Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_sp.c
1 /* bnx2x_sp.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2011-2013 Broadcom Corporation
4 *
5 * Unless you and Broadcom execute a separate written software license
6 * agreement governing use of this software, this software is licensed to you
7 * under the terms of the GNU General Public License version 2, available
8 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9 *
10 * Notwithstanding the above, under no circumstances may you combine this
11 * software in any way with any other Broadcom software provided under a
12 * license other than the GPL, without Broadcom's express prior written
13 * consent.
14 *
15 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
16 * Written by: Vladislav Zolotarov
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/crc32.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/crc32c.h>
27 #include "bnx2x.h"
28 #include "bnx2x_cmn.h"
29 #include "bnx2x_sp.h"
30
31 #define BNX2X_MAX_EMUL_MULTI 16
32
33 /**** Exe Queue interfaces ****/
34
35 /**
36 * bnx2x_exe_queue_init - init the Exe Queue object
37 *
38 * @o: pointer to the object
39 * @exe_len: length
40 * @owner: pointer to the owner
41 * @validate: validate function pointer
42 * @optimize: optimize function pointer
43 * @exec: execute function pointer
44 * @get: get function pointer
45 */
46 static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
47 struct bnx2x_exe_queue_obj *o,
48 int exe_len,
49 union bnx2x_qable_obj *owner,
50 exe_q_validate validate,
51 exe_q_remove remove,
52 exe_q_optimize optimize,
53 exe_q_execute exec,
54 exe_q_get get)
55 {
56 memset(o, 0, sizeof(*o));
57
58 INIT_LIST_HEAD(&o->exe_queue);
59 INIT_LIST_HEAD(&o->pending_comp);
60
61 spin_lock_init(&o->lock);
62
63 o->exe_chunk_len = exe_len;
64 o->owner = owner;
65
66 /* Owner specific callbacks */
67 o->validate = validate;
68 o->remove = remove;
69 o->optimize = optimize;
70 o->execute = exec;
71 o->get = get;
72
73 DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
74 exe_len);
75 }
76
77 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
78 struct bnx2x_exeq_elem *elem)
79 {
80 DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
81 kfree(elem);
82 }
83
84 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
85 {
86 struct bnx2x_exeq_elem *elem;
87 int cnt = 0;
88
89 spin_lock_bh(&o->lock);
90
91 list_for_each_entry(elem, &o->exe_queue, link)
92 cnt++;
93
94 spin_unlock_bh(&o->lock);
95
96 return cnt;
97 }
98
99 /**
100 * bnx2x_exe_queue_add - add a new element to the execution queue
101 *
102 * @bp: driver handle
103 * @o: queue
104 * @cmd: new command to add
105 * @restore: true - do not optimize the command
106 *
107 * If the element is optimized or is illegal, frees it.
108 */
109 static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
110 struct bnx2x_exe_queue_obj *o,
111 struct bnx2x_exeq_elem *elem,
112 bool restore)
113 {
114 int rc;
115
116 spin_lock_bh(&o->lock);
117
118 if (!restore) {
119 /* Try to cancel this element queue */
120 rc = o->optimize(bp, o->owner, elem);
121 if (rc)
122 goto free_and_exit;
123
124 /* Check if this request is ok */
125 rc = o->validate(bp, o->owner, elem);
126 if (rc) {
127 DP(BNX2X_MSG_SP, "Preamble failed: %d\n", rc);
128 goto free_and_exit;
129 }
130 }
131
132 /* If so, add it to the execution queue */
133 list_add_tail(&elem->link, &o->exe_queue);
134
135 spin_unlock_bh(&o->lock);
136
137 return 0;
138
139 free_and_exit:
140 bnx2x_exe_queue_free_elem(bp, elem);
141
142 spin_unlock_bh(&o->lock);
143
144 return rc;
145 }
146
147 static inline void __bnx2x_exe_queue_reset_pending(
148 struct bnx2x *bp,
149 struct bnx2x_exe_queue_obj *o)
150 {
151 struct bnx2x_exeq_elem *elem;
152
153 while (!list_empty(&o->pending_comp)) {
154 elem = list_first_entry(&o->pending_comp,
155 struct bnx2x_exeq_elem, link);
156
157 list_del(&elem->link);
158 bnx2x_exe_queue_free_elem(bp, elem);
159 }
160 }
161
162 /**
163 * bnx2x_exe_queue_step - execute one execution chunk atomically
164 *
165 * @bp: driver handle
166 * @o: queue
167 * @ramrod_flags: flags
168 *
169 * (Should be called while holding the exe_queue->lock).
170 */
171 static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
172 struct bnx2x_exe_queue_obj *o,
173 unsigned long *ramrod_flags)
174 {
175 struct bnx2x_exeq_elem *elem, spacer;
176 int cur_len = 0, rc;
177
178 memset(&spacer, 0, sizeof(spacer));
179
180 /* Next step should not be performed until the current is finished,
181 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
182 * properly clear object internals without sending any command to the FW
183 * which also implies there won't be any completion to clear the
184 * 'pending' list.
185 */
186 if (!list_empty(&o->pending_comp)) {
187 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
188 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
189 __bnx2x_exe_queue_reset_pending(bp, o);
190 } else {
191 return 1;
192 }
193 }
194
195 /* Run through the pending commands list and create a next
196 * execution chunk.
197 */
198 while (!list_empty(&o->exe_queue)) {
199 elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
200 link);
201 WARN_ON(!elem->cmd_len);
202
203 if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
204 cur_len += elem->cmd_len;
205 /* Prevent from both lists being empty when moving an
206 * element. This will allow the call of
207 * bnx2x_exe_queue_empty() without locking.
208 */
209 list_add_tail(&spacer.link, &o->pending_comp);
210 mb();
211 list_move_tail(&elem->link, &o->pending_comp);
212 list_del(&spacer.link);
213 } else
214 break;
215 }
216
217 /* Sanity check */
218 if (!cur_len)
219 return 0;
220
221 rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
222 if (rc < 0)
223 /* In case of an error return the commands back to the queue
224 * and reset the pending_comp.
225 */
226 list_splice_init(&o->pending_comp, &o->exe_queue);
227 else if (!rc)
228 /* If zero is returned, means there are no outstanding pending
229 * completions and we may dismiss the pending list.
230 */
231 __bnx2x_exe_queue_reset_pending(bp, o);
232
233 return rc;
234 }
235
236 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
237 {
238 bool empty = list_empty(&o->exe_queue);
239
240 /* Don't reorder!!! */
241 mb();
242
243 return empty && list_empty(&o->pending_comp);
244 }
245
246 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
247 struct bnx2x *bp)
248 {
249 DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
250 return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
251 }
252
253 /************************ raw_obj functions ***********************************/
254 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
255 {
256 return !!test_bit(o->state, o->pstate);
257 }
258
259 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
260 {
261 smp_mb__before_atomic();
262 clear_bit(o->state, o->pstate);
263 smp_mb__after_atomic();
264 }
265
266 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
267 {
268 smp_mb__before_atomic();
269 set_bit(o->state, o->pstate);
270 smp_mb__after_atomic();
271 }
272
273 /**
274 * bnx2x_state_wait - wait until the given bit(state) is cleared
275 *
276 * @bp: device handle
277 * @state: state which is to be cleared
278 * @state_p: state buffer
279 *
280 */
281 static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
282 unsigned long *pstate)
283 {
284 /* can take a while if any port is running */
285 int cnt = 5000;
286
287 if (CHIP_REV_IS_EMUL(bp))
288 cnt *= 20;
289
290 DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
291
292 might_sleep();
293 while (cnt--) {
294 if (!test_bit(state, pstate)) {
295 #ifdef BNX2X_STOP_ON_ERROR
296 DP(BNX2X_MSG_SP, "exit (cnt %d)\n", 5000 - cnt);
297 #endif
298 return 0;
299 }
300
301 usleep_range(1000, 2000);
302
303 if (bp->panic)
304 return -EIO;
305 }
306
307 /* timeout! */
308 BNX2X_ERR("timeout waiting for state %d\n", state);
309 #ifdef BNX2X_STOP_ON_ERROR
310 bnx2x_panic();
311 #endif
312
313 return -EBUSY;
314 }
315
316 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
317 {
318 return bnx2x_state_wait(bp, raw->state, raw->pstate);
319 }
320
321 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
322 /* credit handling callbacks */
323 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
324 {
325 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
326
327 WARN_ON(!mp);
328
329 return mp->get_entry(mp, offset);
330 }
331
332 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
333 {
334 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
335
336 WARN_ON(!mp);
337
338 return mp->get(mp, 1);
339 }
340
341 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
342 {
343 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
344
345 WARN_ON(!vp);
346
347 return vp->get_entry(vp, offset);
348 }
349
350 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
351 {
352 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
353
354 WARN_ON(!vp);
355
356 return vp->get(vp, 1);
357 }
358 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
359 {
360 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
361
362 return mp->put_entry(mp, offset);
363 }
364
365 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
366 {
367 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
368
369 return mp->put(mp, 1);
370 }
371
372 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
373 {
374 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
375
376 return vp->put_entry(vp, offset);
377 }
378
379 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
380 {
381 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
382
383 return vp->put(vp, 1);
384 }
385
386 /**
387 * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock
388 *
389 * @bp: device handle
390 * @o: vlan_mac object
391 *
392 * @details: Non-blocking implementation; should be called under execution
393 * queue lock.
394 */
395 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x *bp,
396 struct bnx2x_vlan_mac_obj *o)
397 {
398 if (o->head_reader) {
399 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - There are readers; Busy\n");
400 return -EBUSY;
401 }
402
403 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - Taken\n");
404 return 0;
405 }
406
407 /**
408 * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step
409 *
410 * @bp: device handle
411 * @o: vlan_mac object
412 *
413 * @details Should be called under execution queue lock; notice it might release
414 * and reclaim it during its run.
415 */
416 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x *bp,
417 struct bnx2x_vlan_mac_obj *o)
418 {
419 int rc;
420 unsigned long ramrod_flags = o->saved_ramrod_flags;
421
422 DP(BNX2X_MSG_SP, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
423 ramrod_flags);
424 o->head_exe_request = false;
425 o->saved_ramrod_flags = 0;
426 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, &ramrod_flags);
427 if (rc != 0) {
428 BNX2X_ERR("execution of pending commands failed with rc %d\n",
429 rc);
430 #ifdef BNX2X_STOP_ON_ERROR
431 bnx2x_panic();
432 #endif
433 }
434 }
435
436 /**
437 * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run
438 *
439 * @bp: device handle
440 * @o: vlan_mac object
441 * @ramrod_flags: ramrod flags of missed execution
442 *
443 * @details Should be called under execution queue lock.
444 */
445 static void __bnx2x_vlan_mac_h_pend(struct bnx2x *bp,
446 struct bnx2x_vlan_mac_obj *o,
447 unsigned long ramrod_flags)
448 {
449 o->head_exe_request = true;
450 o->saved_ramrod_flags = ramrod_flags;
451 DP(BNX2X_MSG_SP, "Placing pending execution with ramrod flags %lu\n",
452 ramrod_flags);
453 }
454
455 /**
456 * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
457 *
458 * @bp: device handle
459 * @o: vlan_mac object
460 *
461 * @details Should be called under execution queue lock. Notice if a pending
462 * execution exists, it would perform it - possibly releasing and
463 * reclaiming the execution queue lock.
464 */
465 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp,
466 struct bnx2x_vlan_mac_obj *o)
467 {
468 /* It's possible a new pending execution was added since this writer
469 * executed. If so, execute again. [Ad infinitum]
470 */
471 while (o->head_exe_request) {
472 DP(BNX2X_MSG_SP, "vlan_mac_lock - writer release encountered a pending request\n");
473 __bnx2x_vlan_mac_h_exec_pending(bp, o);
474 }
475 }
476
477
478 /**
479 * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
480 *
481 * @bp: device handle
482 * @o: vlan_mac object
483 *
484 * @details Should be called under the execution queue lock. May sleep. May
485 * release and reclaim execution queue lock during its run.
486 */
487 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
488 struct bnx2x_vlan_mac_obj *o)
489 {
490 /* If we got here, we're holding lock --> no WRITER exists */
491 o->head_reader++;
492 DP(BNX2X_MSG_SP, "vlan_mac_lock - locked reader - number %d\n",
493 o->head_reader);
494
495 return 0;
496 }
497
498 /**
499 * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
500 *
501 * @bp: device handle
502 * @o: vlan_mac object
503 *
504 * @details May sleep. Claims and releases execution queue lock during its run.
505 */
506 int bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
507 struct bnx2x_vlan_mac_obj *o)
508 {
509 int rc;
510
511 spin_lock_bh(&o->exe_queue.lock);
512 rc = __bnx2x_vlan_mac_h_read_lock(bp, o);
513 spin_unlock_bh(&o->exe_queue.lock);
514
515 return rc;
516 }
517
518 /**
519 * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
520 *
521 * @bp: device handle
522 * @o: vlan_mac object
523 *
524 * @details Should be called under execution queue lock. Notice if a pending
525 * execution exists, it would be performed if this was the last
526 * reader. possibly releasing and reclaiming the execution queue lock.
527 */
528 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
529 struct bnx2x_vlan_mac_obj *o)
530 {
531 if (!o->head_reader) {
532 BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
533 #ifdef BNX2X_STOP_ON_ERROR
534 bnx2x_panic();
535 #endif
536 } else {
537 o->head_reader--;
538 DP(BNX2X_MSG_SP, "vlan_mac_lock - decreased readers to %d\n",
539 o->head_reader);
540 }
541
542 /* It's possible a new pending execution was added, and that this reader
543 * was last - if so we need to execute the command.
544 */
545 if (!o->head_reader && o->head_exe_request) {
546 DP(BNX2X_MSG_SP, "vlan_mac_lock - reader release encountered a pending request\n");
547
548 /* Writer release will do the trick */
549 __bnx2x_vlan_mac_h_write_unlock(bp, o);
550 }
551 }
552
553 /**
554 * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
555 *
556 * @bp: device handle
557 * @o: vlan_mac object
558 *
559 * @details Notice if a pending execution exists, it would be performed if this
560 * was the last reader. Claims and releases the execution queue lock
561 * during its run.
562 */
563 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
564 struct bnx2x_vlan_mac_obj *o)
565 {
566 spin_lock_bh(&o->exe_queue.lock);
567 __bnx2x_vlan_mac_h_read_unlock(bp, o);
568 spin_unlock_bh(&o->exe_queue.lock);
569 }
570
571 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
572 int n, u8 *base, u8 stride, u8 size)
573 {
574 struct bnx2x_vlan_mac_registry_elem *pos;
575 u8 *next = base;
576 int counter = 0;
577 int read_lock;
578
579 DP(BNX2X_MSG_SP, "get_n_elements - taking vlan_mac_lock (reader)\n");
580 read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
581 if (read_lock != 0)
582 BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
583
584 /* traverse list */
585 list_for_each_entry(pos, &o->head, link) {
586 if (counter < n) {
587 memcpy(next, &pos->u, size);
588 counter++;
589 DP(BNX2X_MSG_SP, "copied element number %d to address %p element was:\n",
590 counter, next);
591 next += stride + size;
592 }
593 }
594
595 if (read_lock == 0) {
596 DP(BNX2X_MSG_SP, "get_n_elements - releasing vlan_mac_lock (reader)\n");
597 bnx2x_vlan_mac_h_read_unlock(bp, o);
598 }
599
600 return counter * ETH_ALEN;
601 }
602
603 /* check_add() callbacks */
604 static int bnx2x_check_mac_add(struct bnx2x *bp,
605 struct bnx2x_vlan_mac_obj *o,
606 union bnx2x_classification_ramrod_data *data)
607 {
608 struct bnx2x_vlan_mac_registry_elem *pos;
609
610 DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
611
612 if (!is_valid_ether_addr(data->mac.mac))
613 return -EINVAL;
614
615 /* Check if a requested MAC already exists */
616 list_for_each_entry(pos, &o->head, link)
617 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
618 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
619 return -EEXIST;
620
621 return 0;
622 }
623
624 static int bnx2x_check_vlan_add(struct bnx2x *bp,
625 struct bnx2x_vlan_mac_obj *o,
626 union bnx2x_classification_ramrod_data *data)
627 {
628 struct bnx2x_vlan_mac_registry_elem *pos;
629
630 DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
631
632 list_for_each_entry(pos, &o->head, link)
633 if (data->vlan.vlan == pos->u.vlan.vlan)
634 return -EEXIST;
635
636 return 0;
637 }
638
639 /* check_del() callbacks */
640 static struct bnx2x_vlan_mac_registry_elem *
641 bnx2x_check_mac_del(struct bnx2x *bp,
642 struct bnx2x_vlan_mac_obj *o,
643 union bnx2x_classification_ramrod_data *data)
644 {
645 struct bnx2x_vlan_mac_registry_elem *pos;
646
647 DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
648
649 list_for_each_entry(pos, &o->head, link)
650 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
651 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
652 return pos;
653
654 return NULL;
655 }
656
657 static struct bnx2x_vlan_mac_registry_elem *
658 bnx2x_check_vlan_del(struct bnx2x *bp,
659 struct bnx2x_vlan_mac_obj *o,
660 union bnx2x_classification_ramrod_data *data)
661 {
662 struct bnx2x_vlan_mac_registry_elem *pos;
663
664 DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
665
666 list_for_each_entry(pos, &o->head, link)
667 if (data->vlan.vlan == pos->u.vlan.vlan)
668 return pos;
669
670 return NULL;
671 }
672
673 /* check_move() callback */
674 static bool bnx2x_check_move(struct bnx2x *bp,
675 struct bnx2x_vlan_mac_obj *src_o,
676 struct bnx2x_vlan_mac_obj *dst_o,
677 union bnx2x_classification_ramrod_data *data)
678 {
679 struct bnx2x_vlan_mac_registry_elem *pos;
680 int rc;
681
682 /* Check if we can delete the requested configuration from the first
683 * object.
684 */
685 pos = src_o->check_del(bp, src_o, data);
686
687 /* check if configuration can be added */
688 rc = dst_o->check_add(bp, dst_o, data);
689
690 /* If this classification can not be added (is already set)
691 * or can't be deleted - return an error.
692 */
693 if (rc || !pos)
694 return false;
695
696 return true;
697 }
698
699 static bool bnx2x_check_move_always_err(
700 struct bnx2x *bp,
701 struct bnx2x_vlan_mac_obj *src_o,
702 struct bnx2x_vlan_mac_obj *dst_o,
703 union bnx2x_classification_ramrod_data *data)
704 {
705 return false;
706 }
707
708 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
709 {
710 struct bnx2x_raw_obj *raw = &o->raw;
711 u8 rx_tx_flag = 0;
712
713 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
714 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
715 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
716
717 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
718 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
719 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
720
721 return rx_tx_flag;
722 }
723
724 static void bnx2x_set_mac_in_nig(struct bnx2x *bp,
725 bool add, unsigned char *dev_addr, int index)
726 {
727 u32 wb_data[2];
728 u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
729 NIG_REG_LLH0_FUNC_MEM;
730
731 if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp))
732 return;
733
734 if (index > BNX2X_LLH_CAM_MAX_PF_LINE)
735 return;
736
737 DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
738 (add ? "ADD" : "DELETE"), index);
739
740 if (add) {
741 /* LLH_FUNC_MEM is a u64 WB register */
742 reg_offset += 8*index;
743
744 wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
745 (dev_addr[4] << 8) | dev_addr[5]);
746 wb_data[1] = ((dev_addr[0] << 8) | dev_addr[1]);
747
748 REG_WR_DMAE(bp, reg_offset, wb_data, 2);
749 }
750
751 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
752 NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
753 }
754
755 /**
756 * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
757 *
758 * @bp: device handle
759 * @o: queue for which we want to configure this rule
760 * @add: if true the command is an ADD command, DEL otherwise
761 * @opcode: CLASSIFY_RULE_OPCODE_XXX
762 * @hdr: pointer to a header to setup
763 *
764 */
765 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
766 struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
767 struct eth_classify_cmd_header *hdr)
768 {
769 struct bnx2x_raw_obj *raw = &o->raw;
770
771 hdr->client_id = raw->cl_id;
772 hdr->func_id = raw->func_id;
773
774 /* Rx or/and Tx (internal switching) configuration ? */
775 hdr->cmd_general_data |=
776 bnx2x_vlan_mac_get_rx_tx_flag(o);
777
778 if (add)
779 hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
780
781 hdr->cmd_general_data |=
782 (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
783 }
784
785 /**
786 * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
787 *
788 * @cid: connection id
789 * @type: BNX2X_FILTER_XXX_PENDING
790 * @hdr: pointer to header to setup
791 * @rule_cnt:
792 *
793 * currently we always configure one rule and echo field to contain a CID and an
794 * opcode type.
795 */
796 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
797 struct eth_classify_header *hdr, int rule_cnt)
798 {
799 hdr->echo = cpu_to_le32((cid & BNX2X_SWCID_MASK) |
800 (type << BNX2X_SWCID_SHIFT));
801 hdr->rule_cnt = (u8)rule_cnt;
802 }
803
804 /* hw_config() callbacks */
805 static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
806 struct bnx2x_vlan_mac_obj *o,
807 struct bnx2x_exeq_elem *elem, int rule_idx,
808 int cam_offset)
809 {
810 struct bnx2x_raw_obj *raw = &o->raw;
811 struct eth_classify_rules_ramrod_data *data =
812 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
813 int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
814 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
815 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
816 unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
817 u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
818
819 /* Set LLH CAM entry: currently only iSCSI and ETH macs are
820 * relevant. In addition, current implementation is tuned for a
821 * single ETH MAC.
822 *
823 * When multiple unicast ETH MACs PF configuration in switch
824 * independent mode is required (NetQ, multiple netdev MACs,
825 * etc.), consider better utilisation of 8 per function MAC
826 * entries in the LLH register. There is also
827 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
828 * total number of CAM entries to 16.
829 *
830 * Currently we won't configure NIG for MACs other than a primary ETH
831 * MAC and iSCSI L2 MAC.
832 *
833 * If this MAC is moving from one Queue to another, no need to change
834 * NIG configuration.
835 */
836 if (cmd != BNX2X_VLAN_MAC_MOVE) {
837 if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
838 bnx2x_set_mac_in_nig(bp, add, mac,
839 BNX2X_LLH_CAM_ISCSI_ETH_LINE);
840 else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
841 bnx2x_set_mac_in_nig(bp, add, mac,
842 BNX2X_LLH_CAM_ETH_LINE);
843 }
844
845 /* Reset the ramrod data buffer for the first rule */
846 if (rule_idx == 0)
847 memset(data, 0, sizeof(*data));
848
849 /* Setup a command header */
850 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
851 &rule_entry->mac.header);
852
853 DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
854 (add ? "add" : "delete"), mac, raw->cl_id);
855
856 /* Set a MAC itself */
857 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
858 &rule_entry->mac.mac_mid,
859 &rule_entry->mac.mac_lsb, mac);
860 rule_entry->mac.inner_mac =
861 cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
862
863 /* MOVE: Add a rule that will add this MAC to the target Queue */
864 if (cmd == BNX2X_VLAN_MAC_MOVE) {
865 rule_entry++;
866 rule_cnt++;
867
868 /* Setup ramrod data */
869 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
870 elem->cmd_data.vlan_mac.target_obj,
871 true, CLASSIFY_RULE_OPCODE_MAC,
872 &rule_entry->mac.header);
873
874 /* Set a MAC itself */
875 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
876 &rule_entry->mac.mac_mid,
877 &rule_entry->mac.mac_lsb, mac);
878 rule_entry->mac.inner_mac =
879 cpu_to_le16(elem->cmd_data.vlan_mac.
