Merge remote branch 'origin/master'
[deliverable/linux.git] / drivers / net / e1000e / phy.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/delay.h>
30
31 #include "e1000.h"
32
33 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
38 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39 u16 *data, bool read);
40 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42 u16 *data, bool read);
43
44 /* Cable length tables */
45 static const u16 e1000_m88_cable_length_table[] =
46 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48 ARRAY_SIZE(e1000_m88_cable_length_table)
49
50 static const u16 e1000_igp_2_cable_length_table[] =
51 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
52 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
53 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
54 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
55 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
56 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
57 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
58 124};
59 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60 ARRAY_SIZE(e1000_igp_2_cable_length_table)
61
62 #define BM_PHY_REG_PAGE(offset) \
63 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
64 #define BM_PHY_REG_NUM(offset) \
65 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
66 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
67 ~MAX_PHY_REG_ADDRESS)))
68
69 #define HV_INTC_FC_PAGE_START 768
70 #define I82578_ADDR_REG 29
71 #define I82577_ADDR_REG 16
72 #define I82577_CFG_REG 22
73 #define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
74 #define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
75 #define I82577_CTRL_REG 23
76
77 /* 82577 specific PHY registers */
78 #define I82577_PHY_CTRL_2 18
79 #define I82577_PHY_STATUS_2 26
80 #define I82577_PHY_DIAG_STATUS 31
81
82 /* I82577 PHY Status 2 */
83 #define I82577_PHY_STATUS2_REV_POLARITY 0x0400
84 #define I82577_PHY_STATUS2_MDIX 0x0800
85 #define I82577_PHY_STATUS2_SPEED_MASK 0x0300
86 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
87
88 /* I82577 PHY Control 2 */
89 #define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
90 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
91
92 /* I82577 PHY Diagnostics Status */
93 #define I82577_DSTATUS_CABLE_LENGTH 0x03FC
94 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
95
96 /* BM PHY Copper Specific Control 1 */
97 #define BM_CS_CTRL1 16
98
99 #define HV_MUX_DATA_CTRL PHY_REG(776, 16)
100 #define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
101 #define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
102
103 /**
104 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
105 * @hw: pointer to the HW structure
106 *
107 * Read the PHY management control register and check whether a PHY reset
108 * is blocked. If a reset is not blocked return 0, otherwise
109 * return E1000_BLK_PHY_RESET (12).
110 **/
111 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
112 {
113 u32 manc;
114
115 manc = er32(MANC);
116
117 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
118 E1000_BLK_PHY_RESET : 0;
119 }
120
121 /**
122 * e1000e_get_phy_id - Retrieve the PHY ID and revision
123 * @hw: pointer to the HW structure
124 *
125 * Reads the PHY registers and stores the PHY ID and possibly the PHY
126 * revision in the hardware structure.
127 **/
128 s32 e1000e_get_phy_id(struct e1000_hw *hw)
129 {
130 struct e1000_phy_info *phy = &hw->phy;
131 s32 ret_val = 0;
132 u16 phy_id;
133 u16 retry_count = 0;
134
135 if (!(phy->ops.read_reg))
136 goto out;
137
138 while (retry_count < 2) {
139 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
140 if (ret_val)
141 goto out;
142
143 phy->id = (u32)(phy_id << 16);
144 udelay(20);
145 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
146 if (ret_val)
147 goto out;
148
149 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
150 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
151
152 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
153 goto out;
154
155 retry_count++;
156 }
157 out:
158 return ret_val;
159 }
160
161 /**
162 * e1000e_phy_reset_dsp - Reset PHY DSP
163 * @hw: pointer to the HW structure
164 *
165 * Reset the digital signal processor.
166 **/
167 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
168 {
169 s32 ret_val;
170
171 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
172 if (ret_val)
173 return ret_val;
174
175 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
176 }
177
178 /**
179 * e1000e_read_phy_reg_mdic - Read MDI control register
180 * @hw: pointer to the HW structure
181 * @offset: register offset to be read
182 * @data: pointer to the read data
183 *
184 * Reads the MDI control register in the PHY at offset and stores the
185 * information read to data.
186 **/
187 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
188 {
189 struct e1000_phy_info *phy = &hw->phy;
190 u32 i, mdic = 0;
191
192 if (offset > MAX_PHY_REG_ADDRESS) {
193 e_dbg("PHY Address %d is out of range\n", offset);
194 return -E1000_ERR_PARAM;
195 }
196
197 /*
198 * Set up Op-code, Phy Address, and register offset in the MDI
199 * Control register. The MAC will take care of interfacing with the
200 * PHY to retrieve the desired data.
201 */
202 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
203 (phy->addr << E1000_MDIC_PHY_SHIFT) |
204 (E1000_MDIC_OP_READ));
205
206 ew32(MDIC, mdic);
207
208 /*
209 * Poll the ready bit to see if the MDI read completed
210 * Increasing the time out as testing showed failures with
211 * the lower time out
212 */
213 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
214 udelay(50);
215 mdic = er32(MDIC);
216 if (mdic & E1000_MDIC_READY)
217 break;
218 }
219 if (!(mdic & E1000_MDIC_READY)) {
220 e_dbg("MDI Read did not complete\n");
221 return -E1000_ERR_PHY;
222 }
223 if (mdic & E1000_MDIC_ERROR) {
224 e_dbg("MDI Error\n");
225 return -E1000_ERR_PHY;
226 }
227 *data = (u16) mdic;
228
229 return 0;
230 }
231
232 /**
233 * e1000e_write_phy_reg_mdic - Write MDI control register
234 * @hw: pointer to the HW structure
235 * @offset: register offset to write to
236 * @data: data to write to register at offset
237 *
238 * Writes data to MDI control register in the PHY at offset.
239 **/
240 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
241 {
242 struct e1000_phy_info *phy = &hw->phy;
243 u32 i, mdic = 0;
244
245 if (offset > MAX_PHY_REG_ADDRESS) {
246 e_dbg("PHY Address %d is out of range\n", offset);
247 return -E1000_ERR_PARAM;
248 }
249
250 /*
251 * Set up Op-code, Phy Address, and register offset in the MDI
252 * Control register. The MAC will take care of interfacing with the
253 * PHY to retrieve the desired data.
254 */
255 mdic = (((u32)data) |
256 (offset << E1000_MDIC_REG_SHIFT) |
257 (phy->addr << E1000_MDIC_PHY_SHIFT) |
258 (E1000_MDIC_OP_WRITE));
259
260 ew32(MDIC, mdic);
261
262 /*
263 * Poll the ready bit to see if the MDI read completed
264 * Increasing the time out as testing showed failures with
265 * the lower time out
266 */
267 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
268 udelay(50);
269 mdic = er32(MDIC);
270 if (mdic & E1000_MDIC_READY)
271 break;
272 }
273 if (!(mdic & E1000_MDIC_READY)) {
274 e_dbg("MDI Write did not complete\n");
275 return -E1000_ERR_PHY;
276 }
277 if (mdic & E1000_MDIC_ERROR) {
278 e_dbg("MDI Error\n");
279 return -E1000_ERR_PHY;
280 }
281
282 return 0;
283 }
284
285 /**
286 * e1000e_read_phy_reg_m88 - Read m88 PHY register
287 * @hw: pointer to the HW structure
288 * @offset: register offset to be read
289 * @data: pointer to the read data
290 *
291 * Acquires semaphore, if necessary, then reads the PHY register at offset
292 * and storing the retrieved information in data. Release any acquired
293 * semaphores before exiting.
294 **/
295 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
296 {
297 s32 ret_val;
298
299 ret_val = hw->phy.ops.acquire(hw);
300 if (ret_val)
301 return ret_val;
302
303 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
304 data);
305
306 hw->phy.ops.release(hw);
307
308 return ret_val;
309 }
310
311 /**
312 * e1000e_write_phy_reg_m88 - Write m88 PHY register
313 * @hw: pointer to the HW structure
314 * @offset: register offset to write to
315 * @data: data to write at register offset
316 *
317 * Acquires semaphore, if necessary, then writes the data to PHY register
318 * at the offset. Release any acquired semaphores before exiting.
319 **/
320 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
321 {
322 s32 ret_val;
323
324 ret_val = hw->phy.ops.acquire(hw);
325 if (ret_val)
326 return ret_val;
327
328 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
329 data);
330
331 hw->phy.ops.release(hw);
332
333 return ret_val;
334 }
335
336 /**
337 * __e1000e_read_phy_reg_igp - Read igp PHY register
338 * @hw: pointer to the HW structure
339 * @offset: register offset to be read
340 * @data: pointer to the read data
341 * @locked: semaphore has already been acquired or not
342 *
343 * Acquires semaphore, if necessary, then reads the PHY register at offset
344 * and stores the retrieved information in data. Release any acquired
345 * semaphores before exiting.
346 **/
347 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
348 bool locked)
349 {
350 s32 ret_val = 0;
351
352 if (!locked) {
353 if (!(hw->phy.ops.acquire))
354 goto out;
355
356 ret_val = hw->phy.ops.acquire(hw);
357 if (ret_val)
358 goto out;
359 }
360
361 if (offset > MAX_PHY_MULTI_PAGE_REG) {
362 ret_val = e1000e_write_phy_reg_mdic(hw,
363 IGP01E1000_PHY_PAGE_SELECT,
364 (u16)offset);
365 if (ret_val)
366 goto release;
367 }
368
369 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
370 data);
371
372 release:
373 if (!locked)
374 hw->phy.ops.release(hw);
375 out:
376 return ret_val;
377 }
378
379 /**
380 * e1000e_read_phy_reg_igp - Read igp PHY register
381 * @hw: pointer to the HW structure
382 * @offset: register offset to be read
383 * @data: pointer to the read data
384 *
385 * Acquires semaphore then reads the PHY register at offset and stores the
386 * retrieved information in data.
387 * Release the acquired semaphore before exiting.
388 **/
389 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
390 {
391 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
392 }
393
394 /**
395 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
396 * @hw: pointer to the HW structure
397 * @offset: register offset to be read
398 * @data: pointer to the read data
399 *
400 * Reads the PHY register at offset and stores the retrieved information
401 * in data. Assumes semaphore already acquired.
402 **/
403 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
404 {
405 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
406 }
407
408 /**
409 * e1000e_write_phy_reg_igp - Write igp PHY register
410 * @hw: pointer to the HW structure
411 * @offset: register offset to write to
412 * @data: data to write at register offset
413 * @locked: semaphore has already been acquired or not
414 *
415 * Acquires semaphore, if necessary, then writes the data to PHY register
416 * at the offset. Release any acquired semaphores before exiting.
417 **/
418 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
419 bool locked)
420 {
421 s32 ret_val = 0;
422
423 if (!locked) {
424 if (!(hw->phy.ops.acquire))
425 goto out;
426
427 ret_val = hw->phy.ops.acquire(hw);
428 if (ret_val)
429 goto out;
430 }
431
432 if (offset > MAX_PHY_MULTI_PAGE_REG) {
433 ret_val = e1000e_write_phy_reg_mdic(hw,
434 IGP01E1000_PHY_PAGE_SELECT,
435 (u16)offset);
436 if (ret_val)
437 goto release;
438 }
439
440 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
441 data);
442
443 release:
444 if (!locked)
445 hw->phy.ops.release(hw);
446
447 out:
448 return ret_val;
449 }
450
451 /**
452 * e1000e_write_phy_reg_igp - Write igp PHY register
453 * @hw: pointer to the HW structure
454 * @offset: register offset to write to
455 * @data: data to write at register offset
456 *
457 * Acquires semaphore then writes the data to PHY register
458 * at the offset. Release any acquired semaphores before exiting.
