e1000e: properly bounds-check string functions
[deliverable/linux.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36
37 #include "e1000.h"
38
39 enum {NETDEV_STATS, E1000_STATS};
40
41 struct e1000_stats {
42 char stat_string[ETH_GSTRING_LEN];
43 int type;
44 int sizeof_stat;
45 int stat_offset;
46 };
47
48 #define E1000_STAT(str, m) { \
49 .stat_string = str, \
50 .type = E1000_STATS, \
51 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
52 .stat_offset = offsetof(struct e1000_adapter, m) }
53 #define E1000_NETDEV_STAT(str, m) { \
54 .stat_string = str, \
55 .type = NETDEV_STATS, \
56 .sizeof_stat = sizeof(((struct net_device *)0)->m), \
57 .stat_offset = offsetof(struct net_device, m) }
58
59 static const struct e1000_stats e1000_gstrings_stats[] = {
60 E1000_STAT("rx_packets", stats.gprc),
61 E1000_STAT("tx_packets", stats.gptc),
62 E1000_STAT("rx_bytes", stats.gorc),
63 E1000_STAT("tx_bytes", stats.gotc),
64 E1000_STAT("rx_broadcast", stats.bprc),
65 E1000_STAT("tx_broadcast", stats.bptc),
66 E1000_STAT("rx_multicast", stats.mprc),
67 E1000_STAT("tx_multicast", stats.mptc),
68 E1000_NETDEV_STAT("rx_errors", stats.rx_errors),
69 E1000_NETDEV_STAT("tx_errors", stats.tx_errors),
70 E1000_NETDEV_STAT("tx_dropped", stats.tx_dropped),
71 E1000_STAT("multicast", stats.mprc),
72 E1000_STAT("collisions", stats.colc),
73 E1000_NETDEV_STAT("rx_length_errors", stats.rx_length_errors),
74 E1000_NETDEV_STAT("rx_over_errors", stats.rx_over_errors),
75 E1000_STAT("rx_crc_errors", stats.crcerrs),
76 E1000_NETDEV_STAT("rx_frame_errors", stats.rx_frame_errors),
77 E1000_STAT("rx_no_buffer_count", stats.rnbc),
78 E1000_STAT("rx_missed_errors", stats.mpc),
79 E1000_STAT("tx_aborted_errors", stats.ecol),
80 E1000_STAT("tx_carrier_errors", stats.tncrs),
81 E1000_NETDEV_STAT("tx_fifo_errors", stats.tx_fifo_errors),
82 E1000_NETDEV_STAT("tx_heartbeat_errors", stats.tx_heartbeat_errors),
83 E1000_STAT("tx_window_errors", stats.latecol),
84 E1000_STAT("tx_abort_late_coll", stats.latecol),
85 E1000_STAT("tx_deferred_ok", stats.dc),
86 E1000_STAT("tx_single_coll_ok", stats.scc),
87 E1000_STAT("tx_multi_coll_ok", stats.mcc),
88 E1000_STAT("tx_timeout_count", tx_timeout_count),
89 E1000_STAT("tx_restart_queue", restart_queue),
90 E1000_STAT("rx_long_length_errors", stats.roc),
91 E1000_STAT("rx_short_length_errors", stats.ruc),
92 E1000_STAT("rx_align_errors", stats.algnerrc),
93 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
94 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
95 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
96 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
97 E1000_STAT("tx_flow_control_xon", stats.xontxc),
98 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
99 E1000_STAT("rx_long_byte_count", stats.gorc),
100 E1000_STAT("rx_csum_offload_good", hw_csum_good),
101 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
102 E1000_STAT("rx_header_split", rx_hdr_split),
103 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
104 E1000_STAT("tx_smbus", stats.mgptc),
105 E1000_STAT("rx_smbus", stats.mgprc),
106 E1000_STAT("dropped_smbus", stats.mgpdc),
107 E1000_STAT("rx_dma_failed", rx_dma_failed),
108 E1000_STAT("tx_dma_failed", tx_dma_failed),
109 };
110
111 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
112 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
113 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
114 "Register test (offline)", "Eeprom test (offline)",
115 "Interrupt test (offline)", "Loopback test (offline)",
116 "Link test (on/offline)"
117 };
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119
120 static int e1000_get_settings(struct net_device *netdev,
121 struct ethtool_cmd *ecmd)
122 {
123 struct e1000_adapter *adapter = netdev_priv(netdev);
124 struct e1000_hw *hw = &adapter->hw;
125
126 if (hw->phy.media_type == e1000_media_type_copper) {
127
128 ecmd->supported = (SUPPORTED_10baseT_Half |
129 SUPPORTED_10baseT_Full |
130 SUPPORTED_100baseT_Half |
131 SUPPORTED_100baseT_Full |
132 SUPPORTED_1000baseT_Full |
133 SUPPORTED_Autoneg |
134 SUPPORTED_TP);
135 if (hw->phy.type == e1000_phy_ife)
136 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137 ecmd->advertising = ADVERTISED_TP;
138
139 if (hw->mac.autoneg == 1) {
140 ecmd->advertising |= ADVERTISED_Autoneg;
141 /* the e1000 autoneg seems to match ethtool nicely */
142 ecmd->advertising |= hw->phy.autoneg_advertised;
143 }
144
145 ecmd->port = PORT_TP;
146 ecmd->phy_address = hw->phy.addr;
147 ecmd->transceiver = XCVR_INTERNAL;
148
149 } else {
150 ecmd->supported = (SUPPORTED_1000baseT_Full |
151 SUPPORTED_FIBRE |
152 SUPPORTED_Autoneg);
153
154 ecmd->advertising = (ADVERTISED_1000baseT_Full |
155 ADVERTISED_FIBRE |
156 ADVERTISED_Autoneg);
157
158 ecmd->port = PORT_FIBRE;
159 ecmd->transceiver = XCVR_EXTERNAL;
160 }
161
162 ecmd->speed = -1;
163 ecmd->duplex = -1;
164
165 if (netif_running(netdev)) {
166 if (netif_carrier_ok(netdev)) {
167 ecmd->speed = adapter->link_speed;
168 ecmd->duplex = adapter->link_duplex - 1;
169 }
170 } else {
171 u32 status = er32(STATUS);
172 if (status & E1000_STATUS_LU) {
173 if (status & E1000_STATUS_SPEED_1000)
174 ecmd->speed = 1000;
175 else if (status & E1000_STATUS_SPEED_100)
176 ecmd->speed = 100;
177 else
178 ecmd->speed = 10;
179
180 if (status & E1000_STATUS_FD)
181 ecmd->duplex = DUPLEX_FULL;
182 else
183 ecmd->duplex = DUPLEX_HALF;
184 }
185 }
186
187 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
188 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
189
190 /* MDI-X => 2; MDI =>1; Invalid =>0 */
191 if ((hw->phy.media_type == e1000_media_type_copper) &&
192 netif_carrier_ok(netdev))
193 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
194 ETH_TP_MDI;
195 else
196 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
197
198 return 0;
199 }
200
201 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
202 {
203 struct e1000_mac_info *mac = &adapter->hw.mac;
204
205 mac->autoneg = 0;
206
207 /* Fiber NICs only allow 1000 gbps Full duplex */
208 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
209 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
210 e_err("Unsupported Speed/Duplex configuration\n");
211 return -EINVAL;
212 }
213
214 switch (spddplx) {
215 case SPEED_10 + DUPLEX_HALF:
216 mac->forced_speed_duplex = ADVERTISE_10_HALF;
217 break;
218 case SPEED_10 + DUPLEX_FULL:
219 mac->forced_speed_duplex = ADVERTISE_10_FULL;
220 break;
221 case SPEED_100 + DUPLEX_HALF:
222 mac->forced_speed_duplex = ADVERTISE_100_HALF;
223 break;
224 case SPEED_100 + DUPLEX_FULL:
225 mac->forced_speed_duplex = ADVERTISE_100_FULL;
226 break;
227 case SPEED_1000 + DUPLEX_FULL:
228 mac->autoneg = 1;
229 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
230 break;
231 case SPEED_1000 + DUPLEX_HALF: /* not supported */
232 default:
233 e_err("Unsupported Speed/Duplex configuration\n");
234 return -EINVAL;
235 }
236 return 0;
237 }
238
239 static int e1000_set_settings(struct net_device *netdev,
240 struct ethtool_cmd *ecmd)
241 {
242 struct e1000_adapter *adapter = netdev_priv(netdev);
243 struct e1000_hw *hw = &adapter->hw;
244
245 /*
246 * When SoL/IDER sessions are active, autoneg/speed/duplex
247 * cannot be changed
248 */
249 if (e1000_check_reset_block(hw)) {
250 e_err("Cannot change link characteristics when SoL/IDER is "
251 "active.\n");
252 return -EINVAL;
253 }
254
255 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
256 msleep(1);
257
258 if (ecmd->autoneg == AUTONEG_ENABLE) {
259 hw->mac.autoneg = 1;
260 if (hw->phy.media_type == e1000_media_type_fiber)
261 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
262 ADVERTISED_FIBRE |
263 ADVERTISED_Autoneg;
264 else
265 hw->phy.autoneg_advertised = ecmd->advertising |
266 ADVERTISED_TP |
267 ADVERTISED_Autoneg;
268 ecmd->advertising = hw->phy.autoneg_advertised;
269 if (adapter->fc_autoneg)
270 hw->fc.requested_mode = e1000_fc_default;
