e5aca2de1871350f3e47a788c4360b461c02a039
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_sriov.c
1 /* bnx2x_sriov.c: Broadcom Everest network driver.
2 *
3 * Copyright 2009-2013 Broadcom Corporation
4 *
5 * Unless you and Broadcom execute a separate written software license
6 * agreement governing use of this software, this software is licensed to you
7 * under the terms of the GNU General Public License version 2, available
8 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9 *
10 * Notwithstanding the above, under no circumstances may you combine this
11 * software in any way with any other Broadcom software provided under a
12 * license other than the GPL, without Broadcom's express prior written
13 * consent.
14 *
15 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
16 * Written by: Shmulik Ravid
17 * Ariel Elior <ariel.elior@qlogic.com>
18 *
19 */
20 #include "bnx2x.h"
21 #include "bnx2x_init.h"
22 #include "bnx2x_cmn.h"
23 #include "bnx2x_sp.h"
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26
27 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
28 struct bnx2x_virtf **vf,
29 struct pf_vf_bulletin_content **bulletin,
30 bool test_queue);
31
32 /* General service functions */
33 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
34 u16 pf_id)
35 {
36 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
37 pf_id);
38 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
39 pf_id);
40 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
41 pf_id);
42 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
43 pf_id);
44 }
45
46 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
47 u8 enable)
48 {
49 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
50 enable);
51 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
52 enable);
53 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
54 enable);
55 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
56 enable);
57 }
58
59 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
60 {
61 int idx;
62
63 for_each_vf(bp, idx)
64 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
65 break;
66 return idx;
67 }
68
69 static
70 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
71 {
72 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
73 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
74 }
75
76 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
77 u8 igu_sb_id, u8 segment, u16 index, u8 op,
78 u8 update)
79 {
80 /* acking a VF sb through the PF - use the GRC */
81 u32 ctl;
82 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
83 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
84 u32 func_encode = vf->abs_vfid;
85 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
86 struct igu_regular cmd_data = {0};
87
88 cmd_data.sb_id_and_flags =
89 ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
90 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
91 (update << IGU_REGULAR_BUPDATE_SHIFT) |
92 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
93
94 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
95 func_encode << IGU_CTRL_REG_FID_SHIFT |
96 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
97
98 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
99 cmd_data.sb_id_and_flags, igu_addr_data);
100 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
101 mmiowb();
102 barrier();
103
104 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
105 ctl, igu_addr_ctl);
106 REG_WR(bp, igu_addr_ctl, ctl);
107 mmiowb();
108 barrier();
109 }
110
111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 struct bnx2x_virtf *vf,
113 bool print_err)
114 {
115 if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 if (print_err)
117 BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 else
119 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 return false;
121 }
122 return true;
123 }
124
125 /* VFOP operations states */
126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 struct bnx2x_queue_init_params *init_params,
128 struct bnx2x_queue_setup_params *setup_params,
129 u16 q_idx, u16 sb_idx)
130 {
131 DP(BNX2X_MSG_IOV,
132 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 vf->abs_vfid,
134 q_idx,
135 sb_idx,
136 init_params->tx.sb_cq_index,
137 init_params->tx.hc_rate,
138 setup_params->flags,
139 setup_params->txq_params.traffic_type);
140 }
141
142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 struct bnx2x_queue_init_params *init_params,
144 struct bnx2x_queue_setup_params *setup_params,
145 u16 q_idx, u16 sb_idx)
146 {
147 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148
149 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 vf->abs_vfid,