459 **/
460 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
461 {
462 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
463 }
464
465 /**
466 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
467 * @hw: pointer to the HW structure
468 * @offset: register offset to write to
469 * @data: data to write at register offset
470 *
471 * Writes the data to PHY register at the offset.
472 * Assumes semaphore already acquired.
473 **/
474 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
475 {
476 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
477 }
478
479 /**
480 * __e1000_read_kmrn_reg - Read kumeran register
481 * @hw: pointer to the HW structure
482 * @offset: register offset to be read
483 * @data: pointer to the read data
484 * @locked: semaphore has already been acquired or not
485 *
486 * Acquires semaphore, if necessary. Then reads the PHY register at offset
487 * using the kumeran interface. The information retrieved is stored in data.
488 * Release any acquired semaphores before exiting.
489 **/
490 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
491 bool locked)
492 {
493 u32 kmrnctrlsta;
494 s32 ret_val = 0;
495
496 if (!locked) {
497 if (!(hw->phy.ops.acquire))
498 goto out;
499
500 ret_val = hw->phy.ops.acquire(hw);
501 if (ret_val)
502 goto out;
503 }
504
505 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
506 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
507 ew32(KMRNCTRLSTA, kmrnctrlsta);
508
509 udelay(2);
510
511 kmrnctrlsta = er32(KMRNCTRLSTA);
512 *data = (u16)kmrnctrlsta;
513
514 if (!locked)
515 hw->phy.ops.release(hw);
516
517 out:
518 return ret_val;
519 }
520
521 /**
522 * e1000e_read_kmrn_reg - Read kumeran register
523 * @hw: pointer to the HW structure
524 * @offset: register offset to be read
525 * @data: pointer to the read data
526 *
527 * Acquires semaphore then reads the PHY register at offset using the
528 * kumeran interface. The information retrieved is stored in data.
529 * Release the acquired semaphore before exiting.
530 **/
531 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
532 {
533 return __e1000_read_kmrn_reg(hw, offset, data, false);
534 }
535
536 /**
537 * e1000e_read_kmrn_reg_locked - Read kumeran register
538 * @hw: pointer to the HW structure
539 * @offset: register offset to be read
540 * @data: pointer to the read data
541 *
542 * Reads the PHY register at offset using the kumeran interface. The
543 * information retrieved is stored in data.
544 * Assumes semaphore already acquired.
545 **/
546 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
547 {
548 return __e1000_read_kmrn_reg(hw, offset, data, true);
549 }
550
551 /**
552 * __e1000_write_kmrn_reg - Write kumeran register
553 * @hw: pointer to the HW structure
554 * @offset: register offset to write to
555 * @data: data to write at register offset
556 * @locked: semaphore has already been acquired or not
557 *
558 * Acquires semaphore, if necessary. Then write the data to PHY register
559 * at the offset using the kumeran interface. Release any acquired semaphores
560 * before exiting.
561 **/
562 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
563 bool locked)
564 {
565 u32 kmrnctrlsta;
566 s32 ret_val = 0;
567
568 if (!locked) {
569 if (!(hw->phy.ops.acquire))
570 goto out;
571
572 ret_val = hw->phy.ops.acquire(hw);
573 if (ret_val)
574 goto out;
575 }
576
577 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
578 E1000_KMRNCTRLSTA_OFFSET) | data;
579 ew32(KMRNCTRLSTA, kmrnctrlsta);
580
581 udelay(2);
582
583 if (!locked)
584 hw->phy.ops.release(hw);
585
586 out:
587 return ret_val;
588 }
589
590 /**
591 * e1000e_write_kmrn_reg - Write kumeran register
592 * @hw: pointer to the HW structure
593 * @offset: register offset to write to
594 * @data: data to write at register offset
595 *
596 * Acquires semaphore then writes the data to the PHY register at the offset
597 * using the kumeran interface. Release the acquired semaphore before exiting.
598 **/
599 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
600 {
601 return __e1000_write_kmrn_reg(hw, offset, data, false);
602 }
603
604 /**
605 * e1000e_write_kmrn_reg_locked - Write kumeran register
606 * @hw: pointer to the HW structure
607 * @offset: register offset to write to
608 * @data: data to write at register offset
609 *
610 * Write the data to PHY register at the offset using the kumeran interface.
611 * Assumes semaphore already acquired.
612 **/
613 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
614 {
615 return __e1000_write_kmrn_reg(hw, offset, data, true);
616 }
617
618 /**
619 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
620 * @hw: pointer to the HW structure
621 *
622 * Sets up Carrier-sense on Transmit and downshift values.
623 **/
624 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
625 {
626 struct e1000_phy_info *phy = &hw->phy;
627 s32 ret_val;
628 u16 phy_data;
629
630 /* Enable CRS on TX. This must be set for half-duplex operation. */
631 ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data);
632 if (ret_val)
633 goto out;
634
635 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
636
637 /* Enable downshift */
638 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
639
640 ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data);
641
642 out:
643 return ret_val;
644 }
645
646 /**
647 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
648 * @hw: pointer to the HW structure
649 *
650 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
651 * and downshift values are set also.
652 **/
653 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
654 {
655 struct e1000_phy_info *phy = &hw->phy;
656 s32 ret_val;
657 u16 phy_data;
658
659 /* Enable CRS on Tx. This must be set for half-duplex operation. */
660 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
661 if (ret_val)
662 return ret_val;
663
664 /* For BM PHY this bit is downshift enable */
665 if (phy->type != e1000_phy_bm)
666 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
667
668 /*
669 * Options:
670 * MDI/MDI-X = 0 (default)
671 * 0 - Auto for all speeds
672 * 1 - MDI mode
673 * 2 - MDI-X mode
674 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
675 */
676 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
677
678 switch (phy->mdix) {
679 case 1:
680 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
681 break;
682 case 2:
683 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
684 break;
685 case 3:
686 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
687 break;
688 case 0:
689 default:
690 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
691 break;
692 }
693
694 /*
695 * Options:
696 * disable_polarity_correction = 0 (default)
697 * Automatic Correction for Reversed Cable Polarity
698 * 0 - Disabled
699 * 1 - Enabled
700 */
701 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
702 if (phy->disable_polarity_correction == 1)
703 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
704
705 /* Enable downshift on BM (disabled by default) */
706 if (phy->type == e1000_phy_bm)
707 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
708
709 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
710 if (ret_val)
711 return ret_val;
712
713 if ((phy->type == e1000_phy_m88) &&
714 (phy->revision < E1000_REVISION_4) &&
715 (phy->id != BME1000_E_PHY_ID_R2)) {
716 /*
717 * Force TX_CLK in the Extended PHY Specific Control Register
718 * to 25MHz clock.
719 */
720 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
721 if (ret_val)
722 return ret_val;
723
724 phy_data |= M88E1000_EPSCR_TX_CLK_25;
725
726 if ((phy->revision == 2) &&
727 (phy->id == M88E1111_I_PHY_ID)) {
728 /* 82573L PHY - set the downshift counter to 5x. */
729 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
730 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
731 } else {
732 /* Configure Master and Slave downshift values */
733 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
734 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
735 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
736 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
737 }
738 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
739 if (ret_val)
740 return ret_val;
741 }
742
743 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
744 /* Set PHY page 0, register 29 to 0x0003 */
745 ret_val = e1e_wphy(hw, 29, 0x0003);
746 if (ret_val)
747 return ret_val;
748
749 /* Set PHY page 0, register 30 to 0x0000 */
750 ret_val = e1e_wphy(hw, 30, 0x0000);
751 if (ret_val)
752 return ret_val;
753 }
754
755 /* Commit the changes. */
756 ret_val = e1000e_commit_phy(hw);
757 if (ret_val) {
758 e_dbg("Error committing the PHY changes\n");
759 return ret_val;
760 }
761
762 if (phy->type == e1000_phy_82578) {
763 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
764 &phy_data);
765 if (ret_val)
766 return ret_val;
767
768 /* 82578 PHY - set the downshift count to 1x. */
769 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
770 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
771 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
772 phy_data);
773 if (ret_val)
774 return ret_val;
775 }
776
777 return 0;
778 }
779
780 /**
781 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
782 * @hw: pointer to the HW structure
783 *
784 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
785 * igp PHY's.
786 **/
787 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
788 {
789 struct e1000_phy_info *phy = &hw->phy;
790 s32 ret_val;
791 u16 data;
792
793 ret_val = e1000_phy_hw_reset(hw);
794 if (ret_val) {
795 e_dbg("Error resetting the PHY.\n");
796 return ret_val;
797 }
798
799 /*
800 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
801 * timeout issues when LFS is enabled.
802 */
803 msleep(100);
804
805 /* disable lplu d0 during driver init */
806 ret_val = e1000_set_d0_lplu_state(hw, false);
807 if (ret_val) {
808 e_dbg("Error Disabling LPLU D0\n");
809 return ret_val;
810 }
811 /* Configure mdi-mdix settings */
812 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
813 if (ret_val)
814 return ret_val;
815
816 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
817
818 switch (phy->mdix) {
819 case 1:
820 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
821 break;
822 case 2:
823 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
824 break;
825 case 0:
826 default:
827 data |= IGP01E1000_PSCR_AUTO_MDIX;
828 break;
829 }
830 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
831 if (ret_val)
832 return ret_val;
833
834 /* set auto-master slave resolution settings */
835 if (hw->mac.autoneg) {
836 /*
837 * when autonegotiation advertisement is only 1000Mbps then we
838 * should disable SmartSpeed and enable Auto MasterSlave
839 * resolution as hardware default.
840 */
841 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
842 /* Disable SmartSpeed */
843 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
844 &data);
845 if (ret_val)
846 return ret_val;
847
848 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
849 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
850 data);
851 if (ret_val)
852 return ret_val;
853
854 /* Set auto Master/Slave resolution process */
855 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
856 if (ret_val)
857 return ret_val;
858
859 data &= ~CR_1000T_MS_ENABLE;
860 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
861 if (ret_val)
862 return ret_val;
863 }
864
865 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
866 if (ret_val)
867 return ret_val;
868
869 /* load defaults for future use */
870 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
871 ((data & CR_1000T_MS_VALUE) ?
872 e1000_ms_force_master :
873 e1000_ms_force_slave) :
874 e1000_ms_auto;
875
876 switch (phy->ms_type) {
877 case e1000_ms_force_master:
878 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
879 break;
880 case e1000_ms_force_slave:
881 data |= CR_1000T_MS_ENABLE;
882 data &= ~(CR_1000T_MS_VALUE);
883 break;
884 case e1000_ms_auto:
885 data &= ~CR_1000T_MS_ENABLE;
886 default:
887 break;
888 }
889 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
890 }
891
892 return ret_val;
893 }
894
895 /**
896 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
897 * @hw: pointer to the HW structure
898 *
899 * Reads the MII auto-neg advertisement register and/or the 1000T control
900 * register and if the PHY is already setup for auto-negotiation, then
901 * return successful. Otherwise, setup advertisement and flow control to
902 * the appropriate values for the wanted auto-negotiation.