271 } else {
272 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
273 clear_bit(__E1000_RESETTING, &adapter->state);
274 return -EINVAL;
275 }
276 }
277
278 /* reset the link */
279
280 if (netif_running(adapter->netdev)) {
281 e1000e_down(adapter);
282 e1000e_up(adapter);
283 } else {
284 e1000e_reset(adapter);
285 }
286
287 clear_bit(__E1000_RESETTING, &adapter->state);
288 return 0;
289 }
290
291 static void e1000_get_pauseparam(struct net_device *netdev,
292 struct ethtool_pauseparam *pause)
293 {
294 struct e1000_adapter *adapter = netdev_priv(netdev);
295 struct e1000_hw *hw = &adapter->hw;
296
297 pause->autoneg =
298 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
299
300 if (hw->fc.current_mode == e1000_fc_rx_pause) {
301 pause->rx_pause = 1;
302 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
303 pause->tx_pause = 1;
304 } else if (hw->fc.current_mode == e1000_fc_full) {
305 pause->rx_pause = 1;
306 pause->tx_pause = 1;
307 }
308 }
309
310 static int e1000_set_pauseparam(struct net_device *netdev,
311 struct ethtool_pauseparam *pause)
312 {
313 struct e1000_adapter *adapter = netdev_priv(netdev);
314 struct e1000_hw *hw = &adapter->hw;
315 int retval = 0;
316
317 adapter->fc_autoneg = pause->autoneg;
318
319 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
320 msleep(1);
321
322 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
323 hw->fc.requested_mode = e1000_fc_default;
324 if (netif_running(adapter->netdev)) {
325 e1000e_down(adapter);
326 e1000e_up(adapter);
327 } else {
328 e1000e_reset(adapter);
329 }
330 } else {
331 if (pause->rx_pause && pause->tx_pause)
332 hw->fc.requested_mode = e1000_fc_full;
333 else if (pause->rx_pause && !pause->tx_pause)
334 hw->fc.requested_mode = e1000_fc_rx_pause;
335 else if (!pause->rx_pause && pause->tx_pause)
336 hw->fc.requested_mode = e1000_fc_tx_pause;
337 else if (!pause->rx_pause && !pause->tx_pause)
338 hw->fc.requested_mode = e1000_fc_none;
339
340 hw->fc.current_mode = hw->fc.requested_mode;
341
342 if (hw->phy.media_type == e1000_media_type_fiber) {
343 retval = hw->mac.ops.setup_link(hw);
344 /* implicit goto out */
345 } else {
346 retval = e1000e_force_mac_fc(hw);
347 if (retval)
348 goto out;
349 e1000e_set_fc_watermarks(hw);
350 }
351 }
352
353 out:
354 clear_bit(__E1000_RESETTING, &adapter->state);
355 return retval;
356 }
357
358 static u32 e1000_get_rx_csum(struct net_device *netdev)
359 {
360 struct e1000_adapter *adapter = netdev_priv(netdev);
361 return adapter->flags & FLAG_RX_CSUM_ENABLED;
362 }
363
364 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
365 {
366 struct e1000_adapter *adapter = netdev_priv(netdev);
367
368 if (data)
369 adapter->flags |= FLAG_RX_CSUM_ENABLED;
370 else
371 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
372
373 if (netif_running(netdev))
374 e1000e_reinit_locked(adapter);
375 else
376 e1000e_reset(adapter);
377 return 0;
378 }
379
380 static u32 e1000_get_tx_csum(struct net_device *netdev)
381 {
382 return (netdev->features & NETIF_F_HW_CSUM) != 0;
383 }
384
385 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
386 {
387 if (data)
388 netdev->features |= NETIF_F_HW_CSUM;
389 else
390 netdev->features &= ~NETIF_F_HW_CSUM;
391
392 return 0;
393 }
394
395 static int e1000_set_tso(struct net_device *netdev, u32 data)
396 {
397 struct e1000_adapter *adapter = netdev_priv(netdev);
398
399 if (data) {
400 netdev->features |= NETIF_F_TSO;
401 netdev->features |= NETIF_F_TSO6;
402 } else {
403 netdev->features &= ~NETIF_F_TSO;
404 netdev->features &= ~NETIF_F_TSO6;
405 }
406
407 adapter->flags |= FLAG_TSO_FORCE;
408 return 0;
409 }
410
411 static u32 e1000_get_msglevel(struct net_device *netdev)
412 {
413 struct e1000_adapter *adapter = netdev_priv(netdev);
414 return adapter->msg_enable;
415 }
416
417 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
418 {
419 struct e1000_adapter *adapter = netdev_priv(netdev);
420 adapter->msg_enable = data;
421 }
422
423 static int e1000_get_regs_len(struct net_device *netdev)
424 {
425 #define E1000_REGS_LEN 32 /* overestimate */
426 return E1000_REGS_LEN * sizeof(u32);
427 }
428
429 static void e1000_get_regs(struct net_device *netdev,
430 struct ethtool_regs *regs, void *p)
431 {
432 struct e1000_adapter *adapter = netdev_priv(netdev);
433 struct e1000_hw *hw = &adapter->hw;
434 u32 *regs_buff = p;
435 u16 phy_data;
436 u8 revision_id;
437
438 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
439
440 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
441
442 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
443
444 regs_buff[0] = er32(CTRL);
445 regs_buff[1] = er32(STATUS);
446
447 regs_buff[2] = er32(RCTL);
448 regs_buff[3] = er32(RDLEN);
449 regs_buff[4] = er32(RDH);
450 regs_buff[5] = er32(RDT);
451 regs_buff[6] = er32(RDTR);
452
453 regs_buff[7] = er32(TCTL);
454 regs_buff[8] = er32(TDLEN);
455 regs_buff[9] = er32(TDH);
456 regs_buff[10] = er32(TDT);
457 regs_buff[11] = er32(TIDV);
458
459 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
460
461 /* ethtool doesn't use anything past this point, so all this
462 * code is likely legacy junk for apps that may or may not
463 * exist */
464 if (hw->phy.type == e1000_phy_m88) {
465 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
466 regs_buff[13] = (u32)phy_data; /* cable length */
467 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
468 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
469 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
470 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
471 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
472 regs_buff[18] = regs_buff[13]; /* cable polarity */
473 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
474 regs_buff[20] = regs_buff[17]; /* polarity correction */
475 /* phy receive errors */
476 regs_buff[22] = adapter->phy_stats.receive_errors;
477 regs_buff[23] = regs_buff[13]; /* mdix mode */
478 }
479 regs_buff[21] = 0; /* was idle_errors */
480 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
481 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
482 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
483 }
484
485 static int e1000_get_eeprom_len(struct net_device *netdev)
486 {
487 struct e1000_adapter *adapter = netdev_priv(netdev);
488 return adapter->hw.nvm.word_size * 2;
489 }
490
491 static int e1000_get_eeprom(struct net_device *netdev,
492 struct ethtool_eeprom *eeprom, u8 *bytes)
493 {
494 struct e1000_adapter *adapter = netdev_priv(netdev);
495 struct e1000_hw *hw = &adapter->hw;
496 u16 *eeprom_buff;
497 int first_word;
498 int last_word;
499 int ret_val = 0;
500 u16 i;
501
502 if (eeprom->len == 0)
503 return -EINVAL;
504
505 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
506
507 first_word = eeprom->offset >> 1;
508 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
509
510 eeprom_buff = kmalloc(sizeof(u16) *
511 (last_word - first_word + 1), GFP_KERNEL);
512 if (!eeprom_buff)
513 return -ENOMEM;
514
515 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
516 ret_val = e1000_read_nvm(hw, first_word,
517 last_word - first_word + 1,
518 eeprom_buff);
519 } else {
520 for (i = 0; i < last_word - first_word + 1; i++) {
521 ret_val = e1000_read_nvm(hw, first_word + i, 1,
522 &eeprom_buff[i]);
523 if (ret_val)
524 break;
525 }
526 }
527
528 if (ret_val) {
529 /* a read error occurred, throw away the result */
530 memset(eeprom_buff, 0xff, sizeof(u16) *
531 (last_word - first_word + 1));
532 } else {
533 /* Device's eeprom is always little-endian, word addressable */
534 for (i = 0; i < last_word - first_word + 1; i++)
535 le16_to_cpus(&eeprom_buff[i]);
536 }
537
538 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
539 kfree(eeprom_buff);
540
541 return ret_val;
542 }
543
544 static int e1000_set_eeprom(struct net_device *netdev,
545 struct ethtool_eeprom *eeprom, u8 *bytes)
546 {
547 struct e1000_adapter *adapter = netdev_priv(netdev);
