Merge remote-tracking branches 'spi/topic/img-spfi', 'spi/topic/imx', 'spi/topic...
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <linux/crash_dump.h>
45 #include <net/ip.h>
46 #include <net/ipv6.h>
47 #include <net/tcp.h>
48 #include <net/vxlan.h>
49 #include <net/checksum.h>
50 #include <net/ip6_checksum.h>
51 #include <linux/workqueue.h>
52 #include <linux/crc32.h>
53 #include <linux/crc32c.h>
54 #include <linux/prefetch.h>
55 #include <linux/zlib.h>
56 #include <linux/io.h>
57 #include <linux/semaphore.h>
58 #include <linux/stringify.h>
59 #include <linux/vmalloc.h>
60
61 #include "bnx2x.h"
62 #include "bnx2x_init.h"
63 #include "bnx2x_init_ops.h"
64 #include "bnx2x_cmn.h"
65 #include "bnx2x_vfpf.h"
66 #include "bnx2x_dcb.h"
67 #include "bnx2x_sp.h"
68 #include <linux/firmware.h>
69 #include "bnx2x_fw_file_hdr.h"
70 /* FW files */
71 #define FW_FILE_VERSION \
72 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
73 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
74 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
75 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
76 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
79
80 /* Time in jiffies before concluding the transmitter is hung */
81 #define TX_TIMEOUT (5*HZ)
82
83 static char version[] =
84 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
85 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
86
87 MODULE_AUTHOR("Eliezer Tamir");
88 MODULE_DESCRIPTION("Broadcom NetXtreme II "
89 "BCM57710/57711/57711E/"
90 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
91 "57840/57840_MF Driver");
92 MODULE_LICENSE("GPL");
93 MODULE_VERSION(DRV_MODULE_VERSION);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
96 MODULE_FIRMWARE(FW_FILE_NAME_E2);
97
98 int bnx2x_num_queues;
99 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
100 MODULE_PARM_DESC(num_queues,
101 " Set number of queues (default is as a number of CPUs)");
102
103 static int disable_tpa;
104 module_param(disable_tpa, int, S_IRUGO);
105 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
106
107 static int int_mode;
108 module_param(int_mode, int, S_IRUGO);
109 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
110 "(1 INT#x; 2 MSI)");
111
112 static int dropless_fc;
113 module_param(dropless_fc, int, S_IRUGO);
114 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
115
116 static int mrrs = -1;
117 module_param(mrrs, int, S_IRUGO);
118 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
119
120 static int debug;
121 module_param(debug, int, S_IRUGO);
122 MODULE_PARM_DESC(debug, " Default debug msglevel");
123
124 static struct workqueue_struct *bnx2x_wq;
125 struct workqueue_struct *bnx2x_iov_wq;
126
127 struct bnx2x_mac_vals {
128 u32 xmac_addr;
129 u32 xmac_val;
130 u32 emac_addr;
131 u32 emac_val;
132 u32 umac_addr;
133 u32 umac_val;
134 u32 bmac_addr;
135 u32 bmac_val[2];
136 };
137
138 enum bnx2x_board_type {
139 BCM57710 = 0,
140 BCM57711,
141 BCM57711E,
142 BCM57712,
143 BCM57712_MF,
144 BCM57712_VF,
145 BCM57800,
146 BCM57800_MF,
147 BCM57800_VF,
148 BCM57810,
149 BCM57810_MF,
150 BCM57810_VF,
151 BCM57840_4_10,
152 BCM57840_2_20,
153 BCM57840_MF,
154 BCM57840_VF,
155 BCM57811,
156 BCM57811_MF,
157 BCM57840_O,
158 BCM57840_MFO,
159 BCM57811_VF
160 };
161
162 /* indexed by board_type, above */
163 static struct {
164 char *name;
165 } board_info[] = {
166 [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
167 [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
168 [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
169 [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
170 [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
171 [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
172 [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
173 [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
174 [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
175 [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
176 [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
177 [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
178 [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
179 [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
180 [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
181 [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
182 [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
183 [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
184 [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
185 [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
186 [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
187 };
188
189 #ifndef PCI_DEVICE_ID_NX2_57710
190 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711
193 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57711E
196 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712
199 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_MF
202 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57712_VF
205 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800
208 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_MF
211 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57800_VF
214 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810
217 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57810_MF
220 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57840_O
223 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57810_VF
226 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
229 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
232 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
235 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_MF
238 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57840_VF
241 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811
244 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_MF
247 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
248 #endif
249 #ifndef PCI_DEVICE_ID_NX2_57811_VF
250 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
251 #endif
252
253 static const struct pci_device_id bnx2x_pci_tbl[] = {
254 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
275 { 0 }
276 };
277
278 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
279
280 /* Global resources for unloading a previously loaded device */
281 #define BNX2X_PREV_WAIT_NEEDED 1
282 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
283 static LIST_HEAD(bnx2x_prev_list);
284
285 /* Forward declaration */
286 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
287 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
288 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
289
290 /****************************************************************************
291 * General service functions
292 ****************************************************************************/
293
294 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
295
296 static void __storm_memset_dma_mapping(struct bnx2x *bp,
297 u32 addr, dma_addr_t mapping)
298 {
299 REG_WR(bp, addr, U64_LO(mapping));
300 REG_WR(bp, addr + 4, U64_HI(mapping));
301 }
302
303 static void storm_memset_spq_addr(struct bnx2x *bp,
304 dma_addr_t mapping, u16 abs_fid)
305 {
306 u32 addr = XSEM_REG_FAST_MEMORY +
307 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
308
309 __storm_memset_dma_mapping(bp, addr, mapping);
310 }
311
312 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
313 u16 pf_id)
314 {
315 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
316 pf_id);
317 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
318 pf_id);
319 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
320 pf_id);
321 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
322 pf_id);
323 }
324
325 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
326 u8 enable)
327 {
328 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
329 enable);
330 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
331 enable);
332 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
333 enable);
334 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
335 enable);
336 }
337
338 static void storm_memset_eq_data(struct bnx2x *bp,
339 struct event_ring_data *eq_data,
340 u16 pfid)
341 {
342 size_t size = sizeof(struct event_ring_data);
343
344 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
345
346 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
347 }
348
349 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
350 u16 pfid)
351 {
352 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
353 REG_WR16(bp, addr, eq_prod);
354 }
355
356 /* used only at init
357 * locking is done by mcp
358 */
359 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
360 {
361 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
362 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
363 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
364 PCICFG_VENDOR_ID_OFFSET);
365 }
366
367 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
368 {
369 u32 val;
370
371 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
372 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
373 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
374 PCICFG_VENDOR_ID_OFFSET);
375
376 return val;
377 }
378
379 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
380 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
381 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
382 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
383 #define DMAE_DP_DST_NONE "dst_addr [none]"
384
385 static void bnx2x_dp_dmae(struct bnx2x *bp,
386 struct dmae_command *dmae, int msglvl)
387 {
388 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
389 int i;
390
391 switch (dmae->opcode & DMAE_COMMAND_DST) {
392 case DMAE_CMD_DST_PCI:
393 if (src_type == DMAE_CMD_SRC_PCI)
394 DP(msglvl, "DMAE: opcode 0x%08x\n"
395 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
396 "comp_addr [%x:%08x], comp_val 0x%08x\n",
397 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
398 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
399 dmae->comp_addr_hi, dmae->comp_addr_lo,
400 dmae->comp_val);
401 else
402 DP(msglvl, "DMAE: opcode 0x%08x\n"
403 "src [%08x], len [%d*4], dst [%x:%08x]\n"
404 "comp_addr [%x:%08x], comp_val 0x%08x\n",
405 dmae->opcode, dmae->src_addr_lo >> 2,
406 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
407 dmae->comp_addr_hi, dmae->comp_addr_lo,
408 dmae->comp_val);
409 break;
410 case DMAE_CMD_DST_GRC:
411 if (src_type == DMAE_CMD_SRC_PCI)
412 DP(msglvl, "DMAE: opcode 0x%08x\n"
413 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
414 "comp_addr [%x:%08x], comp_val 0x%08x\n",
415 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
416 dmae->len, dmae->dst_addr_lo >> 2,
417 dmae->comp_addr_hi, dmae->comp_addr_lo,
418 dmae->comp_val);
419 else
420 DP(msglvl, "DMAE: opcode 0x%08x\n"
421 "src [%08x], len [%d*4], dst [%08x]\n"
422 "comp_addr [%x:%08x], comp_val 0x%08x\n",
423 dmae->opcode, dmae->src_addr_lo >> 2,
424 dmae->len, dmae->dst_addr_lo >> 2,
425 dmae->comp_addr_hi, dmae->comp_addr_lo,
426 dmae->comp_val);
427 break;
428 default:
429 if (src_type == DMAE_CMD_SRC_PCI)
430 DP(msglvl, "DMAE: opcode 0x%08x\n"
431 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
432 "comp_addr [%x:%08x] comp_val 0x%08x\n",
433 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
434 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
435 dmae->comp_val);
436 else
437 DP(msglvl, "DMAE: opcode 0x%08x\n"
438 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
439 "comp_addr [%x:%08x] comp_val 0x%08x\n",
440 dmae->opcode, dmae->src_addr_lo >> 2,
441 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
442 dmae->comp_val);
443 break;
444 }
445
446 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
447 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
448 i, *(((u32 *)dmae) + i));
449 }
450
451 /* copy command into DMAE command memory and set DMAE command go */
452 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
453 {
454 u32 cmd_offset;
455 int i;
456
457 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
458 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
459 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
460 }
461 REG_WR(bp, dmae_reg_go_c[idx], 1);
462 }
463
464 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
465 {
466 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
467 DMAE_CMD_C_ENABLE);
468 }
469
470 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
471 {
472 return opcode & ~DMAE_CMD_SRC_RESET;
473 }
474
475 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
476 bool with_comp, u8 comp_type)
477 {
478 u32 opcode = 0;
479
480 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
481 (dst_type << DMAE_COMMAND_DST_SHIFT));
482
483 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
484
485 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
486 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
487 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
488 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
489
490 #ifdef __BIG_ENDIAN
491 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
492 #else
493 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
494 #endif
495 if (with_comp)
496 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
497 return opcode;
498 }
499
500 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
501 struct dmae_command *dmae,
502 u8 src_type, u8 dst_type)
503 {
504 memset(dmae, 0, sizeof(struct dmae_command));
505
506 /* set the opcode */
507 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
508 true, DMAE_COMP_PCI);
509
510 /* fill in the completion parameters */
511 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
512 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
513 dmae->comp_val = DMAE_COMP_VAL;
514 }
515
516 /* issue a dmae command over the init-channel and wait for completion */
517 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
518 u32 *comp)
519 {
520 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
521 int rc = 0;
522
523 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
524
525 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
526 * as long as this code is called both from syscall context and
527 * from ndo_set_rx_mode() flow that may be called from BH.
528 */
529
530 spin_lock_bh(&bp->dmae_lock);
531
532 /* reset completion */
533 *comp = 0;
534
535 /* post the command on the channel used for initializations */
536 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
537
538 /* wait for completion */
539 udelay(5);
540 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
541
542 if (!cnt ||
543 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
544 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
545 BNX2X_ERR("DMAE timeout!\n");
546 rc = DMAE_TIMEOUT;
547 goto unlock;
548 }
549 cnt--;
550 udelay(50);
551 }
552 if (*comp & DMAE_PCI_ERR_FLAG) {
553 BNX2X_ERR("DMAE PCI error!\n");
554 rc = DMAE_PCI_ERROR;
555 }
556
557 unlock:
558
559 spin_unlock_bh(&bp->dmae_lock);
560
561 return rc;
562 }
563
564 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
565 u32 len32)
566 {
567 int rc;
568 struct dmae_command dmae;
569
570 if (!bp->dmae_ready) {
571 u32 *data = bnx2x_sp(bp, wb_data[0]);
572
573 if (CHIP_IS_E1(bp))
574 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
575 else
576 bnx2x_init_str_wr(bp, dst_addr, data, len32);
577 return;
578 }
579
580 /* set opcode and fixed command fields */
581 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
582
583 /* fill in addresses and len */
584 dmae.src_addr_lo = U64_LO(dma_addr);
585 dmae.src_addr_hi = U64_HI(dma_addr);
586 dmae.dst_addr_lo = dst_addr >> 2;
587 dmae.dst_addr_hi = 0;
588 dmae.len = len32;
589
590 /* issue the command and wait for completion */
591 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
592 if (rc) {
593 BNX2X_ERR("DMAE returned failure %d\n", rc);
594 #ifdef BNX2X_STOP_ON_ERROR
595 bnx2x_panic();
596 #endif
597 }
598 }
599
600 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
601 {
602 int rc;
603 struct dmae_command dmae;
604
605 if (!bp->dmae_ready) {
606 u32 *data = bnx2x_sp(bp, wb_data[0]);
607 int i;
608
609 if (CHIP_IS_E1(bp))
610 for (i = 0; i < len32; i++)
611 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
612 else
613 for (i = 0; i < len32; i++)
614 data[i] = REG_RD(bp, src_addr + i*4);
615
616 return;
617 }
618
619 /* set opcode and fixed command fields */
620 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
621
622 /* fill in addresses and len */
623 dmae.src_addr_lo = src_addr >> 2;
624 dmae.src_addr_hi = 0;
625 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
626 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
627 dmae.len = len32;
628
629 /* issue the command and wait for completion */
630 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
631 if (rc) {
632 BNX2X_ERR("DMAE returned failure %d\n", rc);
633 #ifdef BNX2X_STOP_ON_ERROR
634 bnx2x_panic();
635 #endif
636 }
637 }
638
639 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
640 u32 addr, u32 len)
641 {
642 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
643 int offset = 0;
644
645 while (len > dmae_wr_max) {
646 bnx2x_write_dmae(bp, phys_addr + offset,
647 addr + offset, dmae_wr_max);
648 offset += dmae_wr_max * 4;
649 len -= dmae_wr_max;
650 }
651
652 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
653 }
654
655 enum storms {
656 XSTORM,
657 TSTORM,
658 CSTORM,
659 USTORM,
660 MAX_STORMS
661 };
662
663 #define STORMS_NUM 4
664 #define REGS_IN_ENTRY 4
665
666 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
667 enum storms storm,
668 int entry)
669 {
670 switch (storm) {
671 case XSTORM:
672 return XSTORM_ASSERT_LIST_OFFSET(entry);
673 case TSTORM:
674 return TSTORM_ASSERT_LIST_OFFSET(entry);
675 case CSTORM:
676 return CSTORM_ASSERT_LIST_OFFSET(entry);
677 case USTORM:
678 return USTORM_ASSERT_LIST_OFFSET(entry);
679 case MAX_STORMS:
680 default:
681 BNX2X_ERR("unknown storm\n");
682 }
683 return -EINVAL;
684 }
685
686 static int bnx2x_mc_assert(struct bnx2x *bp)
687 {
688 char last_idx;
689 int i, j, rc = 0;
690 enum storms storm;
691 u32 regs[REGS_IN_ENTRY];
692 u32 bar_storm_intmem[STORMS_NUM] = {
693 BAR_XSTRORM_INTMEM,
694 BAR_TSTRORM_INTMEM,
695 BAR_CSTRORM_INTMEM,
696 BAR_USTRORM_INTMEM
697 };
698 u32 storm_assert_list_index[STORMS_NUM] = {
699 XSTORM_ASSERT_LIST_INDEX_OFFSET,
700 TSTORM_ASSERT_LIST_INDEX_OFFSET,
701 CSTORM_ASSERT_LIST_INDEX_OFFSET,
702 USTORM_ASSERT_LIST_INDEX_OFFSET
703 };
704 char *storms_string[STORMS_NUM] = {
705 "XSTORM",
706 "TSTORM",
707 "CSTORM",
708 "USTORM"
709 };
710
711 for (storm = XSTORM; storm < MAX_STORMS; storm++) {
712 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
713 storm_assert_list_index[storm]);
714 if (last_idx)
715 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
716 storms_string[storm], last_idx);
717
718 /* print the asserts */
719 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
720 /* read a single assert entry */
721 for (j = 0; j < REGS_IN_ENTRY; j++)
722 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
723 bnx2x_get_assert_list_entry(bp,
724 storm,
725 i) +
726 sizeof(u32) * j);
727
728 /* log entry if it contains a valid assert */
729 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
730 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
731 storms_string[storm], i, regs[3],
732 regs[2], regs[1], regs[0]);
733 rc++;
734 } else {
735 break;
736 }
737 }
738 }
739
740 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
741 CHIP_IS_E1(bp) ? "everest1" :
742 CHIP_IS_E1H(bp) ? "everest1h" :
743 CHIP_IS_E2(bp) ? "everest2" : "everest3",
744 BCM_5710_FW_MAJOR_VERSION,
745 BCM_5710_FW_MINOR_VERSION,
746 BCM_5710_FW_REVISION_VERSION);
747
748 return rc;
749 }
750
751 #define MCPR_TRACE_BUFFER_SIZE (0x800)
752 #define SCRATCH_BUFFER_SIZE(bp) \
753 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
754
755 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
756 {
757 u32 addr, val;
758 u32 mark, offset;
759 __be32 data[9];
760 int word;
761 u32 trace_shmem_base;
762 if (BP_NOMCP(bp)) {
763 BNX2X_ERR("NO MCP - can not dump\n");
764 return;
765 }
766 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
767 (bp->common.bc_ver & 0xff0000) >> 16,
768 (bp->common.bc_ver & 0xff00) >> 8,
769 (bp->common.bc_ver & 0xff));
770
771 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
772 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
773 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
774
775 if (BP_PATH(bp) == 0)
776 trace_shmem_base = bp->common.shmem_base;
777 else
778 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
779
780 /* sanity */
781 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
782 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
783 SCRATCH_BUFFER_SIZE(bp)) {
784 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
785 trace_shmem_base);
786 return;
787 }
788
789 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
790
791 /* validate TRCB signature */
792 mark = REG_RD(bp, addr);
793 if (mark != MFW_TRACE_SIGNATURE) {
794 BNX2X_ERR("Trace buffer signature is missing.");
795 return ;
796 }
797
798 /* read cyclic buffer pointer */
799 addr += 4;
800 mark = REG_RD(bp, addr);
801 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
802 if (mark >= trace_shmem_base || mark < addr + 4) {
803 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
804 return;
805 }
806 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
807
808 printk("%s", lvl);
809
810 /* dump buffer after the mark */
811 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
812 for (word = 0; word < 8; word++)
813 data[word] = htonl(REG_RD(bp, offset + 4*word));
814 data[8] = 0x0;
815 pr_cont("%s", (char *)data);
816 }
817
818 /* dump buffer before the mark */
819 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
820 for (word = 0; word < 8; word++)
821 data[word] = htonl(REG_RD(bp, offset + 4*word));
822 data[8] = 0x0;
823 pr_cont("%s", (char *)data);
824 }
825 printk("%s" "end of fw dump\n", lvl);
826 }
827
828 static void bnx2x_fw_dump(struct bnx2x *bp)
829 {
830 bnx2x_fw_dump_lvl(bp, KERN_ERR);
831 }
832
833 static void bnx2x_hc_int_disable(struct bnx2x *bp)
834 {
835 int port = BP_PORT(bp);
836 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
837 u32 val = REG_RD(bp, addr);
838
839 /* in E1 we must use only PCI configuration space to disable
840 * MSI/MSIX capability
841 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
842 */
843 if (CHIP_IS_E1(bp)) {
844 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
845 * Use mask register to prevent from HC sending interrupts
846 * after we exit the function
847 */
848 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
849
850 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
851 HC_CONFIG_0_REG_INT_LINE_EN_0 |
852 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
853 } else
854 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
855 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
856 HC_CONFIG_0_REG_INT_LINE_EN_0 |
857 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
858
859 DP(NETIF_MSG_IFDOWN,
860 "write %x to HC %d (addr 0x%x)\n",
861 val, port, addr);
862
863 /* flush all outstanding writes */
864 mmiowb();
865
866 REG_WR(bp, addr, val);
867 if (REG_RD(bp, addr) != val)
868 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
869 }
870
871 static void bnx2x_igu_int_disable(struct bnx2x *bp)
872 {
873 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
874
875 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
876 IGU_PF_CONF_INT_LINE_EN |
877 IGU_PF_CONF_ATTN_BIT_EN);
878
879 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
880
881 /* flush all outstanding writes */
882 mmiowb();
883
884 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
885 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
886 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
887 }
888
889 static void bnx2x_int_disable(struct bnx2x *bp)
890 {
891 if (bp->common.int_block == INT_BLOCK_HC)
892 bnx2x_hc_int_disable(bp);
893 else
894 bnx2x_igu_int_disable(bp);
895 }
896
897 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
898 {
899 int i;
900 u16 j;
901 struct hc_sp_status_block_data sp_sb_data;
902 int func = BP_FUNC(bp);
903 #ifdef BNX2X_STOP_ON_ERROR
904 u16 start = 0, end = 0;
905 u8 cos;
906 #endif
907 if (IS_PF(bp) && disable_int)
908 bnx2x_int_disable(bp);
909
910 bp->stats_state = STATS_STATE_DISABLED;
911 bp->eth_stats.unrecoverable_error++;
912 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
913
914 BNX2X_ERR("begin crash dump -----------------\n");
915
916 /* Indices */
917 /* Common */
918 if (IS_PF(bp)) {
919 struct host_sp_status_block *def_sb = bp->def_status_blk;
920 int data_size, cstorm_offset;
921
922 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
923 bp->def_idx, bp->def_att_idx, bp->attn_state,
924 bp->spq_prod_idx, bp->stats_counter);
925 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
926 def_sb->atten_status_block.attn_bits,
927 def_sb->atten_status_block.attn_bits_ack,
928 def_sb->atten_status_block.status_block_id,
929 def_sb->atten_status_block.attn_bits_index);
930 BNX2X_ERR(" def (");
931 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
932 pr_cont("0x%x%s",
933 def_sb->sp_sb.index_values[i],
934 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
935
936 data_size = sizeof(struct hc_sp_status_block_data) /
937 sizeof(u32);
938 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
939 for (i = 0; i < data_size; i++)
940 *((u32 *)&sp_sb_data + i) =
941 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
942 i * sizeof(u32));
943
944 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
945 sp_sb_data.igu_sb_id,
946 sp_sb_data.igu_seg_id,
947 sp_sb_data.p_func.pf_id,
948 sp_sb_data.p_func.vnic_id,
949 sp_sb_data.p_func.vf_id,
950 sp_sb_data.p_func.vf_valid,
951 sp_sb_data.state);
952 }
953
954 for_each_eth_queue(bp, i) {
955 struct bnx2x_fastpath *fp = &bp->fp[i];
956 int loop;
957 struct hc_status_block_data_e2 sb_data_e2;
958 struct hc_status_block_data_e1x sb_data_e1x;
959 struct hc_status_block_sm *hc_sm_p =
960 CHIP_IS_E1x(bp) ?
961 sb_data_e1x.common.state_machine :
962 sb_data_e2.common.state_machine;
963 struct hc_index_data *hc_index_p =
964 CHIP_IS_E1x(bp) ?
965 sb_data_e1x.index_data :
966 sb_data_e2.index_data;
967 u8 data_size, cos;
968 u32 *sb_data_p;
969 struct bnx2x_fp_txdata txdata;
970
971 if (!bp->fp)
972 break;
973
974 if (!fp->rx_cons_sb)
975 continue;
976
977 /* Rx */
978 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
979 i, fp->rx_bd_prod, fp->rx_bd_cons,
980 fp->rx_comp_prod,
981 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
982 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
983 fp->rx_sge_prod, fp->last_max_sge,
984 le16_to_cpu(fp->fp_hc_idx));
985
986 /* Tx */
987 for_each_cos_in_tx_queue(fp, cos)
988 {
989 if (!fp->txdata_ptr[cos])
990 break;
991
992 txdata = *fp->txdata_ptr[cos];
993
994 if (!txdata.tx_cons_sb)
995 continue;
996
997 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
998 i, txdata.tx_pkt_prod,
999 txdata.tx_pkt_cons, txdata.tx_bd_prod,
1000 txdata.tx_bd_cons,
1001 le16_to_cpu(*txdata.tx_cons_sb));
1002 }
1003
1004 loop = CHIP_IS_E1x(bp) ?
1005 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1006
1007 /* host sb data */
1008
1009 if (IS_FCOE_FP(fp))
1010 continue;
1011
1012 BNX2X_ERR(" run indexes (");
1013 for (j = 0; j < HC_SB_MAX_SM; j++)
1014 pr_cont("0x%x%s",
1015 fp->sb_running_index[j],
1016 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1017
1018 BNX2X_ERR(" indexes (");
1019 for (j = 0; j < loop; j++)
1020 pr_cont("0x%x%s",
1021 fp->sb_index_values[j],
1022 (j == loop - 1) ? ")" : " ");
1023
1024 /* VF cannot access FW refelection for status block */
1025 if (IS_VF(bp))
1026 continue;
1027
1028 /* fw sb data */
1029 data_size = CHIP_IS_E1x(bp) ?
1030 sizeof(struct hc_status_block_data_e1x) :
1031 sizeof(struct hc_status_block_data_e2);
1032 data_size /= sizeof(u32);
1033 sb_data_p = CHIP_IS_E1x(bp) ?
1034 (u32 *)&sb_data_e1x :
1035 (u32 *)&sb_data_e2;
1036 /* copy sb data in here */
1037 for (j = 0; j < data_size; j++)
1038 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1039 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1040 j * sizeof(u32));
1041
1042 if (!CHIP_IS_E1x(bp)) {
1043 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1044 sb_data_e2.common.p_func.pf_id,
1045 sb_data_e2.common.p_func.vf_id,
1046 sb_data_e2.common.p_func.vf_valid,
1047 sb_data_e2.common.p_func.vnic_id,
1048 sb_data_e2.common.same_igu_sb_1b,
1049 sb_data_e2.common.state);
1050 } else {
1051 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1052 sb_data_e1x.common.p_func.pf_id,
1053 sb_data_e1x.common.p_func.vf_id,
1054 sb_data_e1x.common.p_func.vf_valid,
1055 sb_data_e1x.common.p_func.vnic_id,
1056 sb_data_e1x.common.same_igu_sb_1b,
1057 sb_data_e1x.common.state);
1058 }
1059
1060 /* SB_SMs data */
1061 for (j = 0; j < HC_SB_MAX_SM; j++) {
1062 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1063 j, hc_sm_p[j].__flags,
1064 hc_sm_p[j].igu_sb_id,
1065 hc_sm_p[j].igu_seg_id,
1066 hc_sm_p[j].time_to_expire,
1067 hc_sm_p[j].timer_value);
1068 }
1069
1070 /* Indices data */
1071 for (j = 0; j < loop; j++) {
1072 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1073 hc_index_p[j].flags,
1074 hc_index_p[j].timeout);
1075 }
1076 }
1077
1078 #ifdef BNX2X_STOP_ON_ERROR
1079 if (IS_PF(bp)) {
1080 /* event queue */
1081 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1082 for (i = 0; i < NUM_EQ_DESC; i++) {
1083 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1084
1085 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1086 i, bp->eq_ring[i].message.opcode,
1087 bp->eq_ring[i].message.error);
1088 BNX2X_ERR("data: %x %x %x\n",
1089 data[0], data[1], data[2]);
1090 }
1091 }
1092
1093 /* Rings */
1094 /* Rx */
1095 for_each_valid_rx_queue(bp, i) {
1096 struct bnx2x_fastpath *fp = &bp->fp[i];
1097
1098 if (!bp->fp)
1099 break;
1100
1101 if (!fp->rx_cons_sb)
1102 continue;
1103
1104 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1105 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1106 for (j = start; j != end; j = RX_BD(j + 1)) {
1107 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1108 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1109
1110 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1111 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1112 }
1113
1114 start = RX_SGE(fp->rx_sge_prod);
1115 end = RX_SGE(fp->last_max_sge);
1116 for (j = start; j != end; j = RX_SGE(j + 1)) {
1117 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1118 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1119
1120 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1121 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1122 }
1123
1124 start = RCQ_BD(fp->rx_comp_cons - 10);
1125 end = RCQ_BD(fp->rx_comp_cons + 503);
1126 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1127 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1128
1129 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1130 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1131 }
1132 }
1133
1134 /* Tx */
1135 for_each_valid_tx_queue(bp, i) {
1136 struct bnx2x_fastpath *fp = &bp->fp[i];
1137
1138 if (!bp->fp)
1139 break;
1140
1141 for_each_cos_in_tx_queue(fp, cos) {
1142 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1143
1144 if (!fp->txdata_ptr[cos])
1145 break;
1146
1147 if (!txdata->tx_cons_sb)
1148 continue;
1149
1150 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1151 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1152 for (j = start; j != end; j = TX_BD(j + 1)) {
1153 struct sw_tx_bd *sw_bd =
1154 &txdata->tx_buf_ring[j];
1155
1156 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1157 i, cos, j, sw_bd->skb,
1158 sw_bd->first_bd);
1159 }
1160
1161 start = TX_BD(txdata->tx_bd_cons - 10);
1162 end = TX_BD(txdata->tx_bd_cons + 254);
1163 for (j = start; j != end; j = TX_BD(j + 1)) {
1164 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1165
1166 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1167 i, cos, j, tx_bd[0], tx_bd[1],
1168 tx_bd[2], tx_bd[3]);
1169 }
1170 }
1171 }
1172 #endif
1173 if (IS_PF(bp)) {
1174 bnx2x_fw_dump(bp);
1175 bnx2x_mc_assert(bp);
1176 }
1177 BNX2X_ERR("end crash dump -----------------\n");
1178 }
1179
1180 /*
1181 * FLR Support for E2
1182 *
1183 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1184 * initialization.
1185 */
1186 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1187 #define FLR_WAIT_INTERVAL 50 /* usec */
1188 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1189
1190 struct pbf_pN_buf_regs {
1191 int pN;
1192 u32 init_crd;
1193 u32 crd;
1194 u32 crd_freed;
1195 };
1196
1197 struct pbf_pN_cmd_regs {
1198 int pN;
1199 u32 lines_occup;
1200 u32 lines_freed;
1201 };
1202
1203 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1204 struct pbf_pN_buf_regs *regs,
1205 u32 poll_count)
1206 {
1207 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1208 u32 cur_cnt = poll_count;
1209
1210 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1211 crd = crd_start = REG_RD(bp, regs->crd);
1212 init_crd = REG_RD(bp, regs->init_crd);
1213
1214 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1215 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1216 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1217
1218 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1219 (init_crd - crd_start))) {
1220 if (cur_cnt--) {
1221 udelay(FLR_WAIT_INTERVAL);
1222 crd = REG_RD(bp, regs->crd);
1223 crd_freed = REG_RD(bp, regs->crd_freed);
1224 } else {
1225 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1226 regs->pN);
1227 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1228 regs->pN, crd);
1229 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1230 regs->pN, crd_freed);
1231 break;
1232 }
1233 }
1234 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1235 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1236 }
1237
1238 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1239 struct pbf_pN_cmd_regs *regs,
1240 u32 poll_count)
1241 {
1242 u32 occup, to_free, freed, freed_start;
1243 u32 cur_cnt = poll_count;
1244
1245 occup = to_free = REG_RD(bp, regs->lines_occup);
1246 freed = freed_start = REG_RD(bp, regs->lines_freed);
1247
1248 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1249 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1250
1251 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1252 if (cur_cnt--) {
1253 udelay(FLR_WAIT_INTERVAL);
1254 occup = REG_RD(bp, regs->lines_occup);
1255 freed = REG_RD(bp, regs->lines_freed);
1256 } else {
1257 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1258 regs->pN);
1259 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1260 regs->pN, occup);
1261 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1262 regs->pN, freed);
1263 break;
1264 }
1265 }
1266 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1267 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1268 }
1269
1270 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1271 u32 expected, u32 poll_count)
1272 {
1273 u32 cur_cnt = poll_count;
1274 u32 val;
1275
1276 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1277 udelay(FLR_WAIT_INTERVAL);
1278
1279 return val;
1280 }
1281
1282 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1283 char *msg, u32 poll_cnt)
1284 {
1285 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1286 if (val != 0) {
1287 BNX2X_ERR("%s usage count=%d\n", msg, val);
1288 return 1;
1289 }
1290 return 0;
1291 }
1292
1293 /* Common routines with VF FLR cleanup */
1294 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1295 {
1296 /* adjust polling timeout */
1297 if (CHIP_REV_IS_EMUL(bp))
1298 return FLR_POLL_CNT * 2000;
1299
1300 if (CHIP_REV_IS_FPGA(bp))
1301 return FLR_POLL_CNT * 120;
1302
1303 return FLR_POLL_CNT;
1304 }
1305
1306 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1307 {
1308 struct pbf_pN_cmd_regs cmd_regs[] = {
1309 {0, (CHIP_IS_E3B0(bp)) ?
1310 PBF_REG_TQ_OCCUPANCY_Q0 :
1311 PBF_REG_P0_TQ_OCCUPANCY,
1312 (CHIP_IS_E3B0(bp)) ?
1313 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1314 PBF_REG_P0_TQ_LINES_FREED_CNT},
1315 {1, (CHIP_IS_E3B0(bp)) ?
1316 PBF_REG_TQ_OCCUPANCY_Q1 :
1317 PBF_REG_P1_TQ_OCCUPANCY,
1318 (CHIP_IS_E3B0(bp)) ?
1319 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1320 PBF_REG_P1_TQ_LINES_FREED_CNT},
1321 {4, (CHIP_IS_E3B0(bp)) ?
1322 PBF_REG_TQ_OCCUPANCY_LB_Q :
1323 PBF_REG_P4_TQ_OCCUPANCY,
1324 (CHIP_IS_E3B0(bp)) ?
1325 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1326 PBF_REG_P4_TQ_LINES_FREED_CNT}
1327 };
1328
1329 struct pbf_pN_buf_regs buf_regs[] = {
1330 {0, (CHIP_IS_E3B0(bp)) ?
1331 PBF_REG_INIT_CRD_Q0 :
1332 PBF_REG_P0_INIT_CRD ,
1333 (CHIP_IS_E3B0(bp)) ?
1334 PBF_REG_CREDIT_Q0 :
1335 PBF_REG_P0_CREDIT,
1336 (CHIP_IS_E3B0(bp)) ?
1337 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1338 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1339 {1, (CHIP_IS_E3B0(bp)) ?
1340 PBF_REG_INIT_CRD_Q1 :
1341 PBF_REG_P1_INIT_CRD,
1342 (CHIP_IS_E3B0(bp)) ?
1343 PBF_REG_CREDIT_Q1 :
1344 PBF_REG_P1_CREDIT,
1345 (CHIP_IS_E3B0(bp)) ?
1346 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1347 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1348 {4, (CHIP_IS_E3B0(bp)) ?
1349 PBF_REG_INIT_CRD_LB_Q :
1350 PBF_REG_P4_INIT_CRD,
1351 (CHIP_IS_E3B0(bp)) ?
1352 PBF_REG_CREDIT_LB_Q :
1353 PBF_REG_P4_CREDIT,
1354 (CHIP_IS_E3B0(bp)) ?
1355 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1356 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1357 };
1358
1359 int i;
1360
1361 /* Verify the command queues are flushed P0, P1, P4 */
1362 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1363 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1364
1365 /* Verify the transmission buffers are flushed P0, P1, P4 */
1366 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1367 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1368 }
1369
1370 #define OP_GEN_PARAM(param) \
1371 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1372
1373 #define OP_GEN_TYPE(type) \
1374 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1375
1376 #define OP_GEN_AGG_VECT(index) \
1377 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1378
1379 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1380 {
1381 u32 op_gen_command = 0;
1382 u32 comp_addr = BAR_CSTRORM_INTMEM +
1383 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1384 int ret = 0;
1385
1386 if (REG_RD(bp, comp_addr)) {
1387 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1388 return 1;
1389 }
1390
1391 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1392 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1393 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1394 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1395
1396 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1397 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1398
1399 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1400 BNX2X_ERR("FW final cleanup did not succeed\n");
1401 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1402 (REG_RD(bp, comp_addr)));
1403 bnx2x_panic();
1404 return 1;
1405 }
1406 /* Zero completion for next FLR */
1407 REG_WR(bp, comp_addr, 0);
1408
1409 return ret;
1410 }
1411
1412 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1413 {
1414 u16 status;
1415
1416 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1417 return status & PCI_EXP_DEVSTA_TRPND;
1418 }
1419
1420 /* PF FLR specific routines
1421 */
1422 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1423 {
1424 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1425 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1426 CFC_REG_NUM_LCIDS_INSIDE_PF,
1427 "CFC PF usage counter timed out",
1428 poll_cnt))
1429 return 1;
1430
1431 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1432 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433 DORQ_REG_PF_USAGE_CNT,
1434 "DQ PF usage counter timed out",
1435 poll_cnt))
1436 return 1;
1437
1438 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1439 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1440 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1441 "QM PF usage counter timed out",
1442 poll_cnt))
1443 return 1;
1444
1445 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1446 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1447 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1448 "Timers VNIC usage counter timed out",
1449 poll_cnt))
1450 return 1;
1451 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1452 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1453 "Timers NUM_SCANS usage counter timed out",
1454 poll_cnt))
1455 return 1;
1456
1457 /* Wait DMAE PF usage counter to zero */
1458 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1459 dmae_reg_go_c[INIT_DMAE_C(bp)],
1460 "DMAE command register timed out",
1461 poll_cnt))
1462 return 1;
1463
1464 return 0;
1465 }
1466
1467 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1468 {
1469 u32 val;
1470
1471 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1472 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1473
1474 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1475 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1476
1477 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1478 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1479
1480 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1481 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1482
1483 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1484 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1485
1486 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1487 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1488
1489 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1490 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1491
1492 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1493 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1494 val);
1495 }
1496
1497 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1498 {
1499 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1500
1501 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1502
1503 /* Re-enable PF target read access */
1504 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1505
1506 /* Poll HW usage counters */
1507 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1508 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1509 return -EBUSY;
1510
1511 /* Zero the igu 'trailing edge' and 'leading edge' */
1512
1513 /* Send the FW cleanup command */
1514 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1515 return -EBUSY;
1516
1517 /* ATC cleanup */
1518
1519 /* Verify TX hw is flushed */
1520 bnx2x_tx_hw_flushed(bp, poll_cnt);
1521
1522 /* Wait 100ms (not adjusted according to platform) */
1523 msleep(100);
1524
1525 /* Verify no pending pci transactions */
1526 if (bnx2x_is_pcie_pending(bp->pdev))
1527 BNX2X_ERR("PCIE Transactions still pending\n");
1528
1529 /* Debug */
1530 bnx2x_hw_enable_status(bp);
1531
1532 /*
1533 * Master enable - Due to WB DMAE writes performed before this
1534 * register is re-initialized as part of the regular function init
1535 */
1536 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1537
1538 return 0;
1539 }
1540
1541 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1542 {
1543 int port = BP_PORT(bp);
1544 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1545 u32 val = REG_RD(bp, addr);
1546 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1547 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1548 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1549
1550 if (msix) {
1551 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1552 HC_CONFIG_0_REG_INT_LINE_EN_0);
1553 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1554 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1555 if (single_msix)
1556 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1557 } else if (msi) {
1558 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1559 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1560 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1561 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1562 } else {
1563 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1564 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1565 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1566 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1567
1568 if (!CHIP_IS_E1(bp)) {
1569 DP(NETIF_MSG_IFUP,
1570 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1571
1572 REG_WR(bp, addr, val);
1573
1574 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1575 }
1576 }
1577
1578 if (CHIP_IS_E1(bp))
1579 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1580
1581 DP(NETIF_MSG_IFUP,
1582 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1583 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1584
1585 REG_WR(bp, addr, val);
1586 /*
1587 * Ensure that HC_CONFIG is written before leading/trailing edge config
1588 */
1589 mmiowb();
1590 barrier();
1591
1592 if (!CHIP_IS_E1(bp)) {
1593 /* init leading/trailing edge */
1594 if (IS_MF(bp)) {
1595 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1596 if (bp->port.pmf)
1597 /* enable nig and gpio3 attention */
1598 val |= 0x1100;
1599 } else
1600 val = 0xffff;
1601
1602 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1603 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1604 }
1605
1606 /* Make sure that interrupts are indeed enabled from here on */
1607 mmiowb();
1608 }
1609
1610 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1611 {
1612 u32 val;
1613 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1614 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1615 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1616
1617 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1618
1619 if (msix) {
1620 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1621 IGU_PF_CONF_SINGLE_ISR_EN);
1622 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1623 IGU_PF_CONF_ATTN_BIT_EN);
1624
1625 if (single_msix)
1626 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1627 } else if (msi) {
1628 val &= ~IGU_PF_CONF_INT_LINE_EN;
1629 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1630 IGU_PF_CONF_ATTN_BIT_EN |
1631 IGU_PF_CONF_SINGLE_ISR_EN);
1632 } else {
1633 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1634 val |= (IGU_PF_CONF_INT_LINE_EN |
1635 IGU_PF_CONF_ATTN_BIT_EN |
1636 IGU_PF_CONF_SINGLE_ISR_EN);
1637 }
1638
1639 /* Clean previous status - need to configure igu prior to ack*/
1640 if ((!msix) || single_msix) {
1641 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1642 bnx2x_ack_int(bp);
1643 }
1644
1645 val |= IGU_PF_CONF_FUNC_EN;
1646
1647 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1648 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1649
1650 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651
1652 if (val & IGU_PF_CONF_INT_LINE_EN)
1653 pci_intx(bp->pdev, true);
1654
1655 barrier();
1656
1657 /* init leading/trailing edge */
1658 if (IS_MF(bp)) {
1659 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1660 if (bp->port.pmf)
1661 /* enable nig and gpio3 attention */
1662 val |= 0x1100;
1663 } else
1664 val = 0xffff;
1665
1666 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1667 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1668
1669 /* Make sure that interrupts are indeed enabled from here on */
1670 mmiowb();
1671 }
1672
1673 void bnx2x_int_enable(struct bnx2x *bp)
1674 {
1675 if (bp->common.int_block == INT_BLOCK_HC)
1676 bnx2x_hc_int_enable(bp);
1677 else
1678 bnx2x_igu_int_enable(bp);
1679 }
1680
1681 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1682 {
1683 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1684 int i, offset;
1685
1686 if (disable_hw)
1687 /* prevent the HW from sending interrupts */
1688 bnx2x_int_disable(bp);
1689
1690 /* make sure all ISRs are done */
1691 if (msix) {
1692 synchronize_irq(bp->msix_table[0].vector);
1693 offset = 1;
1694 if (CNIC_SUPPORT(bp))
1695 offset++;
1696 for_each_eth_queue(bp, i)
1697 synchronize_irq(bp->msix_table[offset++].vector);
1698 } else
1699 synchronize_irq(bp->pdev->irq);
1700
1701 /* make sure sp_task is not running */
1702 cancel_delayed_work(&bp->sp_task);
1703 cancel_delayed_work(&bp->period_task);
1704 flush_workqueue(bnx2x_wq);
1705 }
1706
1707 /* fast path */
1708
1709 /*
1710 * General service functions
1711 */
1712
1713 /* Return true if succeeded to acquire the lock */
1714 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1715 {
1716 u32 lock_status;
1717 u32 resource_bit = (1 << resource);
1718 int func = BP_FUNC(bp);
1719 u32 hw_lock_control_reg;
1720
1721 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1722 "Trying to take a lock on resource %d\n", resource);
1723
1724 /* Validating that the resource is within range */
1725 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1726 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1727 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1728 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1729 return false;
1730 }
1731
1732 if (func <= 5)
1733 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1734 else
1735 hw_lock_control_reg =
1736 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1737
1738 /* Try to acquire the lock */
1739 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1740 lock_status = REG_RD(bp, hw_lock_control_reg);
1741 if (lock_status & resource_bit)
1742 return true;
1743
1744 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1745 "Failed to get a lock on resource %d\n", resource);
1746 return false;
1747 }
1748
1749 /**
1750 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1751 *
1752 * @bp: driver handle
1753 *
1754 * Returns the recovery leader resource id according to the engine this function
1755 * belongs to. Currently only only 2 engines is supported.
1756 */
1757 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1758 {
1759 if (BP_PATH(bp))
1760 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1761 else
1762 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1763 }
1764
1765 /**
1766 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1767 *
1768 * @bp: driver handle
1769 *
1770 * Tries to acquire a leader lock for current engine.
1771 */
1772 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1773 {
1774 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1775 }
1776
1777 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1778
1779 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1780 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1781 {
1782 /* Set the interrupt occurred bit for the sp-task to recognize it
1783 * must ack the interrupt and transition according to the IGU
1784 * state machine.
1785 */
1786 atomic_set(&bp->interrupt_occurred, 1);
1787
1788 /* The sp_task must execute only after this bit
1789 * is set, otherwise we will get out of sync and miss all
1790 * further interrupts. Hence, the barrier.
1791 */
1792 smp_wmb();
1793
1794 /* schedule sp_task to workqueue */
1795 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1796 }
1797
1798 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1799 {
1800 struct bnx2x *bp = fp->bp;
1801 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1802 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1803 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1804 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1805
1806 DP(BNX2X_MSG_SP,
1807 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1808 fp->index, cid, command, bp->state,
1809 rr_cqe->ramrod_cqe.ramrod_type);
1810
1811 /* If cid is within VF range, replace the slowpath object with the
1812 * one corresponding to this VF
1813 */
1814 if (cid >= BNX2X_FIRST_VF_CID &&
1815 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1816 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1817
1818 switch (command) {
1819 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1820 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1821 drv_cmd = BNX2X_Q_CMD_UPDATE;
1822 break;
1823
1824 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1825 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1826 drv_cmd = BNX2X_Q_CMD_SETUP;
1827 break;
1828
1829 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1830 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1831 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1832 break;
1833
1834 case (RAMROD_CMD_ID_ETH_HALT):
1835 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1836 drv_cmd = BNX2X_Q_CMD_HALT;
1837 break;
1838
1839 case (RAMROD_CMD_ID_ETH_TERMINATE):
1840 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1841 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1842 break;
1843
1844 case (RAMROD_CMD_ID_ETH_EMPTY):
1845 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1846 drv_cmd = BNX2X_Q_CMD_EMPTY;
1847 break;
1848
1849 case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1850 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1851 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1852 break;
1853
1854 default:
1855 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1856 command, fp->index);
1857 return;
1858 }
1859
1860 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1861 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1862 /* q_obj->complete_cmd() failure means that this was
1863 * an unexpected completion.
1864 *
1865 * In this case we don't want to increase the bp->spq_left
1866 * because apparently we haven't sent this command the first
1867 * place.
1868 */
1869 #ifdef BNX2X_STOP_ON_ERROR
1870 bnx2x_panic();
1871 #else
1872 return;
1873 #endif
1874
1875 smp_mb__before_atomic();
1876 atomic_inc(&bp->cq_spq_left);
1877 /* push the change in bp->spq_left and towards the memory */
1878 smp_mb__after_atomic();
1879
1880 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1881
1882 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1883 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1884 /* if Q update ramrod is completed for last Q in AFEX vif set
1885 * flow, then ACK MCP at the end
1886 *
1887 * mark pending ACK to MCP bit.
1888 * prevent case that both bits are cleared.
1889 * At the end of load/unload driver checks that
1890 * sp_state is cleared, and this order prevents
1891 * races
1892 */
1893 smp_mb__before_atomic();
1894 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1895 wmb();
1896 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1897 smp_mb__after_atomic();
1898
1899 /* schedule the sp task as mcp ack is required */
1900 bnx2x_schedule_sp_task(bp);
1901 }
1902
1903 return;
1904 }
1905
1906 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1907 {
1908 struct bnx2x *bp = netdev_priv(dev_instance);
1909 u16 status = bnx2x_ack_int(bp);
1910 u16 mask;
1911 int i;
1912 u8 cos;
1913
1914 /* Return here if interrupt is shared and it's not for us */
1915 if (unlikely(status == 0)) {
1916 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1917 return IRQ_NONE;
1918 }
1919 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1920
1921 #ifdef BNX2X_STOP_ON_ERROR
1922 if (unlikely(bp->panic))
1923 return IRQ_HANDLED;
1924 #endif
1925
1926 for_each_eth_queue(bp, i) {
1927 struct bnx2x_fastpath *fp = &bp->fp[i];
1928
1929 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1930 if (status & mask) {
1931 /* Handle Rx or Tx according to SB id */
1932 for_each_cos_in_tx_queue(fp, cos)
1933 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1934 prefetch(&fp->sb_running_index[SM_RX_ID]);
1935 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1936 status &= ~mask;
1937 }
1938 }
1939
1940 if (CNIC_SUPPORT(bp)) {
1941 mask = 0x2;
1942 if (status & (mask | 0x1)) {
1943 struct cnic_ops *c_ops = NULL;
1944
1945 rcu_read_lock();
1946 c_ops = rcu_dereference(bp->cnic_ops);
1947 if (c_ops && (bp->cnic_eth_dev.drv_state &
1948 CNIC_DRV_STATE_HANDLES_IRQ))
1949 c_ops->cnic_handler(bp->cnic_data, NULL);
1950 rcu_read_unlock();
1951
1952 status &= ~mask;
1953 }
1954 }
1955
1956 if (unlikely(status & 0x1)) {
1957
1958 /* schedule sp task to perform default status block work, ack
1959 * attentions and enable interrupts.