903 **/
904 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
905 {
906 struct e1000_phy_info *phy = &hw->phy;
907 s32 ret_val;
908 u16 mii_autoneg_adv_reg;
909 u16 mii_1000t_ctrl_reg = 0;
910
911 phy->autoneg_advertised &= phy->autoneg_mask;
912
913 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
914 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
915 if (ret_val)
916 return ret_val;
917
918 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
919 /* Read the MII 1000Base-T Control Register (Address 9). */
920 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
921 if (ret_val)
922 return ret_val;
923 }
924
925 /*
926 * Need to parse both autoneg_advertised and fc and set up
927 * the appropriate PHY registers. First we will parse for
928 * autoneg_advertised software override. Since we can advertise
929 * a plethora of combinations, we need to check each bit
930 * individually.
931 */
932
933 /*
934 * First we clear all the 10/100 mb speed bits in the Auto-Neg
935 * Advertisement Register (Address 4) and the 1000 mb speed bits in
936 * the 1000Base-T Control Register (Address 9).
937 */
938 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
939 NWAY_AR_100TX_HD_CAPS |
940 NWAY_AR_10T_FD_CAPS |
941 NWAY_AR_10T_HD_CAPS);
942 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
943
944 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
945
946 /* Do we want to advertise 10 Mb Half Duplex? */
947 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
948 e_dbg("Advertise 10mb Half duplex\n");
949 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
950 }
951
952 /* Do we want to advertise 10 Mb Full Duplex? */
953 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
954 e_dbg("Advertise 10mb Full duplex\n");
955 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
956 }
957
958 /* Do we want to advertise 100 Mb Half Duplex? */
959 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
960 e_dbg("Advertise 100mb Half duplex\n");
961 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
962 }
963
964 /* Do we want to advertise 100 Mb Full Duplex? */
965 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
966 e_dbg("Advertise 100mb Full duplex\n");
967 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
968 }
969
970 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
971 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
972 e_dbg("Advertise 1000mb Half duplex request denied!\n");
973
974 /* Do we want to advertise 1000 Mb Full Duplex? */
975 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
976 e_dbg("Advertise 1000mb Full duplex\n");
977 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
978 }
979
980 /*
981 * Check for a software override of the flow control settings, and
982 * setup the PHY advertisement registers accordingly. If
983 * auto-negotiation is enabled, then software will have to set the
984 * "PAUSE" bits to the correct value in the Auto-Negotiation
985 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
986 * negotiation.
987 *
988 * The possible values of the "fc" parameter are:
989 * 0: Flow control is completely disabled
990 * 1: Rx flow control is enabled (we can receive pause frames
991 * but not send pause frames).
992 * 2: Tx flow control is enabled (we can send pause frames
993 * but we do not support receiving pause frames).
994 * 3: Both Rx and Tx flow control (symmetric) are enabled.
995 * other: No software override. The flow control configuration
996 * in the EEPROM is used.
997 */
998 switch (hw->fc.current_mode) {
999 case e1000_fc_none:
1000 /*
1001 * Flow control (Rx & Tx) is completely disabled by a
1002 * software over-ride.
1003 */
1004 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1005 break;
1006 case e1000_fc_rx_pause:
1007 /*
1008 * Rx Flow control is enabled, and Tx Flow control is
1009 * disabled, by a software over-ride.
1010 *
1011 * Since there really isn't a way to advertise that we are
1012 * capable of Rx Pause ONLY, we will advertise that we
1013 * support both symmetric and asymmetric Rx PAUSE. Later
1014 * (in e1000e_config_fc_after_link_up) we will disable the
1015 * hw's ability to send PAUSE frames.
1016 */
1017 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1018 break;
1019 case e1000_fc_tx_pause:
1020 /*
1021 * Tx Flow control is enabled, and Rx Flow control is
1022 * disabled, by a software over-ride.
1023 */
1024 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1025 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1026 break;
1027 case e1000_fc_full:
1028 /*
1029 * Flow control (both Rx and Tx) is enabled by a software
1030 * over-ride.
1031 */
1032 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1033 break;
1034 default:
1035 e_dbg("Flow control param set incorrectly\n");
1036 ret_val = -E1000_ERR_CONFIG;
1037 return ret_val;
1038 }
1039
1040 ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1041 if (ret_val)
1042 return ret_val;
1043
1044 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1045
1046 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1047 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1048 }
1049
1050 return ret_val;
1051 }
1052
1053 /**
1054 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1055 * @hw: pointer to the HW structure
1056 *
1057 * Performs initial bounds checking on autoneg advertisement parameter, then
1058 * configure to advertise the full capability. Setup the PHY to autoneg
1059 * and restart the negotiation process between the link partner. If
1060 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1061 **/
1062 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1063 {
1064 struct e1000_phy_info *phy = &hw->phy;
1065 s32 ret_val;
1066 u16 phy_ctrl;
1067
1068 /*
1069 * Perform some bounds checking on the autoneg advertisement
1070 * parameter.
1071 */
1072 phy->autoneg_advertised &= phy->autoneg_mask;
1073
1074 /*
1075 * If autoneg_advertised is zero, we assume it was not defaulted
1076 * by the calling code so we set to advertise full capability.
1077 */
1078 if (phy->autoneg_advertised == 0)
1079 phy->autoneg_advertised = phy->autoneg_mask;
1080
1081 e_dbg("Reconfiguring auto-neg advertisement params\n");
1082 ret_val = e1000_phy_setup_autoneg(hw);
1083 if (ret_val) {
1084 e_dbg("Error Setting up Auto-Negotiation\n");
1085 return ret_val;
1086 }
1087 e_dbg("Restarting Auto-Neg\n");
1088
1089 /*
1090 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1091 * the Auto Neg Restart bit in the PHY control register.
1092 */
1093 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1094 if (ret_val)
1095 return ret_val;
1096
1097 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1098 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1099 if (ret_val)
1100 return ret_val;
1101
1102 /*
1103 * Does the user want to wait for Auto-Neg to complete here, or
1104 * check at a later time (for example, callback routine).
1105 */
1106 if (phy->autoneg_wait_to_complete) {
1107 ret_val = e1000_wait_autoneg(hw);
1108 if (ret_val) {
1109 e_dbg("Error while waiting for "
1110 "autoneg to complete\n");
1111 return ret_val;
1112 }
1113 }
1114
1115 hw->mac.get_link_status = 1;
1116
1117 return ret_val;
1118 }
1119
1120 /**
1121 * e1000e_setup_copper_link - Configure copper link settings
1122 * @hw: pointer to the HW structure
1123 *
1124 * Calls the appropriate function to configure the link for auto-neg or forced
1125 * speed and duplex. Then we check for link, once link is established calls
1126 * to configure collision distance and flow control are called. If link is
1127 * not established, we return -E1000_ERR_PHY (-2).
1128 **/
1129 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1130 {
1131 s32 ret_val;
1132 bool link;
1133
1134 if (hw->mac.autoneg) {
1135 /*
1136 * Setup autoneg and flow control advertisement and perform
1137 * autonegotiation.
1138 */
1139 ret_val = e1000_copper_link_autoneg(hw);
1140 if (ret_val)
1141 return ret_val;
1142 } else {
1143 /*
1144 * PHY will be set to 10H, 10F, 100H or 100F
1145 * depending on user settings.
1146 */
1147 e_dbg("Forcing Speed and Duplex\n");
1148 ret_val = e1000_phy_force_speed_duplex(hw);
1149 if (ret_val) {
1150 e_dbg("Error Forcing Speed and Duplex\n");
1151 return ret_val;
1152 }
1153 }
1154
1155 /*
1156 * Check link status. Wait up to 100 microseconds for link to become
1157 * valid.
1158 */
1159 ret_val = e1000e_phy_has_link_generic(hw,
1160 COPPER_LINK_UP_LIMIT,
1161 10,
1162 &link);
1163 if (ret_val)
1164 return ret_val;
1165
1166 if (link) {
1167 e_dbg("Valid link established!!!\n");
1168 e1000e_config_collision_dist(hw);
1169 ret_val = e1000e_config_fc_after_link_up(hw);
1170 } else {
1171 e_dbg("Unable to establish link!!!\n");
1172 }
1173
1174 return ret_val;
1175 }
1176
1177 /**
1178 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1179 * @hw: pointer to the HW structure
1180 *
1181 * Calls the PHY setup function to force speed and duplex. Clears the
1182 * auto-crossover to force MDI manually. Waits for link and returns
1183 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1184 **/
1185 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1186 {
1187 struct e1000_phy_info *phy = &hw->phy;
1188 s32 ret_val;
1189 u16 phy_data;
1190 bool link;
1191
1192 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1193 if (ret_val)
1194 return ret_val;
1195
1196 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1197
1198 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1199 if (ret_val)
1200 return ret_val;
1201
1202 /*
1203 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1204 * forced whenever speed and duplex are forced.
1205 */
1206 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1207 if (ret_val)
1208 return ret_val;
1209
1210 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1211 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1212
1213 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1214 if (ret_val)
1215 return ret_val;
1216
1217 e_dbg("IGP PSCR: %X\n", phy_data);
1218
1219 udelay(1);
1220
1221 if (phy->autoneg_wait_to_complete) {
1222 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1223
1224 ret_val = e1000e_phy_has_link_generic(hw,
1225 PHY_FORCE_LIMIT,
1226 100000,
1227 &link);
1228 if (ret_val)
1229 return ret_val;
1230
1231 if (!link)
1232 e_dbg("Link taking longer than expected.\n");
1233
1234 /* Try once more */
1235 ret_val = e1000e_phy_has_link_generic(hw,
1236 PHY_FORCE_LIMIT,
1237 100000,
1238 &link);
1239 if (ret_val)
1240 return ret_val;
1241 }
1242
1243 return ret_val;
1244 }
1245
1246 /**
1247 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1248 * @hw: pointer to the HW structure
1249 *
1250 * Calls the PHY setup function to force speed and duplex. Clears the
1251 * auto-crossover to force MDI manually. Resets the PHY to commit the
1252 * changes. If time expires while waiting for link up, we reset the DSP.
1253 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1254 * successful completion, else return corresponding error code.
1255 **/
1256 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1257 {
1258 struct e1000_phy_info *phy = &hw->phy;
1259 s32 ret_val;
1260 u16 phy_data;
1261 bool link;
1262
1263 /*
1264 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1265 * forced whenever speed and duplex are forced.
1266 */
1267 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1268 if (ret_val)
1269 return ret_val;
1270
1271 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1272 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1273 if (ret_val)
1274 return ret_val;
1275
1276 e_dbg("M88E1000 PSCR: %X\n", phy_data);
1277
1278 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1279 if (ret_val)
1280 return ret_val;
1281
1282 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1283
1284 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1285 if (ret_val)
1286 return ret_val;
1287
1288 /* Reset the phy to commit changes. */
1289 ret_val = e1000e_commit_phy(hw);
1290 if (ret_val)
1291 return ret_val;
1292
1293 if (phy->autoneg_wait_to_complete) {
1294 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1295
1296 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1297 100000, &link);
1298 if (ret_val)
1299 return ret_val;
1300
1301 if (!link) {
1302 if (hw->phy.type != e1000_phy_m88) {
1303 e_dbg("Link taking longer than expected.\n");
1304 } else {
1305 /*
1306 * We didn't get link.
