233 rx_ring->buffer_info[i].skb = skb;
1234 rx_ring->buffer_info[i].dma =
1235 dma_map_single(&pdev->dev, skb->data, 2048,
1236 DMA_FROM_DEVICE);
1237 if (dma_mapping_error(&pdev->dev,
1238 rx_ring->buffer_info[i].dma)) {
1239 ret_val = 8;
1240 goto err_nomem;
1241 }
1242 rx_desc->buffer_addr =
1243 cpu_to_le64(rx_ring->buffer_info[i].dma);
1244 memset(skb->data, 0x00, skb->len);
1245 }
1246
1247 return 0;
1248
1249 err_nomem:
1250 e1000_free_desc_rings(adapter);
1251 return ret_val;
1252 }
1253
1254 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1255 {
1256 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1257 e1e_wphy(&adapter->hw, 29, 0x001F);
1258 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1259 e1e_wphy(&adapter->hw, 29, 0x001A);
1260 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1261 }
1262
1263 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1264 {
1265 struct e1000_hw *hw = &adapter->hw;
1266 u32 ctrl_reg = 0;
1267 u16 phy_reg = 0;
1268 s32 ret_val = 0;
1269
1270 hw->mac.autoneg = 0;
1271
1272 if (hw->phy.type == e1000_phy_ife) {
1273 /* force 100, set loopback */
1274 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1275
1276 /* Now set up the MAC to the same speed/duplex as the PHY. */
1277 ctrl_reg = er32(CTRL);
1278 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1279 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1280 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1281 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1282 E1000_CTRL_FD); /* Force Duplex to FULL */
1283
1284 ew32(CTRL, ctrl_reg);
1285 e1e_flush();
1286 udelay(500);
1287
1288 return 0;
1289 }
1290
1291 /* Specific PHY configuration for loopback */
1292 switch (hw->phy.type) {
1293 case e1000_phy_m88:
1294 /* Auto-MDI/MDIX Off */
1295 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1296 /* reset to update Auto-MDI/MDIX */
1297 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1298 /* autoneg off */
1299 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1300 break;
1301 case e1000_phy_gg82563:
1302 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1303 break;
1304 case e1000_phy_bm:
1305 /* Set Default MAC Interface speed to 1GB */
1306 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1307 phy_reg &= ~0x0007;
1308 phy_reg |= 0x006;
1309 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1310 /* Assert SW reset for above settings to take effect */
1311 e1000e_commit_phy(hw);
1312 mdelay(1);
1313 /* Force Full Duplex */
1314 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1315 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1316 /* Set Link Up (in force link) */
1317 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1318 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1319 /* Force Link */
1320 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1321 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1322 /* Set Early Link Enable */
1323 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1324 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1325 break;
1326 case e1000_phy_82577:
1327 case e1000_phy_82578:
1328 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1329 ret_val = hw->phy.ops.acquire(hw);
1330 if (ret_val) {
1331 e_err("Cannot setup 1Gbps loopback.\n");
1332 return ret_val;
1333 }
1334 e1000_configure_k1_ich8lan(hw, false);
1335 hw->phy.ops.release(hw);
1336 break;
1337 case e1000_phy_82579:
1338 /* Disable PHY energy detect power down */
1339 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1340 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1341 /* Disable full chip energy detect */
1342 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1343 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1344 /* Enable loopback on the PHY */
1345 #define I82577_PHY_LBK_CTRL 19
1346 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1347 break;
1348 default:
1349 break;
1350 }
1351
1352 /* force 1000, set loopback */
1353 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1354 mdelay(250);
1355
1356 /* Now set up the MAC to the same speed/duplex as the PHY. */
1357 ctrl_reg = er32(CTRL);
1358 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1359 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1360 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1361 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1362 E1000_CTRL_FD); /* Force Duplex to FULL */
1363
1364 if (adapter->flags & FLAG_IS_ICH)
1365 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1366
1367 if (hw->phy.media_type == e1000_media_type_copper &&
1368 hw->phy.type == e1000_phy_m88) {
1369 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1370 } else {
1371 /*
1372 * Set the ILOS bit on the fiber Nic if half duplex link is
1373 * detected.
