Merge tag 'asm-generic-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd...
[deliverable/linux.git] / drivers / net / ethernet / atheros / alx / main.c
1 /*
2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3 *
4 * This file is free software: you may copy, redistribute and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation, either version 2 of the License, or (at your
7 * option) any later version.
8 *
9 * This file is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 *
17 * This file incorporates work covered by the following copyright and
18 * permission notice:
19 *
20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
21 *
22 * Permission to use, copy, modify, and/or distribute this software for any
23 * purpose with or without fee is hereby granted, provided that the above
24 * copyright notice and this permission notice appear in all copies.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33 */
34
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/aer.h>
43 #include <linux/bitops.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <net/ip6_checksum.h>
47 #include <linux/crc32.h>
48 #include "alx.h"
49 #include "hw.h"
50 #include "reg.h"
51
52 const char alx_drv_name[] = "alx";
53
54
55 static void alx_free_txbuf(struct alx_priv *alx, int entry)
56 {
57 struct alx_buffer *txb = &alx->txq.bufs[entry];
58
59 if (dma_unmap_len(txb, size)) {
60 dma_unmap_single(&alx->hw.pdev->dev,
61 dma_unmap_addr(txb, dma),
62 dma_unmap_len(txb, size),
63 DMA_TO_DEVICE);
64 dma_unmap_len_set(txb, size, 0);
65 }
66
67 if (txb->skb) {
68 dev_kfree_skb_any(txb->skb);
69 txb->skb = NULL;
70 }
71 }
72
73 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
74 {
75 struct alx_rx_queue *rxq = &alx->rxq;
76 struct sk_buff *skb;
77 struct alx_buffer *cur_buf;
78 dma_addr_t dma;
79 u16 cur, next, count = 0;
80
81 next = cur = rxq->write_idx;
82 if (++next == alx->rx_ringsz)
83 next = 0;
84 cur_buf = &rxq->bufs[cur];
85
86 while (!cur_buf->skb && next != rxq->read_idx) {
87 struct alx_rfd *rfd = &rxq->rfd[cur];
88
89 skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp);
90 if (!skb)
91 break;
92 dma = dma_map_single(&alx->hw.pdev->dev,
93 skb->data, alx->rxbuf_size,
94 DMA_FROM_DEVICE);
95 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
96 dev_kfree_skb(skb);
97 break;
98 }
99
100 /* Unfortunately, RX descriptor buffers must be 4-byte
101 * aligned, so we can't use IP alignment.
102 */
103 if (WARN_ON(dma & 3)) {
104 dev_kfree_skb(skb);
105 break;
106 }
107
108 cur_buf->skb = skb;
109 dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
110 dma_unmap_addr_set(cur_buf, dma, dma);
111 rfd->addr = cpu_to_le64(dma);
112
113 cur = next;
114 if (++next == alx->rx_ringsz)
115 next = 0;
116 cur_buf = &rxq->bufs[cur];
117 count++;
118 }
119
120 if (count) {
121 /* flush all updates before updating hardware */
122 wmb();
123 rxq->write_idx = cur;
124 alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
125 }
126
127 return count;
128 }
129
130 static inline int alx_tpd_avail(struct alx_priv *alx)
131 {
132 struct alx_tx_queue *txq = &alx->txq;
133
134 if (txq->write_idx >= txq->read_idx)
135 return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
136 return txq->read_idx - txq->write_idx - 1;
137 }
138
139 static bool alx_clean_tx_irq(struct alx_priv *alx)
140 {
141 struct alx_tx_queue *txq = &alx->txq;
142 u16 hw_read_idx, sw_read_idx;
143 unsigned int total_bytes = 0, total_packets = 0;
144 int budget = ALX_DEFAULT_TX_WORK;
145
146 sw_read_idx = txq->read_idx;
147 hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
148
149 if (sw_read_idx != hw_read_idx) {
150 while (sw_read_idx != hw_read_idx && budget > 0) {
151 struct sk_buff *skb;
152
153 skb = txq->bufs[sw_read_idx].skb;
154 if (skb) {
155 total_bytes += skb->len;
156 total_packets++;
157 budget--;
158 }
159
160 alx_free_txbuf(alx, sw_read_idx);
161
162 if (++sw_read_idx == alx->tx_ringsz)
163 sw_read_idx = 0;
164 }
165 txq->read_idx = sw_read_idx;
166
167 netdev_completed_queue(alx->dev, total_packets, total_bytes);
168 }
169
170 if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
171 alx_tpd_avail(alx) > alx->tx_ringsz/4)
172 netif_wake_queue(alx->dev);
173
174 return sw_read_idx == hw_read_idx;
175 }
176
177 static void alx_schedule_link_check(struct alx_priv *alx)
178 {
179 schedule_work(&alx->link_check_wk);
180 }
181
182 static void alx_schedule_reset(struct alx_priv *alx)
183 {
184 schedule_work(&alx->reset_wk);
185 }
186
187 static int alx_clean_rx_irq(struct alx_priv *alx, int budget)
188 {
189 struct alx_rx_queue *rxq = &alx->rxq;
190 struct alx_rrd *rrd;
191 struct alx_buffer *rxb;
192 struct sk_buff *skb;
193 u16 length, rfd_cleaned = 0;
194 int work = 0;
195
196 while (work < budget) {
197 rrd = &rxq->rrd[rxq->rrd_read_idx];
198 if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
199 break;
200 rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
201
202 if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
203 RRD_SI) != rxq->read_idx ||
204 ALX_GET_FIELD(le32_to_cpu(rrd->word0),
205 RRD_NOR) != 1) {
206 alx_schedule_reset(alx);
207 return work;
208 }
209