1307 * Reset the DSP and cross our fingers.
1308 */
1309 ret_val = e1e_wphy(hw,
1310 M88E1000_PHY_PAGE_SELECT,
1311 0x001d);
1312 if (ret_val)
1313 return ret_val;
1314 ret_val = e1000e_phy_reset_dsp(hw);
1315 if (ret_val)
1316 return ret_val;
1317 }
1318 }
1319
1320 /* Try once more */
1321 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1322 100000, &link);
1323 if (ret_val)
1324 return ret_val;
1325 }
1326
1327 if (hw->phy.type != e1000_phy_m88)
1328 return 0;
1329
1330 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1331 if (ret_val)
1332 return ret_val;
1333
1334 /*
1335 * Resetting the phy means we need to re-force TX_CLK in the
1336 * Extended PHY Specific Control Register to 25MHz clock from
1337 * the reset value of 2.5MHz.
1338 */
1339 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1340 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1341 if (ret_val)
1342 return ret_val;
1343
1344 /*
1345 * In addition, we must re-enable CRS on Tx for both half and full
1346 * duplex.
1347 */
1348 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1349 if (ret_val)
1350 return ret_val;
1351
1352 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1353 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1354
1355 return ret_val;
1356 }
1357
1358 /**
1359 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1360 * @hw: pointer to the HW structure
1361 *
1362 * Forces the speed and duplex settings of the PHY.
1363 * This is a function pointer entry point only called by
1364 * PHY setup routines.
1365 **/
1366 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1367 {
1368 struct e1000_phy_info *phy = &hw->phy;
1369 s32 ret_val;
1370 u16 data;
1371 bool link;
1372
1373 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1374 if (ret_val)
1375 goto out;
1376
1377 e1000e_phy_force_speed_duplex_setup(hw, &data);
1378
1379 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1380 if (ret_val)
1381 goto out;
1382
1383 /* Disable MDI-X support for 10/100 */
1384 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1385 if (ret_val)
1386 goto out;
1387
1388 data &= ~IFE_PMC_AUTO_MDIX;
1389 data &= ~IFE_PMC_FORCE_MDIX;
1390
1391 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1392 if (ret_val)
1393 goto out;
1394
1395 e_dbg("IFE PMC: %X\n", data);
1396
1397 udelay(1);
1398
1399 if (phy->autoneg_wait_to_complete) {
1400 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1401
1402 ret_val = e1000e_phy_has_link_generic(hw,
1403 PHY_FORCE_LIMIT,
1404 100000,
1405 &link);
1406 if (ret_val)
1407 goto out;
1408
1409 if (!link)
1410 e_dbg("Link taking longer than expected.\n");
1411
1412 /* Try once more */
1413 ret_val = e1000e_phy_has_link_generic(hw,
1414 PHY_FORCE_LIMIT,
1415 100000,
1416 &link);
1417 if (ret_val)
1418 goto out;
1419 }
1420
1421 out:
1422 return ret_val;
1423 }
1424
1425 /**
1426 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1427 * @hw: pointer to the HW structure
1428 * @phy_ctrl: pointer to current value of PHY_CONTROL
1429 *
1430 * Forces speed and duplex on the PHY by doing the following: disable flow
1431 * control, force speed/duplex on the MAC, disable auto speed detection,
1432 * disable auto-negotiation, configure duplex, configure speed, configure
1433 * the collision distance, write configuration to CTRL register. The
1434 * caller must write to the PHY_CONTROL register for these settings to
1435 * take affect.
1436 **/
1437 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1438 {
1439 struct e1000_mac_info *mac = &hw->mac;
1440 u32 ctrl;
1441
1442 /* Turn off flow control when forcing speed/duplex */
1443 hw->fc.current_mode = e1000_fc_none;
1444
1445 /* Force speed/duplex on the mac */
1446 ctrl = er32(CTRL);
1447 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1448 ctrl &= ~E1000_CTRL_SPD_SEL;
1449
1450 /* Disable Auto Speed Detection */
1451 ctrl &= ~E1000_CTRL_ASDE;
1452
1453 /* Disable autoneg on the phy */
1454 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1455
1456 /* Forcing Full or Half Duplex? */
1457 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1458 ctrl &= ~E1000_CTRL_FD;
1459 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1460 e_dbg("Half Duplex\n");
1461 } else {
1462 ctrl |= E1000_CTRL_FD;
1463 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1464 e_dbg("Full Duplex\n");
1465 }
1466
1467 /* Forcing 10mb or 100mb? */
1468 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1469 ctrl |= E1000_CTRL_SPD_100;
1470 *phy_ctrl |= MII_CR_SPEED_100;
1471 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1472 e_dbg("Forcing 100mb\n");
1473 } else {
1474 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1475 *phy_ctrl |= MII_CR_SPEED_10;
1476 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1477 e_dbg("Forcing 10mb\n");
1478 }
1479
1480 e1000e_config_collision_dist(hw);
1481
1482 ew32(CTRL, ctrl);
1483 }
1484
1485 /**
1486 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1487 * @hw: pointer to the HW structure
1488 * @active: boolean used to enable/disable lplu
1489 *
1490 * Success returns 0, Failure returns 1
1491 *
1492 * The low power link up (lplu) state is set to the power management level D3
1493 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1494 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1495 * is used during Dx states where the power conservation is most important.
1496 * During driver activity, SmartSpeed should be enabled so performance is
1497 * maintained.
1498 **/
1499 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1500 {
1501 struct e1000_phy_info *phy = &hw->phy;
1502 s32 ret_val;
1503 u16 data;
1504
1505 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1506 if (ret_val)
1507 return ret_val;
1508
1509 if (!active) {
1510 data &= ~IGP02E1000_PM_D3_LPLU;
1511 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1512 if (ret_val)
1513 return ret_val;
1514 /*
1515 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1516 * during Dx states where the power conservation is most
1517 * important. During driver activity we should enable
1518 * SmartSpeed, so performance is maintained.
1519 */
1520 if (phy->smart_speed == e1000_smart_speed_on) {
1521 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1522 &data);
1523 if (ret_val)
1524 return ret_val;
1525
1526 data |= IGP01E1000_PSCFR_SMART_SPEED;
1527 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1528 data);
1529 if (ret_val)
1530 return ret_val;
1531 } else if (phy->smart_speed == e1000_smart_speed_off) {
1532 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1533 &data);
1534 if (ret_val)
1535 return ret_val;
1536
1537 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1538 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1539 data);
1540 if (ret_val)
1541 return ret_val;
1542 }
1543 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1544 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1545 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1546 data |= IGP02E1000_PM_D3_LPLU;
1547 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1548 if (ret_val)
1549 return ret_val;
1550
1551 /* When LPLU is enabled, we should disable SmartSpeed */
1552 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1553 if (ret_val)
1554 return ret_val;
1555
1556 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1557 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1558 }
1559
1560 return ret_val;
1561 }
1562
1563 /**
1564 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1565 * @hw: pointer to the HW structure
1566 *
1567 * Success returns 0, Failure returns 1
1568 *
1569 * A downshift is detected by querying the PHY link health.
1570 **/
1571 s32 e1000e_check_downshift(struct e1000_hw *hw)
1572 {
1573 struct e1000_phy_info *phy = &hw->phy;
1574 s32 ret_val;
1575 u16 phy_data, offset, mask;
1576
1577 switch (phy->type) {
1578 case e1000_phy_m88:
1579 case e1000_phy_gg82563:
1580 case e1000_phy_bm:
1581 case e1000_phy_82578:
1582 offset = M88E1000_PHY_SPEC_STATUS;
1583 mask = M88E1000_PSSR_DOWNSHIFT;
1584 break;
1585 case e1000_phy_igp_2:
1586 case e1000_phy_igp_3:
1587 offset = IGP01E1000_PHY_LINK_HEALTH;
1588 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1589 break;
1590 default:
1591 /* speed downshift not supported */
1592 phy->speed_downgraded = false;
1593 return 0;
1594 }
1595
1596 ret_val = e1e_rphy(hw, offset, &phy_data);
1597
1598 if (!ret_val)
1599 phy->speed_downgraded = (phy_data & mask);
1600
1601 return ret_val;
1602 }
1603
1604 /**
1605 * e1000_check_polarity_m88 - Checks the polarity.
1606 * @hw: pointer to the HW structure
1607 *
1608 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1609 *
1610 * Polarity is determined based on the PHY specific status register.
1611 **/
1612 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1613 {
1614 struct e1000_phy_info *phy = &hw->phy;
1615 s32 ret_val;
1616 u16 data;
1617
1618 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1619
1620 if (!ret_val)
1621 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1622 ? e1000_rev_polarity_reversed
1623 : e1000_rev_polarity_normal;
1624
1625 return ret_val;
1626 }
1627
1628 /**
1629 * e1000_check_polarity_igp - Checks the polarity.
1630 * @hw: pointer to the HW structure
1631 *
1632 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1633 *
1634 * Polarity is determined based on the PHY port status register, and the
1635 * current speed (since there is no polarity at 100Mbps).
1636 **/
1637 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1638 {
1639 struct e1000_phy_info *phy = &hw->phy;
1640 s32 ret_val;
1641 u16 data, offset, mask;
1642
1643 /*
1644 * Polarity is determined based on the speed of
1645 * our connection.
1646 */
1647 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1648 if (ret_val)
1649 return ret_val;
1650
1651 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1652 IGP01E1000_PSSR_SPEED_1000MBPS) {
1653 offset = IGP01E1000_PHY_PCS_INIT_REG;
1654 mask = IGP01E1000_PHY_POLARITY_MASK;
1655 } else {
1656 /*
1657 * This really only applies to 10Mbps since
1658 * there is no polarity for 100Mbps (always 0).
1659 */
1660 offset = IGP01E1000_PHY_PORT_STATUS;
1661 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1662 }
1663
1664 ret_val = e1e_rphy(hw, offset, &data);
1665
1666 if (!ret_val)
1667 phy->cable_polarity = (data & mask)
1668 ? e1000_rev_polarity_reversed
1669 : e1000_rev_polarity_normal;
1670
1671 return ret_val;
1672 }
1673
1674 /**
1675 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1676 * @hw: pointer to the HW structure
1677 *
1678 * Polarity is determined on the polarity reversal feature being enabled.
1679 **/
1680 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1681 {
1682 struct e1000_phy_info *phy = &hw->phy;
1683 s32 ret_val;
1684 u16 phy_data, offset, mask;
1685
1686 /*
1687 * Polarity is determined based on the reversal feature being enabled.
1688 */
1689 if (phy->polarity_correction) {
1690 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1691 mask = IFE_PESC_POLARITY_REVERSED;
1692 } else {
1693 offset = IFE_PHY_SPECIAL_CONTROL;
1694 mask = IFE_PSC_FORCE_POLARITY;
1695 }
1696
1697 ret_val = e1e_rphy(hw, offset, &phy_data);
1698
1699 if (!ret_val)
1700 phy->cable_polarity = (phy_data & mask)
1701 ? e1000_rev_polarity_reversed
1702 : e1000_rev_polarity_normal;
1703
1704 return ret_val;
1705 }
1706
1707 /**
1708 * e1000_wait_autoneg - Wait for auto-neg completion
1709 * @hw: pointer to the HW structure
1710 *
1711 * Waits for auto-negotiation to complete or for the auto-negotiation time
1712 * limit to expire, which ever happens first.