1960 */
1961 bnx2x_schedule_sp_task(bp);
1962
1963 status &= ~0x1;
1964 if (!status)
1965 return IRQ_HANDLED;
1966 }
1967
1968 if (unlikely(status))
1969 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1970 status);
1971
1972 return IRQ_HANDLED;
1973 }
1974
1975 /* Link */
1976
1977 /*
1978 * General service functions
1979 */
1980
1981 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1982 {
1983 u32 lock_status;
1984 u32 resource_bit = (1 << resource);
1985 int func = BP_FUNC(bp);
1986 u32 hw_lock_control_reg;
1987 int cnt;
1988
1989 /* Validating that the resource is within range */
1990 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1991 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1992 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1993 return -EINVAL;
1994 }
1995
1996 if (func <= 5) {
1997 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1998 } else {
1999 hw_lock_control_reg =
2000 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2001 }
2002
2003 /* Validating that the resource is not already taken */
2004 lock_status = REG_RD(bp, hw_lock_control_reg);
2005 if (lock_status & resource_bit) {
2006 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
2007 lock_status, resource_bit);
2008 return -EEXIST;
2009 }
2010
2011 /* Try for 5 second every 5ms */
2012 for (cnt = 0; cnt < 1000; cnt++) {
2013 /* Try to acquire the lock */
2014 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2015 lock_status = REG_RD(bp, hw_lock_control_reg);
2016 if (lock_status & resource_bit)
2017 return 0;
2018
2019 usleep_range(5000, 10000);
2020 }
2021 BNX2X_ERR("Timeout\n");
2022 return -EAGAIN;
2023 }
2024
2025 int bnx2x_release_leader_lock(struct bnx2x *bp)
2026 {
2027 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2028 }
2029
2030 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2031 {
2032 u32 lock_status;
2033 u32 resource_bit = (1 << resource);
2034 int func = BP_FUNC(bp);
2035 u32 hw_lock_control_reg;
2036
2037 /* Validating that the resource is within range */
2038 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2039 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2040 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2041 return -EINVAL;
2042 }
2043
2044 if (func <= 5) {
2045 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2046 } else {
2047 hw_lock_control_reg =
2048 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2049 }
2050
2051 /* Validating that the resource is currently taken */
2052 lock_status = REG_RD(bp, hw_lock_control_reg);
2053 if (!(lock_status & resource_bit)) {
2054 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2055 lock_status, resource_bit);
2056 return -EFAULT;
2057 }
2058
2059 REG_WR(bp, hw_lock_control_reg, resource_bit);
2060 return 0;
2061 }
2062
2063 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2064 {
2065 /* The GPIO should be swapped if swap register is set and active */
2066 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2067 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2068 int gpio_shift = gpio_num +
2069 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2070 u32 gpio_mask = (1 << gpio_shift);
2071 u32 gpio_reg;
2072 int value;
2073
2074 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2075 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2076 return -EINVAL;
2077 }
2078
2079 /* read GPIO value */
2080 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2081
2082 /* get the requested pin value */
2083 if ((gpio_reg & gpio_mask) == gpio_mask)
2084 value = 1;
2085 else
2086 value = 0;
2087
2088 return value;
2089 }
2090
2091 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2092 {
2093 /* The GPIO should be swapped if swap register is set and active */
2094 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2095 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2096 int gpio_shift = gpio_num +
2097 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2098 u32 gpio_mask = (1 << gpio_shift);
2099 u32 gpio_reg;
2100
2101 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2102 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2103 return -EINVAL;
2104 }
2105
2106 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2107 /* read GPIO and mask except the float bits */
2108 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2109
2110 switch (mode) {
2111 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2112 DP(NETIF_MSG_LINK,
2113 "Set GPIO %d (shift %d) -> output low\n",
2114 gpio_num, gpio_shift);
2115 /* clear FLOAT and set CLR */
2116 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2117 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2118 break;
2119
2120 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2121 DP(NETIF_MSG_LINK,
2122 "Set GPIO %d (shift %d) -> output high\n",
2123 gpio_num, gpio_shift);
2124 /* clear FLOAT and set SET */
2125 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2127 break;
2128
2129 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2130 DP(NETIF_MSG_LINK,
2131 "Set GPIO %d (shift %d) -> input\n",
2132 gpio_num, gpio_shift);
2133 /* set FLOAT */
2134 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135 break;
2136
2137 default:
2138 break;
2139 }
2140
2141 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2142 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2143
2144 return 0;
2145 }
2146
2147 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2148 {
2149 u32 gpio_reg = 0;
2150 int rc = 0;
2151
2152 /* Any port swapping should be handled by caller. */
2153
2154 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2155 /* read GPIO and mask except the float bits */
2156 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2157 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2158 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2159 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2160
2161 switch (mode) {
2162 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2163 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2164 /* set CLR */
2165 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2166 break;
2167
2168 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2169 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2170 /* set SET */
2171 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2172 break;
2173
2174 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2175 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2176 /* set FLOAT */
2177 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2178 break;
2179
2180 default:
2181 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2182 rc = -EINVAL;
2183 break;
2184 }
2185
2186 if (rc == 0)
2187 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2188
2189 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2190
2191 return rc;
2192 }
2193
2194 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2195 {
2196 /* The GPIO should be swapped if swap register is set and active */
2197 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2198 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2199 int gpio_shift = gpio_num +
2200 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2201 u32 gpio_mask = (1 << gpio_shift);
2202 u32 gpio_reg;
2203
2204 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2205 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2206 return -EINVAL;
2207 }
2208
2209 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2210 /* read GPIO int */
2211 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2212
2213 switch (mode) {
2214 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2215 DP(NETIF_MSG_LINK,
2216 "Clear GPIO INT %d (shift %d) -> output low\n",
2217 gpio_num, gpio_shift);
2218 /* clear SET and set CLR */
2219 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2220 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2221 break;
2222
2223 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2224 DP(NETIF_MSG_LINK,
2225 "Set GPIO INT %d (shift %d) -> output high\n",
2226 gpio_num, gpio_shift);
2227 /* clear CLR and set SET */
2228 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2229 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2230 break;
2231
2232 default:
2233 break;
2234 }
2235
2236 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2237 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2238
2239 return 0;
2240 }
2241
2242 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2243 {
2244 u32 spio_reg;
2245
2246 /* Only 2 SPIOs are configurable */
2247 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2248 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2249 return -EINVAL;
2250 }
2251
2252 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2253 /* read SPIO and mask except the float bits */
2254 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2255
2256 switch (mode) {
2257 case MISC_SPIO_OUTPUT_LOW:
2258 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2259 /* clear FLOAT and set CLR */
2260 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2261 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2262 break;
2263
2264 case MISC_SPIO_OUTPUT_HIGH:
2265 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2266 /* clear FLOAT and set SET */
2267 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2268 spio_reg |= (spio << MISC_SPIO_SET_POS);
2269 break;
2270
2271 case MISC_SPIO_INPUT_HI_Z:
2272 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2273 /* set FLOAT */
2274 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2275 break;
2276
2277 default:
2278 break;
2279 }
2280
2281 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2282 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2283
2284 return 0;
2285 }
2286
2287 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2288 {
2289 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2290 switch (bp->link_vars.ieee_fc &
2291 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2292 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2293 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2294 ADVERTISED_Pause);
2295 break;
2296
2297 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2298 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2299 ADVERTISED_Pause);
2300 break;
2301
2302 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2303 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2304 break;
2305
2306 default:
2307 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2308 ADVERTISED_Pause);
2309 break;
2310 }
2311 }
2312
2313 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2314 {
2315 /* Initialize link parameters structure variables
2316 * It is recommended to turn off RX FC for jumbo frames
2317 * for better performance
2318 */
2319 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2320 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2321 else
2322 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2323 }
2324
2325 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2326 {
2327 u32 pause_enabled = 0;
2328
2329 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2330 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2331 pause_enabled = 1;
2332
2333 REG_WR(bp, BAR_USTRORM_INTMEM +
2334 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2335 pause_enabled);
2336 }
2337
2338 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2339 pause_enabled ? "enabled" : "disabled");
2340 }
2341
2342 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2343 {
2344 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2345 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2346
2347 if (!BP_NOMCP(bp)) {
2348 bnx2x_set_requested_fc(bp);
2349 bnx2x_acquire_phy_lock(bp);
2350
2351 if (load_mode == LOAD_DIAG) {
2352 struct link_params *lp = &bp->link_params;
2353 lp->loopback_mode = LOOPBACK_XGXS;
2354 /* do PHY loopback at 10G speed, if possible */
2355 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2356 if (lp->speed_cap_mask[cfx_idx] &
2357 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2358 lp->req_line_speed[cfx_idx] =
2359 SPEED_10000;
2360 else
2361 lp->req_line_speed[cfx_idx] =
2362 SPEED_1000;
2363 }
2364 }
2365
2366 if (load_mode == LOAD_LOOPBACK_EXT) {
2367 struct link_params *lp = &bp->link_params;
2368 lp->loopback_mode = LOOPBACK_EXT;
2369 }
2370
2371 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2372
2373 bnx2x_release_phy_lock(bp);
2374
2375 bnx2x_init_dropless_fc(bp);
2376
2377 bnx2x_calc_fc_adv(bp);
2378
2379 if (bp->link_vars.link_up) {
2380 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2381 bnx2x_link_report(bp);
2382 }
2383 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2384 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2385 return rc;
2386 }
2387 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2388 return -EINVAL;
2389 }
2390
2391 void bnx2x_link_set(struct bnx2x *bp)
2392 {
2393 if (!BP_NOMCP(bp)) {
2394 bnx2x_acquire_phy_lock(bp);
2395 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2396 bnx2x_release_phy_lock(bp);
2397
2398 bnx2x_init_dropless_fc(bp);
2399
2400 bnx2x_calc_fc_adv(bp);
2401 } else
2402 BNX2X_ERR("Bootcode is missing - can not set link\n");
2403 }
2404
2405 static void bnx2x__link_reset(struct bnx2x *bp)
2406 {
2407 if (!BP_NOMCP(bp)) {
2408 bnx2x_acquire_phy_lock(bp);
2409 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2410 bnx2x_release_phy_lock(bp);
2411 } else
2412 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2413 }
2414
2415 void bnx2x_force_link_reset(struct bnx2x *bp)
2416 {
2417 bnx2x_acquire_phy_lock(bp);
2418 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2419 bnx2x_release_phy_lock(bp);
2420 }
2421
2422 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2423 {
2424 u8 rc = 0;
2425
2426 if (!BP_NOMCP(bp)) {
2427 bnx2x_acquire_phy_lock(bp);
2428 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2429 is_serdes);
2430 bnx2x_release_phy_lock(bp);
2431 } else
2432 BNX2X_ERR("Bootcode is missing - can not test link\n");
2433
2434 return rc;
2435 }
2436
2437 /* Calculates the sum of vn_min_rates.
2438 It's needed for further normalizing of the min_rates.
2439 Returns:
2440 sum of vn_min_rates.
2441 or
2442 0 - if all the min_rates are 0.
2443 In the later case fairness algorithm should be deactivated.
2444 If not all min_rates are zero then those that are zeroes will be set to 1.
2445 */
2446 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2447 struct cmng_init_input *input)
2448 {
2449 int all_zero = 1;
2450 int vn;
2451
2452 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2453 u32 vn_cfg = bp->mf_config[vn];
2454 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2455 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2456
2457 /* Skip hidden vns */
2458 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2459 vn_min_rate = 0;
2460 /* If min rate is zero - set it to 1 */
2461 else if (!vn_min_rate)
2462 vn_min_rate = DEF_MIN_RATE;
2463 else
2464 all_zero = 0;
2465
2466 input->vnic_min_rate[vn] = vn_min_rate;
2467 }
2468
2469 /* if ETS or all min rates are zeros - disable fairness */
2470 if (BNX2X_IS_ETS_ENABLED(bp)) {
2471 input->flags.cmng_enables &=
2472 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2473 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2474 } else if (all_zero) {
2475 input->flags.cmng_enables &=
2476 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2477 DP(NETIF_MSG_IFUP,
2478 "All MIN values are zeroes fairness will be disabled\n");
2479 } else
2480 input->flags.cmng_enables |=
2481 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482 }
2483
2484 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2485 struct cmng_init_input *input)
2486 {
2487 u16 vn_max_rate;
2488 u32 vn_cfg = bp->mf_config[vn];
2489
2490 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2491 vn_max_rate = 0;
2492 else {
2493 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2494
2495 if (IS_MF_SI(bp)) {
2496 /* maxCfg in percents of linkspeed */
2497 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2498 } else /* SD modes */
2499 /* maxCfg is absolute in 100Mb units */
2500 vn_max_rate = maxCfg * 100;
2501 }
2502
2503 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2504
2505 input->vnic_max_rate[vn] = vn_max_rate;
2506 }
2507
2508 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2509 {
2510 if (CHIP_REV_IS_SLOW(bp))
2511 return CMNG_FNS_NONE;
2512 if (IS_MF(bp))
2513 return CMNG_FNS_MINMAX;
2514
2515 return CMNG_FNS_NONE;
2516 }
2517
2518 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2519 {
2520 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2521
2522 if (BP_NOMCP(bp))
2523 return; /* what should be the default value in this case */
2524
2525 /* For 2 port configuration the absolute function number formula
2526 * is:
2527 * abs_func = 2 * vn + BP_PORT + BP_PATH
2528 *
2529 * and there are 4 functions per port
2530 *
2531 * For 4 port configuration it is
2532 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2533 *
2534 * and there are 2 functions per port
2535 */
2536 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2537 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2538
2539 if (func >= E1H_FUNC_MAX)
2540 break;
2541
2542 bp->mf_config[vn] =
2543 MF_CFG_RD(bp, func_mf_config[func].config);
2544 }
2545 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2546 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2547 bp->flags |= MF_FUNC_DIS;
2548 } else {
2549 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2550 bp->flags &= ~MF_FUNC_DIS;
2551 }
2552 }
2553
2554 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2555 {
2556 struct cmng_init_input input;
2557 memset(&input, 0, sizeof(struct cmng_init_input));
2558
2559 input.port_rate = bp->link_vars.line_speed;
2560
2561 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2562 int vn;
2563
2564 /* read mf conf from shmem */
2565 if (read_cfg)
2566 bnx2x_read_mf_cfg(bp);
2567
2568 /* vn_weight_sum and enable fairness if not 0 */
2569 bnx2x_calc_vn_min(bp, &input);
2570
2571 /* calculate and set min-max rate for each vn */
2572 if (bp->port.pmf)
2573 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2574 bnx2x_calc_vn_max(bp, vn, &input);
2575
2576 /* always enable rate shaping and fairness */
2577 input.flags.cmng_enables |=
2578 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2579
2580 bnx2x_init_cmng(&input, &bp->cmng);
2581 return;
2582 }
2583
2584 /* rate shaping and fairness are disabled */
2585 DP(NETIF_MSG_IFUP,
2586 "rate shaping and fairness are disabled\n");
2587 }
2588
2589 static void storm_memset_cmng(struct bnx2x *bp,
2590 struct cmng_init *cmng,
2591 u8 port)
2592 {
2593 int vn;
2594 size_t size = sizeof(struct cmng_struct_per_port);
2595
2596 u32 addr = BAR_XSTRORM_INTMEM +
2597 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2598
2599 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2600
2601 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2602 int func = func_by_vn(bp, vn);
2603
2604 addr = BAR_XSTRORM_INTMEM +
2605 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2606 size = sizeof(struct rate_shaping_vars_per_vn);
2607 __storm_memset_struct(bp, addr, size,
2608 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2609
2610 addr = BAR_XSTRORM_INTMEM +
2611 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2612 size = sizeof(struct fairness_vars_per_vn);
2613 __storm_memset_struct(bp, addr, size,
2614 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2615 }
2616 }
2617
2618 /* init cmng mode in HW according to local configuration */
2619 void bnx2x_set_local_cmng(struct bnx2x *bp)
2620 {
2621 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2622
2623 if (cmng_fns != CMNG_FNS_NONE) {
2624 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2625 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2626 } else {
2627 /* rate shaping and fairness are disabled */
2628 DP(NETIF_MSG_IFUP,
2629 "single function mode without fairness\n");
2630 }
2631 }
2632
2633 /* This function is called upon link interrupt */
2634 static void bnx2x_link_attn(struct bnx2x *bp)
2635 {
2636 /* Make sure that we are synced with the current statistics */
2637 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2638
2639 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2640
2641 bnx2x_init_dropless_fc(bp);
2642
2643 if (bp->link_vars.link_up) {
2644
2645 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2646 struct host_port_stats *pstats;
2647
2648 pstats = bnx2x_sp(bp, port_stats);
2649 /* reset old mac stats */
2650 memset(&(pstats->mac_stx[0]), 0,
2651 sizeof(struct mac_stx));
2652 }
2653 if (bp->state == BNX2X_STATE_OPEN)
2654 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2655 }
2656
2657 if (bp->link_vars.link_up && bp->link_vars.line_speed)
2658 bnx2x_set_local_cmng(bp);
2659
2660 __bnx2x_link_report(bp);
2661
2662 if (IS_MF(bp))
2663 bnx2x_link_sync_notify(bp);
2664 }
2665
2666 void bnx2x__link_status_update(struct bnx2x *bp)
2667 {
2668 if (bp->state != BNX2X_STATE_OPEN)
2669 return;
2670
2671 /* read updated dcb configuration */
2672 if (IS_PF(bp)) {
2673 bnx2x_dcbx_pmf_update(bp);
2674 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2675 if (bp->link_vars.link_up)
2676 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2677 else
2678 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2679 /* indicate link status */
2680 bnx2x_link_report(bp);
2681
2682 } else { /* VF */
2683 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2684 SUPPORTED_10baseT_Full |
2685 SUPPORTED_100baseT_Half |
2686 SUPPORTED_100baseT_Full |
2687 SUPPORTED_1000baseT_Full |
2688 SUPPORTED_2500baseX_Full |
2689 SUPPORTED_10000baseT_Full |
2690 SUPPORTED_TP |
2691 SUPPORTED_FIBRE |
2692 SUPPORTED_Autoneg |
2693 SUPPORTED_Pause |
2694 SUPPORTED_Asym_Pause);
2695 bp->port.advertising[0] = bp->port.supported[0];
2696
2697 bp->link_params.bp = bp;
2698 bp->link_params.port = BP_PORT(bp);
2699 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2700 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2701 bp->link_params.req_line_speed[0] = SPEED_10000;
2702 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2703 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2704 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2705 bp->link_vars.line_speed = SPEED_10000;
2706 bp->link_vars.link_status =
2707 (LINK_STATUS_LINK_UP |
2708 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2709 bp->link_vars.link_up = 1;
2710 bp->link_vars.duplex = DUPLEX_FULL;
2711 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2712 __bnx2x_link_report(bp);
2713
2714 bnx2x_sample_bulletin(bp);
2715
2716 /* if bulletin board did not have an update for link status
2717 * __bnx2x_link_report will report current status
2718 * but it will NOT duplicate report in case of already reported
2719 * during sampling bulletin board.
2720 */
2721 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2722 }
2723 }
2724
2725 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2726 u16 vlan_val, u8 allowed_prio)
2727 {
2728 struct bnx2x_func_state_params func_params = {NULL};
2729 struct bnx2x_func_afex_update_params *f_update_params =
2730 &func_params.params.afex_update;
2731
2732 func_params.f_obj = &bp->func_obj;
2733 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2734
2735 /* no need to wait for RAMROD completion, so don't
2736 * set RAMROD_COMP_WAIT flag
2737 */
2738
2739 f_update_params->vif_id = vifid;
2740 f_update_params->afex_default_vlan = vlan_val;
2741 f_update_params->allowed_priorities = allowed_prio;
2742
2743 /* if ramrod can not be sent, response to MCP immediately */
2744 if (bnx2x_func_state_change(bp, &func_params) < 0)
2745 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2746
2747 return 0;
2748 }
2749
2750 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2751 u16 vif_index, u8 func_bit_map)
2752 {
2753 struct bnx2x_func_state_params func_params = {NULL};
2754 struct bnx2x_func_afex_viflists_params *update_params =
2755 &func_params.params.afex_viflists;
2756 int rc;
2757 u32 drv_msg_code;
2758
2759 /* validate only LIST_SET and LIST_GET are received from switch */
2760 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2761 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2762 cmd_type);
2763
2764 func_params.f_obj = &bp->func_obj;
2765 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2766
2767 /* set parameters according to cmd_type */
2768 update_params->afex_vif_list_command = cmd_type;
2769 update_params->vif_list_index = vif_index;
2770 update_params->func_bit_map =
2771 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2772 update_params->func_to_clear = 0;
2773 drv_msg_code =
2774 (cmd_type == VIF_LIST_RULE_GET) ?
2775 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2776 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2777
2778 /* if ramrod can not be sent, respond to MCP immediately for
2779 * SET and GET requests (other are not triggered from MCP)
2780 */
2781 rc = bnx2x_func_state_change(bp, &func_params);
2782 if (rc < 0)
2783 bnx2x_fw_command(bp, drv_msg_code, 0);
2784
2785 return 0;
2786 }
2787
2788 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2789 {
2790 struct afex_stats afex_stats;
2791 u32 func = BP_ABS_FUNC(bp);
2792 u32 mf_config;
2793 u16 vlan_val;
2794 u32 vlan_prio;
2795 u16 vif_id;
2796 u8 allowed_prio;
2797 u8 vlan_mode;
2798 u32 addr_to_write, vifid, addrs, stats_type, i;
2799
2800 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2801 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2802 DP(BNX2X_MSG_MCP,
2803 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2804 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2805 }
2806
2807 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2808 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2809 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2810 DP(BNX2X_MSG_MCP,
2811 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2812 vifid, addrs);
2813 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2814 addrs);
2815 }
2816
2817 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2818 addr_to_write = SHMEM2_RD(bp,
2819 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2820 stats_type = SHMEM2_RD(bp,
2821 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2822
2823 DP(BNX2X_MSG_MCP,
2824 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2825 addr_to_write);
2826
2827 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2828
2829 /* write response to scratchpad, for MCP */
2830 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2831 REG_WR(bp, addr_to_write + i*sizeof(u32),
2832 *(((u32 *)(&afex_stats))+i));
2833
2834 /* send ack message to MCP */
2835 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2836 }
2837
2838 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2839 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2840 bp->mf_config[BP_VN(bp)] = mf_config;
2841 DP(BNX2X_MSG_MCP,
2842 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2843 mf_config);
2844
2845 /* if VIF_SET is "enabled" */
2846 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2847 /* set rate limit directly to internal RAM */
2848 struct cmng_init_input cmng_input;
2849 struct rate_shaping_vars_per_vn m_rs_vn;
2850 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2851 u32 addr = BAR_XSTRORM_INTMEM +
2852 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2853
2854 bp->mf_config[BP_VN(bp)] = mf_config;
2855
2856 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2857 m_rs_vn.vn_counter.rate =
2858 cmng_input.vnic_max_rate[BP_VN(bp)];
2859 m_rs_vn.vn_counter.quota =
2860 (m_rs_vn.vn_counter.rate *
2861 RS_PERIODIC_TIMEOUT_USEC) / 8;
2862
2863 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2864
2865 /* read relevant values from mf_cfg struct in shmem */
2866 vif_id =
2867 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2868 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2869 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2870 vlan_val =
2871 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2872 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2873 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2874 vlan_prio = (mf_config &
2875 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2876 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2877 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2878 vlan_mode =
2879 (MF_CFG_RD(bp,
2880 func_mf_config[func].afex_config) &
2881 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2882 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2883 allowed_prio =
2884 (MF_CFG_RD(bp,
2885 func_mf_config[func].afex_config) &
2886 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2887 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2888
2889 /* send ramrod to FW, return in case of failure */
2890 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2891 allowed_prio))
2892 return;
2893
2894 bp->afex_def_vlan_tag = vlan_val;
2895 bp->afex_vlan_mode = vlan_mode;
2896 } else {
2897 /* notify link down because BP->flags is disabled */
2898 bnx2x_link_report(bp);
2899
2900 /* send INVALID VIF ramrod to FW */
2901 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2902
2903 /* Reset the default afex VLAN */
2904 bp->afex_def_vlan_tag = -1;
2905 }
2906 }
2907 }
2908
2909 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2910 {
2911 struct bnx2x_func_switch_update_params *switch_update_params;
2912 struct bnx2x_func_state_params func_params;
2913
2914 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2915 switch_update_params = &func_params.params.switch_update;
2916 func_params.f_obj = &bp->func_obj;
2917 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2918
2919 if (IS_MF_UFP(bp)) {
2920 int func = BP_ABS_FUNC(bp);
2921 u32 val;
2922
2923 /* Re-learn the S-tag from shmem */
2924 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2925 FUNC_MF_CFG_E1HOV_TAG_MASK;
2926 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2927 bp->mf_ov = val;
2928 } else {
2929 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2930 goto fail;
2931 }
2932
2933 /* Configure new S-tag in LLH */
2934 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2935 bp->mf_ov);
2936
2937 /* Send Ramrod to update FW of change */
2938 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2939 &switch_update_params->changes);
2940 switch_update_params->vlan = bp->mf_ov;
2941
2942 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2943 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2944 bp->mf_ov);
2945 goto fail;
2946 }
2947
2948 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", bp->mf_ov);
2949
2950 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2951
2952 return;
2953 }
2954
2955 /* not supported by SW yet */
2956 fail:
2957 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2958 }
2959
2960 static void bnx2x_pmf_update(struct bnx2x *bp)
2961 {
2962 int port = BP_PORT(bp);
2963 u32 val;
2964
2965 bp->port.pmf = 1;
2966 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2967
2968 /*
2969 * We need the mb() to ensure the ordering between the writing to
2970 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2971 */
2972 smp_mb();
2973
2974 /* queue a periodic task */
2975 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2976
2977 bnx2x_dcbx_pmf_update(bp);
2978
2979 /* enable nig attention */
2980 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2981 if (bp->common.int_block == INT_BLOCK_HC) {
2982 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2983 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2984 } else if (!CHIP_IS_E1x(bp)) {
2985 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2986 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2987 }
2988
2989 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2990 }
2991
2992 /* end of Link */
2993
2994 /* slow path */
2995
2996 /*
2997 * General service functions
2998 */
2999
3000 /* send the MCP a request, block until there is a reply */
3001 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3002 {
3003 int mb_idx = BP_FW_MB_IDX(bp);
3004 u32 seq;
3005 u32 rc = 0;
3006 u32 cnt = 1;
3007 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3008
3009 mutex_lock(&bp->fw_mb_mutex);
3010 seq = ++bp->fw_seq;
3011 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3012 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3013
3014 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3015 (command | seq), param);
3016
3017 do {
3018 /* let the FW do it's magic ... */
3019 msleep(delay);
3020
3021 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3022
3023 /* Give the FW up to 5 second (500*10ms) */
3024 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3025
3026 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3027 cnt*delay, rc, seq);
3028
3029 /* is this a reply to our command? */
3030 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3031 rc &= FW_MSG_CODE_MASK;
3032 else {
3033 /* FW BUG! */
3034 BNX2X_ERR("FW failed to respond!\n");
3035 bnx2x_fw_dump(bp);
3036 rc = 0;
3037 }
3038 mutex_unlock(&bp->fw_mb_mutex);
3039
3040 return rc;
3041 }
3042
3043 static void storm_memset_func_cfg(struct bnx2x *bp,
3044 struct tstorm_eth_function_common_config *tcfg,
3045 u16 abs_fid)
3046 {
3047 size_t size = sizeof(struct tstorm_eth_function_common_config);
3048
3049 u32 addr = BAR_TSTRORM_INTMEM +
3050 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3051
3052 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3053 }
3054
3055 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3056 {
3057 if (CHIP_IS_E1x(bp)) {
3058 struct tstorm_eth_function_common_config tcfg = {0};
3059
3060 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3061 }
3062
3063 /* Enable the function in the FW */
3064 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3065 storm_memset_func_en(bp, p->func_id, 1);
3066
3067 /* spq */
3068 if (p->func_flgs & FUNC_FLG_SPQ) {
3069 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3070 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3071 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3072 }
3073 }
3074
3075 /**
3076 * bnx2x_get_common_flags - Return common flags
3077 *
3078 * @bp device handle
3079 * @fp queue handle
3080 * @zero_stats TRUE if statistics zeroing is needed
3081 *
3082 * Return the flags that are common for the Tx-only and not normal connections.
3083 */
3084 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3085 struct bnx2x_fastpath *fp,
3086 bool zero_stats)
3087 {
3088 unsigned long flags = 0;
3089
3090 /* PF driver will always initialize the Queue to an ACTIVE state */
3091 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3092
3093 /* tx only connections collect statistics (on the same index as the
3094 * parent connection). The statistics are zeroed when the parent
3095 * connection is initialized.
3096 */
3097
3098 __set_bit(BNX2X_Q_FLG_STATS, &flags);
3099 if (zero_stats)
3100 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3101
3102 if (bp->flags & TX_SWITCHING)
3103 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3104
3105 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3106 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3107
3108 #ifdef BNX2X_STOP_ON_ERROR
3109 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3110 #endif
3111
3112 return flags;
3113 }
3114
3115 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3116 struct bnx2x_fastpath *fp,
3117 bool leading)
3118 {
3119 unsigned long flags = 0;
3120
3121 /* calculate other queue flags */
3122 if (IS_MF_SD(bp))
3123 __set_bit(BNX2X_Q_FLG_OV, &flags);
3124
3125 if (IS_FCOE_FP(fp)) {
3126 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3127 /* For FCoE - force usage of default priority (for afex) */
3128 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3129 }
3130
3131 if (!fp->disable_tpa) {
3132 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3133 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3134 if (fp->mode == TPA_MODE_GRO)
3135 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3136 }
3137
3138 if (leading) {
3139 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3140 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3141 }
3142
3143 /* Always set HW VLAN stripping */
3144 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3145
3146 /* configure silent vlan removal */
3147 if (IS_MF_AFEX(bp))
3148 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3149
3150 return flags | bnx2x_get_common_flags(bp, fp, true);
3151 }
3152
3153 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3154 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3155 u8 cos)
3156 {
3157 gen_init->stat_id = bnx2x_stats_id(fp);
3158 gen_init->spcl_id = fp->cl_id;
3159
3160 /* Always use mini-jumbo MTU for FCoE L2 ring */
3161 if (IS_FCOE_FP(fp))
3162 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3163 else
3164 gen_init->mtu = bp->dev->mtu;
3165
3166 gen_init->cos = cos;
3167
3168 gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3169 }
3170
3171 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3172 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3173 struct bnx2x_rxq_setup_params *rxq_init)
3174 {
3175 u8 max_sge = 0;
3176 u16 sge_sz = 0;
3177 u16 tpa_agg_size = 0;
3178
3179 if (!fp->disable_tpa) {
3180 pause->sge_th_lo = SGE_TH_LO(bp);
3181 pause->sge_th_hi = SGE_TH_HI(bp);
3182
3183 /* validate SGE ring has enough to cross high threshold */
3184 WARN_ON(bp->dropless_fc &&
3185 pause->sge_th_hi + FW_PREFETCH_CNT >
3186 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3187
3188 tpa_agg_size = TPA_AGG_SIZE;
3189 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3190 SGE_PAGE_SHIFT;
3191 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3192 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3193 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3194 }
3195
3196 /* pause - not for e1 */
3197 if (!CHIP_IS_E1(bp)) {
3198 pause->bd_th_lo = BD_TH_LO(bp);
3199 pause->bd_th_hi = BD_TH_HI(bp);
3200
3201 pause->rcq_th_lo = RCQ_TH_LO(bp);
3202 pause->rcq_th_hi = RCQ_TH_HI(bp);
3203 /*
3204 * validate that rings have enough entries to cross
3205 * high thresholds
3206 */
3207 WARN_ON(bp->dropless_fc &&
3208 pause->bd_th_hi + FW_PREFETCH_CNT >
3209 bp->rx_ring_size);
3210 WARN_ON(bp->dropless_fc &&
3211 pause->rcq_th_hi + FW_PREFETCH_CNT >
3212 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3213
3214 pause->pri_map = 1;
3215 }
3216
3217 /* rxq setup */
3218 rxq_init->dscr_map = fp->rx_desc_mapping;
3219 rxq_init->sge_map = fp->rx_sge_mapping;
3220 rxq_init->rcq_map = fp->rx_comp_mapping;
3221 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3222
3223 /* This should be a maximum number of data bytes that may be
3224 * placed on the BD (not including paddings).
3225 */
3226 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3227 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3228
3229 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3230 rxq_init->tpa_agg_sz = tpa_agg_size;
3231 rxq_init->sge_buf_sz = sge_sz;
3232 rxq_init->max_sges_pkt = max_sge;
3233 rxq_init->rss_engine_id = BP_FUNC(bp);
3234 rxq_init->mcast_engine_id = BP_FUNC(bp);
3235
3236 /* Maximum number or simultaneous TPA aggregation for this Queue.
3237 *
3238 * For PF Clients it should be the maximum available number.
3239 * VF driver(s) may want to define it to a smaller value.
3240 */
3241 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3242
3243 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3244 rxq_init->fw_sb_id = fp->fw_sb_id;
3245
3246 if (IS_FCOE_FP(fp))
3247 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3248 else
3249 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3250 /* configure silent vlan removal
3251 * if multi function mode is afex, then mask default vlan
3252 */
3253 if (IS_MF_AFEX(bp)) {
3254 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3255 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3256 }
3257 }
3258
3259 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3260 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3261 u8 cos)
3262 {
3263 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3264 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3265 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3266 txq_init->fw_sb_id = fp->fw_sb_id;
3267
3268 /*
3269 * set the tss leading client id for TX classification ==
3270 * leading RSS client id
3271 */
3272 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3273
3274 if (IS_FCOE_FP(fp)) {
3275 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3276 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3277 }
3278 }
3279
3280 static void bnx2x_pf_init(struct bnx2x *bp)
3281 {
3282 struct bnx2x_func_init_params func_init = {0};
3283 struct event_ring_data eq_data = { {0} };
3284 u16 flags;
3285
3286 if (!CHIP_IS_E1x(bp)) {
3287 /* reset IGU PF statistics: MSIX + ATTN */
3288 /* PF */
3289 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3290 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3291 (CHIP_MODE_IS_4_PORT(bp) ?
3292 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3293 /* ATTN */
3294 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3295 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3296 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3297 (CHIP_MODE_IS_4_PORT(bp) ?
3298 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3299 }
3300
3301 /* function setup flags */
3302 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3303
3304 /* This flag is relevant for E1x only.
3305 * E2 doesn't have a TPA configuration in a function level.
3306 */
3307 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3308
3309 func_init.func_flgs = flags;
3310 func_init.pf_id = BP_FUNC(bp);
3311 func_init.func_id = BP_FUNC(bp);
3312 func_init.spq_map = bp->spq_mapping;
3313 func_init.spq_prod = bp->spq_prod_idx;
3314
3315 bnx2x_func_init(bp, &func_init);
3316
3317 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3318
3319 /*
3320 * Congestion management values depend on the link rate
3321 * There is no active link so initial link rate is set to 10 Gbps.
3322 * When the link comes up The congestion management values are
3323 * re-calculated according to the actual link rate.
3324 */
3325 bp->link_vars.line_speed = SPEED_10000;
3326 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3327
3328 /* Only the PMF sets the HW */
3329 if (bp->port.pmf)
3330 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3331
3332 /* init Event Queue - PCI bus guarantees correct endianity*/
3333 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3334 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3335 eq_data.producer = bp->eq_prod;
3336 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3337 eq_data.sb_id = DEF_SB_ID;
3338 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3339 }
3340
3341 static void bnx2x_e1h_disable(struct bnx2x *bp)
3342 {
3343 int port = BP_PORT(bp);
3344
3345 bnx2x_tx_disable(bp);
3346
3347 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3348 }
3349
3350 static void bnx2x_e1h_enable(struct bnx2x *bp)
3351 {
3352 int port = BP_PORT(bp);
3353
3354 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3355 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3356
3357 /* Tx queue should be only re-enabled */
3358 netif_tx_wake_all_queues(bp->dev);
3359
3360 /*
3361 * Should not call netif_carrier_on since it will be called if the link
3362 * is up when checking for link state
3363 */
3364 }
3365
3366 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3367
3368 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3369 {
3370 struct eth_stats_info *ether_stat =
3371 &bp->slowpath->drv_info_to_mcp.ether_stat;
3372 struct bnx2x_vlan_mac_obj *mac_obj =
3373 &bp->sp_objs->mac_obj;
3374 int i;
3375
3376 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3377 ETH_STAT_INFO_VERSION_LEN);
3378
3379 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3380 * mac_local field in ether_stat struct. The base address is offset by 2
3381 * bytes to account for the field being 8 bytes but a mac address is
3382 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3383 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3384 * allocated by the ether_stat struct, so the macs will land in their
3385 * proper positions.
3386 */
3387 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3388 memset(ether_stat->mac_local + i, 0,
3389 sizeof(ether_stat->mac_local[0]));
3390 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3391 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3392 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3393 ETH_ALEN);
3394 ether_stat->mtu_size = bp->dev->mtu;
3395 if (bp->dev->features & NETIF_F_RXCSUM)
3396 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3397 if (bp->dev->features & NETIF_F_TSO)
3398 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3399 ether_stat->feature_flags |= bp->common.boot_mode;
3400
3401 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3402
3403 ether_stat->txq_size = bp->tx_ring_size;
3404 ether_stat->rxq_size = bp->rx_ring_size;
3405
3406 #ifdef CONFIG_BNX2X_SRIOV
3407 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3408 #endif
3409 }
3410
3411 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3412 {
3413 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3414 struct fcoe_stats_info *fcoe_stat =
3415 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3416
3417 if (!CNIC_LOADED(bp))
3418 return;
3419
3420 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3421
3422 fcoe_stat->qos_priority =
3423 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3424
3425 /* insert FCoE stats from ramrod response */
3426 if (!NO_FCOE(bp)) {
3427 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3428 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429 tstorm_queue_statistics;
3430
3431 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3432 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433 xstorm_queue_statistics;
3434
3435 struct fcoe_statistics_params *fw_fcoe_stat =
3436 &bp->fw_stats_data->fcoe;
3437
3438 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3439 fcoe_stat->rx_bytes_lo,
3440 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3441
3442 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3444 fcoe_stat->rx_bytes_lo,
3445 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3446
3447 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3449 fcoe_stat->rx_bytes_lo,
3450 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3451
3452 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3453 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3454 fcoe_stat->rx_bytes_lo,
3455 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3456
3457 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458 fcoe_stat->rx_frames_lo,
3459 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3460
3461 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462 fcoe_stat->rx_frames_lo,
3463 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3464
3465 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466 fcoe_stat->rx_frames_lo,
3467 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3468
3469 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470 fcoe_stat->rx_frames_lo,
3471 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3472
3473 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3474 fcoe_stat->tx_bytes_lo,
3475 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3476
3477 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3479 fcoe_stat->tx_bytes_lo,
3480 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3481
3482 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3484 fcoe_stat->tx_bytes_lo,
3485 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3486
3487 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3488 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3489 fcoe_stat->tx_bytes_lo,
3490 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3491
3492 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493 fcoe_stat->tx_frames_lo,
3494 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3495
3496 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497 fcoe_stat->tx_frames_lo,
3498 fcoe_q_xstorm_stats->ucast_pkts_sent);
3499
3500 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501 fcoe_stat->tx_frames_lo,
3502 fcoe_q_xstorm_stats->bcast_pkts_sent);
3503
3504 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505 fcoe_stat->tx_frames_lo,
3506 fcoe_q_xstorm_stats->mcast_pkts_sent);
3507 }
3508
3509 /* ask L5 driver to add data to the struct */
3510 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3511 }
3512
3513 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3514 {
3515 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3516 struct iscsi_stats_info *iscsi_stat =
3517 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3518
3519 if (!CNIC_LOADED(bp))
3520 return;
3521
3522 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3523 ETH_ALEN);
3524
3525 iscsi_stat->qos_priority =
3526 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3527
3528 /* ask L5 driver to add data to the struct */
3529 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3530 }
3531
3532 /* called due to MCP event (on pmf):
3533 * reread new bandwidth configuration
3534 * configure FW
3535 * notify others function about the change
3536 */
3537 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3538 {
3539 if (bp->link_vars.link_up) {
3540 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3541 bnx2x_link_sync_notify(bp);
3542 }
3543 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3544 }
3545
3546 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3547 {
3548 bnx2x_config_mf_bw(bp);
3549 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3550 }
3551
3552 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3553 {
3554 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3555 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3556 }
3557
3558 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
3559 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
3560
3561 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3562 {
3563 enum drv_info_opcode op_code;
3564 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3565 bool release = false;
3566 int wait;
3567
3568 /* if drv_info version supported by MFW doesn't match - send NACK */
3569 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3570 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3571 return;
3572 }
3573
3574 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3575 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3576
3577 /* Must prevent other flows from accessing drv_info_to_mcp */
3578 mutex_lock(&bp->drv_info_mutex);
3579
3580 memset(&bp->slowpath->drv_info_to_mcp, 0,
3581 sizeof(union drv_info_to_mcp));
3582
3583 switch (op_code) {
3584 case ETH_STATS_OPCODE:
3585 bnx2x_drv_info_ether_stat(bp);
3586 break;
3587 case FCOE_STATS_OPCODE:
3588 bnx2x_drv_info_fcoe_stat(bp);
3589 break;
3590 case ISCSI_STATS_OPCODE:
3591 bnx2x_drv_info_iscsi_stat(bp);
3592 break;
3593 default:
3594 /* if op code isn't supported - send NACK */
3595 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3596 goto out;
3597 }
3598
3599 /* if we got drv_info attn from MFW then these fields are defined in
3600 * shmem2 for sure
3601 */
3602 SHMEM2_WR(bp, drv_info_host_addr_lo,
3603 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3604 SHMEM2_WR(bp, drv_info_host_addr_hi,
3605 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3606
3607 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3608
3609 /* Since possible management wants both this and get_driver_version
3610 * need to wait until management notifies us it finished utilizing
3611 * the buffer.
3612 */
3613 if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3614 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3615 } else if (!bp->drv_info_mng_owner) {
3616 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3617
3618 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3619 u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3620
3621 /* Management is done; need to clear indication */
3622 if (indication & bit) {
3623 SHMEM2_WR(bp, mfw_drv_indication,
3624 indication & ~bit);
3625 release = true;
3626 break;
3627 }
3628
3629 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3630 }
3631 }
3632 if (!release) {
3633 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3634 bp->drv_info_mng_owner = true;
3635 }
3636
3637 out:
3638 mutex_unlock(&bp->drv_info_mutex);
3639 }
3640
3641 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3642 {
3643 u8 vals[4];
3644 int i = 0;
3645
3646 if (bnx2x_format) {
3647 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3648 &vals[0], &vals[1], &vals[2], &vals[3]);
3649 if (i > 0)
3650 vals[0] -= '0';
3651 } else {
3652 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3653 &vals[0], &vals[1], &vals[2], &vals[3]);
3654 }
3655
3656 while (i < 4)
3657 vals[i++] = 0;
3658
3659 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3660 }
3661
3662 void bnx2x_update_mng_version(struct bnx2x *bp)
3663 {
3664 u32 iscsiver = DRV_VER_NOT_LOADED;
3665 u32 fcoever = DRV_VER_NOT_LOADED;
3666 u32 ethver = DRV_VER_NOT_LOADED;
3667 int idx = BP_FW_MB_IDX(bp);
3668 u8 *version;
3669
3670 if (!SHMEM2_HAS(bp, func_os_drv_ver))
3671 return;
3672
3673 mutex_lock(&bp->drv_info_mutex);
3674 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3675 if (bp->drv_info_mng_owner)
3676 goto out;
3677
3678 if (bp->state != BNX2X_STATE_OPEN)
3679 goto out;
3680
3681 /* Parse ethernet driver version */
3682 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3683 if (!CNIC_LOADED(bp))
3684 goto out;
3685
3686 /* Try getting storage driver version via cnic */
3687 memset(&bp->slowpath->drv_info_to_mcp, 0,
3688 sizeof(union drv_info_to_mcp));
3689 bnx2x_drv_info_iscsi_stat(bp);
3690 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3691 iscsiver = bnx2x_update_mng_version_utility(version, false);
3692
3693 memset(&bp->slowpath->drv_info_to_mcp, 0,
3694 sizeof(union drv_info_to_mcp));
3695 bnx2x_drv_info_fcoe_stat(bp);
3696 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3697 fcoever = bnx2x_update_mng_version_utility(version, false);
3698
3699 out:
3700 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3701 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3702 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3703
3704 mutex_unlock(&bp->drv_info_mutex);
3705
3706 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3707 ethver, iscsiver, fcoever);
3708 }
3709
3710 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3711 {
3712 u32 cmd_ok, cmd_fail;
3713
3714 /* sanity */
3715 if (event & DRV_STATUS_DCC_EVENT_MASK &&
3716 event & DRV_STATUS_OEM_EVENT_MASK) {
3717 BNX2X_ERR("Received simultaneous events %08x\n", event);
3718 return;
3719 }
3720
3721 if (event & DRV_STATUS_DCC_EVENT_MASK) {
3722 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3723 cmd_ok = DRV_MSG_CODE_DCC_OK;
3724 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3725 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3726 cmd_ok = DRV_MSG_CODE_OEM_OK;
3727 }
3728
3729 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3730
3731 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3732 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3733 /* This is the only place besides the function initialization
3734 * where the bp->flags can change so it is done without any
3735 * locks
3736 */
3737 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3738 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3739 bp->flags |= MF_FUNC_DIS;
3740
3741 bnx2x_e1h_disable(bp);
3742 } else {
3743 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3744 bp->flags &= ~MF_FUNC_DIS;
3745
3746 bnx2x_e1h_enable(bp);
3747 }
3748 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3749 DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3750 }
3751
3752 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3753 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3754 bnx2x_config_mf_bw(bp);
3755 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3756 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3757 }
3758
3759 /* Report results to MCP */
3760 if (event)
3761 bnx2x_fw_command(bp, cmd_fail, 0);
3762 else
3763 bnx2x_fw_command(bp, cmd_ok, 0);
3764 }
3765
3766 /* must be called under the spq lock */
3767 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3768 {
3769 struct eth_spe *next_spe = bp->spq_prod_bd;
3770
3771 if (bp->spq_prod_bd == bp->spq_last_bd) {
3772 bp->spq_prod_bd = bp->spq;
3773 bp->spq_prod_idx = 0;
3774 DP(BNX2X_MSG_SP, "end of spq\n");
3775 } else {
3776 bp->spq_prod_bd++;
3777 bp->spq_prod_idx++;
3778 }
3779 return next_spe;
3780 }
3781
3782 /* must be called under the spq lock */
3783 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3784 {
3785 int func = BP_FUNC(bp);
3786
3787 /*
3788 * Make sure that BD data is updated before writing the producer:
3789 * BD data is written to the memory, the producer is read from the
3790 * memory, thus we need a full memory barrier to ensure the ordering.
3791 */
3792 mb();
3793
3794 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3795 bp->spq_prod_idx);
3796 mmiowb();
3797 }
3798
3799 /**
3800 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3801 *
3802 * @cmd: command to check
3803 * @cmd_type: command type
3804 */
3805 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3806 {
3807 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3808 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3809 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3810 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3811 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3812 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3813 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3814 return true;
3815 else
3816 return false;
3817 }
3818
3819 /**
3820 * bnx2x_sp_post - place a single command on an SP ring
3821 *
3822 * @bp: driver handle
3823 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3824 * @cid: SW CID the command is related to
3825 * @data_hi: command private data address (high 32 bits)
3826 * @data_lo: command private data address (low 32 bits)
3827 * @cmd_type: command type (e.g. NONE, ETH)
3828 *
3829 * SP data is handled as if it's always an address pair, thus data fields are
3830 * not swapped to little endian in upper functions. Instead this function swaps
3831 * data as if it's two u32 fields.
3832 */
3833 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3834 u32 data_hi, u32 data_lo, int cmd_type)
3835 {
3836 struct eth_spe *spe;
3837 u16 type;
3838 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3839
3840 #ifdef BNX2X_STOP_ON_ERROR
3841 if (unlikely(bp->panic)) {
3842 BNX2X_ERR("Can't post SP when there is panic\n");
3843 return -EIO;
3844 }
3845 #endif
3846
3847 spin_lock_bh(&bp->spq_lock);
3848
3849 if (common) {
3850 if (!atomic_read(&bp->eq_spq_left)) {
3851 BNX2X_ERR("BUG! EQ ring full!\n");
3852 spin_unlock_bh(&bp->spq_lock);
3853 bnx2x_panic();
3854 return -EBUSY;
3855 }
3856 } else if (!atomic_read(&bp->cq_spq_left)) {
3857 BNX2X_ERR("BUG! SPQ ring full!\n");
3858 spin_unlock_bh(&bp->spq_lock);
3859 bnx2x_panic();
3860 return -EBUSY;
3861 }
3862
3863 spe = bnx2x_sp_get_next(bp);
3864
3865 /* CID needs port number to be encoded int it */
3866 spe->hdr.conn_and_cmd_data =
3867 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3868 HW_CID(bp, cid));
3869
3870 /* In some cases, type may already contain the func-id
3871 * mainly in SRIOV related use cases, so we add it here only
3872 * if it's not already set.
3873 */
3874 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3875 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3876 SPE_HDR_CONN_TYPE;
3877 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3878 SPE_HDR_FUNCTION_ID);
3879 } else {
3880 type = cmd_type;
3881 }
3882
3883 spe->hdr.type = cpu_to_le16(type);
3884
3885 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3886 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3887
3888 /*
3889 * It's ok if the actual decrement is issued towards the memory
3890 * somewhere between the spin_lock and spin_unlock. Thus no
3891 * more explicit memory barrier is needed.