880 u.mac.is_inner_mac);
881 }
882
883 /* Set the ramrod data header */
884 /* TODO: take this to the higher level in order to prevent multiple
885 writing */
886 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
887 rule_cnt);
888 }
889
890 /**
891 * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
892 *
893 * @bp: device handle
894 * @o: queue
895 * @type:
896 * @cam_offset: offset in cam memory
897 * @hdr: pointer to a header to setup
898 *
899 * E1/E1H
900 */
901 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
902 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
903 struct mac_configuration_hdr *hdr)
904 {
905 struct bnx2x_raw_obj *r = &o->raw;
906
907 hdr->length = 1;
908 hdr->offset = (u8)cam_offset;
909 hdr->client_id = cpu_to_le16(0xff);
910 hdr->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
911 (type << BNX2X_SWCID_SHIFT));
912 }
913
914 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
915 struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
916 u16 vlan_id, struct mac_configuration_entry *cfg_entry)
917 {
918 struct bnx2x_raw_obj *r = &o->raw;
919 u32 cl_bit_vec = (1 << r->cl_id);
920
921 cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
922 cfg_entry->pf_id = r->func_id;
923 cfg_entry->vlan_id = cpu_to_le16(vlan_id);
924
925 if (add) {
926 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
927 T_ETH_MAC_COMMAND_SET);
928 SET_FLAG(cfg_entry->flags,
929 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
930
931 /* Set a MAC in a ramrod data */
932 bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
933 &cfg_entry->middle_mac_addr,
934 &cfg_entry->lsb_mac_addr, mac);
935 } else
936 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
937 T_ETH_MAC_COMMAND_INVALIDATE);
938 }
939
940 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
941 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
942 u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
943 {
944 struct mac_configuration_entry *cfg_entry = &config->config_table[0];
945 struct bnx2x_raw_obj *raw = &o->raw;
946
947 bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
948 &config->hdr);
949 bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
950 cfg_entry);
951
952 DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
953 (add ? "setting" : "clearing"),
954 mac, raw->cl_id, cam_offset);
955 }
956
957 /**
958 * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
959 *
960 * @bp: device handle
961 * @o: bnx2x_vlan_mac_obj
962 * @elem: bnx2x_exeq_elem
963 * @rule_idx: rule_idx
964 * @cam_offset: cam_offset
965 */
966 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
967 struct bnx2x_vlan_mac_obj *o,
968 struct bnx2x_exeq_elem *elem, int rule_idx,
969 int cam_offset)
970 {
971 struct bnx2x_raw_obj *raw = &o->raw;
972 struct mac_configuration_cmd *config =
973 (struct mac_configuration_cmd *)(raw->rdata);
974 /* 57710 and 57711 do not support MOVE command,
975 * so it's either ADD or DEL
976 */
977 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
978 true : false;
979
980 /* Reset the ramrod data buffer */
981 memset(config, 0, sizeof(*config));
982
983 bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
984 cam_offset, add,
985 elem->cmd_data.vlan_mac.u.mac.mac, 0,
986 ETH_VLAN_FILTER_ANY_VLAN, config);
987 }
988
989 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
990 struct bnx2x_vlan_mac_obj *o,
991 struct bnx2x_exeq_elem *elem, int rule_idx,
992 int cam_offset)
993 {
994 struct bnx2x_raw_obj *raw = &o->raw;
995 struct eth_classify_rules_ramrod_data *data =
996 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
997 int rule_cnt = rule_idx + 1;
998 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
999 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1000 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1001 u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1002
1003 /* Reset the ramrod data buffer for the first rule */
1004 if (rule_idx == 0)
1005 memset(data, 0, sizeof(*data));
1006
1007 /* Set a rule header */
1008 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1009 &rule_entry->vlan.header);
1010
1011 DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1012 vlan);
1013
1014 /* Set a VLAN itself */
1015 rule_entry->vlan.vlan = cpu_to_le16(vlan);
1016
1017 /* MOVE: Add a rule that will add this MAC to the target Queue */
1018 if (cmd == BNX2X_VLAN_MAC_MOVE) {
1019 rule_entry++;
1020 rule_cnt++;
1021
1022 /* Setup ramrod data */
1023 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
1024 elem->cmd_data.vlan_mac.target_obj,
1025 true, CLASSIFY_RULE_OPCODE_VLAN,
1026 &rule_entry->vlan.header);
1027
1028 /* Set a VLAN itself */
1029 rule_entry->vlan.vlan = cpu_to_le16(vlan);
1030 }
1031
1032 /* Set the ramrod data header */
1033 /* TODO: take this to the higher level in order to prevent multiple
1034 writing */
1035 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1036 rule_cnt);
1037 }
1038
1039 /**
1040 * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1041 *
1042 * @bp: device handle
1043 * @p: command parameters
1044 * @ppos: pointer to the cookie
1045 *
1046 * reconfigure next MAC/VLAN/VLAN-MAC element from the
1047 * previously configured elements list.
1048 *
1049 * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
1050 * into an account
1051 *
1052 * pointer to the cookie - that should be given back in the next call to make
1053 * function handle the next element. If *ppos is set to NULL it will restart the
1054 * iterator. If returned *ppos == NULL this means that the last element has been
1055 * handled.
1056 *
1057 */
1058 static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
1059 struct bnx2x_vlan_mac_ramrod_params *p,
1060 struct bnx2x_vlan_mac_registry_elem **ppos)
1061 {
1062 struct bnx2x_vlan_mac_registry_elem *pos;
1063 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1064
1065 /* If list is empty - there is nothing to do here */
1066 if (list_empty(&o->head)) {
1067 *ppos = NULL;
1068 return 0;
1069 }
1070
1071 /* make a step... */
1072 if (*ppos == NULL)
1073 *ppos = list_first_entry(&o->head,
1074 struct bnx2x_vlan_mac_registry_elem,
1075 link);
1076 else
1077 *ppos = list_next_entry(*ppos, link);
1078
1079 pos = *ppos;
1080
1081 /* If it's the last step - return NULL */
1082 if (list_is_last(&pos->link, &o->head))
1083 *ppos = NULL;
1084
1085 /* Prepare a 'user_req' */
1086 memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1087
1088 /* Set the command */
1089 p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
1090
1091 /* Set vlan_mac_flags */
1092 p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1093
1094 /* Set a restore bit */
1095 __set_bit(RAMROD_RESTORE, &p->ramrod_flags);
1096
1097 return bnx2x_config_vlan_mac(bp, p);
1098 }
1099
1100 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1101 * pointer to an element with a specific criteria and NULL if such an element
1102 * hasn't been found.
1103 */
1104 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
1105 struct bnx2x_exe_queue_obj *o,
1106 struct bnx2x_exeq_elem *elem)
1107 {
1108 struct bnx2x_exeq_elem *pos;
1109 struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1110
1111 /* Check pending for execution commands */
1112 list_for_each_entry(pos, &o->exe_queue, link)
1113 if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1114 sizeof(*data)) &&
1115 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1116 return pos;
1117
1118 return NULL;
1119 }
1120
1121 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
1122 struct bnx2x_exe_queue_obj *o,
1123 struct bnx2x_exeq_elem *elem)
1124 {
1125 struct bnx2x_exeq_elem *pos;
1126 struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1127
1128 /* Check pending for execution commands */
1129 list_for_each_entry(pos, &o->exe_queue, link)
1130 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1131 sizeof(*data)) &&
1132 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1133 return pos;
1134
1135 return NULL;
1136 }
1137
1138 /**
1139 * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1140 *
1141 * @bp: device handle
1142 * @qo: bnx2x_qable_obj
1143 * @elem: bnx2x_exeq_elem
1144 *
1145 * Checks that the requested configuration can be added. If yes and if
1146 * requested, consume CAM credit.
1147 *
1148 * The 'validate' is run after the 'optimize'.
1149 *
1150 */
1151 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
1152 union bnx2x_qable_obj *qo,
1153 struct bnx2x_exeq_elem *elem)
1154 {
1155 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1156 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1157 int rc;
1158
1159 /* Check the registry */
1160 rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
1161 if (rc) {
1162 DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
1163 return rc;
1164 }
1165
1166 /* Check if there is a pending ADD command for this
1167 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1168 */
1169 if (exeq->get(exeq, elem)) {
1170 DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
1171 return -EEXIST;
1172 }
1173
1174 /* TODO: Check the pending MOVE from other objects where this
1175 * object is a destination object.
1176 */
1177
1178 /* Consume the credit if not requested not to */
1179 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1180 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1181 o->get_credit(o)))
1182 return -EINVAL;
1183
1184 return 0;
1185 }
1186
1187 /**
1188 * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1189 *
1190 * @bp: device handle
1191 * @qo: quable object to check
1192 * @elem: element that needs to be deleted
1193 *
1194 * Checks that the requested configuration can be deleted. If yes and if
1195 * requested, returns a CAM credit.
1196 *
1197 * The 'validate' is run after the 'optimize'.
1198 */
1199 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
1200 union bnx2x_qable_obj *qo,
1201 struct bnx2x_exeq_elem *elem)
1202 {
1203 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1204 struct bnx2x_vlan_mac_registry_elem *pos;
1205 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1206 struct bnx2x_exeq_elem query_elem;
1207
1208 /* If this classification can not be deleted (doesn't exist)
1209 * - return a BNX2X_EXIST.
1210 */
1211 pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1212 if (!pos) {
1213 DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
1214 return -EEXIST;
1215 }
1216
1217 /* Check if there are pending DEL or MOVE commands for this
1218 * MAC/VLAN/VLAN-MAC. Return an error if so.
1219 */
1220 memcpy(&query_elem, elem, sizeof(query_elem));
1221
1222 /* Check for MOVE commands */
1223 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
1224 if (exeq->get(exeq, &query_elem)) {
1225 BNX2X_ERR("There is a pending MOVE command already\n");
1226 return -EINVAL;
1227 }
1228
1229 /* Check for DEL commands */
1230 if (exeq->get(exeq, elem)) {
1231 DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
1232 return -EEXIST;
1233 }
1234
1235 /* Return the credit to the credit pool if not requested not to */
1236 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1237 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1238 o->put_credit(o))) {
1239 BNX2X_ERR("Failed to return a credit\n");
1240 return -EINVAL;
1241 }
1242
1243 return 0;
1244 }
1245
1246 /**
1247 * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1248 *
1249 * @bp: device handle
1250 * @qo: quable object to check (source)
1251 * @elem: element that needs to be moved
1252 *
1253 * Checks that the requested configuration can be moved. If yes and if
1254 * requested, returns a CAM credit.
1255 *
1256 * The 'validate' is run after the 'optimize'.
1257 */
1258 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
1259 union bnx2x_qable_obj *qo,
1260 struct bnx2x_exeq_elem *elem)
1261 {
1262 struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
1263 struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1264 struct bnx2x_exeq_elem query_elem;
1265 struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
1266 struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1267
1268 /* Check if we can perform this operation based on the current registry
1269 * state.
1270 */
1271 if (!src_o->check_move(bp, src_o, dest_o,
1272 &elem->cmd_data.vlan_mac.u)) {
1273 DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
1274 return -EINVAL;
1275 }
1276
1277 /* Check if there is an already pending DEL or MOVE command for the
1278 * source object or ADD command for a destination object. Return an
1279 * error if so.
1280 */
1281 memcpy(&query_elem, elem, sizeof(query_elem));
1282
1283 /* Check DEL on source */
1284 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1285 if (src_exeq->get(src_exeq, &query_elem)) {
1286 BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1287 return -EINVAL;
1288 }
1289
1290 /* Check MOVE on source */
1291 if (src_exeq->get(src_exeq, elem)) {
1292 DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
1293 return -EEXIST;
1294 }
1295
1296 /* Check ADD on destination */
1297 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1298 if (dest_exeq->get(dest_exeq, &query_elem)) {
1299 BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1300 return -EINVAL;
1301 }
1302
1303 /* Consume the credit if not requested not to */
1304 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
1305 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1306 dest_o->get_credit(dest_o)))
1307 return -EINVAL;
1308
1309 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1310 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1311 src_o->put_credit(src_o))) {
1312 /* return the credit taken from dest... */
1313 dest_o->put_credit(dest_o);
1314 return -EINVAL;
1315 }
1316
1317 return 0;
1318 }
1319
1320 static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
1321 union bnx2x_qable_obj *qo,
1322 struct bnx2x_exeq_elem *elem)
1323 {
1324 switch (elem->cmd_data.vlan_mac.cmd) {
1325 case BNX2X_VLAN_MAC_ADD:
1326 return bnx2x_validate_vlan_mac_add(bp, qo, elem);
1327 case BNX2X_VLAN_MAC_DEL:
1328 return bnx2x_validate_vlan_mac_del(bp, qo, elem);
1329 case BNX2X_VLAN_MAC_MOVE:
1330 return bnx2x_validate_vlan_mac_move(bp, qo, elem);
1331 default:
1332 return -EINVAL;
1333 }
1334 }
1335
1336 static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
1337 union bnx2x_qable_obj *qo,
1338 struct bnx2x_exeq_elem *elem)
1339 {
1340 int rc = 0;
1341
1342 /* If consumption wasn't required, nothing to do */
1343 if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1344 &elem->cmd_data.vlan_mac.vlan_mac_flags))
1345 return 0;
1346
1347 switch (elem->cmd_data.vlan_mac.cmd) {
1348 case BNX2X_VLAN_MAC_ADD:
1349 case BNX2X_VLAN_MAC_MOVE:
1350 rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1351 break;
1352 case BNX2X_VLAN_MAC_DEL:
1353 rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1354 break;
1355 default:
1356 return -EINVAL;
1357 }
1358
1359 if (rc != true)
1360 return -EINVAL;
1361
1362 return 0;
1363 }
1364
1365 /**
1366 * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1367 *
1368 * @bp: device handle
1369 * @o: bnx2x_vlan_mac_obj
1370 *
1371 */
1372 static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
1373 struct bnx2x_vlan_mac_obj *o)
1374 {
1375 int cnt = 5000, rc;
1376 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1377 struct bnx2x_raw_obj *raw = &o->raw;
1378
1379 while (cnt--) {
1380 /* Wait for the current command to complete */
1381 rc = raw->wait_comp(bp, raw);
1382 if (rc)
1383 return rc;
1384
1385 /* Wait until there are no pending commands */
1386 if (!bnx2x_exe_queue_empty(exeq))
1387 usleep_range(1000, 2000);
1388 else
1389 return 0;
1390 }
1391
1392 return -EBUSY;
1393 }
1394
1395 static int __bnx2x_vlan_mac_execute_step(struct bnx2x *bp,
1396 struct bnx2x_vlan_mac_obj *o,
1397 unsigned long *ramrod_flags)
1398 {
1399 int rc = 0;
1400
1401 spin_lock_bh(&o->exe_queue.lock);
1402
1403 DP(BNX2X_MSG_SP, "vlan_mac_execute_step - trying to take writer lock\n");
1404 rc = __bnx2x_vlan_mac_h_write_trylock(bp, o);
1405
1406 if (rc != 0) {
1407 __bnx2x_vlan_mac_h_pend(bp, o, *ramrod_flags);
1408
1409 /* Calling function should not diffrentiate between this case
1410 * and the case in which there is already a pending ramrod
1411 */
1412 rc = 1;
1413 } else {
1414 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1415 }
1416 spin_unlock_bh(&o->exe_queue.lock);
1417
1418 return rc;
1419 }
1420
1421 /**
1422 * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1423 *
1424 * @bp: device handle
1425 * @o: bnx2x_vlan_mac_obj
1426 * @cqe:
1427 * @cont: if true schedule next execution chunk
1428 *
1429 */
1430 static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
1431 struct bnx2x_vlan_mac_obj *o,
1432 union event_ring_elem *cqe,
1433 unsigned long *ramrod_flags)
1434 {
1435 struct bnx2x_raw_obj *r = &o->raw;
1436 int rc;
1437
1438 /* Clearing the pending list & raw state should be made
1439 * atomically (as execution flow assumes they represent the same).
1440 */
1441 spin_lock_bh(&o->exe_queue.lock);
1442
1443 /* Reset pending list */
1444 __bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
1445
1446 /* Clear pending */
1447 r->clear_pending(r);
1448
1449 spin_unlock_bh(&o->exe_queue.lock);
1450
1451 /* If ramrod failed this is most likely a SW bug */
1452 if (cqe->message.error)
1453 return -EINVAL;
1454
1455 /* Run the next bulk of pending commands if requested */
1456 if (test_bit(RAMROD_CONT, ramrod_flags)) {
1457 rc = __bnx2x_vlan_mac_execute_step(bp, o, ramrod_flags);
1458
1459 if (rc < 0)
1460 return rc;
1461 }
1462
1463 /* If there is more work to do return PENDING */
1464 if (!bnx2x_exe_queue_empty(&o->exe_queue))
1465 return 1;
1466
1467 return 0;
1468 }
1469
1470 /**
1471 * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1472 *
1473 * @bp: device handle
1474 * @o: bnx2x_qable_obj
1475 * @elem: bnx2x_exeq_elem
1476 */
1477 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
1478 union bnx2x_qable_obj *qo,
1479 struct bnx2x_exeq_elem *elem)
1480 {
1481 struct bnx2x_exeq_elem query, *pos;
1482 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1483 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1484
1485 memcpy(&query, elem, sizeof(query));
1486
1487 switch (elem->cmd_data.vlan_mac.cmd) {
1488 case BNX2X_VLAN_MAC_ADD:
1489 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1490 break;
1491 case BNX2X_VLAN_MAC_DEL:
1492 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1493 break;
1494 default:
1495 /* Don't handle anything other than ADD or DEL */
1496 return 0;
1497 }
1498
1499 /* If we found the appropriate element - delete it */
1500 pos = exeq->get(exeq, &query);
1501 if (pos) {
1502
1503 /* Return the credit of the optimized command */
1504 if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1505 &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1506 if ((query.cmd_data.vlan_mac.cmd ==
1507 BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
1508 BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1509 return -EINVAL;
1510 } else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1511 BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1512 return -EINVAL;
1513 }
1514 }
1515
1516 DP(BNX2X_MSG_SP, "Optimizing %s command\n",
1517 (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1518 "ADD" : "DEL");
1519
1520 list_del(&pos->link);
1521 bnx2x_exe_queue_free_elem(bp, pos);
1522 return 1;
1523 }
1524
1525 return 0;
1526 }
1527
1528 /**
1529 * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1530 *
1531 * @bp: device handle
1532 * @o:
1533 * @elem:
1534 * @restore:
1535 * @re:
1536 *
1537 * prepare a registry element according to the current command request.
1538 */
1539 static inline int bnx2x_vlan_mac_get_registry_elem(
1540 struct bnx2x *bp,
1541 struct bnx2x_vlan_mac_obj *o,
1542 struct bnx2x_exeq_elem *elem,
1543 bool restore,
1544 struct bnx2x_vlan_mac_registry_elem **re)
1545 {
1546 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1547 struct bnx2x_vlan_mac_registry_elem *reg_elem;
1548
1549 /* Allocate a new registry element if needed. */
1550 if (!restore &&
1551 ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
1552 reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
1553 if (!reg_elem)
1554 return -ENOMEM;
1555
1556 /* Get a new CAM offset */
1557 if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1558 /* This shall never happen, because we have checked the
1559 * CAM availability in the 'validate'.
1560 */
1561 WARN_ON(1);
1562 kfree(reg_elem);
1563 return -EINVAL;
1564 }
1565
1566 DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
1567
1568 /* Set a VLAN-MAC data */
1569 memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1570 sizeof(reg_elem->u));
1571
1572 /* Copy the flags (needed for DEL and RESTORE flows) */
1573 reg_elem->vlan_mac_flags =
1574 elem->cmd_data.vlan_mac.vlan_mac_flags;
1575 } else /* DEL, RESTORE */
1576 reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1577
1578 *re = reg_elem;
1579 return 0;
1580 }
1581
1582 /**
1583 * bnx2x_execute_vlan_mac - execute vlan mac command
1584 *
1585 * @bp: device handle
1586 * @qo:
1587 * @exe_chunk:
1588 * @ramrod_flags:
1589 *
1590 * go and send a ramrod!
1591 */
1592 static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
1593 union bnx2x_qable_obj *qo,
1594 struct list_head *exe_chunk,
1595 unsigned long *ramrod_flags)
1596 {
1597 struct bnx2x_exeq_elem *elem;
1598 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1599 struct bnx2x_raw_obj *r = &o->raw;
1600 int rc, idx = 0;
1601 bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
1602 bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1603 struct bnx2x_vlan_mac_registry_elem *reg_elem;
1604 enum bnx2x_vlan_mac_cmd cmd;
1605
1606 /* If DRIVER_ONLY execution is requested, cleanup a registry
1607 * and exit. Otherwise send a ramrod to FW.
1608 */
1609 if (!drv_only) {
1610 WARN_ON(r->check_pending(r));
1611
1612 /* Set pending */
1613 r->set_pending(r);
1614
1615 /* Fill the ramrod data */
1616 list_for_each_entry(elem, exe_chunk, link) {
1617 cmd = elem->cmd_data.vlan_mac.cmd;
1618 /* We will add to the target object in MOVE command, so
1619 * change the object for a CAM search.
1620 */
1621 if (cmd == BNX2X_VLAN_MAC_MOVE)
1622 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1623 else
1624 cam_obj = o;
1625
1626 rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
1627 elem, restore,
1628 &reg_elem);
1629 if (rc)
1630 goto error_exit;
1631
1632 WARN_ON(!reg_elem);
1633
1634 /* Push a new entry into the registry */
1635 if (!restore &&
1636 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1637 (cmd == BNX2X_VLAN_MAC_MOVE)))
1638 list_add(&reg_elem->link, &cam_obj->head);
1639
1640 /* Configure a single command in a ramrod data buffer */
1641 o->set_one_rule(bp, o, elem, idx,
1642 reg_elem->cam_offset);
1643
1644 /* MOVE command consumes 2 entries in the ramrod data */
1645 if (cmd == BNX2X_VLAN_MAC_MOVE)
1646 idx += 2;
1647 else
1648 idx++;
1649 }
1650
1651 /* No need for an explicit memory barrier here as long we would
1652 * need to ensure the ordering of writing to the SPQ element
1653 * and updating of the SPQ producer which involves a memory
1654 * read and we will have to put a full memory barrier there
1655 * (inside bnx2x_sp_post()).