152 q_idx,
153 sb_idx,
154 init_params->rx.sb_cq_index,
155 init_params->rx.hc_rate,
156 setup_params->gen_params.mtu,
157 rxq_params->buf_sz,
158 rxq_params->sge_buf_sz,
159 rxq_params->max_sges_pkt,
160 rxq_params->tpa_agg_sz,
161 setup_params->flags,
162 rxq_params->drop_flags,
163 rxq_params->cache_line_log);
164 }
165
166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 struct bnx2x_virtf *vf,
168 struct bnx2x_vf_queue *q,
169 struct bnx2x_vf_queue_construct_params *p,
170 unsigned long q_type)
171 {
172 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174
175 /* INIT */
176
177 /* Enable host coalescing in the transition to INIT state */
178 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180
181 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183
184 /* FW SB ID */
185 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187
188 /* context */
189 init_p->cxts[0] = q->cxt;
190
191 /* SETUP */
192
193 /* Setup-op general parameters */
194 setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 setup_p->gen_params.fp_hsi = vf->fp_hsi;
197
198 /* Setup-op pause params:
199 * Nothing to do, the pause thresholds are set by default to 0 which
200 * effectively turns off the feature for this queue. We don't want
201 * one queue (VF) to interfering with another queue (another VF)
202 */
203 if (vf->cfg_flags & VF_CFG_FW_FC)
204 BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
205 vf->abs_vfid);
206 /* Setup-op flags:
207 * collect statistics, zero statistics, local-switching, security,
208 * OV for Flex10, RSS and MCAST for leading
209 */
210 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
211 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
212
213 /* for VFs, enable tx switching, bd coherency, and mac address
214 * anti-spoofing
215 */
216 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
217 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
218 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
219
220 /* Setup-op rx parameters */
221 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
222 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
223
224 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
225 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
226 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
227
228 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
229 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
230 }
231
232 /* Setup-op tx parameters */
233 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
234 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
235 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
236 }
237 }
238
239 static int bnx2x_vf_queue_create(struct bnx2x *bp,
240 struct bnx2x_virtf *vf, int qid,
241 struct bnx2x_vf_queue_construct_params *qctor)
242 {
243 struct bnx2x_queue_state_params *q_params;
244 int rc = 0;
245
246 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
247
248 /* Prepare ramrod information */
249 q_params = &qctor->qstate;
250 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
251 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
252
253 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
254 BNX2X_Q_LOGICAL_STATE_ACTIVE) {
255 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
256 goto out;
257 }
258
259 /* Run Queue 'construction' ramrods */
260 q_params->cmd = BNX2X_Q_CMD_INIT;
261 rc = bnx2x_queue_state_change(bp, q_params);
262 if (rc)
263 goto out;
264
265 memcpy(&q_params->params.setup, &qctor->prep_qsetup,
266 sizeof(struct bnx2x_queue_setup_params));
267 q_params->cmd = BNX2X_Q_CMD_SETUP;
268 rc = bnx2x_queue_state_change(bp, q_params);
269 if (rc)
270 goto out;
271
272 /* enable interrupts */
273 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
274 USTORM_ID, 0, IGU_INT_ENABLE, 0);
275 out:
276 return rc;
277 }
278
279 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
280 int qid)
281 {
282 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
283 BNX2X_Q_CMD_TERMINATE,
284 BNX2X_Q_CMD_CFC_DEL};
285 struct bnx2x_queue_state_params q_params;
286 int rc, i;
287
288 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
289
290 /* Prepare ramrod information */
291 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
292 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
293 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
294
295 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
296 BNX2X_Q_LOGICAL_STATE_STOPPED) {
297 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
298 goto out;
299 }
300
301 /* Run Queue 'destruction' ramrods */
302 for (i = 0; i < ARRAY_SIZE(cmds); i++) {