210 rxb = &rxq->bufs[rxq->read_idx];
211 dma_unmap_single(&alx->hw.pdev->dev,
212 dma_unmap_addr(rxb, dma),
213 dma_unmap_len(rxb, size),
214 DMA_FROM_DEVICE);
215 dma_unmap_len_set(rxb, size, 0);
216 skb = rxb->skb;
217 rxb->skb = NULL;
218
219 if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
220 rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
221 rrd->word3 = 0;
222 dev_kfree_skb_any(skb);
223 goto next_pkt;
224 }
225
226 length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
227 RRD_PKTLEN) - ETH_FCS_LEN;
228 skb_put(skb, length);
229 skb->protocol = eth_type_trans(skb, alx->dev);
230
231 skb_checksum_none_assert(skb);
232 if (alx->dev->features & NETIF_F_RXCSUM &&
233 !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
234 cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
235 switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
236 RRD_PID)) {
237 case RRD_PID_IPV6UDP:
238 case RRD_PID_IPV4UDP:
239 case RRD_PID_IPV4TCP:
240 case RRD_PID_IPV6TCP:
241 skb->ip_summed = CHECKSUM_UNNECESSARY;
242 break;
243 }
244 }
245
246 napi_gro_receive(&alx->napi, skb);
247 work++;
248
249 next_pkt:
250 if (++rxq->read_idx == alx->rx_ringsz)
251 rxq->read_idx = 0;
252 if (++rxq->rrd_read_idx == alx->rx_ringsz)
253 rxq->rrd_read_idx = 0;
254
255 if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
256 rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
257 }
258
259 if (rfd_cleaned)
260 alx_refill_rx_ring(alx, GFP_ATOMIC);
261
262 return work;
263 }
264
265 static int alx_poll(struct napi_struct *napi, int budget)
266 {
267 struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
268 struct alx_hw *hw = &alx->hw;
269 unsigned long flags;
270 bool tx_complete;
271 int work;
272
273 tx_complete = alx_clean_tx_irq(alx);
274 work = alx_clean_rx_irq(alx, budget);
275
276 if (!tx_complete || work == budget)
277 return budget;
278
279 napi_complete(&alx->napi);
280
281 /* enable interrupt */
282 spin_lock_irqsave(&alx->irq_lock, flags);
283 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
284 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
285 spin_unlock_irqrestore(&alx->irq_lock, flags);
286
287 alx_post_write(hw);
288
289 return work;
290 }
291
292 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
293 {
294 struct alx_hw *hw = &alx->hw;
295 bool write_int_mask = false;
296
297 spin_lock(&alx->irq_lock);
298
299 /* ACK interrupt */
300 alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
301 intr &= alx->int_mask;
302
303 if (intr & ALX_ISR_FATAL) {
304 netif_warn(alx, hw, alx->dev,
305 "fatal interrupt 0x%x, resetting\n", intr);
306 alx_schedule_reset(alx);
307 goto out;
308 }
309
310 if (intr & ALX_ISR_ALERT)
311 netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
312
313 if (intr & ALX_ISR_PHY) {
314 /* suppress PHY interrupt, because the source
315 * is from PHY internal. only the internal status
316 * is cleared, the interrupt status could be cleared.
317 */
318 alx->int_mask &= ~ALX_ISR_PHY;
319 write_int_mask = true;
320 alx_schedule_link_check(alx);
321 }
322
323 if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
324 napi_schedule(&alx->napi);
325 /* mask rx/tx interrupt, enable them when napi complete */
326 alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
327 write_int_mask = true;
328 }
329
330 if (write_int_mask)
331 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
332
333 alx_write_mem32(hw, ALX_ISR, 0);
334
335 out:
336 spin_unlock(&alx->irq_lock);
337 return IRQ_HANDLED;
338 }
339
340 static irqreturn_t alx_intr_msi(int irq, void *data)
341 {
342 struct alx_priv *alx = data;
343
344 return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
345 }
346
347 static irqreturn_t alx_intr_legacy(int irq, void *data)
348 {
349 struct alx_priv *alx = data;
350 struct alx_hw *hw = &alx->hw;
351 u32 intr;
352
353 intr = alx_read_mem32(hw, ALX_ISR);
354
355 if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
356 return IRQ_NONE;
357
358 return alx_intr_handle(alx, intr);
359 }
360
361 static void alx_init_ring_ptrs(struct alx_priv *alx)
362 {
363 struct alx_hw *hw = &alx->hw;
364 u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
365
366 alx->rxq.read_idx = 0;
367 alx->rxq.write_idx = 0;
368 alx->rxq.rrd_read_idx = 0;
369 alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
370 alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
371 alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
372 alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
373 alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
374 alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
375
376 alx->txq.read_idx = 0;
377 alx->txq.write_idx = 0;
378 alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
379 alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
380 alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
381
382 /* load these pointers into the chip */
383 alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
384 }
385
386 static void alx_free_txring_buf(struct alx_priv *alx)
387 {
388 struct alx_tx_queue *txq = &alx->txq;
389 int i;
390
391 if (!txq->bufs)
392 return;
393