1374 */
1375 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1376 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1377 }
1378
1379 ew32(CTRL, ctrl_reg);
1380
1381 /*
1382 * Disable the receiver on the PHY so when a cable is plugged in, the
1383 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1384 */
1385 if (hw->phy.type == e1000_phy_m88)
1386 e1000_phy_disable_receiver(adapter);
1387
1388 udelay(500);
1389
1390 return 0;
1391 }
1392
1393 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1394 {
1395 struct e1000_hw *hw = &adapter->hw;
1396 u32 ctrl = er32(CTRL);
1397 int link = 0;
1398
1399 /* special requirements for 82571/82572 fiber adapters */
1400
1401 /*
1402 * jump through hoops to make sure link is up because serdes
1403 * link is hardwired up
1404 */
1405 ctrl |= E1000_CTRL_SLU;
1406 ew32(CTRL, ctrl);
1407
1408 /* disable autoneg */
1409 ctrl = er32(TXCW);
1410 ctrl &= ~(1 << 31);
1411 ew32(TXCW, ctrl);
1412
1413 link = (er32(STATUS) & E1000_STATUS_LU);
1414
1415 if (!link) {
1416 /* set invert loss of signal */
1417 ctrl = er32(CTRL);
1418 ctrl |= E1000_CTRL_ILOS;
1419 ew32(CTRL, ctrl);
1420 }
1421
1422 /*
1423 * special write to serdes control register to enable SerDes analog
1424 * loopback
1425 */
1426 #define E1000_SERDES_LB_ON 0x410
1427 ew32(SCTL, E1000_SERDES_LB_ON);
1428 e1e_flush();
1429 usleep_range(10000, 20000);
1430
1431 return 0;
1432 }
1433
1434 /* only call this for fiber/serdes connections to es2lan */
1435 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1436 {
1437 struct e1000_hw *hw = &adapter->hw;
1438 u32 ctrlext = er32(CTRL_EXT);
1439 u32 ctrl = er32(CTRL);
1440
1441 /*
1442 * save CTRL_EXT to restore later, reuse an empty variable (unused
1443 * on mac_type 80003es2lan)
1444 */
1445 adapter->tx_fifo_head = ctrlext;
1446
1447 /* clear the serdes mode bits, putting the device into mac loopback */
1448 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1449 ew32(CTRL_EXT, ctrlext);
1450
1451 /* force speed to 1000/FD, link up */
1452 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1453 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1454 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1455 ew32(CTRL, ctrl);
1456
1457 /* set mac loopback */
1458 ctrl = er32(RCTL);
1459 ctrl |= E1000_RCTL_LBM_MAC;
1460 ew32(RCTL, ctrl);
1461
1462 /* set testing mode parameters (no need to reset later) */
1463 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1464 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1465 ew32(KMRNCTRLSTA,
1466 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1467
1468 return 0;
1469 }
1470
1471 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1472 {
1473 struct e1000_hw *hw = &adapter->hw;
1474 u32 rctl;
1475
1476 if (hw->phy.media_type == e1000_media_type_fiber ||
1477 hw->phy.media_type == e1000_media_type_internal_serdes) {
1478 switch (hw->mac.type) {
1479 case e1000_80003es2lan:
1480 return e1000_set_es2lan_mac_loopback(adapter);
1481 break;
1482 case e1000_82571:
1483 case e1000_82572:
1484 return e1000_set_82571_fiber_loopback(adapter);
1485 break;
1486 default:
1487 rctl = er32(RCTL);
1488 rctl |= E1000_RCTL_LBM_TCVR;
1489 ew32(RCTL, rctl);
1490 return 0;
1491 }
1492 } else if (hw->phy.media_type == e1000_media_type_copper) {
1493 return e1000_integrated_phy_loopback(adapter);