1713 **/
1714 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1715 {
1716 s32 ret_val = 0;
1717 u16 i, phy_status;
1718
1719 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1720 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1721 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1722 if (ret_val)
1723 break;
1724 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1725 if (ret_val)
1726 break;
1727 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1728 break;
1729 msleep(100);
1730 }
1731
1732 /*
1733 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1734 * has completed.
1735 */
1736 return ret_val;
1737 }
1738
1739 /**
1740 * e1000e_phy_has_link_generic - Polls PHY for link
1741 * @hw: pointer to the HW structure
1742 * @iterations: number of times to poll for link
1743 * @usec_interval: delay between polling attempts
1744 * @success: pointer to whether polling was successful or not
1745 *
1746 * Polls the PHY status register for link, 'iterations' number of times.
1747 **/
1748 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1749 u32 usec_interval, bool *success)
1750 {
1751 s32 ret_val = 0;
1752 u16 i, phy_status;
1753
1754 for (i = 0; i < iterations; i++) {
1755 /*
1756 * Some PHYs require the PHY_STATUS register to be read
1757 * twice due to the link bit being sticky. No harm doing
1758 * it across the board.
1759 */
1760 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1761 if (ret_val)
1762 /*
1763 * If the first read fails, another entity may have
1764 * ownership of the resources, wait and try again to
1765 * see if they have relinquished the resources yet.
1766 */
1767 udelay(usec_interval);
1768 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1769 if (ret_val)
1770 break;
1771 if (phy_status & MII_SR_LINK_STATUS)
1772 break;
1773 if (usec_interval >= 1000)
1774 mdelay(usec_interval/1000);
1775 else
1776 udelay(usec_interval);
1777 }
1778
1779 *success = (i < iterations);
1780
1781 return ret_val;
1782 }
1783
1784 /**
1785 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1786 * @hw: pointer to the HW structure
1787 *
1788 * Reads the PHY specific status register to retrieve the cable length
1789 * information. The cable length is determined by averaging the minimum and
1790 * maximum values to get the "average" cable length. The m88 PHY has four
1791 * possible cable length values, which are:
1792 * Register Value Cable Length
1793 * 0 < 50 meters
1794 * 1 50 - 80 meters
1795 * 2 80 - 110 meters
1796 * 3 110 - 140 meters
1797 * 4 > 140 meters
1798 **/
1799 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1800 {
1801 struct e1000_phy_info *phy = &hw->phy;
1802 s32 ret_val;
1803 u16 phy_data, index;
1804
1805 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1806 if (ret_val)
1807 goto out;
1808
1809 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1810 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1811 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1812 ret_val = -E1000_ERR_PHY;
1813 goto out;
1814 }
1815
1816 phy->min_cable_length = e1000_m88_cable_length_table[index];
1817 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1818
1819 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1820
1821 out:
1822 return ret_val;
1823 }
1824
1825 /**
1826 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1827 * @hw: pointer to the HW structure
1828 *
1829 * The automatic gain control (agc) normalizes the amplitude of the
1830 * received signal, adjusting for the attenuation produced by the
1831 * cable. By reading the AGC registers, which represent the
1832 * combination of coarse and fine gain value, the value can be put
1833 * into a lookup table to obtain the approximate cable length
1834 * for each channel.
1835 **/
1836 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1837 {
1838 struct e1000_phy_info *phy = &hw->phy;
1839 s32 ret_val;
1840 u16 phy_data, i, agc_value = 0;
1841 u16 cur_agc_index, max_agc_index = 0;
1842 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1843 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1844 {IGP02E1000_PHY_AGC_A,
1845 IGP02E1000_PHY_AGC_B,
1846 IGP02E1000_PHY_AGC_C,
1847 IGP02E1000_PHY_AGC_D};
1848
1849 /* Read the AGC registers for all channels */
1850 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1851 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1852 if (ret_val)
1853 return ret_val;
1854
1855 /*
1856 * Getting bits 15:9, which represent the combination of
1857 * coarse and fine gain values. The result is a number
1858 * that can be put into the lookup table to obtain the
1859 * approximate cable length.
1860 */
1861 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1862 IGP02E1000_AGC_LENGTH_MASK;
1863
1864 /* Array index bound check. */
1865 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1866 (cur_agc_index == 0))
1867 return -E1000_ERR_PHY;
1868
1869 /* Remove min & max AGC values from calculation. */
1870 if (e1000_igp_2_cable_length_table[min_agc_index] >
1871 e1000_igp_2_cable_length_table[cur_agc_index])
1872 min_agc_index = cur_agc_index;
1873 if (e1000_igp_2_cable_length_table[max_agc_index] <
1874 e1000_igp_2_cable_length_table[cur_agc_index])
1875 max_agc_index = cur_agc_index;
1876
1877 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1878 }
1879
1880 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1881 e1000_igp_2_cable_length_table[max_agc_index]);
1882 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1883
1884 /* Calculate cable length with the error range of +/- 10 meters. */
1885 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1886 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1887 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1888
1889 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1890
1891 return ret_val;
1892 }
1893
1894 /**
1895 * e1000e_get_phy_info_m88 - Retrieve PHY information
1896 * @hw: pointer to the HW structure
1897 *
1898 * Valid for only copper links. Read the PHY status register (sticky read)
1899 * to verify that link is up. Read the PHY special control register to
1900 * determine the polarity and 10base-T extended distance. Read the PHY
1901 * special status register to determine MDI/MDIx and current speed. If
1902 * speed is 1000, then determine cable length, local and remote receiver.
1903 **/
1904 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1905 {
1906 struct e1000_phy_info *phy = &hw->phy;
1907 s32 ret_val;
1908 u16 phy_data;
1909 bool link;
1910
1911 if (phy->media_type != e1000_media_type_copper) {
1912 e_dbg("Phy info is only valid for copper media\n");
1913 return -E1000_ERR_CONFIG;
1914 }
1915
1916 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1917 if (ret_val)
1918 return ret_val;
1919
1920 if (!link) {
1921 e_dbg("Phy info is only valid if link is up\n");
1922 return -E1000_ERR_CONFIG;
1923 }
1924
1925 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1926 if (ret_val)
1927 return ret_val;
1928
1929 phy->polarity_correction = (phy_data &
1930 M88E1000_PSCR_POLARITY_REVERSAL);
1931
1932 ret_val = e1000_check_polarity_m88(hw);
1933 if (ret_val)
1934 return ret_val;
1935
1936 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1937 if (ret_val)
1938 return ret_val;
1939
1940 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1941
1942 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1943 ret_val = e1000_get_cable_length(hw);
1944 if (ret_val)
1945 return ret_val;
1946
1947 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1948 if (ret_val)
1949 return ret_val;
1950
1951 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1952 ? e1000_1000t_rx_status_ok
1953 : e1000_1000t_rx_status_not_ok;
1954
1955 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1956 ? e1000_1000t_rx_status_ok
1957 : e1000_1000t_rx_status_not_ok;
1958 } else {
1959 /* Set values to "undefined" */
1960 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1961 phy->local_rx = e1000_1000t_rx_status_undefined;
1962 phy->remote_rx = e1000_1000t_rx_status_undefined;
1963 }
1964
1965 return ret_val;
1966 }
1967
1968 /**
1969 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1970 * @hw: pointer to the HW structure
1971 *
1972 * Read PHY status to determine if link is up. If link is up, then
1973 * set/determine 10base-T extended distance and polarity correction. Read
1974 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1975 * determine on the cable length, local and remote receiver.
1976 **/
1977 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1978 {
1979 struct e1000_phy_info *phy = &hw->phy;
1980 s32 ret_val;
1981 u16 data;
1982 bool link;
1983
1984 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1985 if (ret_val)
1986 return ret_val;
1987
1988 if (!link) {
1989 e_dbg("Phy info is only valid if link is up\n");
1990 return -E1000_ERR_CONFIG;
1991 }
1992
1993 phy->polarity_correction = true;
1994
1995 ret_val = e1000_check_polarity_igp(hw);
1996 if (ret_val)
1997 return ret_val;
1998
1999 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2000 if (ret_val)
2001 return ret_val;
2002
2003 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
2004
2005 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2006 IGP01E1000_PSSR_SPEED_1000MBPS) {
2007 ret_val = e1000_get_cable_length(hw);
2008 if (ret_val)
2009 return ret_val;
2010
2011 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2012 if (ret_val)
2013 return ret_val;
2014
2015 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2016 ? e1000_1000t_rx_status_ok
2017 : e1000_1000t_rx_status_not_ok;
2018
2019 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2020 ? e1000_1000t_rx_status_ok
2021 : e1000_1000t_rx_status_not_ok;
2022 } else {
2023 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2024 phy->local_rx = e1000_1000t_rx_status_undefined;
2025 phy->remote_rx = e1000_1000t_rx_status_undefined;
2026 }
2027
2028 return ret_val;
2029 }
2030
2031 /**
2032 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2033 * @hw: pointer to the HW structure
2034 *
2035 * Populates "phy" structure with various feature states.
2036 **/
2037 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2038 {
2039 struct e1000_phy_info *phy = &hw->phy;
2040 s32 ret_val;
2041 u16 data;
2042 bool link;
2043
2044 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2045 if (ret_val)
2046 goto out;
2047
2048 if (!link) {
2049 e_dbg("Phy info is only valid if link is up\n");
2050 ret_val = -E1000_ERR_CONFIG;
2051 goto out;
2052 }
2053
2054 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2055 if (ret_val)
2056 goto out;
2057 phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
2058 ? false : true;
2059
2060 if (phy->polarity_correction) {
2061 ret_val = e1000_check_polarity_ife(hw);
2062 if (ret_val)
2063 goto out;
2064 } else {
2065 /* Polarity is forced */
2066 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2067 ? e1000_rev_polarity_reversed
2068 : e1000_rev_polarity_normal;
2069 }
2070
2071 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2072 if (ret_val)
2073 goto out;
2074
2075 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
2076
2077 /* The following parameters are undefined for 10/100 operation. */
2078 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2079 phy->local_rx = e1000_1000t_rx_status_undefined;
2080 phy->remote_rx = e1000_1000t_rx_status_undefined;
2081
2082 out:
2083 return ret_val;
2084 }
2085
2086 /**
2087 * e1000e_phy_sw_reset - PHY software reset
2088 * @hw: pointer to the HW structure
2089 *
2090 * Does a software reset of the PHY by reading the PHY control register and
2091 * setting/write the control register reset bit to the PHY.
2092 **/
2093 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2094 {
2095 s32 ret_val;
2096 u16 phy_ctrl;
2097
2098 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2099 if (ret_val)
2100 return ret_val;
2101
2102 phy_ctrl |= MII_CR_RESET;
2103 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2104 if (ret_val)
2105 return ret_val;
2106
2107 udelay(1);
2108
2109 return ret_val;
2110 }
2111
2112 /**
2113 * e1000e_phy_hw_reset_generic - PHY hardware reset
2114 * @hw: pointer to the HW structure
2115 *
2116 * Verify the reset block is not blocking us from resetting. Acquire
2117 * semaphore (if necessary) and read/set/write the device control reset
2118 * bit in the PHY. Wait the appropriate delay time for the device to
2119 * reset and release the semaphore (if necessary).