548 struct e1000_hw *hw = &adapter->hw;
549 u16 *eeprom_buff;
550 void *ptr;
551 int max_len;
552 int first_word;
553 int last_word;
554 int ret_val = 0;
555 u16 i;
556
557 if (eeprom->len == 0)
558 return -EOPNOTSUPP;
559
560 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
561 return -EFAULT;
562
563 if (adapter->flags & FLAG_READ_ONLY_NVM)
564 return -EINVAL;
565
566 max_len = hw->nvm.word_size * 2;
567
568 first_word = eeprom->offset >> 1;
569 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
570 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
571 if (!eeprom_buff)
572 return -ENOMEM;
573
574 ptr = (void *)eeprom_buff;
575
576 if (eeprom->offset & 1) {
577 /* need read/modify/write of first changed EEPROM word */
578 /* only the second byte of the word is being modified */
579 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
580 ptr++;
581 }
582 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
583 /* need read/modify/write of last changed EEPROM word */
584 /* only the first byte of the word is being modified */
585 ret_val = e1000_read_nvm(hw, last_word, 1,
586 &eeprom_buff[last_word - first_word]);
587
588 if (ret_val)
589 goto out;
590
591 /* Device's eeprom is always little-endian, word addressable */
592 for (i = 0; i < last_word - first_word + 1; i++)
593 le16_to_cpus(&eeprom_buff[i]);
594
595 memcpy(ptr, bytes, eeprom->len);
596
597 for (i = 0; i < last_word - first_word + 1; i++)
598 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
599
600 ret_val = e1000_write_nvm(hw, first_word,
601 last_word - first_word + 1, eeprom_buff);
602
603 if (ret_val)
604 goto out;
605
606 /*
607 * Update the checksum over the first part of the EEPROM if needed
608 * and flush shadow RAM for applicable controllers
609 */
610 if ((first_word <= NVM_CHECKSUM_REG) ||
611 (hw->mac.type == e1000_82583) ||
612 (hw->mac.type == e1000_82574) ||
613 (hw->mac.type == e1000_82573))
614 ret_val = e1000e_update_nvm_checksum(hw);
615
616 out:
617 kfree(eeprom_buff);
618 return ret_val;
619 }
620
621 static void e1000_get_drvinfo(struct net_device *netdev,
622 struct ethtool_drvinfo *drvinfo)
623 {
624 struct e1000_adapter *adapter = netdev_priv(netdev);
625 char firmware_version[32];
626
627 strncpy(drvinfo->driver, e1000e_driver_name,
628 sizeof(drvinfo->driver) - 1);
629 strncpy(drvinfo->version, e1000e_driver_version,
630 sizeof(drvinfo->version) - 1);
631
632 /*
633 * EEPROM image version # is reported as firmware version # for
634 * PCI-E controllers
635 */
636 snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d",
637 (adapter->eeprom_vers & 0xF000) >> 12,
638 (adapter->eeprom_vers & 0x0FF0) >> 4,
639 (adapter->eeprom_vers & 0x000F));
640
641 strncpy(drvinfo->fw_version, firmware_version,
642 sizeof(drvinfo->fw_version) - 1);
643 strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
644 sizeof(drvinfo->bus_info) - 1);
645 drvinfo->regdump_len = e1000_get_regs_len(netdev);
646 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
647 }
648
649 static void e1000_get_ringparam(struct net_device *netdev,
650 struct ethtool_ringparam *ring)
651 {
652 struct e1000_adapter *adapter = netdev_priv(netdev);
653 struct e1000_ring *tx_ring = adapter->tx_ring;
654 struct e1000_ring *rx_ring = adapter->rx_ring;
655
656 ring->rx_max_pending = E1000_MAX_RXD;
657 ring->tx_max_pending = E1000_MAX_TXD;
658 ring->rx_mini_max_pending = 0;
659 ring->rx_jumbo_max_pending = 0;
660 ring->rx_pending = rx_ring->count;
661 ring->tx_pending = tx_ring->count;
662 ring->rx_mini_pending = 0;
663 ring->rx_jumbo_pending = 0;
664 }
665
666 static int e1000_set_ringparam(struct net_device *netdev,
667 struct ethtool_ringparam *ring)
668 {
669 struct e1000_adapter *adapter = netdev_priv(netdev);
670 struct e1000_ring *tx_ring, *tx_old;
671 struct e1000_ring *rx_ring, *rx_old;
672 int err;
673
674 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
675 return -EINVAL;
676
677 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
678 msleep(1);
679
680 if (netif_running(adapter->netdev))
681 e1000e_down(adapter);
682
683 tx_old = adapter->tx_ring;
684 rx_old = adapter->rx_ring;
685
686 err = -ENOMEM;
687 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
688 if (!tx_ring)
689 goto err_alloc_tx;
690 /*
691 * use a memcpy to save any previously configured
692 * items like napi structs from having to be
693 * reinitialized
694 */
695 memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
696
697 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
698 if (!rx_ring)
699 goto err_alloc_rx;
700 memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
701
702 adapter->tx_ring = tx_ring;
703 adapter->rx_ring = rx_ring;
704
705 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
706 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
707 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
708
709 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
710 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
711 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
712
713 if (netif_running(adapter->netdev)) {
714 /* Try to get new resources before deleting old */
715 err = e1000e_setup_rx_resources(adapter);
716 if (err)
717 goto err_setup_rx;
718 err = e1000e_setup_tx_resources(adapter);
719 if (err)
720 goto err_setup_tx;
721
722 /*
723 * restore the old in order to free it,
724 * then add in the new
725 */
726 adapter->rx_ring = rx_old;
727 adapter->tx_ring = tx_old;
728 e1000e_free_rx_resources(adapter);
729 e1000e_free_tx_resources(adapter);
730 kfree(tx_old);
731 kfree(rx_old);
732 adapter->rx_ring = rx_ring;
733 adapter->tx_ring = tx_ring;
734 err = e1000e_up(adapter);
735 if (err)
736 goto err_setup;
737 }
738
739 clear_bit(__E1000_RESETTING, &adapter->state);
740 return 0;
741 err_setup_tx:
742 e1000e_free_rx_resources(adapter);
743 err_setup_rx:
744 adapter->rx_ring = rx_old;
745 adapter->tx_ring = tx_old;
746 kfree(rx_ring);
747 err_alloc_rx:
748 kfree(tx_ring);
749 err_alloc_tx:
750 e1000e_up(adapter);
751 err_setup:
752 clear_bit(__E1000_RESETTING, &adapter->state);
753 return err;
754 }
755
756 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
757 int reg, int offset, u32 mask, u32 write)
758 {
759 u32 pat, val;
760 static const u32 test[] = {
761 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
762 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
763 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
764 (test[pat] & write));
765 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
766 if (val != (test[pat] & write & mask)) {
767 e_err("pattern test reg %04X failed: got 0x%08X "
768 "expected 0x%08X\n", reg + offset, val,
769 (test[pat] & write & mask));
770 *data = reg;
771 return 1;
772 }
773 }
774 return 0;
775 }
776
777 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
778 int reg, u32 mask, u32 write)
779 {
780 u32 val;
781 __ew32(&adapter->hw, reg, write & mask);
782 val = __er32(&adapter->hw, reg);
783 if ((write & mask) != (val & mask)) {
784 e_err("set/check reg %04X test failed: got 0x%08X "
785 "expected 0x%08X\n", reg, (val & mask), (write & mask));
786 *data = reg;
787 return 1;
788 }
789 return 0;
790 }
791 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
792 do { \
793 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
794 return 1; \
795 } while (0)
796 #define REG_PATTERN_TEST(reg, mask, write) \
797 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
798
799 #define REG_SET_AND_CHECK(reg, mask, write) \
800 do { \
801 if (reg_set_and_check(adapter, data, reg, mask, write)) \
802 return 1; \
803 } while (0)
804
805 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
806 {
807 struct e1000_hw *hw = &adapter->hw;
808 struct e1000_mac_info *mac = &adapter->hw.mac;
809 u32 value;
810 u32 before;
811 u32 after;
812 u32 i;
813 u32 toggle;
814 u32 mask;
815
816 /*
817 * The status register is Read Only, so a write should fail.