1494 }
1495
1496 return 7;
1497 }
1498
1499 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1500 {
1501 struct e1000_hw *hw = &adapter->hw;
1502 u32 rctl;
1503 u16 phy_reg;
1504
1505 rctl = er32(RCTL);
1506 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1507 ew32(RCTL, rctl);
1508
1509 switch (hw->mac.type) {
1510 case e1000_80003es2lan:
1511 if (hw->phy.media_type == e1000_media_type_fiber ||
1512 hw->phy.media_type == e1000_media_type_internal_serdes) {
1513 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1514 ew32(CTRL_EXT, adapter->tx_fifo_head);
1515 adapter->tx_fifo_head = 0;
1516 }
1517 /* fall through */
1518 case e1000_82571:
1519 case e1000_82572:
1520 if (hw->phy.media_type == e1000_media_type_fiber ||
1521 hw->phy.media_type == e1000_media_type_internal_serdes) {
1522 #define E1000_SERDES_LB_OFF 0x400
1523 ew32(SCTL, E1000_SERDES_LB_OFF);
1524 e1e_flush();
1525 usleep_range(10000, 20000);
1526 break;
1527 }
1528 /* Fall Through */
1529 default:
1530 hw->mac.autoneg = 1;
1531 if (hw->phy.type == e1000_phy_gg82563)
1532 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1533 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1534 if (phy_reg & MII_CR_LOOPBACK) {
1535 phy_reg &= ~MII_CR_LOOPBACK;
1536 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1537 e1000e_commit_phy(hw);
1538 }
1539 break;
1540 }
1541 }
1542
1543 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1544 unsigned int frame_size)
1545 {
1546 memset(skb->data, 0xFF, frame_size);
1547 frame_size &= ~1;
1548 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1549 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1550 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1551 }
1552
1553 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1554 unsigned int frame_size)
1555 {
1556 frame_size &= ~1;
1557 if (*(skb->data + 3) == 0xFF)
1558 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1559 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1560 return 0;
1561 return 13;
1562 }
1563
1564 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1565 {
1566 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1567 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1568 struct pci_dev *pdev = adapter->pdev;
1569 struct e1000_hw *hw = &adapter->hw;
1570 int i, j, k, l;
1571 int lc;
1572 int good_cnt;
1573 int ret_val = 0;
1574 unsigned long time;
1575
1576 ew32(RDT, rx_ring->count - 1);
1577
1578 /*
1579 * Calculate the loop count based on the largest descriptor ring
1580 * The idea is to wrap the largest ring a number of times using 64
1581 * send/receive pairs during each loop
1582 */
1583
1584 if (rx_ring->count <= tx_ring->count)
1585 lc = ((tx_ring->count / 64) * 2) + 1;
1586 else
1587 lc = ((rx_ring->count / 64) * 2) + 1;
1588
1589 k = 0;
1590 l = 0;
1591 for (j = 0; j <= lc; j++) { /* loop count loop */
1592 for (i = 0; i < 64; i++) { /* send the packets */
1593 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1594 1024);
1595 dma_sync_single_for_device(&pdev->dev,
1596 tx_ring->buffer_info[k].dma,
1597 tx_ring->buffer_info[k].length,
1598 DMA_TO_DEVICE);
1599 k++;
1600 if (k == tx_ring->count)
1601 k = 0;
1602 }
1603 ew32(TDT, k);
1604 e1e_flush();
1605 msleep(200);
1606 time = jiffies; /* set the start time for the receive */