2120 **/
2121 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2122 {
2123 struct e1000_phy_info *phy = &hw->phy;
2124 s32 ret_val;
2125 u32 ctrl;
2126
2127 ret_val = e1000_check_reset_block(hw);
2128 if (ret_val)
2129 return 0;
2130
2131 ret_val = phy->ops.acquire(hw);
2132 if (ret_val)
2133 return ret_val;
2134
2135 ctrl = er32(CTRL);
2136 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2137 e1e_flush();
2138
2139 udelay(phy->reset_delay_us);
2140
2141 ew32(CTRL, ctrl);
2142 e1e_flush();
2143
2144 udelay(150);
2145
2146 phy->ops.release(hw);
2147
2148 return e1000_get_phy_cfg_done(hw);
2149 }
2150
2151 /**
2152 * e1000e_get_cfg_done - Generic configuration done
2153 * @hw: pointer to the HW structure
2154 *
2155 * Generic function to wait 10 milli-seconds for configuration to complete
2156 * and return success.
2157 **/
2158 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2159 {
2160 mdelay(10);
2161 return 0;
2162 }
2163
2164 /**
2165 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2166 * @hw: pointer to the HW structure
2167 *
2168 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2169 **/
2170 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2171 {
2172 e_dbg("Running IGP 3 PHY init script\n");
2173
2174 /* PHY init IGP 3 */
2175 /* Enable rise/fall, 10-mode work in class-A */
2176 e1e_wphy(hw, 0x2F5B, 0x9018);
2177 /* Remove all caps from Replica path filter */
2178 e1e_wphy(hw, 0x2F52, 0x0000);
2179 /* Bias trimming for ADC, AFE and Driver (Default) */
2180 e1e_wphy(hw, 0x2FB1, 0x8B24);
2181 /* Increase Hybrid poly bias */
2182 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2183 /* Add 4% to Tx amplitude in Gig mode */
2184 e1e_wphy(hw, 0x2010, 0x10B0);
2185 /* Disable trimming (TTT) */
2186 e1e_wphy(hw, 0x2011, 0x0000);
2187 /* Poly DC correction to 94.6% + 2% for all channels */
2188 e1e_wphy(hw, 0x20DD, 0x249A);
2189 /* ABS DC correction to 95.9% */
2190 e1e_wphy(hw, 0x20DE, 0x00D3);
2191 /* BG temp curve trim */
2192 e1e_wphy(hw, 0x28B4, 0x04CE);
2193 /* Increasing ADC OPAMP stage 1 currents to max */
2194 e1e_wphy(hw, 0x2F70, 0x29E4);
2195 /* Force 1000 ( required for enabling PHY regs configuration) */
2196 e1e_wphy(hw, 0x0000, 0x0140);
2197 /* Set upd_freq to 6 */
2198 e1e_wphy(hw, 0x1F30, 0x1606);
2199 /* Disable NPDFE */
2200 e1e_wphy(hw, 0x1F31, 0xB814);
2201 /* Disable adaptive fixed FFE (Default) */
2202 e1e_wphy(hw, 0x1F35, 0x002A);
2203 /* Enable FFE hysteresis */
2204 e1e_wphy(hw, 0x1F3E, 0x0067);
2205 /* Fixed FFE for short cable lengths */
2206 e1e_wphy(hw, 0x1F54, 0x0065);
2207 /* Fixed FFE for medium cable lengths */
2208 e1e_wphy(hw, 0x1F55, 0x002A);
2209 /* Fixed FFE for long cable lengths */
2210 e1e_wphy(hw, 0x1F56, 0x002A);
2211 /* Enable Adaptive Clip Threshold */
2212 e1e_wphy(hw, 0x1F72, 0x3FB0);
2213 /* AHT reset limit to 1 */
2214 e1e_wphy(hw, 0x1F76, 0xC0FF);
2215 /* Set AHT master delay to 127 msec */
2216 e1e_wphy(hw, 0x1F77, 0x1DEC);
2217 /* Set scan bits for AHT */
2218 e1e_wphy(hw, 0x1F78, 0xF9EF);
2219 /* Set AHT Preset bits */
2220 e1e_wphy(hw, 0x1F79, 0x0210);
2221 /* Change integ_factor of channel A to 3 */
2222 e1e_wphy(hw, 0x1895, 0x0003);
2223 /* Change prop_factor of channels BCD to 8 */
2224 e1e_wphy(hw, 0x1796, 0x0008);
2225 /* Change cg_icount + enable integbp for channels BCD */
2226 e1e_wphy(hw, 0x1798, 0xD008);
2227 /*
2228 * Change cg_icount + enable integbp + change prop_factor_master
2229 * to 8 for channel A
2230 */
2231 e1e_wphy(hw, 0x1898, 0xD918);
2232 /* Disable AHT in Slave mode on channel A */
2233 e1e_wphy(hw, 0x187A, 0x0800);
2234 /*
2235 * Enable LPLU and disable AN to 1000 in non-D0a states,
2236 * Enable SPD+B2B
2237 */
2238 e1e_wphy(hw, 0x0019, 0x008D);
2239 /* Enable restart AN on an1000_dis change */
2240 e1e_wphy(hw, 0x001B, 0x2080);
2241 /* Enable wh_fifo read clock in 10/100 modes */
2242 e1e_wphy(hw, 0x0014, 0x0045);
2243 /* Restart AN, Speed selection is 1000 */
2244 e1e_wphy(hw, 0x0000, 0x1340);
2245
2246 return 0;
2247 }
2248
2249 /* Internal function pointers */
2250
2251 /**
2252 * e1000_get_phy_cfg_done - Generic PHY configuration done
2253 * @hw: pointer to the HW structure
2254 *
2255 * Return success if silicon family did not implement a family specific
2256 * get_cfg_done function.
2257 **/
2258 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2259 {
2260 if (hw->phy.ops.get_cfg_done)
2261 return hw->phy.ops.get_cfg_done(hw);
2262
2263 return 0;
2264 }
2265
2266 /**
2267 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2268 * @hw: pointer to the HW structure
2269 *
2270 * When the silicon family has not implemented a forced speed/duplex
2271 * function for the PHY, simply return 0.
2272 **/
2273 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2274 {
2275 if (hw->phy.ops.force_speed_duplex)
2276 return hw->phy.ops.force_speed_duplex(hw);
2277
2278 return 0;
2279 }
2280
2281 /**
2282 * e1000e_get_phy_type_from_id - Get PHY type from id
2283 * @phy_id: phy_id read from the phy
2284 *
2285 * Returns the phy type from the id.
2286 **/
2287 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2288 {
2289 enum e1000_phy_type phy_type = e1000_phy_unknown;
2290
2291 switch (phy_id) {
2292 case M88E1000_I_PHY_ID:
2293 case M88E1000_E_PHY_ID:
2294 case M88E1111_I_PHY_ID:
2295 case M88E1011_I_PHY_ID:
2296 phy_type = e1000_phy_m88;
2297 break;
2298 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2299 phy_type = e1000_phy_igp_2;
2300 break;
2301 case GG82563_E_PHY_ID:
2302 phy_type = e1000_phy_gg82563;
2303 break;
2304 case IGP03E1000_E_PHY_ID:
2305 phy_type = e1000_phy_igp_3;
2306 break;
2307 case IFE_E_PHY_ID:
2308 case IFE_PLUS_E_PHY_ID:
2309 case IFE_C_E_PHY_ID:
2310 phy_type = e1000_phy_ife;
2311 break;
2312 case BME1000_E_PHY_ID:
2313 case BME1000_E_PHY_ID_R2:
2314 phy_type = e1000_phy_bm;
2315 break;
2316 case I82578_E_PHY_ID:
2317 phy_type = e1000_phy_82578;
2318 break;
2319 case I82577_E_PHY_ID:
2320 phy_type = e1000_phy_82577;
2321 break;
2322 default:
2323 phy_type = e1000_phy_unknown;
2324 break;
2325 }
2326 return phy_type;
2327 }
2328
2329 /**
2330 * e1000e_determine_phy_address - Determines PHY address.
2331 * @hw: pointer to the HW structure
2332 *
2333 * This uses a trial and error method to loop through possible PHY
2334 * addresses. It tests each by reading the PHY ID registers and
2335 * checking for a match.
2336 **/
2337 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2338 {
2339 s32 ret_val = -E1000_ERR_PHY_TYPE;
2340 u32 phy_addr = 0;
2341 u32 i;
2342 enum e1000_phy_type phy_type = e1000_phy_unknown;
2343
2344 hw->phy.id = phy_type;
2345
2346 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2347 hw->phy.addr = phy_addr;
2348 i = 0;
2349
2350 do {
2351 e1000e_get_phy_id(hw);
2352 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2353
2354 /*
2355 * If phy_type is valid, break - we found our
2356 * PHY address
2357 */
2358 if (phy_type != e1000_phy_unknown) {
2359 ret_val = 0;
2360 goto out;
2361 }
2362 msleep(1);
2363 i++;
2364 } while (i < 10);
2365 }
2366
2367 out:
2368 return ret_val;
2369 }
2370
2371 /**
2372 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2373 * @page: page to access
2374 *
2375 * Returns the phy address for the page requested.
2376 **/
2377 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2378 {
2379 u32 phy_addr = 2;
2380
2381 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2382 phy_addr = 1;
2383
2384 return phy_addr;
2385 }
2386
2387 /**
2388 * e1000e_write_phy_reg_bm - Write BM PHY register
2389 * @hw: pointer to the HW structure
2390 * @offset: register offset to write to
2391 * @data: data to write at register offset
2392 *
2393 * Acquires semaphore, if necessary, then writes the data to PHY register
2394 * at the offset. Release any acquired semaphores before exiting.
2395 **/
2396 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2397 {
2398 s32 ret_val;
2399 u32 page_select = 0;
2400 u32 page = offset >> IGP_PAGE_SHIFT;
2401 u32 page_shift = 0;
2402
2403 ret_val = hw->phy.ops.acquire(hw);
2404 if (ret_val)
2405 return ret_val;
2406
2407 /* Page 800 works differently than the rest so it has its own func */
2408 if (page == BM_WUC_PAGE) {
2409 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2410 false);
2411 goto out;
2412 }
2413
2414 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2415
2416 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2417 /*
2418 * Page select is register 31 for phy address 1 and 22 for
2419 * phy address 2 and 3. Page select is shifted only for
2420 * phy address 1.
2421 */
2422 if (hw->phy.addr == 1) {
2423 page_shift = IGP_PAGE_SHIFT;
2424 page_select = IGP01E1000_PHY_PAGE_SELECT;
2425 } else {
2426 page_shift = 0;
2427 page_select = BM_PHY_PAGE_SELECT;
2428 }
2429
2430 /* Page is shifted left, PHY expects (page x 32) */
2431 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2432 (page << page_shift));
2433 if (ret_val)
2434 goto out;
2435 }
2436
2437 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2438 data);
2439
2440 out:
2441 hw->phy.ops.release(hw);
2442 return ret_val;
2443 }
2444
2445 /**
2446 * e1000e_read_phy_reg_bm - Read BM PHY register
2447 * @hw: pointer to the HW structure
2448 * @offset: register offset to be read
2449 * @data: pointer to the read data
2450 *
2451 * Acquires semaphore, if necessary, then reads the PHY register at offset
2452 * and storing the retrieved information in data. Release any acquired
2453 * semaphores before exiting.