3892 */
3893 if (common)
3894 atomic_dec(&bp->eq_spq_left);
3895 else
3896 atomic_dec(&bp->cq_spq_left);
3897
3898 DP(BNX2X_MSG_SP,
3899 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3900 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3901 (u32)(U64_LO(bp->spq_mapping) +
3902 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3903 HW_CID(bp, cid), data_hi, data_lo, type,
3904 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3905
3906 bnx2x_sp_prod_update(bp);
3907 spin_unlock_bh(&bp->spq_lock);
3908 return 0;
3909 }
3910
3911 /* acquire split MCP access lock register */
3912 static int bnx2x_acquire_alr(struct bnx2x *bp)
3913 {
3914 u32 j, val;
3915 int rc = 0;
3916
3917 might_sleep();
3918 for (j = 0; j < 1000; j++) {
3919 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3920 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3921 if (val & MCPR_ACCESS_LOCK_LOCK)
3922 break;
3923
3924 usleep_range(5000, 10000);
3925 }
3926 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3927 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3928 rc = -EBUSY;
3929 }
3930
3931 return rc;
3932 }
3933
3934 /* release split MCP access lock register */
3935 static void bnx2x_release_alr(struct bnx2x *bp)
3936 {
3937 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3938 }
3939
3940 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3941 #define BNX2X_DEF_SB_IDX 0x0002
3942
3943 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3944 {
3945 struct host_sp_status_block *def_sb = bp->def_status_blk;
3946 u16 rc = 0;
3947
3948 barrier(); /* status block is written to by the chip */
3949 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3950 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3951 rc |= BNX2X_DEF_SB_ATT_IDX;
3952 }
3953
3954 if (bp->def_idx != def_sb->sp_sb.running_index) {
3955 bp->def_idx = def_sb->sp_sb.running_index;
3956 rc |= BNX2X_DEF_SB_IDX;
3957 }
3958
3959 /* Do not reorder: indices reading should complete before handling */
3960 barrier();
3961 return rc;
3962 }
3963
3964 /*
3965 * slow path service functions
3966 */
3967
3968 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3969 {
3970 int port = BP_PORT(bp);
3971 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3972 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3973 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3974 NIG_REG_MASK_INTERRUPT_PORT0;
3975 u32 aeu_mask;
3976 u32 nig_mask = 0;
3977 u32 reg_addr;
3978
3979 if (bp->attn_state & asserted)
3980 BNX2X_ERR("IGU ERROR\n");
3981
3982 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3983 aeu_mask = REG_RD(bp, aeu_addr);
3984
3985 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3986 aeu_mask, asserted);
3987 aeu_mask &= ~(asserted & 0x3ff);
3988 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3989
3990 REG_WR(bp, aeu_addr, aeu_mask);
3991 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3992
3993 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3994 bp->attn_state |= asserted;
3995 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3996
3997 if (asserted & ATTN_HARD_WIRED_MASK) {
3998 if (asserted & ATTN_NIG_FOR_FUNC) {
3999
4000 bnx2x_acquire_phy_lock(bp);
4001
4002 /* save nig interrupt mask */
4003 nig_mask = REG_RD(bp, nig_int_mask_addr);
4004
4005 /* If nig_mask is not set, no need to call the update
4006 * function.
4007 */
4008 if (nig_mask) {
4009 REG_WR(bp, nig_int_mask_addr, 0);
4010
4011 bnx2x_link_attn(bp);
4012 }
4013
4014 /* handle unicore attn? */
4015 }
4016 if (asserted & ATTN_SW_TIMER_4_FUNC)
4017 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4018
4019 if (asserted & GPIO_2_FUNC)
4020 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4021
4022 if (asserted & GPIO_3_FUNC)
4023 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4024
4025 if (asserted & GPIO_4_FUNC)
4026 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4027
4028 if (port == 0) {
4029 if (asserted & ATTN_GENERAL_ATTN_1) {
4030 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4031 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4032 }
4033 if (asserted & ATTN_GENERAL_ATTN_2) {
4034 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4035 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4036 }
4037 if (asserted & ATTN_GENERAL_ATTN_3) {
4038 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4039 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4040 }
4041 } else {
4042 if (asserted & ATTN_GENERAL_ATTN_4) {
4043 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4044 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4045 }
4046 if (asserted & ATTN_GENERAL_ATTN_5) {
4047 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4048 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4049 }
4050 if (asserted & ATTN_GENERAL_ATTN_6) {
4051 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4052 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4053 }
4054 }
4055
4056 } /* if hardwired */
4057
4058 if (bp->common.int_block == INT_BLOCK_HC)
4059 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4060 COMMAND_REG_ATTN_BITS_SET);
4061 else
4062 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4063
4064 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4065 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4066 REG_WR(bp, reg_addr, asserted);
4067
4068 /* now set back the mask */
4069 if (asserted & ATTN_NIG_FOR_FUNC) {
4070 /* Verify that IGU ack through BAR was written before restoring
4071 * NIG mask. This loop should exit after 2-3 iterations max.
4072 */
4073 if (bp->common.int_block != INT_BLOCK_HC) {
4074 u32 cnt = 0, igu_acked;
4075 do {
4076 igu_acked = REG_RD(bp,
4077 IGU_REG_ATTENTION_ACK_BITS);
4078 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4079 (++cnt < MAX_IGU_ATTN_ACK_TO));
4080 if (!igu_acked)
4081 DP(NETIF_MSG_HW,
4082 "Failed to verify IGU ack on time\n");
4083 barrier();
4084 }
4085 REG_WR(bp, nig_int_mask_addr, nig_mask);
4086 bnx2x_release_phy_lock(bp);
4087 }
4088 }
4089
4090 static void bnx2x_fan_failure(struct bnx2x *bp)
4091 {
4092 int port = BP_PORT(bp);
4093 u32 ext_phy_config;
4094 /* mark the failure */
4095 ext_phy_config =
4096 SHMEM_RD(bp,
4097 dev_info.port_hw_config[port].external_phy_config);
4098
4099 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4100 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4101 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4102 ext_phy_config);
4103
4104 /* log the failure */
4105 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4106 "Please contact OEM Support for assistance\n");
4107
4108 /* Schedule device reset (unload)
4109 * This is due to some boards consuming sufficient power when driver is
4110 * up to overheat if fan fails.
4111 */
4112 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4113 }
4114
4115 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4116 {
4117 int port = BP_PORT(bp);
4118 int reg_offset;
4119 u32 val;
4120
4121 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4122 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4123
4124 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4125
4126 val = REG_RD(bp, reg_offset);
4127 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4128 REG_WR(bp, reg_offset, val);
4129
4130 BNX2X_ERR("SPIO5 hw attention\n");
4131
4132 /* Fan failure attention */
4133 bnx2x_hw_reset_phy(&bp->link_params);
4134 bnx2x_fan_failure(bp);
4135 }
4136
4137 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4138 bnx2x_acquire_phy_lock(bp);
4139 bnx2x_handle_module_detect_int(&bp->link_params);
4140 bnx2x_release_phy_lock(bp);
4141 }
4142
4143 if (attn & HW_INTERRUT_ASSERT_SET_0) {
4144
4145 val = REG_RD(bp, reg_offset);
4146 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4147 REG_WR(bp, reg_offset, val);
4148
4149 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4150 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4151 bnx2x_panic();
4152 }
4153 }
4154
4155 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4156 {
4157 u32 val;
4158
4159 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4160
4161 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4162 BNX2X_ERR("DB hw attention 0x%x\n", val);
4163 /* DORQ discard attention */
4164 if (val & 0x2)
4165 BNX2X_ERR("FATAL error from DORQ\n");
4166 }
4167
4168 if (attn & HW_INTERRUT_ASSERT_SET_1) {
4169
4170 int port = BP_PORT(bp);
4171 int reg_offset;
4172
4173 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4174 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4175
4176 val = REG_RD(bp, reg_offset);
4177 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4178 REG_WR(bp, reg_offset, val);
4179
4180 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4181 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4182 bnx2x_panic();
4183 }
4184 }
4185
4186 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4187 {
4188 u32 val;
4189
4190 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4191
4192 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4193 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4194 /* CFC error attention */
4195 if (val & 0x2)
4196 BNX2X_ERR("FATAL error from CFC\n");
4197 }
4198
4199 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4200 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4201 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4202 /* RQ_USDMDP_FIFO_OVERFLOW */
4203 if (val & 0x18000)
4204 BNX2X_ERR("FATAL error from PXP\n");
4205
4206 if (!CHIP_IS_E1x(bp)) {
4207 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4208 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4209 }
4210 }
4211
4212 if (attn & HW_INTERRUT_ASSERT_SET_2) {
4213
4214 int port = BP_PORT(bp);
4215 int reg_offset;
4216
4217 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4218 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4219
4220 val = REG_RD(bp, reg_offset);
4221 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4222 REG_WR(bp, reg_offset, val);
4223
4224 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4225 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4226 bnx2x_panic();
4227 }
4228 }
4229
4230 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4231 {
4232 u32 val;
4233
4234 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4235
4236 if (attn & BNX2X_PMF_LINK_ASSERT) {
4237 int func = BP_FUNC(bp);
4238
4239 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4240 bnx2x_read_mf_cfg(bp);
4241 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4242 func_mf_config[BP_ABS_FUNC(bp)].config);
4243 val = SHMEM_RD(bp,
4244 func_mb[BP_FW_MB_IDX(bp)].drv_status);
4245
4246 if (val & (DRV_STATUS_DCC_EVENT_MASK |
4247 DRV_STATUS_OEM_EVENT_MASK))
4248 bnx2x_oem_event(bp,
4249 (val & (DRV_STATUS_DCC_EVENT_MASK |
4250 DRV_STATUS_OEM_EVENT_MASK)));
4251
4252 if (val & DRV_STATUS_SET_MF_BW)
4253 bnx2x_set_mf_bw(bp);
4254
4255 if (val & DRV_STATUS_DRV_INFO_REQ)
4256 bnx2x_handle_drv_info_req(bp);
4257
4258 if (val & DRV_STATUS_VF_DISABLED)
4259 bnx2x_schedule_iov_task(bp,
4260 BNX2X_IOV_HANDLE_FLR);
4261
4262 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4263 bnx2x_pmf_update(bp);
4264
4265 if (bp->port.pmf &&
4266 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4267 bp->dcbx_enabled > 0)
4268 /* start dcbx state machine */
4269 bnx2x_dcbx_set_params(bp,
4270 BNX2X_DCBX_STATE_NEG_RECEIVED);
4271 if (val & DRV_STATUS_AFEX_EVENT_MASK)
4272 bnx2x_handle_afex_cmd(bp,
4273 val & DRV_STATUS_AFEX_EVENT_MASK);
4274 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4275 bnx2x_handle_eee_event(bp);
4276
4277 if (val & DRV_STATUS_OEM_UPDATE_SVID)
4278 bnx2x_handle_update_svid_cmd(bp);
4279
4280 if (bp->link_vars.periodic_flags &
4281 PERIODIC_FLAGS_LINK_EVENT) {
4282 /* sync with link */
4283 bnx2x_acquire_phy_lock(bp);
4284 bp->link_vars.periodic_flags &=
4285 ~PERIODIC_FLAGS_LINK_EVENT;
4286 bnx2x_release_phy_lock(bp);
4287 if (IS_MF(bp))
4288 bnx2x_link_sync_notify(bp);
4289 bnx2x_link_report(bp);
4290 }
4291 /* Always call it here: bnx2x_link_report() will
4292 * prevent the link indication duplication.
4293 */
4294 bnx2x__link_status_update(bp);
4295 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4296
4297 BNX2X_ERR("MC assert!\n");
4298 bnx2x_mc_assert(bp);
4299 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4300 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4301 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4302 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4303 bnx2x_panic();
4304
4305 } else if (attn & BNX2X_MCP_ASSERT) {
4306
4307 BNX2X_ERR("MCP assert!\n");
4308 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4309 bnx2x_fw_dump(bp);
4310
4311 } else
4312 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4313 }
4314
4315 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4316 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4317 if (attn & BNX2X_GRC_TIMEOUT) {
4318 val = CHIP_IS_E1(bp) ? 0 :
4319 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4320 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4321 }
4322 if (attn & BNX2X_GRC_RSV) {
4323 val = CHIP_IS_E1(bp) ? 0 :
4324 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4325 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4326 }
4327 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4328 }
4329 }
4330
4331 /*
4332 * Bits map:
4333 * 0-7 - Engine0 load counter.
4334 * 8-15 - Engine1 load counter.
4335 * 16 - Engine0 RESET_IN_PROGRESS bit.
4336 * 17 - Engine1 RESET_IN_PROGRESS bit.
4337 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4338 * on the engine
4339 * 19 - Engine1 ONE_IS_LOADED.
4340 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4341 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4342 * just the one belonging to its engine).
4343 *
4344 */
4345 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4346
4347 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4348 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4349 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4350 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4351 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4352 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4353 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4354
4355 /*
4356 * Set the GLOBAL_RESET bit.
4357 *
4358 * Should be run under rtnl lock
4359 */
4360 void bnx2x_set_reset_global(struct bnx2x *bp)
4361 {
4362 u32 val;
4363 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4364 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4365 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4366 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4367 }
4368
4369 /*
4370 * Clear the GLOBAL_RESET bit.
4371 *
4372 * Should be run under rtnl lock
4373 */
4374 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4375 {
4376 u32 val;
4377 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4378 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4379 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4380 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4381 }
4382
4383 /*
4384 * Checks the GLOBAL_RESET bit.
4385 *
4386 * should be run under rtnl lock
4387 */
4388 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4389 {
4390 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4391
4392 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4393 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4394 }
4395
4396 /*
4397 * Clear RESET_IN_PROGRESS bit for the current engine.
4398 *
4399 * Should be run under rtnl lock
4400 */
4401 static void bnx2x_set_reset_done(struct bnx2x *bp)
4402 {
4403 u32 val;
4404 u32 bit = BP_PATH(bp) ?
4405 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4406 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4407 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4408
4409 /* Clear the bit */
4410 val &= ~bit;
4411 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4412
4413 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4414 }
4415
4416 /*
4417 * Set RESET_IN_PROGRESS for the current engine.
4418 *
4419 * should be run under rtnl lock
4420 */
4421 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4422 {
4423 u32 val;
4424 u32 bit = BP_PATH(bp) ?
4425 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4426 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4427 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4428
4429 /* Set the bit */
4430 val |= bit;
4431 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4432 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4433 }
4434
4435 /*
4436 * Checks the RESET_IN_PROGRESS bit for the given engine.
4437 * should be run under rtnl lock
4438 */
4439 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4440 {
4441 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4442 u32 bit = engine ?
4443 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4444
4445 /* return false if bit is set */
4446 return (val & bit) ? false : true;
4447 }
4448
4449 /*
4450 * set pf load for the current pf.
4451 *
4452 * should be run under rtnl lock
4453 */
4454 void bnx2x_set_pf_load(struct bnx2x *bp)
4455 {
4456 u32 val1, val;
4457 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4458 BNX2X_PATH0_LOAD_CNT_MASK;
4459 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4460 BNX2X_PATH0_LOAD_CNT_SHIFT;
4461
4462 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4463 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4464
4465 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4466
4467 /* get the current counter value */
4468 val1 = (val & mask) >> shift;
4469
4470 /* set bit of that PF */
4471 val1 |= (1 << bp->pf_num);
4472
4473 /* clear the old value */
4474 val &= ~mask;
4475
4476 /* set the new one */
4477 val |= ((val1 << shift) & mask);
4478
4479 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4480 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4481 }
4482
4483 /**
4484 * bnx2x_clear_pf_load - clear pf load mark
4485 *
4486 * @bp: driver handle
4487 *
4488 * Should be run under rtnl lock.
4489 * Decrements the load counter for the current engine. Returns
4490 * whether other functions are still loaded
4491 */
4492 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4493 {
4494 u32 val1, val;
4495 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4496 BNX2X_PATH0_LOAD_CNT_MASK;
4497 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4498 BNX2X_PATH0_LOAD_CNT_SHIFT;
4499
4500 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4501 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4502 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4503
4504 /* get the current counter value */
4505 val1 = (val & mask) >> shift;
4506
4507 /* clear bit of that PF */
4508 val1 &= ~(1 << bp->pf_num);
4509
4510 /* clear the old value */
4511 val &= ~mask;
4512
4513 /* set the new one */
4514 val |= ((val1 << shift) & mask);
4515
4516 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4517 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4518 return val1 != 0;
4519 }
4520
4521 /*
4522 * Read the load status for the current engine.
4523 *
4524 * should be run under rtnl lock
4525 */
4526 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4527 {
4528 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4529 BNX2X_PATH0_LOAD_CNT_MASK);
4530 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4531 BNX2X_PATH0_LOAD_CNT_SHIFT);
4532 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4533
4534 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4535
4536 val = (val & mask) >> shift;
4537
4538 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4539 engine, val);
4540
4541 return val != 0;
4542 }
4543
4544 static void _print_parity(struct bnx2x *bp, u32 reg)
4545 {
4546 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4547 }
4548
4549 static void _print_next_block(int idx, const char *blk)
4550 {
4551 pr_cont("%s%s", idx ? ", " : "", blk);
4552 }
4553
4554 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4555 int *par_num, bool print)
4556 {
4557 u32 cur_bit;
4558 bool res;
4559 int i;
4560
4561 res = false;
4562
4563 for (i = 0; sig; i++) {
4564 cur_bit = (0x1UL << i);
4565 if (sig & cur_bit) {
4566 res |= true; /* Each bit is real error! */
4567
4568 if (print) {
4569 switch (cur_bit) {
4570 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4571 _print_next_block((*par_num)++, "BRB");
4572 _print_parity(bp,
4573 BRB1_REG_BRB1_PRTY_STS);
4574 break;
4575 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4576 _print_next_block((*par_num)++,
4577 "PARSER");
4578 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4579 break;
4580 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4581 _print_next_block((*par_num)++, "TSDM");
4582 _print_parity(bp,
4583 TSDM_REG_TSDM_PRTY_STS);
4584 break;
4585 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4586 _print_next_block((*par_num)++,
4587 "SEARCHER");
4588 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4589 break;
4590 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4591 _print_next_block((*par_num)++, "TCM");
4592 _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4593 break;
4594 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4595 _print_next_block((*par_num)++,
4596 "TSEMI");
4597 _print_parity(bp,
4598 TSEM_REG_TSEM_PRTY_STS_0);
4599 _print_parity(bp,
4600 TSEM_REG_TSEM_PRTY_STS_1);
4601 break;
4602 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4603 _print_next_block((*par_num)++, "XPB");
4604 _print_parity(bp, GRCBASE_XPB +
4605 PB_REG_PB_PRTY_STS);
4606 break;
4607 }
4608 }
4609
4610 /* Clear the bit */
4611 sig &= ~cur_bit;
4612 }
4613 }
4614
4615 return res;
4616 }
4617
4618 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4619 int *par_num, bool *global,
4620 bool print)
4621 {
4622 u32 cur_bit;
4623 bool res;
4624 int i;
4625
4626 res = false;
4627
4628 for (i = 0; sig; i++) {
4629 cur_bit = (0x1UL << i);
4630 if (sig & cur_bit) {
4631 res |= true; /* Each bit is real error! */
4632 switch (cur_bit) {
4633 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4634 if (print) {
4635 _print_next_block((*par_num)++, "PBF");
4636 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4637 }
4638 break;
4639 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4640 if (print) {
4641 _print_next_block((*par_num)++, "QM");
4642 _print_parity(bp, QM_REG_QM_PRTY_STS);
4643 }
4644 break;
4645 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4646 if (print) {
4647 _print_next_block((*par_num)++, "TM");
4648 _print_parity(bp, TM_REG_TM_PRTY_STS);
4649 }
4650 break;
4651 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4652 if (print) {
4653 _print_next_block((*par_num)++, "XSDM");
4654 _print_parity(bp,
4655 XSDM_REG_XSDM_PRTY_STS);
4656 }
4657 break;
4658 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4659 if (print) {
4660 _print_next_block((*par_num)++, "XCM");
4661 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4662 }
4663 break;
4664 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4665 if (print) {
4666 _print_next_block((*par_num)++,
4667 "XSEMI");
4668 _print_parity(bp,
4669 XSEM_REG_XSEM_PRTY_STS_0);
4670 _print_parity(bp,
4671 XSEM_REG_XSEM_PRTY_STS_1);
4672 }
4673 break;
4674 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4675 if (print) {
4676 _print_next_block((*par_num)++,
4677 "DOORBELLQ");
4678 _print_parity(bp,
4679 DORQ_REG_DORQ_PRTY_STS);
4680 }
4681 break;
4682 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4683 if (print) {
4684 _print_next_block((*par_num)++, "NIG");
4685 if (CHIP_IS_E1x(bp)) {
4686 _print_parity(bp,
4687 NIG_REG_NIG_PRTY_STS);
4688 } else {
4689 _print_parity(bp,
4690 NIG_REG_NIG_PRTY_STS_0);
4691 _print_parity(bp,
4692 NIG_REG_NIG_PRTY_STS_1);
4693 }
4694 }
4695 break;
4696 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4697 if (print)
4698 _print_next_block((*par_num)++,
4699 "VAUX PCI CORE");
4700 *global = true;
4701 break;
4702 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4703 if (print) {
4704 _print_next_block((*par_num)++,
4705 "DEBUG");
4706 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4707 }
4708 break;
4709 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4710 if (print) {
4711 _print_next_block((*par_num)++, "USDM");
4712 _print_parity(bp,
4713 USDM_REG_USDM_PRTY_STS);
4714 }
4715 break;
4716 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4717 if (print) {
4718 _print_next_block((*par_num)++, "UCM");
4719 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4720 }
4721 break;
4722 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4723 if (print) {
4724 _print_next_block((*par_num)++,
4725 "USEMI");
4726 _print_parity(bp,
4727 USEM_REG_USEM_PRTY_STS_0);
4728 _print_parity(bp,
4729 USEM_REG_USEM_PRTY_STS_1);
4730 }
4731 break;
4732 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4733 if (print) {
4734 _print_next_block((*par_num)++, "UPB");
4735 _print_parity(bp, GRCBASE_UPB +
4736 PB_REG_PB_PRTY_STS);
4737 }
4738 break;
4739 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4740 if (print) {
4741 _print_next_block((*par_num)++, "CSDM");
4742 _print_parity(bp,
4743 CSDM_REG_CSDM_PRTY_STS);
4744 }
4745 break;
4746 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4747 if (print) {
4748 _print_next_block((*par_num)++, "CCM");
4749 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4750 }
4751 break;
4752 }
4753
4754 /* Clear the bit */
4755 sig &= ~cur_bit;
4756 }
4757 }
4758
4759 return res;
4760 }
4761
4762 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4763 int *par_num, bool print)
4764 {
4765 u32 cur_bit;
4766 bool res;
4767 int i;
4768
4769 res = false;
4770
4771 for (i = 0; sig; i++) {
4772 cur_bit = (0x1UL << i);
4773 if (sig & cur_bit) {
4774 res = true; /* Each bit is real error! */
4775 if (print) {
4776 switch (cur_bit) {
4777 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4778 _print_next_block((*par_num)++,
4779 "CSEMI");
4780 _print_parity(bp,
4781 CSEM_REG_CSEM_PRTY_STS_0);
4782 _print_parity(bp,
4783 CSEM_REG_CSEM_PRTY_STS_1);
4784 break;
4785 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4786 _print_next_block((*par_num)++, "PXP");
4787 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4788 _print_parity(bp,
4789 PXP2_REG_PXP2_PRTY_STS_0);
4790 _print_parity(bp,
4791 PXP2_REG_PXP2_PRTY_STS_1);
4792 break;
4793 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4794 _print_next_block((*par_num)++,
4795 "PXPPCICLOCKCLIENT");
4796 break;
4797 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4798 _print_next_block((*par_num)++, "CFC");
4799 _print_parity(bp,
4800 CFC_REG_CFC_PRTY_STS);
4801 break;
4802 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4803 _print_next_block((*par_num)++, "CDU");
4804 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4805 break;
4806 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4807 _print_next_block((*par_num)++, "DMAE");
4808 _print_parity(bp,
4809 DMAE_REG_DMAE_PRTY_STS);
4810 break;
4811 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4812 _print_next_block((*par_num)++, "IGU");
4813 if (CHIP_IS_E1x(bp))
4814 _print_parity(bp,
4815 HC_REG_HC_PRTY_STS);
4816 else
4817 _print_parity(bp,
4818 IGU_REG_IGU_PRTY_STS);
4819 break;
4820 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4821 _print_next_block((*par_num)++, "MISC");
4822 _print_parity(bp,
4823 MISC_REG_MISC_PRTY_STS);
4824 break;
4825 }
4826 }
4827
4828 /* Clear the bit */
4829 sig &= ~cur_bit;
4830 }
4831 }
4832
4833 return res;
4834 }
4835
4836 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4837 int *par_num, bool *global,
4838 bool print)
4839 {
4840 bool res = false;
4841 u32 cur_bit;
4842 int i;
4843
4844 for (i = 0; sig; i++) {
4845 cur_bit = (0x1UL << i);
4846 if (sig & cur_bit) {
4847 switch (cur_bit) {
4848 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4849 if (print)
4850 _print_next_block((*par_num)++,
4851 "MCP ROM");
4852 *global = true;
4853 res = true;
4854 break;
4855 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4856 if (print)
4857 _print_next_block((*par_num)++,
4858 "MCP UMP RX");
4859 *global = true;
4860 res = true;
4861 break;
4862 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4863 if (print)
4864 _print_next_block((*par_num)++,
4865 "MCP UMP TX");
4866 *global = true;
4867 res = true;
4868 break;
4869 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4870 if (print)
4871 _print_next_block((*par_num)++,
4872 "MCP SCPAD");
4873 /* clear latched SCPAD PATIRY from MCP */
4874 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4875 1UL << 10);
4876 break;
4877 }
4878
4879 /* Clear the bit */
4880 sig &= ~cur_bit;
4881 }
4882 }
4883
4884 return res;
4885 }
4886
4887 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4888 int *par_num, bool print)
4889 {
4890 u32 cur_bit;
4891 bool res;
4892 int i;
4893
4894 res = false;
4895
4896 for (i = 0; sig; i++) {
4897 cur_bit = (0x1UL << i);
4898 if (sig & cur_bit) {
4899 res = true; /* Each bit is real error! */
4900 if (print) {
4901 switch (cur_bit) {
4902 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4903 _print_next_block((*par_num)++,
4904 "PGLUE_B");
4905 _print_parity(bp,
4906 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4907 break;
4908 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4909 _print_next_block((*par_num)++, "ATC");
4910 _print_parity(bp,
4911 ATC_REG_ATC_PRTY_STS);
4912 break;
4913 }
4914 }
4915 /* Clear the bit */
4916 sig &= ~cur_bit;
4917 }
4918 }
4919
4920 return res;
4921 }
4922
4923 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4924 u32 *sig)
4925 {
4926 bool res = false;
4927
4928 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4929 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4930 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4931 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4932 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4933 int par_num = 0;
4934 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4935 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4936 sig[0] & HW_PRTY_ASSERT_SET_0,
4937 sig[1] & HW_PRTY_ASSERT_SET_1,
4938 sig[2] & HW_PRTY_ASSERT_SET_2,
4939 sig[3] & HW_PRTY_ASSERT_SET_3,
4940 sig[4] & HW_PRTY_ASSERT_SET_4);
4941 if (print)
4942 netdev_err(bp->dev,
4943 "Parity errors detected in blocks: ");
4944 res |= bnx2x_check_blocks_with_parity0(bp,
4945 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4946 res |= bnx2x_check_blocks_with_parity1(bp,
4947 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4948 res |= bnx2x_check_blocks_with_parity2(bp,
4949 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4950 res |= bnx2x_check_blocks_with_parity3(bp,
4951 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4952 res |= bnx2x_check_blocks_with_parity4(bp,
4953 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4954
4955 if (print)
4956 pr_cont("\n");
4957 }
4958
4959 return res;
4960 }
4961
4962 /**
4963 * bnx2x_chk_parity_attn - checks for parity attentions.
4964 *
4965 * @bp: driver handle
4966 * @global: true if there was a global attention
4967 * @print: show parity attention in syslog
4968 */
4969 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4970 {
4971 struct attn_route attn = { {0} };
4972 int port = BP_PORT(bp);
4973
4974 attn.sig[0] = REG_RD(bp,
4975 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4976 port*4);
4977 attn.sig[1] = REG_RD(bp,
4978 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4979 port*4);
4980 attn.sig[2] = REG_RD(bp,
4981 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4982 port*4);
4983 attn.sig[3] = REG_RD(bp,
4984 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4985 port*4);
4986 /* Since MCP attentions can't be disabled inside the block, we need to
4987 * read AEU registers to see whether they're currently disabled
4988 */
4989 attn.sig[3] &= ((REG_RD(bp,
4990 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4991 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4992 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4993 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4994
4995 if (!CHIP_IS_E1x(bp))
4996 attn.sig[4] = REG_RD(bp,
4997 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4998 port*4);
4999
5000 return bnx2x_parity_attn(bp, global, print, attn.sig);
5001 }
5002
5003 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5004 {
5005 u32 val;
5006 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5007
5008 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5009 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5010 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5011 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5012 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5013 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5014 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5015 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5016 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5017 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5018 if (val &
5019 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5020 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5021 if (val &
5022 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5023 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5024 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5025 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5026 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5027 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5028 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5029 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5030 }
5031 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5032 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5033 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5034 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5035 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5036 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5037 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5038 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5039 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5040 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5041 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5042 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5043 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5044 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5045 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5046 }
5047
5048 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5049 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5050 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5051 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5052 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5053 }
5054 }
5055
5056 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5057 {
5058 struct attn_route attn, *group_mask;
5059 int port = BP_PORT(bp);
5060 int index;
5061 u32 reg_addr;
5062 u32 val;
5063 u32 aeu_mask;
5064 bool global = false;
5065
5066 /* need to take HW lock because MCP or other port might also
5067 try to handle this event */
5068 bnx2x_acquire_alr(bp);
5069
5070 if (bnx2x_chk_parity_attn(bp, &global, true)) {
5071 #ifndef BNX2X_STOP_ON_ERROR
5072 bp->recovery_state = BNX2X_RECOVERY_INIT;
5073 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5074 /* Disable HW interrupts */
5075 bnx2x_int_disable(bp);
5076 /* In case of parity errors don't handle attentions so that
5077 * other function would "see" parity errors.
5078 */
5079 #else
5080 bnx2x_panic();
5081 #endif
5082 bnx2x_release_alr(bp);
5083 return;
5084 }
5085
5086 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5087 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5088 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5089 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5090 if (!CHIP_IS_E1x(bp))
5091 attn.sig[4] =
5092 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5093 else
5094 attn.sig[4] = 0;
5095
5096 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5097 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5098
5099 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5100 if (deasserted & (1 << index)) {
5101 group_mask = &bp->attn_group[index];
5102
5103 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5104 index,
5105 group_mask->sig[0], group_mask->sig[1],
5106 group_mask->sig[2], group_mask->sig[3],
5107 group_mask->sig[4]);
5108
5109 bnx2x_attn_int_deasserted4(bp,
5110 attn.sig[4] & group_mask->sig[4]);
5111 bnx2x_attn_int_deasserted3(bp,
5112 attn.sig[3] & group_mask->sig[3]);
5113 bnx2x_attn_int_deasserted1(bp,
5114 attn.sig[1] & group_mask->sig[1]);
5115 bnx2x_attn_int_deasserted2(bp,
5116 attn.sig[2] & group_mask->sig[2]);
5117 bnx2x_attn_int_deasserted0(bp,
5118 attn.sig[0] & group_mask->sig[0]);
5119 }
5120 }
5121
5122 bnx2x_release_alr(bp);
5123
5124 if (bp->common.int_block == INT_BLOCK_HC)
5125 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5126 COMMAND_REG_ATTN_BITS_CLR);
5127 else
5128 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5129
5130 val = ~deasserted;
5131 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5132 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5133 REG_WR(bp, reg_addr, val);
5134
5135 if (~bp->attn_state & deasserted)
5136 BNX2X_ERR("IGU ERROR\n");
5137
5138 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5139 MISC_REG_AEU_MASK_ATTN_FUNC_0;
5140
5141 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5142 aeu_mask = REG_RD(bp, reg_addr);
5143
5144 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
5145 aeu_mask, deasserted);
5146 aeu_mask |= (deasserted & 0x3ff);
5147 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5148
5149 REG_WR(bp, reg_addr, aeu_mask);
5150 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5151
5152 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5153 bp->attn_state &= ~deasserted;
5154 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5155 }
5156
5157 static void bnx2x_attn_int(struct bnx2x *bp)
5158 {
5159 /* read local copy of bits */
5160 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5161 attn_bits);
5162 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5163 attn_bits_ack);
5164 u32 attn_state = bp->attn_state;
5165
5166 /* look for changed bits */
5167 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
5168 u32 deasserted = ~attn_bits & attn_ack & attn_state;
5169
5170 DP(NETIF_MSG_HW,
5171 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
5172 attn_bits, attn_ack, asserted, deasserted);
5173
5174 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5175 BNX2X_ERR("BAD attention state\n");
5176
5177 /* handle bits that were raised */
5178 if (asserted)
5179 bnx2x_attn_int_asserted(bp, asserted);
5180
5181 if (deasserted)
5182 bnx2x_attn_int_deasserted(bp, deasserted);
5183 }
5184
5185 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5186 u16 index, u8 op, u8 update)
5187 {
5188 u32 igu_addr = bp->igu_base_addr;
5189 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5190 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5191 igu_addr);
5192 }
5193
5194 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5195 {
5196 /* No memory barriers */
5197 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5198 mmiowb(); /* keep prod updates ordered */
5199 }
5200
5201 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5202 union event_ring_elem *elem)
5203 {
5204 u8 err = elem->message.error;
5205
5206 if (!bp->cnic_eth_dev.starting_cid ||
5207 (cid < bp->cnic_eth_dev.starting_cid &&
5208 cid != bp->cnic_eth_dev.iscsi_l2_cid))
5209 return 1;
5210
5211 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5212
5213 if (unlikely(err)) {
5214
5215 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5216 cid);
5217 bnx2x_panic_dump(bp, false);
5218 }
5219 bnx2x_cnic_cfc_comp(bp, cid, err);
5220 return 0;
5221 }
5222
5223 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5224 {
5225 struct bnx2x_mcast_ramrod_params rparam;
5226 int rc;
5227
5228 memset(&rparam, 0, sizeof(rparam));
5229
5230 rparam.mcast_obj = &bp->mcast_obj;
5231
5232 netif_addr_lock_bh(bp->dev);
5233
5234 /* Clear pending state for the last command */
5235 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5236
5237 /* If there are pending mcast commands - send them */
5238 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5239 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5240 if (rc < 0)
5241 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5242 rc);
5243 }
5244
5245 netif_addr_unlock_bh(bp->dev);
5246 }
5247
5248 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5249 union event_ring_elem *elem)
5250 {
5251 unsigned long ramrod_flags = 0;
5252 int rc = 0;
5253 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5254 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5255
5256 /* Always push next commands out, don't wait here */
5257 __set_bit(RAMROD_CONT, &ramrod_flags);
5258
5259 switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5260 >> BNX2X_SWCID_SHIFT) {
5261 case BNX2X_FILTER_MAC_PENDING:
5262 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5263 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5264 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5265 else
5266 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5267
5268 break;
5269 case BNX2X_FILTER_MCAST_PENDING:
5270 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5271 /* This is only relevant for 57710 where multicast MACs are
5272 * configured as unicast MACs using the same ramrod.
5273 */
5274 bnx2x_handle_mcast_eqe(bp);
5275 return;
5276 default:
5277 BNX2X_ERR("Unsupported classification command: %d\n",
5278 elem->message.data.eth_event.echo);
5279 return;
5280 }
5281
5282 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5283
5284 if (rc < 0)
5285 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5286 else if (rc > 0)
5287 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5288 }
5289
5290 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5291
5292 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5293 {
5294 netif_addr_lock_bh(bp->dev);
5295
5296 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5297
5298 /* Send rx_mode command again if was requested */
5299 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5300 bnx2x_set_storm_rx_mode(bp);
5301 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5302 &bp->sp_state))
5303 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5304 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5305 &bp->sp_state))
5306 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5307
5308 netif_addr_unlock_bh(bp->dev);
5309 }
5310
5311 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5312 union event_ring_elem *elem)
5313 {
5314 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5315 DP(BNX2X_MSG_SP,
5316 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5317 elem->message.data.vif_list_event.func_bit_map);
5318 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5319 elem->message.data.vif_list_event.func_bit_map);
5320 } else if (elem->message.data.vif_list_event.echo ==
5321 VIF_LIST_RULE_SET) {
5322 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5323 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5324 }
5325 }
5326
5327 /* called with rtnl_lock */
5328 static void bnx2x_after_function_update(struct bnx2x *bp)
5329 {
5330 int q, rc;
5331 struct bnx2x_fastpath *fp;
5332 struct bnx2x_queue_state_params queue_params = {NULL};
5333 struct bnx2x_queue_update_params *q_update_params =
5334 &queue_params.params.update;
5335
5336 /* Send Q update command with afex vlan removal values for all Qs */
5337 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5338
5339 /* set silent vlan removal values according to vlan mode */
5340 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5341 &q_update_params->update_flags);
5342 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5343 &q_update_params->update_flags);
5344 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5345
5346 /* in access mode mark mask and value are 0 to strip all vlans */
5347 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5348 q_update_params->silent_removal_value = 0;
5349 q_update_params->silent_removal_mask = 0;
5350 } else {
5351 q_update_params->silent_removal_value =
5352 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5353 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5354 }
5355
5356 for_each_eth_queue(bp, q) {
5357 /* Set the appropriate Queue object */
5358 fp = &bp->fp[q];
5359 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5360
5361 /* send the ramrod */
5362 rc = bnx2x_queue_state_change(bp, &queue_params);
5363 if (rc < 0)
5364 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5365 q);
5366 }
5367
5368 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5369 fp = &bp->fp[FCOE_IDX(bp)];
5370 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5371
5372 /* clear pending completion bit */
5373 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5374
5375 /* mark latest Q bit */
5376 smp_mb__before_atomic();
5377 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5378 smp_mb__after_atomic();
5379
5380 /* send Q update ramrod for FCoE Q */
5381 rc = bnx2x_queue_state_change(bp, &queue_params);
5382 if (rc < 0)
5383 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5384 q);
5385 } else {
5386 /* If no FCoE ring - ACK MCP now */
5387 bnx2x_link_report(bp);
5388 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5389 }
5390 }
5391
5392 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5393 struct bnx2x *bp, u32 cid)
5394 {
5395 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5396
5397 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5398 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5399 else
5400 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5401 }
5402
5403 static void bnx2x_eq_int(struct bnx2x *bp)
5404 {
5405 u16 hw_cons, sw_cons, sw_prod;
5406 union event_ring_elem *elem;
5407 u8 echo;
5408 u32 cid;
5409 u8 opcode;
5410 int rc, spqe_cnt = 0;
5411 struct bnx2x_queue_sp_obj *q_obj;
5412 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5413 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5414
5415 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5416
5417 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5418 * when we get the next-page we need to adjust so the loop
5419 * condition below will be met. The next element is the size of a
5420 * regular element and hence incrementing by 1
5421 */
5422 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5423 hw_cons++;
5424
5425 /* This function may never run in parallel with itself for a
5426 * specific bp, thus there is no need in "paired" read memory
5427 * barrier here.
5428 */
5429 sw_cons = bp->eq_cons;
5430 sw_prod = bp->eq_prod;
5431
5432 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5433 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5434
5435 for (; sw_cons != hw_cons;
5436 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5437
5438 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5439
5440 rc = bnx2x_iov_eq_sp_event(bp, elem);
5441 if (!rc) {
5442 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5443 rc);
5444 goto next_spqe;
5445 }
5446
5447 /* elem CID originates from FW; actually LE */
5448 cid = SW_CID((__force __le32)
5449 elem->message.data.cfc_del_event.cid);
5450 opcode = elem->message.opcode;
5451
5452 /* handle eq element */
5453 switch (opcode) {
5454 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5455 bnx2x_vf_mbx_schedule(bp,
5456 &elem->message.data.vf_pf_event);
5457 continue;
5458
5459 case EVENT_RING_OPCODE_STAT_QUERY:
5460 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5461 "got statistics comp event %d\n",
5462 bp->stats_comp++);
5463 /* nothing to do with stats comp */
5464 goto next_spqe;
5465
5466 case EVENT_RING_OPCODE_CFC_DEL:
5467 /* handle according to cid range */
5468 /*
5469 * we may want to verify here that the bp state is
5470 * HALTING
5471 */
5472 DP(BNX2X_MSG_SP,
5473 "got delete ramrod for MULTI[%d]\n", cid);
5474
5475 if (CNIC_LOADED(bp) &&
5476 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5477 goto next_spqe;
5478
5479 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5480
5481 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5482 break;
5483
5484 goto next_spqe;
5485
5486 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5487 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5488 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5489 if (f_obj->complete_cmd(bp, f_obj,
5490 BNX2X_F_CMD_TX_STOP))
5491 break;
5492 goto next_spqe;
5493
5494 case EVENT_RING_OPCODE_START_TRAFFIC:
5495 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5496 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5497 if (f_obj->complete_cmd(bp, f_obj,
5498 BNX2X_F_CMD_TX_START))
5499 break;
5500 goto next_spqe;
5501
5502 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5503 echo = elem->message.data.function_update_event.echo;
5504 if (echo == SWITCH_UPDATE) {
5505 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5506 "got FUNC_SWITCH_UPDATE ramrod\n");
5507 if (f_obj->complete_cmd(
5508 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5509 break;
5510
5511 } else {
5512 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5513
5514 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5515 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5516 f_obj->complete_cmd(bp, f_obj,
5517 BNX2X_F_CMD_AFEX_UPDATE);
5518
5519 /* We will perform the Queues update from
5520 * sp_rtnl task as all Queue SP operations
5521 * should run under rtnl_lock.
5522 */
5523 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5524 }
5525
5526 goto next_spqe;
5527
5528 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5529 f_obj->complete_cmd(bp, f_obj,
5530 BNX2X_F_CMD_AFEX_VIFLISTS);
5531 bnx2x_after_afex_vif_lists(bp, elem);
5532 goto next_spqe;
5533 case EVENT_RING_OPCODE_FUNCTION_START:
5534 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5535 "got FUNC_START ramrod\n");
5536 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5537 break;
5538
5539 goto next_spqe;
5540
5541 case EVENT_RING_OPCODE_FUNCTION_STOP:
5542 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5543 "got FUNC_STOP ramrod\n");
5544 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5545 break;
5546
5547 goto next_spqe;
5548
5549 case EVENT_RING_OPCODE_SET_TIMESYNC:
5550 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5551 "got set_timesync ramrod completion\n");
5552 if (f_obj->complete_cmd(bp, f_obj,
5553 BNX2X_F_CMD_SET_TIMESYNC))
5554 break;
5555 goto next_spqe;
5556 }
5557
5558 switch (opcode | bp->state) {
5559 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5560 BNX2X_STATE_OPEN):
5561 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5562 BNX2X_STATE_OPENING_WAIT4_PORT):
5563 cid = elem->message.data.eth_event.echo &
5564 BNX2X_SWCID_MASK;
5565 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5566 cid);
5567 rss_raw->clear_pending(rss_raw);
5568 break;
5569
5570 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5571 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5572 case (EVENT_RING_OPCODE_SET_MAC |
5573 BNX2X_STATE_CLOSING_WAIT4_HALT):
5574 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5575 BNX2X_STATE_OPEN):
5576 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5577 BNX2X_STATE_DIAG):
5578 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5579 BNX2X_STATE_CLOSING_WAIT4_HALT):
5580 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5581 bnx2x_handle_classification_eqe(bp, elem);
5582 break;
5583
5584 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5585 BNX2X_STATE_OPEN):
5586 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5587 BNX2X_STATE_DIAG):
5588 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5589 BNX2X_STATE_CLOSING_WAIT4_HALT):
5590 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5591 bnx2x_handle_mcast_eqe(bp);
5592 break;
5593
5594 case (EVENT_RING_OPCODE_FILTERS_RULES |
5595 BNX2X_STATE_OPEN):
5596 case (EVENT_RING_OPCODE_FILTERS_RULES |
5597 BNX2X_STATE_DIAG):
5598 case (EVENT_RING_OPCODE_FILTERS_RULES |
5599 BNX2X_STATE_CLOSING_WAIT4_HALT):
5600 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5601 bnx2x_handle_rx_mode_eqe(bp);
5602 break;
5603 default:
5604 /* unknown event log error and continue */
5605 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5606 elem->message.opcode, bp->state);
5607 }
5608 next_spqe:
5609 spqe_cnt++;
5610 } /* for */
5611
5612 smp_mb__before_atomic();
5613 atomic_add(spqe_cnt, &bp->eq_spq_left);
5614
5615 bp->eq_cons = sw_cons;
5616 bp->eq_prod = sw_prod;
5617 /* Make sure that above mem writes were issued towards the memory */
5618 smp_wmb();
5619
5620 /* update producer */
5621 bnx2x_update_eq_prod(bp, bp->eq_prod);
5622 }
5623
5624 static void bnx2x_sp_task(struct work_struct *work)
5625 {
5626 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5627
5628 DP(BNX2X_MSG_SP, "sp task invoked\n");
5629
5630 /* make sure the atomic interrupt_occurred has been written */
5631 smp_rmb();
5632 if (atomic_read(&bp->interrupt_occurred)) {
5633
5634 /* what work needs to be performed? */
5635 u16 status = bnx2x_update_dsb_idx(bp);
5636
5637 DP(BNX2X_MSG_SP, "status %x\n", status);
5638 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5639 atomic_set(&bp->interrupt_occurred, 0);
5640
5641 /* HW attentions */
5642 if (status & BNX2X_DEF_SB_ATT_IDX) {
5643 bnx2x_attn_int(bp);
5644 status &= ~BNX2X_DEF_SB_ATT_IDX;
5645 }
5646
5647 /* SP events: STAT_QUERY and others */
5648 if (status & BNX2X_DEF_SB_IDX) {
5649 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5650
5651 if (FCOE_INIT(bp) &&
5652 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5653 /* Prevent local bottom-halves from running as
5654 * we are going to change the local NAPI list.
5655 */
5656 local_bh_disable();
5657 napi_schedule(&bnx2x_fcoe(bp, napi));
5658 local_bh_enable();
5659 }
5660
5661 /* Handle EQ completions */
5662 bnx2x_eq_int(bp);
5663 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5664 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5665
5666 status &= ~BNX2X_DEF_SB_IDX;
5667 }
5668
5669 /* if status is non zero then perhaps something went wrong */
5670 if (unlikely(status))
5671 DP(BNX2X_MSG_SP,
5672 "got an unknown interrupt! (status 0x%x)\n", status);
5673
5674 /* ack status block only if something was actually handled */
5675 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5676 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5677 }
5678
5679 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5680 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5681 &bp->sp_state)) {
5682 bnx2x_link_report(bp);
5683 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5684 }
5685 }
5686
5687 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5688 {
5689 struct net_device *dev = dev_instance;
5690 struct bnx2x *bp = netdev_priv(dev);
5691
5692 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5693 IGU_INT_DISABLE, 0);
5694
5695 #ifdef BNX2X_STOP_ON_ERROR
5696 if (unlikely(bp->panic))
5697 return IRQ_HANDLED;
5698 #endif
5699
5700 if (CNIC_LOADED(bp)) {
5701 struct cnic_ops *c_ops;
5702
5703 rcu_read_lock();
5704 c_ops = rcu_dereference(bp->cnic_ops);
5705 if (c_ops)
5706 c_ops->cnic_handler(bp->cnic_data, NULL);
5707 rcu_read_unlock();
5708 }
5709
5710 /* schedule sp task to perform default status block work, ack
5711 * attentions and enable interrupts.
5712 */
5713 bnx2x_schedule_sp_task(bp);
5714
5715 return IRQ_HANDLED;
5716 }
5717
5718 /* end of slow path */
5719
5720 void bnx2x_drv_pulse(struct bnx2x *bp)
5721 {
5722 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5723 bp->fw_drv_pulse_wr_seq);
5724 }
5725
5726 static void bnx2x_timer(unsigned long data)
5727 {
5728 struct bnx2x *bp = (struct bnx2x *) data;
5729
5730 if (!netif_running(bp->dev))
5731 return;
5732
5733 if (IS_PF(bp) &&
5734 !BP_NOMCP(bp)) {
5735 int mb_idx = BP_FW_MB_IDX(bp);
5736 u16 drv_pulse;
5737 u16 mcp_pulse;
5738
5739 ++bp->fw_drv_pulse_wr_seq;
5740 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5741 drv_pulse = bp->fw_drv_pulse_wr_seq;
5742 bnx2x_drv_pulse(bp);
5743
5744 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5745 MCP_PULSE_SEQ_MASK);
5746 /* The delta between driver pulse and mcp response
5747 * should not get too big. If the MFW is more than 5 pulses
5748 * behind, we should worry about it enough to generate an error
5749 * log.