1607 good_cnt = 0;
1608 do { /* receive the sent packets */
1609 dma_sync_single_for_cpu(&pdev->dev,
1610 rx_ring->buffer_info[l].dma, 2048,
1611 DMA_FROM_DEVICE);
1612
1613 ret_val = e1000_check_lbtest_frame(
1614 rx_ring->buffer_info[l].skb, 1024);
1615 if (!ret_val)
1616 good_cnt++;
1617 l++;
1618 if (l == rx_ring->count)
1619 l = 0;
1620 /*
1621 * time + 20 msecs (200 msecs on 2.4) is more than
1622 * enough time to complete the receives, if it's
1623 * exceeded, break and error off
1624 */
1625 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1626 if (good_cnt != 64) {
1627 ret_val = 13; /* ret_val is the same as mis-compare */
1628 break;
1629 }
1630 if (jiffies >= (time + 20)) {
1631 ret_val = 14; /* error code for time out error */
1632 break;
1633 }
1634 } /* end loop count loop */
1635 return ret_val;
1636 }
1637
1638 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1639 {
1640 /*
1641 * PHY loopback cannot be performed if SoL/IDER
1642 * sessions are active
1643 */
1644 if (e1000_check_reset_block(&adapter->hw)) {
1645 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1646 *data = 0;
1647 goto out;
1648 }
1649
1650 *data = e1000_setup_desc_rings(adapter);
1651 if (*data)
1652 goto out;
1653
1654 *data = e1000_setup_loopback_test(adapter);
1655 if (*data)
1656 goto err_loopback;
1657
1658 *data = e1000_run_loopback_test(adapter);
1659 e1000_loopback_cleanup(adapter);
1660
1661 err_loopback:
1662 e1000_free_desc_rings(adapter);
1663 out:
1664 return *data;
1665 }
1666
1667 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1668 {
1669 struct e1000_hw *hw = &adapter->hw;
1670
1671 *data = 0;
1672 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1673 int i = 0;
1674 hw->mac.serdes_has_link = false;
1675
1676 /*
1677 * On some blade server designs, link establishment
1678 * could take as long as 2-3 minutes
1679 */
1680 do {
1681 hw->mac.ops.check_for_link(hw);
1682 if (hw->mac.serdes_has_link)
1683 return *data;
1684 msleep(20);
1685 } while (i++ < 3750);
1686
1687 *data = 1;
1688 } else {
1689 hw->mac.ops.check_for_link(hw);
1690 if (hw->mac.autoneg)
1691 /*
1692 * On some Phy/switch combinations, link establishment
1693 * can take a few seconds more than expected.
1694 */
1695 msleep(5000);
1696
1697 if (!(er32(STATUS) & E1000_STATUS_LU))
1698 *data = 1;
1699 }
1700 return *data;
1701 }
1702
1703 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1704 {
1705 switch (sset) {
1706 case ETH_SS_TEST:
1707 return E1000_TEST_LEN;
1708 case ETH_SS_STATS:
1709 return E1000_STATS_LEN;
1710 default:
1711 return -EOPNOTSUPP;
1712 }
1713 }
1714
1715 static void e1000_diag_test(struct net_device *netdev,
1716 struct ethtool_test *eth_test, u64 *data)
1717 {
1718 struct e1000_adapter *adapter = netdev_priv(netdev);
1719 u16 autoneg_advertised;
1720 u8 forced_speed_duplex;
1721 u8 autoneg;
1722 bool if_running = netif_running(netdev);
1723
1724 set_bit(__E1000_TESTING, &adapter->state);
1725
1726 if (!if_running) {
1727 /* Get control of and reset hardware */
1728 if (adapter->flags & FLAG_HAS_AMT)
1729 e1000e_get_hw_control(adapter);
1730
1731 e1000e_power_up_phy(adapter);
1732
1733 adapter->hw.phy.autoneg_wait_to_complete = 1;
1734 e1000e_reset(adapter);
1735 adapter->hw.phy.autoneg_wait_to_complete = 0;
1736 }
1737