818 * Some bits that get toggled are ignored.
819 */
820 switch (mac->type) {
821 /* there are several bits on newer hardware that are r/w */
822 case e1000_82571:
823 case e1000_82572:
824 case e1000_80003es2lan:
825 toggle = 0x7FFFF3FF;
826 break;
827 default:
828 toggle = 0x7FFFF033;
829 break;
830 }
831
832 before = er32(STATUS);
833 value = (er32(STATUS) & toggle);
834 ew32(STATUS, toggle);
835 after = er32(STATUS) & toggle;
836 if (value != after) {
837 e_err("failed STATUS register test got: 0x%08X expected: "
838 "0x%08X\n", after, value);
839 *data = 1;
840 return 1;
841 }
842 /* restore previous status */
843 ew32(STATUS, before);
844
845 if (!(adapter->flags & FLAG_IS_ICH)) {
846 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
847 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
848 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
849 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
850 }
851
852 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
853 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
854 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
855 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
856 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
857 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
858 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
859 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
860 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
861 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
862
863 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
864
865 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
866 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
867 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
868
869 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
870 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
871 if (!(adapter->flags & FLAG_IS_ICH))
872 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
873 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
874 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
875 mask = 0x8003FFFF;
876 switch (mac->type) {
877 case e1000_ich10lan:
878 case e1000_pchlan:
879 case e1000_pch2lan:
880 mask |= (1 << 18);
881 break;
882 default:
883 break;
884 }
885 for (i = 0; i < mac->rar_entry_count; i++)
886 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
887 mask, 0xFFFFFFFF);
888
889 for (i = 0; i < mac->mta_reg_count; i++)
890 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
891
892 *data = 0;
893 return 0;
894 }
895
896 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
897 {
898 u16 temp;
899 u16 checksum = 0;
900 u16 i;
901
902 *data = 0;
903 /* Read and add up the contents of the EEPROM */
904 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
905 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
906 *data = 1;
907 return *data;
908 }
909 checksum += temp;
910 }
911
912 /* If Checksum is not Correct return error else test passed */
913 if ((checksum != (u16) NVM_SUM) && !(*data))
914 *data = 2;
915
916 return *data;
917 }
918
919 static irqreturn_t e1000_test_intr(int irq, void *data)
920 {
921 struct net_device *netdev = (struct net_device *) data;
922 struct e1000_adapter *adapter = netdev_priv(netdev);
923 struct e1000_hw *hw = &adapter->hw;
924
925 adapter->test_icr |= er32(ICR);
926
927 return IRQ_HANDLED;
928 }
929
930 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
931 {
932 struct net_device *netdev = adapter->netdev;
933 struct e1000_hw *hw = &adapter->hw;
934 u32 mask;
935 u32 shared_int = 1;
936 u32 irq = adapter->pdev->irq;
937 int i;
938 int ret_val = 0;
939 int int_mode = E1000E_INT_MODE_LEGACY;
940
941 *data = 0;
942
943 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
944 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
945 int_mode = adapter->int_mode;
946 e1000e_reset_interrupt_capability(adapter);
947 adapter->int_mode = E1000E_INT_MODE_LEGACY;
948 e1000e_set_interrupt_capability(adapter);
949 }
950 /* Hook up test interrupt handler just for this test */
951 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
952 netdev)) {
953 shared_int = 0;
954 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
955 netdev->name, netdev)) {
956 *data = 1;
957 ret_val = -1;
958 goto out;
959 }
960 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
961
962 /* Disable all the interrupts */
963 ew32(IMC, 0xFFFFFFFF);
964 msleep(10);
965
966 /* Test each interrupt */
967 for (i = 0; i < 10; i++) {
968 /* Interrupt to test */
969 mask = 1 << i;
970
971 if (adapter->flags & FLAG_IS_ICH) {
972 switch (mask) {
973 case E1000_ICR_RXSEQ:
974 continue;
975 case 0x00000100:
976 if (adapter->hw.mac.type == e1000_ich8lan ||
977 adapter->hw.mac.type == e1000_ich9lan)
978 continue;
979 break;
980 default:
981 break;
982 }
983 }
984
985 if (!shared_int) {
986 /*
987 * Disable the interrupt to be reported in
988 * the cause register and then force the same
989 * interrupt and see if one gets posted. If
990 * an interrupt was posted to the bus, the
991 * test failed.
992 */
993 adapter->test_icr = 0;
994 ew32(IMC, mask);
995 ew32(ICS, mask);
996 msleep(10);
997
998 if (adapter->test_icr & mask) {
999 *data = 3;
1000 break;
1001 }
1002 }
1003
1004 /*
1005 * Enable the interrupt to be reported in
1006 * the cause register and then force the same
1007 * interrupt and see if one gets posted. If
1008 * an interrupt was not posted to the bus, the
1009 * test failed.
1010 */
1011 adapter->test_icr = 0;
1012 ew32(IMS, mask);
1013 ew32(ICS, mask);
1014 msleep(10);
1015
1016 if (!(adapter->test_icr & mask)) {
1017 *data = 4;
1018 break;
1019 }
1020
1021 if (!shared_int) {
1022 /*
1023 * Disable the other interrupts to be reported in
1024 * the cause register and then force the other
1025 * interrupts and see if any get posted. If
1026 * an interrupt was posted to the bus, the
1027 * test failed.