5750 */
5751 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5752 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5753 drv_pulse, mcp_pulse);
5754 }
5755
5756 if (bp->state == BNX2X_STATE_OPEN)
5757 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5758
5759 /* sample pf vf bulletin board for new posts from pf */
5760 if (IS_VF(bp))
5761 bnx2x_timer_sriov(bp);
5762
5763 mod_timer(&bp->timer, jiffies + bp->current_interval);
5764 }
5765
5766 /* end of Statistics */
5767
5768 /* nic init */
5769
5770 /*
5771 * nic init service functions
5772 */
5773
5774 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5775 {
5776 u32 i;
5777 if (!(len%4) && !(addr%4))
5778 for (i = 0; i < len; i += 4)
5779 REG_WR(bp, addr + i, fill);
5780 else
5781 for (i = 0; i < len; i++)
5782 REG_WR8(bp, addr + i, fill);
5783 }
5784
5785 /* helper: writes FP SP data to FW - data_size in dwords */
5786 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5787 int fw_sb_id,
5788 u32 *sb_data_p,
5789 u32 data_size)
5790 {
5791 int index;
5792 for (index = 0; index < data_size; index++)
5793 REG_WR(bp, BAR_CSTRORM_INTMEM +
5794 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5795 sizeof(u32)*index,
5796 *(sb_data_p + index));
5797 }
5798
5799 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5800 {
5801 u32 *sb_data_p;
5802 u32 data_size = 0;
5803 struct hc_status_block_data_e2 sb_data_e2;
5804 struct hc_status_block_data_e1x sb_data_e1x;
5805
5806 /* disable the function first */
5807 if (!CHIP_IS_E1x(bp)) {
5808 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5809 sb_data_e2.common.state = SB_DISABLED;
5810 sb_data_e2.common.p_func.vf_valid = false;
5811 sb_data_p = (u32 *)&sb_data_e2;
5812 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5813 } else {
5814 memset(&sb_data_e1x, 0,
5815 sizeof(struct hc_status_block_data_e1x));
5816 sb_data_e1x.common.state = SB_DISABLED;
5817 sb_data_e1x.common.p_func.vf_valid = false;
5818 sb_data_p = (u32 *)&sb_data_e1x;
5819 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5820 }
5821 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5822
5823 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5824 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5825 CSTORM_STATUS_BLOCK_SIZE);
5826 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5827 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5828 CSTORM_SYNC_BLOCK_SIZE);
5829 }
5830
5831 /* helper: writes SP SB data to FW */
5832 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5833 struct hc_sp_status_block_data *sp_sb_data)
5834 {
5835 int func = BP_FUNC(bp);
5836 int i;
5837 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5838 REG_WR(bp, BAR_CSTRORM_INTMEM +
5839 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5840 i*sizeof(u32),
5841 *((u32 *)sp_sb_data + i));
5842 }
5843
5844 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5845 {
5846 int func = BP_FUNC(bp);
5847 struct hc_sp_status_block_data sp_sb_data;
5848 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5849
5850 sp_sb_data.state = SB_DISABLED;
5851 sp_sb_data.p_func.vf_valid = false;
5852
5853 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5854
5855 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5856 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5857 CSTORM_SP_STATUS_BLOCK_SIZE);
5858 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5859 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5860 CSTORM_SP_SYNC_BLOCK_SIZE);
5861 }
5862
5863 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5864 int igu_sb_id, int igu_seg_id)
5865 {
5866 hc_sm->igu_sb_id = igu_sb_id;
5867 hc_sm->igu_seg_id = igu_seg_id;
5868 hc_sm->timer_value = 0xFF;
5869 hc_sm->time_to_expire = 0xFFFFFFFF;
5870 }
5871
5872 /* allocates state machine ids. */
5873 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5874 {
5875 /* zero out state machine indices */
5876 /* rx indices */
5877 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5878
5879 /* tx indices */
5880 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5881 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5882 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5883 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5884
5885 /* map indices */
5886 /* rx indices */
5887 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5888 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5889
5890 /* tx indices */
5891 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5892 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5893 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5894 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5895 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5896 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5897 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5898 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5899 }
5900
5901 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5902 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5903 {
5904 int igu_seg_id;
5905
5906 struct hc_status_block_data_e2 sb_data_e2;
5907 struct hc_status_block_data_e1x sb_data_e1x;
5908 struct hc_status_block_sm *hc_sm_p;
5909 int data_size;
5910 u32 *sb_data_p;
5911
5912 if (CHIP_INT_MODE_IS_BC(bp))
5913 igu_seg_id = HC_SEG_ACCESS_NORM;
5914 else
5915 igu_seg_id = IGU_SEG_ACCESS_NORM;
5916
5917 bnx2x_zero_fp_sb(bp, fw_sb_id);
5918
5919 if (!CHIP_IS_E1x(bp)) {
5920 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5921 sb_data_e2.common.state = SB_ENABLED;
5922 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5923 sb_data_e2.common.p_func.vf_id = vfid;
5924 sb_data_e2.common.p_func.vf_valid = vf_valid;
5925 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5926 sb_data_e2.common.same_igu_sb_1b = true;
5927 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5928 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5929 hc_sm_p = sb_data_e2.common.state_machine;
5930 sb_data_p = (u32 *)&sb_data_e2;
5931 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5932 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5933 } else {
5934 memset(&sb_data_e1x, 0,
5935 sizeof(struct hc_status_block_data_e1x));
5936 sb_data_e1x.common.state = SB_ENABLED;
5937 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5938 sb_data_e1x.common.p_func.vf_id = 0xff;
5939 sb_data_e1x.common.p_func.vf_valid = false;
5940 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5941 sb_data_e1x.common.same_igu_sb_1b = true;
5942 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5943 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5944 hc_sm_p = sb_data_e1x.common.state_machine;
5945 sb_data_p = (u32 *)&sb_data_e1x;
5946 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5947 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5948 }
5949
5950 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5951 igu_sb_id, igu_seg_id);
5952 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5953 igu_sb_id, igu_seg_id);
5954
5955 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5956
5957 /* write indices to HW - PCI guarantees endianity of regpairs */
5958 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5959 }
5960
5961 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5962 u16 tx_usec, u16 rx_usec)
5963 {
5964 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5965 false, rx_usec);
5966 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5967 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5968 tx_usec);
5969 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5970 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5971 tx_usec);
5972 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5973 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5974 tx_usec);
5975 }
5976
5977 static void bnx2x_init_def_sb(struct bnx2x *bp)
5978 {
5979 struct host_sp_status_block *def_sb = bp->def_status_blk;
5980 dma_addr_t mapping = bp->def_status_blk_mapping;
5981 int igu_sp_sb_index;
5982 int igu_seg_id;
5983 int port = BP_PORT(bp);
5984 int func = BP_FUNC(bp);
5985 int reg_offset, reg_offset_en5;
5986 u64 section;
5987 int index;
5988 struct hc_sp_status_block_data sp_sb_data;
5989 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5990
5991 if (CHIP_INT_MODE_IS_BC(bp)) {
5992 igu_sp_sb_index = DEF_SB_IGU_ID;
5993 igu_seg_id = HC_SEG_ACCESS_DEF;
5994 } else {
5995 igu_sp_sb_index = bp->igu_dsb_id;
5996 igu_seg_id = IGU_SEG_ACCESS_DEF;
5997 }
5998
5999 /* ATTN */
6000 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6001 atten_status_block);
6002 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6003
6004 bp->attn_state = 0;
6005
6006 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6007 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6008 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6009 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6010 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6011 int sindex;
6012 /* take care of sig[0]..sig[4] */
6013 for (sindex = 0; sindex < 4; sindex++)
6014 bp->attn_group[index].sig[sindex] =
6015 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6016
6017 if (!CHIP_IS_E1x(bp))
6018 /*
6019 * enable5 is separate from the rest of the registers,
6020 * and therefore the address skip is 4
6021 * and not 16 between the different groups
6022 */
6023 bp->attn_group[index].sig[4] = REG_RD(bp,
6024 reg_offset_en5 + 0x4*index);
6025 else
6026 bp->attn_group[index].sig[4] = 0;
6027 }
6028
6029 if (bp->common.int_block == INT_BLOCK_HC) {
6030 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6031 HC_REG_ATTN_MSG0_ADDR_L);
6032
6033 REG_WR(bp, reg_offset, U64_LO(section));
6034 REG_WR(bp, reg_offset + 4, U64_HI(section));
6035 } else if (!CHIP_IS_E1x(bp)) {
6036 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6037 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6038 }
6039
6040 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6041 sp_sb);
6042
6043 bnx2x_zero_sp_sb(bp);
6044
6045 /* PCI guarantees endianity of regpairs */
6046 sp_sb_data.state = SB_ENABLED;
6047 sp_sb_data.host_sb_addr.lo = U64_LO(section);
6048 sp_sb_data.host_sb_addr.hi = U64_HI(section);
6049 sp_sb_data.igu_sb_id = igu_sp_sb_index;
6050 sp_sb_data.igu_seg_id = igu_seg_id;
6051 sp_sb_data.p_func.pf_id = func;
6052 sp_sb_data.p_func.vnic_id = BP_VN(bp);
6053 sp_sb_data.p_func.vf_id = 0xff;
6054
6055 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6056
6057 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6058 }
6059
6060 void bnx2x_update_coalesce(struct bnx2x *bp)
6061 {
6062 int i;
6063
6064 for_each_eth_queue(bp, i)
6065 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6066 bp->tx_ticks, bp->rx_ticks);
6067 }
6068
6069 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6070 {
6071 spin_lock_init(&bp->spq_lock);
6072 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6073
6074 bp->spq_prod_idx = 0;
6075 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6076 bp->spq_prod_bd = bp->spq;
6077 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6078 }
6079
6080 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6081 {
6082 int i;
6083 for (i = 1; i <= NUM_EQ_PAGES; i++) {
6084 union event_ring_elem *elem =
6085 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6086
6087 elem->next_page.addr.hi =
6088 cpu_to_le32(U64_HI(bp->eq_mapping +
6089 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6090 elem->next_page.addr.lo =
6091 cpu_to_le32(U64_LO(bp->eq_mapping +
6092 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6093 }
6094 bp->eq_cons = 0;
6095 bp->eq_prod = NUM_EQ_DESC;
6096 bp->eq_cons_sb = BNX2X_EQ_INDEX;
6097 /* we want a warning message before it gets wrought... */
6098 atomic_set(&bp->eq_spq_left,
6099 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6100 }
6101
6102 /* called with netif_addr_lock_bh() */
6103 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6104 unsigned long rx_mode_flags,
6105 unsigned long rx_accept_flags,
6106 unsigned long tx_accept_flags,
6107 unsigned long ramrod_flags)
6108 {
6109 struct bnx2x_rx_mode_ramrod_params ramrod_param;
6110 int rc;
6111
6112 memset(&ramrod_param, 0, sizeof(ramrod_param));
6113
6114 /* Prepare ramrod parameters */
6115 ramrod_param.cid = 0;
6116 ramrod_param.cl_id = cl_id;
6117 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6118 ramrod_param.func_id = BP_FUNC(bp);
6119
6120 ramrod_param.pstate = &bp->sp_state;
6121 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6122
6123 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6124 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6125
6126 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6127
6128 ramrod_param.ramrod_flags = ramrod_flags;
6129 ramrod_param.rx_mode_flags = rx_mode_flags;
6130
6131 ramrod_param.rx_accept_flags = rx_accept_flags;
6132 ramrod_param.tx_accept_flags = tx_accept_flags;
6133
6134 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6135 if (rc < 0) {
6136 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6137 return rc;
6138 }
6139
6140 return 0;
6141 }
6142
6143 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6144 unsigned long *rx_accept_flags,
6145 unsigned long *tx_accept_flags)
6146 {
6147 /* Clear the flags first */
6148 *rx_accept_flags = 0;
6149 *tx_accept_flags = 0;
6150
6151 switch (rx_mode) {
6152 case BNX2X_RX_MODE_NONE:
6153 /*
6154 * 'drop all' supersedes any accept flags that may have been
6155 * passed to the function.
6156 */
6157 break;
6158 case BNX2X_RX_MODE_NORMAL:
6159 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6160 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6161 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6162
6163 /* internal switching mode */
6164 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6165 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6166 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6167
6168 break;
6169 case BNX2X_RX_MODE_ALLMULTI:
6170 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6171 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6172 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6173
6174 /* internal switching mode */
6175 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6176 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6177 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6178
6179 break;
6180 case BNX2X_RX_MODE_PROMISC:
6181 /* According to definition of SI mode, iface in promisc mode
6182 * should receive matched and unmatched (in resolution of port)
6183 * unicast packets.
6184 */
6185 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6186 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6187 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6188 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6189
6190 /* internal switching mode */
6191 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6192 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6193
6194 if (IS_MF_SI(bp))
6195 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6196 else
6197 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6198
6199 break;
6200 default:
6201 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6202 return -EINVAL;
6203 }
6204
6205 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6206 if (rx_mode != BNX2X_RX_MODE_NONE) {
6207 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6208 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6209 }
6210
6211 return 0;
6212 }
6213
6214 /* called with netif_addr_lock_bh() */
6215 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6216 {
6217 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6218 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6219 int rc;
6220
6221 if (!NO_FCOE(bp))
6222 /* Configure rx_mode of FCoE Queue */
6223 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6224
6225 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6226 &tx_accept_flags);
6227 if (rc)
6228 return rc;
6229
6230 __set_bit(RAMROD_RX, &ramrod_flags);
6231 __set_bit(RAMROD_TX, &ramrod_flags);
6232
6233 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6234 rx_accept_flags, tx_accept_flags,
6235 ramrod_flags);
6236 }
6237
6238 static void bnx2x_init_internal_common(struct bnx2x *bp)
6239 {
6240 int i;
6241
6242 /* Zero this manually as its initialization is
6243 currently missing in the initTool */
6244 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6245 REG_WR(bp, BAR_USTRORM_INTMEM +
6246 USTORM_AGG_DATA_OFFSET + i * 4, 0);
6247 if (!CHIP_IS_E1x(bp)) {
6248 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6249 CHIP_INT_MODE_IS_BC(bp) ?
6250 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6251 }
6252 }
6253
6254 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6255 {
6256 switch (load_code) {
6257 case FW_MSG_CODE_DRV_LOAD_COMMON:
6258 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6259 bnx2x_init_internal_common(bp);
6260 /* no break */
6261
6262 case FW_MSG_CODE_DRV_LOAD_PORT:
6263 /* nothing to do */
6264 /* no break */
6265
6266 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6267 /* internal memory per function is
6268 initialized inside bnx2x_pf_init */
6269 break;
6270
6271 default:
6272 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6273 break;
6274 }
6275 }
6276
6277 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6278 {
6279 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6280 }
6281
6282 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6283 {
6284 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6285 }
6286
6287 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6288 {
6289 if (CHIP_IS_E1x(fp->bp))
6290 return BP_L_ID(fp->bp) + fp->index;
6291 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6292 return bnx2x_fp_igu_sb_id(fp);
6293 }
6294
6295 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6296 {
6297 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6298 u8 cos;
6299 unsigned long q_type = 0;
6300 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6301 fp->rx_queue = fp_idx;
6302 fp->cid = fp_idx;
6303 fp->cl_id = bnx2x_fp_cl_id(fp);
6304 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6305 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6306 /* qZone id equals to FW (per path) client id */
6307 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6308
6309 /* init shortcut */
6310 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6311
6312 /* Setup SB indices */
6313 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6314
6315 /* Configure Queue State object */
6316 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6317 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6318
6319 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6320
6321 /* init tx data */
6322 for_each_cos_in_tx_queue(fp, cos) {
6323 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6324 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6325 FP_COS_TO_TXQ(fp, cos, bp),
6326 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6327 cids[cos] = fp->txdata_ptr[cos]->cid;
6328 }
6329
6330 /* nothing more for vf to do here */
6331 if (IS_VF(bp))
6332 return;
6333
6334 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6335 fp->fw_sb_id, fp->igu_sb_id);
6336 bnx2x_update_fpsb_idx(fp);
6337 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6338 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6339 bnx2x_sp_mapping(bp, q_rdata), q_type);
6340
6341 /**
6342 * Configure classification DBs: Always enable Tx switching
6343 */
6344 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6345
6346 DP(NETIF_MSG_IFUP,
6347 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6348 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6349 fp->igu_sb_id);
6350 }
6351
6352 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6353 {
6354 int i;
6355
6356 for (i = 1; i <= NUM_TX_RINGS; i++) {
6357 struct eth_tx_next_bd *tx_next_bd =
6358 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6359
6360 tx_next_bd->addr_hi =
6361 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6362 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6363 tx_next_bd->addr_lo =
6364 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6365 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6366 }
6367
6368 *txdata->tx_cons_sb = cpu_to_le16(0);
6369
6370 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6371 txdata->tx_db.data.zero_fill1 = 0;
6372 txdata->tx_db.data.prod = 0;
6373
6374 txdata->tx_pkt_prod = 0;
6375 txdata->tx_pkt_cons = 0;
6376 txdata->tx_bd_prod = 0;
6377 txdata->tx_bd_cons = 0;
6378 txdata->tx_pkt = 0;
6379 }
6380
6381 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6382 {
6383 int i;
6384
6385 for_each_tx_queue_cnic(bp, i)
6386 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6387 }
6388
6389 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6390 {
6391 int i;
6392 u8 cos;
6393
6394 for_each_eth_queue(bp, i)
6395 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6396 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6397 }
6398
6399 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6400 {
6401 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6402 unsigned long q_type = 0;
6403
6404 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6405 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6406 BNX2X_FCOE_ETH_CL_ID_IDX);
6407 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6408 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6409 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6410 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6411 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6412 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6413 fp);
6414
6415 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6416
6417 /* qZone id equals to FW (per path) client id */
6418 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6419 /* init shortcut */
6420 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6421 bnx2x_rx_ustorm_prods_offset(fp);
6422
6423 /* Configure Queue State object */
6424 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6425 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6426
6427 /* No multi-CoS for FCoE L2 client */
6428 BUG_ON(fp->max_cos != 1);
6429
6430 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6431 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6432 bnx2x_sp_mapping(bp, q_rdata), q_type);
6433
6434 DP(NETIF_MSG_IFUP,
6435 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6436 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6437 fp->igu_sb_id);
6438 }
6439
6440 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6441 {
6442 if (!NO_FCOE(bp))
6443 bnx2x_init_fcoe_fp(bp);
6444
6445 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6446 BNX2X_VF_ID_INVALID, false,
6447 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6448
6449 /* ensure status block indices were read */
6450 rmb();
6451 bnx2x_init_rx_rings_cnic(bp);
6452 bnx2x_init_tx_rings_cnic(bp);
6453
6454 /* flush all */
6455 mb();
6456 mmiowb();
6457 }
6458
6459 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6460 {
6461 int i;
6462
6463 /* Setup NIC internals and enable interrupts */
6464 for_each_eth_queue(bp, i)
6465 bnx2x_init_eth_fp(bp, i);
6466
6467 /* ensure status block indices were read */
6468 rmb();
6469 bnx2x_init_rx_rings(bp);
6470 bnx2x_init_tx_rings(bp);
6471
6472 if (IS_PF(bp)) {
6473 /* Initialize MOD_ABS interrupts */
6474 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6475 bp->common.shmem_base,
6476 bp->common.shmem2_base, BP_PORT(bp));
6477
6478 /* initialize the default status block and sp ring */
6479 bnx2x_init_def_sb(bp);
6480 bnx2x_update_dsb_idx(bp);
6481 bnx2x_init_sp_ring(bp);
6482 } else {
6483 bnx2x_memset_stats(bp);
6484 }
6485 }
6486
6487 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6488 {
6489 bnx2x_init_eq_ring(bp);
6490 bnx2x_init_internal(bp, load_code);
6491 bnx2x_pf_init(bp);
6492 bnx2x_stats_init(bp);
6493
6494 /* flush all before enabling interrupts */
6495 mb();
6496 mmiowb();
6497
6498 bnx2x_int_enable(bp);
6499
6500 /* Check for SPIO5 */
6501 bnx2x_attn_int_deasserted0(bp,
6502 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6503 AEU_INPUTS_ATTN_BITS_SPIO5);
6504 }
6505
6506 /* gzip service functions */
6507 static int bnx2x_gunzip_init(struct bnx2x *bp)
6508 {
6509 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6510 &bp->gunzip_mapping, GFP_KERNEL);
6511 if (bp->gunzip_buf == NULL)
6512 goto gunzip_nomem1;
6513
6514 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6515 if (bp->strm == NULL)
6516 goto gunzip_nomem2;
6517
6518 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6519 if (bp->strm->workspace == NULL)
6520 goto gunzip_nomem3;
6521
6522 return 0;
6523
6524 gunzip_nomem3:
6525 kfree(bp->strm);
6526 bp->strm = NULL;
6527
6528 gunzip_nomem2:
6529 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6530 bp->gunzip_mapping);
6531 bp->gunzip_buf = NULL;
6532
6533 gunzip_nomem1:
6534 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6535 return -ENOMEM;
6536 }
6537
6538 static void bnx2x_gunzip_end(struct bnx2x *bp)
6539 {
6540 if (bp->strm) {
6541 vfree(bp->strm->workspace);
6542 kfree(bp->strm);
6543 bp->strm = NULL;
6544 }
6545
6546 if (bp->gunzip_buf) {
6547 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6548 bp->gunzip_mapping);
6549 bp->gunzip_buf = NULL;
6550 }
6551 }
6552
6553 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6554 {
6555 int n, rc;
6556
6557 /* check gzip header */
6558 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6559 BNX2X_ERR("Bad gzip header\n");
6560 return -EINVAL;
6561 }
6562
6563 n = 10;
6564
6565 #define FNAME 0x8
6566
6567 if (zbuf[3] & FNAME)
6568 while ((zbuf[n++] != 0) && (n < len));
6569
6570 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6571 bp->strm->avail_in = len - n;
6572 bp->strm->next_out = bp->gunzip_buf;
6573 bp->strm->avail_out = FW_BUF_SIZE;
6574
6575 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6576 if (rc != Z_OK)
6577 return rc;
6578
6579 rc = zlib_inflate(bp->strm, Z_FINISH);
6580 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6581 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6582 bp->strm->msg);
6583
6584 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6585 if (bp->gunzip_outlen & 0x3)
6586 netdev_err(bp->dev,
6587 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6588 bp->gunzip_outlen);
6589 bp->gunzip_outlen >>= 2;
6590
6591 zlib_inflateEnd(bp->strm);
6592
6593 if (rc == Z_STREAM_END)
6594 return 0;
6595
6596 return rc;
6597 }
6598
6599 /* nic load/unload */
6600
6601 /*
6602 * General service functions
6603 */
6604
6605 /* send a NIG loopback debug packet */
6606 static void bnx2x_lb_pckt(struct bnx2x *bp)
6607 {
6608 u32 wb_write[3];
6609
6610 /* Ethernet source and destination addresses */
6611 wb_write[0] = 0x55555555;
6612 wb_write[1] = 0x55555555;
6613 wb_write[2] = 0x20; /* SOP */
6614 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6615
6616 /* NON-IP protocol */
6617 wb_write[0] = 0x09000000;
6618 wb_write[1] = 0x55555555;
6619 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6620 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6621 }
6622
6623 /* some of the internal memories
6624 * are not directly readable from the driver
6625 * to test them we send debug packets
6626 */
6627 static int bnx2x_int_mem_test(struct bnx2x *bp)
6628 {
6629 int factor;
6630 int count, i;
6631 u32 val = 0;
6632
6633 if (CHIP_REV_IS_FPGA(bp))
6634 factor = 120;
6635 else if (CHIP_REV_IS_EMUL(bp))
6636 factor = 200;
6637 else
6638 factor = 1;
6639
6640 /* Disable inputs of parser neighbor blocks */
6641 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6642 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6643 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6644 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6645
6646 /* Write 0 to parser credits for CFC search request */
6647 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6648
6649 /* send Ethernet packet */
6650 bnx2x_lb_pckt(bp);
6651
6652 /* TODO do i reset NIG statistic? */
6653 /* Wait until NIG register shows 1 packet of size 0x10 */
6654 count = 1000 * factor;
6655 while (count) {
6656
6657 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6658 val = *bnx2x_sp(bp, wb_data[0]);
6659 if (val == 0x10)
6660 break;
6661
6662 usleep_range(10000, 20000);
6663 count--;
6664 }
6665 if (val != 0x10) {
6666 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6667 return -1;
6668 }
6669
6670 /* Wait until PRS register shows 1 packet */
6671 count = 1000 * factor;
6672 while (count) {
6673 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6674 if (val == 1)
6675 break;
6676
6677 usleep_range(10000, 20000);
6678 count--;
6679 }
6680 if (val != 0x1) {
6681 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6682 return -2;
6683 }
6684
6685 /* Reset and init BRB, PRS */
6686 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6687 msleep(50);
6688 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6689 msleep(50);
6690 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6691 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6692
6693 DP(NETIF_MSG_HW, "part2\n");
6694
6695 /* Disable inputs of parser neighbor blocks */
6696 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6697 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6698 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6699 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6700
6701 /* Write 0 to parser credits for CFC search request */
6702 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6703
6704 /* send 10 Ethernet packets */
6705 for (i = 0; i < 10; i++)
6706 bnx2x_lb_pckt(bp);
6707
6708 /* Wait until NIG register shows 10 + 1
6709 packets of size 11*0x10 = 0xb0 */
6710 count = 1000 * factor;
6711 while (count) {
6712
6713 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6714 val = *bnx2x_sp(bp, wb_data[0]);
6715 if (val == 0xb0)
6716 break;
6717
6718 usleep_range(10000, 20000);
6719 count--;
6720 }
6721 if (val != 0xb0) {
6722 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6723 return -3;
6724 }
6725
6726 /* Wait until PRS register shows 2 packets */
6727 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6728 if (val != 2)
6729 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6730
6731 /* Write 1 to parser credits for CFC search request */
6732 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6733
6734 /* Wait until PRS register shows 3 packets */
6735 msleep(10 * factor);
6736 /* Wait until NIG register shows 1 packet of size 0x10 */
6737 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6738 if (val != 3)
6739 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6740
6741 /* clear NIG EOP FIFO */
6742 for (i = 0; i < 11; i++)
6743 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6744 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6745 if (val != 1) {
6746 BNX2X_ERR("clear of NIG failed\n");
6747 return -4;
6748 }
6749
6750 /* Reset and init BRB, PRS, NIG */
6751 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6752 msleep(50);
6753 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6754 msleep(50);
6755 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6756 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6757 if (!CNIC_SUPPORT(bp))
6758 /* set NIC mode */
6759 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6760
6761 /* Enable inputs of parser neighbor blocks */
6762 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6763 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6764 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6765 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6766
6767 DP(NETIF_MSG_HW, "done\n");
6768
6769 return 0; /* OK */
6770 }
6771
6772 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6773 {
6774 u32 val;
6775
6776 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6777 if (!CHIP_IS_E1x(bp))
6778 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6779 else
6780 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6781 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6782 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6783 /*
6784 * mask read length error interrupts in brb for parser
6785 * (parsing unit and 'checksum and crc' unit)
6786 * these errors are legal (PU reads fixed length and CAC can cause
6787 * read length error on truncated packets)
6788 */
6789 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6790 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6791 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6792 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6793 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6794 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6795 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6796 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6797 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6798 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6799 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6800 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6801 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6802 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6803 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6804 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6805 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6806 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6807 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6808
6809 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6810 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6811 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6812 if (!CHIP_IS_E1x(bp))
6813 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6814 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6815 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6816
6817 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6818 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6819 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6820 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6821
6822 if (!CHIP_IS_E1x(bp))
6823 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6824 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6825
6826 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6827 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6828 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6829 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6830 }
6831
6832 static void bnx2x_reset_common(struct bnx2x *bp)
6833 {
6834 u32 val = 0x1400;
6835
6836 /* reset_common */
6837 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6838 0xd3ffff7f);
6839
6840 if (CHIP_IS_E3(bp)) {
6841 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6842 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6843 }
6844
6845 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6846 }
6847
6848 static void bnx2x_setup_dmae(struct bnx2x *bp)
6849 {
6850 bp->dmae_ready = 0;
6851 spin_lock_init(&bp->dmae_lock);
6852 }
6853
6854 static void bnx2x_init_pxp(struct bnx2x *bp)
6855 {
6856 u16 devctl;
6857 int r_order, w_order;
6858
6859 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6860 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6861 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6862 if (bp->mrrs == -1)
6863 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6864 else {
6865 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6866 r_order = bp->mrrs;
6867 }
6868
6869 bnx2x_init_pxp_arb(bp, r_order, w_order);
6870 }
6871
6872 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6873 {
6874 int is_required;
6875 u32 val;
6876 int port;
6877
6878 if (BP_NOMCP(bp))
6879 return;
6880
6881 is_required = 0;
6882 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6883 SHARED_HW_CFG_FAN_FAILURE_MASK;
6884
6885 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6886 is_required = 1;
6887
6888 /*
6889 * The fan failure mechanism is usually related to the PHY type since
6890 * the power consumption of the board is affected by the PHY. Currently,
6891 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6892 */
6893 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6894 for (port = PORT_0; port < PORT_MAX; port++) {
6895 is_required |=
6896 bnx2x_fan_failure_det_req(
6897 bp,
6898 bp->common.shmem_base,
6899 bp->common.shmem2_base,
6900 port);
6901 }
6902
6903 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6904
6905 if (is_required == 0)
6906 return;
6907
6908 /* Fan failure is indicated by SPIO 5 */
6909 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6910
6911 /* set to active low mode */
6912 val = REG_RD(bp, MISC_REG_SPIO_INT);
6913 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6914 REG_WR(bp, MISC_REG_SPIO_INT, val);
6915
6916 /* enable interrupt to signal the IGU */
6917 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6918 val |= MISC_SPIO_SPIO5;
6919 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6920 }
6921
6922 void bnx2x_pf_disable(struct bnx2x *bp)
6923 {
6924 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6925 val &= ~IGU_PF_CONF_FUNC_EN;
6926
6927 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6928 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6929 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6930 }
6931
6932 static void bnx2x__common_init_phy(struct bnx2x *bp)
6933 {
6934 u32 shmem_base[2], shmem2_base[2];
6935 /* Avoid common init in case MFW supports LFA */
6936 if (SHMEM2_RD(bp, size) >
6937 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6938 return;
6939 shmem_base[0] = bp->common.shmem_base;
6940 shmem2_base[0] = bp->common.shmem2_base;
6941 if (!CHIP_IS_E1x(bp)) {
6942 shmem_base[1] =
6943 SHMEM2_RD(bp, other_shmem_base_addr);
6944 shmem2_base[1] =
6945 SHMEM2_RD(bp, other_shmem2_base_addr);
6946 }
6947 bnx2x_acquire_phy_lock(bp);
6948 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6949 bp->common.chip_id);
6950 bnx2x_release_phy_lock(bp);
6951 }
6952
6953 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6954 {
6955 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6956 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
6957 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
6958 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
6959 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
6960
6961 /* make sure this value is 0 */
6962 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6963
6964 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
6965 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
6966 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
6967 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
6968 }
6969
6970 static void bnx2x_set_endianity(struct bnx2x *bp)
6971 {
6972 #ifdef __BIG_ENDIAN
6973 bnx2x_config_endianity(bp, 1);
6974 #else
6975 bnx2x_config_endianity(bp, 0);
6976 #endif
6977 }
6978
6979 static void bnx2x_reset_endianity(struct bnx2x *bp)
6980 {
6981 bnx2x_config_endianity(bp, 0);
6982 }
6983
6984 /**
6985 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6986 *
6987 * @bp: driver handle
6988 */
6989 static int bnx2x_init_hw_common(struct bnx2x *bp)
6990 {
6991 u32 val;
6992
6993 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
6994
6995 /*
6996 * take the RESET lock to protect undi_unload flow from accessing
6997 * registers while we're resetting the chip
6998 */
6999 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7000
7001 bnx2x_reset_common(bp);
7002 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7003
7004 val = 0xfffc;
7005 if (CHIP_IS_E3(bp)) {
7006 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7007 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7008 }
7009 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7010
7011 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7012
7013 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7014
7015 if (!CHIP_IS_E1x(bp)) {
7016 u8 abs_func_id;
7017
7018 /**
7019 * 4-port mode or 2-port mode we need to turn of master-enable
7020 * for everyone, after that, turn it back on for self.
7021 * so, we disregard multi-function or not, and always disable
7022 * for all functions on the given path, this means 0,2,4,6 for
7023 * path 0 and 1,3,5,7 for path 1
7024 */
7025 for (abs_func_id = BP_PATH(bp);
7026 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7027 if (abs_func_id == BP_ABS_FUNC(bp)) {
7028 REG_WR(bp,
7029 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7030 1);
7031 continue;
7032 }
7033
7034 bnx2x_pretend_func(bp, abs_func_id);
7035 /* clear pf enable */
7036 bnx2x_pf_disable(bp);
7037 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7038 }
7039 }
7040
7041 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7042 if (CHIP_IS_E1(bp)) {
7043 /* enable HW interrupt from PXP on USDM overflow
7044 bit 16 on INT_MASK_0 */
7045 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7046 }
7047
7048 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7049 bnx2x_init_pxp(bp);
7050 bnx2x_set_endianity(bp);
7051 bnx2x_ilt_init_page_size(bp, INITOP_SET);
7052
7053 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7054 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7055
7056 /* let the HW do it's magic ... */
7057 msleep(100);
7058 /* finish PXP init */
7059 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7060 if (val != 1) {
7061 BNX2X_ERR("PXP2 CFG failed\n");
7062 return -EBUSY;
7063 }
7064 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7065 if (val != 1) {
7066 BNX2X_ERR("PXP2 RD_INIT failed\n");
7067 return -EBUSY;
7068 }
7069
7070 /* Timers bug workaround E2 only. We need to set the entire ILT to
7071 * have entries with value "0" and valid bit on.
7072 * This needs to be done by the first PF that is loaded in a path
7073 * (i.e. common phase)
7074 */
7075 if (!CHIP_IS_E1x(bp)) {
7076 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7077 * (i.e. vnic3) to start even if it is marked as "scan-off".
7078 * This occurs when a different function (func2,3) is being marked
7079 * as "scan-off". Real-life scenario for example: if a driver is being
7080 * load-unloaded while func6,7 are down. This will cause the timer to access
7081 * the ilt, translate to a logical address and send a request to read/write.
7082 * Since the ilt for the function that is down is not valid, this will cause
7083 * a translation error which is unrecoverable.
7084 * The Workaround is intended to make sure that when this happens nothing fatal
7085 * will occur. The workaround:
7086 * 1. First PF driver which loads on a path will:
7087 * a. After taking the chip out of reset, by using pretend,
7088 * it will write "0" to the following registers of
7089 * the other vnics.
7090 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7091 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7092 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7093 * And for itself it will write '1' to
7094 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7095 * dmae-operations (writing to pram for example.)
7096 * note: can be done for only function 6,7 but cleaner this
7097 * way.
7098 * b. Write zero+valid to the entire ILT.
7099 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
7100 * VNIC3 (of that port). The range allocated will be the
7101 * entire ILT. This is needed to prevent ILT range error.
7102 * 2. Any PF driver load flow:
7103 * a. ILT update with the physical addresses of the allocated
7104 * logical pages.
7105 * b. Wait 20msec. - note that this timeout is needed to make
7106 * sure there are no requests in one of the PXP internal
7107 * queues with "old" ILT addresses.
7108 * c. PF enable in the PGLC.
7109 * d. Clear the was_error of the PF in the PGLC. (could have
7110 * occurred while driver was down)
7111 * e. PF enable in the CFC (WEAK + STRONG)
7112 * f. Timers scan enable
7113 * 3. PF driver unload flow:
7114 * a. Clear the Timers scan_en.
7115 * b. Polling for scan_on=0 for that PF.
7116 * c. Clear the PF enable bit in the PXP.
7117 * d. Clear the PF enable in the CFC (WEAK + STRONG)
7118 * e. Write zero+valid to all ILT entries (The valid bit must
7119 * stay set)
7120 * f. If this is VNIC 3 of a port then also init
7121 * first_timers_ilt_entry to zero and last_timers_ilt_entry
7122 * to the last entry in the ILT.
7123 *
7124 * Notes:
7125 * Currently the PF error in the PGLC is non recoverable.
7126 * In the future the there will be a recovery routine for this error.
7127 * Currently attention is masked.
7128 * Having an MCP lock on the load/unload process does not guarantee that
7129 * there is no Timer disable during Func6/7 enable. This is because the
7130 * Timers scan is currently being cleared by the MCP on FLR.
7131 * Step 2.d can be done only for PF6/7 and the driver can also check if
7132 * there is error before clearing it. But the flow above is simpler and
7133 * more general.
7134 * All ILT entries are written by zero+valid and not just PF6/7
7135 * ILT entries since in the future the ILT entries allocation for
7136 * PF-s might be dynamic.
7137 */
7138 struct ilt_client_info ilt_cli;
7139 struct bnx2x_ilt ilt;
7140 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7141 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7142
7143 /* initialize dummy TM client */
7144 ilt_cli.start = 0;
7145 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7146 ilt_cli.client_num = ILT_CLIENT_TM;
7147
7148 /* Step 1: set zeroes to all ilt page entries with valid bit on
7149 * Step 2: set the timers first/last ilt entry to point
7150 * to the entire range to prevent ILT range error for 3rd/4th
7151 * vnic (this code assumes existence of the vnic)
7152 *
7153 * both steps performed by call to bnx2x_ilt_client_init_op()
7154 * with dummy TM client
7155 *
7156 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7157 * and his brother are split registers
7158 */
7159 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7160 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7161 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7162
7163 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7164 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7165 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7166 }
7167
7168 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7169 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7170
7171 if (!CHIP_IS_E1x(bp)) {
7172 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7173 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7174 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7175
7176 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7177
7178 /* let the HW do it's magic ... */
7179 do {
7180 msleep(200);
7181 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7182 } while (factor-- && (val != 1));
7183
7184 if (val != 1) {
7185 BNX2X_ERR("ATC_INIT failed\n");
7186 return -EBUSY;
7187 }
7188 }
7189
7190 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7191
7192 bnx2x_iov_init_dmae(bp);
7193
7194 /* clean the DMAE memory */
7195 bp->dmae_ready = 1;
7196 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7197
7198 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7199
7200 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7201
7202 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7203
7204 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7205
7206 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7207 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7208 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7209 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7210
7211 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7212
7213 /* QM queues pointers table */
7214 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7215
7216 /* soft reset pulse */
7217 REG_WR(bp, QM_REG_SOFT_RESET, 1);
7218 REG_WR(bp, QM_REG_SOFT_RESET, 0);
7219
7220 if (CNIC_SUPPORT(bp))
7221 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7222
7223 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7224
7225 if (!CHIP_REV_IS_SLOW(bp))
7226 /* enable hw interrupt from doorbell Q */
7227 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7228
7229 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7230
7231 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7232 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7233
7234 if (!CHIP_IS_E1(bp))
7235 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7236
7237 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7238 if (IS_MF_AFEX(bp)) {
7239 /* configure that VNTag and VLAN headers must be
7240 * received in afex mode
7241 */
7242 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7243 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7244 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7245 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7246 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7247 } else {
7248 /* Bit-map indicating which L2 hdrs may appear
7249 * after the basic Ethernet header
7250 */
7251 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7252 bp->path_has_ovlan ? 7 : 6);
7253 }
7254 }
7255
7256 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7257 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7258 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7259 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7260
7261 if (!CHIP_IS_E1x(bp)) {
7262 /* reset VFC memories */
7263 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7264 VFC_MEMORIES_RST_REG_CAM_RST |
7265 VFC_MEMORIES_RST_REG_RAM_RST);
7266 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7267 VFC_MEMORIES_RST_REG_CAM_RST |
7268 VFC_MEMORIES_RST_REG_RAM_RST);
7269
7270 msleep(20);
7271 }
7272
7273 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7274 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7275 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7276 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7277
7278 /* sync semi rtc */
7279 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7280 0x80000000);
7281 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7282 0x80000000);
7283
7284 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7285 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7286 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7287
7288 if (!CHIP_IS_E1x(bp)) {
7289 if (IS_MF_AFEX(bp)) {
7290 /* configure that VNTag and VLAN headers must be
7291 * sent in afex mode
7292 */
7293 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7294 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7295 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7296 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7297 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7298 } else {
7299 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7300 bp->path_has_ovlan ? 7 : 6);
7301 }
7302 }
7303
7304 REG_WR(bp, SRC_REG_SOFT_RST, 1);
7305
7306 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7307
7308 if (CNIC_SUPPORT(bp)) {
7309 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7310 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7311 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7312 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7313 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7314 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7315 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7316 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7317 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7318 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7319 }
7320 REG_WR(bp, SRC_REG_SOFT_RST, 0);
7321
7322 if (sizeof(union cdu_context) != 1024)
7323 /* we currently assume that a context is 1024 bytes */
7324 dev_alert(&bp->pdev->dev,
7325 "please adjust the size of cdu_context(%ld)\n",
7326 (long)sizeof(union cdu_context));
7327
7328 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7329 val = (4 << 24) + (0 << 12) + 1024;
7330 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7331
7332 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7333 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7334 /* enable context validation interrupt from CFC */
7335 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7336
7337 /* set the thresholds to prevent CFC/CDU race */
7338 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7339
7340 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7341
7342 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7343 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7344
7345 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7346 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7347
7348 /* Reset PCIE errors for debug */
7349 REG_WR(bp, 0x2814, 0xffffffff);
7350 REG_WR(bp, 0x3820, 0xffffffff);
7351
7352 if (!CHIP_IS_E1x(bp)) {
7353 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7354 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7355 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7356 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7357 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7358 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7359 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7360 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7361 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7362 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7363 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7364 }
7365
7366 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7367 if (!CHIP_IS_E1(bp)) {
7368 /* in E3 this done in per-port section */
7369 if (!CHIP_IS_E3(bp))
7370 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7371 }
7372 if (CHIP_IS_E1H(bp))
7373 /* not applicable for E2 (and above ...) */
7374 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7375
7376 if (CHIP_REV_IS_SLOW(bp))
7377 msleep(200);
7378
7379 /* finish CFC init */
7380 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7381 if (val != 1) {
7382 BNX2X_ERR("CFC LL_INIT failed\n");
7383 return -EBUSY;
7384 }
7385 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7386 if (val != 1) {
7387 BNX2X_ERR("CFC AC_INIT failed\n");
7388 return -EBUSY;
7389 }
7390 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7391 if (val != 1) {
7392 BNX2X_ERR("CFC CAM_INIT failed\n");
7393 return -EBUSY;
7394 }
7395 REG_WR(bp, CFC_REG_DEBUG0, 0);
7396
7397 if (CHIP_IS_E1(bp)) {
7398 /* read NIG statistic
7399 to see if this is our first up since powerup */
7400 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7401 val = *bnx2x_sp(bp, wb_data[0]);
7402
7403 /* do internal memory self test */
7404 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7405 BNX2X_ERR("internal mem self test failed\n");
7406 return -EBUSY;
7407 }
7408 }
7409
7410 bnx2x_setup_fan_failure_detection(bp);
7411
7412 /* clear PXP2 attentions */
7413 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7414
7415 bnx2x_enable_blocks_attention(bp);
7416 bnx2x_enable_blocks_parity(bp);
7417
7418 if (!BP_NOMCP(bp)) {
7419 if (CHIP_IS_E1x(bp))
7420 bnx2x__common_init_phy(bp);
7421 } else
7422 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7423
7424 return 0;
7425 }
7426
7427 /**
7428 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7429 *
7430 * @bp: driver handle
7431 */
7432 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7433 {
7434 int rc = bnx2x_init_hw_common(bp);
7435
7436 if (rc)
7437 return rc;
7438
7439 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7440 if (!BP_NOMCP(bp))
7441 bnx2x__common_init_phy(bp);
7442
7443 return 0;
7444 }
7445
7446 static int bnx2x_init_hw_port(struct bnx2x *bp)
7447 {
7448 int port = BP_PORT(bp);
7449 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7450 u32 low, high;
7451 u32 val, reg;
7452
7453 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7454
7455 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7456
7457 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7458 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7459 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7460
7461 /* Timers bug workaround: disables the pf_master bit in pglue at
7462 * common phase, we need to enable it here before any dmae access are
7463 * attempted. Therefore we manually added the enable-master to the
7464 * port phase (it also happens in the function phase)
7465 */
7466 if (!CHIP_IS_E1x(bp))
7467 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7468
7469 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7470 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7471 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7472 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7473
7474 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7475 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7476 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7477 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7478
7479 /* QM cid (connection) count */
7480 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7481
7482 if (CNIC_SUPPORT(bp)) {
7483 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7484 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7485 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7486 }
7487
7488 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7489
7490 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7491
7492 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7493
7494 if (IS_MF(bp))
7495 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7496 else if (bp->dev->mtu > 4096) {
7497 if (bp->flags & ONE_PORT_FLAG)
7498 low = 160;
7499 else {
7500 val = bp->dev->mtu;
7501 /* (24*1024 + val*4)/256 */
7502 low = 96 + (val/64) +
7503 ((val % 64) ? 1 : 0);
7504 }
7505 } else
7506 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7507 high = low + 56; /* 14*1024/256 */
7508 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7509 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7510 }
7511
7512 if (CHIP_MODE_IS_4_PORT(bp))
7513 REG_WR(bp, (BP_PORT(bp) ?
7514 BRB1_REG_MAC_GUARANTIED_1 :
7515 BRB1_REG_MAC_GUARANTIED_0), 40);
7516
7517 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7518 if (CHIP_IS_E3B0(bp)) {
7519 if (IS_MF_AFEX(bp)) {
7520 /* configure headers for AFEX mode */
7521 REG_WR(bp, BP_PORT(bp) ?
7522 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7523 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7524 REG_WR(bp, BP_PORT(bp) ?
7525 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7526 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7527 REG_WR(bp, BP_PORT(bp) ?
7528 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7529 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7530 } else {
7531 /* Ovlan exists only if we are in multi-function +
7532 * switch-dependent mode, in switch-independent there
7533 * is no ovlan headers
7534 */
7535 REG_WR(bp, BP_PORT(bp) ?
7536 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7537 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7538 (bp->path_has_ovlan ? 7 : 6));
7539 }
7540 }
7541
7542 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7543 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7544 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7545 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7546
7547 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7548 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7549 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7550 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7551
7552 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7553 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7554
7555 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7556
7557 if (CHIP_IS_E1x(bp)) {
7558 /* configure PBF to work without PAUSE mtu 9000 */
7559 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7560
7561 /* update threshold */
7562 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7563 /* update init credit */
7564 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7565
7566 /* probe changes */
7567 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7568 udelay(50);
7569 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7570 }
7571
7572 if (CNIC_SUPPORT(bp))
7573 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7574
7575 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7576 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7577
7578 if (CHIP_IS_E1(bp)) {
7579 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7580 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7581 }
7582 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7583
7584 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7585
7586 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7587 /* init aeu_mask_attn_func_0/1:
7588 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7589 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7590 * bits 4-7 are used for "per vn group attention" */
7591 val = IS_MF(bp) ? 0xF7 : 0x7;
7592 /* Enable DCBX attention for all but E1 */
7593 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7594 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7595
7596 /* SCPAD_PARITY should NOT trigger close the gates */
7597 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7598 REG_WR(bp, reg,
7599 REG_RD(bp, reg) &
7600 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7601
7602 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7603 REG_WR(bp, reg,
7604 REG_RD(bp, reg) &
7605 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7606
7607 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7608
7609 if (!CHIP_IS_E1x(bp)) {
7610 /* Bit-map indicating which L2 hdrs may appear after the
7611 * basic Ethernet header
7612 */
7613 if (IS_MF_AFEX(bp))
7614 REG_WR(bp, BP_PORT(bp) ?
7615 NIG_REG_P1_HDRS_AFTER_BASIC :
7616 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7617 else
7618 REG_WR(bp, BP_PORT(bp) ?
7619 NIG_REG_P1_HDRS_AFTER_BASIC :
7620 NIG_REG_P0_HDRS_AFTER_BASIC,
7621 IS_MF_SD(bp) ? 7 : 6);
7622
7623 if (CHIP_IS_E3(bp))
7624 REG_WR(bp, BP_PORT(bp) ?
7625 NIG_REG_LLH1_MF_MODE :
7626 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7627 }
7628 if (!CHIP_IS_E3(bp))
7629 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7630
7631 if (!CHIP_IS_E1(bp)) {
7632 /* 0x2 disable mf_ov, 0x1 enable */
7633 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7634 (IS_MF_SD(bp) ? 0x1 : 0x2));
7635
7636 if (!CHIP_IS_E1x(bp)) {
7637 val = 0;
7638 switch (bp->mf_mode) {
7639 case MULTI_FUNCTION_SD:
7640 val = 1;
7641 break;
7642 case MULTI_FUNCTION_SI:
7643 case MULTI_FUNCTION_AFEX:
7644 val = 2;
7645 break;
7646 }
7647
7648 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7649 NIG_REG_LLH0_CLS_TYPE), val);
7650 }
7651 {
7652 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7653 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7654 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7655 }
7656 }
7657
7658 /* If SPIO5 is set to generate interrupts, enable it for this port */
7659 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7660 if (val & MISC_SPIO_SPIO5) {
7661 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7662 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7663 val = REG_RD(bp, reg_addr);
7664 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7665 REG_WR(bp, reg_addr, val);
7666 }
7667
7668 return 0;
7669 }
7670
7671 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7672 {
7673 int reg;
7674 u32 wb_write[2];
7675
7676 if (CHIP_IS_E1(bp))
7677 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7678 else
7679 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7680
7681 wb_write[0] = ONCHIP_ADDR1(addr);
7682 wb_write[1] = ONCHIP_ADDR2(addr);
7683 REG_WR_DMAE(bp, reg, wb_write, 2);
7684 }
7685
7686 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7687 {
7688 u32 data, ctl, cnt = 100;
7689 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7690 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7691 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7692 u32 sb_bit = 1 << (idu_sb_id%32);
7693 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7694 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7695
7696 /* Not supported in BC mode */
7697 if (CHIP_INT_MODE_IS_BC(bp))
7698 return;
7699
7700 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7701 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7702 IGU_REGULAR_CLEANUP_SET |
7703 IGU_REGULAR_BCLEANUP;
7704
7705 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7706 func_encode << IGU_CTRL_REG_FID_SHIFT |
7707 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7708
7709 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7710 data, igu_addr_data);
7711 REG_WR(bp, igu_addr_data, data);
7712 mmiowb();
7713 barrier();
7714 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7715 ctl, igu_addr_ctl);
7716 REG_WR(bp, igu_addr_ctl, ctl);
7717 mmiowb();
7718 barrier();
7719
7720 /* wait for clean up to finish */
7721 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7722 msleep(20);
7723
7724 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7725 DP(NETIF_MSG_HW,
7726 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7727 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7728 }
7729 }
7730
7731 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7732 {
7733 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7734 }
7735
7736 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7737 {
7738 u32 i, base = FUNC_ILT_BASE(func);
7739 for (i = base; i < base + ILT_PER_FUNC; i++)
7740 bnx2x_ilt_wr(bp, i, 0);
7741 }
7742
7743 static void bnx2x_init_searcher(struct bnx2x *bp)
7744 {
7745 int port = BP_PORT(bp);
7746 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7747 /* T1 hash bits value determines the T1 number of entries */
7748 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7749 }
7750
7751 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7752 {
7753 int rc;
7754 struct bnx2x_func_state_params func_params = {NULL};
7755 struct bnx2x_func_switch_update_params *switch_update_params =
7756 &func_params.params.switch_update;
7757
7758 /* Prepare parameters for function state transitions */
7759 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7760 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7761
7762 func_params.f_obj = &bp->func_obj;
7763 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7764
7765 /* Function parameters */
7766 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7767 &switch_update_params->changes);
7768 if (suspend)
7769 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7770 &switch_update_params->changes);
7771
7772 rc = bnx2x_func_state_change(bp, &func_params);
7773
7774 return rc;
7775 }
7776
7777 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7778 {
7779 int rc, i, port = BP_PORT(bp);
7780 int vlan_en = 0, mac_en[NUM_MACS];
7781
7782 /* Close input from network */
7783 if (bp->mf_mode == SINGLE_FUNCTION) {
7784 bnx2x_set_rx_filter(&bp->link_params, 0);
7785 } else {
7786 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7787 NIG_REG_LLH0_FUNC_EN);
7788 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7789 NIG_REG_LLH0_FUNC_EN, 0);
7790 for (i = 0; i < NUM_MACS; i++) {
7791 mac_en[i] = REG_RD(bp, port ?