1738 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1739 /* Offline tests */
1740
1741 /* save speed, duplex, autoneg settings */
1742 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1743 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1744 autoneg = adapter->hw.mac.autoneg;
1745
1746 e_info("offline testing starting\n");
1747
1748 if (if_running)
1749 /* indicate we're in test mode */
1750 dev_close(netdev);
1751
1752 if (e1000_reg_test(adapter, &data[0]))
1753 eth_test->flags |= ETH_TEST_FL_FAILED;
1754
1755 e1000e_reset(adapter);
1756 if (e1000_eeprom_test(adapter, &data[1]))
1757 eth_test->flags |= ETH_TEST_FL_FAILED;
1758
1759 e1000e_reset(adapter);
1760 if (e1000_intr_test(adapter, &data[2]))
1761 eth_test->flags |= ETH_TEST_FL_FAILED;
1762
1763 e1000e_reset(adapter);
1764 if (e1000_loopback_test(adapter, &data[3]))
1765 eth_test->flags |= ETH_TEST_FL_FAILED;
1766
1767 /* force this routine to wait until autoneg complete/timeout */
1768 adapter->hw.phy.autoneg_wait_to_complete = 1;
1769 e1000e_reset(adapter);
1770 adapter->hw.phy.autoneg_wait_to_complete = 0;
1771
1772 if (e1000_link_test(adapter, &data[4]))
1773 eth_test->flags |= ETH_TEST_FL_FAILED;
1774
1775 /* restore speed, duplex, autoneg settings */
1776 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1777 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1778 adapter->hw.mac.autoneg = autoneg;
1779 e1000e_reset(adapter);
1780
1781 clear_bit(__E1000_TESTING, &adapter->state);
1782 if (if_running)
1783 dev_open(netdev);
1784 } else {
1785 /* Online tests */
1786
1787 e_info("online testing starting\n");
1788
1789 /* register, eeprom, intr and loopback tests not run online */
1790 data[0] = 0;
1791 data[1] = 0;
1792 data[2] = 0;
1793 data[3] = 0;
1794
1795 if (e1000_link_test(adapter, &data[4]))
1796 eth_test->flags |= ETH_TEST_FL_FAILED;
1797
1798 clear_bit(__E1000_TESTING, &adapter->state);
1799 }
1800
1801 if (!if_running) {
1802 e1000e_reset(adapter);
1803
1804 if (adapter->flags & FLAG_HAS_AMT)
1805 e1000e_release_hw_control(adapter);
1806 }
1807
1808 msleep_interruptible(4 * 1000);
1809 }
1810
1811 static void e1000_get_wol(struct net_device *netdev,
1812 struct ethtool_wolinfo *wol)
1813 {
1814 struct e1000_adapter *adapter = netdev_priv(netdev);
1815
1816 wol->supported = 0;
1817 wol->wolopts = 0;
1818
1819 if (!(adapter->flags & FLAG_HAS_WOL) ||
1820 !device_can_wakeup(&adapter->pdev->dev))
1821 return;
1822
1823 wol->supported = WAKE_UCAST | WAKE_MCAST |
1824 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1825
1826 /* apply any specific unsupported masks here */
1827 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1828 wol->supported &= ~WAKE_UCAST;
1829
1830 if (adapter->wol & E1000_WUFC_EX)
1831 e_err("Interface does not support directed (unicast) "
1832 "frame wake-up packets\n");
1833 }
1834
1835 if (adapter->wol & E1000_WUFC_EX)
1836 wol->wolopts |= WAKE_UCAST;
1837 if (adapter->wol & E1000_WUFC_MC)
1838 wol->wolopts |= WAKE_MCAST;
1839 if (adapter->wol & E1000_WUFC_BC)
1840 wol->wolopts |= WAKE_BCAST;
1841 if (adapter->wol & E1000_WUFC_MAG)
1842 wol->wolopts |= WAKE_MAGIC;
1843 if (adapter->wol & E1000_WUFC_LNKC)
1844 wol->wolopts |= WAKE_PHY;
1845 }
1846
1847 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1848 {
1849 struct e1000_adapter *adapter = netdev_priv(netdev);
1850