1028 */
1029 adapter->test_icr = 0;
1030 ew32(IMC, ~mask & 0x00007FFF);
1031 ew32(ICS, ~mask & 0x00007FFF);
1032 msleep(10);
1033
1034 if (adapter->test_icr) {
1035 *data = 5;
1036 break;
1037 }
1038 }
1039 }
1040
1041 /* Disable all the interrupts */
1042 ew32(IMC, 0xFFFFFFFF);
1043 msleep(10);
1044
1045 /* Unhook test interrupt handler */
1046 free_irq(irq, netdev);
1047
1048 out:
1049 if (int_mode == E1000E_INT_MODE_MSIX) {
1050 e1000e_reset_interrupt_capability(adapter);
1051 adapter->int_mode = int_mode;
1052 e1000e_set_interrupt_capability(adapter);
1053 }
1054
1055 return ret_val;
1056 }
1057
1058 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1059 {
1060 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1061 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1062 struct pci_dev *pdev = adapter->pdev;
1063 int i;
1064
1065 if (tx_ring->desc && tx_ring->buffer_info) {
1066 for (i = 0; i < tx_ring->count; i++) {
1067 if (tx_ring->buffer_info[i].dma)
1068 dma_unmap_single(&pdev->dev,
1069 tx_ring->buffer_info[i].dma,
1070 tx_ring->buffer_info[i].length,
1071 DMA_TO_DEVICE);
1072 if (tx_ring->buffer_info[i].skb)
1073 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1074 }
1075 }
1076
1077 if (rx_ring->desc && rx_ring->buffer_info) {
1078 for (i = 0; i < rx_ring->count; i++) {
1079 if (rx_ring->buffer_info[i].dma)
1080 dma_unmap_single(&pdev->dev,
1081 rx_ring->buffer_info[i].dma,
1082 2048, DMA_FROM_DEVICE);
1083 if (rx_ring->buffer_info[i].skb)
1084 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1085 }
1086 }
1087
1088 if (tx_ring->desc) {
1089 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1090 tx_ring->dma);
1091 tx_ring->desc = NULL;
1092 }
1093 if (rx_ring->desc) {
1094 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1095 rx_ring->dma);
1096 rx_ring->desc = NULL;
1097 }
1098
1099 kfree(tx_ring->buffer_info);
1100 tx_ring->buffer_info = NULL;
1101 kfree(rx_ring->buffer_info);
1102 rx_ring->buffer_info = NULL;
1103 }
1104
1105 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1106 {
1107 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1108 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1109 struct pci_dev *pdev = adapter->pdev;
1110 struct e1000_hw *hw = &adapter->hw;
1111 u32 rctl;
1112 int i;
1113 int ret_val;
1114
1115 /* Setup Tx descriptor ring and Tx buffers */
1116
1117 if (!tx_ring->count)
1118 tx_ring->count = E1000_DEFAULT_TXD;
1119
1120 tx_ring->buffer_info = kcalloc(tx_ring->count,
1121 sizeof(struct e1000_buffer),
1122 GFP_KERNEL);
1123 if (!(tx_ring->buffer_info)) {
1124 ret_val = 1;
1125 goto err_nomem;
1126 }
1127
1128 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1129 tx_ring->size = ALIGN(tx_ring->size, 4096);
1130 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1131 &tx_ring->dma, GFP_KERNEL);
1132 if (!tx_ring->desc) {
1133 ret_val = 2;
1134 goto err_nomem;
1135 }
1136 tx_ring->next_to_use = 0;
1137 tx_ring->next_to_clean = 0;
1138
1139 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1140 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1141 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1142 ew32(TDH, 0);
1143 ew32(TDT, 0);
1144 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1145 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1146 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1147
1148 for (i = 0; i < tx_ring->count; i++) {
1149 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1150 struct sk_buff *skb;
1151 unsigned int skb_size = 1024;
1152
1153 skb = alloc_skb(skb_size, GFP_KERNEL);
1154 if (!skb) {
1155 ret_val = 3;
1156 goto err_nomem;
1157 }
1158 skb_put(skb, skb_size);
1159 tx_ring->buffer_info[i].skb = skb;
1160 tx_ring->buffer_info[i].length = skb->len;
1161 tx_ring->buffer_info[i].dma =
1162 dma_map_single(&pdev->dev, skb->data, skb->len,
1163 DMA_TO_DEVICE);
1164 if (dma_mapping_error(&pdev->dev,
1165 tx_ring->buffer_info[i].dma)) {
1166 ret_val = 4;
1167 goto err_nomem;
1168 }
1169 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1170 tx_desc->lower.data = cpu_to_le32(skb->len);
1171 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1172 E1000_TXD_CMD_IFCS |
1173 E1000_TXD_CMD_RS);
1174 tx_desc->upper.data = 0;
1175 }
1176
1177 /* Setup Rx descriptor ring and Rx buffers */
1178
1179 if (!rx_ring->count)
1180 rx_ring->count = E1000_DEFAULT_RXD;
1181
1182 rx_ring->buffer_info = kcalloc(rx_ring->count,
1183 sizeof(struct e1000_buffer),
1184 GFP_KERNEL);
1185 if (!(rx_ring->buffer_info)) {
1186 ret_val = 5;
1187 goto err_nomem;
1188 }
1189
1190 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1191 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1192 &rx_ring->dma, GFP_KERNEL);
1193 if (!rx_ring->desc) {
1194 ret_val = 6;
1195 goto err_nomem;
1196 }
1197 rx_ring->next_to_use = 0;
1198 rx_ring->next_to_clean = 0;
1199
1200 rctl = er32(RCTL);
1201 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1202 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1203 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1204 ew32(RDLEN, rx_ring->size);
1205 ew32(RDH, 0);
1206 ew32(RDT, 0);
1207 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1208 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1209 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1210 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1211 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1212 ew32(RCTL, rctl);
1213
1214 for (i = 0; i < rx_ring->count; i++) {
1215 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1216 struct sk_buff *skb;
1217
1218 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1219 if (!skb) {
1220 ret_val = 7;
1221 goto err_nomem;
1222 }
1223 skb_reserve(skb, NET_IP_ALIGN);
1224 rx_ring->buffer_info[i].skb = skb;
1225 rx_ring->buffer_info[i].dma =
1226 dma_map_single(&pdev->dev, skb->data, 2048,
1227 DMA_FROM_DEVICE);
1228 if (dma_mapping_error(&pdev->dev,
1229 rx_ring->buffer_info[i].dma)) {
1230 ret_val = 8;
1231 goto err_nomem;
1232 }
1233 rx_desc->buffer_addr =
1234 cpu_to_le64(rx_ring->buffer_info[i].dma);
1235 memset(skb->data, 0x00, skb->len);
1236 }
1237
1238 return 0;
1239
1240 err_nomem:
1241 e1000_free_desc_rings(adapter);
1242 return ret_val;
1243 }
1244
1245 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1246 {
1247 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1248 e1e_wphy(&adapter->hw, 29, 0x001F);
1249 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1250 e1e_wphy(&adapter->hw, 29, 0x001A);
1251 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1252 }
1253
1254 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1255 {
1256 struct e1000_hw *hw = &adapter->hw;
1257 u32 ctrl_reg = 0;
1258 u32 stat_reg = 0;
1259 u16 phy_reg = 0;
1260 s32 ret_val = 0;
1261
1262 hw->mac.autoneg = 0;
1263
1264 if (hw->phy.type == e1000_phy_ife) {
1265 /* force 100, set loopback */
1266 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1267
1268 /* Now set up the MAC to the same speed/duplex as the PHY. */
1269 ctrl_reg = er32(CTRL);
1270 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1271 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1272 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1273 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1274 E1000_CTRL_FD); /* Force Duplex to FULL */
1275
1276 ew32(CTRL, ctrl_reg);
1277 udelay(500);
1278
1279 return 0;
1280 }
1281
1282 /* Specific PHY configuration for loopback */
1283 switch (hw->phy.type) {
1284 case e1000_phy_m88:
1285 /* Auto-MDI/MDIX Off */
1286 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1287 /* reset to update Auto-MDI/MDIX */
1288 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1289 /* autoneg off */
1290 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1291 break;
1292 case e1000_phy_gg82563:
1293 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1294 break;
1295 case e1000_phy_bm:
1296 /* Set Default MAC Interface speed to 1GB */
1297 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1298 phy_reg &= ~0x0007;
1299 phy_reg |= 0x006;
1300 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1301 /* Assert SW reset for above settings to take effect */
1302 e1000e_commit_phy(hw);
1303 mdelay(1);
1304 /* Force Full Duplex */
1305 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1306 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1307 /* Set Link Up (in force link) */
1308 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1309 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1310 /* Force Link */
1311 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1312 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1313 /* Set Early Link Enable */
1314 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1315 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1316 break;
1317 case e1000_phy_82577:
1318 case e1000_phy_82578:
1319 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1320 ret_val = hw->phy.ops.acquire(hw);
1321 if (ret_val) {
1322 e_err("Cannot setup 1Gbps loopback.\n");
1323 return ret_val;
1324 }
1325 e1000_configure_k1_ich8lan(hw, false);
1326 hw->phy.ops.release(hw);
1327 break;
1328 case e1000_phy_82579:
1329 /* Disable PHY energy detect power down */
1330 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1331 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1332 /* Disable full chip energy detect */
1333 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1334 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1335 /* Enable loopback on the PHY */
1336 #define I82577_PHY_LBK_CTRL 19
1337 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1338 break;
1339 default:
1340 break;
1341 }
1342
1343 /* force 1000, set loopback */
1344 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1345 mdelay(250);
1346
1347 /* Now set up the MAC to the same speed/duplex as the PHY. */
1348 ctrl_reg = er32(CTRL);
1349 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1350 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1351 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1352 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1353 E1000_CTRL_FD); /* Force Duplex to FULL */
1354
1355 if (adapter->flags & FLAG_IS_ICH)
1356 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1357
1358 if (hw->phy.media_type == e1000_media_type_copper &&
1359 hw->phy.type == e1000_phy_m88) {
1360 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1361 } else {
1362 /*
1363 * Set the ILOS bit on the fiber Nic if half duplex link is
1364 * detected.