394 for (i = 0; i < alx->tx_ringsz; i++)
395 alx_free_txbuf(alx, i);
396
397 memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
398 memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
399 txq->write_idx = 0;
400 txq->read_idx = 0;
401
402 netdev_reset_queue(alx->dev);
403 }
404
405 static void alx_free_rxring_buf(struct alx_priv *alx)
406 {
407 struct alx_rx_queue *rxq = &alx->rxq;
408 struct alx_buffer *cur_buf;
409 u16 i;
410
411 if (rxq == NULL)
412 return;
413
414 for (i = 0; i < alx->rx_ringsz; i++) {
415 cur_buf = rxq->bufs + i;
416 if (cur_buf->skb) {
417 dma_unmap_single(&alx->hw.pdev->dev,
418 dma_unmap_addr(cur_buf, dma),
419 dma_unmap_len(cur_buf, size),
420 DMA_FROM_DEVICE);
421 dev_kfree_skb(cur_buf->skb);
422 cur_buf->skb = NULL;
423 dma_unmap_len_set(cur_buf, size, 0);
424 dma_unmap_addr_set(cur_buf, dma, 0);
425 }
426 }
427
428 rxq->write_idx = 0;
429 rxq->read_idx = 0;
430 rxq->rrd_read_idx = 0;
431 }
432
433 static void alx_free_buffers(struct alx_priv *alx)
434 {
435 alx_free_txring_buf(alx);
436 alx_free_rxring_buf(alx);
437 }
438
439 static int alx_reinit_rings(struct alx_priv *alx)
440 {
441 alx_free_buffers(alx);
442
443 alx_init_ring_ptrs(alx);
444
445 if (!alx_refill_rx_ring(alx, GFP_KERNEL))
446 return -ENOMEM;
447
448 return 0;
449 }
450
451 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
452 {
453 u32 crc32, bit, reg;
454
455 crc32 = ether_crc(ETH_ALEN, addr);
456 reg = (crc32 >> 31) & 0x1;
457 bit = (crc32 >> 26) & 0x1F;
458
459 mc_hash[reg] |= BIT(bit);
460 }
461
462 static void __alx_set_rx_mode(struct net_device *netdev)
463 {
464 struct alx_priv *alx = netdev_priv(netdev);
465 struct alx_hw *hw = &alx->hw;
466 struct netdev_hw_addr *ha;
467 u32 mc_hash[2] = {};
468
469 if (!(netdev->flags & IFF_ALLMULTI)) {
470 netdev_for_each_mc_addr(ha, netdev)
471 alx_add_mc_addr(hw, ha->addr, mc_hash);
472
473 alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
474 alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
475 }
476
477 hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
478 if (netdev->flags & IFF_PROMISC)
479 hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
480 if (netdev->flags & IFF_ALLMULTI)
481 hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
482
483 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
484 }
485
486 static void alx_set_rx_mode(struct net_device *netdev)
487 {
488 __alx_set_rx_mode(netdev);
489 }
490
491 static int alx_set_mac_address(struct net_device *netdev, void *data)
492 {
493 struct alx_priv *alx = netdev_priv(netdev);
494 struct alx_hw *hw = &alx->hw;
495 struct sockaddr *addr = data;
496
497 if (!is_valid_ether_addr(addr->sa_data))
498 return -EADDRNOTAVAIL;
499
500 if (netdev->addr_assign_type & NET_ADDR_RANDOM)
501 netdev->addr_assign_type ^= NET_ADDR_RANDOM;
502
503 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
504 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
505 alx_set_macaddr(hw, hw->mac_addr);
506
507 return 0;
508 }
509
510 static int alx_alloc_descriptors(struct alx_priv *alx)
511 {
512 alx->txq.bufs = kcalloc(alx->tx_ringsz,
513 sizeof(struct alx_buffer),
514 GFP_KERNEL);
515 if (!alx->txq.bufs)
516 return -ENOMEM;
517
518 alx->rxq.bufs = kcalloc(alx->rx_ringsz,
519 sizeof(struct alx_buffer),
520 GFP_KERNEL);
521 if (!alx->rxq.bufs)
522 goto out_free;
523
524 /* physical tx/rx ring descriptors
525 *
526 * Allocate them as a single chunk because they must not cross a
527 * 4G boundary (hardware has a single register for high 32 bits
528 * of addresses only)
529 */
530 alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
531 sizeof(struct alx_rrd) * alx->rx_ringsz +
532 sizeof(struct alx_rfd) * alx->rx_ringsz;
533 alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
534 alx->descmem.size,
535 &alx->descmem.dma,
536 GFP_KERNEL);
537 if (!alx->descmem.virt)
538 goto out_free;
539
540 alx->txq.tpd = alx->descmem.virt;
541 alx->txq.tpd_dma = alx->descmem.dma;
542
543 /* alignment requirement for next block */
544 BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
545
546 alx->rxq.rrd =
547 (void *)((u8 *)alx->descmem.virt +
548 sizeof(struct alx_txd) * alx->tx_ringsz);
549 alx->rxq.rrd_dma = alx->descmem.dma +
550 sizeof(struct alx_txd) * alx->tx_ringsz;
551
552 /* alignment requirement for next block */
553 BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
554
555 alx->rxq.rfd =
556 (void *)((u8 *)alx->descmem.virt +
557 sizeof(struct alx_txd) * alx->tx_ringsz +
558 sizeof(struct alx_rrd) * alx->rx_ringsz);
559 alx->rxq.rfd_dma = alx->descmem.dma +
560 sizeof(struct alx_txd) * alx->tx_ringsz +
561 sizeof(struct alx_rrd) * alx->rx_ringsz;
562
563 return 0;
564 out_free:
565 kfree(alx->txq.bufs);
566 kfree(alx->rxq.bufs);
567 return -ENOMEM;
568 }
569
570 static int alx_alloc_rings(struct alx_priv *alx)
571 {
572 int err;
573
574 err = alx_alloc_descriptors(alx);
575 if (err)
576 return err;
577
578 alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
579 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
580
581 netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
582
583 alx_reinit_rings(alx);
584 return 0;
585 }
586