303 q_params.cmd = cmds[i];
304 rc = bnx2x_queue_state_change(bp, &q_params);
305 if (rc) {
306 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
307 return rc;
308 }
309 }
310 out:
311 /* Clean Context */
312 if (bnx2x_vfq(vf, qid, cxt)) {
313 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
314 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
315 }
316
317 return 0;
318 }
319
320 static void
321 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
322 {
323 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
324 if (vf) {
325 /* the first igu entry belonging to VFs of this PF */
326 if (!BP_VFDB(bp)->first_vf_igu_entry)
327 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
328
329 /* the first igu entry belonging to this VF */
330 if (!vf_sb_count(vf))
331 vf->igu_base_id = igu_sb_id;
332
333 ++vf_sb_count(vf);
334 ++vf->sb_count;
335 }
336 BP_VFDB(bp)->vf_sbs_pool++;
337 }
338
339 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
340 struct bnx2x_vlan_mac_obj *obj,
341 atomic_t *counter)
342 {
343 struct list_head *pos;
344 int read_lock;
345 int cnt = 0;
346
347 read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
348 if (read_lock)
349 DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
350
351 list_for_each(pos, &obj->head)
352 cnt++;
353
354 if (!read_lock)
355 bnx2x_vlan_mac_h_read_unlock(bp, obj);
356
357 atomic_set(counter, cnt);
358 }
359
360 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
361 int qid, bool drv_only, bool mac)
362 {
363 struct bnx2x_vlan_mac_ramrod_params ramrod;
364 int rc;
365
366 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
367 mac ? "MACs" : "VLANs");
368
369 /* Prepare ramrod params */
370 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
371 if (mac) {
372 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
373 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
374 } else {
375 set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
376 &ramrod.user_req.vlan_mac_flags);
377 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
378 }
379 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
380
381 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
382 if (drv_only)
383 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
384 else
385 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
386
387 /* Start deleting */
388 rc = ramrod.vlan_mac_obj->delete_all(bp,
389 ramrod.vlan_mac_obj,
390 &ramrod.user_req.vlan_mac_flags,
391 &ramrod.ramrod_flags);
392 if (rc) {
393 BNX2X_ERR("Failed to delete all %s\n",
394 mac ? "MACs" : "VLANs");
395 return rc;
396 }
397
398 /* Clear the vlan counters */
399 if (!mac)
400 atomic_set(&bnx2x_vfq(vf, qid, vlan_count), 0);
401
402 return 0;
403 }
404
405 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
406 struct bnx2x_virtf *vf, int qid,
407 struct bnx2x_vf_mac_vlan_filter *filter,
408 bool drv_only)
409 {
410 struct bnx2x_vlan_mac_ramrod_params ramrod;
411 int rc;
412
413 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
414 vf->abs_vfid, filter->add ? "Adding" : "Deleting",
415 filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : "VLAN");
416
417 /* Prepare ramrod params */
418 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
419 if (filter->type == BNX2X_VF_FILTER_VLAN) {
420 set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
421 &ramrod.user_req.vlan_mac_flags);
422 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
423 ramrod.user_req.u.vlan.vlan = filter->vid;
424 } else {
425 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
426 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
427 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
428 }
429 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
430 BNX2X_VLAN_MAC_DEL;
431
432 /* Verify there are available vlan credits */
433 if (filter->add && filter->type == BNX2X_VF_FILTER_VLAN &&
434 (atomic_read(&bnx2x_vfq(vf, qid, vlan_count)) >=
435 vf_vlan_rules_cnt(vf))) {
436 BNX2X_ERR("No credits for vlan [%d >= %d]\n",
437 atomic_read(&bnx2x_vfq(vf, qid, vlan_count)),
438 vf_vlan_rules_cnt(vf));
439 return -ENOMEM;
440 }
441
442 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
443 if (drv_only)
444 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
445 else
446 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
447
448 /* Add/Remove the filter */
449 rc = bnx2x_config_vlan_mac(bp, &ramrod);
450 if (rc && rc != -EEXIST) {
451 BNX2X_ERR("Failed to %s %s\n",
452 filter->add ? "add" : "delete",
453 filter->type == BNX2X_VF_FILTER_MAC ? "MAC" :
454 "VLAN");
455 return rc;
456 }
457
458 /* Update the vlan counters */
459 if (filter->type == BNX2X_VF_FILTER_VLAN)