1656 */
1657
1658 rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
1659 U64_HI(r->rdata_mapping),
1660 U64_LO(r->rdata_mapping),
1661 ETH_CONNECTION_TYPE);
1662 if (rc)
1663 goto error_exit;
1664 }
1665
1666 /* Now, when we are done with the ramrod - clean up the registry */
1667 list_for_each_entry(elem, exe_chunk, link) {
1668 cmd = elem->cmd_data.vlan_mac.cmd;
1669 if ((cmd == BNX2X_VLAN_MAC_DEL) ||
1670 (cmd == BNX2X_VLAN_MAC_MOVE)) {
1671 reg_elem = o->check_del(bp, o,
1672 &elem->cmd_data.vlan_mac.u);
1673
1674 WARN_ON(!reg_elem);
1675
1676 o->put_cam_offset(o, reg_elem->cam_offset);
1677 list_del(&reg_elem->link);
1678 kfree(reg_elem);
1679 }
1680 }
1681
1682 if (!drv_only)
1683 return 1;
1684 else
1685 return 0;
1686
1687 error_exit:
1688 r->clear_pending(r);
1689
1690 /* Cleanup a registry in case of a failure */
1691 list_for_each_entry(elem, exe_chunk, link) {
1692 cmd = elem->cmd_data.vlan_mac.cmd;
1693
1694 if (cmd == BNX2X_VLAN_MAC_MOVE)
1695 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1696 else
1697 cam_obj = o;
1698
1699 /* Delete all newly added above entries */
1700 if (!restore &&
1701 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1702 (cmd == BNX2X_VLAN_MAC_MOVE))) {
1703 reg_elem = o->check_del(bp, cam_obj,
1704 &elem->cmd_data.vlan_mac.u);
1705 if (reg_elem) {
1706 list_del(&reg_elem->link);
1707 kfree(reg_elem);
1708 }
1709 }
1710 }
1711
1712 return rc;
1713 }
1714
1715 static inline int bnx2x_vlan_mac_push_new_cmd(
1716 struct bnx2x *bp,
1717 struct bnx2x_vlan_mac_ramrod_params *p)
1718 {
1719 struct bnx2x_exeq_elem *elem;
1720 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1721 bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
1722
1723 /* Allocate the execution queue element */
1724 elem = bnx2x_exe_queue_alloc_elem(bp);
1725 if (!elem)
1726 return -ENOMEM;
1727
1728 /* Set the command 'length' */
1729 switch (p->user_req.cmd) {
1730 case BNX2X_VLAN_MAC_MOVE:
1731 elem->cmd_len = 2;
1732 break;
1733 default:
1734 elem->cmd_len = 1;
1735 }
1736
1737 /* Fill the object specific info */
1738 memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1739
1740 /* Try to add a new command to the pending list */
1741 return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
1742 }
1743
1744 /**
1745 * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1746 *
1747 * @bp: device handle
1748 * @p:
1749 *
1750 */
1751 int bnx2x_config_vlan_mac(struct bnx2x *bp,
1752 struct bnx2x_vlan_mac_ramrod_params *p)
1753 {
1754 int rc = 0;
1755 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1756 unsigned long *ramrod_flags = &p->ramrod_flags;
1757 bool cont = test_bit(RAMROD_CONT, ramrod_flags);
1758 struct bnx2x_raw_obj *raw = &o->raw;
1759
1760 /*
1761 * Add new elements to the execution list for commands that require it.
1762 */
1763 if (!cont) {
1764 rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
1765 if (rc)
1766 return rc;
1767 }
1768
1769 /* If nothing will be executed further in this iteration we want to
1770 * return PENDING if there are pending commands
1771 */
1772 if (!bnx2x_exe_queue_empty(&o->exe_queue))
1773 rc = 1;
1774
1775 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
1776 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1777 raw->clear_pending(raw);
1778 }
1779
1780 /* Execute commands if required */
1781 if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
1782 test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
1783 rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj,
1784 &p->ramrod_flags);
1785 if (rc < 0)
1786 return rc;
1787 }
1788
1789 /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1790 * then user want to wait until the last command is done.
1791 */
1792 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1793 /* Wait maximum for the current exe_queue length iterations plus
1794 * one (for the current pending command).
1795 */
1796 int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
1797
1798 while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
1799 max_iterations--) {
1800
1801 /* Wait for the current command to complete */
1802 rc = raw->wait_comp(bp, raw);
1803 if (rc)
1804 return rc;
1805
1806 /* Make a next step */
1807 rc = __bnx2x_vlan_mac_execute_step(bp,
1808 p->vlan_mac_obj,
1809 &p->ramrod_flags);
1810 if (rc < 0)
1811 return rc;
1812 }
1813
1814 return 0;
1815 }
1816
1817 return rc;
1818 }
1819
1820 /**
1821 * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
1822 *
1823 * @bp: device handle
1824 * @o:
1825 * @vlan_mac_flags:
1826 * @ramrod_flags: execution flags to be used for this deletion
1827 *
1828 * if the last operation has completed successfully and there are no
1829 * more elements left, positive value if the last operation has completed
1830 * successfully and there are more previously configured elements, negative
1831 * value is current operation has failed.
1832 */
1833 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
1834 struct bnx2x_vlan_mac_obj *o,
1835 unsigned long *vlan_mac_flags,
1836 unsigned long *ramrod_flags)
1837 {
1838 struct bnx2x_vlan_mac_registry_elem *pos = NULL;
1839 struct bnx2x_vlan_mac_ramrod_params p;
1840 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1841 struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
1842 unsigned long flags;
1843 int read_lock;
1844 int rc = 0;
1845
1846 /* Clear pending commands first */
1847
1848 spin_lock_bh(&exeq->lock);
1849
1850 list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
1851 flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
1852 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
1853 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
1854 rc = exeq->remove(bp, exeq->owner, exeq_pos);
1855 if (rc) {
1856 BNX2X_ERR("Failed to remove command\n");
1857 spin_unlock_bh(&exeq->lock);
1858 return rc;
1859 }
1860 list_del(&exeq_pos->link);
1861 bnx2x_exe_queue_free_elem(bp, exeq_pos);
1862 }
1863 }
1864
1865 spin_unlock_bh(&exeq->lock);
1866
1867 /* Prepare a command request */
1868 memset(&p, 0, sizeof(p));
1869 p.vlan_mac_obj = o;
1870 p.ramrod_flags = *ramrod_flags;
1871 p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
1872
1873 /* Add all but the last VLAN-MAC to the execution queue without actually
1874 * execution anything.
1875 */
1876 __clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
1877 __clear_bit(RAMROD_EXEC, &p.ramrod_flags);
1878 __clear_bit(RAMROD_CONT, &p.ramrod_flags);
1879
1880 DP(BNX2X_MSG_SP, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
1881 read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
1882 if (read_lock != 0)
1883 return read_lock;
1884
1885 list_for_each_entry(pos, &o->head, link) {
1886 flags = pos->vlan_mac_flags;
1887 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
1888 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
1889 p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
1890 memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
1891 rc = bnx2x_config_vlan_mac(bp, &p);
1892 if (rc < 0) {
1893 BNX2X_ERR("Failed to add a new DEL command\n");
1894 bnx2x_vlan_mac_h_read_unlock(bp, o);
1895 return rc;
1896 }
1897 }
1898 }
1899
1900 DP(BNX2X_MSG_SP, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
1901 bnx2x_vlan_mac_h_read_unlock(bp, o);
1902
1903 p.ramrod_flags = *ramrod_flags;
1904 __set_bit(RAMROD_CONT, &p.ramrod_flags);
1905
1906 return bnx2x_config_vlan_mac(bp, &p);
1907 }
1908
1909 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
1910 u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
1911 unsigned long *pstate, bnx2x_obj_type type)
1912 {
1913 raw->func_id = func_id;
1914 raw->cid = cid;
1915 raw->cl_id = cl_id;
1916 raw->rdata = rdata;
1917 raw->rdata_mapping = rdata_mapping;
1918 raw->state = state;
1919 raw->pstate = pstate;
1920 raw->obj_type = type;
1921 raw->check_pending = bnx2x_raw_check_pending;
1922 raw->clear_pending = bnx2x_raw_clear_pending;
1923 raw->set_pending = bnx2x_raw_set_pending;
1924 raw->wait_comp = bnx2x_raw_wait;
1925 }
1926
1927 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
1928 u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
1929 int state, unsigned long *pstate, bnx2x_obj_type type,
1930 struct bnx2x_credit_pool_obj *macs_pool,
1931 struct bnx2x_credit_pool_obj *vlans_pool)
1932 {
1933 INIT_LIST_HEAD(&o->head);
1934 o->head_reader = 0;
1935 o->head_exe_request = false;
1936 o->saved_ramrod_flags = 0;
1937
1938 o->macs_pool = macs_pool;
1939 o->vlans_pool = vlans_pool;
1940
1941 o->delete_all = bnx2x_vlan_mac_del_all;
1942 o->restore = bnx2x_vlan_mac_restore;
1943 o->complete = bnx2x_complete_vlan_mac;
1944 o->wait = bnx2x_wait_vlan_mac;
1945
1946 bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
1947 state, pstate, type);
1948 }
1949
1950 void bnx2x_init_mac_obj(struct bnx2x *bp,
1951 struct bnx2x_vlan_mac_obj *mac_obj,
1952 u8 cl_id, u32 cid, u8 func_id, void *rdata,
1953 dma_addr_t rdata_mapping, int state,
1954 unsigned long *pstate, bnx2x_obj_type type,
1955 struct bnx2x_credit_pool_obj *macs_pool)
1956 {
1957 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
1958
1959 bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
1960 rdata_mapping, state, pstate, type,
1961 macs_pool, NULL);
1962
1963 /* CAM credit pool handling */
1964 mac_obj->get_credit = bnx2x_get_credit_mac;
1965 mac_obj->put_credit = bnx2x_put_credit_mac;
1966 mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
1967 mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
1968
1969 if (CHIP_IS_E1x(bp)) {
1970 mac_obj->set_one_rule = bnx2x_set_one_mac_e1x;
1971 mac_obj->check_del = bnx2x_check_mac_del;
1972 mac_obj->check_add = bnx2x_check_mac_add;
1973 mac_obj->check_move = bnx2x_check_move_always_err;
1974 mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
1975
1976 /* Exe Queue */
1977 bnx2x_exe_queue_init(bp,
1978 &mac_obj->exe_queue, 1, qable_obj,
1979 bnx2x_validate_vlan_mac,
1980 bnx2x_remove_vlan_mac,
1981 bnx2x_optimize_vlan_mac,
1982 bnx2x_execute_vlan_mac,
1983 bnx2x_exeq_get_mac);
1984 } else {
1985 mac_obj->set_one_rule = bnx2x_set_one_mac_e2;
1986 mac_obj->check_del = bnx2x_check_mac_del;
1987 mac_obj->check_add = bnx2x_check_mac_add;
1988 mac_obj->check_move = bnx2x_check_move;
1989 mac_obj->ramrod_cmd =
1990 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
1991 mac_obj->get_n_elements = bnx2x_get_n_elements;
1992
1993 /* Exe Queue */
1994 bnx2x_exe_queue_init(bp,
1995 &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
1996 qable_obj, bnx2x_validate_vlan_mac,
1997 bnx2x_remove_vlan_mac,
1998 bnx2x_optimize_vlan_mac,
1999 bnx2x_execute_vlan_mac,
2000 bnx2x_exeq_get_mac);
2001 }
2002 }
2003
2004 void bnx2x_init_vlan_obj(struct bnx2x *bp,
2005 struct bnx2x_vlan_mac_obj *vlan_obj,
2006 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2007 dma_addr_t rdata_mapping, int state,
2008 unsigned long *pstate, bnx2x_obj_type type,
2009 struct bnx2x_credit_pool_obj *vlans_pool)
2010 {
2011 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
2012
2013 bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2014 rdata_mapping, state, pstate, type, NULL,
2015 vlans_pool);
2016
2017 vlan_obj->get_credit = bnx2x_get_credit_vlan;
2018 vlan_obj->put_credit = bnx2x_put_credit_vlan;
2019 vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
2020 vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
2021
2022 if (CHIP_IS_E1x(bp)) {
2023 BNX2X_ERR("Do not support chips others than E2 and newer\n");
2024 BUG();
2025 } else {
2026 vlan_obj->set_one_rule = bnx2x_set_one_vlan_e2;
2027 vlan_obj->check_del = bnx2x_check_vlan_del;
2028 vlan_obj->check_add = bnx2x_check_vlan_add;
2029 vlan_obj->check_move = bnx2x_check_move;
2030 vlan_obj->ramrod_cmd =
2031 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2032 vlan_obj->get_n_elements = bnx2x_get_n_elements;
2033
2034 /* Exe Queue */
2035 bnx2x_exe_queue_init(bp,
2036 &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2037 qable_obj, bnx2x_validate_vlan_mac,
2038 bnx2x_remove_vlan_mac,
2039 bnx2x_optimize_vlan_mac,
2040 bnx2x_execute_vlan_mac,
2041 bnx2x_exeq_get_vlan);
2042 }
2043 }
2044
2045 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2046 static inline void __storm_memset_mac_filters(struct bnx2x *bp,
2047 struct tstorm_eth_mac_filter_config *mac_filters,
2048 u16 pf_id)
2049 {
2050 size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2051
2052 u32 addr = BAR_TSTRORM_INTMEM +
2053 TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2054
2055 __storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
2056 }
2057
2058 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
2059 struct bnx2x_rx_mode_ramrod_params *p)
2060 {
2061 /* update the bp MAC filter structure */
2062 u32 mask = (1 << p->cl_id);
2063
2064 struct tstorm_eth_mac_filter_config *mac_filters =
2065 (struct tstorm_eth_mac_filter_config *)p->rdata;
2066
2067 /* initial setting is drop-all */
2068 u8 drop_all_ucast = 1, drop_all_mcast = 1;
2069 u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2070 u8 unmatched_unicast = 0;
2071
2072 /* In e1x there we only take into account rx accept flag since tx switching
2073 * isn't enabled. */
2074 if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
2075 /* accept matched ucast */
2076 drop_all_ucast = 0;
2077
2078 if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
2079 /* accept matched mcast */
2080 drop_all_mcast = 0;
2081
2082 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2083 /* accept all mcast */
2084 drop_all_ucast = 0;
2085 accp_all_ucast = 1;
2086 }
2087 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2088 /* accept all mcast */
2089 drop_all_mcast = 0;
2090 accp_all_mcast = 1;
2091 }
2092 if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
2093 /* accept (all) bcast */
2094 accp_all_bcast = 1;
2095 if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2096 /* accept unmatched unicasts */
2097 unmatched_unicast = 1;
2098
2099 mac_filters->ucast_drop_all = drop_all_ucast ?
2100 mac_filters->ucast_drop_all | mask :
2101 mac_filters->ucast_drop_all & ~mask;
2102
2103 mac_filters->mcast_drop_all = drop_all_mcast ?
2104 mac_filters->mcast_drop_all | mask :
2105 mac_filters->mcast_drop_all & ~mask;
2106
2107 mac_filters->ucast_accept_all = accp_all_ucast ?
2108 mac_filters->ucast_accept_all | mask :
2109 mac_filters->ucast_accept_all & ~mask;
2110
2111 mac_filters->mcast_accept_all = accp_all_mcast ?
2112 mac_filters->mcast_accept_all | mask :
2113 mac_filters->mcast_accept_all & ~mask;
2114
2115 mac_filters->bcast_accept_all = accp_all_bcast ?
2116 mac_filters->bcast_accept_all | mask :
2117 mac_filters->bcast_accept_all & ~mask;
2118
2119 mac_filters->unmatched_unicast = unmatched_unicast ?
2120 mac_filters->unmatched_unicast | mask :
2121 mac_filters->unmatched_unicast & ~mask;
2122
2123 DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2124 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2125 mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2126 mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2127 mac_filters->bcast_accept_all);
2128
2129 /* write the MAC filter structure*/
2130 __storm_memset_mac_filters(bp, mac_filters, p->func_id);
2131
2132 /* The operation is completed */
2133 clear_bit(p->state, p->pstate);
2134 smp_mb__after_atomic();
2135
2136 return 0;
2137 }
2138
2139 /* Setup ramrod data */
2140 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
2141 struct eth_classify_header *hdr,
2142 u8 rule_cnt)
2143 {
2144 hdr->echo = cpu_to_le32(cid);
2145 hdr->rule_cnt = rule_cnt;
2146 }
2147
2148 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
2149 unsigned long *accept_flags,
2150 struct eth_filter_rules_cmd *cmd,
2151 bool clear_accept_all)
2152 {
2153 u16 state;
2154
2155 /* start with 'drop-all' */
2156 state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2157 ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2158
2159 if (test_bit(BNX2X_ACCEPT_UNICAST, accept_flags))
2160 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2161
2162 if (test_bit(BNX2X_ACCEPT_MULTICAST, accept_flags))
2163 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2164
2165 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, accept_flags)) {
2166 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2167 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2168 }
2169
2170 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, accept_flags)) {
2171 state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2172 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2173 }
2174
2175 if (test_bit(BNX2X_ACCEPT_BROADCAST, accept_flags))
2176 state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2177
2178 if (test_bit(BNX2X_ACCEPT_UNMATCHED, accept_flags)) {
2179 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2180 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2181 }
2182
2183 if (test_bit(BNX2X_ACCEPT_ANY_VLAN, accept_flags))
2184 state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2185
2186 /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2187 if (clear_accept_all) {
2188 state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2189 state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2190 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2191 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2192 }
2193
2194 cmd->state = cpu_to_le16(state);
2195 }
2196
2197 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
2198 struct bnx2x_rx_mode_ramrod_params *p)
2199 {
2200 struct eth_filter_rules_ramrod_data *data = p->rdata;
2201 int rc;
2202 u8 rule_idx = 0;
2203
2204 /* Reset the ramrod data buffer */
2205 memset(data, 0, sizeof(*data));
2206
2207 /* Setup ramrod data */
2208
2209 /* Tx (internal switching) */
2210 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2211 data->rules[rule_idx].client_id = p->cl_id;
2212 data->rules[rule_idx].func_id = p->func_id;
2213
2214 data->rules[rule_idx].cmd_general_data =
2215 ETH_FILTER_RULES_CMD_TX_CMD;
2216
2217 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2218 &(data->rules[rule_idx++]),
2219 false);
2220 }
2221
2222 /* Rx */
2223 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2224 data->rules[rule_idx].client_id = p->cl_id;
2225 data->rules[rule_idx].func_id = p->func_id;
2226
2227 data->rules[rule_idx].cmd_general_data =
2228 ETH_FILTER_RULES_CMD_RX_CMD;
2229
2230 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2231 &(data->rules[rule_idx++]),
2232 false);
2233 }
2234
2235 /* If FCoE Queue configuration has been requested configure the Rx and
2236 * internal switching modes for this queue in separate rules.
2237 *
2238 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2239 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2240 */
2241 if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2242 /* Tx (internal switching) */
2243 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2244 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2245 data->rules[rule_idx].func_id = p->func_id;
2246
2247 data->rules[rule_idx].cmd_general_data =
2248 ETH_FILTER_RULES_CMD_TX_CMD;
2249
2250 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2251 &(data->rules[rule_idx]),
2252 true);
2253 rule_idx++;
2254 }
2255
2256 /* Rx */
2257 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2258 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2259 data->rules[rule_idx].func_id = p->func_id;
2260
2261 data->rules[rule_idx].cmd_general_data =
2262 ETH_FILTER_RULES_CMD_RX_CMD;
2263
2264 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2265 &(data->rules[rule_idx]),
2266 true);
2267 rule_idx++;
2268 }
2269 }
2270
2271 /* Set the ramrod header (most importantly - number of rules to
2272 * configure).
2273 */
2274 bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2275
2276 DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2277 data->header.rule_cnt, p->rx_accept_flags,
2278 p->tx_accept_flags);
2279
2280 /* No need for an explicit memory barrier here as long as we
2281 * ensure the ordering of writing to the SPQ element
2282 * and updating of the SPQ producer which involves a memory
2283 * read. If the memory read is removed we will have to put a
2284 * full memory barrier there (inside bnx2x_sp_post()).
2285 */
2286
2287 /* Send a ramrod */
2288 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
2289 U64_HI(p->rdata_mapping),
2290 U64_LO(p->rdata_mapping),
2291 ETH_CONNECTION_TYPE);
2292 if (rc)
2293 return rc;
2294
2295 /* Ramrod completion is pending */
2296 return 1;
2297 }
2298
2299 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
2300 struct bnx2x_rx_mode_ramrod_params *p)
2301 {
2302 return bnx2x_state_wait(bp, p->state, p->pstate);
2303 }
2304
2305 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
2306 struct bnx2x_rx_mode_ramrod_params *p)
2307 {
2308 /* Do nothing */
2309 return 0;
2310 }
2311
2312 int bnx2x_config_rx_mode(struct bnx2x *bp,
2313 struct bnx2x_rx_mode_ramrod_params *p)
2314 {
2315 int rc;
2316
2317 /* Configure the new classification in the chip */
2318 rc = p->rx_mode_obj->config_rx_mode(bp, p);
2319 if (rc < 0)
2320 return rc;
2321
2322 /* Wait for a ramrod completion if was requested */
2323 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2324 rc = p->rx_mode_obj->wait_comp(bp, p);
2325 if (rc)
2326 return rc;
2327 }
2328
2329 return rc;
2330 }
2331
2332 void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
2333 struct bnx2x_rx_mode_obj *o)
2334 {
2335 if (CHIP_IS_E1x(bp)) {
2336 o->wait_comp = bnx2x_empty_rx_mode_wait;
2337 o->config_rx_mode = bnx2x_set_rx_mode_e1x;
2338 } else {
2339 o->wait_comp = bnx2x_wait_rx_mode_comp_e2;
2340 o->config_rx_mode = bnx2x_set_rx_mode_e2;
2341 }
2342 }
2343
2344 /********************* Multicast verbs: SET, CLEAR ****************************/
2345 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
2346 {
2347 return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2348 }
2349
2350 struct bnx2x_mcast_mac_elem {
2351 struct list_head link;
2352 u8 mac[ETH_ALEN];
2353 u8 pad[2]; /* For a natural alignment of the following buffer */
2354 };
2355
2356 struct bnx2x_pending_mcast_cmd {
2357 struct list_head link;
2358 int type; /* BNX2X_MCAST_CMD_X */
2359 union {
2360 struct list_head macs_head;
2361 u32 macs_num; /* Needed for DEL command */
2362 int next_bin; /* Needed for RESTORE flow with aprox match */
2363 } data;
2364
2365 bool done; /* set to true, when the command has been handled,
2366 * practically used in 57712 handling only, where one pending
2367 * command may be handled in a few operations. As long as for
2368 * other chips every operation handling is completed in a
2369 * single ramrod, there is no need to utilize this field.
2370 */
2371 };
2372
2373 static int bnx2x_mcast_wait(struct bnx2x *bp,
2374 struct bnx2x_mcast_obj *o)
2375 {
2376 if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
2377 o->raw.wait_comp(bp, &o->raw))
2378 return -EBUSY;
2379
2380 return 0;
2381 }
2382
2383 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
2384 struct bnx2x_mcast_obj *o,
2385 struct bnx2x_mcast_ramrod_params *p,
2386 enum bnx2x_mcast_cmd cmd)
2387 {
2388 int total_sz;
2389 struct bnx2x_pending_mcast_cmd *new_cmd;
2390 struct bnx2x_mcast_mac_elem *cur_mac = NULL;
2391 struct bnx2x_mcast_list_elem *pos;
2392 int macs_list_len = ((cmd == BNX2X_MCAST_CMD_ADD) ?