587 static void alx_free_rings(struct alx_priv *alx)
588 {
589 netif_napi_del(&alx->napi);
590 alx_free_buffers(alx);
591
592 kfree(alx->txq.bufs);
593 kfree(alx->rxq.bufs);
594
595 dma_free_coherent(&alx->hw.pdev->dev,
596 alx->descmem.size,
597 alx->descmem.virt,
598 alx->descmem.dma);
599 }
600
601 static void alx_config_vector_mapping(struct alx_priv *alx)
602 {
603 struct alx_hw *hw = &alx->hw;
604
605 alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0);
606 alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
607 alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
608 }
609
610 static void alx_irq_enable(struct alx_priv *alx)
611 {
612 struct alx_hw *hw = &alx->hw;
613
614 /* level-1 interrupt switch */
615 alx_write_mem32(hw, ALX_ISR, 0);
616 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
617 alx_post_write(hw);
618 }
619
620 static void alx_irq_disable(struct alx_priv *alx)
621 {
622 struct alx_hw *hw = &alx->hw;
623
624 alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
625 alx_write_mem32(hw, ALX_IMR, 0);
626 alx_post_write(hw);
627
628 synchronize_irq(alx->hw.pdev->irq);
629 }
630
631 static int alx_request_irq(struct alx_priv *alx)
632 {
633 struct pci_dev *pdev = alx->hw.pdev;
634 struct alx_hw *hw = &alx->hw;
635 int err;
636 u32 msi_ctrl;
637
638 msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
639
640 if (!pci_enable_msi(alx->hw.pdev)) {
641 alx->msi = true;
642
643 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
644 msi_ctrl | ALX_MSI_MASK_SEL_LINE);
645 err = request_irq(pdev->irq, alx_intr_msi, 0,
646 alx->dev->name, alx);
647 if (!err)
648 goto out;
649 /* fall back to legacy interrupt */
650 pci_disable_msi(alx->hw.pdev);
651 }
652
653 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
654 err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
655 alx->dev->name, alx);
656 out:
657 if (!err)
658 alx_config_vector_mapping(alx);
659 return err;
660 }
661
662 static void alx_free_irq(struct alx_priv *alx)
663 {
664 struct pci_dev *pdev = alx->hw.pdev;
665
666 free_irq(pdev->irq, alx);
667
668 if (alx->msi) {
669 pci_disable_msi(alx->hw.pdev);
670 alx->msi = false;
671 }
672 }
673
674 static int alx_identify_hw(struct alx_priv *alx)
675 {
676 struct alx_hw *hw = &alx->hw;
677 int rev = alx_hw_revision(hw);
678
679 if (rev > ALX_REV_C0)
680 return -EINVAL;
681
682 hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
683
684 return 0;
685 }
686
687 static int alx_init_sw(struct alx_priv *alx)
688 {
689 struct pci_dev *pdev = alx->hw.pdev;
690 struct alx_hw *hw = &alx->hw;
691 int err;
692
693 err = alx_identify_hw(alx);
694 if (err) {
695 dev_err(&pdev->dev, "unrecognized chip, aborting\n");
696 return err;
697 }
698
699 alx->hw.lnk_patch =
700 pdev->device == ALX_DEV_ID_AR8161 &&
701 pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
702 pdev->subsystem_device == 0x0091 &&
703 pdev->revision == 0;
704
705 hw->smb_timer = 400;
706 hw->mtu = alx->dev->mtu;
707 alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
708 alx->tx_ringsz = 256;
709 alx->rx_ringsz = 512;
710 hw->imt = 200;
711 alx->int_mask = ALX_ISR_MISC;
712 hw->dma_chnl = hw->max_dma_chnl;
713 hw->ith_tpd = alx->tx_ringsz / 3;
714 hw->link_speed = SPEED_UNKNOWN;
715 hw->duplex = DUPLEX_UNKNOWN;
716 hw->adv_cfg = ADVERTISED_Autoneg |
717 ADVERTISED_10baseT_Half |
718 ADVERTISED_10baseT_Full |
719 ADVERTISED_100baseT_Full |
720 ADVERTISED_100baseT_Half |
721 ADVERTISED_1000baseT_Full;
722 hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
723
724 hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
725 ALX_MAC_CTRL_MHASH_ALG_HI5B |
726 ALX_MAC_CTRL_BRD_EN |
727 ALX_MAC_CTRL_PCRCE |
728 ALX_MAC_CTRL_CRCE |
729 ALX_MAC_CTRL_RXFC_EN |
730 ALX_MAC_CTRL_TXFC_EN |
731 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
732
733 return err;
734 }
735
736
737 static netdev_features_t alx_fix_features(struct net_device *netdev,
738 netdev_features_t features)
739 {
740 if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
741 features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
742
743 return features;
744 }
745
746 static void alx_netif_stop(struct alx_priv *alx)
747 {
748 netif_trans_update(alx->dev);
749 if (netif_carrier_ok(alx->dev)) {
750 netif_carrier_off(alx->dev);
751 netif_tx_disable(alx->dev);
752 napi_disable(&alx->napi);
753 }
754 }
755
756 static void alx_halt(struct alx_priv *alx)
757 {
758 struct alx_hw *hw = &alx->hw;
759
760 alx_netif_stop(alx);
761 hw->link_speed = SPEED_UNKNOWN;
762 hw->duplex = DUPLEX_UNKNOWN;
763
764 alx_reset_mac(hw);
765
766 /* disable l0s/l1 */
767 alx_enable_aspm(hw, false, false);
768 alx_irq_disable(alx);
769 alx_free_buffers(alx);
770 }
771
772 static void alx_configure(struct alx_priv *alx)
773 {
774 struct alx_hw *hw = &alx->hw;
775
776 alx_configure_basic(hw);
777 alx_disable_rss(hw);
778 __alx_set_rx_mode(alx->dev);
779
780 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
781 }
782
783 static void alx_activate(struct alx_priv *alx)
784 {
785 /* hardware setting lost, restore it */
786 alx_reinit_rings(alx);
787 alx_configure(alx);
788
789 /* clear old interrupts */