7792 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7793 4 * i) :
7794 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7795 4 * i));
7796 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7797 4 * i) :
7798 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7799 }
7800 }
7801
7802 /* Close BMC to host */
7803 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7804 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7805
7806 /* Suspend Tx switching to the PF. Completion of this ramrod
7807 * further guarantees that all the packets of that PF / child
7808 * VFs in BRB were processed by the Parser, so it is safe to
7809 * change the NIC_MODE register.
7810 */
7811 rc = bnx2x_func_switch_update(bp, 1);
7812 if (rc) {
7813 BNX2X_ERR("Can't suspend tx-switching!\n");
7814 return rc;
7815 }
7816
7817 /* Change NIC_MODE register */
7818 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7819
7820 /* Open input from network */
7821 if (bp->mf_mode == SINGLE_FUNCTION) {
7822 bnx2x_set_rx_filter(&bp->link_params, 1);
7823 } else {
7824 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7825 NIG_REG_LLH0_FUNC_EN, vlan_en);
7826 for (i = 0; i < NUM_MACS; i++) {
7827 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7828 4 * i) :
7829 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7830 mac_en[i]);
7831 }
7832 }
7833
7834 /* Enable BMC to host */
7835 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7836 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7837
7838 /* Resume Tx switching to the PF */
7839 rc = bnx2x_func_switch_update(bp, 0);
7840 if (rc) {
7841 BNX2X_ERR("Can't resume tx-switching!\n");
7842 return rc;
7843 }
7844
7845 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7846 return 0;
7847 }
7848
7849 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7850 {
7851 int rc;
7852
7853 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7854
7855 if (CONFIGURE_NIC_MODE(bp)) {
7856 /* Configure searcher as part of function hw init */
7857 bnx2x_init_searcher(bp);
7858
7859 /* Reset NIC mode */
7860 rc = bnx2x_reset_nic_mode(bp);
7861 if (rc)
7862 BNX2X_ERR("Can't change NIC mode!\n");
7863 return rc;
7864 }
7865
7866 return 0;
7867 }
7868
7869 static int bnx2x_init_hw_func(struct bnx2x *bp)
7870 {
7871 int port = BP_PORT(bp);
7872 int func = BP_FUNC(bp);
7873 int init_phase = PHASE_PF0 + func;
7874 struct bnx2x_ilt *ilt = BP_ILT(bp);
7875 u16 cdu_ilt_start;
7876 u32 addr, val;
7877 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7878 int i, main_mem_width, rc;
7879
7880 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7881
7882 /* FLR cleanup - hmmm */
7883 if (!CHIP_IS_E1x(bp)) {
7884 rc = bnx2x_pf_flr_clnup(bp);
7885 if (rc) {
7886 bnx2x_fw_dump(bp);
7887 return rc;
7888 }
7889 }
7890
7891 /* set MSI reconfigure capability */
7892 if (bp->common.int_block == INT_BLOCK_HC) {
7893 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7894 val = REG_RD(bp, addr);
7895 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7896 REG_WR(bp, addr, val);
7897 }
7898
7899 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7900 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7901
7902 ilt = BP_ILT(bp);
7903 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7904
7905 if (IS_SRIOV(bp))
7906 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7907 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7908
7909 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7910 * those of the VFs, so start line should be reset
7911 */
7912 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7913 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7914 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7915 ilt->lines[cdu_ilt_start + i].page_mapping =
7916 bp->context[i].cxt_mapping;
7917 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7918 }
7919
7920 bnx2x_ilt_init_op(bp, INITOP_SET);
7921
7922 if (!CONFIGURE_NIC_MODE(bp)) {
7923 bnx2x_init_searcher(bp);
7924 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7925 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7926 } else {
7927 /* Set NIC mode */
7928 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7929 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7930 }
7931
7932 if (!CHIP_IS_E1x(bp)) {
7933 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7934
7935 /* Turn on a single ISR mode in IGU if driver is going to use
7936 * INT#x or MSI
7937 */
7938 if (!(bp->flags & USING_MSIX_FLAG))
7939 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7940 /*
7941 * Timers workaround bug: function init part.
7942 * Need to wait 20msec after initializing ILT,
7943 * needed to make sure there are no requests in
7944 * one of the PXP internal queues with "old" ILT addresses
7945 */
7946 msleep(20);
7947 /*
7948 * Master enable - Due to WB DMAE writes performed before this
7949 * register is re-initialized as part of the regular function
7950 * init
7951 */
7952 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7953 /* Enable the function in IGU */
7954 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7955 }
7956
7957 bp->dmae_ready = 1;
7958
7959 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7960
7961 if (!CHIP_IS_E1x(bp))
7962 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7963
7964 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7965 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7966 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7967 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7968 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7969 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7970 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7971 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7972 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7973 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7974 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7975 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7976 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7977
7978 if (!CHIP_IS_E1x(bp))
7979 REG_WR(bp, QM_REG_PF_EN, 1);
7980
7981 if (!CHIP_IS_E1x(bp)) {
7982 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7983 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7984 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7985 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7986 }
7987 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7988
7989 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7990 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7991 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7992
7993 bnx2x_iov_init_dq(bp);
7994
7995 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7996 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7997 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7998 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7999 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8000 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8001 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8002 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8003 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8004 if (!CHIP_IS_E1x(bp))
8005 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8006
8007 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8008
8009 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8010
8011 if (!CHIP_IS_E1x(bp))
8012 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8013
8014 if (IS_MF(bp)) {
8015 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8016 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8017 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8018 bp->mf_ov);
8019 }
8020 }
8021
8022 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8023
8024 /* HC init per function */
8025 if (bp->common.int_block == INT_BLOCK_HC) {
8026 if (CHIP_IS_E1H(bp)) {
8027 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8028
8029 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8030 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8031 }
8032 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8033
8034 } else {
8035 int num_segs, sb_idx, prod_offset;
8036
8037 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8038
8039 if (!CHIP_IS_E1x(bp)) {
8040 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8041 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8042 }
8043
8044 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8045
8046 if (!CHIP_IS_E1x(bp)) {
8047 int dsb_idx = 0;
8048 /**
8049 * Producer memory:
8050 * E2 mode: address 0-135 match to the mapping memory;
8051 * 136 - PF0 default prod; 137 - PF1 default prod;
8052 * 138 - PF2 default prod; 139 - PF3 default prod;
8053 * 140 - PF0 attn prod; 141 - PF1 attn prod;
8054 * 142 - PF2 attn prod; 143 - PF3 attn prod;
8055 * 144-147 reserved.
8056 *
8057 * E1.5 mode - In backward compatible mode;
8058 * for non default SB; each even line in the memory
8059 * holds the U producer and each odd line hold
8060 * the C producer. The first 128 producers are for
8061 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8062 * producers are for the DSB for each PF.
8063 * Each PF has five segments: (the order inside each
8064 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8065 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8066 * 144-147 attn prods;
8067 */
8068 /* non-default-status-blocks */
8069 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8070 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8071 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8072 prod_offset = (bp->igu_base_sb + sb_idx) *
8073 num_segs;
8074
8075 for (i = 0; i < num_segs; i++) {
8076 addr = IGU_REG_PROD_CONS_MEMORY +
8077 (prod_offset + i) * 4;
8078 REG_WR(bp, addr, 0);
8079 }
8080 /* send consumer update with value 0 */
8081 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8082 USTORM_ID, 0, IGU_INT_NOP, 1);
8083 bnx2x_igu_clear_sb(bp,
8084 bp->igu_base_sb + sb_idx);
8085 }
8086
8087 /* default-status-blocks */
8088 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8089 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8090
8091 if (CHIP_MODE_IS_4_PORT(bp))
8092 dsb_idx = BP_FUNC(bp);
8093 else
8094 dsb_idx = BP_VN(bp);
8095
8096 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8097 IGU_BC_BASE_DSB_PROD + dsb_idx :
8098 IGU_NORM_BASE_DSB_PROD + dsb_idx);
8099
8100 /*
8101 * igu prods come in chunks of E1HVN_MAX (4) -
8102 * does not matters what is the current chip mode
8103 */
8104 for (i = 0; i < (num_segs * E1HVN_MAX);
8105 i += E1HVN_MAX) {
8106 addr = IGU_REG_PROD_CONS_MEMORY +
8107 (prod_offset + i)*4;
8108 REG_WR(bp, addr, 0);
8109 }
8110 /* send consumer update with 0 */
8111 if (CHIP_INT_MODE_IS_BC(bp)) {
8112 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8113 USTORM_ID, 0, IGU_INT_NOP, 1);
8114 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8115 CSTORM_ID, 0, IGU_INT_NOP, 1);
8116 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8117 XSTORM_ID, 0, IGU_INT_NOP, 1);
8118 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8119 TSTORM_ID, 0, IGU_INT_NOP, 1);
8120 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8121 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8122 } else {
8123 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8124 USTORM_ID, 0, IGU_INT_NOP, 1);
8125 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8126 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8127 }
8128 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8129
8130 /* !!! These should become driver const once
8131 rf-tool supports split-68 const */
8132 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8133 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8134 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8135 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8136 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8137 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8138 }
8139 }
8140
8141 /* Reset PCIE errors for debug */
8142 REG_WR(bp, 0x2114, 0xffffffff);
8143 REG_WR(bp, 0x2120, 0xffffffff);
8144
8145 if (CHIP_IS_E1x(bp)) {
8146 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8147 main_mem_base = HC_REG_MAIN_MEMORY +
8148 BP_PORT(bp) * (main_mem_size * 4);
8149 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8150 main_mem_width = 8;
8151
8152 val = REG_RD(bp, main_mem_prty_clr);
8153 if (val)
8154 DP(NETIF_MSG_HW,
8155 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8156 val);
8157
8158 /* Clear "false" parity errors in MSI-X table */
8159 for (i = main_mem_base;
8160 i < main_mem_base + main_mem_size * 4;
8161 i += main_mem_width) {
8162 bnx2x_read_dmae(bp, i, main_mem_width / 4);
8163 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8164 i, main_mem_width / 4);
8165 }
8166 /* Clear HC parity attention */
8167 REG_RD(bp, main_mem_prty_clr);
8168 }
8169
8170 #ifdef BNX2X_STOP_ON_ERROR
8171 /* Enable STORMs SP logging */
8172 REG_WR8(bp, BAR_USTRORM_INTMEM +
8173 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8174 REG_WR8(bp, BAR_TSTRORM_INTMEM +
8175 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8176 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8177 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8178 REG_WR8(bp, BAR_XSTRORM_INTMEM +
8179 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8180 #endif
8181
8182 bnx2x_phy_probe(&bp->link_params);
8183
8184 return 0;
8185 }
8186
8187 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8188 {
8189 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8190
8191 if (!CHIP_IS_E1x(bp))
8192 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8193 sizeof(struct host_hc_status_block_e2));
8194 else
8195 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8196 sizeof(struct host_hc_status_block_e1x));
8197
8198 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8199 }
8200
8201 void bnx2x_free_mem(struct bnx2x *bp)
8202 {
8203 int i;
8204
8205 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8206 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8207
8208 if (IS_VF(bp))
8209 return;
8210
8211 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8212 sizeof(struct host_sp_status_block));
8213
8214 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8215 sizeof(struct bnx2x_slowpath));
8216
8217 for (i = 0; i < L2_ILT_LINES(bp); i++)
8218 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8219 bp->context[i].size);
8220 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8221
8222 BNX2X_FREE(bp->ilt->lines);
8223
8224 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8225
8226 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8227 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8228
8229 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8230
8231 bnx2x_iov_free_mem(bp);
8232 }
8233
8234 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8235 {
8236 if (!CHIP_IS_E1x(bp)) {
8237 /* size = the status block + ramrod buffers */
8238 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8239 sizeof(struct host_hc_status_block_e2));
8240 if (!bp->cnic_sb.e2_sb)
8241 goto alloc_mem_err;
8242 } else {
8243 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8244 sizeof(struct host_hc_status_block_e1x));
8245 if (!bp->cnic_sb.e1x_sb)
8246 goto alloc_mem_err;
8247 }
8248
8249 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8250 /* allocate searcher T2 table, as it wasn't allocated before */
8251 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8252 if (!bp->t2)
8253 goto alloc_mem_err;
8254 }
8255
8256 /* write address to which L5 should insert its values */
8257 bp->cnic_eth_dev.addr_drv_info_to_mcp =
8258 &bp->slowpath->drv_info_to_mcp;
8259
8260 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8261 goto alloc_mem_err;
8262
8263 return 0;
8264
8265 alloc_mem_err:
8266 bnx2x_free_mem_cnic(bp);
8267 BNX2X_ERR("Can't allocate memory\n");
8268 return -ENOMEM;
8269 }
8270
8271 int bnx2x_alloc_mem(struct bnx2x *bp)
8272 {
8273 int i, allocated, context_size;
8274
8275 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8276 /* allocate searcher T2 table */
8277 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8278 if (!bp->t2)
8279 goto alloc_mem_err;
8280 }
8281
8282 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8283 sizeof(struct host_sp_status_block));
8284 if (!bp->def_status_blk)
8285 goto alloc_mem_err;
8286
8287 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8288 sizeof(struct bnx2x_slowpath));
8289 if (!bp->slowpath)
8290 goto alloc_mem_err;
8291
8292 /* Allocate memory for CDU context:
8293 * This memory is allocated separately and not in the generic ILT
8294 * functions because CDU differs in few aspects:
8295 * 1. There are multiple entities allocating memory for context -
8296 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8297 * its own ILT lines.
8298 * 2. Since CDU page-size is not a single 4KB page (which is the case
8299 * for the other ILT clients), to be efficient we want to support
8300 * allocation of sub-page-size in the last entry.
8301 * 3. Context pointers are used by the driver to pass to FW / update
8302 * the context (for the other ILT clients the pointers are used just to
8303 * free the memory during unload).
8304 */
8305 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8306
8307 for (i = 0, allocated = 0; allocated < context_size; i++) {
8308 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8309 (context_size - allocated));
8310 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8311 bp->context[i].size);
8312 if (!bp->context[i].vcxt)
8313 goto alloc_mem_err;
8314 allocated += bp->context[i].size;
8315 }
8316 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8317 GFP_KERNEL);
8318 if (!bp->ilt->lines)
8319 goto alloc_mem_err;
8320
8321 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8322 goto alloc_mem_err;
8323
8324 if (bnx2x_iov_alloc_mem(bp))
8325 goto alloc_mem_err;
8326
8327 /* Slow path ring */
8328 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8329 if (!bp->spq)
8330 goto alloc_mem_err;
8331
8332 /* EQ */
8333 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8334 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8335 if (!bp->eq_ring)
8336 goto alloc_mem_err;
8337
8338 return 0;
8339
8340 alloc_mem_err:
8341 bnx2x_free_mem(bp);
8342 BNX2X_ERR("Can't allocate memory\n");
8343 return -ENOMEM;
8344 }
8345
8346 /*
8347 * Init service functions
8348 */
8349
8350 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8351 struct bnx2x_vlan_mac_obj *obj, bool set,
8352 int mac_type, unsigned long *ramrod_flags)
8353 {
8354 int rc;
8355 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8356
8357 memset(&ramrod_param, 0, sizeof(ramrod_param));
8358
8359 /* Fill general parameters */
8360 ramrod_param.vlan_mac_obj = obj;
8361 ramrod_param.ramrod_flags = *ramrod_flags;
8362
8363 /* Fill a user request section if needed */
8364 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8365 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8366
8367 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8368
8369 /* Set the command: ADD or DEL */
8370 if (set)
8371 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8372 else
8373 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8374 }
8375
8376 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8377
8378 if (rc == -EEXIST) {
8379 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8380 /* do not treat adding same MAC as error */
8381 rc = 0;
8382 } else if (rc < 0)
8383 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8384
8385 return rc;
8386 }
8387
8388 int bnx2x_del_all_macs(struct bnx2x *bp,
8389 struct bnx2x_vlan_mac_obj *mac_obj,
8390 int mac_type, bool wait_for_comp)
8391 {
8392 int rc;
8393 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8394
8395 /* Wait for completion of requested */
8396 if (wait_for_comp)
8397 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8398
8399 /* Set the mac type of addresses we want to clear */
8400 __set_bit(mac_type, &vlan_mac_flags);
8401
8402 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8403 if (rc < 0)
8404 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8405
8406 return rc;
8407 }
8408
8409 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8410 {
8411 if (IS_PF(bp)) {
8412 unsigned long ramrod_flags = 0;
8413
8414 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8415 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8416 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8417 &bp->sp_objs->mac_obj, set,
8418 BNX2X_ETH_MAC, &ramrod_flags);
8419 } else { /* vf */
8420 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8421 bp->fp->index, true);
8422 }
8423 }
8424
8425 int bnx2x_setup_leading(struct bnx2x *bp)
8426 {
8427 if (IS_PF(bp))
8428 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8429 else /* VF */
8430 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8431 }
8432
8433 /**
8434 * bnx2x_set_int_mode - configure interrupt mode
8435 *
8436 * @bp: driver handle
8437 *
8438 * In case of MSI-X it will also try to enable MSI-X.
8439 */
8440 int bnx2x_set_int_mode(struct bnx2x *bp)
8441 {
8442 int rc = 0;
8443
8444 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8445 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8446 return -EINVAL;
8447 }
8448
8449 switch (int_mode) {
8450 case BNX2X_INT_MODE_MSIX:
8451 /* attempt to enable msix */
8452 rc = bnx2x_enable_msix(bp);
8453
8454 /* msix attained */
8455 if (!rc)
8456 return 0;
8457
8458 /* vfs use only msix */
8459 if (rc && IS_VF(bp))
8460 return rc;
8461
8462 /* failed to enable multiple MSI-X */
8463 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8464 bp->num_queues,
8465 1 + bp->num_cnic_queues);
8466
8467 /* falling through... */
8468 case BNX2X_INT_MODE_MSI:
8469 bnx2x_enable_msi(bp);
8470
8471 /* falling through... */
8472 case BNX2X_INT_MODE_INTX:
8473 bp->num_ethernet_queues = 1;
8474 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8475 BNX2X_DEV_INFO("set number of queues to 1\n");
8476 break;
8477 default:
8478 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8479 return -EINVAL;
8480 }
8481 return 0;
8482 }
8483
8484 /* must be called prior to any HW initializations */
8485 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8486 {
8487 if (IS_SRIOV(bp))
8488 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8489 return L2_ILT_LINES(bp);
8490 }
8491
8492 void bnx2x_ilt_set_info(struct bnx2x *bp)
8493 {
8494 struct ilt_client_info *ilt_client;
8495 struct bnx2x_ilt *ilt = BP_ILT(bp);
8496 u16 line = 0;
8497
8498 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8499 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8500
8501 /* CDU */
8502 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8503 ilt_client->client_num = ILT_CLIENT_CDU;
8504 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8505 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8506 ilt_client->start = line;
8507 line += bnx2x_cid_ilt_lines(bp);
8508
8509 if (CNIC_SUPPORT(bp))
8510 line += CNIC_ILT_LINES;
8511 ilt_client->end = line - 1;
8512
8513 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8514 ilt_client->start,
8515 ilt_client->end,
8516 ilt_client->page_size,
8517 ilt_client->flags,
8518 ilog2(ilt_client->page_size >> 12));
8519
8520 /* QM */
8521 if (QM_INIT(bp->qm_cid_count)) {
8522 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8523 ilt_client->client_num = ILT_CLIENT_QM;
8524 ilt_client->page_size = QM_ILT_PAGE_SZ;
8525 ilt_client->flags = 0;
8526 ilt_client->start = line;
8527
8528 /* 4 bytes for each cid */
8529 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8530 QM_ILT_PAGE_SZ);
8531
8532 ilt_client->end = line - 1;
8533
8534 DP(NETIF_MSG_IFUP,
8535 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8536 ilt_client->start,
8537 ilt_client->end,
8538 ilt_client->page_size,
8539 ilt_client->flags,
8540 ilog2(ilt_client->page_size >> 12));
8541 }
8542
8543 if (CNIC_SUPPORT(bp)) {
8544 /* SRC */
8545 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8546 ilt_client->client_num = ILT_CLIENT_SRC;
8547 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8548 ilt_client->flags = 0;
8549 ilt_client->start = line;
8550 line += SRC_ILT_LINES;
8551 ilt_client->end = line - 1;
8552
8553 DP(NETIF_MSG_IFUP,
8554 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8555 ilt_client->start,
8556 ilt_client->end,
8557 ilt_client->page_size,
8558 ilt_client->flags,
8559 ilog2(ilt_client->page_size >> 12));
8560
8561 /* TM */
8562 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8563 ilt_client->client_num = ILT_CLIENT_TM;
8564 ilt_client->page_size = TM_ILT_PAGE_SZ;
8565 ilt_client->flags = 0;
8566 ilt_client->start = line;
8567 line += TM_ILT_LINES;
8568 ilt_client->end = line - 1;
8569
8570 DP(NETIF_MSG_IFUP,
8571 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8572 ilt_client->start,
8573 ilt_client->end,
8574 ilt_client->page_size,
8575 ilt_client->flags,
8576 ilog2(ilt_client->page_size >> 12));
8577 }
8578
8579 BUG_ON(line > ILT_MAX_LINES);
8580 }
8581
8582 /**
8583 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8584 *
8585 * @bp: driver handle
8586 * @fp: pointer to fastpath
8587 * @init_params: pointer to parameters structure
8588 *
8589 * parameters configured:
8590 * - HC configuration
8591 * - Queue's CDU context
8592 */
8593 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8594 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8595 {
8596 u8 cos;
8597 int cxt_index, cxt_offset;
8598
8599 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8600 if (!IS_FCOE_FP(fp)) {
8601 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8602 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8603
8604 /* If HC is supported, enable host coalescing in the transition
8605 * to INIT state.
8606 */
8607 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8608 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8609
8610 /* HC rate */
8611 init_params->rx.hc_rate = bp->rx_ticks ?
8612 (1000000 / bp->rx_ticks) : 0;
8613 init_params->tx.hc_rate = bp->tx_ticks ?
8614 (1000000 / bp->tx_ticks) : 0;
8615
8616 /* FW SB ID */
8617 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8618 fp->fw_sb_id;
8619
8620 /*
8621 * CQ index among the SB indices: FCoE clients uses the default
8622 * SB, therefore it's different.
8623 */
8624 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8625 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8626 }
8627
8628 /* set maximum number of COSs supported by this queue */
8629 init_params->max_cos = fp->max_cos;
8630
8631 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8632 fp->index, init_params->max_cos);
8633
8634 /* set the context pointers queue object */
8635 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8636 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8637 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8638 ILT_PAGE_CIDS);
8639 init_params->cxts[cos] =
8640 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8641 }
8642 }
8643
8644 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8645 struct bnx2x_queue_state_params *q_params,
8646 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8647 int tx_index, bool leading)
8648 {
8649 memset(tx_only_params, 0, sizeof(*tx_only_params));
8650
8651 /* Set the command */
8652 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8653
8654 /* Set tx-only QUEUE flags: don't zero statistics */
8655 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8656
8657 /* choose the index of the cid to send the slow path on */
8658 tx_only_params->cid_index = tx_index;
8659
8660 /* Set general TX_ONLY_SETUP parameters */
8661 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8662
8663 /* Set Tx TX_ONLY_SETUP parameters */
8664 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8665
8666 DP(NETIF_MSG_IFUP,
8667 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8668 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8669 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8670 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8671
8672 /* send the ramrod */
8673 return bnx2x_queue_state_change(bp, q_params);
8674 }
8675
8676 /**
8677 * bnx2x_setup_queue - setup queue
8678 *
8679 * @bp: driver handle
8680 * @fp: pointer to fastpath
8681 * @leading: is leading
8682 *
8683 * This function performs 2 steps in a Queue state machine
8684 * actually: 1) RESET->INIT 2) INIT->SETUP
8685 */
8686
8687 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8688 bool leading)
8689 {
8690 struct bnx2x_queue_state_params q_params = {NULL};
8691 struct bnx2x_queue_setup_params *setup_params =
8692 &q_params.params.setup;
8693 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8694 &q_params.params.tx_only;
8695 int rc;
8696 u8 tx_index;
8697
8698 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8699
8700 /* reset IGU state skip FCoE L2 queue */
8701 if (!IS_FCOE_FP(fp))
8702 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8703 IGU_INT_ENABLE, 0);
8704
8705 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8706 /* We want to wait for completion in this context */
8707 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8708
8709 /* Prepare the INIT parameters */
8710 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8711
8712 /* Set the command */
8713 q_params.cmd = BNX2X_Q_CMD_INIT;
8714
8715 /* Change the state to INIT */
8716 rc = bnx2x_queue_state_change(bp, &q_params);
8717 if (rc) {
8718 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8719 return rc;
8720 }
8721
8722 DP(NETIF_MSG_IFUP, "init complete\n");
8723
8724 /* Now move the Queue to the SETUP state... */
8725 memset(setup_params, 0, sizeof(*setup_params));
8726
8727 /* Set QUEUE flags */
8728 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8729
8730 /* Set general SETUP parameters */
8731 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8732 FIRST_TX_COS_INDEX);
8733
8734 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8735 &setup_params->rxq_params);
8736
8737 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8738 FIRST_TX_COS_INDEX);
8739
8740 /* Set the command */
8741 q_params.cmd = BNX2X_Q_CMD_SETUP;
8742
8743 if (IS_FCOE_FP(fp))
8744 bp->fcoe_init = true;
8745
8746 /* Change the state to SETUP */
8747 rc = bnx2x_queue_state_change(bp, &q_params);
8748 if (rc) {
8749 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8750 return rc;
8751 }
8752
8753 /* loop through the relevant tx-only indices */
8754 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8755 tx_index < fp->max_cos;
8756 tx_index++) {
8757
8758 /* prepare and send tx-only ramrod*/
8759 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8760 tx_only_params, tx_index, leading);
8761 if (rc) {
8762 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8763 fp->index, tx_index);
8764 return rc;
8765 }
8766 }
8767
8768 return rc;
8769 }
8770
8771 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8772 {
8773 struct bnx2x_fastpath *fp = &bp->fp[index];
8774 struct bnx2x_fp_txdata *txdata;
8775 struct bnx2x_queue_state_params q_params = {NULL};
8776 int rc, tx_index;
8777
8778 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8779
8780 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8781 /* We want to wait for completion in this context */
8782 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8783
8784 /* close tx-only connections */
8785 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8786 tx_index < fp->max_cos;
8787 tx_index++){
8788
8789 /* ascertain this is a normal queue*/
8790 txdata = fp->txdata_ptr[tx_index];
8791
8792 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8793 txdata->txq_index);
8794
8795 /* send halt terminate on tx-only connection */
8796 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8797 memset(&q_params.params.terminate, 0,
8798 sizeof(q_params.params.terminate));
8799 q_params.params.terminate.cid_index = tx_index;
8800
8801 rc = bnx2x_queue_state_change(bp, &q_params);
8802 if (rc)
8803 return rc;
8804
8805 /* send halt terminate on tx-only connection */
8806 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8807 memset(&q_params.params.cfc_del, 0,
8808 sizeof(q_params.params.cfc_del));
8809 q_params.params.cfc_del.cid_index = tx_index;
8810 rc = bnx2x_queue_state_change(bp, &q_params);
8811 if (rc)
8812 return rc;
8813 }
8814 /* Stop the primary connection: */
8815 /* ...halt the connection */
8816 q_params.cmd = BNX2X_Q_CMD_HALT;
8817 rc = bnx2x_queue_state_change(bp, &q_params);
8818 if (rc)
8819 return rc;
8820
8821 /* ...terminate the connection */
8822 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8823 memset(&q_params.params.terminate, 0,
8824 sizeof(q_params.params.terminate));
8825 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8826 rc = bnx2x_queue_state_change(bp, &q_params);
8827 if (rc)
8828 return rc;
8829 /* ...delete cfc entry */
8830 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8831 memset(&q_params.params.cfc_del, 0,
8832 sizeof(q_params.params.cfc_del));
8833 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8834 return bnx2x_queue_state_change(bp, &q_params);
8835 }
8836
8837 static void bnx2x_reset_func(struct bnx2x *bp)
8838 {
8839 int port = BP_PORT(bp);
8840 int func = BP_FUNC(bp);
8841 int i;
8842
8843 /* Disable the function in the FW */
8844 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8845 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8846 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8847 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8848
8849 /* FP SBs */
8850 for_each_eth_queue(bp, i) {
8851 struct bnx2x_fastpath *fp = &bp->fp[i];
8852 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8853 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8854 SB_DISABLED);
8855 }
8856
8857 if (CNIC_LOADED(bp))
8858 /* CNIC SB */
8859 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8860 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8861 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8862
8863 /* SP SB */
8864 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8865 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8866 SB_DISABLED);
8867
8868 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8869 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8870 0);
8871
8872 /* Configure IGU */
8873 if (bp->common.int_block == INT_BLOCK_HC) {
8874 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8875 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8876 } else {
8877 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8878 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8879 }
8880
8881 if (CNIC_LOADED(bp)) {
8882 /* Disable Timer scan */
8883 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8884 /*
8885 * Wait for at least 10ms and up to 2 second for the timers
8886 * scan to complete
8887 */
8888 for (i = 0; i < 200; i++) {
8889 usleep_range(10000, 20000);
8890 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8891 break;
8892 }
8893 }
8894 /* Clear ILT */
8895 bnx2x_clear_func_ilt(bp, func);
8896
8897 /* Timers workaround bug for E2: if this is vnic-3,
8898 * we need to set the entire ilt range for this timers.
8899 */
8900 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8901 struct ilt_client_info ilt_cli;
8902 /* use dummy TM client */
8903 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8904 ilt_cli.start = 0;
8905 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8906 ilt_cli.client_num = ILT_CLIENT_TM;
8907
8908 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8909 }
8910
8911 /* this assumes that reset_port() called before reset_func()*/
8912 if (!CHIP_IS_E1x(bp))
8913 bnx2x_pf_disable(bp);
8914
8915 bp->dmae_ready = 0;
8916 }
8917
8918 static void bnx2x_reset_port(struct bnx2x *bp)
8919 {
8920 int port = BP_PORT(bp);
8921 u32 val;
8922
8923 /* Reset physical Link */
8924 bnx2x__link_reset(bp);
8925
8926 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8927
8928 /* Do not rcv packets to BRB */
8929 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8930 /* Do not direct rcv packets that are not for MCP to the BRB */
8931 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8932 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8933
8934 /* Configure AEU */
8935 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8936
8937 msleep(100);
8938 /* Check for BRB port occupancy */
8939 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8940 if (val)
8941 DP(NETIF_MSG_IFDOWN,
8942 "BRB1 is not empty %d blocks are occupied\n", val);
8943
8944 /* TODO: Close Doorbell port? */
8945 }
8946
8947 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8948 {
8949 struct bnx2x_func_state_params func_params = {NULL};
8950
8951 /* Prepare parameters for function state transitions */
8952 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8953
8954 func_params.f_obj = &bp->func_obj;
8955 func_params.cmd = BNX2X_F_CMD_HW_RESET;
8956
8957 func_params.params.hw_init.load_phase = load_code;
8958
8959 return bnx2x_func_state_change(bp, &func_params);
8960 }
8961
8962 static int bnx2x_func_stop(struct bnx2x *bp)
8963 {
8964 struct bnx2x_func_state_params func_params = {NULL};
8965 int rc;
8966
8967 /* Prepare parameters for function state transitions */
8968 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8969 func_params.f_obj = &bp->func_obj;
8970 func_params.cmd = BNX2X_F_CMD_STOP;
8971
8972 /*
8973 * Try to stop the function the 'good way'. If fails (in case
8974 * of a parity error during bnx2x_chip_cleanup()) and we are
8975 * not in a debug mode, perform a state transaction in order to
8976 * enable further HW_RESET transaction.
8977 */
8978 rc = bnx2x_func_state_change(bp, &func_params);
8979 if (rc) {
8980 #ifdef BNX2X_STOP_ON_ERROR
8981 return rc;
8982 #else
8983 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8984 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8985 return bnx2x_func_state_change(bp, &func_params);
8986 #endif
8987 }
8988
8989 return 0;
8990 }
8991
8992 /**
8993 * bnx2x_send_unload_req - request unload mode from the MCP.
8994 *
8995 * @bp: driver handle
8996 * @unload_mode: requested function's unload mode
8997 *
8998 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8999 */
9000 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9001 {
9002 u32 reset_code = 0;
9003 int port = BP_PORT(bp);
9004
9005 /* Select the UNLOAD request mode */
9006 if (unload_mode == UNLOAD_NORMAL)
9007 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9008
9009 else if (bp->flags & NO_WOL_FLAG)
9010 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9011
9012 else if (bp->wol) {
9013 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9014 u8 *mac_addr = bp->dev->dev_addr;
9015 struct pci_dev *pdev = bp->pdev;
9016 u32 val;
9017 u16 pmc;
9018
9019 /* The mac address is written to entries 1-4 to
9020 * preserve entry 0 which is used by the PMF
9021 */
9022 u8 entry = (BP_VN(bp) + 1)*8;
9023
9024 val = (mac_addr[0] << 8) | mac_addr[1];
9025 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9026
9027 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9028 (mac_addr[4] << 8) | mac_addr[5];
9029 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9030
9031 /* Enable the PME and clear the status */
9032 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9033 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9034 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9035
9036 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9037
9038 } else
9039 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9040
9041 /* Send the request to the MCP */
9042 if (!BP_NOMCP(bp))
9043 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9044 else {
9045 int path = BP_PATH(bp);
9046
9047 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
9048 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9049 bnx2x_load_count[path][2]);
9050 bnx2x_load_count[path][0]--;
9051 bnx2x_load_count[path][1 + port]--;
9052 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
9053 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9054 bnx2x_load_count[path][2]);
9055 if (bnx2x_load_count[path][0] == 0)
9056 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9057 else if (bnx2x_load_count[path][1 + port] == 0)
9058 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9059 else
9060 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9061 }
9062
9063 return reset_code;
9064 }
9065
9066 /**
9067 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9068 *
9069 * @bp: driver handle
9070 * @keep_link: true iff link should be kept up
9071 */
9072 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9073 {
9074 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9075
9076 /* Report UNLOAD_DONE to MCP */
9077 if (!BP_NOMCP(bp))
9078 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9079 }
9080
9081 static int bnx2x_func_wait_started(struct bnx2x *bp)
9082 {
9083 int tout = 50;
9084 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9085
9086 if (!bp->port.pmf)
9087 return 0;
9088
9089 /*
9090 * (assumption: No Attention from MCP at this stage)
9091 * PMF probably in the middle of TX disable/enable transaction
9092 * 1. Sync IRS for default SB
9093 * 2. Sync SP queue - this guarantees us that attention handling started
9094 * 3. Wait, that TX disable/enable transaction completes
9095 *
9096 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9097 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9098 * received completion for the transaction the state is TX_STOPPED.
9099 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9100 * transaction.
9101 */
9102
9103 /* make sure default SB ISR is done */
9104 if (msix)
9105 synchronize_irq(bp->msix_table[0].vector);
9106 else
9107 synchronize_irq(bp->pdev->irq);
9108
9109 flush_workqueue(bnx2x_wq);
9110 flush_workqueue(bnx2x_iov_wq);
9111
9112 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9113 BNX2X_F_STATE_STARTED && tout--)
9114 msleep(20);
9115
9116 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9117 BNX2X_F_STATE_STARTED) {
9118 #ifdef BNX2X_STOP_ON_ERROR
9119 BNX2X_ERR("Wrong function state\n");
9120 return -EBUSY;
9121 #else
9122 /*
9123 * Failed to complete the transaction in a "good way"
9124 * Force both transactions with CLR bit
9125 */
9126 struct bnx2x_func_state_params func_params = {NULL};
9127
9128 DP(NETIF_MSG_IFDOWN,
9129 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9130
9131 func_params.f_obj = &bp->func_obj;
9132 __set_bit(RAMROD_DRV_CLR_ONLY,
9133 &func_params.ramrod_flags);
9134
9135 /* STARTED-->TX_ST0PPED */
9136 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9137 bnx2x_func_state_change(bp, &func_params);
9138
9139 /* TX_ST0PPED-->STARTED */
9140 func_params.cmd = BNX2X_F_CMD_TX_START;
9141 return bnx2x_func_state_change(bp, &func_params);
9142 #endif
9143 }
9144
9145 return 0;
9146 }
9147
9148 static void bnx2x_disable_ptp(struct bnx2x *bp)
9149 {
9150 int port = BP_PORT(bp);
9151
9152 /* Disable sending PTP packets to host */
9153 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9154 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9155
9156 /* Reset PTP event detection rules */
9157 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9158 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9159 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9160 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9161 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9162 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9163 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9164 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9165
9166 /* Disable the PTP feature */
9167 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9168 NIG_REG_P0_PTP_EN, 0x0);
9169 }
9170
9171 /* Called during unload, to stop PTP-related stuff */
9172 void bnx2x_stop_ptp(struct bnx2x *bp)
9173 {
9174 /* Cancel PTP work queue. Should be done after the Tx queues are
9175 * drained to prevent additional scheduling.
9176 */
9177 cancel_work_sync(&bp->ptp_task);
9178
9179 if (bp->ptp_tx_skb) {
9180 dev_kfree_skb_any(bp->ptp_tx_skb);
9181 bp->ptp_tx_skb = NULL;
9182 }
9183
9184 /* Disable PTP in HW */
9185 bnx2x_disable_ptp(bp);
9186
9187 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9188 }
9189
9190 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9191 {
9192 int port = BP_PORT(bp);
9193 int i, rc = 0;
9194 u8 cos;
9195 struct bnx2x_mcast_ramrod_params rparam = {NULL};
9196 u32 reset_code;
9197
9198 /* Wait until tx fastpath tasks complete */
9199 for_each_tx_queue(bp, i) {
9200 struct bnx2x_fastpath *fp = &bp->fp[i];
9201
9202 for_each_cos_in_tx_queue(fp, cos)
9203 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9204 #ifdef BNX2X_STOP_ON_ERROR
9205 if (rc)
9206 return;
9207 #endif
9208 }
9209
9210 /* Give HW time to discard old tx messages */
9211 usleep_range(1000, 2000);
9212
9213 /* Clean all ETH MACs */
9214 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9215 false);
9216 if (rc < 0)
9217 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9218
9219 /* Clean up UC list */
9220 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9221 true);
9222 if (rc < 0)
9223 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9224 rc);
9225
9226 /* Disable LLH */
9227 if (!CHIP_IS_E1(bp))
9228 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9229
9230 /* Set "drop all" (stop Rx).
9231 * We need to take a netif_addr_lock() here in order to prevent
9232 * a race between the completion code and this code.
9233 */
9234 netif_addr_lock_bh(bp->dev);
9235 /* Schedule the rx_mode command */
9236 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9237 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9238 else
9239 bnx2x_set_storm_rx_mode(bp);
9240
9241 /* Cleanup multicast configuration */
9242 rparam.mcast_obj = &bp->mcast_obj;
9243 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9244 if (rc < 0)
9245 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9246
9247 netif_addr_unlock_bh(bp->dev);
9248
9249 bnx2x_iov_chip_cleanup(bp);
9250
9251 /*
9252 * Send the UNLOAD_REQUEST to the MCP. This will return if
9253 * this function should perform FUNC, PORT or COMMON HW
9254 * reset.
9255 */
9256 reset_code = bnx2x_send_unload_req(bp, unload_mode);
9257
9258 /*
9259 * (assumption: No Attention from MCP at this stage)
9260 * PMF probably in the middle of TX disable/enable transaction
9261 */
9262 rc = bnx2x_func_wait_started(bp);
9263 if (rc) {
9264 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9265 #ifdef BNX2X_STOP_ON_ERROR
9266 return;
9267 #endif
9268 }
9269
9270 /* Close multi and leading connections
9271 * Completions for ramrods are collected in a synchronous way
9272 */
9273 for_each_eth_queue(bp, i)
9274 if (bnx2x_stop_queue(bp, i))
9275 #ifdef BNX2X_STOP_ON_ERROR
9276 return;
9277 #else
9278 goto unload_error;
9279 #endif
9280
9281 if (CNIC_LOADED(bp)) {
9282 for_each_cnic_queue(bp, i)
9283 if (bnx2x_stop_queue(bp, i))
9284 #ifdef BNX2X_STOP_ON_ERROR
9285 return;
9286 #else
9287 goto unload_error;
9288 #endif
9289 }
9290
9291 /* If SP settings didn't get completed so far - something
9292 * very wrong has happen.
9293 */
9294 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9295 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9296
9297 #ifndef BNX2X_STOP_ON_ERROR
9298 unload_error:
9299 #endif
9300 rc = bnx2x_func_stop(bp);
9301 if (rc) {
9302 BNX2X_ERR("Function stop failed!\n");
9303 #ifdef BNX2X_STOP_ON_ERROR
9304 return;
9305 #endif
9306 }
9307
9308 /* stop_ptp should be after the Tx queues are drained to prevent
9309 * scheduling to the cancelled PTP work queue. It should also be after
9310 * function stop ramrod is sent, since as part of this ramrod FW access
9311 * PTP registers.
9312 */
9313 bnx2x_stop_ptp(bp);
9314
9315 /* Disable HW interrupts, NAPI */
9316 bnx2x_netif_stop(bp, 1);
9317 /* Delete all NAPI objects */
9318 bnx2x_del_all_napi(bp);
9319 if (CNIC_LOADED(bp))
9320 bnx2x_del_all_napi_cnic(bp);
9321
9322 /* Release IRQs */
9323 bnx2x_free_irq(bp);
9324
9325 /* Reset the chip */
9326 rc = bnx2x_reset_hw(bp, reset_code);
9327 if (rc)
9328 BNX2X_ERR("HW_RESET failed\n");
9329
9330 /* Report UNLOAD_DONE to MCP */
9331 bnx2x_send_unload_done(bp, keep_link);
9332 }
9333
9334 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9335 {
9336 u32 val;
9337
9338 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9339
9340 if (CHIP_IS_E1(bp)) {
9341 int port = BP_PORT(bp);
9342 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9343 MISC_REG_AEU_MASK_ATTN_FUNC_0;
9344
9345 val = REG_RD(bp, addr);
9346 val &= ~(0x300);
9347 REG_WR(bp, addr, val);
9348 } else {
9349 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9350 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9351 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9352 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9353 }
9354 }
9355
9356 /* Close gates #2, #3 and #4: */
9357 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9358 {
9359 u32 val;
9360
9361 /* Gates #2 and #4a are closed/opened for "not E1" only */
9362 if (!CHIP_IS_E1(bp)) {
9363 /* #4 */
9364 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9365 /* #2 */
9366 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9367 }
9368
9369 /* #3 */
9370 if (CHIP_IS_E1x(bp)) {
9371 /* Prevent interrupts from HC on both ports */
9372 val = REG_RD(bp, HC_REG_CONFIG_1);
9373 REG_WR(bp, HC_REG_CONFIG_1,
9374 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9375 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9376
9377 val = REG_RD(bp, HC_REG_CONFIG_0);
9378 REG_WR(bp, HC_REG_CONFIG_0,
9379 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9380 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9381 } else {
9382 /* Prevent incoming interrupts in IGU */
9383 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9384
9385 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9386 (!close) ?
9387 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9388 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9389 }
9390
9391 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9392 close ? "closing" : "opening");
9393 mmiowb();
9394 }
9395
9396 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9397
9398 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9399 {
9400 /* Do some magic... */
9401 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9402 *magic_val = val & SHARED_MF_CLP_MAGIC;
9403 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9404 }
9405
9406 /**
9407 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9408 *
9409 * @bp: driver handle
9410 * @magic_val: old value of the `magic' bit.
9411 */
9412 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9413 {
9414 /* Restore the `magic' bit value... */
9415 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9416 MF_CFG_WR(bp, shared_mf_config.clp_mb,
9417 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9418 }
9419
9420 /**
9421 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9422 *
9423 * @bp: driver handle
9424 * @magic_val: old value of 'magic' bit.
9425 *
9426 * Takes care of CLP configurations.
9427 */
9428 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9429 {
9430 u32 shmem;
9431 u32 validity_offset;
9432
9433 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9434
9435 /* Set `magic' bit in order to save MF config */
9436 if (!CHIP_IS_E1(bp))
9437 bnx2x_clp_reset_prep(bp, magic_val);
9438
9439 /* Get shmem offset */
9440 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9441 validity_offset =
9442 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9443
9444 /* Clear validity map flags */
9445 if (shmem > 0)
9446 REG_WR(bp, shmem + validity_offset, 0);
9447 }
9448
9449 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9450 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9451
9452 /**
9453 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9454 *
9455 * @bp: driver handle
9456 */
9457 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9458 {
9459 /* special handling for emulation and FPGA,
9460 wait 10 times longer */
9461 if (CHIP_REV_IS_SLOW(bp))
9462 msleep(MCP_ONE_TIMEOUT*10);
9463 else
9464 msleep(MCP_ONE_TIMEOUT);
9465 }
9466
9467 /*
9468 * initializes bp->common.shmem_base and waits for validity signature to appear
9469 */
9470 static int bnx2x_init_shmem(struct bnx2x *bp)
9471 {
9472 int cnt = 0;
9473 u32 val = 0;
9474
9475 do {
9476 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9477 if (bp->common.shmem_base) {
9478 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9479 if (val & SHR_MEM_VALIDITY_MB)
9480 return 0;
9481 }
9482
9483 bnx2x_mcp_wait_one(bp);
9484
9485 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9486
9487 BNX2X_ERR("BAD MCP validity signature\n");
9488
9489 return -ENODEV;
9490 }
9491
9492 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9493 {
9494 int rc = bnx2x_init_shmem(bp);
9495
9496 /* Restore the `magic' bit value */
9497 if (!CHIP_IS_E1(bp))
9498 bnx2x_clp_reset_done(bp, magic_val);
9499
9500 return rc;
9501 }
9502
9503 static void bnx2x_pxp_prep(struct bnx2x *bp)
9504 {
9505 if (!CHIP_IS_E1(bp)) {
9506 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9507 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9508 mmiowb();
9509 }
9510 }
9511
9512 /*
9513 * Reset the whole chip except for:
9514 * - PCIE core
9515 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9516 * one reset bit)
9517 * - IGU
9518 * - MISC (including AEU)
9519 * - GRC
9520 * - RBCN, RBCP
9521 */
9522 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9523 {
9524 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9525 u32 global_bits2, stay_reset2;
9526
9527 /*
9528 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9529 * (per chip) blocks.
9530 */
9531 global_bits2 =
9532 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9533 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9534
9535 /* Don't reset the following blocks.
9536 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9537 * reset, as in 4 port device they might still be owned
9538 * by the MCP (there is only one leader per path).
9539 */
9540 not_reset_mask1 =
9541 MISC_REGISTERS_RESET_REG_1_RST_HC |
9542 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9543 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9544
9545 not_reset_mask2 =
9546 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9547 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9548 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9549 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9550 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9551 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9552 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9553 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9554 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9555 MISC_REGISTERS_RESET_REG_2_PGLC |
9556 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9557 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9558 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9559 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9560 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9561 MISC_REGISTERS_RESET_REG_2_UMAC1;
9562
9563 /*
9564 * Keep the following blocks in reset:
9565 * - all xxMACs are handled by the bnx2x_link code.
9566 */
9567 stay_reset2 =
9568 MISC_REGISTERS_RESET_REG_2_XMAC |
9569 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9570
9571 /* Full reset masks according to the chip */
9572 reset_mask1 = 0xffffffff;
9573
9574 if (CHIP_IS_E1(bp))
9575 reset_mask2 = 0xffff;
9576 else if (CHIP_IS_E1H(bp))
9577 reset_mask2 = 0x1ffff;
9578 else if (CHIP_IS_E2(bp))
9579 reset_mask2 = 0xfffff;
9580 else /* CHIP_IS_E3 */
9581 reset_mask2 = 0x3ffffff;
9582
9583 /* Don't reset global blocks unless we need to */
9584 if (!global)
9585 reset_mask2 &= ~global_bits2;
9586
9587 /*
9588 * In case of attention in the QM, we need to reset PXP
9589 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9590 * because otherwise QM reset would release 'close the gates' shortly
9591 * before resetting the PXP, then the PSWRQ would send a write
9592 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9593 * read the payload data from PSWWR, but PSWWR would not
9594 * respond. The write queue in PGLUE would stuck, dmae commands
9595 * would not return. Therefore it's important to reset the second
9596 * reset register (containing the
9597 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9598 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9599 * bit).
9600 */
9601 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9602 reset_mask2 & (~not_reset_mask2));
9603
9604 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9605 reset_mask1 & (~not_reset_mask1));
9606
9607 barrier();
9608 mmiowb();
9609
9610 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9611 reset_mask2 & (~stay_reset2));
9612
9613 barrier();
9614 mmiowb();
9615
9616 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9617 mmiowb();
9618 }
9619
9620 /**
9621 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9622 * It should get cleared in no more than 1s.