460 bnx2x_vf_vlan_credit(bp, ramrod.vlan_mac_obj,
461 &bnx2x_vfq(vf, qid, vlan_count));
462
463 return 0;
464 }
465
466 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
467 struct bnx2x_vf_mac_vlan_filters *filters,
468 int qid, bool drv_only)
469 {
470 int rc = 0, i;
471
472 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
473
474 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
475 return -EINVAL;
476
477 /* Prepare ramrod params */
478 for (i = 0; i < filters->count; i++) {
479 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
480 &filters->filters[i], drv_only);
481 if (rc)
482 break;
483 }
484
485 /* Rollback if needed */
486 if (i != filters->count) {
487 BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
488 i, filters->count + 1);
489 while (--i >= 0) {
490 filters->filters[i].add = !filters->filters[i].add;
491 bnx2x_vf_mac_vlan_config(bp, vf, qid,
492 &filters->filters[i],
493 drv_only);
494 }
495 }
496
497 /* It's our responsibility to free the filters */
498 kfree(filters);
499
500 return rc;
501 }
502
503 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
504 struct bnx2x_vf_queue_construct_params *qctor)
505 {
506 int rc;
507
508 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
509
510 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
511 if (rc)
512 goto op_err;
513
514 /* Configure vlan0 for leading queue */
515 if (!qid) {
516 struct bnx2x_vf_mac_vlan_filter filter;
517
518 memset(&filter, 0, sizeof(struct bnx2x_vf_mac_vlan_filter));
519 filter.type = BNX2X_VF_FILTER_VLAN;
520 filter.add = true;
521 filter.vid = 0;
522 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filter, false);
523 if (rc)
524 goto op_err;
525 }
526
527 /* Schedule the configuration of any pending vlan filters */
528 vf->cfg_flags |= VF_CFG_VLAN;
529 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
530 BNX2X_MSG_IOV);
531 return 0;
532 op_err:
533 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
534 return rc;
535 }
536
537 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
538 int qid)
539 {
540 int rc;
541
542 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
543
544 /* If needed, clean the filtering data base */
545 if ((qid == LEADING_IDX) &&
546 bnx2x_validate_vf_sp_objs(bp, vf, false)) {
547 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, false);
548 if (rc)
549 goto op_err;
550 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, true);
551 if (rc)
552 goto op_err;
553 }
554
555 /* Terminate queue */
556 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
557 struct bnx2x_queue_state_params qstate;
558
559 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
560 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
561 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
562 qstate.cmd = BNX2X_Q_CMD_TERMINATE;
563 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
564 rc = bnx2x_queue_state_change(bp, &qstate);
565 if (rc)
566 goto op_err;
567 }
568
569 return 0;
570 op_err:
571 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
572 return rc;
573 }
574
575 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
576 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
577 {
578 struct bnx2x_mcast_list_elem *mc = NULL;
579 struct bnx2x_mcast_ramrod_params mcast;
580 int rc, i;
581
582 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
583
584 /* Prepare Multicast command */
585 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
586 mcast.mcast_obj = &vf->mcast_obj;
587 if (drv_only)
588 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
589 else
590 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
591 if (mc_num) {
592 mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
593 GFP_KERNEL);
594 if (!mc) {
595 BNX2X_ERR("Cannot Configure mulicasts due to lack of memory\n");
596 return -ENOMEM;
597 }
598 }
599
600 /* clear existing mcasts */
601 mcast.mcast_list_len = vf->mcast_list_len;
602 vf->mcast_list_len = mc_num;
603 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
604 if (rc) {
605 BNX2X_ERR("Failed to remove multicasts\n");
606 kfree(mc);
607 return rc;
608 }
609
610 /* update mcast list on the ramrod params */
611 if (mc_num) {
612 INIT_LIST_HEAD(&mcast.mcast_list);
613 for (i = 0; i < mc_num; i++) {
614 mc[i].mac = mcasts[i];
615 list_add_tail(&mc[i].link,
616 &mcast.mcast_list);
617 }
618
619 /* add new mcasts */
620 mcast.mcast_list_len = mc_num;
621 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD);
622 if (rc)
623 BNX2X_ERR("Faled to add multicasts\n");
624 kfree(mc);
625 }
626
627 return rc;
628 }
629
630 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