790 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
791
792 alx_irq_enable(alx);
793
794 alx_schedule_link_check(alx);
795 }
796
797 static void alx_reinit(struct alx_priv *alx)
798 {
799 ASSERT_RTNL();
800
801 alx_halt(alx);
802 alx_activate(alx);
803 }
804
805 static int alx_change_mtu(struct net_device *netdev, int mtu)
806 {
807 struct alx_priv *alx = netdev_priv(netdev);
808 int max_frame = ALX_MAX_FRAME_LEN(mtu);
809
810 if ((max_frame < ALX_MIN_FRAME_SIZE) ||
811 (max_frame > ALX_MAX_FRAME_SIZE))
812 return -EINVAL;
813
814 if (netdev->mtu == mtu)
815 return 0;
816
817 netdev->mtu = mtu;
818 alx->hw.mtu = mtu;
819 alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
820 netdev_update_features(netdev);
821 if (netif_running(netdev))
822 alx_reinit(alx);
823 return 0;
824 }
825
826 static void alx_netif_start(struct alx_priv *alx)
827 {
828 netif_tx_wake_all_queues(alx->dev);
829 napi_enable(&alx->napi);
830 netif_carrier_on(alx->dev);
831 }
832
833 static int __alx_open(struct alx_priv *alx, bool resume)
834 {
835 int err;
836
837 if (!resume)
838 netif_carrier_off(alx->dev);
839
840 err = alx_alloc_rings(alx);
841 if (err)
842 return err;
843
844 alx_configure(alx);
845
846 err = alx_request_irq(alx);
847 if (err)
848 goto out_free_rings;
849
850 /* clear old interrupts */
851 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
852
853 alx_irq_enable(alx);
854
855 if (!resume)
856 netif_tx_start_all_queues(alx->dev);
857
858 alx_schedule_link_check(alx);
859 return 0;
860
861 out_free_rings:
862 alx_free_rings(alx);
863 return err;
864 }
865
866 static void __alx_stop(struct alx_priv *alx)
867 {
868 alx_halt(alx);
869 alx_free_irq(alx);
870 alx_free_rings(alx);
871 }
872
873 static const char *alx_speed_desc(struct alx_hw *hw)
874 {
875 switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
876 case ADVERTISED_1000baseT_Full:
877 return "1 Gbps Full";
878 case ADVERTISED_100baseT_Full:
879 return "100 Mbps Full";
880 case ADVERTISED_100baseT_Half:
881 return "100 Mbps Half";
882 case ADVERTISED_10baseT_Full:
883 return "10 Mbps Full";
884 case ADVERTISED_10baseT_Half:
885 return "10 Mbps Half";
886 default:
887 return "Unknown speed";
888 }
889 }
890
891 static void alx_check_link(struct alx_priv *alx)
892 {
893 struct alx_hw *hw = &alx->hw;
894 unsigned long flags;
895 int old_speed;
896 u8 old_duplex;
897 int err;
898
899 /* clear PHY internal interrupt status, otherwise the main
900 * interrupt status will be asserted forever
901 */
902 alx_clear_phy_intr(hw);
903
904 old_speed = hw->link_speed;
905 old_duplex = hw->duplex;
906 err = alx_read_phy_link(hw);
907 if (err < 0)
908 goto reset;
909
910 spin_lock_irqsave(&alx->irq_lock, flags);
911 alx->int_mask |= ALX_ISR_PHY;
912 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
913 spin_unlock_irqrestore(&alx->irq_lock, flags);
914
915 if (old_speed == hw->link_speed)
916 return;
917
918 if (hw->link_speed != SPEED_UNKNOWN) {
919 netif_info(alx, link, alx->dev,
920 "NIC Up: %s\n", alx_speed_desc(hw));
921 alx_post_phy_link(hw);
922 alx_enable_aspm(hw, true, true);
923 alx_start_mac(hw);
924
925 if (old_speed == SPEED_UNKNOWN)
926 alx_netif_start(alx);
927 } else {
928 /* link is now down */
929 alx_netif_stop(alx);
930 netif_info(alx, link, alx->dev, "Link Down\n");
931 err = alx_reset_mac(hw);
932 if (err)
933 goto reset;
934 alx_irq_disable(alx);
935
936 /* MAC reset causes all HW settings to be lost, restore all */
937 err = alx_reinit_rings(alx);
938 if (err)
939 goto reset;
940 alx_configure(alx);
941 alx_enable_aspm(hw, false, true);
942 alx_post_phy_link(hw);
943 alx_irq_enable(alx);
944 }
945
946 return;
947
948 reset:
949 alx_schedule_reset(alx);
950 }
951
952 static int alx_open(struct net_device *netdev)
953 {
954 return __alx_open(netdev_priv(netdev), false);
955 }
956
957 static int alx_stop(struct net_device *netdev)
958 {
959 __alx_stop(netdev_priv(netdev));
960 return 0;
961 }
962
963 static void alx_link_check(struct work_struct *work)
964 {
965 struct alx_priv *alx;
966
967 alx = container_of(work, struct alx_priv, link_check_wk);
968
969 rtnl_lock();
970 alx_check_link(alx);
971 rtnl_unlock();
972 }
973
974 static void alx_reset(struct work_struct *work)
975 {
976 struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
977
978 rtnl_lock();
979 alx_reinit(alx);
980 rtnl_unlock();
981 }
982
983 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
984 {
985 u8 cso, css;
986
987 if (skb->ip_summed != CHECKSUM_PARTIAL)
988 return 0;
989
990 cso = skb_checksum_start_offset(skb);
991 if (cso & 1)
992 return -EINVAL;
993
994 css = cso + skb->csum_offset;
995 first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
996 first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
997 first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
998
999 return 0;
1000 }
1001
1002 static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
1003 {
1004 struct alx_tx_queue *txq = &alx->txq;
1005 struct alx_txd *tpd, *first_tpd;
1006 dma_addr_t dma;
1007 int maplen, f, first_idx = txq->write_idx;
1008
1009 first_tpd = &txq->tpd[txq->write_idx];
1010 tpd = first_tpd;
1011
1012 maplen = skb_headlen(skb);