2454 **/
2455 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2456 {
2457 s32 ret_val;
2458 u32 page_select = 0;
2459 u32 page = offset >> IGP_PAGE_SHIFT;
2460 u32 page_shift = 0;
2461
2462 ret_val = hw->phy.ops.acquire(hw);
2463 if (ret_val)
2464 return ret_val;
2465
2466 /* Page 800 works differently than the rest so it has its own func */
2467 if (page == BM_WUC_PAGE) {
2468 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2469 true);
2470 goto out;
2471 }
2472
2473 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2474
2475 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2476 /*
2477 * Page select is register 31 for phy address 1 and 22 for
2478 * phy address 2 and 3. Page select is shifted only for
2479 * phy address 1.
2480 */
2481 if (hw->phy.addr == 1) {
2482 page_shift = IGP_PAGE_SHIFT;
2483 page_select = IGP01E1000_PHY_PAGE_SELECT;
2484 } else {
2485 page_shift = 0;
2486 page_select = BM_PHY_PAGE_SELECT;
2487 }
2488
2489 /* Page is shifted left, PHY expects (page x 32) */
2490 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2491 (page << page_shift));
2492 if (ret_val)
2493 goto out;
2494 }
2495
2496 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2497 data);
2498 out:
2499 hw->phy.ops.release(hw);
2500 return ret_val;
2501 }
2502
2503 /**
2504 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2505 * @hw: pointer to the HW structure
2506 * @offset: register offset to be read
2507 * @data: pointer to the read data
2508 *
2509 * Acquires semaphore, if necessary, then reads the PHY register at offset
2510 * and storing the retrieved information in data. Release any acquired
2511 * semaphores before exiting.
2512 **/
2513 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2514 {
2515 s32 ret_val;
2516 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2517
2518 ret_val = hw->phy.ops.acquire(hw);
2519 if (ret_val)
2520 return ret_val;
2521
2522 /* Page 800 works differently than the rest so it has its own func */
2523 if (page == BM_WUC_PAGE) {
2524 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2525 true);
2526 goto out;
2527 }
2528
2529 hw->phy.addr = 1;
2530
2531 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2532
2533 /* Page is shifted left, PHY expects (page x 32) */
2534 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2535 page);
2536
2537 if (ret_val)
2538 goto out;
2539 }
2540
2541 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2542 data);
2543 out:
2544 hw->phy.ops.release(hw);
2545 return ret_val;
2546 }
2547
2548 /**
2549 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2550 * @hw: pointer to the HW structure
2551 * @offset: register offset to write to
2552 * @data: data to write at register offset
2553 *
2554 * Acquires semaphore, if necessary, then writes the data to PHY register
2555 * at the offset. Release any acquired semaphores before exiting.
2556 **/
2557 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2558 {
2559 s32 ret_val;
2560 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2561
2562 ret_val = hw->phy.ops.acquire(hw);
2563 if (ret_val)
2564 return ret_val;
2565
2566 /* Page 800 works differently than the rest so it has its own func */
2567 if (page == BM_WUC_PAGE) {
2568 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2569 false);
2570 goto out;
2571 }
2572
2573 hw->phy.addr = 1;
2574
2575 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2576 /* Page is shifted left, PHY expects (page x 32) */
2577 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2578 page);
2579
2580 if (ret_val)
2581 goto out;
2582 }
2583
2584 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2585 data);
2586
2587 out:
2588 hw->phy.ops.release(hw);
2589 return ret_val;
2590 }
2591
2592 /**
2593 * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
2594 * @hw: pointer to the HW structure
2595 * @offset: register offset to be read or written
2596 * @data: pointer to the data to read or write
2597 * @read: determines if operation is read or write
2598 *
2599 * Acquires semaphore, if necessary, then reads the PHY register at offset
2600 * and storing the retrieved information in data. Release any acquired
2601 * semaphores before exiting. Note that procedure to read the wakeup
2602 * registers are different. It works as such:
2603 * 1) Set page 769, register 17, bit 2 = 1
2604 * 2) Set page to 800 for host (801 if we were manageability)
2605 * 3) Write the address using the address opcode (0x11)
2606 * 4) Read or write the data using the data opcode (0x12)
2607 * 5) Restore 769_17.2 to its original value
2608 *
2609 * Assumes semaphore already acquired.
2610 **/
2611 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2612 u16 *data, bool read)
2613 {
2614 s32 ret_val;
2615 u16 reg = BM_PHY_REG_NUM(offset);
2616 u16 phy_reg = 0;
2617
2618 /* Gig must be disabled for MDIO accesses to page 800 */
2619 if ((hw->mac.type == e1000_pchlan) &&
2620 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2621 e_dbg("Attempting to access page 800 while gig enabled.\n");
2622
2623 /* All operations in this function are phy address 1 */
2624 hw->phy.addr = 1;
2625
2626 /* Set page 769 */
2627 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2628 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2629
2630 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
2631 if (ret_val) {
2632 e_dbg("Could not read PHY page 769\n");
2633 goto out;
2634 }
2635
2636 /* First clear bit 4 to avoid a power state change */
2637 phy_reg &= ~(BM_WUC_HOST_WU_BIT);
2638 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2639 if (ret_val) {
2640 e_dbg("Could not clear PHY page 769 bit 4\n");
2641 goto out;
2642 }
2643
2644 /* Write bit 2 = 1, and clear bit 4 to 769_17 */
2645 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
2646 phy_reg | BM_WUC_ENABLE_BIT);
2647 if (ret_val) {
2648 e_dbg("Could not write PHY page 769 bit 2\n");
2649 goto out;
2650 }
2651
2652 /* Select page 800 */
2653 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2654 (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2655
2656 /* Write the page 800 offset value using opcode 0x11 */
2657 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2658 if (ret_val) {
2659 e_dbg("Could not write address opcode to page 800\n");
2660 goto out;
2661 }
2662
2663 if (read) {
2664 /* Read the page 800 value using opcode 0x12 */
2665 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2666 data);
2667 } else {
2668 /* Write the page 800 value using opcode 0x12 */
2669 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2670 *data);
2671 }
2672
2673 if (ret_val) {
2674 e_dbg("Could not access data value from page 800\n");
2675 goto out;
2676 }
2677
2678 /*
2679 * Restore 769_17.2 to its original value
2680 * Set page 769
2681 */
2682 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2683 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2684
2685 /* Clear 769_17.2 */
2686 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2687 if (ret_val) {
2688 e_dbg("Could not clear PHY page 769 bit 2\n");
2689 goto out;
2690 }
2691
2692 out:
2693 return ret_val;
2694 }
2695
2696 /**
2697 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2698 * @hw: pointer to the HW structure
2699 *
2700 * In the case of a PHY power down to save power, or to turn off link during a
2701 * driver unload, or wake on lan is not enabled, restore the link to previous
2702 * settings.
2703 **/
2704 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2705 {
2706 u16 mii_reg = 0;
2707
2708 /* The PHY will retain its settings across a power down/up cycle */
2709 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2710 mii_reg &= ~MII_CR_POWER_DOWN;
2711 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2712 }
2713
2714 /**
2715 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2716 * @hw: pointer to the HW structure
2717 *
2718 * In the case of a PHY power down to save power, or to turn off link during a
2719 * driver unload, or wake on lan is not enabled, restore the link to previous
2720 * settings.
2721 **/
2722 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2723 {
2724 u16 mii_reg = 0;
2725
2726 /* The PHY will retain its settings across a power down/up cycle */
2727 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2728 mii_reg |= MII_CR_POWER_DOWN;
2729 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2730 msleep(1);
2731 }
2732
2733 /**
2734 * e1000e_commit_phy - Soft PHY reset
2735 * @hw: pointer to the HW structure
2736 *
2737 * Performs a soft PHY reset on those that apply. This is a function pointer
2738 * entry point called by drivers.
2739 **/
2740 s32 e1000e_commit_phy(struct e1000_hw *hw)
2741 {
2742 if (hw->phy.ops.commit)
2743 return hw->phy.ops.commit(hw);
2744
2745 return 0;
2746 }
2747
2748 /**
2749 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2750 * @hw: pointer to the HW structure
2751 * @active: boolean used to enable/disable lplu
2752 *
2753 * Success returns 0, Failure returns 1
2754 *
2755 * The low power link up (lplu) state is set to the power management level D0
2756 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2757 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2758 * is used during Dx states where the power conservation is most important.
2759 * During driver activity, SmartSpeed should be enabled so performance is
2760 * maintained. This is a function pointer entry point called by drivers.
2761 **/
2762 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2763 {
2764 if (hw->phy.ops.set_d0_lplu_state)
2765 return hw->phy.ops.set_d0_lplu_state(hw, active);
2766
2767 return 0;
2768 }
2769
2770 /**
2771 * __e1000_read_phy_reg_hv - Read HV PHY register
2772 * @hw: pointer to the HW structure
2773 * @offset: register offset to be read
2774 * @data: pointer to the read data
2775 * @locked: semaphore has already been acquired or not
2776 *
2777 * Acquires semaphore, if necessary, then reads the PHY register at offset
2778 * and stores the retrieved information in data. Release any acquired
2779 * semaphore before exiting.
2780 **/
2781 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2782 bool locked)
2783 {
2784 s32 ret_val;
2785 u16 page = BM_PHY_REG_PAGE(offset);
2786 u16 reg = BM_PHY_REG_NUM(offset);
2787
2788 if (!locked) {
2789 ret_val = hw->phy.ops.acquire(hw);
2790 if (ret_val)
2791 return ret_val;
2792 }
2793
2794 /* Page 800 works differently than the rest so it has its own func */
2795 if (page == BM_WUC_PAGE) {
2796 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2797 data, true);
2798 goto out;
2799 }
2800
2801 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2802 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2803 data, true);
2804 goto out;
2805 }
2806
2807 hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2808
2809 if (page == HV_INTC_FC_PAGE_START)
2810 page = 0;
2811
2812 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2813 u32 phy_addr = hw->phy.addr;
2814
2815 hw->phy.addr = 1;
2816
2817 /* Page is shifted left, PHY expects (page x 32) */
2818 ret_val = e1000e_write_phy_reg_mdic(hw,
2819 IGP01E1000_PHY_PAGE_SELECT,
2820 (page << IGP_PAGE_SHIFT));
2821 hw->phy.addr = phy_addr;
2822
2823 if (ret_val)
2824 goto out;
2825 }
2826
2827 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2828 data);
2829 out:
2830 if (!locked)
2831 hw->phy.ops.release(hw);
2832
2833 return ret_val;
2834 }
2835
2836 /**
2837 * e1000_read_phy_reg_hv - Read HV PHY register
2838 * @hw: pointer to the HW structure
2839 * @offset: register offset to be read
2840 * @data: pointer to the read data
2841 *
2842 * Acquires semaphore then reads the PHY register at offset and stores
2843 * the retrieved information in data. Release the acquired semaphore
2844 * before exiting.