9623 *
9624 * @bp: driver handle
9625 *
9626 * It should get cleared in no more than 1s. Returns 0 if
9627 * pending writes bit gets cleared.
9628 */
9629 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9630 {
9631 u32 cnt = 1000;
9632 u32 pend_bits = 0;
9633
9634 do {
9635 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9636
9637 if (pend_bits == 0)
9638 break;
9639
9640 usleep_range(1000, 2000);
9641 } while (cnt-- > 0);
9642
9643 if (cnt <= 0) {
9644 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9645 pend_bits);
9646 return -EBUSY;
9647 }
9648
9649 return 0;
9650 }
9651
9652 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9653 {
9654 int cnt = 1000;
9655 u32 val = 0;
9656 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9657 u32 tags_63_32 = 0;
9658
9659 /* Empty the Tetris buffer, wait for 1s */
9660 do {
9661 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9662 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9663 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9664 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9665 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9666 if (CHIP_IS_E3(bp))
9667 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9668
9669 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9670 ((port_is_idle_0 & 0x1) == 0x1) &&
9671 ((port_is_idle_1 & 0x1) == 0x1) &&
9672 (pgl_exp_rom2 == 0xffffffff) &&
9673 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9674 break;
9675 usleep_range(1000, 2000);
9676 } while (cnt-- > 0);
9677
9678 if (cnt <= 0) {
9679 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9680 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9681 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9682 pgl_exp_rom2);
9683 return -EAGAIN;
9684 }
9685
9686 barrier();
9687
9688 /* Close gates #2, #3 and #4 */
9689 bnx2x_set_234_gates(bp, true);
9690
9691 /* Poll for IGU VQs for 57712 and newer chips */
9692 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9693 return -EAGAIN;
9694
9695 /* TBD: Indicate that "process kill" is in progress to MCP */
9696
9697 /* Clear "unprepared" bit */
9698 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9699 barrier();
9700
9701 /* Make sure all is written to the chip before the reset */
9702 mmiowb();
9703
9704 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9705 * PSWHST, GRC and PSWRD Tetris buffer.
9706 */
9707 usleep_range(1000, 2000);
9708
9709 /* Prepare to chip reset: */
9710 /* MCP */
9711 if (global)
9712 bnx2x_reset_mcp_prep(bp, &val);
9713
9714 /* PXP */
9715 bnx2x_pxp_prep(bp);
9716 barrier();
9717
9718 /* reset the chip */
9719 bnx2x_process_kill_chip_reset(bp, global);
9720 barrier();
9721
9722 /* clear errors in PGB */
9723 if (!CHIP_IS_E1x(bp))
9724 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9725
9726 /* Recover after reset: */
9727 /* MCP */
9728 if (global && bnx2x_reset_mcp_comp(bp, val))
9729 return -EAGAIN;
9730
9731 /* TBD: Add resetting the NO_MCP mode DB here */
9732
9733 /* Open the gates #2, #3 and #4 */
9734 bnx2x_set_234_gates(bp, false);
9735
9736 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9737 * reset state, re-enable attentions. */
9738
9739 return 0;
9740 }
9741
9742 static int bnx2x_leader_reset(struct bnx2x *bp)
9743 {
9744 int rc = 0;
9745 bool global = bnx2x_reset_is_global(bp);
9746 u32 load_code;
9747
9748 /* if not going to reset MCP - load "fake" driver to reset HW while
9749 * driver is owner of the HW
9750 */
9751 if (!global && !BP_NOMCP(bp)) {
9752 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9753 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9754 if (!load_code) {
9755 BNX2X_ERR("MCP response failure, aborting\n");
9756 rc = -EAGAIN;
9757 goto exit_leader_reset;
9758 }
9759 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9760 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9761 BNX2X_ERR("MCP unexpected resp, aborting\n");
9762 rc = -EAGAIN;
9763 goto exit_leader_reset2;
9764 }
9765 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9766 if (!load_code) {
9767 BNX2X_ERR("MCP response failure, aborting\n");
9768 rc = -EAGAIN;
9769 goto exit_leader_reset2;
9770 }
9771 }
9772
9773 /* Try to recover after the failure */
9774 if (bnx2x_process_kill(bp, global)) {
9775 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9776 BP_PATH(bp));
9777 rc = -EAGAIN;
9778 goto exit_leader_reset2;
9779 }
9780
9781 /*
9782 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9783 * state.
9784 */
9785 bnx2x_set_reset_done(bp);
9786 if (global)
9787 bnx2x_clear_reset_global(bp);
9788
9789 exit_leader_reset2:
9790 /* unload "fake driver" if it was loaded */
9791 if (!global && !BP_NOMCP(bp)) {
9792 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9793 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9794 }
9795 exit_leader_reset:
9796 bp->is_leader = 0;
9797 bnx2x_release_leader_lock(bp);
9798 smp_mb();
9799 return rc;
9800 }
9801
9802 static void bnx2x_recovery_failed(struct bnx2x *bp)
9803 {
9804 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9805
9806 /* Disconnect this device */
9807 netif_device_detach(bp->dev);
9808
9809 /*
9810 * Block ifup for all function on this engine until "process kill"
9811 * or power cycle.
9812 */
9813 bnx2x_set_reset_in_progress(bp);
9814
9815 /* Shut down the power */
9816 bnx2x_set_power_state(bp, PCI_D3hot);
9817
9818 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9819
9820 smp_mb();
9821 }
9822
9823 /*
9824 * Assumption: runs under rtnl lock. This together with the fact
9825 * that it's called only from bnx2x_sp_rtnl() ensure that it
9826 * will never be called when netif_running(bp->dev) is false.
9827 */
9828 static void bnx2x_parity_recover(struct bnx2x *bp)
9829 {
9830 bool global = false;
9831 u32 error_recovered, error_unrecovered;
9832 bool is_parity;
9833
9834 DP(NETIF_MSG_HW, "Handling parity\n");
9835 while (1) {
9836 switch (bp->recovery_state) {
9837 case BNX2X_RECOVERY_INIT:
9838 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9839 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9840 WARN_ON(!is_parity);
9841
9842 /* Try to get a LEADER_LOCK HW lock */
9843 if (bnx2x_trylock_leader_lock(bp)) {
9844 bnx2x_set_reset_in_progress(bp);
9845 /*
9846 * Check if there is a global attention and if
9847 * there was a global attention, set the global
9848 * reset bit.
9849 */
9850
9851 if (global)
9852 bnx2x_set_reset_global(bp);
9853
9854 bp->is_leader = 1;
9855 }
9856
9857 /* Stop the driver */
9858 /* If interface has been removed - break */
9859 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9860 return;
9861
9862 bp->recovery_state = BNX2X_RECOVERY_WAIT;
9863
9864 /* Ensure "is_leader", MCP command sequence and
9865 * "recovery_state" update values are seen on other
9866 * CPUs.
9867 */
9868 smp_mb();
9869 break;
9870
9871 case BNX2X_RECOVERY_WAIT:
9872 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9873 if (bp->is_leader) {
9874 int other_engine = BP_PATH(bp) ? 0 : 1;
9875 bool other_load_status =
9876 bnx2x_get_load_status(bp, other_engine);
9877 bool load_status =
9878 bnx2x_get_load_status(bp, BP_PATH(bp));
9879 global = bnx2x_reset_is_global(bp);
9880
9881 /*
9882 * In case of a parity in a global block, let
9883 * the first leader that performs a
9884 * leader_reset() reset the global blocks in
9885 * order to clear global attentions. Otherwise
9886 * the gates will remain closed for that
9887 * engine.
9888 */
9889 if (load_status ||
9890 (global && other_load_status)) {
9891 /* Wait until all other functions get
9892 * down.
9893 */
9894 schedule_delayed_work(&bp->sp_rtnl_task,
9895 HZ/10);
9896 return;
9897 } else {
9898 /* If all other functions got down -
9899 * try to bring the chip back to
9900 * normal. In any case it's an exit
9901 * point for a leader.
9902 */
9903 if (bnx2x_leader_reset(bp)) {
9904 bnx2x_recovery_failed(bp);
9905 return;
9906 }
9907
9908 /* If we are here, means that the
9909 * leader has succeeded and doesn't
9910 * want to be a leader any more. Try
9911 * to continue as a none-leader.
9912 */
9913 break;
9914 }
9915 } else { /* non-leader */
9916 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9917 /* Try to get a LEADER_LOCK HW lock as
9918 * long as a former leader may have
9919 * been unloaded by the user or
9920 * released a leadership by another
9921 * reason.
9922 */
9923 if (bnx2x_trylock_leader_lock(bp)) {
9924 /* I'm a leader now! Restart a
9925 * switch case.
9926 */
9927 bp->is_leader = 1;
9928 break;
9929 }
9930
9931 schedule_delayed_work(&bp->sp_rtnl_task,
9932 HZ/10);
9933 return;
9934
9935 } else {
9936 /*
9937 * If there was a global attention, wait
9938 * for it to be cleared.
9939 */
9940 if (bnx2x_reset_is_global(bp)) {
9941 schedule_delayed_work(
9942 &bp->sp_rtnl_task,
9943 HZ/10);
9944 return;
9945 }
9946
9947 error_recovered =
9948 bp->eth_stats.recoverable_error;
9949 error_unrecovered =
9950 bp->eth_stats.unrecoverable_error;
9951 bp->recovery_state =
9952 BNX2X_RECOVERY_NIC_LOADING;
9953 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9954 error_unrecovered++;
9955 netdev_err(bp->dev,
9956 "Recovery failed. Power cycle needed\n");
9957 /* Disconnect this device */
9958 netif_device_detach(bp->dev);
9959 /* Shut down the power */
9960 bnx2x_set_power_state(
9961 bp, PCI_D3hot);
9962 smp_mb();
9963 } else {
9964 bp->recovery_state =
9965 BNX2X_RECOVERY_DONE;
9966 error_recovered++;
9967 smp_mb();
9968 }
9969 bp->eth_stats.recoverable_error =
9970 error_recovered;
9971 bp->eth_stats.unrecoverable_error =
9972 error_unrecovered;
9973
9974 return;
9975 }
9976 }
9977 default:
9978 return;
9979 }
9980 }
9981 }
9982
9983 static int bnx2x_close(struct net_device *dev);
9984
9985 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9986 * scheduled on a general queue in order to prevent a dead lock.
9987 */
9988 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9989 {
9990 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9991
9992 rtnl_lock();
9993
9994 if (!netif_running(bp->dev)) {
9995 rtnl_unlock();
9996 return;
9997 }
9998
9999 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10000 #ifdef BNX2X_STOP_ON_ERROR
10001 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10002 "you will need to reboot when done\n");
10003 goto sp_rtnl_not_reset;
10004 #endif
10005 /*
10006 * Clear all pending SP commands as we are going to reset the
10007 * function anyway.
10008 */
10009 bp->sp_rtnl_state = 0;
10010 smp_mb();
10011
10012 bnx2x_parity_recover(bp);
10013
10014 rtnl_unlock();
10015 return;
10016 }
10017
10018 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10019 #ifdef BNX2X_STOP_ON_ERROR
10020 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10021 "you will need to reboot when done\n");
10022 goto sp_rtnl_not_reset;
10023 #endif
10024
10025 /*
10026 * Clear all pending SP commands as we are going to reset the
10027 * function anyway.
10028 */
10029 bp->sp_rtnl_state = 0;
10030 smp_mb();
10031
10032 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10033 bnx2x_nic_load(bp, LOAD_NORMAL);
10034
10035 rtnl_unlock();
10036 return;
10037 }
10038 #ifdef BNX2X_STOP_ON_ERROR
10039 sp_rtnl_not_reset:
10040 #endif
10041 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10042 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10043 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10044 bnx2x_after_function_update(bp);
10045 /*
10046 * in case of fan failure we need to reset id if the "stop on error"
10047 * debug flag is set, since we trying to prevent permanent overheating
10048 * damage
10049 */
10050 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10051 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10052 netif_device_detach(bp->dev);
10053 bnx2x_close(bp->dev);
10054 rtnl_unlock();
10055 return;
10056 }
10057
10058 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10059 DP(BNX2X_MSG_SP,
10060 "sending set mcast vf pf channel message from rtnl sp-task\n");
10061 bnx2x_vfpf_set_mcast(bp->dev);
10062 }
10063 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10064 &bp->sp_rtnl_state)){
10065 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10066 bnx2x_tx_disable(bp);
10067 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10068 }
10069 }
10070
10071 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10072 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10073 bnx2x_set_rx_mode_inner(bp);
10074 }
10075
10076 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10077 &bp->sp_rtnl_state))
10078 bnx2x_pf_set_vfs_vlan(bp);
10079
10080 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10081 bnx2x_dcbx_stop_hw_tx(bp);
10082 bnx2x_dcbx_resume_hw_tx(bp);
10083 }
10084
10085 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10086 &bp->sp_rtnl_state))
10087 bnx2x_update_mng_version(bp);
10088
10089 /* work which needs rtnl lock not-taken (as it takes the lock itself and
10090 * can be called from other contexts as well)
10091 */
10092 rtnl_unlock();
10093
10094 /* enable SR-IOV if applicable */
10095 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10096 &bp->sp_rtnl_state)) {
10097 bnx2x_disable_sriov(bp);
10098 bnx2x_enable_sriov(bp);
10099 }
10100 }
10101
10102 static void bnx2x_period_task(struct work_struct *work)
10103 {
10104 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10105
10106 if (!netif_running(bp->dev))
10107 goto period_task_exit;
10108
10109 if (CHIP_REV_IS_SLOW(bp)) {
10110 BNX2X_ERR("period task called on emulation, ignoring\n");
10111 goto period_task_exit;
10112 }
10113
10114 bnx2x_acquire_phy_lock(bp);
10115 /*
10116 * The barrier is needed to ensure the ordering between the writing to
10117 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10118 * the reading here.
10119 */
10120 smp_mb();
10121 if (bp->port.pmf) {
10122 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10123
10124 /* Re-queue task in 1 sec */
10125 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10126 }
10127
10128 bnx2x_release_phy_lock(bp);
10129 period_task_exit:
10130 return;
10131 }
10132
10133 /*
10134 * Init service functions
10135 */
10136
10137 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10138 {
10139 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10140 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10141 return base + (BP_ABS_FUNC(bp)) * stride;
10142 }
10143
10144 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10145 struct bnx2x_mac_vals *vals)
10146 {
10147 u32 val, base_addr, offset, mask, reset_reg;
10148 bool mac_stopped = false;
10149 u8 port = BP_PORT(bp);
10150
10151 /* reset addresses as they also mark which values were changed */
10152 vals->bmac_addr = 0;
10153 vals->umac_addr = 0;
10154 vals->xmac_addr = 0;
10155 vals->emac_addr = 0;
10156
10157 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10158
10159 if (!CHIP_IS_E3(bp)) {
10160 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10161 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10162 if ((mask & reset_reg) && val) {
10163 u32 wb_data[2];
10164 BNX2X_DEV_INFO("Disable bmac Rx\n");
10165 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10166 : NIG_REG_INGRESS_BMAC0_MEM;
10167 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10168 : BIGMAC_REGISTER_BMAC_CONTROL;
10169
10170 /*
10171 * use rd/wr since we cannot use dmae. This is safe
10172 * since MCP won't access the bus due to the request
10173 * to unload, and no function on the path can be
10174 * loaded at this time.
10175 */
10176 wb_data[0] = REG_RD(bp, base_addr + offset);
10177 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10178 vals->bmac_addr = base_addr + offset;
10179 vals->bmac_val[0] = wb_data[0];
10180 vals->bmac_val[1] = wb_data[1];
10181 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10182 REG_WR(bp, vals->bmac_addr, wb_data[0]);
10183 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10184 }
10185 BNX2X_DEV_INFO("Disable emac Rx\n");
10186 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10187 vals->emac_val = REG_RD(bp, vals->emac_addr);
10188 REG_WR(bp, vals->emac_addr, 0);
10189 mac_stopped = true;
10190 } else {
10191 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10192 BNX2X_DEV_INFO("Disable xmac Rx\n");
10193 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10194 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10195 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10196 val & ~(1 << 1));
10197 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10198 val | (1 << 1));
10199 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10200 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10201 REG_WR(bp, vals->xmac_addr, 0);
10202 mac_stopped = true;
10203 }
10204 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10205 if (mask & reset_reg) {
10206 BNX2X_DEV_INFO("Disable umac Rx\n");
10207 base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10208 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
10209 vals->umac_val = REG_RD(bp, vals->umac_addr);
10210 REG_WR(bp, vals->umac_addr, 0);
10211 mac_stopped = true;
10212 }
10213 }
10214
10215 if (mac_stopped)
10216 msleep(20);
10217 }
10218
10219 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10220 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10221 0x1848 + ((f) << 4))
10222 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
10223 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
10224 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
10225
10226 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
10227 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
10228 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
10229
10230 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10231 {
10232 /* UNDI marks its presence in DORQ -
10233 * it initializes CID offset for normal bell to 0x7
10234 */
10235 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10236 MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10237 return false;
10238
10239 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10240 BNX2X_DEV_INFO("UNDI previously loaded\n");
10241 return true;
10242 }
10243
10244 return false;
10245 }
10246
10247 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10248 {
10249 u16 rcq, bd;
10250 u32 addr, tmp_reg;
10251
10252 if (BP_FUNC(bp) < 2)
10253 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10254 else
10255 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10256
10257 tmp_reg = REG_RD(bp, addr);
10258 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10259 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10260
10261 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10262 REG_WR(bp, addr, tmp_reg);
10263
10264 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10265 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10266 }
10267
10268 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10269 {
10270 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10271 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10272 if (!rc) {
10273 BNX2X_ERR("MCP response failure, aborting\n");
10274 return -EBUSY;
10275 }
10276
10277 return 0;
10278 }
10279
10280 static struct bnx2x_prev_path_list *
10281 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10282 {
10283 struct bnx2x_prev_path_list *tmp_list;
10284
10285 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10286 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10287 bp->pdev->bus->number == tmp_list->bus &&
10288 BP_PATH(bp) == tmp_list->path)
10289 return tmp_list;
10290
10291 return NULL;
10292 }
10293
10294 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10295 {
10296 struct bnx2x_prev_path_list *tmp_list;
10297 int rc;
10298
10299 rc = down_interruptible(&bnx2x_prev_sem);
10300 if (rc) {
10301 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10302 return rc;
10303 }
10304
10305 tmp_list = bnx2x_prev_path_get_entry(bp);
10306 if (tmp_list) {
10307 tmp_list->aer = 1;
10308 rc = 0;
10309 } else {
10310 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10311 BP_PATH(bp));
10312 }
10313
10314 up(&bnx2x_prev_sem);
10315
10316 return rc;
10317 }
10318
10319 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10320 {
10321 struct bnx2x_prev_path_list *tmp_list;
10322 bool rc = false;
10323
10324 if (down_trylock(&bnx2x_prev_sem))
10325 return false;
10326
10327 tmp_list = bnx2x_prev_path_get_entry(bp);
10328 if (tmp_list) {
10329 if (tmp_list->aer) {
10330 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10331 BP_PATH(bp));
10332 } else {
10333 rc = true;
10334 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10335 BP_PATH(bp));
10336 }
10337 }
10338
10339 up(&bnx2x_prev_sem);
10340
10341 return rc;
10342 }
10343
10344 bool bnx2x_port_after_undi(struct bnx2x *bp)
10345 {
10346 struct bnx2x_prev_path_list *entry;
10347 bool val;
10348
10349 down(&bnx2x_prev_sem);
10350
10351 entry = bnx2x_prev_path_get_entry(bp);
10352 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10353
10354 up(&bnx2x_prev_sem);
10355
10356 return val;
10357 }
10358
10359 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10360 {
10361 struct bnx2x_prev_path_list *tmp_list;
10362 int rc;
10363
10364 rc = down_interruptible(&bnx2x_prev_sem);
10365 if (rc) {
10366 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10367 return rc;
10368 }
10369
10370 /* Check whether the entry for this path already exists */
10371 tmp_list = bnx2x_prev_path_get_entry(bp);
10372 if (tmp_list) {
10373 if (!tmp_list->aer) {
10374 BNX2X_ERR("Re-Marking the path.\n");
10375 } else {
10376 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10377 BP_PATH(bp));
10378 tmp_list->aer = 0;
10379 }
10380 up(&bnx2x_prev_sem);
10381 return 0;
10382 }
10383 up(&bnx2x_prev_sem);
10384
10385 /* Create an entry for this path and add it */
10386 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10387 if (!tmp_list) {
10388 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10389 return -ENOMEM;
10390 }
10391
10392 tmp_list->bus = bp->pdev->bus->number;
10393 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10394 tmp_list->path = BP_PATH(bp);
10395 tmp_list->aer = 0;
10396 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10397
10398 rc = down_interruptible(&bnx2x_prev_sem);
10399 if (rc) {
10400 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10401 kfree(tmp_list);
10402 } else {
10403 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10404 BP_PATH(bp));
10405 list_add(&tmp_list->list, &bnx2x_prev_list);
10406 up(&bnx2x_prev_sem);
10407 }
10408
10409 return rc;
10410 }
10411
10412 static int bnx2x_do_flr(struct bnx2x *bp)
10413 {
10414 struct pci_dev *dev = bp->pdev;
10415
10416 if (CHIP_IS_E1x(bp)) {
10417 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10418 return -EINVAL;
10419 }
10420
10421 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10422 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10423 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10424 bp->common.bc_ver);
10425 return -EINVAL;
10426 }
10427
10428 if (!pci_wait_for_pending_transaction(dev))
10429 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10430
10431 BNX2X_DEV_INFO("Initiating FLR\n");
10432 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10433
10434 return 0;
10435 }
10436
10437 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10438 {
10439 int rc;
10440
10441 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10442
10443 /* Test if previous unload process was already finished for this path */
10444 if (bnx2x_prev_is_path_marked(bp))
10445 return bnx2x_prev_mcp_done(bp);
10446
10447 BNX2X_DEV_INFO("Path is unmarked\n");
10448
10449 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10450 if (bnx2x_prev_is_after_undi(bp))
10451 goto out;
10452
10453 /* If function has FLR capabilities, and existing FW version matches
10454 * the one required, then FLR will be sufficient to clean any residue
10455 * left by previous driver
10456 */
10457 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10458
10459 if (!rc) {
10460 /* fw version is good */
10461 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10462 rc = bnx2x_do_flr(bp);
10463 }
10464
10465 if (!rc) {
10466 /* FLR was performed */
10467 BNX2X_DEV_INFO("FLR successful\n");
10468 return 0;
10469 }
10470
10471 BNX2X_DEV_INFO("Could not FLR\n");
10472
10473 out:
10474 /* Close the MCP request, return failure*/
10475 rc = bnx2x_prev_mcp_done(bp);
10476 if (!rc)
10477 rc = BNX2X_PREV_WAIT_NEEDED;
10478
10479 return rc;
10480 }
10481
10482 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10483 {
10484 u32 reset_reg, tmp_reg = 0, rc;
10485 bool prev_undi = false;
10486 struct bnx2x_mac_vals mac_vals;
10487
10488 /* It is possible a previous function received 'common' answer,
10489 * but hasn't loaded yet, therefore creating a scenario of
10490 * multiple functions receiving 'common' on the same path.
10491 */
10492 BNX2X_DEV_INFO("Common unload Flow\n");
10493
10494 memset(&mac_vals, 0, sizeof(mac_vals));
10495
10496 if (bnx2x_prev_is_path_marked(bp))
10497 return bnx2x_prev_mcp_done(bp);
10498
10499 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10500
10501 /* Reset should be performed after BRB is emptied */
10502 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10503 u32 timer_count = 1000;
10504
10505 /* Close the MAC Rx to prevent BRB from filling up */
10506 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10507
10508 /* close LLH filters towards the BRB */
10509 bnx2x_set_rx_filter(&bp->link_params, 0);
10510
10511 /* Check if the UNDI driver was previously loaded */
10512 if (bnx2x_prev_is_after_undi(bp)) {
10513 prev_undi = true;
10514 /* clear the UNDI indication */
10515 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10516 /* clear possible idle check errors */
10517 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10518 }
10519 if (!CHIP_IS_E1x(bp))
10520 /* block FW from writing to host */
10521 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10522
10523 /* wait until BRB is empty */
10524 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10525 while (timer_count) {
10526 u32 prev_brb = tmp_reg;
10527
10528 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10529 if (!tmp_reg)
10530 break;
10531
10532 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10533
10534 /* reset timer as long as BRB actually gets emptied */
10535 if (prev_brb > tmp_reg)
10536 timer_count = 1000;
10537 else
10538 timer_count--;
10539
10540 /* If UNDI resides in memory, manually increment it */
10541 if (prev_undi)
10542 bnx2x_prev_unload_undi_inc(bp, 1);
10543
10544 udelay(10);
10545 }
10546
10547 if (!timer_count)
10548 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10549 }
10550
10551 /* No packets are in the pipeline, path is ready for reset */
10552 bnx2x_reset_common(bp);
10553
10554 if (mac_vals.xmac_addr)
10555 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10556 if (mac_vals.umac_addr)
10557 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10558 if (mac_vals.emac_addr)
10559 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10560 if (mac_vals.bmac_addr) {
10561 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10562 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10563 }
10564
10565 rc = bnx2x_prev_mark_path(bp, prev_undi);
10566 if (rc) {
10567 bnx2x_prev_mcp_done(bp);
10568 return rc;
10569 }
10570
10571 return bnx2x_prev_mcp_done(bp);
10572 }
10573
10574 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10575 * and boot began, or when kdump kernel was loaded. Either case would invalidate
10576 * the addresses of the transaction, resulting in was-error bit set in the pci
10577 * causing all hw-to-host pcie transactions to timeout. If this happened we want
10578 * to clear the interrupt which detected this from the pglueb and the was done
10579 * bit
10580 */
10581 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10582 {
10583 if (!CHIP_IS_E1x(bp)) {
10584 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10585 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10586 DP(BNX2X_MSG_SP,
10587 "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10588 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10589 1 << BP_FUNC(bp));
10590 }
10591 }
10592 }
10593
10594 static int bnx2x_prev_unload(struct bnx2x *bp)
10595 {
10596 int time_counter = 10;
10597 u32 rc, fw, hw_lock_reg, hw_lock_val;
10598 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10599
10600 /* clear hw from errors which may have resulted from an interrupted
10601 * dmae transaction.
10602 */
10603 bnx2x_prev_interrupted_dmae(bp);
10604
10605 /* Release previously held locks */
10606 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10607 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10608 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10609
10610 hw_lock_val = REG_RD(bp, hw_lock_reg);
10611 if (hw_lock_val) {
10612 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10613 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10614 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10615 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10616 }
10617
10618 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10619 REG_WR(bp, hw_lock_reg, 0xffffffff);
10620 } else
10621 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10622
10623 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10624 BNX2X_DEV_INFO("Release previously held alr\n");
10625 bnx2x_release_alr(bp);
10626 }
10627
10628 do {
10629 int aer = 0;
10630 /* Lock MCP using an unload request */
10631 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10632 if (!fw) {
10633 BNX2X_ERR("MCP response failure, aborting\n");
10634 rc = -EBUSY;
10635 break;
10636 }
10637
10638 rc = down_interruptible(&bnx2x_prev_sem);
10639 if (rc) {
10640 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10641 rc);
10642 } else {
10643 /* If Path is marked by EEH, ignore unload status */
10644 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10645 bnx2x_prev_path_get_entry(bp)->aer);
10646 up(&bnx2x_prev_sem);
10647 }
10648
10649 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10650 rc = bnx2x_prev_unload_common(bp);
10651 break;
10652 }
10653
10654 /* non-common reply from MCP might require looping */
10655 rc = bnx2x_prev_unload_uncommon(bp);
10656 if (rc != BNX2X_PREV_WAIT_NEEDED)
10657 break;
10658
10659 msleep(20);
10660 } while (--time_counter);
10661
10662 if (!time_counter || rc) {
10663 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10664 rc = -EPROBE_DEFER;
10665 }
10666
10667 /* Mark function if its port was used to boot from SAN */
10668 if (bnx2x_port_after_undi(bp))
10669 bp->link_params.feature_config_flags |=
10670 FEATURE_CONFIG_BOOT_FROM_SAN;
10671
10672 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10673
10674 return rc;
10675 }
10676
10677 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10678 {
10679 u32 val, val2, val3, val4, id, boot_mode;
10680 u16 pmc;
10681
10682 /* Get the chip revision id and number. */
10683 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10684 val = REG_RD(bp, MISC_REG_CHIP_NUM);
10685 id = ((val & 0xffff) << 16);
10686 val = REG_RD(bp, MISC_REG_CHIP_REV);
10687 id |= ((val & 0xf) << 12);
10688
10689 /* Metal is read from PCI regs, but we can't access >=0x400 from
10690 * the configuration space (so we need to reg_rd)
10691 */
10692 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10693 id |= (((val >> 24) & 0xf) << 4);
10694 val = REG_RD(bp, MISC_REG_BOND_ID);
10695 id |= (val & 0xf);
10696 bp->common.chip_id = id;
10697
10698 /* force 57811 according to MISC register */
10699 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10700 if (CHIP_IS_57810(bp))
10701 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10702 (bp->common.chip_id & 0x0000FFFF);
10703 else if (CHIP_IS_57810_MF(bp))
10704 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10705 (bp->common.chip_id & 0x0000FFFF);
10706 bp->common.chip_id |= 0x1;
10707 }
10708
10709 /* Set doorbell size */
10710 bp->db_size = (1 << BNX2X_DB_SHIFT);
10711
10712 if (!CHIP_IS_E1x(bp)) {
10713 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10714 if ((val & 1) == 0)
10715 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10716 else
10717 val = (val >> 1) & 1;
10718 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10719 "2_PORT_MODE");
10720 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10721 CHIP_2_PORT_MODE;
10722
10723 if (CHIP_MODE_IS_4_PORT(bp))
10724 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
10725 else
10726 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
10727 } else {
10728 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10729 bp->pfid = bp->pf_num; /* 0..7 */
10730 }
10731
10732 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10733
10734 bp->link_params.chip_id = bp->common.chip_id;
10735 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10736
10737 val = (REG_RD(bp, 0x2874) & 0x55);
10738 if ((bp->common.chip_id & 0x1) ||
10739 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10740 bp->flags |= ONE_PORT_FLAG;
10741 BNX2X_DEV_INFO("single port device\n");
10742 }
10743
10744 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10745 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10746 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10747 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10748 bp->common.flash_size, bp->common.flash_size);
10749
10750 bnx2x_init_shmem(bp);
10751
10752 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10753 MISC_REG_GENERIC_CR_1 :
10754 MISC_REG_GENERIC_CR_0));
10755
10756 bp->link_params.shmem_base = bp->common.shmem_base;
10757 bp->link_params.shmem2_base = bp->common.shmem2_base;
10758 if (SHMEM2_RD(bp, size) >
10759 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10760 bp->link_params.lfa_base =
10761 REG_RD(bp, bp->common.shmem2_base +
10762 (u32)offsetof(struct shmem2_region,
10763 lfa_host_addr[BP_PORT(bp)]));
10764 else
10765 bp->link_params.lfa_base = 0;
10766 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
10767 bp->common.shmem_base, bp->common.shmem2_base);
10768
10769 if (!bp->common.shmem_base) {
10770 BNX2X_DEV_INFO("MCP not active\n");
10771 bp->flags |= NO_MCP_FLAG;
10772 return;
10773 }
10774
10775 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10776 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10777
10778 bp->link_params.hw_led_mode = ((bp->common.hw_config &
10779 SHARED_HW_CFG_LED_MODE_MASK) >>
10780 SHARED_HW_CFG_LED_MODE_SHIFT);
10781
10782 bp->link_params.feature_config_flags = 0;
10783 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10784 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10785 bp->link_params.feature_config_flags |=
10786 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10787 else
10788 bp->link_params.feature_config_flags &=
10789 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10790
10791 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10792 bp->common.bc_ver = val;
10793 BNX2X_DEV_INFO("bc_ver %X\n", val);
10794 if (val < BNX2X_BC_VER) {
10795 /* for now only warn
10796 * later we might need to enforce this */
10797 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10798 BNX2X_BC_VER, val);
10799 }
10800 bp->link_params.feature_config_flags |=
10801 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10802 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10803
10804 bp->link_params.feature_config_flags |=
10805 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10806 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10807 bp->link_params.feature_config_flags |=
10808 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10809 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10810 bp->link_params.feature_config_flags |=
10811 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10812 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10813
10814 bp->link_params.feature_config_flags |=
10815 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10816 FEATURE_CONFIG_MT_SUPPORT : 0;
10817
10818 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10819 BC_SUPPORTS_PFC_STATS : 0;
10820
10821 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10822 BC_SUPPORTS_FCOE_FEATURES : 0;
10823
10824 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10825 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10826
10827 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10828 BC_SUPPORTS_RMMOD_CMD : 0;
10829
10830 boot_mode = SHMEM_RD(bp,
10831 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10832 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10833 switch (boot_mode) {
10834 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10835 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10836 break;
10837 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10838 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10839 break;
10840 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10841 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10842 break;
10843 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10844 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10845 break;
10846 }
10847
10848 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10849 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10850
10851 BNX2X_DEV_INFO("%sWoL capable\n",
10852 (bp->flags & NO_WOL_FLAG) ? "not " : "");
10853
10854 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10855 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10856 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10857 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10858
10859 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10860 val, val2, val3, val4);
10861 }
10862
10863 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10864 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10865
10866 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10867 {
10868 int pfid = BP_FUNC(bp);
10869 int igu_sb_id;
10870 u32 val;
10871 u8 fid, igu_sb_cnt = 0;
10872
10873 bp->igu_base_sb = 0xff;
10874 if (CHIP_INT_MODE_IS_BC(bp)) {
10875 int vn = BP_VN(bp);
10876 igu_sb_cnt = bp->igu_sb_cnt;
10877 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10878 FP_SB_MAX_E1x;
10879
10880 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
10881 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10882
10883 return 0;
10884 }
10885
10886 /* IGU in normal mode - read CAM */
10887 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10888 igu_sb_id++) {
10889 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10890 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10891 continue;
10892 fid = IGU_FID(val);
10893 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10894 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10895 continue;
10896 if (IGU_VEC(val) == 0)
10897 /* default status block */
10898 bp->igu_dsb_id = igu_sb_id;
10899 else {
10900 if (bp->igu_base_sb == 0xff)
10901 bp->igu_base_sb = igu_sb_id;
10902 igu_sb_cnt++;
10903 }
10904 }
10905 }
10906
10907 #ifdef CONFIG_PCI_MSI
10908 /* Due to new PF resource allocation by MFW T7.4 and above, it's
10909 * optional that number of CAM entries will not be equal to the value
10910 * advertised in PCI.
10911 * Driver should use the minimal value of both as the actual status
10912 * block count
10913 */
10914 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10915 #endif
10916
10917 if (igu_sb_cnt == 0) {
10918 BNX2X_ERR("CAM configuration error\n");
10919 return -EINVAL;
10920 }
10921
10922 return 0;
10923 }
10924
10925 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10926 {
10927 int cfg_size = 0, idx, port = BP_PORT(bp);
10928
10929 /* Aggregation of supported attributes of all external phys */
10930 bp->port.supported[0] = 0;
10931 bp->port.supported[1] = 0;
10932 switch (bp->link_params.num_phys) {
10933 case 1:
10934 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10935 cfg_size = 1;
10936 break;
10937 case 2:
10938 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10939 cfg_size = 1;
10940 break;
10941 case 3:
10942 if (bp->link_params.multi_phy_config &
10943 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10944 bp->port.supported[1] =
10945 bp->link_params.phy[EXT_PHY1].supported;
10946 bp->port.supported[0] =
10947 bp->link_params.phy[EXT_PHY2].supported;
10948 } else {
10949 bp->port.supported[0] =
10950 bp->link_params.phy[EXT_PHY1].supported;
10951 bp->port.supported[1] =
10952 bp->link_params.phy[EXT_PHY2].supported;
10953 }
10954 cfg_size = 2;
10955 break;
10956 }
10957
10958 if (!(bp->port.supported[0] || bp->port.supported[1])) {
10959 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10960 SHMEM_RD(bp,
10961 dev_info.port_hw_config[port].external_phy_config),
10962 SHMEM_RD(bp,
10963 dev_info.port_hw_config[port].external_phy_config2));
10964 return;
10965 }
10966
10967 if (CHIP_IS_E3(bp))
10968 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10969 else {
10970 switch (switch_cfg) {
10971 case SWITCH_CFG_1G:
10972 bp->port.phy_addr = REG_RD(
10973 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10974 break;
10975 case SWITCH_CFG_10G:
10976 bp->port.phy_addr = REG_RD(
10977 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10978 break;
10979 default:
10980 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10981 bp->port.link_config[0]);
10982 return;
10983 }
10984 }
10985 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10986 /* mask what we support according to speed_cap_mask per configuration */
10987 for (idx = 0; idx < cfg_size; idx++) {
10988 if (!(bp->link_params.speed_cap_mask[idx] &
10989 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10990 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10991
10992 if (!(bp->link_params.speed_cap_mask[idx] &
10993 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10994 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10995
10996 if (!(bp->link_params.speed_cap_mask[idx] &
10997 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10998 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10999
11000 if (!(bp->link_params.speed_cap_mask[idx] &
11001 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11002 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11003
11004 if (!(bp->link_params.speed_cap_mask[idx] &
11005 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11006 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11007 SUPPORTED_1000baseT_Full);
11008
11009 if (!(bp->link_params.speed_cap_mask[idx] &
11010 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11011 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11012
11013 if (!(bp->link_params.speed_cap_mask[idx] &
11014 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11015 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11016
11017 if (!(bp->link_params.speed_cap_mask[idx] &
11018 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11019 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11020 }
11021
11022 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11023 bp->port.supported[1]);
11024 }
11025
11026 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11027 {
11028 u32 link_config, idx, cfg_size = 0;
11029 bp->port.advertising[0] = 0;
11030 bp->port.advertising[1] = 0;
11031 switch (bp->link_params.num_phys) {
11032 case 1:
11033 case 2:
11034 cfg_size = 1;
11035 break;
11036 case 3:
11037 cfg_size = 2;
11038 break;
11039 }
11040 for (idx = 0; idx < cfg_size; idx++) {
11041 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11042 link_config = bp->port.link_config[idx];
11043 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11044 case PORT_FEATURE_LINK_SPEED_AUTO:
11045 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11046 bp->link_params.req_line_speed[idx] =
11047 SPEED_AUTO_NEG;
11048 bp->port.advertising[idx] |=
11049 bp->port.supported[idx];
11050 if (bp->link_params.phy[EXT_PHY1].type ==
11051 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11052 bp->port.advertising[idx] |=
11053 (SUPPORTED_100baseT_Half |
11054 SUPPORTED_100baseT_Full);
11055 } else {
11056 /* force 10G, no AN */
11057 bp->link_params.req_line_speed[idx] =
11058 SPEED_10000;
11059 bp->port.advertising[idx] |=
11060 (ADVERTISED_10000baseT_Full |
11061 ADVERTISED_FIBRE);
11062 continue;
11063 }
11064 break;
11065
11066 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11067 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11068 bp->link_params.req_line_speed[idx] =
11069 SPEED_10;
11070 bp->port.advertising[idx] |=
11071 (ADVERTISED_10baseT_Full |
11072 ADVERTISED_TP);
11073 } else {
11074 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11075 link_config,
11076 bp->link_params.speed_cap_mask[idx]);
11077 return;
11078 }
11079 break;
11080
11081 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11082 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11083 bp->link_params.req_line_speed[idx] =
11084 SPEED_10;
11085 bp->link_params.req_duplex[idx] =
11086 DUPLEX_HALF;
11087 bp->port.advertising[idx] |=
11088 (ADVERTISED_10baseT_Half |
11089 ADVERTISED_TP);
11090 } else {
11091 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11092 link_config,
11093 bp->link_params.speed_cap_mask[idx]);
11094 return;
11095 }
11096 break;
11097
11098 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11099 if (bp->port.supported[idx] &
11100 SUPPORTED_100baseT_Full) {
11101 bp->link_params.req_line_speed[idx] =
11102 SPEED_100;
11103 bp->port.advertising[idx] |=
11104 (ADVERTISED_100baseT_Full |
11105 ADVERTISED_TP);
11106 } else {
11107 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11108 link_config,
11109 bp->link_params.speed_cap_mask[idx]);
11110 return;
11111 }
11112 break;
11113
11114 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11115 if (bp->port.supported[idx] &
11116 SUPPORTED_100baseT_Half) {
11117 bp->link_params.req_line_speed[idx] =
11118 SPEED_100;
11119 bp->link_params.req_duplex[idx] =
11120 DUPLEX_HALF;
11121 bp->port.advertising[idx] |=
11122 (ADVERTISED_100baseT_Half |
11123 ADVERTISED_TP);
11124 } else {
11125 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11126 link_config,
11127 bp->link_params.speed_cap_mask[idx]);
11128 return;
11129 }
11130 break;
11131
11132 case PORT_FEATURE_LINK_SPEED_1G:
11133 if (bp->port.supported[idx] &
11134 SUPPORTED_1000baseT_Full) {
11135 bp->link_params.req_line_speed[idx] =
11136 SPEED_1000;
11137 bp->port.advertising[idx] |=
11138 (ADVERTISED_1000baseT_Full |
11139 ADVERTISED_TP);
11140 } else {
11141 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11142 link_config,
11143 bp->link_params.speed_cap_mask[idx]);
11144 return;
11145 }
11146 break;
11147
11148 case PORT_FEATURE_LINK_SPEED_2_5G:
11149 if (bp->port.supported[idx] &
11150 SUPPORTED_2500baseX_Full) {
11151 bp->link_params.req_line_speed[idx] =
11152 SPEED_2500;
11153 bp->port.advertising[idx] |=
11154 (ADVERTISED_2500baseX_Full |
11155 ADVERTISED_TP);
11156 } else {
11157 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11158 link_config,
11159 bp->link_params.speed_cap_mask[idx]);
11160 return;
11161 }
11162 break;
11163
11164 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11165 if (bp->port.supported[idx] &
11166 SUPPORTED_10000baseT_Full) {
11167 bp->link_params.req_line_speed[idx] =
11168 SPEED_10000;
11169 bp->port.advertising[idx] |=
11170 (ADVERTISED_10000baseT_Full |
11171 ADVERTISED_FIBRE);
11172 } else {
11173 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11174 link_config,
11175 bp->link_params.speed_cap_mask[idx]);
11176 return;
11177 }
11178 break;
11179 case PORT_FEATURE_LINK_SPEED_20G:
11180 bp->link_params.req_line_speed[idx] = SPEED_20000;
11181
11182 break;
11183 default:
11184 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11185 link_config);
11186 bp->link_params.req_line_speed[idx] =
11187 SPEED_AUTO_NEG;
11188 bp->port.advertising[idx] =
11189 bp->port.supported[idx];
11190 break;
11191 }
11192
11193 bp->link_params.req_flow_ctrl[idx] = (link_config &
11194 PORT_FEATURE_FLOW_CONTROL_MASK);
11195 if (bp->link_params.req_flow_ctrl[idx] ==
11196 BNX2X_FLOW_CTRL_AUTO) {
11197 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11198 bp->link_params.req_flow_ctrl[idx] =
11199 BNX2X_FLOW_CTRL_NONE;
11200 else
11201 bnx2x_set_requested_fc(bp);
11202 }
11203
11204 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11205 bp->link_params.req_line_speed[idx],
11206 bp->link_params.req_duplex[idx],
11207 bp->link_params.req_flow_ctrl[idx],
11208 bp->port.advertising[idx]);
11209 }
11210 }
11211
11212 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11213 {
11214 __be16 mac_hi_be = cpu_to_be16(mac_hi);
11215 __be32 mac_lo_be = cpu_to_be32(mac_lo);
11216 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11217 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11218 }
11219
11220 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11221 {
11222 int port = BP_PORT(bp);
11223 u32 config;
11224 u32 ext_phy_type, ext_phy_config, eee_mode;
11225
11226 bp->link_params.bp = bp;
11227 bp->link_params.port = port;
11228
11229 bp->link_params.lane_config =
11230 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11231
11232 bp->link_params.speed_cap_mask[0] =
11233 SHMEM_RD(bp,
11234 dev_info.port_hw_config[port].speed_capability_mask) &
11235 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11236 bp->link_params.speed_cap_mask[1] =
11237 SHMEM_RD(bp,
11238 dev_info.port_hw_config[port].speed_capability_mask2) &
11239 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11240 bp->port.link_config[0] =
11241 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11242
11243 bp->port.link_config[1] =
11244 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11245
11246 bp->link_params.multi_phy_config =
11247 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11248 /* If the device is capable of WoL, set the default state according
11249 * to the HW
11250 */
11251 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11252 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11253 (config & PORT_FEATURE_WOL_ENABLED));
11254
11255 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11256 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11257 bp->flags |= NO_ISCSI_FLAG;
11258 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11259 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11260 bp->flags |= NO_FCOE_FLAG;
11261
11262 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
11263 bp->link_params.lane_config,
11264 bp->link_params.speed_cap_mask[0],
11265 bp->port.link_config[0]);
11266
11267 bp->link_params.switch_cfg = (bp->port.link_config[0] &
11268 PORT_FEATURE_CONNECTED_SWITCH_MASK);
11269 bnx2x_phy_probe(&bp->link_params);
11270 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11271
11272 bnx2x_link_settings_requested(bp);
11273
11274 /*
11275 * If connected directly, work with the internal PHY, otherwise, work
11276 * with the external PHY
11277 */
11278 ext_phy_config =
11279 SHMEM_RD(bp,
11280 dev_info.port_hw_config[port].external_phy_config);
11281 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11282 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11283 bp->mdio.prtad = bp->port.phy_addr;
11284
11285 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11286 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11287 bp->mdio.prtad =
11288 XGXS_EXT_PHY_ADDR(ext_phy_config);
11289
11290 /* Configure link feature according to nvram value */
11291 eee_mode = (((SHMEM_RD(bp, dev_info.
11292 port_feature_config[port].eee_power_mode)) &
11293 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11294 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11295 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11296 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11297 EEE_MODE_ENABLE_LPI |
11298 EEE_MODE_OUTPUT_TIME;
11299 } else {
11300 bp->link_params.eee_mode = 0;
11301 }
11302 }
11303
11304 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11305 {
11306 u32 no_flags = NO_ISCSI_FLAG;
11307 int port = BP_PORT(bp);
11308 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11309 drv_lic_key[port].max_iscsi_conn);
11310
11311 if (!CNIC_SUPPORT(bp)) {
11312 bp->flags |= no_flags;
11313 return;
11314 }
11315
11316 /* Get the number of maximum allowed iSCSI connections */
11317 bp->cnic_eth_dev.max_iscsi_conn =
11318 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11319 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11320
11321 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11322 bp->cnic_eth_dev.max_iscsi_conn);
11323
11324 /*
11325 * If maximum allowed number of connections is zero -
11326 * disable the feature.
11327 */
11328 if (!bp->cnic_eth_dev.max_iscsi_conn)
11329 bp->flags |= no_flags;
11330 }
11331
11332 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11333 {
11334 /* Port info */
11335 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11336 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11337 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11338 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11339
11340 /* Node info */
11341 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11342 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11343 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11344 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11345 }
11346
11347 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11348 {
11349 u8 count = 0;
11350
11351 if (IS_MF(bp)) {
11352 u8 fid;
11353
11354 /* iterate over absolute function ids for this path: */
11355 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11356 if (IS_MF_SD(bp)) {
11357 u32 cfg = MF_CFG_RD(bp,
11358 func_mf_config[fid].config);
11359
11360 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11361 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11362 FUNC_MF_CFG_PROTOCOL_FCOE))
11363 count++;
11364 } else {
11365 u32 cfg = MF_CFG_RD(bp,
11366 func_ext_config[fid].
11367 func_cfg);
11368
11369 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11370 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11371 count++;
11372 }
11373 }
11374 } else { /* SF */
11375 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11376
11377 for (port = 0; port < port_cnt; port++) {
11378 u32 lic = SHMEM_RD(bp,
11379 drv_lic_key[port].max_fcoe_conn) ^
11380 FW_ENCODE_32BIT_PATTERN;
11381 if (lic)
11382 count++;
11383 }
11384 }
11385
11386 return count;
11387 }
11388
11389 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11390 {
11391 int port = BP_PORT(bp);
11392 int func = BP_ABS_FUNC(bp);
11393 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11394 drv_lic_key[port].max_fcoe_conn);
11395 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11396
11397 if (!CNIC_SUPPORT(bp)) {
11398 bp->flags |= NO_FCOE_FLAG;
11399 return;
11400 }
11401
11402 /* Get the number of maximum allowed FCoE connections */
11403 bp->cnic_eth_dev.max_fcoe_conn =
11404 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11405 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11406
11407 /* Calculate the number of maximum allowed FCoE tasks */
11408 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11409
11410 /* check if FCoE resources must be shared between different functions */
11411 if (num_fcoe_func)
11412 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11413
11414 /* Read the WWN: */
11415 if (!IS_MF(bp)) {
11416 /* Port info */
11417 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11418 SHMEM_RD(bp,
11419 dev_info.port_hw_config[port].
11420 fcoe_wwn_port_name_upper);
11421 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11422 SHMEM_RD(bp,
11423 dev_info.port_hw_config[port].
11424 fcoe_wwn_port_name_lower);
11425
11426 /* Node info */
11427 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11428 SHMEM_RD(bp,
11429 dev_info.port_hw_config[port].
11430 fcoe_wwn_node_name_upper);
11431 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11432 SHMEM_RD(bp,
11433 dev_info.port_hw_config[port].
11434 fcoe_wwn_node_name_lower);
11435 } else if (!IS_MF_SD(bp)) {
11436 /* Read the WWN info only if the FCoE feature is enabled for
11437 * this function.
11438 */
11439 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11440 bnx2x_get_ext_wwn_info(bp, func);
11441 } else {
11442 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11443 bnx2x_get_ext_wwn_info(bp, func);
11444 }
11445
11446 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11447
11448 /*
11449 * If maximum allowed number of connections is zero -
11450 * disable the feature.