1013 dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
1014 DMA_TO_DEVICE);
1015 if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1016 goto err_dma;
1017
1018 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1019 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1020
1021 tpd->adrl.addr = cpu_to_le64(dma);
1022 tpd->len = cpu_to_le16(maplen);
1023
1024 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1025 struct skb_frag_struct *frag;
1026
1027 frag = &skb_shinfo(skb)->frags[f];
1028
1029 if (++txq->write_idx == alx->tx_ringsz)
1030 txq->write_idx = 0;
1031 tpd = &txq->tpd[txq->write_idx];
1032
1033 tpd->word1 = first_tpd->word1;
1034
1035 maplen = skb_frag_size(frag);
1036 dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
1037 maplen, DMA_TO_DEVICE);
1038 if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1039 goto err_dma;
1040 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1041 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1042
1043 tpd->adrl.addr = cpu_to_le64(dma);
1044 tpd->len = cpu_to_le16(maplen);
1045 }
1046
1047 /* last TPD, set EOP flag and store skb */
1048 tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1049 txq->bufs[txq->write_idx].skb = skb;
1050
1051 if (++txq->write_idx == alx->tx_ringsz)
1052 txq->write_idx = 0;
1053
1054 return 0;
1055
1056 err_dma:
1057 f = first_idx;
1058 while (f != txq->write_idx) {
1059 alx_free_txbuf(alx, f);
1060 if (++f == alx->tx_ringsz)
1061 f = 0;
1062 }
1063 return -ENOMEM;
1064 }
1065
1066 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1067 struct net_device *netdev)
1068 {
1069 struct alx_priv *alx = netdev_priv(netdev);
1070 struct alx_tx_queue *txq = &alx->txq;
1071 struct alx_txd *first;
1072 int tpdreq = skb_shinfo(skb)->nr_frags + 1;
1073
1074 if (alx_tpd_avail(alx) < tpdreq) {
1075 netif_stop_queue(alx->dev);
1076 goto drop;
1077 }
1078
1079 first = &txq->tpd[txq->write_idx];
1080 memset(first, 0, sizeof(*first));
1081
1082 if (alx_tx_csum(skb, first))
1083 goto drop;
1084
1085 if (alx_map_tx_skb(alx, skb) < 0)
1086 goto drop;
1087
1088 netdev_sent_queue(alx->dev, skb->len);
1089
1090 /* flush updates before updating hardware */
1091 wmb();
1092 alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
1093
1094 if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
1095 netif_stop_queue(alx->dev);
1096
1097 return NETDEV_TX_OK;
1098
1099 drop:
1100 dev_kfree_skb_any(skb);
1101 return NETDEV_TX_OK;
1102 }
1103
1104 static void alx_tx_timeout(struct net_device *dev)
1105 {
1106 struct alx_priv *alx = netdev_priv(dev);
1107
1108 alx_schedule_reset(alx);
1109 }
1110
1111 static int alx_mdio_read(struct net_device *netdev,
1112 int prtad, int devad, u16 addr)
1113 {
1114 struct alx_priv *alx = netdev_priv(netdev);
1115 struct alx_hw *hw = &alx->hw;
1116 u16 val;
1117 int err;
1118
1119 if (prtad != hw->mdio.prtad)
1120 return -EINVAL;
1121
1122 if (devad == MDIO_DEVAD_NONE)
1123 err = alx_read_phy_reg(hw, addr, &val);
1124 else
1125 err = alx_read_phy_ext(hw, devad, addr, &val);
1126
1127 if (err)
1128 return err;
1129 return val;
1130 }
1131
1132 static int alx_mdio_write(struct net_device *netdev,
1133 int prtad, int devad, u16 addr, u16 val)
1134 {
1135 struct alx_priv *alx = netdev_priv(netdev);
1136 struct alx_hw *hw = &alx->hw;
1137
1138 if (prtad != hw->mdio.prtad)
1139 return -EINVAL;
1140
1141 if (devad == MDIO_DEVAD_NONE)
1142 return alx_write_phy_reg(hw, addr, val);
1143
1144 return alx_write_phy_ext(hw, devad, addr, val);
1145 }
1146
1147 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1148 {
1149 struct alx_priv *alx = netdev_priv(netdev);
1150
1151 if (!netif_running(netdev))
1152 return -EAGAIN;
1153
1154 return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1155 }
1156
1157 #ifdef CONFIG_NET_POLL_CONTROLLER
1158 static void alx_poll_controller(struct net_device *netdev)
1159 {
1160 struct alx_priv *alx = netdev_priv(netdev);
1161
1162 if (alx->msi)
1163 alx_intr_msi(0, alx);
1164 else
1165 alx_intr_legacy(0, alx);
1166 }
1167 #endif
1168
1169 static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
1170 struct rtnl_link_stats64 *net_stats)
1171 {
1172 struct alx_priv *alx = netdev_priv(dev);
1173 struct alx_hw_stats *hw_stats = &alx->hw.stats;
1174
1175 spin_lock(&alx->stats_lock);
1176
1177 alx_update_hw_stats(&alx->hw);
1178
1179 net_stats->tx_bytes = hw_stats->tx_byte_cnt;
1180 net_stats->rx_bytes = hw_stats->rx_byte_cnt;
1181 net_stats->multicast = hw_stats->rx_mcast;
1182 net_stats->collisions = hw_stats->tx_single_col +
1183 hw_stats->tx_multi_col +
1184 hw_stats->tx_late_col +
1185 hw_stats->tx_abort_col;
1186
1187 net_stats->rx_errors = hw_stats->rx_frag +
1188 hw_stats->rx_fcs_err +
1189 hw_stats->rx_len_err +
1190 hw_stats->rx_ov_sz +
1191 hw_stats->rx_ov_rrd +
1192 hw_stats->rx_align_err +
1193 hw_stats->rx_ov_rxf;
1194
1195 net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf;
1196 net_stats->rx_length_errors = hw_stats->rx_len_err;
1197 net_stats->rx_crc_errors = hw_stats->rx_fcs_err;
1198 net_stats->rx_frame_errors = hw_stats->rx_align_err;
1199 net_stats->rx_dropped = hw_stats->rx_ov_rrd;
1200