2393 p->mcast_list_len : 0);
2394
2395 /* If the command is empty ("handle pending commands only"), break */
2396 if (!p->mcast_list_len)
2397 return 0;
2398
2399 total_sz = sizeof(*new_cmd) +
2400 macs_list_len * sizeof(struct bnx2x_mcast_mac_elem);
2401
2402 /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2403 new_cmd = kzalloc(total_sz, GFP_ATOMIC);
2404
2405 if (!new_cmd)
2406 return -ENOMEM;
2407
2408 DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
2409 cmd, macs_list_len);
2410
2411 INIT_LIST_HEAD(&new_cmd->data.macs_head);
2412
2413 new_cmd->type = cmd;
2414 new_cmd->done = false;
2415
2416 switch (cmd) {
2417 case BNX2X_MCAST_CMD_ADD:
2418 cur_mac = (struct bnx2x_mcast_mac_elem *)
2419 ((u8 *)new_cmd + sizeof(*new_cmd));
2420
2421 /* Push the MACs of the current command into the pending command
2422 * MACs list: FIFO
2423 */
2424 list_for_each_entry(pos, &p->mcast_list, link) {
2425 memcpy(cur_mac->mac, pos->mac, ETH_ALEN);
2426 list_add_tail(&cur_mac->link, &new_cmd->data.macs_head);
2427 cur_mac++;
2428 }
2429
2430 break;
2431
2432 case BNX2X_MCAST_CMD_DEL:
2433 new_cmd->data.macs_num = p->mcast_list_len;
2434 break;
2435
2436 case BNX2X_MCAST_CMD_RESTORE:
2437 new_cmd->data.next_bin = 0;
2438 break;
2439
2440 default:
2441 kfree(new_cmd);
2442 BNX2X_ERR("Unknown command: %d\n", cmd);
2443 return -EINVAL;
2444 }
2445
2446 /* Push the new pending command to the tail of the pending list: FIFO */
2447 list_add_tail(&new_cmd->link, &o->pending_cmds_head);
2448
2449 o->set_sched(o);
2450
2451 return 1;
2452 }
2453
2454 /**
2455 * bnx2x_mcast_get_next_bin - get the next set bin (index)
2456 *
2457 * @o:
2458 * @last: index to start looking from (including)
2459 *
2460 * returns the next found (set) bin or a negative value if none is found.
2461 */
2462 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
2463 {
2464 int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2465
2466 for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
2467 if (o->registry.aprox_match.vec[i])
2468 for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2469 int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2470 if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2471 vec, cur_bit)) {
2472 return cur_bit;
2473 }
2474 }
2475 inner_start = 0;
2476 }
2477
2478 /* None found */
2479 return -1;
2480 }
2481
2482 /**
2483 * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2484 *
2485 * @o:
2486 *
2487 * returns the index of the found bin or -1 if none is found
2488 */
2489 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
2490 {
2491 int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
2492
2493 if (cur_bit >= 0)
2494 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2495
2496 return cur_bit;
2497 }
2498
2499 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
2500 {
2501 struct bnx2x_raw_obj *raw = &o->raw;
2502 u8 rx_tx_flag = 0;
2503
2504 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
2505 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2506 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2507
2508 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
2509 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2510 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2511
2512 return rx_tx_flag;
2513 }
2514
2515 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
2516 struct bnx2x_mcast_obj *o, int idx,
2517 union bnx2x_mcast_config_data *cfg_data,
2518 enum bnx2x_mcast_cmd cmd)
2519 {
2520 struct bnx2x_raw_obj *r = &o->raw;
2521 struct eth_multicast_rules_ramrod_data *data =
2522 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
2523 u8 func_id = r->func_id;
2524 u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
2525 int bin;
2526
2527 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE))
2528 rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2529
2530 data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2531
2532 /* Get a bin and update a bins' vector */
2533 switch (cmd) {
2534 case BNX2X_MCAST_CMD_ADD:
2535 bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
2536 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2537 break;
2538
2539 case BNX2X_MCAST_CMD_DEL:
2540 /* If there were no more bins to clear
2541 * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2542 * clear any (0xff) bin.
2543 * See bnx2x_mcast_validate_e2() for explanation when it may
2544 * happen.
2545 */
2546 bin = bnx2x_mcast_clear_first_bin(o);
2547 break;
2548
2549 case BNX2X_MCAST_CMD_RESTORE:
2550 bin = cfg_data->bin;
2551 break;
2552
2553 default:
2554 BNX2X_ERR("Unknown command: %d\n", cmd);
2555 return;
2556 }
2557
2558 DP(BNX2X_MSG_SP, "%s bin %d\n",
2559 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2560 "Setting" : "Clearing"), bin);
2561
2562 data->rules[idx].bin_id = (u8)bin;
2563 data->rules[idx].func_id = func_id;
2564 data->rules[idx].engine_id = o->engine_id;
2565 }
2566
2567 /**
2568 * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2569 *
2570 * @bp: device handle
2571 * @o:
2572 * @start_bin: index in the registry to start from (including)
2573 * @rdata_idx: index in the ramrod data to start from
2574 *
2575 * returns last handled bin index or -1 if all bins have been handled
2576 */
2577 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2578 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
2579 int *rdata_idx)
2580 {
2581 int cur_bin, cnt = *rdata_idx;
2582 union bnx2x_mcast_config_data cfg_data = {NULL};
2583
2584 /* go through the registry and configure the bins from it */
2585 for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2586 cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
2587
2588 cfg_data.bin = (u8)cur_bin;
2589 o->set_one_rule(bp, o, cnt, &cfg_data,
2590 BNX2X_MCAST_CMD_RESTORE);
2591
2592 cnt++;
2593
2594 DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
2595
2596 /* Break if we reached the maximum number
2597 * of rules.
2598 */
2599 if (cnt >= o->max_cmd_len)
2600 break;
2601 }
2602
2603 *rdata_idx = cnt;
2604
2605 return cur_bin;
2606 }
2607
2608 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
2609 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2610 int *line_idx)
2611 {
2612 struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2613 int cnt = *line_idx;
2614 union bnx2x_mcast_config_data cfg_data = {NULL};
2615
2616 list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2617 link) {
2618
2619 cfg_data.mac = &pmac_pos->mac[0];
2620 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
2621
2622 cnt++;
2623
2624 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2625 pmac_pos->mac);
2626
2627 list_del(&pmac_pos->link);
2628
2629 /* Break if we reached the maximum number
2630 * of rules.
2631 */
2632 if (cnt >= o->max_cmd_len)
2633 break;
2634 }
2635
2636 *line_idx = cnt;
2637
2638 /* if no more MACs to configure - we are done */
2639 if (list_empty(&cmd_pos->data.macs_head))
2640 cmd_pos->done = true;
2641 }
2642
2643 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
2644 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2645 int *line_idx)
2646 {
2647 int cnt = *line_idx;
2648
2649 while (cmd_pos->data.macs_num) {
2650 o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
2651
2652 cnt++;
2653
2654 cmd_pos->data.macs_num--;
2655
2656 DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
2657 cmd_pos->data.macs_num, cnt);
2658
2659 /* Break if we reached the maximum
2660 * number of rules.
2661 */
2662 if (cnt >= o->max_cmd_len)
2663 break;
2664 }
2665
2666 *line_idx = cnt;
2667
2668 /* If we cleared all bins - we are done */
2669 if (!cmd_pos->data.macs_num)
2670 cmd_pos->done = true;
2671 }
2672
2673 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
2674 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2675 int *line_idx)
2676 {
2677 cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
2678 line_idx);
2679
2680 if (cmd_pos->data.next_bin < 0)
2681 /* If o->set_restore returned -1 we are done */
2682 cmd_pos->done = true;
2683 else
2684 /* Start from the next bin next time */
2685 cmd_pos->data.next_bin++;
2686 }
2687
2688 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
2689 struct bnx2x_mcast_ramrod_params *p)
2690 {
2691 struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
2692 int cnt = 0;
2693 struct bnx2x_mcast_obj *o = p->mcast_obj;
2694
2695 list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
2696 link) {
2697 switch (cmd_pos->type) {
2698 case BNX2X_MCAST_CMD_ADD:
2699 bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
2700 break;
2701
2702 case BNX2X_MCAST_CMD_DEL:
2703 bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
2704 break;
2705
2706 case BNX2X_MCAST_CMD_RESTORE:
2707 bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
2708 &cnt);
2709 break;
2710
2711 default:
2712 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
2713 return -EINVAL;
2714 }
2715
2716 /* If the command has been completed - remove it from the list
2717 * and free the memory
2718 */
2719 if (cmd_pos->done) {
2720 list_del(&cmd_pos->link);
2721 kfree(cmd_pos);
2722 }
2723
2724 /* Break if we reached the maximum number of rules */
2725 if (cnt >= o->max_cmd_len)
2726 break;
2727 }
2728
2729 return cnt;
2730 }
2731
2732 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
2733 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
2734 int *line_idx)
2735 {
2736 struct bnx2x_mcast_list_elem *mlist_pos;
2737 union bnx2x_mcast_config_data cfg_data = {NULL};
2738 int cnt = *line_idx;
2739
2740 list_for_each_entry(mlist_pos, &p->mcast_list, link) {
2741 cfg_data.mac = mlist_pos->mac;
2742 o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
2743
2744 cnt++;
2745
2746 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2747 mlist_pos->mac);
2748 }
2749
2750 *line_idx = cnt;
2751 }
2752
2753 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
2754 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
2755 int *line_idx)
2756 {
2757 int cnt = *line_idx, i;
2758
2759 for (i = 0; i < p->mcast_list_len; i++) {
2760 o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
2761
2762 cnt++;
2763
2764 DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
2765 p->mcast_list_len - i - 1);
2766 }
2767
2768 *line_idx = cnt;
2769 }
2770
2771 /**
2772 * bnx2x_mcast_handle_current_cmd -
2773 *
2774 * @bp: device handle
2775 * @p:
2776 * @cmd:
2777 * @start_cnt: first line in the ramrod data that may be used
2778 *
2779 * This function is called iff there is enough place for the current command in
2780 * the ramrod data.
2781 * Returns number of lines filled in the ramrod data in total.
2782 */
2783 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
2784 struct bnx2x_mcast_ramrod_params *p,
2785 enum bnx2x_mcast_cmd cmd,
2786 int start_cnt)
2787 {
2788 struct bnx2x_mcast_obj *o = p->mcast_obj;
2789 int cnt = start_cnt;
2790
2791 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
2792
2793 switch (cmd) {
2794 case BNX2X_MCAST_CMD_ADD:
2795 bnx2x_mcast_hdl_add(bp, o, p, &cnt);
2796 break;
2797
2798 case BNX2X_MCAST_CMD_DEL:
2799 bnx2x_mcast_hdl_del(bp, o, p, &cnt);
2800 break;
2801
2802 case BNX2X_MCAST_CMD_RESTORE:
2803 o->hdl_restore(bp, o, 0, &cnt);
2804 break;
2805
2806 default:
2807 BNX2X_ERR("Unknown command: %d\n", cmd);
2808 return -EINVAL;
2809 }
2810
2811 /* The current command has been handled */
2812 p->mcast_list_len = 0;
2813
2814 return cnt;
2815 }
2816
2817 static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
2818 struct bnx2x_mcast_ramrod_params *p,
2819 enum bnx2x_mcast_cmd cmd)
2820 {
2821 struct bnx2x_mcast_obj *o = p->mcast_obj;
2822 int reg_sz = o->get_registry_size(o);
2823
2824 switch (cmd) {
2825 /* DEL command deletes all currently configured MACs */
2826 case BNX2X_MCAST_CMD_DEL:
2827 o->set_registry_size(o, 0);
2828 /* Don't break */
2829
2830 /* RESTORE command will restore the entire multicast configuration */
2831 case BNX2X_MCAST_CMD_RESTORE:
2832 /* Here we set the approximate amount of work to do, which in
2833 * fact may be only less as some MACs in postponed ADD
2834 * command(s) scheduled before this command may fall into
2835 * the same bin and the actual number of bins set in the
2836 * registry would be less than we estimated here. See
2837 * bnx2x_mcast_set_one_rule_e2() for further details.
2838 */
2839 p->mcast_list_len = reg_sz;
2840 break;
2841
2842 case BNX2X_MCAST_CMD_ADD:
2843 case BNX2X_MCAST_CMD_CONT:
2844 /* Here we assume that all new MACs will fall into new bins.
2845 * However we will correct the real registry size after we
2846 * handle all pending commands.
2847 */
2848 o->set_registry_size(o, reg_sz + p->mcast_list_len);
2849 break;
2850
2851 default:
2852 BNX2X_ERR("Unknown command: %d\n", cmd);
2853 return -EINVAL;
2854 }
2855
2856 /* Increase the total number of MACs pending to be configured */
2857 o->total_pending_num += p->mcast_list_len;
2858
2859 return 0;
2860 }
2861
2862 static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
2863 struct bnx2x_mcast_ramrod_params *p,
2864 int old_num_bins)
2865 {
2866 struct bnx2x_mcast_obj *o = p->mcast_obj;
2867
2868 o->set_registry_size(o, old_num_bins);
2869 o->total_pending_num -= p->mcast_list_len;
2870 }
2871
2872 /**
2873 * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
2874 *
2875 * @bp: device handle
2876 * @p:
2877 * @len: number of rules to handle
2878 */
2879 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
2880 struct bnx2x_mcast_ramrod_params *p,
2881 u8 len)
2882 {
2883 struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
2884 struct eth_multicast_rules_ramrod_data *data =
2885 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
2886
2887 data->header.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
2888 (BNX2X_FILTER_MCAST_PENDING <<
2889 BNX2X_SWCID_SHIFT));
2890 data->header.rule_cnt = len;
2891 }
2892
2893 /**
2894 * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
2895 *
2896 * @bp: device handle
2897 * @o:
2898 *
2899 * Recalculate the actual number of set bins in the registry using Brian
2900 * Kernighan's algorithm: it's execution complexity is as a number of set bins.
2901 *
2902 * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
2903 */
2904 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
2905 struct bnx2x_mcast_obj *o)
2906 {
2907 int i, cnt = 0;
2908 u64 elem;
2909
2910 for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
2911 elem = o->registry.aprox_match.vec[i];
2912 for (; elem; cnt++)
2913 elem &= elem - 1;
2914 }
2915
2916 o->set_registry_size(o, cnt);
2917
2918 return 0;
2919 }
2920
2921 static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
2922 struct bnx2x_mcast_ramrod_params *p,
2923 enum bnx2x_mcast_cmd cmd)
2924 {
2925 struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
2926 struct bnx2x_mcast_obj *o = p->mcast_obj;
2927 struct eth_multicast_rules_ramrod_data *data =
2928 (struct eth_multicast_rules_ramrod_data *)(raw->rdata);
2929 int cnt = 0, rc;
2930
2931 /* Reset the ramrod data buffer */
2932 memset(data, 0, sizeof(*data));
2933
2934 cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
2935
2936 /* If there are no more pending commands - clear SCHEDULED state */
2937 if (list_empty(&o->pending_cmds_head))
2938 o->clear_sched(o);
2939
2940 /* The below may be true iff there was enough room in ramrod
2941 * data for all pending commands and for the current
2942 * command. Otherwise the current command would have been added
2943 * to the pending commands and p->mcast_list_len would have been
2944 * zeroed.
2945 */
2946 if (p->mcast_list_len > 0)
2947 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
2948
2949 /* We've pulled out some MACs - update the total number of
2950 * outstanding.
2951 */
2952 o->total_pending_num -= cnt;
2953
2954 /* send a ramrod */
2955 WARN_ON(o->total_pending_num < 0);
2956 WARN_ON(cnt > o->max_cmd_len);
2957
2958 bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
2959
2960 /* Update a registry size if there are no more pending operations.
2961 *
2962 * We don't want to change the value of the registry size if there are
2963 * pending operations because we want it to always be equal to the
2964 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
2965 * set bins after the last requested operation in order to properly
2966 * evaluate the size of the next DEL/RESTORE operation.
2967 *
2968 * Note that we update the registry itself during command(s) handling
2969 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
2970 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
2971 * with a limited amount of update commands (per MAC/bin) and we don't
2972 * know in this scope what the actual state of bins configuration is
2973 * going to be after this ramrod.
2974 */
2975 if (!o->total_pending_num)
2976 bnx2x_mcast_refresh_registry_e2(bp, o);
2977
2978 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
2979 * RAMROD_PENDING status immediately.
2980 */
2981 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
2982 raw->clear_pending(raw);
2983 return 0;
2984 } else {
2985 /* No need for an explicit memory barrier here as long as we
2986 * ensure the ordering of writing to the SPQ element
2987 * and updating of the SPQ producer which involves a memory
2988 * read. If the memory read is removed we will have to put a
2989 * full memory barrier there (inside bnx2x_sp_post()).
2990 */
2991
2992 /* Send a ramrod */
2993 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
2994 raw->cid, U64_HI(raw->rdata_mapping),
2995 U64_LO(raw->rdata_mapping),
2996 ETH_CONNECTION_TYPE);
2997 if (rc)
2998 return rc;
2999
3000 /* Ramrod completion is pending */
3001 return 1;
3002 }
3003 }
3004
3005 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
3006 struct bnx2x_mcast_ramrod_params *p,
3007 enum bnx2x_mcast_cmd cmd)
3008 {
3009 /* Mark, that there is a work to do */
3010 if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
3011 p->mcast_list_len = 1;
3012
3013 return 0;
3014 }
3015
3016 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
3017 struct bnx2x_mcast_ramrod_params *p,
3018 int old_num_bins)
3019 {
3020 /* Do nothing */
3021 }
3022
3023 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3024 do { \
3025 (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3026 } while (0)
3027
3028 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
3029 struct bnx2x_mcast_obj *o,
3030 struct bnx2x_mcast_ramrod_params *p,
3031 u32 *mc_filter)
3032 {
3033 struct bnx2x_mcast_list_elem *mlist_pos;
3034 int bit;
3035
3036 list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3037 bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
3038 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3039
3040 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
3041 mlist_pos->mac, bit);
3042
3043 /* bookkeeping... */
3044 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3045 bit);
3046 }
3047 }
3048
3049 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
3050 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3051 u32 *mc_filter)
3052 {
3053 int bit;
3054
3055 for (bit = bnx2x_mcast_get_next_bin(o, 0);
3056 bit >= 0;
3057 bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
3058 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3059 DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
3060 }
3061 }
3062
3063 /* On 57711 we write the multicast MACs' approximate match
3064 * table by directly into the TSTORM's internal RAM. So we don't
3065 * really need to handle any tricks to make it work.
3066 */
3067 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
3068 struct bnx2x_mcast_ramrod_params *p,
3069 enum bnx2x_mcast_cmd cmd)
3070 {
3071 int i;
3072 struct bnx2x_mcast_obj *o = p->mcast_obj;
3073 struct bnx2x_raw_obj *r = &o->raw;
3074
3075 /* If CLEAR_ONLY has been requested - clear the registry
3076 * and clear a pending bit.
3077 */
3078 if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3079 u32 mc_filter[MC_HASH_SIZE] = {0};
3080
3081 /* Set the multicast filter bits before writing it into
3082 * the internal memory.
3083 */
3084 switch (cmd) {
3085 case BNX2X_MCAST_CMD_ADD:
3086 bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
3087 break;
3088
3089 case BNX2X_MCAST_CMD_DEL:
3090 DP(BNX2X_MSG_SP,
3091 "Invalidating multicast MACs configuration\n");
3092
3093 /* clear the registry */
3094 memset(o->registry.aprox_match.vec, 0,
3095 sizeof(o->registry.aprox_match.vec));
3096 break;
3097
3098 case BNX2X_MCAST_CMD_RESTORE:
3099 bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
3100 break;
3101
3102 default:
3103 BNX2X_ERR("Unknown command: %d\n", cmd);
3104 return -EINVAL;
3105 }
3106
3107 /* Set the mcast filter in the internal memory */
3108 for (i = 0; i < MC_HASH_SIZE; i++)
3109 REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
3110 } else
3111 /* clear the registry */
3112 memset(o->registry.aprox_match.vec, 0,
3113 sizeof(o->registry.aprox_match.vec));
3114
3115 /* We are done */
3116 r->clear_pending(r);
3117
3118 return 0;
3119 }
3120
3121 static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
3122 struct bnx2x_mcast_ramrod_params *p,
3123 enum bnx2x_mcast_cmd cmd)
3124 {
3125 struct bnx2x_mcast_obj *o = p->mcast_obj;
3126 int reg_sz = o->get_registry_size(o);
3127
3128 switch (cmd) {
3129 /* DEL command deletes all currently configured MACs */
3130 case BNX2X_MCAST_CMD_DEL:
3131 o->set_registry_size(o, 0);
3132 /* Don't break */
3133
3134 /* RESTORE command will restore the entire multicast configuration */
3135 case BNX2X_MCAST_CMD_RESTORE:
3136 p->mcast_list_len = reg_sz;
3137 DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
3138 cmd, p->mcast_list_len);
3139 break;
3140
3141 case BNX2X_MCAST_CMD_ADD:
3142 case BNX2X_MCAST_CMD_CONT:
3143 /* Multicast MACs on 57710 are configured as unicast MACs and
3144 * there is only a limited number of CAM entries for that
3145 * matter.
3146 */
3147 if (p->mcast_list_len > o->max_cmd_len) {
3148 BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3149 o->max_cmd_len);
3150 return -EINVAL;
3151 }
3152 /* Every configured MAC should be cleared if DEL command is
3153 * called. Only the last ADD command is relevant as long as
3154 * every ADD commands overrides the previous configuration.
3155 */
3156 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3157 if (p->mcast_list_len > 0)
3158 o->set_registry_size(o, p->mcast_list_len);
3159
3160 break;
3161
3162 default:
3163 BNX2X_ERR("Unknown command: %d\n", cmd);
3164 return -EINVAL;
3165 }
3166
3167 /* We want to ensure that commands are executed one by one for 57710.
3168 * Therefore each none-empty command will consume o->max_cmd_len.
3169 */
3170 if (p->mcast_list_len)
3171 o->total_pending_num += o->max_cmd_len;
3172
3173 return 0;
3174 }
3175
3176 static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
3177 struct bnx2x_mcast_ramrod_params *p,
3178 int old_num_macs)
3179 {
3180 struct bnx2x_mcast_obj *o = p->mcast_obj;
3181
3182 o->set_registry_size(o, old_num_macs);
3183
3184 /* If current command hasn't been handled yet and we are
3185 * here means that it's meant to be dropped and we have to
3186 * update the number of outstanding MACs accordingly.
3187 */
3188 if (p->mcast_list_len)
3189 o->total_pending_num -= o->max_cmd_len;
3190 }
3191
3192 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
3193 struct bnx2x_mcast_obj *o, int idx,
3194 union bnx2x_mcast_config_data *cfg_data,
3195 enum bnx2x_mcast_cmd cmd)
3196 {
3197 struct bnx2x_raw_obj *r = &o->raw;
3198 struct mac_configuration_cmd *data =
3199 (struct mac_configuration_cmd *)(r->rdata);
3200
3201 /* copy mac */
3202 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
3203 bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3204 &data->config_table[idx].middle_mac_addr,
3205 &data->config_table[idx].lsb_mac_addr,
3206 cfg_data->mac);
3207
3208 data->config_table[idx].vlan_id = 0;
3209 data->config_table[idx].pf_id = r->func_id;
3210 data->config_table[idx].clients_bit_vector =
3211 cpu_to_le32(1 << r->cl_id);
3212
3213 SET_FLAG(data->config_table[idx].flags,
3214 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3215 T_ETH_MAC_COMMAND_SET);
3216 }
3217 }
3218
3219 /**
3220 * bnx2x_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd
3221 *
3222 * @bp: device handle
3223 * @p:
3224 * @len: number of rules to handle
3225 */
3226 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
3227 struct bnx2x_mcast_ramrod_params *p,
3228 u8 len)
3229 {
3230 struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3231 struct mac_configuration_cmd *data =
3232 (struct mac_configuration_cmd *)(r->rdata);
3233
3234 u8 offset = (CHIP_REV_IS_SLOW(bp) ?