11451 */
11452 if (!bp->cnic_eth_dev.max_fcoe_conn)
11453 bp->flags |= NO_FCOE_FLAG;
11454 }
11455
11456 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11457 {
11458 /*
11459 * iSCSI may be dynamically disabled but reading
11460 * info here we will decrease memory usage by driver
11461 * if the feature is disabled for good
11462 */
11463 bnx2x_get_iscsi_info(bp);
11464 bnx2x_get_fcoe_info(bp);
11465 }
11466
11467 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11468 {
11469 u32 val, val2;
11470 int func = BP_ABS_FUNC(bp);
11471 int port = BP_PORT(bp);
11472 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11473 u8 *fip_mac = bp->fip_mac;
11474
11475 if (IS_MF(bp)) {
11476 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11477 * FCoE MAC then the appropriate feature should be disabled.
11478 * In non SD mode features configuration comes from struct
11479 * func_ext_config.
11480 */
11481 if (!IS_MF_SD(bp)) {
11482 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11483 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11484 val2 = MF_CFG_RD(bp, func_ext_config[func].
11485 iscsi_mac_addr_upper);
11486 val = MF_CFG_RD(bp, func_ext_config[func].
11487 iscsi_mac_addr_lower);
11488 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11489 BNX2X_DEV_INFO
11490 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11491 } else {
11492 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11493 }
11494
11495 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11496 val2 = MF_CFG_RD(bp, func_ext_config[func].
11497 fcoe_mac_addr_upper);
11498 val = MF_CFG_RD(bp, func_ext_config[func].
11499 fcoe_mac_addr_lower);
11500 bnx2x_set_mac_buf(fip_mac, val, val2);
11501 BNX2X_DEV_INFO
11502 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11503 } else {
11504 bp->flags |= NO_FCOE_FLAG;
11505 }
11506
11507 bp->mf_ext_config = cfg;
11508
11509 } else { /* SD MODE */
11510 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11511 /* use primary mac as iscsi mac */
11512 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11513
11514 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11515 BNX2X_DEV_INFO
11516 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11517 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11518 /* use primary mac as fip mac */
11519 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11520 BNX2X_DEV_INFO("SD FCoE MODE\n");
11521 BNX2X_DEV_INFO
11522 ("Read FIP MAC: %pM\n", fip_mac);
11523 }
11524 }
11525
11526 /* If this is a storage-only interface, use SAN mac as
11527 * primary MAC. Notice that for SD this is already the case,
11528 * as the SAN mac was copied from the primary MAC.
11529 */
11530 if (IS_MF_FCOE_AFEX(bp))
11531 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11532 } else {
11533 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11534 iscsi_mac_upper);
11535 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11536 iscsi_mac_lower);
11537 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11538
11539 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11540 fcoe_fip_mac_upper);
11541 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11542 fcoe_fip_mac_lower);
11543 bnx2x_set_mac_buf(fip_mac, val, val2);
11544 }
11545
11546 /* Disable iSCSI OOO if MAC configuration is invalid. */
11547 if (!is_valid_ether_addr(iscsi_mac)) {
11548 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11549 memset(iscsi_mac, 0, ETH_ALEN);
11550 }
11551
11552 /* Disable FCoE if MAC configuration is invalid. */
11553 if (!is_valid_ether_addr(fip_mac)) {
11554 bp->flags |= NO_FCOE_FLAG;
11555 memset(bp->fip_mac, 0, ETH_ALEN);
11556 }
11557 }
11558
11559 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11560 {
11561 u32 val, val2;
11562 int func = BP_ABS_FUNC(bp);
11563 int port = BP_PORT(bp);
11564
11565 /* Zero primary MAC configuration */
11566 memset(bp->dev->dev_addr, 0, ETH_ALEN);
11567
11568 if (BP_NOMCP(bp)) {
11569 BNX2X_ERROR("warning: random MAC workaround active\n");
11570 eth_hw_addr_random(bp->dev);
11571 } else if (IS_MF(bp)) {
11572 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11573 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11574 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11575 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11576 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11577
11578 if (CNIC_SUPPORT(bp))
11579 bnx2x_get_cnic_mac_hwinfo(bp);
11580 } else {
11581 /* in SF read MACs from port configuration */
11582 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11583 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11584 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11585
11586 if (CNIC_SUPPORT(bp))
11587 bnx2x_get_cnic_mac_hwinfo(bp);
11588 }
11589
11590 if (!BP_NOMCP(bp)) {
11591 /* Read physical port identifier from shmem */
11592 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11593 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11594 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11595 bp->flags |= HAS_PHYS_PORT_ID;
11596 }
11597
11598 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11599
11600 if (!is_valid_ether_addr(bp->dev->dev_addr))
11601 dev_err(&bp->pdev->dev,
11602 "bad Ethernet MAC address configuration: %pM\n"
11603 "change it manually before bringing up the appropriate network interface\n",
11604 bp->dev->dev_addr);
11605 }
11606
11607 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11608 {
11609 int tmp;
11610 u32 cfg;
11611
11612 if (IS_VF(bp))
11613 return 0;
11614
11615 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11616 /* Take function: tmp = func */
11617 tmp = BP_ABS_FUNC(bp);
11618 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11619 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11620 } else {
11621 /* Take port: tmp = port */
11622 tmp = BP_PORT(bp);
11623 cfg = SHMEM_RD(bp,
11624 dev_info.port_hw_config[tmp].generic_features);
11625 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11626 }
11627 return cfg;
11628 }
11629
11630 static void validate_set_si_mode(struct bnx2x *bp)
11631 {
11632 u8 func = BP_ABS_FUNC(bp);
11633 u32 val;
11634
11635 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11636
11637 /* check for legal mac (upper bytes) */
11638 if (val != 0xffff) {
11639 bp->mf_mode = MULTI_FUNCTION_SI;
11640 bp->mf_config[BP_VN(bp)] =
11641 MF_CFG_RD(bp, func_mf_config[func].config);
11642 } else
11643 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11644 }
11645
11646 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11647 {
11648 int /*abs*/func = BP_ABS_FUNC(bp);
11649 int vn;
11650 u32 val = 0, val2 = 0;
11651 int rc = 0;
11652
11653 bnx2x_get_common_hwinfo(bp);
11654
11655 /*
11656 * initialize IGU parameters
11657 */
11658 if (CHIP_IS_E1x(bp)) {
11659 bp->common.int_block = INT_BLOCK_HC;
11660
11661 bp->igu_dsb_id = DEF_SB_IGU_ID;
11662 bp->igu_base_sb = 0;
11663 } else {
11664 bp->common.int_block = INT_BLOCK_IGU;
11665
11666 /* do not allow device reset during IGU info processing */
11667 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11668
11669 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11670
11671 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11672 int tout = 5000;
11673
11674 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11675
11676 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11677 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11678 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11679
11680 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11681 tout--;
11682 usleep_range(1000, 2000);
11683 }
11684
11685 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11686 dev_err(&bp->pdev->dev,
11687 "FORCING Normal Mode failed!!!\n");
11688 bnx2x_release_hw_lock(bp,
11689 HW_LOCK_RESOURCE_RESET);
11690 return -EPERM;
11691 }
11692 }
11693
11694 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11695 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11696 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11697 } else
11698 BNX2X_DEV_INFO("IGU Normal Mode\n");
11699
11700 rc = bnx2x_get_igu_cam_info(bp);
11701 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11702 if (rc)
11703 return rc;
11704 }
11705
11706 /*
11707 * set base FW non-default (fast path) status block id, this value is
11708 * used to initialize the fw_sb_id saved on the fp/queue structure to
11709 * determine the id used by the FW.
11710 */
11711 if (CHIP_IS_E1x(bp))
11712 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11713 else /*
11714 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11715 * the same queue are indicated on the same IGU SB). So we prefer
11716 * FW and IGU SBs to be the same value.
11717 */
11718 bp->base_fw_ndsb = bp->igu_base_sb;
11719
11720 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
11721 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11722 bp->igu_sb_cnt, bp->base_fw_ndsb);
11723
11724 /*
11725 * Initialize MF configuration
11726 */
11727
11728 bp->mf_ov = 0;
11729 bp->mf_mode = 0;
11730 bp->mf_sub_mode = 0;
11731 vn = BP_VN(bp);
11732
11733 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11734 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11735 bp->common.shmem2_base, SHMEM2_RD(bp, size),
11736 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11737
11738 if (SHMEM2_HAS(bp, mf_cfg_addr))
11739 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11740 else
11741 bp->common.mf_cfg_base = bp->common.shmem_base +
11742 offsetof(struct shmem_region, func_mb) +
11743 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11744 /*
11745 * get mf configuration:
11746 * 1. Existence of MF configuration
11747 * 2. MAC address must be legal (check only upper bytes)
11748 * for Switch-Independent mode;
11749 * OVLAN must be legal for Switch-Dependent mode
11750 * 3. SF_MODE configures specific MF mode
11751 */
11752 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11753 /* get mf configuration */
11754 val = SHMEM_RD(bp,
11755 dev_info.shared_feature_config.config);
11756 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11757
11758 switch (val) {
11759 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11760 validate_set_si_mode(bp);
11761 break;
11762 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11763 if ((!CHIP_IS_E1x(bp)) &&
11764 (MF_CFG_RD(bp, func_mf_config[func].
11765 mac_upper) != 0xffff) &&
11766 (SHMEM2_HAS(bp,
11767 afex_driver_support))) {
11768 bp->mf_mode = MULTI_FUNCTION_AFEX;
11769 bp->mf_config[vn] = MF_CFG_RD(bp,
11770 func_mf_config[func].config);
11771 } else {
11772 BNX2X_DEV_INFO("can not configure afex mode\n");
11773 }
11774 break;
11775 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11776 /* get OV configuration */
11777 val = MF_CFG_RD(bp,
11778 func_mf_config[FUNC_0].e1hov_tag);
11779 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11780
11781 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11782 bp->mf_mode = MULTI_FUNCTION_SD;
11783 bp->mf_config[vn] = MF_CFG_RD(bp,
11784 func_mf_config[func].config);
11785 } else
11786 BNX2X_DEV_INFO("illegal OV for SD\n");
11787 break;
11788 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
11789 bp->mf_mode = MULTI_FUNCTION_SD;
11790 bp->mf_sub_mode = SUB_MF_MODE_UFP;
11791 bp->mf_config[vn] =
11792 MF_CFG_RD(bp,
11793 func_mf_config[func].config);
11794 break;
11795 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11796 bp->mf_config[vn] = 0;
11797 break;
11798 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
11799 val2 = SHMEM_RD(bp,
11800 dev_info.shared_hw_config.config_3);
11801 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
11802 switch (val2) {
11803 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
11804 validate_set_si_mode(bp);
11805 bp->mf_sub_mode =
11806 SUB_MF_MODE_NPAR1_DOT_5;
11807 break;
11808 default:
11809 /* Unknown configuration */
11810 bp->mf_config[vn] = 0;
11811 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
11812 val);
11813 }
11814 break;
11815 default:
11816 /* Unknown configuration: reset mf_config */
11817 bp->mf_config[vn] = 0;
11818 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11819 }
11820 }
11821
11822 BNX2X_DEV_INFO("%s function mode\n",
11823 IS_MF(bp) ? "multi" : "single");
11824
11825 switch (bp->mf_mode) {
11826 case MULTI_FUNCTION_SD:
11827 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11828 FUNC_MF_CFG_E1HOV_TAG_MASK;
11829 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11830 bp->mf_ov = val;
11831 bp->path_has_ovlan = true;
11832
11833 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11834 func, bp->mf_ov, bp->mf_ov);
11835 } else if (bp->mf_sub_mode == SUB_MF_MODE_UFP) {
11836 dev_err(&bp->pdev->dev,
11837 "Unexpected - no valid MF OV for func %d in UFP mode\n",
11838 func);
11839 bp->path_has_ovlan = true;
11840 } else {
11841 dev_err(&bp->pdev->dev,
11842 "No valid MF OV for func %d, aborting\n",
11843 func);
11844 return -EPERM;
11845 }
11846 break;
11847 case MULTI_FUNCTION_AFEX:
11848 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11849 break;
11850 case MULTI_FUNCTION_SI:
11851 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11852 func);
11853 break;
11854 default:
11855 if (vn) {
11856 dev_err(&bp->pdev->dev,
11857 "VN %d is in a single function mode, aborting\n",
11858 vn);
11859 return -EPERM;
11860 }
11861 break;
11862 }
11863
11864 /* check if other port on the path needs ovlan:
11865 * Since MF configuration is shared between ports
11866 * Possible mixed modes are only
11867 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11868 */
11869 if (CHIP_MODE_IS_4_PORT(bp) &&
11870 !bp->path_has_ovlan &&
11871 !IS_MF(bp) &&
11872 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11873 u8 other_port = !BP_PORT(bp);
11874 u8 other_func = BP_PATH(bp) + 2*other_port;
11875 val = MF_CFG_RD(bp,
11876 func_mf_config[other_func].e1hov_tag);
11877 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11878 bp->path_has_ovlan = true;
11879 }
11880 }
11881
11882 /* adjust igu_sb_cnt to MF for E1H */
11883 if (CHIP_IS_E1H(bp) && IS_MF(bp))
11884 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11885
11886 /* port info */
11887 bnx2x_get_port_hwinfo(bp);
11888
11889 /* Get MAC addresses */
11890 bnx2x_get_mac_hwinfo(bp);
11891
11892 bnx2x_get_cnic_info(bp);
11893
11894 return rc;
11895 }
11896
11897 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11898 {
11899 int cnt, i, block_end, rodi;
11900 char vpd_start[BNX2X_VPD_LEN+1];
11901 char str_id_reg[VENDOR_ID_LEN+1];
11902 char str_id_cap[VENDOR_ID_LEN+1];
11903 char *vpd_data;
11904 char *vpd_extended_data = NULL;
11905 u8 len;
11906
11907 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11908 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11909
11910 if (cnt < BNX2X_VPD_LEN)
11911 goto out_not_found;
11912
11913 /* VPD RO tag should be first tag after identifier string, hence
11914 * we should be able to find it in first BNX2X_VPD_LEN chars
11915 */
11916 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11917 PCI_VPD_LRDT_RO_DATA);
11918 if (i < 0)
11919 goto out_not_found;
11920
11921 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11922 pci_vpd_lrdt_size(&vpd_start[i]);
11923
11924 i += PCI_VPD_LRDT_TAG_SIZE;
11925
11926 if (block_end > BNX2X_VPD_LEN) {
11927 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11928 if (vpd_extended_data == NULL)
11929 goto out_not_found;
11930
11931 /* read rest of vpd image into vpd_extended_data */
11932 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11933 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11934 block_end - BNX2X_VPD_LEN,
11935 vpd_extended_data + BNX2X_VPD_LEN);
11936 if (cnt < (block_end - BNX2X_VPD_LEN))
11937 goto out_not_found;
11938 vpd_data = vpd_extended_data;
11939 } else
11940 vpd_data = vpd_start;
11941
11942 /* now vpd_data holds full vpd content in both cases */
11943
11944 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11945 PCI_VPD_RO_KEYWORD_MFR_ID);
11946 if (rodi < 0)
11947 goto out_not_found;
11948
11949 len = pci_vpd_info_field_size(&vpd_data[rodi]);
11950
11951 if (len != VENDOR_ID_LEN)
11952 goto out_not_found;
11953
11954 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11955
11956 /* vendor specific info */
11957 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11958 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11959 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11960 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11961
11962 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11963 PCI_VPD_RO_KEYWORD_VENDOR0);
11964 if (rodi >= 0) {
11965 len = pci_vpd_info_field_size(&vpd_data[rodi]);
11966
11967 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11968
11969 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11970 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11971 bp->fw_ver[len] = ' ';
11972 }
11973 }
11974 kfree(vpd_extended_data);
11975 return;
11976 }
11977 out_not_found:
11978 kfree(vpd_extended_data);
11979 return;
11980 }
11981
11982 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11983 {
11984 u32 flags = 0;
11985
11986 if (CHIP_REV_IS_FPGA(bp))
11987 SET_FLAGS(flags, MODE_FPGA);
11988 else if (CHIP_REV_IS_EMUL(bp))
11989 SET_FLAGS(flags, MODE_EMUL);
11990 else
11991 SET_FLAGS(flags, MODE_ASIC);
11992
11993 if (CHIP_MODE_IS_4_PORT(bp))
11994 SET_FLAGS(flags, MODE_PORT4);
11995 else
11996 SET_FLAGS(flags, MODE_PORT2);
11997
11998 if (CHIP_IS_E2(bp))
11999 SET_FLAGS(flags, MODE_E2);
12000 else if (CHIP_IS_E3(bp)) {
12001 SET_FLAGS(flags, MODE_E3);
12002 if (CHIP_REV(bp) == CHIP_REV_Ax)
12003 SET_FLAGS(flags, MODE_E3_A0);
12004 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12005 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12006 }
12007
12008 if (IS_MF(bp)) {
12009 SET_FLAGS(flags, MODE_MF);
12010 switch (bp->mf_mode) {
12011 case MULTI_FUNCTION_SD:
12012 SET_FLAGS(flags, MODE_MF_SD);
12013 break;
12014 case MULTI_FUNCTION_SI:
12015 SET_FLAGS(flags, MODE_MF_SI);
12016 break;
12017 case MULTI_FUNCTION_AFEX:
12018 SET_FLAGS(flags, MODE_MF_AFEX);
12019 break;
12020 }
12021 } else
12022 SET_FLAGS(flags, MODE_SF);
12023
12024 #if defined(__LITTLE_ENDIAN)
12025 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12026 #else /*(__BIG_ENDIAN)*/
12027 SET_FLAGS(flags, MODE_BIG_ENDIAN);
12028 #endif
12029 INIT_MODE_FLAGS(bp) = flags;
12030 }
12031
12032 static int bnx2x_init_bp(struct bnx2x *bp)
12033 {
12034 int func;
12035 int rc;
12036
12037 mutex_init(&bp->port.phy_mutex);
12038 mutex_init(&bp->fw_mb_mutex);
12039 mutex_init(&bp->drv_info_mutex);
12040 bp->drv_info_mng_owner = false;
12041 spin_lock_init(&bp->stats_lock);
12042 sema_init(&bp->stats_sema, 1);
12043
12044 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12045 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12046 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12047 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12048 if (IS_PF(bp)) {
12049 rc = bnx2x_get_hwinfo(bp);
12050 if (rc)
12051 return rc;
12052 } else {
12053 eth_zero_addr(bp->dev->dev_addr);
12054 }
12055
12056 bnx2x_set_modes_bitmap(bp);
12057
12058 rc = bnx2x_alloc_mem_bp(bp);
12059 if (rc)
12060 return rc;
12061
12062 bnx2x_read_fwinfo(bp);
12063
12064 func = BP_FUNC(bp);
12065
12066 /* need to reset chip if undi was active */
12067 if (IS_PF(bp) && !BP_NOMCP(bp)) {
12068 /* init fw_seq */
12069 bp->fw_seq =
12070 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12071 DRV_MSG_SEQ_NUMBER_MASK;
12072 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12073
12074 rc = bnx2x_prev_unload(bp);
12075 if (rc) {
12076 bnx2x_free_mem_bp(bp);
12077 return rc;
12078 }
12079 }
12080
12081 if (CHIP_REV_IS_FPGA(bp))
12082 dev_err(&bp->pdev->dev, "FPGA detected\n");
12083
12084 if (BP_NOMCP(bp) && (func == 0))
12085 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12086
12087 bp->disable_tpa = disable_tpa;
12088 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12089 /* Reduce memory usage in kdump environment by disabling TPA */
12090 bp->disable_tpa |= is_kdump_kernel();
12091
12092 /* Set TPA flags */
12093 if (bp->disable_tpa) {
12094 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
12095 bp->dev->features &= ~NETIF_F_LRO;
12096 } else {
12097 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
12098 bp->dev->features |= NETIF_F_LRO;
12099 }
12100
12101 if (CHIP_IS_E1(bp))
12102 bp->dropless_fc = 0;
12103 else
12104 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12105
12106 bp->mrrs = mrrs;
12107
12108 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12109 if (IS_VF(bp))
12110 bp->rx_ring_size = MAX_RX_AVAIL;
12111
12112 /* make sure that the numbers are in the right granularity */
12113 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12114 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12115
12116 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12117
12118 init_timer(&bp->timer);
12119 bp->timer.expires = jiffies + bp->current_interval;
12120 bp->timer.data = (unsigned long) bp;
12121 bp->timer.function = bnx2x_timer;
12122
12123 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12124 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12125 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12126 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12127 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12128 bnx2x_dcbx_init_params(bp);
12129 } else {
12130 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12131 }
12132
12133 if (CHIP_IS_E1x(bp))
12134 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12135 else
12136 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12137
12138 /* multiple tx priority */
12139 if (IS_VF(bp))
12140 bp->max_cos = 1;
12141 else if (CHIP_IS_E1x(bp))
12142 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12143 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12144 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12145 else if (CHIP_IS_E3B0(bp))
12146 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12147 else
12148 BNX2X_ERR("unknown chip %x revision %x\n",
12149 CHIP_NUM(bp), CHIP_REV(bp));
12150 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12151
12152 /* We need at least one default status block for slow-path events,
12153 * second status block for the L2 queue, and a third status block for
12154 * CNIC if supported.
12155 */
12156 if (IS_VF(bp))
12157 bp->min_msix_vec_cnt = 1;
12158 else if (CNIC_SUPPORT(bp))
12159 bp->min_msix_vec_cnt = 3;
12160 else /* PF w/o cnic */
12161 bp->min_msix_vec_cnt = 2;
12162 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12163
12164 bp->dump_preset_idx = 1;
12165
12166 if (CHIP_IS_E3B0(bp))
12167 bp->flags |= PTP_SUPPORTED;
12168
12169 return rc;
12170 }
12171
12172 /****************************************************************************
12173 * General service functions
12174 ****************************************************************************/
12175
12176 /*
12177 * net_device service functions
12178 */
12179
12180 /* called with rtnl_lock */
12181 static int bnx2x_open(struct net_device *dev)
12182 {
12183 struct bnx2x *bp = netdev_priv(dev);
12184 int rc;
12185
12186 bp->stats_init = true;
12187
12188 netif_carrier_off(dev);
12189
12190 bnx2x_set_power_state(bp, PCI_D0);
12191
12192 /* If parity had happen during the unload, then attentions
12193 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12194 * want the first function loaded on the current engine to
12195 * complete the recovery.
12196 * Parity recovery is only relevant for PF driver.
12197 */
12198 if (IS_PF(bp)) {
12199 int other_engine = BP_PATH(bp) ? 0 : 1;
12200 bool other_load_status, load_status;
12201 bool global = false;
12202
12203 other_load_status = bnx2x_get_load_status(bp, other_engine);
12204 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12205 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12206 bnx2x_chk_parity_attn(bp, &global, true)) {
12207 do {
12208 /* If there are attentions and they are in a
12209 * global blocks, set the GLOBAL_RESET bit
12210 * regardless whether it will be this function
12211 * that will complete the recovery or not.
12212 */
12213 if (global)
12214 bnx2x_set_reset_global(bp);
12215
12216 /* Only the first function on the current
12217 * engine should try to recover in open. In case
12218 * of attentions in global blocks only the first
12219 * in the chip should try to recover.
12220 */
12221 if ((!load_status &&
12222 (!global || !other_load_status)) &&
12223 bnx2x_trylock_leader_lock(bp) &&
12224 !bnx2x_leader_reset(bp)) {
12225 netdev_info(bp->dev,
12226 "Recovered in open\n");
12227 break;
12228 }
12229
12230 /* recovery has failed... */
12231 bnx2x_set_power_state(bp, PCI_D3hot);
12232 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12233
12234 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12235 "If you still see this message after a few retries then power cycle is required.\n");
12236
12237 return -EAGAIN;
12238 } while (0);
12239 }
12240 }
12241
12242 bp->recovery_state = BNX2X_RECOVERY_DONE;
12243 rc = bnx2x_nic_load(bp, LOAD_OPEN);
12244 if (rc)
12245 return rc;
12246 return 0;
12247 }
12248
12249 /* called with rtnl_lock */
12250 static int bnx2x_close(struct net_device *dev)
12251 {
12252 struct bnx2x *bp = netdev_priv(dev);
12253
12254 /* Unload the driver, release IRQs */
12255 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12256
12257 return 0;
12258 }
12259
12260 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12261 struct bnx2x_mcast_ramrod_params *p)
12262 {
12263 int mc_count = netdev_mc_count(bp->dev);
12264 struct bnx2x_mcast_list_elem *mc_mac =
12265 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12266 struct netdev_hw_addr *ha;
12267
12268 if (!mc_mac)
12269 return -ENOMEM;
12270
12271 INIT_LIST_HEAD(&p->mcast_list);
12272
12273 netdev_for_each_mc_addr(ha, bp->dev) {
12274 mc_mac->mac = bnx2x_mc_addr(ha);
12275 list_add_tail(&mc_mac->link, &p->mcast_list);
12276 mc_mac++;
12277 }
12278
12279 p->mcast_list_len = mc_count;
12280
12281 return 0;
12282 }
12283
12284 static void bnx2x_free_mcast_macs_list(
12285 struct bnx2x_mcast_ramrod_params *p)
12286 {
12287 struct bnx2x_mcast_list_elem *mc_mac =
12288 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12289 link);
12290
12291 WARN_ON(!mc_mac);
12292 kfree(mc_mac);
12293 }
12294
12295 /**
12296 * bnx2x_set_uc_list - configure a new unicast MACs list.
12297 *
12298 * @bp: driver handle
12299 *
12300 * We will use zero (0) as a MAC type for these MACs.
12301 */
12302 static int bnx2x_set_uc_list(struct bnx2x *bp)
12303 {
12304 int rc;
12305 struct net_device *dev = bp->dev;
12306 struct netdev_hw_addr *ha;
12307 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12308 unsigned long ramrod_flags = 0;
12309
12310 /* First schedule a cleanup up of old configuration */
12311 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12312 if (rc < 0) {
12313 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12314 return rc;
12315 }
12316
12317 netdev_for_each_uc_addr(ha, dev) {
12318 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12319 BNX2X_UC_LIST_MAC, &ramrod_flags);
12320 if (rc == -EEXIST) {
12321 DP(BNX2X_MSG_SP,
12322 "Failed to schedule ADD operations: %d\n", rc);
12323 /* do not treat adding same MAC as error */
12324 rc = 0;
12325
12326 } else if (rc < 0) {
12327
12328 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12329 rc);
12330 return rc;
12331 }
12332 }
12333
12334 /* Execute the pending commands */
12335 __set_bit(RAMROD_CONT, &ramrod_flags);
12336 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12337 BNX2X_UC_LIST_MAC, &ramrod_flags);
12338 }
12339
12340 static int bnx2x_set_mc_list(struct bnx2x *bp)
12341 {
12342 struct net_device *dev = bp->dev;
12343 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12344 int rc = 0;
12345
12346 rparam.mcast_obj = &bp->mcast_obj;
12347
12348 /* first, clear all configured multicast MACs */
12349 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12350 if (rc < 0) {
12351 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12352 return rc;
12353 }
12354
12355 /* then, configure a new MACs list */
12356 if (netdev_mc_count(dev)) {
12357 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12358 if (rc) {
12359 BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12360 rc);
12361 return rc;
12362 }
12363
12364 /* Now add the new MACs */
12365 rc = bnx2x_config_mcast(bp, &rparam,
12366 BNX2X_MCAST_CMD_ADD);
12367 if (rc < 0)
12368 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12369 rc);
12370
12371 bnx2x_free_mcast_macs_list(&rparam);
12372 }
12373
12374 return rc;
12375 }
12376
12377 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12378 static void bnx2x_set_rx_mode(struct net_device *dev)
12379 {
12380 struct bnx2x *bp = netdev_priv(dev);
12381
12382 if (bp->state != BNX2X_STATE_OPEN) {
12383 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12384 return;
12385 } else {
12386 /* Schedule an SP task to handle rest of change */
12387 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12388 NETIF_MSG_IFUP);
12389 }
12390 }
12391
12392 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12393 {
12394 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12395
12396 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12397
12398 netif_addr_lock_bh(bp->dev);
12399
12400 if (bp->dev->flags & IFF_PROMISC) {
12401 rx_mode = BNX2X_RX_MODE_PROMISC;
12402 } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12403 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12404 CHIP_IS_E1(bp))) {
12405 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12406 } else {
12407 if (IS_PF(bp)) {
12408 /* some multicasts */
12409 if (bnx2x_set_mc_list(bp) < 0)
12410 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12411
12412 /* release bh lock, as bnx2x_set_uc_list might sleep */
12413 netif_addr_unlock_bh(bp->dev);
12414 if (bnx2x_set_uc_list(bp) < 0)
12415 rx_mode = BNX2X_RX_MODE_PROMISC;
12416 netif_addr_lock_bh(bp->dev);
12417 } else {
12418 /* configuring mcast to a vf involves sleeping (when we
12419 * wait for the pf's response).
12420 */
12421 bnx2x_schedule_sp_rtnl(bp,
12422 BNX2X_SP_RTNL_VFPF_MCAST, 0);
12423 }
12424 }
12425
12426 bp->rx_mode = rx_mode;
12427 /* handle ISCSI SD mode */
12428 if (IS_MF_ISCSI_ONLY(bp))
12429 bp->rx_mode = BNX2X_RX_MODE_NONE;
12430
12431 /* Schedule the rx_mode command */
12432 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12433 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12434 netif_addr_unlock_bh(bp->dev);
12435 return;
12436 }
12437
12438 if (IS_PF(bp)) {
12439 bnx2x_set_storm_rx_mode(bp);
12440 netif_addr_unlock_bh(bp->dev);
12441 } else {
12442 /* VF will need to request the PF to make this change, and so
12443 * the VF needs to release the bottom-half lock prior to the
12444 * request (as it will likely require sleep on the VF side)
12445 */
12446 netif_addr_unlock_bh(bp->dev);
12447 bnx2x_vfpf_storm_rx_mode(bp);
12448 }
12449 }
12450
12451 /* called with rtnl_lock */
12452 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12453 int devad, u16 addr)
12454 {
12455 struct bnx2x *bp = netdev_priv(netdev);
12456 u16 value;
12457 int rc;
12458
12459 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12460 prtad, devad, addr);
12461
12462 /* The HW expects different devad if CL22 is used */
12463 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12464
12465 bnx2x_acquire_phy_lock(bp);
12466 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12467 bnx2x_release_phy_lock(bp);
12468 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12469
12470 if (!rc)
12471 rc = value;
12472 return rc;
12473 }
12474
12475 /* called with rtnl_lock */
12476 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12477 u16 addr, u16 value)
12478 {
12479 struct bnx2x *bp = netdev_priv(netdev);
12480 int rc;
12481
12482 DP(NETIF_MSG_LINK,
12483 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12484 prtad, devad, addr, value);
12485
12486 /* The HW expects different devad if CL22 is used */
12487 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12488
12489 bnx2x_acquire_phy_lock(bp);
12490 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12491 bnx2x_release_phy_lock(bp);
12492 return rc;
12493 }
12494
12495 /* called with rtnl_lock */
12496 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12497 {
12498 struct bnx2x *bp = netdev_priv(dev);
12499 struct mii_ioctl_data *mdio = if_mii(ifr);
12500
12501 if (!netif_running(dev))
12502 return -EAGAIN;
12503
12504 switch (cmd) {
12505 case SIOCSHWTSTAMP:
12506 return bnx2x_hwtstamp_ioctl(bp, ifr);
12507 default:
12508 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12509 mdio->phy_id, mdio->reg_num, mdio->val_in);
12510 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12511 }
12512 }
12513
12514 #ifdef CONFIG_NET_POLL_CONTROLLER
12515 static void poll_bnx2x(struct net_device *dev)
12516 {
12517 struct bnx2x *bp = netdev_priv(dev);
12518 int i;
12519
12520 for_each_eth_queue(bp, i) {
12521 struct bnx2x_fastpath *fp = &bp->fp[i];
12522 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12523 }
12524 }
12525 #endif
12526
12527 static int bnx2x_validate_addr(struct net_device *dev)
12528 {
12529 struct bnx2x *bp = netdev_priv(dev);
12530
12531 /* query the bulletin board for mac address configured by the PF */
12532 if (IS_VF(bp))
12533 bnx2x_sample_bulletin(bp);
12534
12535 if (!is_valid_ether_addr(dev->dev_addr)) {
12536 BNX2X_ERR("Non-valid Ethernet address\n");
12537 return -EADDRNOTAVAIL;
12538 }
12539 return 0;
12540 }
12541
12542 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12543 struct netdev_phys_item_id *ppid)
12544 {
12545 struct bnx2x *bp = netdev_priv(netdev);
12546
12547 if (!(bp->flags & HAS_PHYS_PORT_ID))
12548 return -EOPNOTSUPP;
12549
12550 ppid->id_len = sizeof(bp->phys_port_id);
12551 memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12552
12553 return 0;
12554 }
12555
12556 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12557 struct net_device *dev,
12558 netdev_features_t features)
12559 {
12560 return vxlan_features_check(skb, features);
12561 }
12562
12563 static const struct net_device_ops bnx2x_netdev_ops = {
12564 .ndo_open = bnx2x_open,
12565 .ndo_stop = bnx2x_close,
12566 .ndo_start_xmit = bnx2x_start_xmit,
12567 .ndo_select_queue = bnx2x_select_queue,
12568 .ndo_set_rx_mode = bnx2x_set_rx_mode,
12569 .ndo_set_mac_address = bnx2x_change_mac_addr,
12570 .ndo_validate_addr = bnx2x_validate_addr,
12571 .ndo_do_ioctl = bnx2x_ioctl,
12572 .ndo_change_mtu = bnx2x_change_mtu,
12573 .ndo_fix_features = bnx2x_fix_features,
12574 .ndo_set_features = bnx2x_set_features,
12575 .ndo_tx_timeout = bnx2x_tx_timeout,
12576 #ifdef CONFIG_NET_POLL_CONTROLLER
12577 .ndo_poll_controller = poll_bnx2x,
12578 #endif
12579 .ndo_setup_tc = bnx2x_setup_tc,
12580 #ifdef CONFIG_BNX2X_SRIOV
12581 .ndo_set_vf_mac = bnx2x_set_vf_mac,
12582 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
12583 .ndo_get_vf_config = bnx2x_get_vf_config,
12584 #endif
12585 #ifdef NETDEV_FCOE_WWNN
12586 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
12587 #endif
12588
12589 #ifdef CONFIG_NET_RX_BUSY_POLL
12590 .ndo_busy_poll = bnx2x_low_latency_recv,
12591 #endif
12592 .ndo_get_phys_port_id = bnx2x_get_phys_port_id,
12593 .ndo_set_vf_link_state = bnx2x_set_vf_link_state,
12594 .ndo_features_check = bnx2x_features_check,
12595 };
12596
12597 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12598 {
12599 struct device *dev = &bp->pdev->dev;
12600
12601 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12602 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12603 dev_err(dev, "System does not support DMA, aborting\n");
12604 return -EIO;
12605 }
12606
12607 return 0;
12608 }
12609
12610 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12611 {
12612 if (bp->flags & AER_ENABLED) {
12613 pci_disable_pcie_error_reporting(bp->pdev);
12614 bp->flags &= ~AER_ENABLED;
12615 }
12616 }
12617
12618 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12619 struct net_device *dev, unsigned long board_type)
12620 {
12621 int rc;
12622 u32 pci_cfg_dword;
12623 bool chip_is_e1x = (board_type == BCM57710 ||
12624 board_type == BCM57711 ||
12625 board_type == BCM57711E);
12626
12627 SET_NETDEV_DEV(dev, &pdev->dev);
12628
12629 bp->dev = dev;
12630 bp->pdev = pdev;
12631
12632 rc = pci_enable_device(pdev);
12633 if (rc) {
12634 dev_err(&bp->pdev->dev,
12635 "Cannot enable PCI device, aborting\n");
12636 goto err_out;
12637 }
12638
12639 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12640 dev_err(&bp->pdev->dev,
12641 "Cannot find PCI device base address, aborting\n");
12642 rc = -ENODEV;
12643 goto err_out_disable;
12644 }
12645
12646 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12647 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12648 rc = -ENODEV;
12649 goto err_out_disable;
12650 }
12651
12652 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12653 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12654 PCICFG_REVESION_ID_ERROR_VAL) {
12655 pr_err("PCI device error, probably due to fan failure, aborting\n");
12656 rc = -ENODEV;
12657 goto err_out_disable;
12658 }
12659
12660 if (atomic_read(&pdev->enable_cnt) == 1) {
12661 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12662 if (rc) {
12663 dev_err(&bp->pdev->dev,
12664 "Cannot obtain PCI resources, aborting\n");
12665 goto err_out_disable;
12666 }
12667
12668 pci_set_master(pdev);
12669 pci_save_state(pdev);
12670 }
12671
12672 if (IS_PF(bp)) {
12673 if (!pdev->pm_cap) {
12674 dev_err(&bp->pdev->dev,
12675 "Cannot find power management capability, aborting\n");
12676 rc = -EIO;
12677 goto err_out_release;
12678 }
12679 }
12680
12681 if (!pci_is_pcie(pdev)) {
12682 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12683 rc = -EIO;
12684 goto err_out_release;
12685 }
12686
12687 rc = bnx2x_set_coherency_mask(bp);
12688 if (rc)
12689 goto err_out_release;
12690
12691 dev->mem_start = pci_resource_start(pdev, 0);
12692 dev->base_addr = dev->mem_start;
12693 dev->mem_end = pci_resource_end(pdev, 0);
12694
12695 dev->irq = pdev->irq;
12696
12697 bp->regview = pci_ioremap_bar(pdev, 0);
12698 if (!bp->regview) {
12699 dev_err(&bp->pdev->dev,
12700 "Cannot map register space, aborting\n");
12701 rc = -ENOMEM;
12702 goto err_out_release;
12703 }
12704
12705 /* In E1/E1H use pci device function given by kernel.
12706 * In E2/E3 read physical function from ME register since these chips
12707 * support Physical Device Assignment where kernel BDF maybe arbitrary
12708 * (depending on hypervisor).
12709 */
12710 if (chip_is_e1x) {
12711 bp->pf_num = PCI_FUNC(pdev->devfn);
12712 } else {
12713 /* chip is E2/3*/
12714 pci_read_config_dword(bp->pdev,
12715 PCICFG_ME_REGISTER, &pci_cfg_dword);
12716 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12717 ME_REG_ABS_PF_NUM_SHIFT);
12718 }
12719 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12720
12721 /* clean indirect addresses */
12722 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12723 PCICFG_VENDOR_ID_OFFSET);
12724
12725 /* AER (Advanced Error reporting) configuration */
12726 rc = pci_enable_pcie_error_reporting(pdev);
12727 if (!rc)
12728 bp->flags |= AER_ENABLED;
12729 else
12730 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12731
12732 /*
12733 * Clean the following indirect addresses for all functions since it
12734 * is not used by the driver.
12735 */
12736 if (IS_PF(bp)) {
12737 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12738 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12739 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12740 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12741
12742 if (chip_is_e1x) {
12743 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12744 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12745 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12746 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12747 }
12748
12749 /* Enable internal target-read (in case we are probed after PF
12750 * FLR). Must be done prior to any BAR read access. Only for
12751 * 57712 and up
12752 */
12753 if (!chip_is_e1x)
12754 REG_WR(bp,
12755 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12756 }
12757
12758 dev->watchdog_timeo = TX_TIMEOUT;
12759
12760 dev->netdev_ops = &bnx2x_netdev_ops;
12761 bnx2x_set_ethtool_ops(bp, dev);
12762
12763 dev->priv_flags |= IFF_UNICAST_FLT;
12764
12765 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12766 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12767 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12768 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12769 if (!CHIP_IS_E1x(bp)) {
12770 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12771 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12772 dev->hw_enc_features =
12773 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12774 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12775 NETIF_F_GSO_IPIP |
12776 NETIF_F_GSO_SIT |
12777 NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12778 }
12779
12780 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12781 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12782
12783 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12784 dev->features |= NETIF_F_HIGHDMA;
12785
12786 /* Add Loopback capability to the device */
12787 dev->hw_features |= NETIF_F_LOOPBACK;
12788
12789 #ifdef BCM_DCBNL
12790 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12791 #endif
12792
12793 /* get_port_hwinfo() will set prtad and mmds properly */
12794 bp->mdio.prtad = MDIO_PRTAD_NONE;
12795 bp->mdio.mmds = 0;
12796 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12797 bp->mdio.dev = dev;
12798 bp->mdio.mdio_read = bnx2x_mdio_read;
12799 bp->mdio.mdio_write = bnx2x_mdio_write;
12800
12801 return 0;
12802
12803 err_out_release:
12804 if (atomic_read(&pdev->enable_cnt) == 1)
12805 pci_release_regions(pdev);
12806
12807 err_out_disable:
12808 pci_disable_device(pdev);
12809
12810 err_out:
12811 return rc;
12812 }
12813
12814 static int bnx2x_check_firmware(struct bnx2x *bp)
12815 {
12816 const struct firmware *firmware = bp->firmware;
12817 struct bnx2x_fw_file_hdr *fw_hdr;
12818 struct bnx2x_fw_file_section *sections;
12819 u32 offset, len, num_ops;
12820 __be16 *ops_offsets;
12821 int i;
12822 const u8 *fw_ver;
12823
12824 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12825 BNX2X_ERR("Wrong FW size\n");
12826 return -EINVAL;
12827 }
12828
12829 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12830 sections = (struct bnx2x_fw_file_section *)fw_hdr;
12831
12832 /* Make sure none of the offsets and sizes make us read beyond
12833 * the end of the firmware data */
12834 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12835 offset = be32_to_cpu(sections[i].offset);
12836 len = be32_to_cpu(sections[i].len);
12837 if (offset + len > firmware->size) {
12838 BNX2X_ERR("Section %d length is out of bounds\n", i);
12839 return -EINVAL;
12840 }
12841 }
12842
12843 /* Likewise for the init_ops offsets */
12844 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12845 ops_offsets = (__force __be16 *)(firmware->data + offset);
12846 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12847
12848 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12849 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12850 BNX2X_ERR("Section offset %d is out of bounds\n", i);
12851 return -EINVAL;
12852 }
12853 }
12854
12855 /* Check FW version */
12856 offset = be32_to_cpu(fw_hdr->fw_version.offset);
12857 fw_ver = firmware->data + offset;
12858 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12859 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12860 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12861 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12862 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12863 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12864 BCM_5710_FW_MAJOR_VERSION,
12865 BCM_5710_FW_MINOR_VERSION,
12866 BCM_5710_FW_REVISION_VERSION,
12867 BCM_5710_FW_ENGINEERING_VERSION);
12868 return -EINVAL;
12869 }
12870
12871 return 0;
12872 }
12873
12874 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12875 {
12876 const __be32 *source = (const __be32 *)_source;
12877 u32 *target = (u32 *)_target;
12878 u32 i;
12879
12880 for (i = 0; i < n/4; i++)
12881 target[i] = be32_to_cpu(source[i]);
12882 }
12883
12884 /*
12885 Ops array is stored in the following format:
12886 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12887 */
12888 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12889 {
12890 const __be32 *source = (const __be32 *)_source;
12891 struct raw_op *target = (struct raw_op *)_target;
12892 u32 i, j, tmp;
12893
12894 for (i = 0, j = 0; i < n/8; i++, j += 2) {
12895 tmp = be32_to_cpu(source[j]);
12896 target[i].op = (tmp >> 24) & 0xff;
12897 target[i].offset = tmp & 0xffffff;
12898 target[i].raw_data = be32_to_cpu(source[j + 1]);
12899 }
12900 }
12901
12902 /* IRO array is stored in the following format:
12903 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12904 */
12905 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12906 {
12907 const __be32 *source = (const __be32 *)_source;
12908 struct iro *target = (struct iro *)_target;
12909 u32 i, j, tmp;
12910
12911 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12912 target[i].base = be32_to_cpu(source[j]);
12913 j++;
12914 tmp = be32_to_cpu(source[j]);
12915 target[i].m1 = (tmp >> 16) & 0xffff;
12916 target[i].m2 = tmp & 0xffff;
12917 j++;
12918 tmp = be32_to_cpu(source[j]);
12919 target[i].m3 = (tmp >> 16) & 0xffff;
12920 target[i].size = tmp & 0xffff;
12921 j++;
12922 }
12923 }
12924
12925 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12926 {
12927 const __be16 *source = (const __be16 *)_source;
12928 u16 *target = (u16 *)_target;
12929 u32 i;
12930
12931 for (i = 0; i < n/2; i++)
12932 target[i] = be16_to_cpu(source[i]);
12933 }
12934
12935 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
12936 do { \
12937 u32 len = be32_to_cpu(fw_hdr->arr.len); \
12938 bp->arr = kmalloc(len, GFP_KERNEL); \
12939 if (!bp->arr) \
12940 goto lbl; \
12941 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
12942 (u8 *)bp->arr, len); \
12943 } while (0)
12944
12945 static int bnx2x_init_firmware(struct bnx2x *bp)
12946 {
12947 const char *fw_file_name;
12948 struct bnx2x_fw_file_hdr *fw_hdr;
12949 int rc;
12950
12951 if (bp->firmware)
12952 return 0;
12953
12954 if (CHIP_IS_E1(bp))
12955 fw_file_name = FW_FILE_NAME_E1;
12956 else if (CHIP_IS_E1H(bp))
12957 fw_file_name = FW_FILE_NAME_E1H;
12958 else if (!CHIP_IS_E1x(bp))
12959 fw_file_name = FW_FILE_NAME_E2;
12960 else {
12961 BNX2X_ERR("Unsupported chip revision\n");
12962 return -EINVAL;
12963 }
12964 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12965
12966 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12967 if (rc) {
12968 BNX2X_ERR("Can't load firmware file %s\n",
12969 fw_file_name);
12970 goto request_firmware_exit;
12971 }
12972
12973 rc = bnx2x_check_firmware(bp);
12974 if (rc) {
12975 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12976 goto request_firmware_exit;
12977 }
12978
12979 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12980
12981 /* Initialize the pointers to the init arrays */
12982 /* Blob */
12983 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12984
12985 /* Opcodes */
12986 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12987
12988 /* Offsets */
12989 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12990 be16_to_cpu_n);
12991
12992 /* STORMs firmware */
12993 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12994 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12995 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
12996 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12997 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12998 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12999 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
13000 be32_to_cpu(fw_hdr->usem_pram_data.offset);
13001 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13002 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13003 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
13004 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13005 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13006 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13007 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
13008 be32_to_cpu(fw_hdr->csem_pram_data.offset);
13009 /* IRO */
13010 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13011
13012 return 0;
13013
13014 iro_alloc_err:
13015 kfree(bp->init_ops_offsets);
13016 init_offsets_alloc_err:
13017 kfree(bp->init_ops);
13018 init_ops_alloc_err:
13019 kfree(bp->init_data);
13020 request_firmware_exit:
13021 release_firmware(bp->firmware);
13022 bp->firmware = NULL;
13023
13024 return rc;
13025 }
13026
13027 static void bnx2x_release_firmware(struct bnx2x *bp)
13028 {
13029 kfree(bp->init_ops_offsets);
13030 kfree(bp->init_ops);
13031 kfree(bp->init_data);
13032 release_firmware(bp->firmware);
13033 bp->firmware = NULL;
13034 }
13035
13036 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13037 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13038 .init_hw_cmn = bnx2x_init_hw_common,
13039 .init_hw_port = bnx2x_init_hw_port,
13040 .init_hw_func = bnx2x_init_hw_func,
13041
13042 .reset_hw_cmn = bnx2x_reset_common,
13043 .reset_hw_port = bnx2x_reset_port,
13044 .reset_hw_func = bnx2x_reset_func,
13045
13046 .gunzip_init = bnx2x_gunzip_init,
13047 .gunzip_end = bnx2x_gunzip_end,
13048
13049 .init_fw = bnx2x_init_firmware,
13050 .release_fw = bnx2x_release_firmware,
13051 };
13052
13053 void bnx2x__init_func_obj(struct bnx2x *bp)
13054 {
13055 /* Prepare DMAE related driver resources */
13056 bnx2x_setup_dmae(bp);
13057
13058 bnx2x_init_func_obj(bp, &bp->func_obj,
13059 bnx2x_sp(bp, func_rdata),
13060 bnx2x_sp_mapping(bp, func_rdata),
13061 bnx2x_sp(bp, func_afex_rdata),
13062 bnx2x_sp_mapping(bp, func_afex_rdata),
13063 &bnx2x_func_sp_drv);
13064 }
13065
13066 /* must be called after sriov-enable */
13067 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13068 {
13069 int cid_count = BNX2X_L2_MAX_CID(bp);
13070
13071 if (IS_SRIOV(bp))
13072 cid_count += BNX2X_VF_CIDS;
13073
13074 if (CNIC_SUPPORT(bp))
13075 cid_count += CNIC_CID_MAX;
13076
13077 return roundup(cid_count, QM_CID_ROUND);
13078 }
13079
13080 /**
13081 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13082 *
13083 * @dev: pci device
13084 *
13085 */
13086 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13087 {
13088 int index;
13089 u16 control = 0;
13090
13091 /*
13092 * If MSI-X is not supported - return number of SBs needed to support
13093 * one fast path queue: one FP queue + SB for CNIC
13094 */
13095 if (!pdev->msix_cap) {
13096 dev_info(&pdev->dev, "no msix capability found\n");
13097 return 1 + cnic_cnt;
13098 }
13099 dev_info(&pdev->dev, "msix capability found\n");
13100
13101 /*
13102 * The value in the PCI configuration space is the index of the last
13103 * entry, namely one less than the actual size of the table, which is
13104 * exactly what we want to return from this function: number of all SBs
13105 * without the default SB.
13106 * For VFs there is no default SB, then we return (index+1).