1201 net_stats->tx_errors = hw_stats->tx_late_col +
1202 hw_stats->tx_abort_col +
1203 hw_stats->tx_underrun +
1204 hw_stats->tx_trunc;
1205
1206 net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1207 net_stats->tx_fifo_errors = hw_stats->tx_underrun;
1208 net_stats->tx_window_errors = hw_stats->tx_late_col;
1209
1210 net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1211 net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1212
1213 spin_unlock(&alx->stats_lock);
1214
1215 return net_stats;
1216 }
1217
1218 static const struct net_device_ops alx_netdev_ops = {
1219 .ndo_open = alx_open,
1220 .ndo_stop = alx_stop,
1221 .ndo_start_xmit = alx_start_xmit,
1222 .ndo_get_stats64 = alx_get_stats64,
1223 .ndo_set_rx_mode = alx_set_rx_mode,
1224 .ndo_validate_addr = eth_validate_addr,
1225 .ndo_set_mac_address = alx_set_mac_address,
1226 .ndo_change_mtu = alx_change_mtu,
1227 .ndo_do_ioctl = alx_ioctl,
1228 .ndo_tx_timeout = alx_tx_timeout,
1229 .ndo_fix_features = alx_fix_features,
1230 #ifdef CONFIG_NET_POLL_CONTROLLER
1231 .ndo_poll_controller = alx_poll_controller,
1232 #endif
1233 };
1234
1235 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1236 {
1237 struct net_device *netdev;
1238 struct alx_priv *alx;
1239 struct alx_hw *hw;
1240 bool phy_configured;
1241 int bars, err;
1242
1243 err = pci_enable_device_mem(pdev);
1244 if (err)
1245 return err;
1246
1247 /* The alx chip can DMA to 64-bit addresses, but it uses a single
1248 * shared register for the high 32 bits, so only a single, aligned,
1249 * 4 GB physical address range can be used for descriptors.
1250 */
1251 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1252 dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1253 } else {
1254 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1255 if (err) {
1256 dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1257 goto out_pci_disable;
1258 }
1259 }
1260
1261 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1262 err = pci_request_selected_regions(pdev, bars, alx_drv_name);
1263 if (err) {
1264 dev_err(&pdev->dev,
1265 "pci_request_selected_regions failed(bars:%d)\n", bars);
1266 goto out_pci_disable;
1267 }
1268
1269 pci_enable_pcie_error_reporting(pdev);
1270 pci_set_master(pdev);
1271
1272 if (!pdev->pm_cap) {
1273 dev_err(&pdev->dev,
1274 "Can't find power management capability, aborting\n");
1275 err = -EIO;
1276 goto out_pci_release;
1277 }
1278
1279 netdev = alloc_etherdev(sizeof(*alx));
1280 if (!netdev) {
1281 err = -ENOMEM;
1282 goto out_pci_release;
1283 }
1284
1285 SET_NETDEV_DEV(netdev, &pdev->dev);
1286 alx = netdev_priv(netdev);
1287 spin_lock_init(&alx->hw.mdio_lock);
1288 spin_lock_init(&alx->irq_lock);
1289 spin_lock_init(&alx->stats_lock);
1290 alx->dev = netdev;
1291 alx->hw.pdev = pdev;
1292 alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1293 NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1294 hw = &alx->hw;
1295 pci_set_drvdata(pdev, alx);
1296
1297 hw->hw_addr = pci_ioremap_bar(pdev, 0);
1298 if (!hw->hw_addr) {
1299 dev_err(&pdev->dev, "cannot map device registers\n");
1300 err = -EIO;
1301 goto out_free_netdev;
1302 }
1303
1304 netdev->netdev_ops = &alx_netdev_ops;
1305 netdev->ethtool_ops = &alx_ethtool_ops;
1306 netdev->irq = pdev->irq;
1307 netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1308
1309 if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1310 pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1311
1312 err = alx_init_sw(alx);
1313 if (err) {
1314 dev_err(&pdev->dev, "net device private data init failed\n");
1315 goto out_unmap;
1316 }
1317
1318 alx_reset_pcie(hw);
1319
1320 phy_configured = alx_phy_configured(hw);
1321
1322 if (!phy_configured)
1323 alx_reset_phy(hw);
1324
1325 err = alx_reset_mac(hw);
1326 if (err) {
1327 dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1328 goto out_unmap;
1329 }
1330
1331 /* setup link to put it in a known good starting state */
1332 if (!phy_configured) {
1333 err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1334 if (err) {
1335 dev_err(&pdev->dev,
1336 "failed to configure PHY speed/duplex (err=%d)\n",
1337 err);
1338 goto out_unmap;
1339 }
1340 }
1341
1342 netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
1343
1344 if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1345 dev_warn(&pdev->dev,
1346 "Invalid permanent address programmed, using random one\n");
1347 eth_hw_addr_random(netdev);
1348 memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1349 }
1350
1351 memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1352 memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1353 memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1354
1355 hw->mdio.prtad = 0;
1356 hw->mdio.mmds = 0;
1357 hw->mdio.dev = netdev;
1358 hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1359 MDIO_SUPPORTS_C22 |
1360 MDIO_EMULATE_C22;
1361 hw->mdio.mdio_read = alx_mdio_read;
1362 hw->mdio.mdio_write = alx_mdio_write;
1363
1364 if (!alx_get_phy_info(hw)) {
1365 dev_err(&pdev->dev, "failed to identify PHY\n");
1366 err = -EIO;
1367 goto out_unmap;
1368 }
1369
1370 INIT_WORK(&alx->link_check_wk, alx_link_check);