631 struct bnx2x_rx_mode_ramrod_params *ramrod,
632 struct bnx2x_virtf *vf,
633 unsigned long accept_flags)
634 {
635 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
636
637 memset(ramrod, 0, sizeof(*ramrod));
638 ramrod->cid = vfq->cid;
639 ramrod->cl_id = vfq_cl_id(vf, vfq);
640 ramrod->rx_mode_obj = &bp->rx_mode_obj;
641 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
642 ramrod->rx_accept_flags = accept_flags;
643 ramrod->tx_accept_flags = accept_flags;
644 ramrod->pstate = &vf->filter_state;
645 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
646
647 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
648 set_bit(RAMROD_RX, &ramrod->ramrod_flags);
649 set_bit(RAMROD_TX, &ramrod->ramrod_flags);
650
651 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
652 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
653 }
654
655 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
656 int qid, unsigned long accept_flags)
657 {
658 struct bnx2x_rx_mode_ramrod_params ramrod;
659
660 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
661
662 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
663 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
664 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
665 return bnx2x_config_rx_mode(bp, &ramrod);
666 }
667
668 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
669 {
670 int rc;
671
672 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
673
674 /* Remove all classification configuration for leading queue */
675 if (qid == LEADING_IDX) {
676 rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
677 if (rc)
678 goto op_err;
679
680 /* Remove filtering if feasible */
681 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
682 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
683 false, false);
684 if (rc)
685 goto op_err;
686 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
687 false, true);
688 if (rc)
689 goto op_err;
690 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
691 if (rc)
692 goto op_err;
693 }
694 }
695
696 /* Destroy queue */
697 rc = bnx2x_vf_queue_destroy(bp, vf, qid);
698 if (rc)
699 goto op_err;
700 return rc;
701 op_err:
702 BNX2X_ERR("vf[%d:%d] error: rc %d\n",
703 vf->abs_vfid, qid, rc);
704 return rc;
705 }
706
707 /* VF enable primitives
708 * when pretend is required the caller is responsible
709 * for calling pretend prior to calling these routines
710 */
711
712 /* internal vf enable - until vf is enabled internally all transactions
713 * are blocked. This routine should always be called last with pretend.
714 */
715 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
716 {
717 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
718 }
719
720 /* clears vf error in all semi blocks */
721 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
722 {
723 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
724 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
725 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
726 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
727 }
728
729 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
730 {
731 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
732 u32 was_err_reg = 0;
733
734 switch (was_err_group) {
735 case 0:
736 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
737 break;
738 case 1:
739 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
740 break;
741 case 2:
742 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
743 break;
744 case 3:
745 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
746 break;
747 }
748 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
749 }
750
751 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
752 {
753 int i;
754 u32 val;
755
756 /* Set VF masks and configuration - pretend */
757 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
758
759 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
760 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
761 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
762 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
763 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
764 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
765
766 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
767 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
768 if (vf->cfg_flags & VF_CFG_INT_SIMD)
769 val |= IGU_VF_CONF_SINGLE_ISR_EN;
770 val &= ~IGU_VF_CONF_PARENT_MASK;
771 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
772 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
773
774 DP(BNX2X_MSG_IOV,
775 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
776 vf->abs_vfid, val);