1365 */
1366 stat_reg = er32(STATUS);
1367 if ((stat_reg & E1000_STATUS_FD) == 0)
1368 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1369 }
1370
1371 ew32(CTRL, ctrl_reg);
1372
1373 /*
1374 * Disable the receiver on the PHY so when a cable is plugged in, the
1375 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1376 */
1377 if (hw->phy.type == e1000_phy_m88)
1378 e1000_phy_disable_receiver(adapter);
1379
1380 udelay(500);
1381
1382 return 0;
1383 }
1384
1385 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1386 {
1387 struct e1000_hw *hw = &adapter->hw;
1388 u32 ctrl = er32(CTRL);
1389 int link = 0;
1390
1391 /* special requirements for 82571/82572 fiber adapters */
1392
1393 /*
1394 * jump through hoops to make sure link is up because serdes
1395 * link is hardwired up
1396 */
1397 ctrl |= E1000_CTRL_SLU;
1398 ew32(CTRL, ctrl);
1399
1400 /* disable autoneg */
1401 ctrl = er32(TXCW);
1402 ctrl &= ~(1 << 31);
1403 ew32(TXCW, ctrl);
1404
1405 link = (er32(STATUS) & E1000_STATUS_LU);
1406
1407 if (!link) {
1408 /* set invert loss of signal */
1409 ctrl = er32(CTRL);
1410 ctrl |= E1000_CTRL_ILOS;
1411 ew32(CTRL, ctrl);
1412 }
1413
1414 /*
1415 * special write to serdes control register to enable SerDes analog
1416 * loopback
1417 */
1418 #define E1000_SERDES_LB_ON 0x410
1419 ew32(SCTL, E1000_SERDES_LB_ON);
1420 msleep(10);
1421
1422 return 0;
1423 }
1424
1425 /* only call this for fiber/serdes connections to es2lan */
1426 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1427 {
1428 struct e1000_hw *hw = &adapter->hw;
1429 u32 ctrlext = er32(CTRL_EXT);
1430 u32 ctrl = er32(CTRL);
1431
1432 /*
1433 * save CTRL_EXT to restore later, reuse an empty variable (unused
1434 * on mac_type 80003es2lan)
1435 */
1436 adapter->tx_fifo_head = ctrlext;
1437
1438 /* clear the serdes mode bits, putting the device into mac loopback */
1439 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1440 ew32(CTRL_EXT, ctrlext);
1441
1442 /* force speed to 1000/FD, link up */
1443 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1444 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1445 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1446 ew32(CTRL, ctrl);
1447
1448 /* set mac loopback */
1449 ctrl = er32(RCTL);
1450 ctrl |= E1000_RCTL_LBM_MAC;
1451 ew32(RCTL, ctrl);
1452
1453 /* set testing mode parameters (no need to reset later) */
1454 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1455 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1456 ew32(KMRNCTRLSTA,
1457 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1458
1459 return 0;
1460 }
1461
1462 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1463 {
1464 struct e1000_hw *hw = &adapter->hw;
1465 u32 rctl;
1466
1467 if (hw->phy.media_type == e1000_media_type_fiber ||
1468 hw->phy.media_type == e1000_media_type_internal_serdes) {
1469 switch (hw->mac.type) {
1470 case e1000_80003es2lan:
1471 return e1000_set_es2lan_mac_loopback(adapter);
1472 break;
1473 case e1000_82571:
1474 case e1000_82572:
1475 return e1000_set_82571_fiber_loopback(adapter);
1476 break;
1477 default:
1478 rctl = er32(RCTL);
1479 rctl |= E1000_RCTL_LBM_TCVR;
1480 ew32(RCTL, rctl);
1481 return 0;
1482 }
1483 } else if (hw->phy.media_type == e1000_media_type_copper) {
1484 return e1000_integrated_phy_loopback(adapter);
1485 }
1486
1487 return 7;
1488 }
1489
1490 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1491 {
1492 struct e1000_hw *hw = &adapter->hw;
1493 u32 rctl;
1494 u16 phy_reg;
1495
1496 rctl = er32(RCTL);
1497 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1498 ew32(RCTL, rctl);
1499
1500 switch (hw->mac.type) {
1501 case e1000_80003es2lan:
1502 if (hw->phy.media_type == e1000_media_type_fiber ||
1503 hw->phy.media_type == e1000_media_type_internal_serdes) {
1504 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1505 ew32(CTRL_EXT, adapter->tx_fifo_head);
1506 adapter->tx_fifo_head = 0;
1507 }
1508 /* fall through */
1509 case e1000_82571:
1510 case e1000_82572:
1511 if (hw->phy.media_type == e1000_media_type_fiber ||
1512 hw->phy.media_type == e1000_media_type_internal_serdes) {
1513 #define E1000_SERDES_LB_OFF 0x400
1514 ew32(SCTL, E1000_SERDES_LB_OFF);
1515 msleep(10);
1516 break;
1517 }
1518 /* Fall Through */
1519 default:
1520 hw->mac.autoneg = 1;
1521 if (hw->phy.type == e1000_phy_gg82563)
1522 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1523 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1524 if (phy_reg & MII_CR_LOOPBACK) {
1525 phy_reg &= ~MII_CR_LOOPBACK;
1526 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1527 e1000e_commit_phy(hw);
1528 }
1529 break;
1530 }
1531 }
1532
1533 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1534 unsigned int frame_size)
1535 {
1536 memset(skb->data, 0xFF, frame_size);
1537 frame_size &= ~1;
1538 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1539 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1540 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1541 }
1542
1543 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1544 unsigned int frame_size)
1545 {
1546 frame_size &= ~1;
1547 if (*(skb->data + 3) == 0xFF)
1548 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1549 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1550 return 0;
1551 return 13;
1552 }
1553
1554 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1555 {
1556 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1557 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1558 struct pci_dev *pdev = adapter->pdev;
1559 struct e1000_hw *hw = &adapter->hw;
1560 int i, j, k, l;
1561 int lc;
1562 int good_cnt;
1563 int ret_val = 0;
1564 unsigned long time;
1565
1566 ew32(RDT, rx_ring->count - 1);
1567
1568 /*
1569 * Calculate the loop count based on the largest descriptor ring
1570 * The idea is to wrap the largest ring a number of times using 64
1571 * send/receive pairs during each loop
1572 */
1573
1574 if (rx_ring->count <= tx_ring->count)
1575 lc = ((tx_ring->count / 64) * 2) + 1;
1576 else
1577 lc = ((rx_ring->count / 64) * 2) + 1;
1578
1579 k = 0;
1580 l = 0;
1581 for (j = 0; j <= lc; j++) { /* loop count loop */
1582 for (i = 0; i < 64; i++) { /* send the packets */
1583 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1584 1024);
1585 dma_sync_single_for_device(&pdev->dev,
1586 tx_ring->buffer_info[k].dma,
1587 tx_ring->buffer_info[k].length,
1588 DMA_TO_DEVICE);
1589 k++;
1590 if (k == tx_ring->count)
1591 k = 0;
1592 }
1593 ew32(TDT, k);
1594 msleep(200);
1595 time = jiffies; /* set the start time for the receive */
1596 good_cnt = 0;
1597 do { /* receive the sent packets */
1598 dma_sync_single_for_cpu(&pdev->dev,
1599 rx_ring->buffer_info[l].dma, 2048,