3235 BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
3236 BNX2X_MAX_MULTICAST*(1 + r->func_id));
3237
3238 data->hdr.offset = offset;
3239 data->hdr.client_id = cpu_to_le16(0xff);
3240 data->hdr.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3241 (BNX2X_FILTER_MCAST_PENDING <<
3242 BNX2X_SWCID_SHIFT));
3243 data->hdr.length = len;
3244 }
3245
3246 /**
3247 * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3248 *
3249 * @bp: device handle
3250 * @o:
3251 * @start_idx: index in the registry to start from
3252 * @rdata_idx: index in the ramrod data to start from
3253 *
3254 * restore command for 57710 is like all other commands - always a stand alone
3255 * command - start_idx and rdata_idx will always be 0. This function will always
3256 * succeed.
3257 * returns -1 to comply with 57712 variant.
3258 */
3259 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3260 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
3261 int *rdata_idx)
3262 {
3263 struct bnx2x_mcast_mac_elem *elem;
3264 int i = 0;
3265 union bnx2x_mcast_config_data cfg_data = {NULL};
3266
3267 /* go through the registry and configure the MACs from it. */
3268 list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
3269 cfg_data.mac = &elem->mac[0];
3270 o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
3271
3272 i++;
3273
3274 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3275 cfg_data.mac);
3276 }
3277
3278 *rdata_idx = i;
3279
3280 return -1;
3281 }
3282
3283 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3284 struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
3285 {
3286 struct bnx2x_pending_mcast_cmd *cmd_pos;
3287 struct bnx2x_mcast_mac_elem *pmac_pos;
3288 struct bnx2x_mcast_obj *o = p->mcast_obj;
3289 union bnx2x_mcast_config_data cfg_data = {NULL};
3290 int cnt = 0;
3291
3292 /* If nothing to be done - return */
3293 if (list_empty(&o->pending_cmds_head))
3294 return 0;
3295
3296 /* Handle the first command */
3297 cmd_pos = list_first_entry(&o->pending_cmds_head,
3298 struct bnx2x_pending_mcast_cmd, link);
3299
3300 switch (cmd_pos->type) {
3301 case BNX2X_MCAST_CMD_ADD:
3302 list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
3303 cfg_data.mac = &pmac_pos->mac[0];
3304 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
3305
3306 cnt++;
3307
3308 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3309 pmac_pos->mac);
3310 }
3311 break;
3312
3313 case BNX2X_MCAST_CMD_DEL:
3314 cnt = cmd_pos->data.macs_num;
3315 DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
3316 break;
3317
3318 case BNX2X_MCAST_CMD_RESTORE:
3319 o->hdl_restore(bp, o, 0, &cnt);
3320 break;
3321
3322 default:
3323 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3324 return -EINVAL;
3325 }
3326
3327 list_del(&cmd_pos->link);
3328 kfree(cmd_pos);
3329
3330 return cnt;
3331 }
3332
3333 /**
3334 * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3335 *
3336 * @fw_hi:
3337 * @fw_mid:
3338 * @fw_lo:
3339 * @mac:
3340 */
3341 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3342 __le16 *fw_lo, u8 *mac)
3343 {
3344 mac[1] = ((u8 *)fw_hi)[0];
3345 mac[0] = ((u8 *)fw_hi)[1];
3346 mac[3] = ((u8 *)fw_mid)[0];
3347 mac[2] = ((u8 *)fw_mid)[1];
3348 mac[5] = ((u8 *)fw_lo)[0];
3349 mac[4] = ((u8 *)fw_lo)[1];
3350 }
3351
3352 /**
3353 * bnx2x_mcast_refresh_registry_e1 -
3354 *
3355 * @bp: device handle
3356 * @cnt:
3357 *
3358 * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3359 * and update the registry correspondingly: if ADD - allocate a memory and add
3360 * the entries to the registry (list), if DELETE - clear the registry and free
3361 * the memory.
3362 */
3363 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
3364 struct bnx2x_mcast_obj *o)
3365 {
3366 struct bnx2x_raw_obj *raw = &o->raw;
3367 struct bnx2x_mcast_mac_elem *elem;
3368 struct mac_configuration_cmd *data =
3369 (struct mac_configuration_cmd *)(raw->rdata);
3370
3371 /* If first entry contains a SET bit - the command was ADD,
3372 * otherwise - DEL_ALL
3373 */
3374 if (GET_FLAG(data->config_table[0].flags,
3375 MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3376 int i, len = data->hdr.length;
3377
3378 /* Break if it was a RESTORE command */
3379 if (!list_empty(&o->registry.exact_match.macs))
3380 return 0;
3381
3382 elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
3383 if (!elem) {
3384 BNX2X_ERR("Failed to allocate registry memory\n");
3385 return -ENOMEM;
3386 }
3387
3388 for (i = 0; i < len; i++, elem++) {
3389 bnx2x_get_fw_mac_addr(
3390 &data->config_table[i].msb_mac_addr,
3391 &data->config_table[i].middle_mac_addr,
3392 &data->config_table[i].lsb_mac_addr,
3393 elem->mac);
3394 DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
3395 elem->mac);
3396 list_add_tail(&elem->link,
3397 &o->registry.exact_match.macs);
3398 }
3399 } else {
3400 elem = list_first_entry(&o->registry.exact_match.macs,
3401 struct bnx2x_mcast_mac_elem, link);
3402 DP(BNX2X_MSG_SP, "Deleting a registry\n");
3403 kfree(elem);
3404 INIT_LIST_HEAD(&o->registry.exact_match.macs);
3405 }
3406
3407 return 0;
3408 }
3409
3410 static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
3411 struct bnx2x_mcast_ramrod_params *p,
3412 enum bnx2x_mcast_cmd cmd)
3413 {
3414 struct bnx2x_mcast_obj *o = p->mcast_obj;
3415 struct bnx2x_raw_obj *raw = &o->raw;
3416 struct mac_configuration_cmd *data =
3417 (struct mac_configuration_cmd *)(raw->rdata);
3418 int cnt = 0, i, rc;
3419
3420 /* Reset the ramrod data buffer */
3421 memset(data, 0, sizeof(*data));
3422
3423 /* First set all entries as invalid */
3424 for (i = 0; i < o->max_cmd_len ; i++)
3425 SET_FLAG(data->config_table[i].flags,
3426 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3427 T_ETH_MAC_COMMAND_INVALIDATE);
3428
3429 /* Handle pending commands first */
3430 cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
3431
3432 /* If there are no more pending commands - clear SCHEDULED state */
3433 if (list_empty(&o->pending_cmds_head))
3434 o->clear_sched(o);
3435
3436 /* The below may be true iff there were no pending commands */
3437 if (!cnt)
3438 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
3439
3440 /* For 57710 every command has o->max_cmd_len length to ensure that
3441 * commands are done one at a time.
3442 */
3443 o->total_pending_num -= o->max_cmd_len;
3444
3445 /* send a ramrod */
3446
3447 WARN_ON(cnt > o->max_cmd_len);
3448
3449 /* Set ramrod header (in particular, a number of entries to update) */
3450 bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
3451
3452 /* update a registry: we need the registry contents to be always up
3453 * to date in order to be able to execute a RESTORE opcode. Here
3454 * we use the fact that for 57710 we sent one command at a time
3455 * hence we may take the registry update out of the command handling
3456 * and do it in a simpler way here.
3457 */
3458 rc = bnx2x_mcast_refresh_registry_e1(bp, o);
3459 if (rc)
3460 return rc;
3461
3462 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3463 * RAMROD_PENDING status immediately.
3464 */
3465 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3466 raw->clear_pending(raw);
3467 return 0;
3468 } else {
3469 /* No need for an explicit memory barrier here as long as we
3470 * ensure the ordering of writing to the SPQ element
3471 * and updating of the SPQ producer which involves a memory
3472 * read. If the memory read is removed we will have to put a
3473 * full memory barrier there (inside bnx2x_sp_post()).
3474 */
3475
3476 /* Send a ramrod */
3477 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
3478 U64_HI(raw->rdata_mapping),
3479 U64_LO(raw->rdata_mapping),
3480 ETH_CONNECTION_TYPE);
3481 if (rc)
3482 return rc;
3483
3484 /* Ramrod completion is pending */
3485 return 1;
3486 }
3487 }
3488
3489 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
3490 {
3491 return o->registry.exact_match.num_macs_set;
3492 }
3493
3494 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
3495 {
3496 return o->registry.aprox_match.num_bins_set;
3497 }
3498
3499 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
3500 int n)
3501 {
3502 o->registry.exact_match.num_macs_set = n;
3503 }
3504
3505 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
3506 int n)
3507 {
3508 o->registry.aprox_match.num_bins_set = n;
3509 }
3510
3511 int bnx2x_config_mcast(struct bnx2x *bp,
3512 struct bnx2x_mcast_ramrod_params *p,
3513 enum bnx2x_mcast_cmd cmd)
3514 {
3515 struct bnx2x_mcast_obj *o = p->mcast_obj;
3516 struct bnx2x_raw_obj *r = &o->raw;
3517 int rc = 0, old_reg_size;
3518
3519 /* This is needed to recover number of currently configured mcast macs
3520 * in case of failure.
3521 */
3522 old_reg_size = o->get_registry_size(o);
3523
3524 /* Do some calculations and checks */
3525 rc = o->validate(bp, p, cmd);
3526 if (rc)
3527 return rc;
3528
3529 /* Return if there is no work to do */
3530 if ((!p->mcast_list_len) && (!o->check_sched(o)))
3531 return 0;
3532
3533 DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
3534 o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
3535
3536 /* Enqueue the current command to the pending list if we can't complete
3537 * it in the current iteration
3538 */
3539 if (r->check_pending(r) ||
3540 ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
3541 rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
3542 if (rc < 0)
3543 goto error_exit1;
3544
3545 /* As long as the current command is in a command list we
3546 * don't need to handle it separately.
3547 */
3548 p->mcast_list_len = 0;
3549 }
3550
3551 if (!r->check_pending(r)) {
3552
3553 /* Set 'pending' state */
3554 r->set_pending(r);
3555
3556 /* Configure the new classification in the chip */
3557 rc = o->config_mcast(bp, p, cmd);
3558 if (rc < 0)
3559 goto error_exit2;
3560
3561 /* Wait for a ramrod completion if was requested */
3562 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
3563 rc = o->wait_comp(bp, o);
3564 }
3565
3566 return rc;
3567
3568 error_exit2:
3569 r->clear_pending(r);
3570
3571 error_exit1:
3572 o->revert(bp, p, old_reg_size);
3573
3574 return rc;
3575 }
3576
3577 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
3578 {
3579 smp_mb__before_atomic();
3580 clear_bit(o->sched_state, o->raw.pstate);
3581 smp_mb__after_atomic();
3582 }
3583
3584 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
3585 {
3586 smp_mb__before_atomic();
3587 set_bit(o->sched_state, o->raw.pstate);
3588 smp_mb__after_atomic();
3589 }
3590
3591 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
3592 {
3593 return !!test_bit(o->sched_state, o->raw.pstate);
3594 }
3595
3596 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
3597 {
3598 return o->raw.check_pending(&o->raw) || o->check_sched(o);
3599 }
3600
3601 void bnx2x_init_mcast_obj(struct bnx2x *bp,
3602 struct bnx2x_mcast_obj *mcast_obj,
3603 u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
3604 u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
3605 int state, unsigned long *pstate, bnx2x_obj_type type)
3606 {
3607 memset(mcast_obj, 0, sizeof(*mcast_obj));
3608
3609 bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
3610 rdata, rdata_mapping, state, pstate, type);
3611
3612 mcast_obj->engine_id = engine_id;
3613
3614 INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
3615
3616 mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
3617 mcast_obj->check_sched = bnx2x_mcast_check_sched;
3618 mcast_obj->set_sched = bnx2x_mcast_set_sched;
3619 mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
3620
3621 if (CHIP_IS_E1(bp)) {
3622 mcast_obj->config_mcast = bnx2x_mcast_setup_e1;
3623 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
3624 mcast_obj->hdl_restore =
3625 bnx2x_mcast_handle_restore_cmd_e1;
3626 mcast_obj->check_pending = bnx2x_mcast_check_pending;
3627
3628 if (CHIP_REV_IS_SLOW(bp))
3629 mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
3630 else
3631 mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
3632
3633 mcast_obj->wait_comp = bnx2x_mcast_wait;
3634 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e1;
3635 mcast_obj->validate = bnx2x_mcast_validate_e1;
3636 mcast_obj->revert = bnx2x_mcast_revert_e1;
3637 mcast_obj->get_registry_size =
3638 bnx2x_mcast_get_registry_size_exact;
3639 mcast_obj->set_registry_size =
3640 bnx2x_mcast_set_registry_size_exact;
3641
3642 /* 57710 is the only chip that uses the exact match for mcast
3643 * at the moment.
3644 */
3645 INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
3646
3647 } else if (CHIP_IS_E1H(bp)) {
3648 mcast_obj->config_mcast = bnx2x_mcast_setup_e1h;
3649 mcast_obj->enqueue_cmd = NULL;
3650 mcast_obj->hdl_restore = NULL;
3651 mcast_obj->check_pending = bnx2x_mcast_check_pending;
3652
3653 /* 57711 doesn't send a ramrod, so it has unlimited credit
3654 * for one command.
3655 */
3656 mcast_obj->max_cmd_len = -1;
3657 mcast_obj->wait_comp = bnx2x_mcast_wait;
3658 mcast_obj->set_one_rule = NULL;
3659 mcast_obj->validate = bnx2x_mcast_validate_e1h;
3660 mcast_obj->revert = bnx2x_mcast_revert_e1h;
3661 mcast_obj->get_registry_size =
3662 bnx2x_mcast_get_registry_size_aprox;
3663 mcast_obj->set_registry_size =
3664 bnx2x_mcast_set_registry_size_aprox;
3665 } else {
3666 mcast_obj->config_mcast = bnx2x_mcast_setup_e2;
3667 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
3668 mcast_obj->hdl_restore =
3669 bnx2x_mcast_handle_restore_cmd_e2;
3670 mcast_obj->check_pending = bnx2x_mcast_check_pending;
3671 /* TODO: There should be a proper HSI define for this number!!!
3672 */
3673 mcast_obj->max_cmd_len = 16;
3674 mcast_obj->wait_comp = bnx2x_mcast_wait;
3675 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e2;
3676 mcast_obj->validate = bnx2x_mcast_validate_e2;
3677 mcast_obj->revert = bnx2x_mcast_revert_e2;
3678 mcast_obj->get_registry_size =
3679 bnx2x_mcast_get_registry_size_aprox;
3680 mcast_obj->set_registry_size =
3681 bnx2x_mcast_set_registry_size_aprox;
3682 }
3683 }
3684
3685 /*************************** Credit handling **********************************/
3686
3687 /**
3688 * atomic_add_ifless - add if the result is less than a given value.
3689 *
3690 * @v: pointer of type atomic_t
3691 * @a: the amount to add to v...
3692 * @u: ...if (v + a) is less than u.
3693 *
3694 * returns true if (v + a) was less than u, and false otherwise.
3695 *
3696 */
3697 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
3698 {
3699 int c, old;
3700
3701 c = atomic_read(v);
3702 for (;;) {
3703 if (unlikely(c + a >= u))
3704 return false;
3705
3706 old = atomic_cmpxchg((v), c, c + a);
3707 if (likely(old == c))
3708 break;
3709 c = old;
3710 }
3711
3712 return true;
3713 }
3714
3715 /**
3716 * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
3717 *
3718 * @v: pointer of type atomic_t
3719 * @a: the amount to dec from v...
3720 * @u: ...if (v - a) is more or equal than u.
3721 *
3722 * returns true if (v - a) was more or equal than u, and false
3723 * otherwise.
3724 */
3725 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
3726 {
3727 int c, old;
3728
3729 c = atomic_read(v);
3730 for (;;) {
3731 if (unlikely(c - a < u))
3732 return false;
3733
3734 old = atomic_cmpxchg((v), c, c - a);
3735 if (likely(old == c))
3736 break;
3737 c = old;
3738 }
3739
3740 return true;
3741 }
3742
3743 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
3744 {
3745 bool rc;
3746
3747 smp_mb();
3748 rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
3749 smp_mb();
3750
3751 return rc;
3752 }
3753
3754 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
3755 {
3756 bool rc;
3757
3758 smp_mb();
3759
3760 /* Don't let to refill if credit + cnt > pool_sz */
3761 rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
3762
3763 smp_mb();
3764
3765 return rc;
3766 }
3767
3768 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
3769 {
3770 int cur_credit;
3771
3772 smp_mb();
3773 cur_credit = atomic_read(&o->credit);
3774
3775 return cur_credit;
3776 }
3777
3778 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
3779 int cnt)
3780 {
3781 return true;
3782 }
3783
3784 static bool bnx2x_credit_pool_get_entry(
3785 struct bnx2x_credit_pool_obj *o,
3786 int *offset)
3787 {
3788 int idx, vec, i;
3789
3790 *offset = -1;
3791
3792 /* Find "internal cam-offset" then add to base for this object... */
3793 for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
3794
3795 /* Skip the current vector if there are no free entries in it */
3796 if (!o->pool_mirror[vec])
3797 continue;
3798
3799 /* If we've got here we are going to find a free entry */
3800 for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
3801 i < BIT_VEC64_ELEM_SZ; idx++, i++)
3802
3803 if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
3804 /* Got one!! */
3805 BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
3806 *offset = o->base_pool_offset + idx;
3807 return true;
3808 }
3809 }
3810
3811 return false;
3812 }
3813
3814 static bool bnx2x_credit_pool_put_entry(
3815 struct bnx2x_credit_pool_obj *o,
3816 int offset)
3817 {
3818 if (offset < o->base_pool_offset)
3819 return false;
3820
3821 offset -= o->base_pool_offset;
3822
3823 if (offset >= o->pool_sz)
3824 return false;
3825
3826 /* Return the entry to the pool */
3827 BIT_VEC64_SET_BIT(o->pool_mirror, offset);
3828
3829 return true;
3830 }
3831
3832 static bool bnx2x_credit_pool_put_entry_always_true(
3833 struct bnx2x_credit_pool_obj *o,
3834 int offset)
3835 {
3836 return true;
3837 }
3838
3839 static bool bnx2x_credit_pool_get_entry_always_true(
3840 struct bnx2x_credit_pool_obj *o,
3841 int *offset)
3842 {
3843 *offset = -1;
3844 return true;
3845 }
3846 /**
3847 * bnx2x_init_credit_pool - initialize credit pool internals.
3848 *
3849 * @p:
3850 * @base: Base entry in the CAM to use.
3851 * @credit: pool size.
3852 *
3853 * If base is negative no CAM entries handling will be performed.
3854 * If credit is negative pool operations will always succeed (unlimited pool).
3855 *
3856 */
3857 static inline void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
3858 int base, int credit)
3859 {
3860 /* Zero the object first */
3861 memset(p, 0, sizeof(*p));
3862
3863 /* Set the table to all 1s */
3864 memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
3865
3866 /* Init a pool as full */
3867 atomic_set(&p->credit, credit);
3868
3869 /* The total poll size */
3870 p->pool_sz = credit;
3871
3872 p->base_pool_offset = base;
3873
3874 /* Commit the change */
3875 smp_mb();
3876
3877 p->check = bnx2x_credit_pool_check;
3878
3879 /* if pool credit is negative - disable the checks */
3880 if (credit >= 0) {
3881 p->put = bnx2x_credit_pool_put;
3882 p->get = bnx2x_credit_pool_get;
3883 p->put_entry = bnx2x_credit_pool_put_entry;
3884 p->get_entry = bnx2x_credit_pool_get_entry;
3885 } else {
3886 p->put = bnx2x_credit_pool_always_true;
3887 p->get = bnx2x_credit_pool_always_true;
3888 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
3889 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
3890 }
3891
3892 /* If base is negative - disable entries handling */
3893 if (base < 0) {
3894 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
3895 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
3896 }
3897 }
3898
3899 void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
3900 struct bnx2x_credit_pool_obj *p, u8 func_id,
3901 u8 func_num)
3902 {
3903 /* TODO: this will be defined in consts as well... */
3904 #define BNX2X_CAM_SIZE_EMUL 5
3905
3906 int cam_sz;
3907
3908 if (CHIP_IS_E1(bp)) {
3909 /* In E1, Multicast is saved in cam... */
3910 if (!CHIP_REV_IS_SLOW(bp))
3911 cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
3912 else
3913 cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
3914
3915 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
3916
3917 } else if (CHIP_IS_E1H(bp)) {
3918 /* CAM credit is equaly divided between all active functions
3919 * on the PORT!.
3920 */
3921 if ((func_num > 0)) {
3922 if (!CHIP_REV_IS_SLOW(bp))
3923 cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
3924 else
3925 cam_sz = BNX2X_CAM_SIZE_EMUL;
3926 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
3927 } else {
3928 /* this should never happen! Block MAC operations. */
3929 bnx2x_init_credit_pool(p, 0, 0);
3930 }
3931
3932 } else {
3933
3934 /* CAM credit is equaly divided between all active functions
3935 * on the PATH.
3936 */
3937 if ((func_num > 0)) {
3938 if (!CHIP_REV_IS_SLOW(bp))
3939 cam_sz = (MAX_MAC_CREDIT_E2 / func_num);
3940 else
3941 cam_sz = BNX2X_CAM_SIZE_EMUL;
3942
3943 /* No need for CAM entries handling for 57712 and
3944 * newer.
3945 */
3946 bnx2x_init_credit_pool(p, -1, cam_sz);
3947 } else {
3948 /* this should never happen! Block MAC operations. */
3949 bnx2x_init_credit_pool(p, 0, 0);
3950 }
3951 }
3952 }
3953
3954 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
3955 struct bnx2x_credit_pool_obj *p,
3956 u8 func_id,
3957 u8 func_num)
3958 {
3959 if (CHIP_IS_E1x(bp)) {
3960 /* There is no VLAN credit in HW on 57710 and 57711 only
3961 * MAC / MAC-VLAN can be set
3962 */
3963 bnx2x_init_credit_pool(p, 0, -1);
3964 } else {
3965 /* CAM credit is equally divided between all active functions
3966 * on the PATH.
3967 */
3968 if (func_num > 0) {
3969 int credit = MAX_VLAN_CREDIT_E2 / func_num;
3970 bnx2x_init_credit_pool(p, func_id * credit, credit);
3971 } else
3972 /* this should never happen! Block VLAN operations. */
3973 bnx2x_init_credit_pool(p, 0, 0);
3974 }
3975 }
3976
3977 /****************** RSS Configuration ******************/
3978 /**
3979 * bnx2x_debug_print_ind_table - prints the indirection table configuration.
3980 *
3981 * @bp: driver handle
3982 * @p: pointer to rss configuration
3983 *
3984 * Prints it when NETIF_MSG_IFUP debug level is configured.
3985 */
3986 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
3987 struct bnx2x_config_rss_params *p)
3988 {
3989 int i;
3990
3991 DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
3992 DP(BNX2X_MSG_SP, "0x0000: ");
3993 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
3994 DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
3995
3996 /* Print 4 bytes in a line */
3997 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
3998 (((i + 1) & 0x3) == 0)) {
3999 DP_CONT(BNX2X_MSG_SP, "\n");
4000 DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4001 }
4002 }
4003
4004 DP_CONT(BNX2X_MSG_SP, "\n");
4005 }
4006
4007 /**
4008 * bnx2x_setup_rss - configure RSS
4009 *
4010 * @bp: device handle
4011 * @p: rss configuration
4012 *
4013 * sends on UPDATE ramrod for that matter.