777
778 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
779
780 /* iterate over all queues, clear sb consumer */
781 for (i = 0; i < vf_sb_count(vf); i++) {
782 u8 igu_sb_id = vf_igu_sb(vf, i);
783
784 /* zero prod memory */
785 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
786
787 /* clear sb state machine */
788 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
789 false /* VF */);
790
791 /* disable + update */
792 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
793 IGU_INT_DISABLE, 1);
794 }
795 }
796
797 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
798 {
799 /* set the VF-PF association in the FW */
800 storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
801 storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
802
803 /* clear vf errors*/
804 bnx2x_vf_semi_clear_err(bp, abs_vfid);
805 bnx2x_vf_pglue_clear_err(bp, abs_vfid);
806
807 /* internal vf-enable - pretend */
808 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
809 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
810 bnx2x_vf_enable_internal(bp, true);
811 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
812 }
813
814 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
815 {
816 /* Reset vf in IGU interrupts are still disabled */
817 bnx2x_vf_igu_reset(bp, vf);
818
819 /* pretend to enable the vf with the PBF */
820 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
821 REG_WR(bp, PBF_REG_DISABLE_VF, 0);
822 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
823 }
824
825 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
826 {
827 struct pci_dev *dev;
828 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
829
830 if (!vf)
831 return false;
832
833 dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
834 if (dev)
835 return bnx2x_is_pcie_pending(dev);
836 return false;
837 }
838
839 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
840 {
841 /* Verify no pending pci transactions */
842 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
843 BNX2X_ERR("PCIE Transactions still pending\n");
844
845 return 0;
846 }
847
848 static void bnx2x_iov_re_set_vlan_filters(struct bnx2x *bp,
849 struct bnx2x_virtf *vf,
850 int new)
851 {
852 int num = vf_vlan_rules_cnt(vf);
853 int diff = new - num;
854 bool rc = true;
855
856 DP(BNX2X_MSG_IOV, "vf[%d] - %d vlan filter credits [previously %d]\n",
857 vf->abs_vfid, new, num);
858
859 if (diff > 0)
860 rc = bp->vlans_pool.get(&bp->vlans_pool, diff);
861 else if (diff < 0)
862 rc = bp->vlans_pool.put(&bp->vlans_pool, -diff);
863
864 if (rc)
865 vf_vlan_rules_cnt(vf) = new;
866 else
867 DP(BNX2X_MSG_IOV, "vf[%d] - Failed to configure vlan filter credits change\n",
868 vf->abs_vfid);
869 }
870
871 /* must be called after the number of PF queues and the number of VFs are
872 * both known
873 */
874 static void
875 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
876 {
877 struct vf_pf_resc_request *resc = &vf->alloc_resc;
878 u16 vlan_count = 0;
879
880 /* will be set only during VF-ACQUIRE */
881 resc->num_rxqs = 0;
882 resc->num_txqs = 0;
883
884 /* no credit calculations for macs (just yet) */
885 resc->num_mac_filters = 1;
886
887 /* divvy up vlan rules */
888 bnx2x_iov_re_set_vlan_filters(bp, vf, 0);
889 vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
890 vlan_count = 1 << ilog2(vlan_count);
891 bnx2x_iov_re_set_vlan_filters(bp, vf,
892 vlan_count / BNX2X_NR_VIRTFN(bp));
893
894 /* no real limitation */
895 resc->num_mc_filters = 0;
896
897 /* num_sbs already set */
898 resc->num_sbs = vf->sb_count;
899 }
900
901 /* FLR routines: */
902 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
903 {
904 /* reset the state variables */
905 bnx2x_iov_static_resc(bp, vf);
906 vf->state = VF_FREE;
907 }
908
909 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
910 {
911 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
912
913 /* DQ usage counter */
914 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
915 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
916 "DQ VF usage counter timed out",
917 poll_cnt);
918 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
919
920 /* FW cleanup command - poll for the results */
921 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
922 poll_cnt))
923 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
924
925 /* verify TX hw is flushed */
926 bnx2x_tx_hw_flushed(bp, poll_cnt);
927 }
928
929 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
930 {
931 int rc, i;
932
933 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
934
935 /* the cleanup operations are valid if and only if the VF
936 * was first acquired.