2845 **/
2846 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2847 {
2848 return __e1000_read_phy_reg_hv(hw, offset, data, false);
2849 }
2850
2851 /**
2852 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2853 * @hw: pointer to the HW structure
2854 * @offset: register offset to be read
2855 * @data: pointer to the read data
2856 *
2857 * Reads the PHY register at offset and stores the retrieved information
2858 * in data. Assumes semaphore already acquired.
2859 **/
2860 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2861 {
2862 return __e1000_read_phy_reg_hv(hw, offset, data, true);
2863 }
2864
2865 /**
2866 * __e1000_write_phy_reg_hv - Write HV PHY register
2867 * @hw: pointer to the HW structure
2868 * @offset: register offset to write to
2869 * @data: data to write at register offset
2870 * @locked: semaphore has already been acquired or not
2871 *
2872 * Acquires semaphore, if necessary, then writes the data to PHY register
2873 * at the offset. Release any acquired semaphores before exiting.
2874 **/
2875 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2876 bool locked)
2877 {
2878 s32 ret_val;
2879 u16 page = BM_PHY_REG_PAGE(offset);
2880 u16 reg = BM_PHY_REG_NUM(offset);
2881
2882 if (!locked) {
2883 ret_val = hw->phy.ops.acquire(hw);
2884 if (ret_val)
2885 return ret_val;
2886 }
2887
2888 /* Page 800 works differently than the rest so it has its own func */
2889 if (page == BM_WUC_PAGE) {
2890 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2891 &data, false);
2892 goto out;
2893 }
2894
2895 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2896 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2897 &data, false);
2898 goto out;
2899 }
2900
2901 hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2902
2903 if (page == HV_INTC_FC_PAGE_START)
2904 page = 0;
2905
2906 /*
2907 * Workaround MDIO accesses being disabled after entering IEEE Power
2908 * Down (whenever bit 11 of the PHY Control register is set)
2909 */
2910 if ((hw->phy.type == e1000_phy_82578) &&
2911 (hw->phy.revision >= 1) &&
2912 (hw->phy.addr == 2) &&
2913 ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
2914 (data & (1 << 11))) {
2915 u16 data2 = 0x7EFF;
2916 ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
2917 &data2, false);
2918 if (ret_val)
2919 goto out;
2920 }
2921
2922 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2923 u32 phy_addr = hw->phy.addr;
2924
2925 hw->phy.addr = 1;
2926
2927 /* Page is shifted left, PHY expects (page x 32) */
2928 ret_val = e1000e_write_phy_reg_mdic(hw,
2929 IGP01E1000_PHY_PAGE_SELECT,
2930 (page << IGP_PAGE_SHIFT));
2931 hw->phy.addr = phy_addr;
2932
2933 if (ret_val)
2934 goto out;
2935 }
2936
2937 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2938 data);
2939
2940 out:
2941 if (!locked)
2942 hw->phy.ops.release(hw);
2943
2944 return ret_val;
2945 }
2946
2947 /**
2948 * e1000_write_phy_reg_hv - Write HV PHY register
2949 * @hw: pointer to the HW structure
2950 * @offset: register offset to write to
2951 * @data: data to write at register offset
2952 *
2953 * Acquires semaphore then writes the data to PHY register at the offset.
2954 * Release the acquired semaphores before exiting.
2955 **/
2956 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2957 {
2958 return __e1000_write_phy_reg_hv(hw, offset, data, false);
2959 }
2960
2961 /**
2962 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2963 * @hw: pointer to the HW structure
2964 * @offset: register offset to write to
2965 * @data: data to write at register offset
2966 *
2967 * Writes the data to PHY register at the offset. Assumes semaphore
2968 * already acquired.
2969 **/
2970 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2971 {
2972 return __e1000_write_phy_reg_hv(hw, offset, data, true);
2973 }
2974
2975 /**
2976 * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
2977 * @page: page to be accessed
2978 **/
2979 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2980 {
2981 u32 phy_addr = 2;
2982
2983 if (page >= HV_INTC_FC_PAGE_START)
2984 phy_addr = 1;
2985
2986 return phy_addr;
2987 }
2988
2989 /**
2990 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2991 * @hw: pointer to the HW structure
2992 * @offset: register offset to be read or written
2993 * @data: pointer to the data to be read or written
2994 * @read: determines if operation is read or written
2995 *
2996 * Reads the PHY register at offset and stores the retreived information
2997 * in data. Assumes semaphore already acquired. Note that the procedure
2998 * to read these regs uses the address port and data port to read/write.
2999 **/
3000 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3001 u16 *data, bool read)
3002 {
3003 s32 ret_val;
3004 u32 addr_reg = 0;
3005 u32 data_reg = 0;
3006
3007 /* This takes care of the difference with desktop vs mobile phy */
3008 addr_reg = (hw->phy.type == e1000_phy_82578) ?
3009 I82578_ADDR_REG : I82577_ADDR_REG;
3010 data_reg = addr_reg + 1;
3011
3012 /* All operations in this function are phy address 2 */
3013 hw->phy.addr = 2;
3014
3015 /* masking with 0x3F to remove the page from offset */
3016 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3017 if (ret_val) {
3018 e_dbg("Could not write PHY the HV address register\n");
3019 goto out;
3020 }
3021
3022 /* Read or write the data value next */
3023 if (read)
3024 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3025 else
3026 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3027
3028 if (ret_val) {
3029 e_dbg("Could not read data value from HV data register\n");
3030 goto out;
3031 }
3032
3033 out:
3034 return ret_val;
3035 }
3036
3037 /**
3038 * e1000_link_stall_workaround_hv - Si workaround
3039 * @hw: pointer to the HW structure
3040 *
3041 * This function works around a Si bug where the link partner can get
3042 * a link up indication before the PHY does. If small packets are sent
3043 * by the link partner they can be placed in the packet buffer without
3044 * being properly accounted for by the PHY and will stall preventing
3045 * further packets from being received. The workaround is to clear the
3046 * packet buffer after the PHY detects link up.
3047 **/
3048 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3049 {
3050 s32 ret_val = 0;
3051 u16 data;
3052
3053 if (hw->phy.type != e1000_phy_82578)
3054 goto out;
3055
3056 /* Do not apply workaround if in PHY loopback bit 14 set */
3057 hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
3058 if (data & PHY_CONTROL_LB)
3059 goto out;
3060
3061 /* check if link is up and at 1Gbps */
3062 ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
3063 if (ret_val)
3064 goto out;
3065
3066 data &= BM_CS_STATUS_LINK_UP |
3067 BM_CS_STATUS_RESOLVED |
3068 BM_CS_STATUS_SPEED_MASK;
3069
3070 if (data != (BM_CS_STATUS_LINK_UP |
3071 BM_CS_STATUS_RESOLVED |
3072 BM_CS_STATUS_SPEED_1000))
3073 goto out;
3074
3075 mdelay(200);
3076
3077 /* flush the packets in the fifo buffer */
3078 ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3079 HV_MUX_DATA_CTRL_GEN_TO_MAC |
3080 HV_MUX_DATA_CTRL_FORCE_SPEED);
3081 if (ret_val)
3082 goto out;
3083
3084 ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3085 HV_MUX_DATA_CTRL_GEN_TO_MAC);
3086
3087 out:
3088 return ret_val;
3089 }
3090
3091 /**
3092 * e1000_check_polarity_82577 - Checks the polarity.
3093 * @hw: pointer to the HW structure
3094 *
3095 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3096 *
3097 * Polarity is determined based on the PHY specific status register.
3098 **/
3099 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3100 {
3101 struct e1000_phy_info *phy = &hw->phy;
3102 s32 ret_val;
3103 u16 data;
3104
3105 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3106
3107 if (!ret_val)
3108 phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3109 ? e1000_rev_polarity_reversed
3110 : e1000_rev_polarity_normal;
3111
3112 return ret_val;
3113 }
3114
3115 /**
3116 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3117 * @hw: pointer to the HW structure
3118 *
3119 * Calls the PHY setup function to force speed and duplex.
3120 **/
3121 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3122 {
3123 struct e1000_phy_info *phy = &hw->phy;
3124 s32 ret_val;
3125 u16 phy_data;
3126 bool link;
3127
3128 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
3129 if (ret_val)
3130 goto out;
3131
3132 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3133
3134 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
3135 if (ret_val)
3136 goto out;
3137
3138 udelay(1);
3139
3140 if (phy->autoneg_wait_to_complete) {
3141 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3142
3143 ret_val = e1000e_phy_has_link_generic(hw,
3144 PHY_FORCE_LIMIT,
3145 100000,
3146 &link);
3147 if (ret_val)
3148 goto out;
3149
3150 if (!link)
3151 e_dbg("Link taking longer than expected.\n");
3152
3153 /* Try once more */
3154 ret_val = e1000e_phy_has_link_generic(hw,
3155 PHY_FORCE_LIMIT,
3156 100000,
3157 &link);
3158 if (ret_val)
3159 goto out;
3160 }
3161
3162 out:
3163 return ret_val;
3164 }
3165
3166 /**
3167 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3168 * @hw: pointer to the HW structure
3169 *
3170 * Read PHY status to determine if link is up. If link is up, then
3171 * set/determine 10base-T extended distance and polarity correction. Read
3172 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3173 * determine on the cable length, local and remote receiver.
3174 **/
3175 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3176 {
3177 struct e1000_phy_info *phy = &hw->phy;
3178 s32 ret_val;
3179 u16 data;
3180 bool link;
3181
3182 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3183 if (ret_val)
3184 goto out;
3185
3186 if (!link) {
3187 e_dbg("Phy info is only valid if link is up\n");
3188 ret_val = -E1000_ERR_CONFIG;
3189 goto out;
3190 }
3191
3192 phy->polarity_correction = true;
3193
3194 ret_val = e1000_check_polarity_82577(hw);
3195 if (ret_val)
3196 goto out;
3197
3198 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3199 if (ret_val)
3200 goto out;
3201
3202 phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3203
3204 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3205 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3206 ret_val = hw->phy.ops.get_cable_length(hw);
3207 if (ret_val)
3208 goto out;
3209
3210 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
3211 if (ret_val)
3212 goto out;
3213
3214 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3215 ? e1000_1000t_rx_status_ok
3216 : e1000_1000t_rx_status_not_ok;
3217
3218 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3219 ? e1000_1000t_rx_status_ok
3220 : e1000_1000t_rx_status_not_ok;
3221 } else {
3222 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3223 phy->local_rx = e1000_1000t_rx_status_undefined;
3224 phy->remote_rx = e1000_1000t_rx_status_undefined;
3225 }
3226
3227 out:
3228 return ret_val;
3229 }
3230
3231 /**
3232 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3233 * @hw: pointer to the HW structure
3234 *
3235 * Reads the diagnostic status register and verifies result is valid before
3236 * placing it in the phy_cable_length field.
3237 **/
3238 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3239 {
3240 struct e1000_phy_info *phy = &hw->phy;
3241 s32 ret_val;
3242 u16 phy_data, length;
3243
3244 ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3245 if (ret_val)
3246 goto out;
3247
3248 length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3249 I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3250
3251 if (length == E1000_CABLE_LENGTH_UNDEFINED)
3252 ret_val = -E1000_ERR_PHY;
3253
3254 phy->cable_length = length;
3255
3256 out:
3257 return ret_val;
3258 }
This page took 0.105231 seconds and 5 git commands to generate.