1851 if (!(adapter->flags & FLAG_HAS_WOL) ||
1852 !device_can_wakeup(&adapter->pdev->dev) ||
1853 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1854 WAKE_MAGIC | WAKE_PHY)))
1855 return -EOPNOTSUPP;
1856
1857 /* these settings will always override what we currently have */
1858 adapter->wol = 0;
1859
1860 if (wol->wolopts & WAKE_UCAST)
1861 adapter->wol |= E1000_WUFC_EX;
1862 if (wol->wolopts & WAKE_MCAST)
1863 adapter->wol |= E1000_WUFC_MC;
1864 if (wol->wolopts & WAKE_BCAST)
1865 adapter->wol |= E1000_WUFC_BC;
1866 if (wol->wolopts & WAKE_MAGIC)
1867 adapter->wol |= E1000_WUFC_MAG;
1868 if (wol->wolopts & WAKE_PHY)
1869 adapter->wol |= E1000_WUFC_LNKC;
1870
1871 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1872
1873 return 0;
1874 }
1875
1876 static int e1000_set_phys_id(struct net_device *netdev,
1877 enum ethtool_phys_id_state state)
1878 {
1879 struct e1000_adapter *adapter = netdev_priv(netdev);
1880 struct e1000_hw *hw = &adapter->hw;
1881
1882 switch (state) {
1883 case ETHTOOL_ID_ACTIVE:
1884 if (!hw->mac.ops.blink_led)
1885 return 2; /* cycle on/off twice per second */
1886
1887 hw->mac.ops.blink_led(hw);
1888 break;
1889
1890 case ETHTOOL_ID_INACTIVE:
1891 if (hw->phy.type == e1000_phy_ife)
1892 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1893 hw->mac.ops.led_off(hw);
1894 hw->mac.ops.cleanup_led(hw);
1895 break;
1896
1897 case ETHTOOL_ID_ON:
1898 adapter->hw.mac.ops.led_on(&adapter->hw);
1899 break;
1900
1901 case ETHTOOL_ID_OFF:
1902 adapter->hw.mac.ops.led_off(&adapter->hw);
1903 break;
1904 }
1905 return 0;
1906 }
1907
1908 static int e1000_get_coalesce(struct net_device *netdev,
1909 struct ethtool_coalesce *ec)
1910 {
1911 struct e1000_adapter *adapter = netdev_priv(netdev);
1912
1913 if (adapter->itr_setting <= 4)
1914 ec->rx_coalesce_usecs = adapter->itr_setting;
1915 else
1916 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1917
1918 return 0;
1919 }
1920
1921 static int e1000_set_coalesce(struct net_device *netdev,
1922 struct ethtool_coalesce *ec)
1923 {
1924 struct e1000_adapter *adapter = netdev_priv(netdev);
1925 struct e1000_hw *hw = &adapter->hw;
1926
1927 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1928 ((ec->rx_coalesce_usecs > 4) &&
1929 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1930 (ec->rx_coalesce_usecs == 2))
1931 return -EINVAL;
1932
1933 if (ec->rx_coalesce_usecs == 4) {
1934 adapter->itr = adapter->itr_setting = 4;
1935 } else if (ec->rx_coalesce_usecs <= 3) {
1936 adapter->itr = 20000;
1937 adapter->itr_setting = ec->rx_coalesce_usecs;
1938 } else {
1939 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1940 adapter->itr_setting = adapter->itr & ~3;
1941 }
1942
1943 if (adapter->itr_setting != 0)
1944 ew32(ITR, 1000000000 / (adapter->itr * 256));
1945 else
1946 ew32(ITR, 0);
1947
1948 return 0;
1949 }
1950
1951 static int e1000_nway_reset(struct net_device *netdev)
1952 {
1953 struct e1000_adapter *adapter = netdev_priv(netdev);
1954
1955 if (!netif_running(netdev))
1956 return -EAGAIN;
1957
1958 if (!adapter->hw.mac.autoneg)
1959 return -EINVAL;
1960
1961 e1000e_reinit_locked(adapter);
1962
1963 return 0;
1964 }
1965
1966 static void e1000_get_ethtool_stats(struct net_device *netdev,
1967 struct ethtool_stats *stats,
1968 u64 *data)
1969 {
1970 struct e1000_adapter *adapter = netdev_priv(netdev);