4014 */
4015 static int bnx2x_setup_rss(struct bnx2x *bp,
4016 struct bnx2x_config_rss_params *p)
4017 {
4018 struct bnx2x_rss_config_obj *o = p->rss_obj;
4019 struct bnx2x_raw_obj *r = &o->raw;
4020 struct eth_rss_update_ramrod_data *data =
4021 (struct eth_rss_update_ramrod_data *)(r->rdata);
4022 u16 caps = 0;
4023 u8 rss_mode = 0;
4024 int rc;
4025
4026 memset(data, 0, sizeof(*data));
4027
4028 DP(BNX2X_MSG_SP, "Configuring RSS\n");
4029
4030 /* Set an echo field */
4031 data->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
4032 (r->state << BNX2X_SWCID_SHIFT));
4033
4034 /* RSS mode */
4035 if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
4036 rss_mode = ETH_RSS_MODE_DISABLED;
4037 else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
4038 rss_mode = ETH_RSS_MODE_REGULAR;
4039
4040 data->rss_mode = rss_mode;
4041
4042 DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
4043
4044 /* RSS capabilities */
4045 if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
4046 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4047
4048 if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
4049 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4050
4051 if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags))
4052 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4053
4054 if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
4055 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4056
4057 if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
4058 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4059
4060 if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags))
4061 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4062
4063 if (test_bit(BNX2X_RSS_GRE_INNER_HDRS, &p->rss_flags))
4064 caps |= ETH_RSS_UPDATE_RAMROD_DATA_GRE_INNER_HDRS_CAPABILITY;
4065
4066 /* RSS keys */
4067 if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
4068 memcpy(&data->rss_key[0], &p->rss_key[0],
4069 sizeof(data->rss_key));
4070 caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4071 }
4072
4073 data->capabilities = cpu_to_le16(caps);
4074
4075 /* Hashing mask */
4076 data->rss_result_mask = p->rss_result_mask;
4077
4078 /* RSS engine ID */
4079 data->rss_engine_id = o->engine_id;
4080
4081 DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
4082
4083 /* Indirection table */
4084 memcpy(data->indirection_table, p->ind_table,
4085 T_ETH_INDIRECTION_TABLE_SIZE);
4086
4087 /* Remember the last configuration */
4088 memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4089
4090 /* Print the indirection table */
4091 if (netif_msg_ifup(bp))
4092 bnx2x_debug_print_ind_table(bp, p);
4093
4094 /* No need for an explicit memory barrier here as long as we
4095 * ensure the ordering of writing to the SPQ element
4096 * and updating of the SPQ producer which involves a memory
4097 * read. If the memory read is removed we will have to put a
4098 * full memory barrier there (inside bnx2x_sp_post()).
4099 */
4100
4101 /* Send a ramrod */
4102 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
4103 U64_HI(r->rdata_mapping),
4104 U64_LO(r->rdata_mapping),
4105 ETH_CONNECTION_TYPE);
4106
4107 if (rc < 0)
4108 return rc;
4109
4110 return 1;
4111 }
4112
4113 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
4114 u8 *ind_table)
4115 {
4116 memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4117 }
4118
4119 int bnx2x_config_rss(struct bnx2x *bp,
4120 struct bnx2x_config_rss_params *p)
4121 {
4122 int rc;
4123 struct bnx2x_rss_config_obj *o = p->rss_obj;
4124 struct bnx2x_raw_obj *r = &o->raw;
4125
4126 /* Do nothing if only driver cleanup was requested */
4127 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4128 DP(BNX2X_MSG_SP, "Not configuring RSS ramrod_flags=%lx\n",
4129 p->ramrod_flags);
4130 return 0;
4131 }
4132
4133 r->set_pending(r);
4134
4135 rc = o->config_rss(bp, p);
4136 if (rc < 0) {
4137 r->clear_pending(r);
4138 return rc;
4139 }
4140
4141 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4142 rc = r->wait_comp(bp, r);
4143
4144 return rc;
4145 }
4146
4147 void bnx2x_init_rss_config_obj(struct bnx2x *bp,
4148 struct bnx2x_rss_config_obj *rss_obj,
4149 u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4150 void *rdata, dma_addr_t rdata_mapping,
4151 int state, unsigned long *pstate,
4152 bnx2x_obj_type type)
4153 {
4154 bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4155 rdata_mapping, state, pstate, type);
4156
4157 rss_obj->engine_id = engine_id;
4158 rss_obj->config_rss = bnx2x_setup_rss;
4159 }
4160
4161 /********************** Queue state object ***********************************/
4162
4163 /**
4164 * bnx2x_queue_state_change - perform Queue state change transition
4165 *
4166 * @bp: device handle
4167 * @params: parameters to perform the transition
4168 *
4169 * returns 0 in case of successfully completed transition, negative error
4170 * code in case of failure, positive (EBUSY) value if there is a completion
4171 * to that is still pending (possible only if RAMROD_COMP_WAIT is
4172 * not set in params->ramrod_flags for asynchronous commands).
4173 *
4174 */
4175 int bnx2x_queue_state_change(struct bnx2x *bp,
4176 struct bnx2x_queue_state_params *params)
4177 {
4178 struct bnx2x_queue_sp_obj *o = params->q_obj;
4179 int rc, pending_bit;
4180 unsigned long *pending = &o->pending;
4181
4182 /* Check that the requested transition is legal */
4183 rc = o->check_transition(bp, o, params);
4184 if (rc) {
4185 BNX2X_ERR("check transition returned an error. rc %d\n", rc);
4186 return -EINVAL;
4187 }
4188
4189 /* Set "pending" bit */
4190 DP(BNX2X_MSG_SP, "pending bit was=%lx\n", o->pending);
4191 pending_bit = o->set_pending(o, params);
4192 DP(BNX2X_MSG_SP, "pending bit now=%lx\n", o->pending);
4193
4194 /* Don't send a command if only driver cleanup was requested */
4195 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4196 o->complete_cmd(bp, o, pending_bit);
4197 else {
4198 /* Send a ramrod */
4199 rc = o->send_cmd(bp, params);
4200 if (rc) {
4201 o->next_state = BNX2X_Q_STATE_MAX;
4202 clear_bit(pending_bit, pending);
4203 smp_mb__after_atomic();
4204 return rc;
4205 }
4206
4207 if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4208 rc = o->wait_comp(bp, o, pending_bit);
4209 if (rc)
4210 return rc;
4211
4212 return 0;
4213 }
4214 }
4215
4216 return !!test_bit(pending_bit, pending);
4217 }
4218
4219 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
4220 struct bnx2x_queue_state_params *params)
4221 {
4222 enum bnx2x_queue_cmd cmd = params->cmd, bit;
4223
4224 /* ACTIVATE and DEACTIVATE commands are implemented on top of
4225 * UPDATE command.
4226 */
4227 if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
4228 (cmd == BNX2X_Q_CMD_DEACTIVATE))
4229 bit = BNX2X_Q_CMD_UPDATE;
4230 else
4231 bit = cmd;
4232
4233 set_bit(bit, &obj->pending);
4234 return bit;
4235 }
4236
4237 static int bnx2x_queue_wait_comp(struct bnx2x *bp,
4238 struct bnx2x_queue_sp_obj *o,
4239 enum bnx2x_queue_cmd cmd)
4240 {
4241 return bnx2x_state_wait(bp, cmd, &o->pending);
4242 }
4243
4244 /**
4245 * bnx2x_queue_comp_cmd - complete the state change command.
4246 *
4247 * @bp: device handle
4248 * @o:
4249 * @cmd:
4250 *
4251 * Checks that the arrived completion is expected.
4252 */
4253 static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
4254 struct bnx2x_queue_sp_obj *o,
4255 enum bnx2x_queue_cmd cmd)
4256 {
4257 unsigned long cur_pending = o->pending;
4258
4259 if (!test_and_clear_bit(cmd, &cur_pending)) {
4260 BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4261 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
4262 o->state, cur_pending, o->next_state);
4263 return -EINVAL;
4264 }
4265
4266 if (o->next_tx_only >= o->max_cos)
4267 /* >= because tx only must always be smaller than cos since the
4268 * primary connection supports COS 0
4269 */
4270 BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4271 o->next_tx_only, o->max_cos);
4272
4273 DP(BNX2X_MSG_SP,
4274 "Completing command %d for queue %d, setting state to %d\n",
4275 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
4276
4277 if (o->next_tx_only) /* print num tx-only if any exist */
4278 DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
4279 o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
4280
4281 o->state = o->next_state;
4282 o->num_tx_only = o->next_tx_only;
4283 o->next_state = BNX2X_Q_STATE_MAX;
4284
4285 /* It's important that o->state and o->next_state are
4286 * updated before o->pending.
4287 */
4288 wmb();
4289
4290 clear_bit(cmd, &o->pending);
4291 smp_mb__after_atomic();
4292
4293 return 0;
4294 }
4295
4296 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
4297 struct bnx2x_queue_state_params *cmd_params,
4298 struct client_init_ramrod_data *data)
4299 {
4300 struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
4301
4302 /* Rx data */
4303
4304 /* IPv6 TPA supported for E2 and above only */
4305 data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, &params->flags) *
4306 CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4307 }
4308
4309 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
4310 struct bnx2x_queue_sp_obj *o,
4311 struct bnx2x_general_setup_params *params,
4312 struct client_init_general_data *gen_data,
4313 unsigned long *flags)
4314 {
4315 gen_data->client_id = o->cl_id;
4316
4317 if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
4318 gen_data->statistics_counter_id =
4319 params->stat_id;
4320 gen_data->statistics_en_flg = 1;
4321 gen_data->statistics_zero_flg =
4322 test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
4323 } else
4324 gen_data->statistics_counter_id =
4325 DISABLE_STATISTIC_COUNTER_ID_VALUE;
4326
4327 gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
4328 gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
4329 gen_data->sp_client_id = params->spcl_id;
4330 gen_data->mtu = cpu_to_le16(params->mtu);
4331 gen_data->func_id = o->func_id;
4332
4333 gen_data->cos = params->cos;
4334
4335 gen_data->traffic_type =
4336 test_bit(BNX2X_Q_FLG_FCOE, flags) ?
4337 LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4338
4339 gen_data->fp_hsi_ver = params->fp_hsi;
4340
4341 DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
4342 gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4343 }
4344
4345 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
4346 struct bnx2x_txq_setup_params *params,
4347 struct client_init_tx_data *tx_data,
4348 unsigned long *flags)
4349 {
4350 tx_data->enforce_security_flg =
4351 test_bit(BNX2X_Q_FLG_TX_SEC, flags);
4352 tx_data->default_vlan =
4353 cpu_to_le16(params->default_vlan);
4354 tx_data->default_vlan_flg =
4355 test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
4356 tx_data->tx_switching_flg =
4357 test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
4358 tx_data->anti_spoofing_flg =
4359 test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
4360 tx_data->force_default_pri_flg =
4361 test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags);
4362 tx_data->refuse_outband_vlan_flg =
4363 test_bit(BNX2X_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4364 tx_data->tunnel_lso_inc_ip_id =
4365 test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4366 tx_data->tunnel_non_lso_pcsum_location =
4367 test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4368 CSUM_ON_BD;
4369
4370 tx_data->tx_status_block_id = params->fw_sb_id;
4371 tx_data->tx_sb_index_number = params->sb_cq_index;
4372 tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4373
4374 tx_data->tx_bd_page_base.lo =
4375 cpu_to_le32(U64_LO(params->dscr_map));
4376 tx_data->tx_bd_page_base.hi =
4377 cpu_to_le32(U64_HI(params->dscr_map));
4378
4379 /* Don't configure any Tx switching mode during queue SETUP */
4380 tx_data->state = 0;
4381 }
4382
4383 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
4384 struct rxq_pause_params *params,
4385 struct client_init_rx_data *rx_data)
4386 {
4387 /* flow control data */
4388 rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
4389 rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
4390 rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
4391 rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
4392 rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
4393 rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
4394 rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
4395 }
4396
4397 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
4398 struct bnx2x_rxq_setup_params *params,
4399 struct client_init_rx_data *rx_data,
4400 unsigned long *flags)
4401 {
4402 rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
4403 CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4404 rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
4405 CLIENT_INIT_RX_DATA_TPA_MODE;
4406 rx_data->vmqueue_mode_en_flg = 0;
4407
4408 rx_data->cache_line_alignment_log_size =
4409 params->cache_line_log;
4410 rx_data->enable_dynamic_hc =
4411 test_bit(BNX2X_Q_FLG_DHC, flags);
4412 rx_data->max_sges_for_packet = params->max_sges_pkt;
4413 rx_data->client_qzone_id = params->cl_qzone_id;
4414 rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
4415
4416 /* Always start in DROP_ALL mode */
4417 rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4418 CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4419
4420 /* We don't set drop flags */
4421 rx_data->drop_ip_cs_err_flg = 0;
4422 rx_data->drop_tcp_cs_err_flg = 0;
4423 rx_data->drop_ttl0_flg = 0;
4424 rx_data->drop_udp_cs_err_flg = 0;
4425 rx_data->inner_vlan_removal_enable_flg =
4426 test_bit(BNX2X_Q_FLG_VLAN, flags);
4427 rx_data->outer_vlan_removal_enable_flg =
4428 test_bit(BNX2X_Q_FLG_OV, flags);
4429 rx_data->status_block_id = params->fw_sb_id;
4430 rx_data->rx_sb_index_number = params->sb_cq_index;
4431 rx_data->max_tpa_queues = params->max_tpa_queues;
4432 rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
4433 rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
4434 rx_data->bd_page_base.lo =
4435 cpu_to_le32(U64_LO(params->dscr_map));
4436 rx_data->bd_page_base.hi =
4437 cpu_to_le32(U64_HI(params->dscr_map));
4438 rx_data->sge_page_base.lo =
4439 cpu_to_le32(U64_LO(params->sge_map));
4440 rx_data->sge_page_base.hi =
4441 cpu_to_le32(U64_HI(params->sge_map));
4442 rx_data->cqe_page_base.lo =
4443 cpu_to_le32(U64_LO(params->rcq_map));
4444 rx_data->cqe_page_base.hi =
4445 cpu_to_le32(U64_HI(params->rcq_map));
4446 rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
4447
4448 if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
4449 rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4450 rx_data->is_approx_mcast = 1;
4451 }
4452
4453 rx_data->rss_engine_id = params->rss_engine_id;
4454
4455 /* silent vlan removal */
4456 rx_data->silent_vlan_removal_flg =
4457 test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
4458 rx_data->silent_vlan_value =
4459 cpu_to_le16(params->silent_removal_value);
4460 rx_data->silent_vlan_mask =
4461 cpu_to_le16(params->silent_removal_mask);
4462 }
4463
4464 /* initialize the general, tx and rx parts of a queue object */
4465 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
4466 struct bnx2x_queue_state_params *cmd_params,
4467 struct client_init_ramrod_data *data)
4468 {
4469 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4470 &cmd_params->params.setup.gen_params,
4471 &data->general,
4472 &cmd_params->params.setup.flags);
4473
4474 bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4475 &cmd_params->params.setup.txq_params,
4476 &data->tx,
4477 &cmd_params->params.setup.flags);
4478
4479 bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
4480 &cmd_params->params.setup.rxq_params,
4481 &data->rx,
4482 &cmd_params->params.setup.flags);
4483
4484 bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
4485 &cmd_params->params.setup.pause_params,
4486 &data->rx);
4487 }
4488
4489 /* initialize the general and tx parts of a tx-only queue object */
4490 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
4491 struct bnx2x_queue_state_params *cmd_params,
4492 struct tx_queue_init_ramrod_data *data)
4493 {
4494 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4495 &cmd_params->params.tx_only.gen_params,
4496 &data->general,
4497 &cmd_params->params.tx_only.flags);
4498
4499 bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4500 &cmd_params->params.tx_only.txq_params,
4501 &data->tx,
4502 &cmd_params->params.tx_only.flags);
4503
4504 DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
4505 cmd_params->q_obj->cids[0],
4506 data->tx.tx_bd_page_base.lo,
4507 data->tx.tx_bd_page_base.hi);
4508 }
4509
4510 /**
4511 * bnx2x_q_init - init HW/FW queue
4512 *
4513 * @bp: device handle
4514 * @params:
4515 *
4516 * HW/FW initial Queue configuration:
4517 * - HC: Rx and Tx
4518 * - CDU context validation
4519 *
4520 */
4521 static inline int bnx2x_q_init(struct bnx2x *bp,
4522 struct bnx2x_queue_state_params *params)
4523 {
4524 struct bnx2x_queue_sp_obj *o = params->q_obj;
4525 struct bnx2x_queue_init_params *init = &params->params.init;
4526 u16 hc_usec;
4527 u8 cos;
4528
4529 /* Tx HC configuration */
4530 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
4531 test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
4532 hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
4533
4534 bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
4535 init->tx.sb_cq_index,
4536 !test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
4537 hc_usec);
4538 }
4539
4540 /* Rx HC configuration */
4541 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
4542 test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
4543 hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
4544
4545 bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
4546 init->rx.sb_cq_index,
4547 !test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
4548 hc_usec);
4549 }
4550
4551 /* Set CDU context validation values */
4552 for (cos = 0; cos < o->max_cos; cos++) {
4553 DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
4554 o->cids[cos], cos);
4555 DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
4556 bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
4557 }
4558
4559 /* As no ramrod is sent, complete the command immediately */
4560 o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
4561
4562 mmiowb();
4563 smp_mb();
4564
4565 return 0;
4566 }
4567
4568 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
4569 struct bnx2x_queue_state_params *params)
4570 {
4571 struct bnx2x_queue_sp_obj *o = params->q_obj;
4572 struct client_init_ramrod_data *rdata =
4573 (struct client_init_ramrod_data *)o->rdata;
4574 dma_addr_t data_mapping = o->rdata_mapping;
4575 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4576
4577 /* Clear the ramrod data */
4578 memset(rdata, 0, sizeof(*rdata));
4579
4580 /* Fill the ramrod data */
4581 bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
4582
4583 /* No need for an explicit memory barrier here as long as we
4584 * ensure the ordering of writing to the SPQ element
4585 * and updating of the SPQ producer which involves a memory
4586 * read. If the memory read is removed we will have to put a
4587 * full memory barrier there (inside bnx2x_sp_post()).
4588 */
4589 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
4590 U64_HI(data_mapping),
4591 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4592 }
4593
4594 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
4595 struct bnx2x_queue_state_params *params)
4596 {
4597 struct bnx2x_queue_sp_obj *o = params->q_obj;
4598 struct client_init_ramrod_data *rdata =
4599 (struct client_init_ramrod_data *)o->rdata;
4600 dma_addr_t data_mapping = o->rdata_mapping;
4601 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4602
4603 /* Clear the ramrod data */
4604 memset(rdata, 0, sizeof(*rdata));
4605
4606 /* Fill the ramrod data */
4607 bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
4608 bnx2x_q_fill_setup_data_e2(bp, params, rdata);
4609
4610 /* No need for an explicit memory barrier here as long as we
4611 * ensure the ordering of writing to the SPQ element
4612 * and updating of the SPQ producer which involves a memory
4613 * read. If the memory read is removed we will have to put a
4614 * full memory barrier there (inside bnx2x_sp_post()).
4615 */
4616 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
4617 U64_HI(data_mapping),
4618 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4619 }
4620
4621 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
4622 struct bnx2x_queue_state_params *params)
4623 {
4624 struct bnx2x_queue_sp_obj *o = params->q_obj;
4625 struct tx_queue_init_ramrod_data *rdata =
4626 (struct tx_queue_init_ramrod_data *)o->rdata;
4627 dma_addr_t data_mapping = o->rdata_mapping;
4628 int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
4629 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
4630 &params->params.tx_only;
4631 u8 cid_index = tx_only_params->cid_index;
4632
4633 if (cid_index >= o->max_cos) {
4634 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4635 o->cl_id, cid_index);
4636 return -EINVAL;
4637 }
4638
4639 DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
4640 tx_only_params->gen_params.cos,
4641 tx_only_params->gen_params.spcl_id);
4642
4643 /* Clear the ramrod data */
4644 memset(rdata, 0, sizeof(*rdata));
4645
4646 /* Fill the ramrod data */
4647 bnx2x_q_fill_setup_tx_only(bp, params, rdata);
4648
4649 DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
4650 o->cids[cid_index], rdata->general.client_id,
4651 rdata->general.sp_client_id, rdata->general.cos);
4652
4653 /* No need for an explicit memory barrier here as long as we
4654 * ensure the ordering of writing to the SPQ element
4655 * and updating of the SPQ producer which involves a memory
4656 * read. If the memory read is removed we will have to put a
4657 * full memory barrier there (inside bnx2x_sp_post()).
4658 */
4659 return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
4660 U64_HI(data_mapping),
4661 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4662 }
4663
4664 static void bnx2x_q_fill_update_data(struct bnx2x *bp,
4665 struct bnx2x_queue_sp_obj *obj,
4666 struct bnx2x_queue_update_params *params,
4667 struct client_update_ramrod_data *data)
4668 {
4669 /* Client ID of the client to update */
4670 data->client_id = obj->cl_id;
4671
4672 /* Function ID of the client to update */
4673 data->func_id = obj->func_id;
4674
4675 /* Default VLAN value */
4676 data->default_vlan = cpu_to_le16(params->def_vlan);
4677
4678 /* Inner VLAN stripping */
4679 data->inner_vlan_removal_enable_flg =
4680 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
4681 data->inner_vlan_removal_change_flg =
4682 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
4683 &params->update_flags);
4684
4685 /* Outer VLAN stripping */
4686 data->outer_vlan_removal_enable_flg =
4687 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
4688 data->outer_vlan_removal_change_flg =
4689 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
4690 &params->update_flags);
4691
4692 /* Drop packets that have source MAC that doesn't belong to this
4693 * Queue.
4694 */
4695 data->anti_spoofing_enable_flg =
4696 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
4697 data->anti_spoofing_change_flg =
4698 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &params->update_flags);
4699
4700 /* Activate/Deactivate */
4701 data->activate_flg =
4702 test_bit(BNX2X_Q_UPDATE_ACTIVATE, &params->update_flags);
4703 data->activate_change_flg =
4704 test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
4705
4706 /* Enable default VLAN */
4707 data->default_vlan_enable_flg =
4708 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
4709 data->default_vlan_change_flg =
4710 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
4711 &params->update_flags);
4712
4713 /* silent vlan removal */
4714 data->silent_vlan_change_flg =
4715 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4716 &params->update_flags);
4717 data->silent_vlan_removal_flg =
4718 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &params->update_flags);
4719 data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
4720 data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
4721
4722 /* tx switching */
4723 data->tx_switching_flg =
4724 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING, &params->update_flags);
4725 data->tx_switching_change_flg =
4726 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
4727 &params->update_flags);
4728
4729 /* PTP */
4730 data->handle_ptp_pkts_flg =
4731 test_bit(BNX2X_Q_UPDATE_PTP_PKTS, &params->update_flags);
4732 data->handle_ptp_pkts_change_flg =
4733 test_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, &params->update_flags);
4734 }
4735
4736 static inline int bnx2x_q_send_update(struct bnx2x *bp,
4737 struct bnx2x_queue_state_params *params)
4738 {
4739 struct bnx2x_queue_sp_obj *o = params->q_obj;
4740 struct client_update_ramrod_data *rdata =
4741 (struct client_update_ramrod_data *)o->rdata;
4742 dma_addr_t data_mapping = o->rdata_mapping;
4743 struct bnx2x_queue_update_params *update_params =
4744 &params->params.update;
4745 u8 cid_index = update_params->cid_index;
4746
4747 if (cid_index >= o->max_cos) {
4748 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4749 o->cl_id, cid_index);
4750 return -EINVAL;
4751 }
4752
4753 /* Clear the ramrod data */
4754 memset(rdata, 0, sizeof(*rdata));
4755
4756 /* Fill the ramrod data */
4757 bnx2x_q_fill_update_data(bp, o, update_params, rdata);
4758
4759 /* No need for an explicit memory barrier here as long as we
4760 * ensure the ordering of writing to the SPQ element
4761 * and updating of the SPQ producer which involves a memory
4762 * read. If the memory read is removed we will have to put a
4763 * full memory barrier there (inside bnx2x_sp_post()).