1600 DMA_FROM_DEVICE);
1601
1602 ret_val = e1000_check_lbtest_frame(
1603 rx_ring->buffer_info[l].skb, 1024);
1604 if (!ret_val)
1605 good_cnt++;
1606 l++;
1607 if (l == rx_ring->count)
1608 l = 0;
1609 /*
1610 * time + 20 msecs (200 msecs on 2.4) is more than
1611 * enough time to complete the receives, if it's
1612 * exceeded, break and error off
1613 */
1614 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1615 if (good_cnt != 64) {
1616 ret_val = 13; /* ret_val is the same as mis-compare */
1617 break;
1618 }
1619 if (jiffies >= (time + 20)) {
1620 ret_val = 14; /* error code for time out error */
1621 break;
1622 }
1623 } /* end loop count loop */
1624 return ret_val;
1625 }
1626
1627 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1628 {
1629 /*
1630 * PHY loopback cannot be performed if SoL/IDER
1631 * sessions are active
1632 */
1633 if (e1000_check_reset_block(&adapter->hw)) {
1634 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1635 *data = 0;
1636 goto out;
1637 }
1638
1639 *data = e1000_setup_desc_rings(adapter);
1640 if (*data)
1641 goto out;
1642
1643 *data = e1000_setup_loopback_test(adapter);
1644 if (*data)
1645 goto err_loopback;
1646
1647 *data = e1000_run_loopback_test(adapter);
1648 e1000_loopback_cleanup(adapter);
1649
1650 err_loopback:
1651 e1000_free_desc_rings(adapter);
1652 out:
1653 return *data;
1654 }
1655
1656 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1657 {
1658 struct e1000_hw *hw = &adapter->hw;
1659
1660 *data = 0;
1661 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1662 int i = 0;
1663 hw->mac.serdes_has_link = false;
1664
1665 /*
1666 * On some blade server designs, link establishment
1667 * could take as long as 2-3 minutes
1668 */
1669 do {
1670 hw->mac.ops.check_for_link(hw);
1671 if (hw->mac.serdes_has_link)
1672 return *data;
1673 msleep(20);
1674 } while (i++ < 3750);
1675
1676 *data = 1;
1677 } else {
1678 hw->mac.ops.check_for_link(hw);
1679 if (hw->mac.autoneg)
1680 msleep(4000);
1681
1682 if (!(er32(STATUS) &
1683 E1000_STATUS_LU))
1684 *data = 1;
1685 }
1686 return *data;
1687 }
1688
1689 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1690 {
1691 switch (sset) {
1692 case ETH_SS_TEST:
1693 return E1000_TEST_LEN;
1694 case ETH_SS_STATS:
1695 return E1000_STATS_LEN;
1696 default:
1697 return -EOPNOTSUPP;
1698 }
1699 }
1700
1701 static void e1000_diag_test(struct net_device *netdev,
1702 struct ethtool_test *eth_test, u64 *data)
1703 {
1704 struct e1000_adapter *adapter = netdev_priv(netdev);
1705 u16 autoneg_advertised;
1706 u8 forced_speed_duplex;
1707 u8 autoneg;
1708 bool if_running = netif_running(netdev);
1709
1710 set_bit(__E1000_TESTING, &adapter->state);
1711 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1712 /* Offline tests */
1713
1714 /* save speed, duplex, autoneg settings */
1715 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1716 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1717 autoneg = adapter->hw.mac.autoneg;
1718
1719 e_info("offline testing starting\n");
1720
1721 if (if_running)
1722 /* indicate we're in test mode */
1723 dev_close(netdev);
1724 else
1725 e1000e_reset(adapter);
1726
1727 if (e1000_reg_test(adapter, &data[0]))
1728 eth_test->flags |= ETH_TEST_FL_FAILED;
1729
1730 e1000e_reset(adapter);
1731 if (e1000_eeprom_test(adapter, &data[1]))
1732 eth_test->flags |= ETH_TEST_FL_FAILED;
1733
1734 e1000e_reset(adapter);
1735 if (e1000_intr_test(adapter, &data[2]))
1736 eth_test->flags |= ETH_TEST_FL_FAILED;
1737
1738 e1000e_reset(adapter);
1739 /* make sure the phy is powered up */
1740 e1000e_power_up_phy(adapter);
1741 if (e1000_loopback_test(adapter, &data[3]))
1742 eth_test->flags |= ETH_TEST_FL_FAILED;
1743
1744 /* force this routine to wait until autoneg complete/timeout */
1745 adapter->hw.phy.autoneg_wait_to_complete = 1;
1746 e1000e_reset(adapter);
1747 adapter->hw.phy.autoneg_wait_to_complete = 0;
1748
1749 if (e1000_link_test(adapter, &data[4]))
1750 eth_test->flags |= ETH_TEST_FL_FAILED;
1751
1752 /* restore speed, duplex, autoneg settings */
1753 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1754 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1755 adapter->hw.mac.autoneg = autoneg;
1756 e1000e_reset(adapter);
1757
1758 clear_bit(__E1000_TESTING, &adapter->state);
1759 if (if_running)
1760 dev_open(netdev);
1761 } else {
1762 if (!if_running && (adapter->flags & FLAG_HAS_AMT)) {
1763 clear_bit(__E1000_TESTING, &adapter->state);
1764 dev_open(netdev);
1765 set_bit(__E1000_TESTING, &adapter->state);
1766 }
1767
1768 e_info("online testing starting\n");
1769 /* Online tests */
1770 if (e1000_link_test(adapter, &data[4]))
1771 eth_test->flags |= ETH_TEST_FL_FAILED;
1772
1773 /* Online tests aren't run; pass by default */
1774 data[0] = 0;
1775 data[1] = 0;
1776 data[2] = 0;
1777 data[3] = 0;
1778
1779 if (!if_running && (adapter->flags & FLAG_HAS_AMT))
1780 dev_close(netdev);
1781
1782 clear_bit(__E1000_TESTING, &adapter->state);
1783 }
1784 msleep_interruptible(4 * 1000);
1785 }
1786
1787 static void e1000_get_wol(struct net_device *netdev,
1788 struct ethtool_wolinfo *wol)
1789 {
1790 struct e1000_adapter *adapter = netdev_priv(netdev);
1791
1792 wol->supported = 0;
1793 wol->wolopts = 0;
1794
1795 if (!(adapter->flags & FLAG_HAS_WOL) ||
1796 !device_can_wakeup(&adapter->pdev->dev))
1797 return;
1798
1799 wol->supported = WAKE_UCAST | WAKE_MCAST |
1800 WAKE_BCAST | WAKE_MAGIC |
1801 WAKE_PHY | WAKE_ARP;
1802
1803 /* apply any specific unsupported masks here */
1804 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1805 wol->supported &= ~WAKE_UCAST;
1806
1807 if (adapter->wol & E1000_WUFC_EX)
1808 e_err("Interface does not support directed (unicast) "
1809 "frame wake-up packets\n");
1810 }
1811
1812 if (adapter->wol & E1000_WUFC_EX)
1813 wol->wolopts |= WAKE_UCAST;
1814 if (adapter->wol & E1000_WUFC_MC)
1815 wol->wolopts |= WAKE_MCAST;
1816 if (adapter->wol & E1000_WUFC_BC)
1817 wol->wolopts |= WAKE_BCAST;
1818 if (adapter->wol & E1000_WUFC_MAG)
1819 wol->wolopts |= WAKE_MAGIC;
1820 if (adapter->wol & E1000_WUFC_LNKC)
1821 wol->wolopts |= WAKE_PHY;
1822 if (adapter->wol & E1000_WUFC_ARP)
1823 wol->wolopts |= WAKE_ARP;
1824 }
1825
1826 static int e1000_set_wol(struct net_device *netdev,
1827 struct ethtool_wolinfo *wol)
1828 {
1829 struct e1000_adapter *adapter = netdev_priv(netdev);
1830
1831 if (!(adapter->flags & FLAG_HAS_WOL) ||
1832 !device_can_wakeup(&adapter->pdev->dev) ||
1833 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1834 WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1835 return -EOPNOTSUPP;
1836
1837 /* these settings will always override what we currently have */
1838 adapter->wol = 0;
1839