1971 struct rtnl_link_stats64 net_stats;
1972 int i;
1973 char *p = NULL;
1974
1975 e1000e_get_stats64(netdev, &net_stats);
1976 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1977 switch (e1000_gstrings_stats[i].type) {
1978 case NETDEV_STATS:
1979 p = (char *) &net_stats +
1980 e1000_gstrings_stats[i].stat_offset;
1981 break;
1982 case E1000_STATS:
1983 p = (char *) adapter +
1984 e1000_gstrings_stats[i].stat_offset;
1985 break;
1986 default:
1987 data[i] = 0;
1988 continue;
1989 }
1990
1991 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1992 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1993 }
1994 }
1995
1996 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1997 u8 *data)
1998 {
1999 u8 *p = data;
2000 int i;
2001
2002 switch (stringset) {
2003 case ETH_SS_TEST:
2004 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2005 break;
2006 case ETH_SS_STATS:
2007 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2008 memcpy(p, e1000_gstrings_stats[i].stat_string,
2009 ETH_GSTRING_LEN);
2010 p += ETH_GSTRING_LEN;
2011 }
2012 break;
2013 }
2014 }
2015
2016 static int e1000e_set_flags(struct net_device *netdev, u32 data)
2017 {
2018 struct e1000_adapter *adapter = netdev_priv(netdev);
2019 bool need_reset = false;
2020 int rc;
2021
2022 need_reset = (data & ETH_FLAG_RXVLAN) !=
2023 (netdev->features & NETIF_F_HW_VLAN_RX);
2024
2025 rc = ethtool_op_set_flags(netdev, data, ETH_FLAG_RXVLAN |
2026 ETH_FLAG_TXVLAN);
2027
2028 if (rc)
2029 return rc;
2030
2031 if (need_reset) {
2032 if (netif_running(netdev))
2033 e1000e_reinit_locked(adapter);
2034 else
2035 e1000e_reset(adapter);
2036 }
2037
2038 return 0;
2039 }
2040
2041 static const struct ethtool_ops e1000_ethtool_ops = {
2042 .get_settings = e1000_get_settings,
2043 .set_settings = e1000_set_settings,
2044 .get_drvinfo = e1000_get_drvinfo,
2045 .get_regs_len = e1000_get_regs_len,
2046 .get_regs = e1000_get_regs,
2047 .get_wol = e1000_get_wol,
2048 .set_wol = e1000_set_wol,
2049 .get_msglevel = e1000_get_msglevel,
2050 .set_msglevel = e1000_set_msglevel,
2051 .nway_reset = e1000_nway_reset,
2052 .get_link = ethtool_op_get_link,
2053 .get_eeprom_len = e1000_get_eeprom_len,
2054 .get_eeprom = e1000_get_eeprom,
2055 .set_eeprom = e1000_set_eeprom,
2056 .get_ringparam = e1000_get_ringparam,
2057 .set_ringparam = e1000_set_ringparam,
2058 .get_pauseparam = e1000_get_pauseparam,
2059 .set_pauseparam = e1000_set_pauseparam,
2060 .get_rx_csum = e1000_get_rx_csum,
2061 .set_rx_csum = e1000_set_rx_csum,
2062 .get_tx_csum = e1000_get_tx_csum,
2063 .set_tx_csum = e1000_set_tx_csum,
2064 .get_sg = ethtool_op_get_sg,
2065 .set_sg = ethtool_op_set_sg,
2066 .get_tso = ethtool_op_get_tso,
2067 .set_tso = e1000_set_tso,
2068 .self_test = e1000_diag_test,
2069 .get_strings = e1000_get_strings,
2070 .set_phys_id = e1000_set_phys_id,
2071 .get_ethtool_stats = e1000_get_ethtool_stats,
2072 .get_sset_count = e1000e_get_sset_count,
2073 .get_coalesce = e1000_get_coalesce,
2074 .set_coalesce = e1000_set_coalesce,
2075 .get_flags = ethtool_op_get_flags,
2076 .set_flags = e1000e_set_flags,
2077 };
2078
2079 void e1000e_set_ethtool_ops(struct net_device *netdev)
2080 {
2081 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2082 }
This page took 0.112373 seconds and 5 git commands to generate.