4764 */
4765 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
4766 o->cids[cid_index], U64_HI(data_mapping),
4767 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4768 }
4769
4770 /**
4771 * bnx2x_q_send_deactivate - send DEACTIVATE command
4772 *
4773 * @bp: device handle
4774 * @params:
4775 *
4776 * implemented using the UPDATE command.
4777 */
4778 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
4779 struct bnx2x_queue_state_params *params)
4780 {
4781 struct bnx2x_queue_update_params *update = &params->params.update;
4782
4783 memset(update, 0, sizeof(*update));
4784
4785 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
4786
4787 return bnx2x_q_send_update(bp, params);
4788 }
4789
4790 /**
4791 * bnx2x_q_send_activate - send ACTIVATE command
4792 *
4793 * @bp: device handle
4794 * @params:
4795 *
4796 * implemented using the UPDATE command.
4797 */
4798 static inline int bnx2x_q_send_activate(struct bnx2x *bp,
4799 struct bnx2x_queue_state_params *params)
4800 {
4801 struct bnx2x_queue_update_params *update = &params->params.update;
4802
4803 memset(update, 0, sizeof(*update));
4804
4805 __set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
4806 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
4807
4808 return bnx2x_q_send_update(bp, params);
4809 }
4810
4811 static void bnx2x_q_fill_update_tpa_data(struct bnx2x *bp,
4812 struct bnx2x_queue_sp_obj *obj,
4813 struct bnx2x_queue_update_tpa_params *params,
4814 struct tpa_update_ramrod_data *data)
4815 {
4816 data->client_id = obj->cl_id;
4817 data->complete_on_both_clients = params->complete_on_both_clients;
4818 data->dont_verify_rings_pause_thr_flg =
4819 params->dont_verify_thr;
4820 data->max_agg_size = cpu_to_le16(params->max_agg_sz);
4821 data->max_sges_for_packet = params->max_sges_pkt;
4822 data->max_tpa_queues = params->max_tpa_queues;
4823 data->sge_buff_size = cpu_to_le16(params->sge_buff_sz);
4824 data->sge_page_base_hi = cpu_to_le32(U64_HI(params->sge_map));
4825 data->sge_page_base_lo = cpu_to_le32(U64_LO(params->sge_map));
4826 data->sge_pause_thr_high = cpu_to_le16(params->sge_pause_thr_high);
4827 data->sge_pause_thr_low = cpu_to_le16(params->sge_pause_thr_low);
4828 data->tpa_mode = params->tpa_mode;
4829 data->update_ipv4 = params->update_ipv4;
4830 data->update_ipv6 = params->update_ipv6;
4831 }
4832
4833 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
4834 struct bnx2x_queue_state_params *params)
4835 {
4836 struct bnx2x_queue_sp_obj *o = params->q_obj;
4837 struct tpa_update_ramrod_data *rdata =
4838 (struct tpa_update_ramrod_data *)o->rdata;
4839 dma_addr_t data_mapping = o->rdata_mapping;
4840 struct bnx2x_queue_update_tpa_params *update_tpa_params =
4841 &params->params.update_tpa;
4842 u16 type;
4843
4844 /* Clear the ramrod data */
4845 memset(rdata, 0, sizeof(*rdata));
4846
4847 /* Fill the ramrod data */
4848 bnx2x_q_fill_update_tpa_data(bp, o, update_tpa_params, rdata);
4849
4850 /* Add the function id inside the type, so that sp post function
4851 * doesn't automatically add the PF func-id, this is required
4852 * for operations done by PFs on behalf of their VFs
4853 */
4854 type = ETH_CONNECTION_TYPE |
4855 ((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT);
4856
4857 /* No need for an explicit memory barrier here as long as we
4858 * ensure the ordering of writing to the SPQ element
4859 * and updating of the SPQ producer which involves a memory
4860 * read. If the memory read is removed we will have to put a
4861 * full memory barrier there (inside bnx2x_sp_post()).
4862 */
4863 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TPA_UPDATE,
4864 o->cids[BNX2X_PRIMARY_CID_INDEX],
4865 U64_HI(data_mapping),
4866 U64_LO(data_mapping), type);
4867 }
4868
4869 static inline int bnx2x_q_send_halt(struct bnx2x *bp,
4870 struct bnx2x_queue_state_params *params)
4871 {
4872 struct bnx2x_queue_sp_obj *o = params->q_obj;
4873
4874 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
4875 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
4876 ETH_CONNECTION_TYPE);
4877 }
4878
4879 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
4880 struct bnx2x_queue_state_params *params)
4881 {
4882 struct bnx2x_queue_sp_obj *o = params->q_obj;
4883 u8 cid_idx = params->params.cfc_del.cid_index;
4884
4885 if (cid_idx >= o->max_cos) {
4886 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4887 o->cl_id, cid_idx);
4888 return -EINVAL;
4889 }
4890
4891 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
4892 o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
4893 }
4894
4895 static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
4896 struct bnx2x_queue_state_params *params)
4897 {
4898 struct bnx2x_queue_sp_obj *o = params->q_obj;
4899 u8 cid_index = params->params.terminate.cid_index;
4900
4901 if (cid_index >= o->max_cos) {
4902 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4903 o->cl_id, cid_index);
4904 return -EINVAL;
4905 }
4906
4907 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
4908 o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
4909 }
4910
4911 static inline int bnx2x_q_send_empty(struct bnx2x *bp,
4912 struct bnx2x_queue_state_params *params)
4913 {
4914 struct bnx2x_queue_sp_obj *o = params->q_obj;
4915
4916 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
4917 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
4918 ETH_CONNECTION_TYPE);
4919 }
4920
4921 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
4922 struct bnx2x_queue_state_params *params)
4923 {
4924 switch (params->cmd) {
4925 case BNX2X_Q_CMD_INIT:
4926 return bnx2x_q_init(bp, params);
4927 case BNX2X_Q_CMD_SETUP_TX_ONLY:
4928 return bnx2x_q_send_setup_tx_only(bp, params);
4929 case BNX2X_Q_CMD_DEACTIVATE:
4930 return bnx2x_q_send_deactivate(bp, params);
4931 case BNX2X_Q_CMD_ACTIVATE:
4932 return bnx2x_q_send_activate(bp, params);
4933 case BNX2X_Q_CMD_UPDATE:
4934 return bnx2x_q_send_update(bp, params);
4935 case BNX2X_Q_CMD_UPDATE_TPA:
4936 return bnx2x_q_send_update_tpa(bp, params);
4937 case BNX2X_Q_CMD_HALT:
4938 return bnx2x_q_send_halt(bp, params);
4939 case BNX2X_Q_CMD_CFC_DEL:
4940 return bnx2x_q_send_cfc_del(bp, params);
4941 case BNX2X_Q_CMD_TERMINATE:
4942 return bnx2x_q_send_terminate(bp, params);
4943 case BNX2X_Q_CMD_EMPTY:
4944 return bnx2x_q_send_empty(bp, params);
4945 default:
4946 BNX2X_ERR("Unknown command: %d\n", params->cmd);
4947 return -EINVAL;
4948 }
4949 }
4950
4951 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
4952 struct bnx2x_queue_state_params *params)
4953 {
4954 switch (params->cmd) {
4955 case BNX2X_Q_CMD_SETUP:
4956 return bnx2x_q_send_setup_e1x(bp, params);
4957 case BNX2X_Q_CMD_INIT:
4958 case BNX2X_Q_CMD_SETUP_TX_ONLY:
4959 case BNX2X_Q_CMD_DEACTIVATE:
4960 case BNX2X_Q_CMD_ACTIVATE:
4961 case BNX2X_Q_CMD_UPDATE:
4962 case BNX2X_Q_CMD_UPDATE_TPA:
4963 case BNX2X_Q_CMD_HALT:
4964 case BNX2X_Q_CMD_CFC_DEL:
4965 case BNX2X_Q_CMD_TERMINATE:
4966 case BNX2X_Q_CMD_EMPTY:
4967 return bnx2x_queue_send_cmd_cmn(bp, params);
4968 default:
4969 BNX2X_ERR("Unknown command: %d\n", params->cmd);
4970 return -EINVAL;
4971 }
4972 }
4973
4974 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
4975 struct bnx2x_queue_state_params *params)
4976 {
4977 switch (params->cmd) {
4978 case BNX2X_Q_CMD_SETUP:
4979 return bnx2x_q_send_setup_e2(bp, params);
4980 case BNX2X_Q_CMD_INIT:
4981 case BNX2X_Q_CMD_SETUP_TX_ONLY:
4982 case BNX2X_Q_CMD_DEACTIVATE:
4983 case BNX2X_Q_CMD_ACTIVATE:
4984 case BNX2X_Q_CMD_UPDATE:
4985 case BNX2X_Q_CMD_UPDATE_TPA:
4986 case BNX2X_Q_CMD_HALT:
4987 case BNX2X_Q_CMD_CFC_DEL:
4988 case BNX2X_Q_CMD_TERMINATE:
4989 case BNX2X_Q_CMD_EMPTY:
4990 return bnx2x_queue_send_cmd_cmn(bp, params);
4991 default:
4992 BNX2X_ERR("Unknown command: %d\n", params->cmd);
4993 return -EINVAL;
4994 }
4995 }
4996
4997 /**
4998 * bnx2x_queue_chk_transition - check state machine of a regular Queue
4999 *
5000 * @bp: device handle
5001 * @o:
5002 * @params:
5003 *
5004 * (not Forwarding)
5005 * It both checks if the requested command is legal in a current
5006 * state and, if it's legal, sets a `next_state' in the object
5007 * that will be used in the completion flow to set the `state'
5008 * of the object.
5009 *
5010 * returns 0 if a requested command is a legal transition,
5011 * -EINVAL otherwise.
5012 */
5013 static int bnx2x_queue_chk_transition(struct bnx2x *bp,
5014 struct bnx2x_queue_sp_obj *o,
5015 struct bnx2x_queue_state_params *params)
5016 {
5017 enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
5018 enum bnx2x_queue_cmd cmd = params->cmd;
5019 struct bnx2x_queue_update_params *update_params =
5020 &params->params.update;
5021 u8 next_tx_only = o->num_tx_only;
5022
5023 /* Forget all pending for completion commands if a driver only state
5024 * transition has been requested.
5025 */
5026 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5027 o->pending = 0;
5028 o->next_state = BNX2X_Q_STATE_MAX;
5029 }
5030
5031 /* Don't allow a next state transition if we are in the middle of
5032 * the previous one.
5033 */
5034 if (o->pending) {
5035 BNX2X_ERR("Blocking transition since pending was %lx\n",
5036 o->pending);
5037 return -EBUSY;
5038 }
5039
5040 switch (state) {
5041 case BNX2X_Q_STATE_RESET:
5042 if (cmd == BNX2X_Q_CMD_INIT)
5043 next_state = BNX2X_Q_STATE_INITIALIZED;
5044
5045 break;
5046 case BNX2X_Q_STATE_INITIALIZED:
5047 if (cmd == BNX2X_Q_CMD_SETUP) {
5048 if (test_bit(BNX2X_Q_FLG_ACTIVE,
5049 &params->params.setup.flags))
5050 next_state = BNX2X_Q_STATE_ACTIVE;
5051 else
5052 next_state = BNX2X_Q_STATE_INACTIVE;
5053 }
5054
5055 break;
5056 case BNX2X_Q_STATE_ACTIVE:
5057 if (cmd == BNX2X_Q_CMD_DEACTIVATE)
5058 next_state = BNX2X_Q_STATE_INACTIVE;
5059
5060 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5061 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5062 next_state = BNX2X_Q_STATE_ACTIVE;
5063
5064 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5065 next_state = BNX2X_Q_STATE_MULTI_COS;
5066 next_tx_only = 1;
5067 }
5068
5069 else if (cmd == BNX2X_Q_CMD_HALT)
5070 next_state = BNX2X_Q_STATE_STOPPED;
5071
5072 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5073 /* If "active" state change is requested, update the
5074 * state accordingly.
5075 */
5076 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5077 &update_params->update_flags) &&
5078 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5079 &update_params->update_flags))
5080 next_state = BNX2X_Q_STATE_INACTIVE;
5081 else
5082 next_state = BNX2X_Q_STATE_ACTIVE;
5083 }
5084
5085 break;
5086 case BNX2X_Q_STATE_MULTI_COS:
5087 if (cmd == BNX2X_Q_CMD_TERMINATE)
5088 next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
5089
5090 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5091 next_state = BNX2X_Q_STATE_MULTI_COS;
5092 next_tx_only = o->num_tx_only + 1;
5093 }
5094
5095 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5096 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5097 next_state = BNX2X_Q_STATE_MULTI_COS;
5098
5099 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5100 /* If "active" state change is requested, update the
5101 * state accordingly.
5102 */
5103 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5104 &update_params->update_flags) &&
5105 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5106 &update_params->update_flags))
5107 next_state = BNX2X_Q_STATE_INACTIVE;
5108 else
5109 next_state = BNX2X_Q_STATE_MULTI_COS;
5110 }
5111
5112 break;
5113 case BNX2X_Q_STATE_MCOS_TERMINATED:
5114 if (cmd == BNX2X_Q_CMD_CFC_DEL) {
5115 next_tx_only = o->num_tx_only - 1;
5116 if (next_tx_only == 0)
5117 next_state = BNX2X_Q_STATE_ACTIVE;
5118 else
5119 next_state = BNX2X_Q_STATE_MULTI_COS;
5120 }
5121
5122 break;
5123 case BNX2X_Q_STATE_INACTIVE:
5124 if (cmd == BNX2X_Q_CMD_ACTIVATE)
5125 next_state = BNX2X_Q_STATE_ACTIVE;
5126
5127 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5128 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5129 next_state = BNX2X_Q_STATE_INACTIVE;
5130
5131 else if (cmd == BNX2X_Q_CMD_HALT)
5132 next_state = BNX2X_Q_STATE_STOPPED;
5133
5134 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5135 /* If "active" state change is requested, update the
5136 * state accordingly.
5137 */
5138 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5139 &update_params->update_flags) &&
5140 test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5141 &update_params->update_flags)){
5142 if (o->num_tx_only == 0)
5143 next_state = BNX2X_Q_STATE_ACTIVE;
5144 else /* tx only queues exist for this queue */
5145 next_state = BNX2X_Q_STATE_MULTI_COS;
5146 } else
5147 next_state = BNX2X_Q_STATE_INACTIVE;
5148 }
5149
5150 break;
5151 case BNX2X_Q_STATE_STOPPED:
5152 if (cmd == BNX2X_Q_CMD_TERMINATE)
5153 next_state = BNX2X_Q_STATE_TERMINATED;
5154
5155 break;
5156 case BNX2X_Q_STATE_TERMINATED:
5157 if (cmd == BNX2X_Q_CMD_CFC_DEL)
5158 next_state = BNX2X_Q_STATE_RESET;
5159
5160 break;
5161 default:
5162 BNX2X_ERR("Illegal state: %d\n", state);
5163 }
5164
5165 /* Transition is assured */
5166 if (next_state != BNX2X_Q_STATE_MAX) {
5167 DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
5168 state, cmd, next_state);
5169 o->next_state = next_state;
5170 o->next_tx_only = next_tx_only;
5171 return 0;
5172 }
5173
5174 DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
5175
5176 return -EINVAL;
5177 }
5178
5179 void bnx2x_init_queue_obj(struct bnx2x *bp,
5180 struct bnx2x_queue_sp_obj *obj,
5181 u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5182 void *rdata,
5183 dma_addr_t rdata_mapping, unsigned long type)
5184 {
5185 memset(obj, 0, sizeof(*obj));
5186
5187 /* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5188 BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
5189
5190 memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5191 obj->max_cos = cid_cnt;
5192 obj->cl_id = cl_id;
5193 obj->func_id = func_id;
5194 obj->rdata = rdata;
5195 obj->rdata_mapping = rdata_mapping;
5196 obj->type = type;
5197 obj->next_state = BNX2X_Q_STATE_MAX;
5198
5199 if (CHIP_IS_E1x(bp))
5200 obj->send_cmd = bnx2x_queue_send_cmd_e1x;
5201 else
5202 obj->send_cmd = bnx2x_queue_send_cmd_e2;
5203
5204 obj->check_transition = bnx2x_queue_chk_transition;
5205
5206 obj->complete_cmd = bnx2x_queue_comp_cmd;
5207 obj->wait_comp = bnx2x_queue_wait_comp;
5208 obj->set_pending = bnx2x_queue_set_pending;
5209 }
5210
5211 /* return a queue object's logical state*/
5212 int bnx2x_get_q_logical_state(struct bnx2x *bp,
5213 struct bnx2x_queue_sp_obj *obj)
5214 {
5215 switch (obj->state) {
5216 case BNX2X_Q_STATE_ACTIVE:
5217 case BNX2X_Q_STATE_MULTI_COS:
5218 return BNX2X_Q_LOGICAL_STATE_ACTIVE;
5219 case BNX2X_Q_STATE_RESET:
5220 case BNX2X_Q_STATE_INITIALIZED:
5221 case BNX2X_Q_STATE_MCOS_TERMINATED:
5222 case BNX2X_Q_STATE_INACTIVE:
5223 case BNX2X_Q_STATE_STOPPED:
5224 case BNX2X_Q_STATE_TERMINATED:
5225 case BNX2X_Q_STATE_FLRED:
5226 return BNX2X_Q_LOGICAL_STATE_STOPPED;
5227 default:
5228 return -EINVAL;
5229 }
5230 }
5231
5232 /********************** Function state object *********************************/
5233 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
5234 struct bnx2x_func_sp_obj *o)
5235 {
5236 /* in the middle of transaction - return INVALID state */
5237 if (o->pending)
5238 return BNX2X_F_STATE_MAX;
5239
5240 /* unsure the order of reading of o->pending and o->state
5241 * o->pending should be read first
5242 */
5243 rmb();
5244
5245 return o->state;
5246 }
5247
5248 static int bnx2x_func_wait_comp(struct bnx2x *bp,
5249 struct bnx2x_func_sp_obj *o,
5250 enum bnx2x_func_cmd cmd)
5251 {
5252 return bnx2x_state_wait(bp, cmd, &o->pending);
5253 }
5254
5255 /**
5256 * bnx2x_func_state_change_comp - complete the state machine transition
5257 *
5258 * @bp: device handle
5259 * @o:
5260 * @cmd:
5261 *
5262 * Called on state change transition. Completes the state
5263 * machine transition only - no HW interaction.
5264 */
5265 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
5266 struct bnx2x_func_sp_obj *o,
5267 enum bnx2x_func_cmd cmd)
5268 {
5269 unsigned long cur_pending = o->pending;
5270
5271 if (!test_and_clear_bit(cmd, &cur_pending)) {
5272 BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5273 cmd, BP_FUNC(bp), o->state,
5274 cur_pending, o->next_state);
5275 return -EINVAL;
5276 }
5277
5278 DP(BNX2X_MSG_SP,
5279 "Completing command %d for func %d, setting state to %d\n",
5280 cmd, BP_FUNC(bp), o->next_state);
5281
5282 o->state = o->next_state;
5283 o->next_state = BNX2X_F_STATE_MAX;
5284
5285 /* It's important that o->state and o->next_state are
5286 * updated before o->pending.
5287 */
5288 wmb();
5289
5290 clear_bit(cmd, &o->pending);
5291 smp_mb__after_atomic();
5292
5293 return 0;
5294 }
5295
5296 /**
5297 * bnx2x_func_comp_cmd - complete the state change command
5298 *
5299 * @bp: device handle
5300 * @o:
5301 * @cmd:
5302 *
5303 * Checks that the arrived completion is expected.
5304 */
5305 static int bnx2x_func_comp_cmd(struct bnx2x *bp,
5306 struct bnx2x_func_sp_obj *o,
5307 enum bnx2x_func_cmd cmd)
5308 {
5309 /* Complete the state machine part first, check if it's a
5310 * legal completion.
5311 */
5312 int rc = bnx2x_func_state_change_comp(bp, o, cmd);
5313 return rc;
5314 }
5315
5316 /**
5317 * bnx2x_func_chk_transition - perform function state machine transition
5318 *
5319 * @bp: device handle
5320 * @o:
5321 * @params:
5322 *
5323 * It both checks if the requested command is legal in a current
5324 * state and, if it's legal, sets a `next_state' in the object
5325 * that will be used in the completion flow to set the `state'
5326 * of the object.
5327 *
5328 * returns 0 if a requested command is a legal transition,
5329 * -EINVAL otherwise.
5330 */
5331 static int bnx2x_func_chk_transition(struct bnx2x *bp,
5332 struct bnx2x_func_sp_obj *o,
5333 struct bnx2x_func_state_params *params)
5334 {
5335 enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
5336 enum bnx2x_func_cmd cmd = params->cmd;
5337
5338 /* Forget all pending for completion commands if a driver only state
5339 * transition has been requested.
5340 */
5341 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5342 o->pending = 0;
5343 o->next_state = BNX2X_F_STATE_MAX;
5344 }
5345
5346 /* Don't allow a next state transition if we are in the middle of
5347 * the previous one.
5348 */
5349 if (o->pending)
5350 return -EBUSY;
5351
5352 switch (state) {
5353 case BNX2X_F_STATE_RESET:
5354 if (cmd == BNX2X_F_CMD_HW_INIT)
5355 next_state = BNX2X_F_STATE_INITIALIZED;
5356
5357 break;
5358 case BNX2X_F_STATE_INITIALIZED:
5359 if (cmd == BNX2X_F_CMD_START)
5360 next_state = BNX2X_F_STATE_STARTED;
5361
5362 else if (cmd == BNX2X_F_CMD_HW_RESET)
5363 next_state = BNX2X_F_STATE_RESET;
5364
5365 break;
5366 case BNX2X_F_STATE_STARTED:
5367 if (cmd == BNX2X_F_CMD_STOP)
5368 next_state = BNX2X_F_STATE_INITIALIZED;
5369 /* afex ramrods can be sent only in started mode, and only
5370 * if not pending for function_stop ramrod completion
5371 * for these events - next state remained STARTED.
5372 */
5373 else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) &&
5374 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5375 next_state = BNX2X_F_STATE_STARTED;
5376
5377 else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) &&
5378 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5379 next_state = BNX2X_F_STATE_STARTED;
5380
5381 /* Switch_update ramrod can be sent in either started or
5382 * tx_stopped state, and it doesn't change the state.
5383 */
5384 else if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5385 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5386 next_state = BNX2X_F_STATE_STARTED;
5387
5388 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5389 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5390 next_state = BNX2X_F_STATE_STARTED;
5391
5392 else if (cmd == BNX2X_F_CMD_TX_STOP)
5393 next_state = BNX2X_F_STATE_TX_STOPPED;
5394
5395 break;
5396 case BNX2X_F_STATE_TX_STOPPED:
5397 if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5398 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5399 next_state = BNX2X_F_STATE_TX_STOPPED;
5400
5401 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5402 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5403 next_state = BNX2X_F_STATE_TX_STOPPED;
5404
5405 else if (cmd == BNX2X_F_CMD_TX_START)
5406 next_state = BNX2X_F_STATE_STARTED;
5407
5408 break;
5409 default:
5410 BNX2X_ERR("Unknown state: %d\n", state);
5411 }
5412
5413 /* Transition is assured */
5414 if (next_state != BNX2X_F_STATE_MAX) {
5415 DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
5416 state, cmd, next_state);
5417 o->next_state = next_state;
5418 return 0;
5419 }
5420
5421 DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
5422 state, cmd);
5423
5424 return -EINVAL;
5425 }
5426
5427 /**
5428 * bnx2x_func_init_func - performs HW init at function stage
5429 *
5430 * @bp: device handle
5431 * @drv:
5432 *
5433 * Init HW when the current phase is
5434 * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5435 * HW blocks.