1371 INIT_WORK(&alx->reset_wk, alx_reset);
1372 netif_carrier_off(netdev);
1373
1374 err = register_netdev(netdev);
1375 if (err) {
1376 dev_err(&pdev->dev, "register netdevice failed\n");
1377 goto out_unmap;
1378 }
1379
1380 netdev_info(netdev,
1381 "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1382 netdev->dev_addr);
1383
1384 return 0;
1385
1386 out_unmap:
1387 iounmap(hw->hw_addr);
1388 out_free_netdev:
1389 free_netdev(netdev);
1390 out_pci_release:
1391 pci_release_selected_regions(pdev, bars);
1392 out_pci_disable:
1393 pci_disable_device(pdev);
1394 return err;
1395 }
1396
1397 static void alx_remove(struct pci_dev *pdev)
1398 {
1399 struct alx_priv *alx = pci_get_drvdata(pdev);
1400 struct alx_hw *hw = &alx->hw;
1401
1402 cancel_work_sync(&alx->link_check_wk);
1403 cancel_work_sync(&alx->reset_wk);
1404
1405 /* restore permanent mac address */
1406 alx_set_macaddr(hw, hw->perm_addr);
1407
1408 unregister_netdev(alx->dev);
1409 iounmap(hw->hw_addr);
1410 pci_release_selected_regions(pdev,
1411 pci_select_bars(pdev, IORESOURCE_MEM));
1412
1413 pci_disable_pcie_error_reporting(pdev);
1414 pci_disable_device(pdev);
1415
1416 free_netdev(alx->dev);
1417 }
1418
1419 #ifdef CONFIG_PM_SLEEP
1420 static int alx_suspend(struct device *dev)
1421 {
1422 struct pci_dev *pdev = to_pci_dev(dev);
1423 struct alx_priv *alx = pci_get_drvdata(pdev);
1424
1425 if (!netif_running(alx->dev))
1426 return 0;
1427 netif_device_detach(alx->dev);
1428 __alx_stop(alx);
1429 return 0;
1430 }
1431
1432 static int alx_resume(struct device *dev)
1433 {
1434 struct pci_dev *pdev = to_pci_dev(dev);
1435 struct alx_priv *alx = pci_get_drvdata(pdev);
1436 struct alx_hw *hw = &alx->hw;
1437
1438 alx_reset_phy(hw);
1439
1440 if (!netif_running(alx->dev))
1441 return 0;
1442 netif_device_attach(alx->dev);
1443 return __alx_open(alx, true);
1444 }
1445
1446 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1447 #define ALX_PM_OPS (&alx_pm_ops)
1448 #else
1449 #define ALX_PM_OPS NULL
1450 #endif
1451
1452
1453 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1454 pci_channel_state_t state)
1455 {
1456 struct alx_priv *alx = pci_get_drvdata(pdev);
1457 struct net_device *netdev = alx->dev;
1458 pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1459
1460 dev_info(&pdev->dev, "pci error detected\n");
1461
1462 rtnl_lock();
1463
1464 if (netif_running(netdev)) {
1465 netif_device_detach(netdev);
1466 alx_halt(alx);
1467 }
1468
1469 if (state == pci_channel_io_perm_failure)
1470 rc = PCI_ERS_RESULT_DISCONNECT;
1471 else
1472 pci_disable_device(pdev);
1473
1474 rtnl_unlock();
1475
1476 return rc;
1477 }
1478
1479 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1480 {
1481 struct alx_priv *alx = pci_get_drvdata(pdev);
1482 struct alx_hw *hw = &alx->hw;
1483 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1484
1485 dev_info(&pdev->dev, "pci error slot reset\n");
1486
1487 rtnl_lock();
1488
1489 if (pci_enable_device(pdev)) {
1490 dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1491 goto out;
1492 }
1493
1494 pci_set_master(pdev);
1495
1496 alx_reset_pcie(hw);
1497 if (!alx_reset_mac(hw))
1498 rc = PCI_ERS_RESULT_RECOVERED;
1499 out:
1500 pci_cleanup_aer_uncorrect_error_status(pdev);
1501
1502 rtnl_unlock();
1503
1504 return rc;
1505 }
1506
1507 static void alx_pci_error_resume(struct pci_dev *pdev)
1508 {
1509 struct alx_priv *alx = pci_get_drvdata(pdev);
1510 struct net_device *netdev = alx->dev;
1511
1512 dev_info(&pdev->dev, "pci error resume\n");
1513
1514 rtnl_lock();
1515
1516 if (netif_running(netdev)) {
1517 alx_activate(alx);
1518 netif_device_attach(netdev);
1519 }
1520
1521 rtnl_unlock();
1522 }
1523
1524 static const struct pci_error_handlers alx_err_handlers = {
1525 .error_detected = alx_pci_error_detected,
1526 .slot_reset = alx_pci_error_slot_reset,
1527 .resume = alx_pci_error_resume,
1528 };
1529
1530 static const struct pci_device_id alx_pci_tbl[] = {
1531 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1532 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1533 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1534 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1535 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
1536 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1537 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
1538 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1539 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
1540 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
1541 {}
1542 };
1543
1544 static struct pci_driver alx_driver = {
1545 .name = alx_drv_name,
1546 .id_table = alx_pci_tbl,
1547 .probe = alx_probe,
1548 .remove = alx_remove,
1549 .err_handler = &alx_err_handlers,
1550 .driver.pm = ALX_PM_OPS,
1551 };
1552
1553 module_pci_driver(alx_driver);
1554 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
1555 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
1556 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
1557 MODULE_DESCRIPTION(
1558 "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
1559 MODULE_LICENSE("GPL");
This page took 0.091259 seconds and 6 git commands to generate.