13107 */
13108 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13109
13110 index = control & PCI_MSIX_FLAGS_QSIZE;
13111
13112 return index;
13113 }
13114
13115 static int set_max_cos_est(int chip_id)
13116 {
13117 switch (chip_id) {
13118 case BCM57710:
13119 case BCM57711:
13120 case BCM57711E:
13121 return BNX2X_MULTI_TX_COS_E1X;
13122 case BCM57712:
13123 case BCM57712_MF:
13124 return BNX2X_MULTI_TX_COS_E2_E3A0;
13125 case BCM57800:
13126 case BCM57800_MF:
13127 case BCM57810:
13128 case BCM57810_MF:
13129 case BCM57840_4_10:
13130 case BCM57840_2_20:
13131 case BCM57840_O:
13132 case BCM57840_MFO:
13133 case BCM57840_MF:
13134 case BCM57811:
13135 case BCM57811_MF:
13136 return BNX2X_MULTI_TX_COS_E3B0;
13137 case BCM57712_VF:
13138 case BCM57800_VF:
13139 case BCM57810_VF:
13140 case BCM57840_VF:
13141 case BCM57811_VF:
13142 return 1;
13143 default:
13144 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13145 return -ENODEV;
13146 }
13147 }
13148
13149 static int set_is_vf(int chip_id)
13150 {
13151 switch (chip_id) {
13152 case BCM57712_VF:
13153 case BCM57800_VF:
13154 case BCM57810_VF:
13155 case BCM57840_VF:
13156 case BCM57811_VF:
13157 return true;
13158 default:
13159 return false;
13160 }
13161 }
13162
13163 /* nig_tsgen registers relative address */
13164 #define tsgen_ctrl 0x0
13165 #define tsgen_freecount 0x10
13166 #define tsgen_synctime_t0 0x20
13167 #define tsgen_offset_t0 0x28
13168 #define tsgen_drift_t0 0x30
13169 #define tsgen_synctime_t1 0x58
13170 #define tsgen_offset_t1 0x60
13171 #define tsgen_drift_t1 0x68
13172
13173 /* FW workaround for setting drift */
13174 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13175 int best_val, int best_period)
13176 {
13177 struct bnx2x_func_state_params func_params = {NULL};
13178 struct bnx2x_func_set_timesync_params *set_timesync_params =
13179 &func_params.params.set_timesync;
13180
13181 /* Prepare parameters for function state transitions */
13182 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13183 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13184
13185 func_params.f_obj = &bp->func_obj;
13186 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13187
13188 /* Function parameters */
13189 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13190 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13191 set_timesync_params->add_sub_drift_adjust_value =
13192 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13193 set_timesync_params->drift_adjust_value = best_val;
13194 set_timesync_params->drift_adjust_period = best_period;
13195
13196 return bnx2x_func_state_change(bp, &func_params);
13197 }
13198
13199 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13200 {
13201 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13202 int rc;
13203 int drift_dir = 1;
13204 int val, period, period1, period2, dif, dif1, dif2;
13205 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13206
13207 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13208
13209 if (!netif_running(bp->dev)) {
13210 DP(BNX2X_MSG_PTP,
13211 "PTP adjfreq called while the interface is down\n");
13212 return -EFAULT;
13213 }
13214
13215 if (ppb < 0) {
13216 ppb = -ppb;
13217 drift_dir = 0;
13218 }
13219
13220 if (ppb == 0) {
13221 best_val = 1;
13222 best_period = 0x1FFFFFF;
13223 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13224 best_val = 31;
13225 best_period = 1;
13226 } else {
13227 /* Changed not to allow val = 8, 16, 24 as these values
13228 * are not supported in workaround.
13229 */
13230 for (val = 0; val <= 31; val++) {
13231 if ((val & 0x7) == 0)
13232 continue;
13233 period1 = val * 1000000 / ppb;
13234 period2 = period1 + 1;
13235 if (period1 != 0)
13236 dif1 = ppb - (val * 1000000 / period1);
13237 else
13238 dif1 = BNX2X_MAX_PHC_DRIFT;
13239 if (dif1 < 0)
13240 dif1 = -dif1;
13241 dif2 = ppb - (val * 1000000 / period2);
13242 if (dif2 < 0)
13243 dif2 = -dif2;
13244 dif = (dif1 < dif2) ? dif1 : dif2;
13245 period = (dif1 < dif2) ? period1 : period2;
13246 if (dif < best_dif) {
13247 best_dif = dif;
13248 best_val = val;
13249 best_period = period;
13250 }
13251 }
13252 }
13253
13254 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13255 best_period);
13256 if (rc) {
13257 BNX2X_ERR("Failed to set drift\n");
13258 return -EFAULT;
13259 }
13260
13261 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13262 best_period);
13263
13264 return 0;
13265 }
13266
13267 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13268 {
13269 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13270 u64 now;
13271
13272 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13273
13274 now = timecounter_read(&bp->timecounter);
13275 now += delta;
13276 /* Re-init the timecounter */
13277 timecounter_init(&bp->timecounter, &bp->cyclecounter, now);
13278
13279 return 0;
13280 }
13281
13282 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
13283 {
13284 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13285 u64 ns;
13286 u32 remainder;
13287
13288 ns = timecounter_read(&bp->timecounter);
13289
13290 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13291
13292 ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
13293 ts->tv_nsec = remainder;
13294
13295 return 0;
13296 }
13297
13298 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13299 const struct timespec *ts)
13300 {
13301 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13302 u64 ns;
13303
13304 ns = ts->tv_sec * 1000000000ULL;
13305 ns += ts->tv_nsec;
13306
13307 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13308
13309 /* Re-init the timecounter */
13310 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13311
13312 return 0;
13313 }
13314
13315 /* Enable (or disable) ancillary features of the phc subsystem */
13316 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13317 struct ptp_clock_request *rq, int on)
13318 {
13319 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13320
13321 BNX2X_ERR("PHC ancillary features are not supported\n");
13322 return -ENOTSUPP;
13323 }
13324
13325 void bnx2x_register_phc(struct bnx2x *bp)
13326 {
13327 /* Fill the ptp_clock_info struct and register PTP clock*/
13328 bp->ptp_clock_info.owner = THIS_MODULE;
13329 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13330 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13331 bp->ptp_clock_info.n_alarm = 0;
13332 bp->ptp_clock_info.n_ext_ts = 0;
13333 bp->ptp_clock_info.n_per_out = 0;
13334 bp->ptp_clock_info.pps = 0;
13335 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13336 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13337 bp->ptp_clock_info.gettime = bnx2x_ptp_gettime;
13338 bp->ptp_clock_info.settime = bnx2x_ptp_settime;
13339 bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13340
13341 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13342 if (IS_ERR(bp->ptp_clock)) {
13343 bp->ptp_clock = NULL;
13344 BNX2X_ERR("PTP clock registeration failed\n");
13345 }
13346 }
13347
13348 static int bnx2x_init_one(struct pci_dev *pdev,
13349 const struct pci_device_id *ent)
13350 {
13351 struct net_device *dev = NULL;
13352 struct bnx2x *bp;
13353 enum pcie_link_width pcie_width;
13354 enum pci_bus_speed pcie_speed;
13355 int rc, max_non_def_sbs;
13356 int rx_count, tx_count, rss_count, doorbell_size;
13357 int max_cos_est;
13358 bool is_vf;
13359 int cnic_cnt;
13360
13361 /* An estimated maximum supported CoS number according to the chip
13362 * version.
13363 * We will try to roughly estimate the maximum number of CoSes this chip
13364 * may support in order to minimize the memory allocated for Tx
13365 * netdev_queue's. This number will be accurately calculated during the
13366 * initialization of bp->max_cos based on the chip versions AND chip
13367 * revision in the bnx2x_init_bp().
13368 */
13369 max_cos_est = set_max_cos_est(ent->driver_data);
13370 if (max_cos_est < 0)
13371 return max_cos_est;
13372 is_vf = set_is_vf(ent->driver_data);
13373 cnic_cnt = is_vf ? 0 : 1;
13374
13375 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13376
13377 /* add another SB for VF as it has no default SB */
13378 max_non_def_sbs += is_vf ? 1 : 0;
13379
13380 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13381 rss_count = max_non_def_sbs - cnic_cnt;
13382
13383 if (rss_count < 1)
13384 return -EINVAL;
13385
13386 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13387 rx_count = rss_count + cnic_cnt;
13388
13389 /* Maximum number of netdev Tx queues:
13390 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
13391 */
13392 tx_count = rss_count * max_cos_est + cnic_cnt;
13393
13394 /* dev zeroed in init_etherdev */
13395 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13396 if (!dev)
13397 return -ENOMEM;
13398
13399 bp = netdev_priv(dev);
13400
13401 bp->flags = 0;
13402 if (is_vf)
13403 bp->flags |= IS_VF_FLAG;
13404
13405 bp->igu_sb_cnt = max_non_def_sbs;
13406 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13407 bp->msg_enable = debug;
13408 bp->cnic_support = cnic_cnt;
13409 bp->cnic_probe = bnx2x_cnic_probe;
13410
13411 pci_set_drvdata(pdev, dev);
13412
13413 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13414 if (rc < 0) {
13415 free_netdev(dev);
13416 return rc;
13417 }
13418
13419 BNX2X_DEV_INFO("This is a %s function\n",
13420 IS_PF(bp) ? "physical" : "virtual");
13421 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13422 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13423 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13424 tx_count, rx_count);
13425
13426 rc = bnx2x_init_bp(bp);
13427 if (rc)
13428 goto init_one_exit;
13429
13430 /* Map doorbells here as we need the real value of bp->max_cos which
13431 * is initialized in bnx2x_init_bp() to determine the number of
13432 * l2 connections.
13433 */
13434 if (IS_VF(bp)) {
13435 bp->doorbells = bnx2x_vf_doorbells(bp);
13436 rc = bnx2x_vf_pci_alloc(bp);
13437 if (rc)
13438 goto init_one_exit;
13439 } else {
13440 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13441 if (doorbell_size > pci_resource_len(pdev, 2)) {
13442 dev_err(&bp->pdev->dev,
13443 "Cannot map doorbells, bar size too small, aborting\n");
13444 rc = -ENOMEM;
13445 goto init_one_exit;
13446 }
13447 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13448 doorbell_size);
13449 }
13450 if (!bp->doorbells) {
13451 dev_err(&bp->pdev->dev,
13452 "Cannot map doorbell space, aborting\n");
13453 rc = -ENOMEM;
13454 goto init_one_exit;
13455 }
13456
13457 if (IS_VF(bp)) {
13458 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13459 if (rc)
13460 goto init_one_exit;
13461 }
13462
13463 /* Enable SRIOV if capability found in configuration space */
13464 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13465 if (rc)
13466 goto init_one_exit;
13467
13468 /* calc qm_cid_count */
13469 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13470 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13471
13472 /* disable FCOE L2 queue for E1x*/
13473 if (CHIP_IS_E1x(bp))
13474 bp->flags |= NO_FCOE_FLAG;
13475
13476 /* Set bp->num_queues for MSI-X mode*/
13477 bnx2x_set_num_queues(bp);
13478
13479 /* Configure interrupt mode: try to enable MSI-X/MSI if
13480 * needed.
13481 */
13482 rc = bnx2x_set_int_mode(bp);
13483 if (rc) {
13484 dev_err(&pdev->dev, "Cannot set interrupts\n");
13485 goto init_one_exit;
13486 }
13487 BNX2X_DEV_INFO("set interrupts successfully\n");
13488
13489 /* register the net device */
13490 rc = register_netdev(dev);
13491 if (rc) {
13492 dev_err(&pdev->dev, "Cannot register net device\n");
13493 goto init_one_exit;
13494 }
13495 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13496
13497 if (!NO_FCOE(bp)) {
13498 /* Add storage MAC address */
13499 rtnl_lock();
13500 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13501 rtnl_unlock();
13502 }
13503 if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13504 pcie_speed == PCI_SPEED_UNKNOWN ||
13505 pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13506 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13507 else
13508 BNX2X_DEV_INFO(
13509 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13510 board_info[ent->driver_data].name,
13511 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13512 pcie_width,
13513 pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13514 pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13515 pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13516 "Unknown",
13517 dev->base_addr, bp->pdev->irq, dev->dev_addr);
13518
13519 bnx2x_register_phc(bp);
13520
13521 return 0;
13522
13523 init_one_exit:
13524 bnx2x_disable_pcie_error_reporting(bp);
13525
13526 if (bp->regview)
13527 iounmap(bp->regview);
13528
13529 if (IS_PF(bp) && bp->doorbells)
13530 iounmap(bp->doorbells);
13531
13532 free_netdev(dev);
13533
13534 if (atomic_read(&pdev->enable_cnt) == 1)
13535 pci_release_regions(pdev);
13536
13537 pci_disable_device(pdev);
13538
13539 return rc;
13540 }
13541
13542 static void __bnx2x_remove(struct pci_dev *pdev,
13543 struct net_device *dev,
13544 struct bnx2x *bp,
13545 bool remove_netdev)
13546 {
13547 if (bp->ptp_clock) {
13548 ptp_clock_unregister(bp->ptp_clock);
13549 bp->ptp_clock = NULL;
13550 }
13551
13552 /* Delete storage MAC address */
13553 if (!NO_FCOE(bp)) {
13554 rtnl_lock();
13555 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13556 rtnl_unlock();
13557 }
13558
13559 #ifdef BCM_DCBNL
13560 /* Delete app tlvs from dcbnl */
13561 bnx2x_dcbnl_update_applist(bp, true);
13562 #endif
13563
13564 if (IS_PF(bp) &&
13565 !BP_NOMCP(bp) &&
13566 (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13567 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13568
13569 /* Close the interface - either directly or implicitly */
13570 if (remove_netdev) {
13571 unregister_netdev(dev);
13572 } else {
13573 rtnl_lock();
13574 dev_close(dev);
13575 rtnl_unlock();
13576 }
13577
13578 bnx2x_iov_remove_one(bp);
13579
13580 /* Power on: we can't let PCI layer write to us while we are in D3 */
13581 if (IS_PF(bp)) {
13582 bnx2x_set_power_state(bp, PCI_D0);
13583
13584 /* Set endianity registers to reset values in case next driver
13585 * boots in different endianty environment.
13586 */
13587 bnx2x_reset_endianity(bp);
13588 }
13589
13590 /* Disable MSI/MSI-X */
13591 bnx2x_disable_msi(bp);
13592
13593 /* Power off */
13594 if (IS_PF(bp))
13595 bnx2x_set_power_state(bp, PCI_D3hot);
13596
13597 /* Make sure RESET task is not scheduled before continuing */
13598 cancel_delayed_work_sync(&bp->sp_rtnl_task);
13599
13600 /* send message via vfpf channel to release the resources of this vf */
13601 if (IS_VF(bp))
13602 bnx2x_vfpf_release(bp);
13603
13604 /* Assumes no further PCIe PM changes will occur */
13605 if (system_state == SYSTEM_POWER_OFF) {
13606 pci_wake_from_d3(pdev, bp->wol);
13607 pci_set_power_state(pdev, PCI_D3hot);
13608 }
13609
13610 bnx2x_disable_pcie_error_reporting(bp);
13611 if (remove_netdev) {
13612 if (bp->regview)
13613 iounmap(bp->regview);
13614
13615 /* For vfs, doorbells are part of the regview and were unmapped
13616 * along with it. FW is only loaded by PF.
13617 */
13618 if (IS_PF(bp)) {
13619 if (bp->doorbells)
13620 iounmap(bp->doorbells);
13621
13622 bnx2x_release_firmware(bp);
13623 } else {
13624 bnx2x_vf_pci_dealloc(bp);
13625 }
13626 bnx2x_free_mem_bp(bp);
13627
13628 free_netdev(dev);
13629
13630 if (atomic_read(&pdev->enable_cnt) == 1)
13631 pci_release_regions(pdev);
13632
13633 pci_disable_device(pdev);
13634 }
13635 }
13636
13637 static void bnx2x_remove_one(struct pci_dev *pdev)
13638 {
13639 struct net_device *dev = pci_get_drvdata(pdev);
13640 struct bnx2x *bp;
13641
13642 if (!dev) {
13643 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13644 return;
13645 }
13646 bp = netdev_priv(dev);
13647
13648 __bnx2x_remove(pdev, dev, bp, true);
13649 }
13650
13651 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13652 {
13653 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13654
13655 bp->rx_mode = BNX2X_RX_MODE_NONE;
13656
13657 if (CNIC_LOADED(bp))
13658 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13659
13660 /* Stop Tx */
13661 bnx2x_tx_disable(bp);
13662 /* Delete all NAPI objects */
13663 bnx2x_del_all_napi(bp);
13664 if (CNIC_LOADED(bp))
13665 bnx2x_del_all_napi_cnic(bp);
13666 netdev_reset_tc(bp->dev);
13667
13668 del_timer_sync(&bp->timer);
13669 cancel_delayed_work_sync(&bp->sp_task);
13670 cancel_delayed_work_sync(&bp->period_task);
13671
13672 spin_lock_bh(&bp->stats_lock);
13673 bp->stats_state = STATS_STATE_DISABLED;
13674 spin_unlock_bh(&bp->stats_lock);
13675
13676 bnx2x_save_statistics(bp);
13677
13678 netif_carrier_off(bp->dev);
13679
13680 return 0;
13681 }
13682
13683 /**
13684 * bnx2x_io_error_detected - called when PCI error is detected
13685 * @pdev: Pointer to PCI device
13686 * @state: The current pci connection state
13687 *
13688 * This function is called after a PCI bus error affecting
13689 * this device has been detected.
13690 */
13691 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13692 pci_channel_state_t state)
13693 {
13694 struct net_device *dev = pci_get_drvdata(pdev);
13695 struct bnx2x *bp = netdev_priv(dev);
13696
13697 rtnl_lock();
13698
13699 BNX2X_ERR("IO error detected\n");
13700
13701 netif_device_detach(dev);
13702
13703 if (state == pci_channel_io_perm_failure) {
13704 rtnl_unlock();
13705 return PCI_ERS_RESULT_DISCONNECT;
13706 }
13707
13708 if (netif_running(dev))
13709 bnx2x_eeh_nic_unload(bp);
13710
13711 bnx2x_prev_path_mark_eeh(bp);
13712
13713 pci_disable_device(pdev);
13714
13715 rtnl_unlock();
13716
13717 /* Request a slot reset */
13718 return PCI_ERS_RESULT_NEED_RESET;
13719 }
13720
13721 /**
13722 * bnx2x_io_slot_reset - called after the PCI bus has been reset
13723 * @pdev: Pointer to PCI device
13724 *
13725 * Restart the card from scratch, as if from a cold-boot.
13726 */
13727 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13728 {
13729 struct net_device *dev = pci_get_drvdata(pdev);
13730 struct bnx2x *bp = netdev_priv(dev);
13731 int i;
13732
13733 rtnl_lock();
13734 BNX2X_ERR("IO slot reset initializing...\n");
13735 if (pci_enable_device(pdev)) {
13736 dev_err(&pdev->dev,
13737 "Cannot re-enable PCI device after reset\n");
13738 rtnl_unlock();
13739 return PCI_ERS_RESULT_DISCONNECT;
13740 }
13741
13742 pci_set_master(pdev);
13743 pci_restore_state(pdev);
13744 pci_save_state(pdev);
13745
13746 if (netif_running(dev))
13747 bnx2x_set_power_state(bp, PCI_D0);
13748
13749 if (netif_running(dev)) {
13750 BNX2X_ERR("IO slot reset --> driver unload\n");
13751
13752 /* MCP should have been reset; Need to wait for validity */
13753 bnx2x_init_shmem(bp);
13754
13755 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13756 u32 v;
13757
13758 v = SHMEM2_RD(bp,
13759 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13760 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13761 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13762 }
13763 bnx2x_drain_tx_queues(bp);
13764 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13765 bnx2x_netif_stop(bp, 1);
13766 bnx2x_free_irq(bp);
13767
13768 /* Report UNLOAD_DONE to MCP */
13769 bnx2x_send_unload_done(bp, true);
13770
13771 bp->sp_state = 0;
13772 bp->port.pmf = 0;
13773
13774 bnx2x_prev_unload(bp);
13775
13776 /* We should have reseted the engine, so It's fair to
13777 * assume the FW will no longer write to the bnx2x driver.
13778 */
13779 bnx2x_squeeze_objects(bp);
13780 bnx2x_free_skbs(bp);
13781 for_each_rx_queue(bp, i)
13782 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13783 bnx2x_free_fp_mem(bp);
13784 bnx2x_free_mem(bp);
13785
13786 bp->state = BNX2X_STATE_CLOSED;
13787 }
13788
13789 rtnl_unlock();
13790
13791 /* If AER, perform cleanup of the PCIe registers */
13792 if (bp->flags & AER_ENABLED) {
13793 if (pci_cleanup_aer_uncorrect_error_status(pdev))
13794 BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13795 else
13796 DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13797 }
13798
13799 return PCI_ERS_RESULT_RECOVERED;
13800 }
13801
13802 /**
13803 * bnx2x_io_resume - called when traffic can start flowing again
13804 * @pdev: Pointer to PCI device
13805 *
13806 * This callback is called when the error recovery driver tells us that
13807 * its OK to resume normal operation.
13808 */
13809 static void bnx2x_io_resume(struct pci_dev *pdev)
13810 {
13811 struct net_device *dev = pci_get_drvdata(pdev);
13812 struct bnx2x *bp = netdev_priv(dev);
13813
13814 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13815 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13816 return;
13817 }
13818
13819 rtnl_lock();
13820
13821 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13822 DRV_MSG_SEQ_NUMBER_MASK;
13823
13824 if (netif_running(dev))
13825 bnx2x_nic_load(bp, LOAD_NORMAL);
13826
13827 netif_device_attach(dev);
13828
13829 rtnl_unlock();
13830 }
13831
13832 static const struct pci_error_handlers bnx2x_err_handler = {
13833 .error_detected = bnx2x_io_error_detected,
13834 .slot_reset = bnx2x_io_slot_reset,
13835 .resume = bnx2x_io_resume,
13836 };
13837
13838 static void bnx2x_shutdown(struct pci_dev *pdev)
13839 {
13840 struct net_device *dev = pci_get_drvdata(pdev);
13841 struct bnx2x *bp;
13842
13843 if (!dev)
13844 return;
13845
13846 bp = netdev_priv(dev);
13847 if (!bp)
13848 return;
13849
13850 rtnl_lock();
13851 netif_device_detach(dev);
13852 rtnl_unlock();
13853
13854 /* Don't remove the netdevice, as there are scenarios which will cause
13855 * the kernel to hang, e.g., when trying to remove bnx2i while the
13856 * rootfs is mounted from SAN.
13857 */
13858 __bnx2x_remove(pdev, dev, bp, false);
13859 }
13860
13861 static struct pci_driver bnx2x_pci_driver = {
13862 .name = DRV_MODULE_NAME,
13863 .id_table = bnx2x_pci_tbl,
13864 .probe = bnx2x_init_one,
13865 .remove = bnx2x_remove_one,
13866 .suspend = bnx2x_suspend,
13867 .resume = bnx2x_resume,
13868 .err_handler = &bnx2x_err_handler,
13869 #ifdef CONFIG_BNX2X_SRIOV
13870 .sriov_configure = bnx2x_sriov_configure,
13871 #endif
13872 .shutdown = bnx2x_shutdown,
13873 };
13874
13875 static int __init bnx2x_init(void)
13876 {
13877 int ret;
13878
13879 pr_info("%s", version);
13880
13881 bnx2x_wq = create_singlethread_workqueue("bnx2x");
13882 if (bnx2x_wq == NULL) {
13883 pr_err("Cannot create workqueue\n");
13884 return -ENOMEM;
13885 }
13886 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13887 if (!bnx2x_iov_wq) {
13888 pr_err("Cannot create iov workqueue\n");
13889 destroy_workqueue(bnx2x_wq);
13890 return -ENOMEM;
13891 }
13892
13893 ret = pci_register_driver(&bnx2x_pci_driver);
13894 if (ret) {
13895 pr_err("Cannot register driver\n");
13896 destroy_workqueue(bnx2x_wq);
13897 destroy_workqueue(bnx2x_iov_wq);
13898 }
13899 return ret;
13900 }
13901
13902 static void __exit bnx2x_cleanup(void)
13903 {
13904 struct list_head *pos, *q;
13905
13906 pci_unregister_driver(&bnx2x_pci_driver);
13907
13908 destroy_workqueue(bnx2x_wq);
13909 destroy_workqueue(bnx2x_iov_wq);
13910
13911 /* Free globally allocated resources */
13912 list_for_each_safe(pos, q, &bnx2x_prev_list) {
13913 struct bnx2x_prev_path_list *tmp =
13914 list_entry(pos, struct bnx2x_prev_path_list, list);
13915 list_del(pos);
13916 kfree(tmp);
13917 }
13918 }
13919
13920 void bnx2x_notify_link_changed(struct bnx2x *bp)
13921 {
13922 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13923 }
13924
13925 module_init(bnx2x_init);
13926 module_exit(bnx2x_cleanup);
13927
13928 /**
13929 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13930 *
13931 * @bp: driver handle
13932 * @set: set or clear the CAM entry
13933 *
13934 * This function will wait until the ramrod completion returns.
13935 * Return 0 if success, -ENODEV if ramrod doesn't return.
13936 */
13937 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13938 {
13939 unsigned long ramrod_flags = 0;
13940
13941 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13942 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13943 &bp->iscsi_l2_mac_obj, true,
13944 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13945 }
13946
13947 /* count denotes the number of new completions we have seen */
13948 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13949 {
13950 struct eth_spe *spe;
13951 int cxt_index, cxt_offset;
13952
13953 #ifdef BNX2X_STOP_ON_ERROR
13954 if (unlikely(bp->panic))
13955 return;
13956 #endif
13957
13958 spin_lock_bh(&bp->spq_lock);
13959 BUG_ON(bp->cnic_spq_pending < count);
13960 bp->cnic_spq_pending -= count;
13961
13962 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13963 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13964 & SPE_HDR_CONN_TYPE) >>
13965 SPE_HDR_CONN_TYPE_SHIFT;
13966 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13967 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13968
13969 /* Set validation for iSCSI L2 client before sending SETUP
13970 * ramrod
13971 */
13972 if (type == ETH_CONNECTION_TYPE) {
13973 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13974 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13975 ILT_PAGE_CIDS;
13976 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13977 (cxt_index * ILT_PAGE_CIDS);
13978 bnx2x_set_ctx_validation(bp,
13979 &bp->context[cxt_index].
13980 vcxt[cxt_offset].eth,
13981 BNX2X_ISCSI_ETH_CID(bp));
13982 }
13983 }
13984
13985 /*
13986 * There may be not more than 8 L2, not more than 8 L5 SPEs
13987 * and in the air. We also check that number of outstanding
13988 * COMMON ramrods is not more than the EQ and SPQ can
13989 * accommodate.
13990 */
13991 if (type == ETH_CONNECTION_TYPE) {
13992 if (!atomic_read(&bp->cq_spq_left))
13993 break;
13994 else
13995 atomic_dec(&bp->cq_spq_left);
13996 } else if (type == NONE_CONNECTION_TYPE) {
13997 if (!atomic_read(&bp->eq_spq_left))
13998 break;
13999 else
14000 atomic_dec(&bp->eq_spq_left);
14001 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14002 (type == FCOE_CONNECTION_TYPE)) {
14003 if (bp->cnic_spq_pending >=
14004 bp->cnic_eth_dev.max_kwqe_pending)
14005 break;
14006 else
14007 bp->cnic_spq_pending++;
14008 } else {
14009 BNX2X_ERR("Unknown SPE type: %d\n", type);
14010 bnx2x_panic();
14011 break;
14012 }
14013
14014 spe = bnx2x_sp_get_next(bp);
14015 *spe = *bp->cnic_kwq_cons;
14016
14017 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14018 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14019
14020 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14021 bp->cnic_kwq_cons = bp->cnic_kwq;
14022 else
14023 bp->cnic_kwq_cons++;
14024 }
14025 bnx2x_sp_prod_update(bp);
14026 spin_unlock_bh(&bp->spq_lock);
14027 }
14028
14029 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14030 struct kwqe_16 *kwqes[], u32 count)
14031 {
14032 struct bnx2x *bp = netdev_priv(dev);
14033 int i;
14034
14035 #ifdef BNX2X_STOP_ON_ERROR
14036 if (unlikely(bp->panic)) {
14037 BNX2X_ERR("Can't post to SP queue while panic\n");
14038 return -EIO;
14039 }
14040 #endif
14041
14042 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14043 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14044 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14045 return -EAGAIN;
14046 }
14047
14048 spin_lock_bh(&bp->spq_lock);
14049
14050 for (i = 0; i < count; i++) {
14051 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14052
14053 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14054 break;
14055
14056 *bp->cnic_kwq_prod = *spe;
14057
14058 bp->cnic_kwq_pending++;
14059
14060 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14061 spe->hdr.conn_and_cmd_data, spe->hdr.type,
14062 spe->data.update_data_addr.hi,
14063 spe->data.update_data_addr.lo,
14064 bp->cnic_kwq_pending);
14065
14066 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14067 bp->cnic_kwq_prod = bp->cnic_kwq;
14068 else
14069 bp->cnic_kwq_prod++;
14070 }
14071
14072 spin_unlock_bh(&bp->spq_lock);
14073
14074 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14075 bnx2x_cnic_sp_post(bp, 0);
14076
14077 return i;
14078 }
14079
14080 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14081 {
14082 struct cnic_ops *c_ops;
14083 int rc = 0;
14084
14085 mutex_lock(&bp->cnic_mutex);
14086 c_ops = rcu_dereference_protected(bp->cnic_ops,
14087 lockdep_is_held(&bp->cnic_mutex));
14088 if (c_ops)
14089 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14090 mutex_unlock(&bp->cnic_mutex);
14091
14092 return rc;
14093 }
14094
14095 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14096 {
14097 struct cnic_ops *c_ops;
14098 int rc = 0;
14099
14100 rcu_read_lock();
14101 c_ops = rcu_dereference(bp->cnic_ops);
14102 if (c_ops)
14103 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14104 rcu_read_unlock();
14105
14106 return rc;
14107 }
14108
14109 /*
14110 * for commands that have no data
14111 */
14112 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14113 {
14114 struct cnic_ctl_info ctl = {0};
14115
14116 ctl.cmd = cmd;
14117
14118 return bnx2x_cnic_ctl_send(bp, &ctl);
14119 }
14120
14121 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14122 {
14123 struct cnic_ctl_info ctl = {0};
14124
14125 /* first we tell CNIC and only then we count this as a completion */
14126 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14127 ctl.data.comp.cid = cid;
14128 ctl.data.comp.error = err;
14129
14130 bnx2x_cnic_ctl_send_bh(bp, &ctl);
14131 bnx2x_cnic_sp_post(bp, 0);
14132 }
14133
14134 /* Called with netif_addr_lock_bh() taken.
14135 * Sets an rx_mode config for an iSCSI ETH client.
14136 * Doesn't block.
14137 * Completion should be checked outside.
14138 */
14139 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14140 {
14141 unsigned long accept_flags = 0, ramrod_flags = 0;
14142 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14143 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14144
14145 if (start) {
14146 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14147 * because it's the only way for UIO Queue to accept
14148 * multicasts (in non-promiscuous mode only one Queue per
14149 * function will receive multicast packets (leading in our
14150 * case).
14151 */
14152 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14153 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14154 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14155 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14156
14157 /* Clear STOP_PENDING bit if START is requested */
14158 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14159
14160 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14161 } else
14162 /* Clear START_PENDING bit if STOP is requested */
14163 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14164
14165 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14166 set_bit(sched_state, &bp->sp_state);
14167 else {
14168 __set_bit(RAMROD_RX, &ramrod_flags);
14169 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14170 ramrod_flags);
14171 }
14172 }
14173
14174 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14175 {
14176 struct bnx2x *bp = netdev_priv(dev);
14177 int rc = 0;
14178
14179 switch (ctl->cmd) {
14180 case DRV_CTL_CTXTBL_WR_CMD: {
14181 u32 index = ctl->data.io.offset;
14182 dma_addr_t addr = ctl->data.io.dma_addr;
14183
14184 bnx2x_ilt_wr(bp, index, addr);
14185 break;
14186 }
14187
14188 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14189 int count = ctl->data.credit.credit_count;
14190
14191 bnx2x_cnic_sp_post(bp, count);
14192 break;
14193 }
14194
14195 /* rtnl_lock is held. */
14196 case DRV_CTL_START_L2_CMD: {
14197 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14198 unsigned long sp_bits = 0;
14199
14200 /* Configure the iSCSI classification object */
14201 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14202 cp->iscsi_l2_client_id,
14203 cp->iscsi_l2_cid, BP_FUNC(bp),
14204 bnx2x_sp(bp, mac_rdata),
14205 bnx2x_sp_mapping(bp, mac_rdata),
14206 BNX2X_FILTER_MAC_PENDING,
14207 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14208 &bp->macs_pool);
14209
14210 /* Set iSCSI MAC address */
14211 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14212 if (rc)
14213 break;
14214
14215 mmiowb();
14216 barrier();
14217
14218 /* Start accepting on iSCSI L2 ring */
14219
14220 netif_addr_lock_bh(dev);
14221 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14222 netif_addr_unlock_bh(dev);
14223
14224 /* bits to wait on */
14225 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14226 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14227
14228 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14229 BNX2X_ERR("rx_mode completion timed out!\n");
14230
14231 break;
14232 }
14233
14234 /* rtnl_lock is held. */
14235 case DRV_CTL_STOP_L2_CMD: {
14236 unsigned long sp_bits = 0;
14237
14238 /* Stop accepting on iSCSI L2 ring */
14239 netif_addr_lock_bh(dev);
14240 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14241 netif_addr_unlock_bh(dev);
14242
14243 /* bits to wait on */
14244 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14245 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14246
14247 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14248 BNX2X_ERR("rx_mode completion timed out!\n");
14249
14250 mmiowb();
14251 barrier();
14252
14253 /* Unset iSCSI L2 MAC */
14254 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14255 BNX2X_ISCSI_ETH_MAC, true);
14256 break;
14257 }
14258 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14259 int count = ctl->data.credit.credit_count;
14260
14261 smp_mb__before_atomic();
14262 atomic_add(count, &bp->cq_spq_left);
14263 smp_mb__after_atomic();
14264 break;
14265 }
14266 case DRV_CTL_ULP_REGISTER_CMD: {
14267 int ulp_type = ctl->data.register_data.ulp_type;
14268
14269 if (CHIP_IS_E3(bp)) {
14270 int idx = BP_FW_MB_IDX(bp);
14271 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14272 int path = BP_PATH(bp);
14273 int port = BP_PORT(bp);
14274 int i;
14275 u32 scratch_offset;
14276 u32 *host_addr;
14277
14278 /* first write capability to shmem2 */
14279 if (ulp_type == CNIC_ULP_ISCSI)
14280 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14281 else if (ulp_type == CNIC_ULP_FCOE)
14282 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14283 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14284
14285 if ((ulp_type != CNIC_ULP_FCOE) ||
14286 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14287 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
14288 break;
14289
14290 /* if reached here - should write fcoe capabilities */
14291 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14292 if (!scratch_offset)
14293 break;
14294 scratch_offset += offsetof(struct glob_ncsi_oem_data,
14295 fcoe_features[path][port]);
14296 host_addr = (u32 *) &(ctl->data.register_data.
14297 fcoe_features);
14298 for (i = 0; i < sizeof(struct fcoe_capabilities);
14299 i += 4)
14300 REG_WR(bp, scratch_offset + i,
14301 *(host_addr + i/4));
14302 }
14303 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14304 break;
14305 }
14306
14307 case DRV_CTL_ULP_UNREGISTER_CMD: {
14308 int ulp_type = ctl->data.ulp_type;
14309
14310 if (CHIP_IS_E3(bp)) {
14311 int idx = BP_FW_MB_IDX(bp);
14312 u32 cap;
14313
14314 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14315 if (ulp_type == CNIC_ULP_ISCSI)
14316 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14317 else if (ulp_type == CNIC_ULP_FCOE)
14318 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14319 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14320 }
14321 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14322 break;
14323 }
14324
14325 default:
14326 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14327 rc = -EINVAL;
14328 }
14329
14330 return rc;
14331 }
14332
14333 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14334 {
14335 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14336
14337 if (bp->flags & USING_MSIX_FLAG) {
14338 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14339 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14340 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14341 } else {
14342 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14343 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14344 }
14345 if (!CHIP_IS_E1x(bp))
14346 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14347 else
14348 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14349
14350 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
14351 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14352 cp->irq_arr[1].status_blk = bp->def_status_blk;
14353 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14354 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14355
14356 cp->num_irq = 2;
14357 }
14358
14359 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14360 {
14361 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14362
14363 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14364 bnx2x_cid_ilt_lines(bp);
14365 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14366 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14367 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14368
14369 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14370 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14371 cp->iscsi_l2_cid);
14372
14373 if (NO_ISCSI_OOO(bp))
14374 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14375 }
14376
14377 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14378 void *data)
14379 {
14380 struct bnx2x *bp = netdev_priv(dev);
14381 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14382 int rc;
14383
14384 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14385
14386 if (ops == NULL) {
14387 BNX2X_ERR("NULL ops received\n");
14388 return -EINVAL;
14389 }
14390
14391 if (!CNIC_SUPPORT(bp)) {
14392 BNX2X_ERR("Can't register CNIC when not supported\n");
14393 return -EOPNOTSUPP;
14394 }
14395
14396 if (!CNIC_LOADED(bp)) {
14397 rc = bnx2x_load_cnic(bp);
14398 if (rc) {
14399 BNX2X_ERR("CNIC-related load failed\n");
14400 return rc;
14401 }
14402 }
14403
14404 bp->cnic_enabled = true;
14405
14406 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14407 if (!bp->cnic_kwq)
14408 return -ENOMEM;
14409
14410 bp->cnic_kwq_cons = bp->cnic_kwq;
14411 bp->cnic_kwq_prod = bp->cnic_kwq;
14412 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14413
14414 bp->cnic_spq_pending = 0;
14415 bp->cnic_kwq_pending = 0;
14416
14417 bp->cnic_data = data;
14418
14419 cp->num_irq = 0;
14420 cp->drv_state |= CNIC_DRV_STATE_REGD;
14421 cp->iro_arr = bp->iro_arr;
14422
14423 bnx2x_setup_cnic_irq_info(bp);
14424
14425 rcu_assign_pointer(bp->cnic_ops, ops);
14426
14427 /* Schedule driver to read CNIC driver versions */
14428 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14429
14430 return 0;
14431 }
14432
14433 static int bnx2x_unregister_cnic(struct net_device *dev)
14434 {
14435 struct bnx2x *bp = netdev_priv(dev);
14436 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14437
14438 mutex_lock(&bp->cnic_mutex);
14439 cp->drv_state = 0;
14440 RCU_INIT_POINTER(bp->cnic_ops, NULL);
14441 mutex_unlock(&bp->cnic_mutex);
14442 synchronize_rcu();
14443 bp->cnic_enabled = false;
14444 kfree(bp->cnic_kwq);
14445 bp->cnic_kwq = NULL;
14446
14447 return 0;
14448 }
14449
14450 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14451 {
14452 struct bnx2x *bp = netdev_priv(dev);
14453 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14454
14455 /* If both iSCSI and FCoE are disabled - return NULL in
14456 * order to indicate CNIC that it should not try to work
14457 * with this device.
14458 */
14459 if (NO_ISCSI(bp) && NO_FCOE(bp))
14460 return NULL;
14461
14462 cp->drv_owner = THIS_MODULE;
14463 cp->chip_id = CHIP_ID(bp);
14464 cp->pdev = bp->pdev;
14465 cp->io_base = bp->regview;
14466 cp->io_base2 = bp->doorbells;
14467 cp->max_kwqe_pending = 8;
14468 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14469 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14470 bnx2x_cid_ilt_lines(bp);
14471 cp->ctx_tbl_len = CNIC_ILT_LINES;
14472 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14473 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14474 cp->drv_ctl = bnx2x_drv_ctl;
14475 cp->drv_register_cnic = bnx2x_register_cnic;
14476 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14477 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14478 cp->iscsi_l2_client_id =
14479 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14480 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14481
14482 if (NO_ISCSI_OOO(bp))
14483 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14484
14485 if (NO_ISCSI(bp))
14486 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14487
14488 if (NO_FCOE(bp))
14489 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14490
14491 BNX2X_DEV_INFO(
14492 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14493 cp->ctx_blk_size,
14494 cp->ctx_tbl_offset,
14495 cp->ctx_tbl_len,
14496 cp->starting_cid);
14497 return cp;
14498 }
14499
14500 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14501 {
14502 struct bnx2x *bp = fp->bp;
14503 u32 offset = BAR_USTRORM_INTMEM;
14504
14505 if (IS_VF(bp))
14506 return bnx2x_vf_ustorm_prods_offset(bp, fp);
14507 else if (!CHIP_IS_E1x(bp))
14508 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14509 else
14510 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14511
14512 return offset;
14513 }
14514
14515 /* called only on E1H or E2.
14516 * When pretending to be PF, the pretend value is the function number 0...7
14517 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14518 * combination
14519 */
14520 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14521 {
14522 u32 pretend_reg;
14523
14524 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14525 return -1;
14526
14527 /* get my own pretend register */
14528 pretend_reg = bnx2x_get_pretend_reg(bp);
14529 REG_WR(bp, pretend_reg, pretend_func_val);
14530 REG_RD(bp, pretend_reg);
14531 return 0;
14532 }
14533
14534 static void bnx2x_ptp_task(struct work_struct *work)
14535 {
14536 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
14537 int port = BP_PORT(bp);
14538 u32 val_seq;
14539 u64 timestamp, ns;
14540 struct skb_shared_hwtstamps shhwtstamps;
14541
14542 /* Read Tx timestamp registers */
14543 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14544 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
14545 if (val_seq & 0x10000) {
14546 /* There is a valid timestamp value */
14547 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
14548 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
14549 timestamp <<= 32;
14550 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
14551 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
14552 /* Reset timestamp register to allow new timestamp */
14553 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14554 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14555 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14556
14557 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
14558 shhwtstamps.hwtstamp = ns_to_ktime(ns);
14559 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
14560 dev_kfree_skb_any(bp->ptp_tx_skb);
14561 bp->ptp_tx_skb = NULL;
14562
14563 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
14564 timestamp, ns);
14565 } else {
14566 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
14567 /* Reschedule to keep checking for a valid timestamp value */
14568 schedule_work(&bp->ptp_task);
14569 }
14570 }
14571
14572 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
14573 {
14574 int port = BP_PORT(bp);
14575 u64 timestamp, ns;
14576
14577 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
14578 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
14579 timestamp <<= 32;
14580 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
14581 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
14582
14583 /* Reset timestamp register to allow new timestamp */
14584 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14585 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14586
14587 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14588
14589 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
14590
14591 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
14592 timestamp, ns);
14593 }
14594
14595 /* Read the PHC */
14596 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
14597 {
14598 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
14599 int port = BP_PORT(bp);
14600 u32 wb_data[2];
14601 u64 phc_cycles;
14602
14603 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
14604 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
14605 phc_cycles = wb_data[1];
14606 phc_cycles = (phc_cycles << 32) + wb_data[0];
14607
14608 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
14609
14610 return phc_cycles;
14611 }
14612
14613 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
14614 {
14615 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
14616 bp->cyclecounter.read = bnx2x_cyclecounter_read;
14617 bp->cyclecounter.mask = CLOCKSOURCE_MASK(64);
14618 bp->cyclecounter.shift = 1;
14619 bp->cyclecounter.mult = 1;
14620 }
14621
14622 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
14623 {
14624 struct bnx2x_func_state_params func_params = {NULL};
14625 struct bnx2x_func_set_timesync_params *set_timesync_params =
14626 &func_params.params.set_timesync;
14627
14628 /* Prepare parameters for function state transitions */
14629 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
14630 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
14631
14632 func_params.f_obj = &bp->func_obj;
14633 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
14634
14635 /* Function parameters */
14636 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
14637 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
14638
14639 return bnx2x_func_state_change(bp, &func_params);
14640 }
14641
14642 int bnx2x_enable_ptp_packets(struct bnx2x *bp)
14643 {
14644 struct bnx2x_queue_state_params q_params;
14645 int rc, i;
14646
14647 /* send queue update ramrod to enable PTP packets */
14648 memset(&q_params, 0, sizeof(q_params));
14649 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
14650 q_params.cmd = BNX2X_Q_CMD_UPDATE;
14651 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
14652 &q_params.params.update.update_flags);
14653 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
14654 &q_params.params.update.update_flags);
14655
14656 /* send the ramrod on all the queues of the PF */
14657 for_each_eth_queue(bp, i) {
14658 struct bnx2x_fastpath *fp = &bp->fp[i];
14659
14660 /* Set the appropriate Queue object */
14661 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
14662
14663 /* Update the Queue state */
14664 rc = bnx2x_queue_state_change(bp, &q_params);
14665 if (rc) {
14666 BNX2X_ERR("Failed to enable PTP packets\n");
14667 return rc;
14668 }
14669 }
14670
14671 return 0;
14672 }
14673
14674 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
14675 {
14676 int port = BP_PORT(bp);
14677 int rc;
14678
14679 if (!bp->hwtstamp_ioctl_called)
14680 return 0;
14681
14682 switch (bp->tx_type) {
14683 case HWTSTAMP_TX_ON:
14684 bp->flags |= TX_TIMESTAMPING_EN;
14685 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14686 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
14687 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14688 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
14689 break;
14690 case HWTSTAMP_TX_ONESTEP_SYNC:
14691 BNX2X_ERR("One-step timestamping is not supported\n");
14692 return -ERANGE;
14693 }
14694
14695 switch (bp->rx_filter) {
14696 case HWTSTAMP_FILTER_NONE:
14697 break;
14698 case HWTSTAMP_FILTER_ALL:
14699 case HWTSTAMP_FILTER_SOME:
14700 bp->rx_filter = HWTSTAMP_FILTER_NONE;
14701 break;
14702 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
14703 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
14704 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
14705 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
14706 /* Initialize PTP detection for UDP/IPv4 events */
14707 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14708 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
14709 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14710 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
14711 break;
14712 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
14713 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
14714 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
14715 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
14716 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
14717 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14718 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
14719 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14720 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
14721 break;
14722 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
14723 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
14724 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
14725 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
14726 /* Initialize PTP detection L2 events */
14727 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14728 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
14729 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14730 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
14731
14732 break;
14733 case HWTSTAMP_FILTER_PTP_V2_EVENT:
14734 case HWTSTAMP_FILTER_PTP_V2_SYNC:
14735 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
14736 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
14737 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
14738 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14739 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
14740 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14741 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
14742 break;
14743 }
14744
14745 /* Indicate to FW that this PF expects recorded PTP packets */
14746 rc = bnx2x_enable_ptp_packets(bp);
14747 if (rc)
14748 return rc;
14749
14750 /* Enable sending PTP packets to host */
14751 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14752 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
14753
14754 return 0;
14755 }
14756
14757 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
14758 {
14759 struct hwtstamp_config config;
14760 int rc;
14761
14762 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
14763
14764 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
14765 return -EFAULT;
14766
14767 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
14768 config.tx_type, config.rx_filter);
14769
14770 if (config.flags) {
14771 BNX2X_ERR("config.flags is reserved for future use\n");
14772 return -EINVAL;
14773 }
14774
14775 bp->hwtstamp_ioctl_called = 1;
14776 bp->tx_type = config.tx_type;
14777 bp->rx_filter = config.rx_filter;
14778
14779 rc = bnx2x_configure_ptp_filters(bp);
14780 if (rc)
14781 return rc;
14782
14783 config.rx_filter = bp->rx_filter;
14784
14785 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
14786 -EFAULT : 0;
14787 }
14788
14789 /* Configures HW for PTP */
14790 static int bnx2x_configure_ptp(struct bnx2x *bp)
14791 {
14792 int rc, port = BP_PORT(bp);
14793 u32 wb_data[2];
14794
14795 /* Reset PTP event detection rules - will be configured in the IOCTL */
14796 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14797 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
14798 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14799 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
14800 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14801 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
14802 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14803 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
14804
14805 /* Disable PTP packets to host - will be configured in the IOCTL*/
14806 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14807 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
14808
14809 /* Enable the PTP feature */
14810 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
14811 NIG_REG_P0_PTP_EN, 0x3F);
14812
14813 /* Enable the free-running counter */
14814 wb_data[0] = 0;
14815 wb_data[1] = 0;
14816 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
14817
14818 /* Reset drift register (offset register is not reset) */
14819 rc = bnx2x_send_reset_timesync_ramrod(bp);
14820 if (rc) {
14821 BNX2X_ERR("Failed to reset PHC drift register\n");
14822 return -EFAULT;
14823 }
14824
14825 /* Reset possibly old timestamps */
14826 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14827 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14828 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14829 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14830
14831 return 0;
14832 }
14833
14834 /* Called during load, to initialize PTP-related stuff */
14835 void bnx2x_init_ptp(struct bnx2x *bp)
14836 {
14837 int rc;
14838
14839 /* Configure PTP in HW */
14840 rc = bnx2x_configure_ptp(bp);
14841 if (rc) {
14842 BNX2X_ERR("Stopping PTP initialization\n");
14843 return;
14844 }
14845
14846 /* Init work queue for Tx timestamping */
14847 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
14848
14849 /* Init cyclecounter and timecounter. This is done only in the first
14850 * load. If done in every load, PTP application will fail when doing
14851 * unload / load (e.g. MTU change) while it is running.
14852 */
14853 if (!bp->timecounter_init_done) {
14854 bnx2x_init_cyclecounter(bp);
14855 timecounter_init(&bp->timecounter, &bp->cyclecounter,
14856 ktime_to_ns(ktime_get_real()));
14857 bp->timecounter_init_done = 1;
14858 }
14859
14860 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
14861 }
This page took 0.352902 seconds and 5 git commands to generate.