5436 */
5437 static inline int bnx2x_func_init_func(struct bnx2x *bp,
5438 const struct bnx2x_func_sp_drv_ops *drv)
5439 {
5440 return drv->init_hw_func(bp);
5441 }
5442
5443 /**
5444 * bnx2x_func_init_port - performs HW init at port stage
5445 *
5446 * @bp: device handle
5447 * @drv:
5448 *
5449 * Init HW when the current phase is
5450 * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5451 * FUNCTION-only HW blocks.
5452 *
5453 */
5454 static inline int bnx2x_func_init_port(struct bnx2x *bp,
5455 const struct bnx2x_func_sp_drv_ops *drv)
5456 {
5457 int rc = drv->init_hw_port(bp);
5458 if (rc)
5459 return rc;
5460
5461 return bnx2x_func_init_func(bp, drv);
5462 }
5463
5464 /**
5465 * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5466 *
5467 * @bp: device handle
5468 * @drv:
5469 *
5470 * Init HW when the current phase is
5471 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5472 * PORT-only and FUNCTION-only HW blocks.
5473 */
5474 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
5475 const struct bnx2x_func_sp_drv_ops *drv)
5476 {
5477 int rc = drv->init_hw_cmn_chip(bp);
5478 if (rc)
5479 return rc;
5480
5481 return bnx2x_func_init_port(bp, drv);
5482 }
5483
5484 /**
5485 * bnx2x_func_init_cmn - performs HW init at common stage
5486 *
5487 * @bp: device handle
5488 * @drv:
5489 *
5490 * Init HW when the current phase is
5491 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5492 * PORT-only and FUNCTION-only HW blocks.
5493 */
5494 static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
5495 const struct bnx2x_func_sp_drv_ops *drv)
5496 {
5497 int rc = drv->init_hw_cmn(bp);
5498 if (rc)
5499 return rc;
5500
5501 return bnx2x_func_init_port(bp, drv);
5502 }
5503
5504 static int bnx2x_func_hw_init(struct bnx2x *bp,
5505 struct bnx2x_func_state_params *params)
5506 {
5507 u32 load_code = params->params.hw_init.load_phase;
5508 struct bnx2x_func_sp_obj *o = params->f_obj;
5509 const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5510 int rc = 0;
5511
5512 DP(BNX2X_MSG_SP, "function %d load_code %x\n",
5513 BP_ABS_FUNC(bp), load_code);
5514
5515 /* Prepare buffers for unzipping the FW */
5516 rc = drv->gunzip_init(bp);
5517 if (rc)
5518 return rc;
5519
5520 /* Prepare FW */
5521 rc = drv->init_fw(bp);
5522 if (rc) {
5523 BNX2X_ERR("Error loading firmware\n");
5524 goto init_err;
5525 }
5526
5527 /* Handle the beginning of COMMON_XXX pases separately... */
5528 switch (load_code) {
5529 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5530 rc = bnx2x_func_init_cmn_chip(bp, drv);
5531 if (rc)
5532 goto init_err;
5533
5534 break;
5535 case FW_MSG_CODE_DRV_LOAD_COMMON:
5536 rc = bnx2x_func_init_cmn(bp, drv);
5537 if (rc)
5538 goto init_err;
5539
5540 break;
5541 case FW_MSG_CODE_DRV_LOAD_PORT:
5542 rc = bnx2x_func_init_port(bp, drv);
5543 if (rc)
5544 goto init_err;
5545
5546 break;
5547 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5548 rc = bnx2x_func_init_func(bp, drv);
5549 if (rc)
5550 goto init_err;
5551
5552 break;
5553 default:
5554 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5555 rc = -EINVAL;
5556 }
5557
5558 init_err:
5559 drv->gunzip_end(bp);
5560
5561 /* In case of success, complete the command immediately: no ramrods
5562 * have been sent.
5563 */
5564 if (!rc)
5565 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
5566
5567 return rc;
5568 }
5569
5570 /**
5571 * bnx2x_func_reset_func - reset HW at function stage
5572 *
5573 * @bp: device handle
5574 * @drv:
5575 *
5576 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
5577 * FUNCTION-only HW blocks.
5578 */
5579 static inline void bnx2x_func_reset_func(struct bnx2x *bp,
5580 const struct bnx2x_func_sp_drv_ops *drv)
5581 {
5582 drv->reset_hw_func(bp);
5583 }
5584
5585 /**
5586 * bnx2x_func_reset_port - reset HW at port stage
5587 *
5588 * @bp: device handle
5589 * @drv:
5590 *
5591 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
5592 * FUNCTION-only and PORT-only HW blocks.
5593 *
5594 * !!!IMPORTANT!!!
5595 *
5596 * It's important to call reset_port before reset_func() as the last thing
5597 * reset_func does is pf_disable() thus disabling PGLUE_B, which
5598 * makes impossible any DMAE transactions.
5599 */
5600 static inline void bnx2x_func_reset_port(struct bnx2x *bp,
5601 const struct bnx2x_func_sp_drv_ops *drv)
5602 {
5603 drv->reset_hw_port(bp);
5604 bnx2x_func_reset_func(bp, drv);
5605 }
5606
5607 /**
5608 * bnx2x_func_reset_cmn - reset HW at common stage
5609 *
5610 * @bp: device handle
5611 * @drv:
5612 *
5613 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
5614 * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
5615 * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
5616 */
5617 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
5618 const struct bnx2x_func_sp_drv_ops *drv)
5619 {
5620 bnx2x_func_reset_port(bp, drv);
5621 drv->reset_hw_cmn(bp);
5622 }
5623
5624 static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
5625 struct bnx2x_func_state_params *params)
5626 {
5627 u32 reset_phase = params->params.hw_reset.reset_phase;
5628 struct bnx2x_func_sp_obj *o = params->f_obj;
5629 const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5630
5631 DP(BNX2X_MSG_SP, "function %d reset_phase %x\n", BP_ABS_FUNC(bp),
5632 reset_phase);
5633
5634 switch (reset_phase) {
5635 case FW_MSG_CODE_DRV_UNLOAD_COMMON:
5636 bnx2x_func_reset_cmn(bp, drv);
5637 break;
5638 case FW_MSG_CODE_DRV_UNLOAD_PORT:
5639 bnx2x_func_reset_port(bp, drv);
5640 break;
5641 case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
5642 bnx2x_func_reset_func(bp, drv);
5643 break;
5644 default:
5645 BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
5646 reset_phase);
5647 break;
5648 }
5649
5650 /* Complete the command immediately: no ramrods have been sent. */
5651 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
5652
5653 return 0;
5654 }
5655
5656 static inline int bnx2x_func_send_start(struct bnx2x *bp,
5657 struct bnx2x_func_state_params *params)
5658 {
5659 struct bnx2x_func_sp_obj *o = params->f_obj;
5660 struct function_start_data *rdata =
5661 (struct function_start_data *)o->rdata;
5662 dma_addr_t data_mapping = o->rdata_mapping;
5663 struct bnx2x_func_start_params *start_params = &params->params.start;
5664
5665 memset(rdata, 0, sizeof(*rdata));
5666
5667 /* Fill the ramrod data with provided parameters */
5668 rdata->function_mode = (u8)start_params->mf_mode;
5669 rdata->sd_vlan_tag = cpu_to_le16(start_params->sd_vlan_tag);
5670 rdata->path_id = BP_PATH(bp);
5671 rdata->network_cos_mode = start_params->network_cos_mode;
5672 rdata->tunnel_mode = start_params->tunnel_mode;
5673 rdata->gre_tunnel_type = start_params->gre_tunnel_type;
5674 rdata->inner_gre_rss_en = start_params->inner_gre_rss_en;
5675 rdata->vxlan_dst_port = cpu_to_le16(4789);
5676 rdata->sd_accept_mf_clss_fail = start_params->class_fail;
5677 if (start_params->class_fail_ethtype) {
5678 rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
5679 rdata->sd_accept_mf_clss_fail_ethtype =
5680 cpu_to_le16(start_params->class_fail_ethtype);
5681 }
5682
5683 rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
5684 rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
5685 if (start_params->sd_vlan_eth_type)
5686 rdata->sd_vlan_eth_type =
5687 cpu_to_le16(start_params->sd_vlan_eth_type);
5688 else
5689 rdata->sd_vlan_eth_type =
5690 cpu_to_le16(0x8100);
5691
5692 rdata->no_added_tags = start_params->no_added_tags;
5693 /* No need for an explicit memory barrier here as long we would
5694 * need to ensure the ordering of writing to the SPQ element
5695 * and updating of the SPQ producer which involves a memory
5696 * read and we will have to put a full memory barrier there
5697 * (inside bnx2x_sp_post()).
5698 */
5699
5700 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
5701 U64_HI(data_mapping),
5702 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5703 }
5704
5705 static inline int bnx2x_func_send_switch_update(struct bnx2x *bp,
5706 struct bnx2x_func_state_params *params)
5707 {
5708 struct bnx2x_func_sp_obj *o = params->f_obj;
5709 struct function_update_data *rdata =
5710 (struct function_update_data *)o->rdata;
5711 dma_addr_t data_mapping = o->rdata_mapping;
5712 struct bnx2x_func_switch_update_params *switch_update_params =
5713 &params->params.switch_update;
5714
5715 memset(rdata, 0, sizeof(*rdata));
5716
5717 /* Fill the ramrod data with provided parameters */
5718 if (test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
5719 &switch_update_params->changes)) {
5720 rdata->tx_switch_suspend_change_flg = 1;
5721 rdata->tx_switch_suspend =
5722 test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
5723 &switch_update_params->changes);
5724 }
5725
5726 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
5727 &switch_update_params->changes)) {
5728 rdata->sd_vlan_tag_change_flg = 1;
5729 rdata->sd_vlan_tag =
5730 cpu_to_le16(switch_update_params->vlan);
5731 }
5732
5733 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
5734 &switch_update_params->changes)) {
5735 rdata->sd_vlan_eth_type_change_flg = 1;
5736 rdata->sd_vlan_eth_type =
5737 cpu_to_le16(switch_update_params->vlan_eth_type);
5738 }
5739
5740 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
5741 &switch_update_params->changes)) {
5742 rdata->sd_vlan_force_pri_change_flg = 1;
5743 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
5744 &switch_update_params->changes))
5745 rdata->sd_vlan_force_pri_flg = 1;
5746 rdata->sd_vlan_force_pri_flg =
5747 switch_update_params->vlan_force_prio;
5748 }
5749
5750 if (test_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
5751 &switch_update_params->changes)) {
5752 rdata->update_tunn_cfg_flg = 1;
5753 if (test_bit(BNX2X_F_UPDATE_TUNNEL_CLSS_EN,
5754 &switch_update_params->changes))
5755 rdata->tunn_clss_en = 1;
5756 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_GRE_RSS_EN,
5757 &switch_update_params->changes))
5758 rdata->inner_gre_rss_en = 1;
5759 rdata->tunnel_mode = switch_update_params->tunnel_mode;
5760 rdata->gre_tunnel_type = switch_update_params->gre_tunnel_type;
5761 rdata->vxlan_dst_port = cpu_to_le16(4789);
5762 }
5763
5764 rdata->echo = SWITCH_UPDATE;
5765
5766 /* No need for an explicit memory barrier here as long as we
5767 * ensure the ordering of writing to the SPQ element
5768 * and updating of the SPQ producer which involves a memory
5769 * read. If the memory read is removed we will have to put a
5770 * full memory barrier there (inside bnx2x_sp_post()).
5771 */
5772 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
5773 U64_HI(data_mapping),
5774 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5775 }
5776
5777 static inline int bnx2x_func_send_afex_update(struct bnx2x *bp,
5778 struct bnx2x_func_state_params *params)
5779 {
5780 struct bnx2x_func_sp_obj *o = params->f_obj;
5781 struct function_update_data *rdata =
5782 (struct function_update_data *)o->afex_rdata;
5783 dma_addr_t data_mapping = o->afex_rdata_mapping;
5784 struct bnx2x_func_afex_update_params *afex_update_params =
5785 &params->params.afex_update;
5786
5787 memset(rdata, 0, sizeof(*rdata));
5788
5789 /* Fill the ramrod data with provided parameters */
5790 rdata->vif_id_change_flg = 1;
5791 rdata->vif_id = cpu_to_le16(afex_update_params->vif_id);
5792 rdata->afex_default_vlan_change_flg = 1;
5793 rdata->afex_default_vlan =
5794 cpu_to_le16(afex_update_params->afex_default_vlan);
5795 rdata->allowed_priorities_change_flg = 1;
5796 rdata->allowed_priorities = afex_update_params->allowed_priorities;
5797 rdata->echo = AFEX_UPDATE;
5798
5799 /* No need for an explicit memory barrier here as long as we
5800 * ensure the ordering of writing to the SPQ element
5801 * and updating of the SPQ producer which involves a memory
5802 * read. If the memory read is removed we will have to put a
5803 * full memory barrier there (inside bnx2x_sp_post()).
5804 */
5805 DP(BNX2X_MSG_SP,
5806 "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
5807 rdata->vif_id,
5808 rdata->afex_default_vlan, rdata->allowed_priorities);
5809
5810 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
5811 U64_HI(data_mapping),
5812 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5813 }
5814
5815 static
5816 inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp,
5817 struct bnx2x_func_state_params *params)
5818 {
5819 struct bnx2x_func_sp_obj *o = params->f_obj;
5820 struct afex_vif_list_ramrod_data *rdata =
5821 (struct afex_vif_list_ramrod_data *)o->afex_rdata;
5822 struct bnx2x_func_afex_viflists_params *afex_vif_params =
5823 &params->params.afex_viflists;
5824 u64 *p_rdata = (u64 *)rdata;
5825
5826 memset(rdata, 0, sizeof(*rdata));
5827
5828 /* Fill the ramrod data with provided parameters */
5829 rdata->vif_list_index = cpu_to_le16(afex_vif_params->vif_list_index);
5830 rdata->func_bit_map = afex_vif_params->func_bit_map;
5831 rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
5832 rdata->func_to_clear = afex_vif_params->func_to_clear;
5833
5834 /* send in echo type of sub command */
5835 rdata->echo = afex_vif_params->afex_vif_list_command;
5836
5837 /* No need for an explicit memory barrier here as long we would
5838 * need to ensure the ordering of writing to the SPQ element
5839 * and updating of the SPQ producer which involves a memory
5840 * read and we will have to put a full memory barrier there
5841 * (inside bnx2x_sp_post()).
5842 */
5843
5844 DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
5845 rdata->afex_vif_list_command, rdata->vif_list_index,
5846 rdata->func_bit_map, rdata->func_to_clear);
5847
5848 /* this ramrod sends data directly and not through DMA mapping */
5849 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
5850 U64_HI(*p_rdata), U64_LO(*p_rdata),
5851 NONE_CONNECTION_TYPE);
5852 }
5853
5854 static inline int bnx2x_func_send_stop(struct bnx2x *bp,
5855 struct bnx2x_func_state_params *params)
5856 {
5857 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
5858 NONE_CONNECTION_TYPE);
5859 }
5860
5861 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
5862 struct bnx2x_func_state_params *params)
5863 {
5864 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
5865 NONE_CONNECTION_TYPE);
5866 }
5867 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
5868 struct bnx2x_func_state_params *params)
5869 {
5870 struct bnx2x_func_sp_obj *o = params->f_obj;
5871 struct flow_control_configuration *rdata =
5872 (struct flow_control_configuration *)o->rdata;
5873 dma_addr_t data_mapping = o->rdata_mapping;
5874 struct bnx2x_func_tx_start_params *tx_start_params =
5875 &params->params.tx_start;
5876 int i;
5877
5878 memset(rdata, 0, sizeof(*rdata));
5879
5880 rdata->dcb_enabled = tx_start_params->dcb_enabled;
5881 rdata->dcb_version = tx_start_params->dcb_version;
5882 rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
5883
5884 for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
5885 rdata->traffic_type_to_priority_cos[i] =
5886 tx_start_params->traffic_type_to_priority_cos[i];
5887
5888 /* No need for an explicit memory barrier here as long as we
5889 * ensure the ordering of writing to the SPQ element
5890 * and updating of the SPQ producer which involves a memory
5891 * read. If the memory read is removed we will have to put a
5892 * full memory barrier there (inside bnx2x_sp_post()).
5893 */
5894 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
5895 U64_HI(data_mapping),
5896 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5897 }
5898
5899 static inline
5900 int bnx2x_func_send_set_timesync(struct bnx2x *bp,
5901 struct bnx2x_func_state_params *params)
5902 {
5903 struct bnx2x_func_sp_obj *o = params->f_obj;
5904 struct set_timesync_ramrod_data *rdata =
5905 (struct set_timesync_ramrod_data *)o->rdata;
5906 dma_addr_t data_mapping = o->rdata_mapping;
5907 struct bnx2x_func_set_timesync_params *set_timesync_params =
5908 &params->params.set_timesync;
5909
5910 memset(rdata, 0, sizeof(*rdata));
5911
5912 /* Fill the ramrod data with provided parameters */
5913 rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
5914 rdata->offset_cmd = set_timesync_params->offset_cmd;
5915 rdata->add_sub_drift_adjust_value =
5916 set_timesync_params->add_sub_drift_adjust_value;
5917 rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
5918 rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
5919 rdata->offset_delta.lo =
5920 cpu_to_le32(U64_LO(set_timesync_params->offset_delta));
5921 rdata->offset_delta.hi =
5922 cpu_to_le32(U64_HI(set_timesync_params->offset_delta));
5923
5924 DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
5925 rdata->drift_adjust_cmd, rdata->offset_cmd,
5926 rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
5927 rdata->drift_adjust_period, rdata->offset_delta.lo,
5928 rdata->offset_delta.hi);
5929
5930 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
5931 U64_HI(data_mapping),
5932 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5933 }
5934
5935 static int bnx2x_func_send_cmd(struct bnx2x *bp,
5936 struct bnx2x_func_state_params *params)
5937 {
5938 switch (params->cmd) {
5939 case BNX2X_F_CMD_HW_INIT:
5940 return bnx2x_func_hw_init(bp, params);
5941 case BNX2X_F_CMD_START:
5942 return bnx2x_func_send_start(bp, params);
5943 case BNX2X_F_CMD_STOP:
5944 return bnx2x_func_send_stop(bp, params);
5945 case BNX2X_F_CMD_HW_RESET:
5946 return bnx2x_func_hw_reset(bp, params);
5947 case BNX2X_F_CMD_AFEX_UPDATE:
5948 return bnx2x_func_send_afex_update(bp, params);
5949 case BNX2X_F_CMD_AFEX_VIFLISTS:
5950 return bnx2x_func_send_afex_viflists(bp, params);
5951 case BNX2X_F_CMD_TX_STOP:
5952 return bnx2x_func_send_tx_stop(bp, params);
5953 case BNX2X_F_CMD_TX_START:
5954 return bnx2x_func_send_tx_start(bp, params);
5955 case BNX2X_F_CMD_SWITCH_UPDATE:
5956 return bnx2x_func_send_switch_update(bp, params);
5957 case BNX2X_F_CMD_SET_TIMESYNC:
5958 return bnx2x_func_send_set_timesync(bp, params);
5959 default:
5960 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5961 return -EINVAL;
5962 }
5963 }
5964
5965 void bnx2x_init_func_obj(struct bnx2x *bp,
5966 struct bnx2x_func_sp_obj *obj,
5967 void *rdata, dma_addr_t rdata_mapping,
5968 void *afex_rdata, dma_addr_t afex_rdata_mapping,
5969 struct bnx2x_func_sp_drv_ops *drv_iface)
5970 {
5971 memset(obj, 0, sizeof(*obj));
5972
5973 mutex_init(&obj->one_pending_mutex);
5974
5975 obj->rdata = rdata;
5976 obj->rdata_mapping = rdata_mapping;
5977 obj->afex_rdata = afex_rdata;
5978 obj->afex_rdata_mapping = afex_rdata_mapping;
5979 obj->send_cmd = bnx2x_func_send_cmd;
5980 obj->check_transition = bnx2x_func_chk_transition;
5981 obj->complete_cmd = bnx2x_func_comp_cmd;
5982 obj->wait_comp = bnx2x_func_wait_comp;
5983
5984 obj->drv = drv_iface;
5985 }
5986
5987 /**
5988 * bnx2x_func_state_change - perform Function state change transition
5989 *
5990 * @bp: device handle
5991 * @params: parameters to perform the transaction
5992 *
5993 * returns 0 in case of successfully completed transition,
5994 * negative error code in case of failure, positive
5995 * (EBUSY) value if there is a completion to that is
5996 * still pending (possible only if RAMROD_COMP_WAIT is
5997 * not set in params->ramrod_flags for asynchronous
5998 * commands).
5999 */
6000 int bnx2x_func_state_change(struct bnx2x *bp,
6001 struct bnx2x_func_state_params *params)
6002 {
6003 struct bnx2x_func_sp_obj *o = params->f_obj;
6004 int rc, cnt = 300;
6005 enum bnx2x_func_cmd cmd = params->cmd;
6006 unsigned long *pending = &o->pending;
6007
6008 mutex_lock(&o->one_pending_mutex);
6009
6010 /* Check that the requested transition is legal */
6011 rc = o->check_transition(bp, o, params);
6012 if ((rc == -EBUSY) &&
6013 (test_bit(RAMROD_RETRY, &params->ramrod_flags))) {
6014 while ((rc == -EBUSY) && (--cnt > 0)) {
6015 mutex_unlock(&o->one_pending_mutex);
6016 msleep(10);
6017 mutex_lock(&o->one_pending_mutex);
6018 rc = o->check_transition(bp, o, params);
6019 }
6020 if (rc == -EBUSY) {
6021 mutex_unlock(&o->one_pending_mutex);
6022 BNX2X_ERR("timeout waiting for previous ramrod completion\n");
6023 return rc;
6024 }
6025 } else if (rc) {
6026 mutex_unlock(&o->one_pending_mutex);
6027 return rc;
6028 }
6029
6030 /* Set "pending" bit */
6031 set_bit(cmd, pending);
6032
6033 /* Don't send a command if only driver cleanup was requested */
6034 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6035 bnx2x_func_state_change_comp(bp, o, cmd);
6036 mutex_unlock(&o->one_pending_mutex);
6037 } else {
6038 /* Send a ramrod */
6039 rc = o->send_cmd(bp, params);
6040
6041 mutex_unlock(&o->one_pending_mutex);
6042
6043 if (rc) {
6044 o->next_state = BNX2X_F_STATE_MAX;
6045 clear_bit(cmd, pending);
6046 smp_mb__after_atomic();
6047 return rc;
6048 }
6049
6050 if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6051 rc = o->wait_comp(bp, o, cmd);
6052 if (rc)
6053 return rc;
6054
6055 return 0;
6056 }
6057 }
6058
6059 return !!test_bit(cmd, pending);
6060 }
This page took 0.316586 seconds and 6 git commands to generate.