1840 if (wol->wolopts & WAKE_UCAST)
1841 adapter->wol |= E1000_WUFC_EX;
1842 if (wol->wolopts & WAKE_MCAST)
1843 adapter->wol |= E1000_WUFC_MC;
1844 if (wol->wolopts & WAKE_BCAST)
1845 adapter->wol |= E1000_WUFC_BC;
1846 if (wol->wolopts & WAKE_MAGIC)
1847 adapter->wol |= E1000_WUFC_MAG;
1848 if (wol->wolopts & WAKE_PHY)
1849 adapter->wol |= E1000_WUFC_LNKC;
1850 if (wol->wolopts & WAKE_ARP)
1851 adapter->wol |= E1000_WUFC_ARP;
1852
1853 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1854
1855 return 0;
1856 }
1857
1858 /* toggle LED 4 times per second = 2 "blinks" per second */
1859 #define E1000_ID_INTERVAL (HZ/4)
1860
1861 /* bit defines for adapter->led_status */
1862 #define E1000_LED_ON 0
1863
1864 void e1000e_led_blink_task(struct work_struct *work)
1865 {
1866 struct e1000_adapter *adapter = container_of(work,
1867 struct e1000_adapter, led_blink_task);
1868
1869 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1870 adapter->hw.mac.ops.led_off(&adapter->hw);
1871 else
1872 adapter->hw.mac.ops.led_on(&adapter->hw);
1873 }
1874
1875 static void e1000_led_blink_callback(unsigned long data)
1876 {
1877 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1878
1879 schedule_work(&adapter->led_blink_task);
1880 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1881 }
1882
1883 static int e1000_phys_id(struct net_device *netdev, u32 data)
1884 {
1885 struct e1000_adapter *adapter = netdev_priv(netdev);
1886 struct e1000_hw *hw = &adapter->hw;
1887
1888 if (!data)
1889 data = INT_MAX;
1890
1891 if ((hw->phy.type == e1000_phy_ife) ||
1892 (hw->mac.type == e1000_pchlan) ||
1893 (hw->mac.type == e1000_pch2lan) ||
1894 (hw->mac.type == e1000_82583) ||
1895 (hw->mac.type == e1000_82574)) {
1896 if (!adapter->blink_timer.function) {
1897 init_timer(&adapter->blink_timer);
1898 adapter->blink_timer.function =
1899 e1000_led_blink_callback;
1900 adapter->blink_timer.data = (unsigned long) adapter;
1901 }
1902 mod_timer(&adapter->blink_timer, jiffies);
1903 msleep_interruptible(data * 1000);
1904 del_timer_sync(&adapter->blink_timer);
1905 if (hw->phy.type == e1000_phy_ife)
1906 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1907 } else {
1908 e1000e_blink_led(hw);
1909 msleep_interruptible(data * 1000);
1910 }
1911
1912 hw->mac.ops.led_off(hw);
1913 clear_bit(E1000_LED_ON, &adapter->led_status);
1914 hw->mac.ops.cleanup_led(hw);
1915
1916 return 0;
1917 }
1918
1919 static int e1000_get_coalesce(struct net_device *netdev,
1920 struct ethtool_coalesce *ec)
1921 {
1922 struct e1000_adapter *adapter = netdev_priv(netdev);
1923
1924 if (adapter->itr_setting <= 4)
1925 ec->rx_coalesce_usecs = adapter->itr_setting;
1926 else
1927 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1928
1929 return 0;
1930 }
1931
1932 static int e1000_set_coalesce(struct net_device *netdev,
1933 struct ethtool_coalesce *ec)
1934 {
1935 struct e1000_adapter *adapter = netdev_priv(netdev);
1936 struct e1000_hw *hw = &adapter->hw;
1937
1938 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1939 ((ec->rx_coalesce_usecs > 4) &&
1940 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1941 (ec->rx_coalesce_usecs == 2))
1942 return -EINVAL;
1943
1944 if (ec->rx_coalesce_usecs == 4) {
1945 adapter->itr = adapter->itr_setting = 4;
1946 } else if (ec->rx_coalesce_usecs <= 3) {
1947 adapter->itr = 20000;
1948 adapter->itr_setting = ec->rx_coalesce_usecs;
1949 } else {
1950 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1951 adapter->itr_setting = adapter->itr & ~3;
1952 }
1953
1954 if (adapter->itr_setting != 0)
1955 ew32(ITR, 1000000000 / (adapter->itr * 256));
1956 else
1957 ew32(ITR, 0);
1958
1959 return 0;
1960 }
1961
1962 static int e1000_nway_reset(struct net_device *netdev)
1963 {
1964 struct e1000_adapter *adapter = netdev_priv(netdev);
1965 if (netif_running(netdev))
1966 e1000e_reinit_locked(adapter);
1967 return 0;
1968 }
1969
1970 static void e1000_get_ethtool_stats(struct net_device *netdev,
1971 struct ethtool_stats *stats,
1972 u64 *data)
1973 {
1974 struct e1000_adapter *adapter = netdev_priv(netdev);
1975 int i;
1976 char *p = NULL;
1977
1978 e1000e_update_stats(adapter);
1979 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1980 switch (e1000_gstrings_stats[i].type) {
1981 case NETDEV_STATS:
1982 p = (char *) netdev +
1983 e1000_gstrings_stats[i].stat_offset;
1984 break;
1985 case E1000_STATS:
1986 p = (char *) adapter +
1987 e1000_gstrings_stats[i].stat_offset;
1988 break;
1989 default:
1990 data[i] = 0;
1991 continue;
1992 }
1993
1994 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1995 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1996 }
1997 }
1998
1999 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
2000 u8 *data)
2001 {
2002 u8 *p = data;
2003 int i;
2004
2005 switch (stringset) {
2006 case ETH_SS_TEST:
2007 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
2008 break;
2009 case ETH_SS_STATS:
2010 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2011 memcpy(p, e1000_gstrings_stats[i].stat_string,
2012 ETH_GSTRING_LEN);
2013 p += ETH_GSTRING_LEN;
2014 }
2015 break;
2016 }
2017 }
2018
2019 static const struct ethtool_ops e1000_ethtool_ops = {
2020 .get_settings = e1000_get_settings,
2021 .set_settings = e1000_set_settings,
2022 .get_drvinfo = e1000_get_drvinfo,
2023 .get_regs_len = e1000_get_regs_len,
2024 .get_regs = e1000_get_regs,
2025 .get_wol = e1000_get_wol,
2026 .set_wol = e1000_set_wol,
2027 .get_msglevel = e1000_get_msglevel,
2028 .set_msglevel = e1000_set_msglevel,
2029 .nway_reset = e1000_nway_reset,
2030 .get_link = ethtool_op_get_link,
2031 .get_eeprom_len = e1000_get_eeprom_len,
2032 .get_eeprom = e1000_get_eeprom,
2033 .set_eeprom = e1000_set_eeprom,
2034 .get_ringparam = e1000_get_ringparam,
2035 .set_ringparam = e1000_set_ringparam,
2036 .get_pauseparam = e1000_get_pauseparam,
2037 .set_pauseparam = e1000_set_pauseparam,
2038 .get_rx_csum = e1000_get_rx_csum,
2039 .set_rx_csum = e1000_set_rx_csum,
2040 .get_tx_csum = e1000_get_tx_csum,
2041 .set_tx_csum = e1000_set_tx_csum,
2042 .get_sg = ethtool_op_get_sg,
2043 .set_sg = ethtool_op_set_sg,
2044 .get_tso = ethtool_op_get_tso,
2045 .set_tso = e1000_set_tso,
2046 .self_test = e1000_diag_test,
2047 .get_strings = e1000_get_strings,
2048 .phys_id = e1000_phys_id,
2049 .get_ethtool_stats = e1000_get_ethtool_stats,
2050 .get_sset_count = e1000e_get_sset_count,
2051 .get_coalesce = e1000_get_coalesce,
2052 .set_coalesce = e1000_set_coalesce,
2053 .get_flags = ethtool_op_get_flags,
2054 };
2055
2056 void e1000e_set_ethtool_ops(struct net_device *netdev)
2057 {
2058 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2059 }
This page took 0.073246 seconds and 5 git commands to generate.