937 */
938 for (i = 0; i < vf_rxq_count(vf); i++) {
939 rc = bnx2x_vf_queue_flr(bp, vf, i);
940 if (rc)
941 goto out;
942 }
943
944 /* remove multicasts */
945 bnx2x_vf_mcast(bp, vf, NULL, 0, true);
946
947 /* dispatch final cleanup and wait for HW queues to flush */
948 bnx2x_vf_flr_clnup_hw(bp, vf);
949
950 /* release VF resources */
951 bnx2x_vf_free_resc(bp, vf);
952
953 /* re-open the mailbox */
954 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
955 return;
956 out:
957 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
958 vf->abs_vfid, i, rc);
959 }
960
961 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
962 {
963 struct bnx2x_virtf *vf;
964 int i;
965
966 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
967 /* VF should be RESET & in FLR cleanup states */
968 if (bnx2x_vf(bp, i, state) != VF_RESET ||
969 !bnx2x_vf(bp, i, flr_clnup_stage))
970 continue;
971
972 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
973 i, BNX2X_NR_VIRTFN(bp));
974
975 vf = BP_VF(bp, i);
976
977 /* lock the vf pf channel */
978 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
979
980 /* invoke the VF FLR SM */
981 bnx2x_vf_flr(bp, vf);
982
983 /* mark the VF to be ACKED and continue */
984 vf->flr_clnup_stage = false;
985 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
986 }
987
988 /* Acknowledge the handled VFs.
989 * we are acknowledge all the vfs which an flr was requested for, even
990 * if amongst them there are such that we never opened, since the mcp
991 * will interrupt us immediately again if we only ack some of the bits,
992 * resulting in an endless loop. This can happen for example in KVM
993 * where an 'all ones' flr request is sometimes given by hyper visor
994 */
995 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
996 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
997 for (i = 0; i < FLRD_VFS_DWORDS; i++)
998 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
999 bp->vfdb->flrd_vfs[i]);
1000
1001 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
1002
1003 /* clear the acked bits - better yet if the MCP implemented
1004 * write to clear semantics
1005 */
1006 for (i = 0; i < FLRD_VFS_DWORDS; i++)
1007 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
1008 }
1009
1010 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
1011 {
1012 int i;
1013
1014 /* Read FLR'd VFs */
1015 for (i = 0; i < FLRD_VFS_DWORDS; i++)
1016 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
1017
1018 DP(BNX2X_MSG_MCP,
1019 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
1020 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
1021
1022 for_each_vf(bp, i) {
1023 struct bnx2x_virtf *vf = BP_VF(bp, i);
1024 u32 reset = 0;
1025
1026 if (vf->abs_vfid < 32)
1027 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
1028 else
1029 reset = bp->vfdb->flrd_vfs[1] &
1030 (1 << (vf->abs_vfid - 32));
1031
1032 if (reset) {
1033 /* set as reset and ready for cleanup */
1034 vf->state = VF_RESET;
1035 vf->flr_clnup_stage = true;
1036
1037 DP(BNX2X_MSG_IOV,
1038 "Initiating Final cleanup for VF %d\n",
1039 vf->abs_vfid);
1040 }
1041 }
1042
1043 /* do the FLR cleanup for all marked VFs*/
1044 bnx2x_vf_flr_clnup(bp);
1045 }
1046
1047 /* IOV global initialization routines */
1048 void bnx2x_iov_init_dq(struct bnx2x *bp)
1049 {
1050 if (!IS_SRIOV(bp))
1051 return;
1052
1053 /* Set the DQ such that the CID reflect the abs_vfid */
1054 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1055 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1056
1057 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1058 * the PF L2 queues
1059 */
1060 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1061
1062 /* The VF window size is the log2 of the max number of CIDs per VF */
1063 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1064
1065 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
1066 * the Pf doorbell size although the 2 are independent.
1067 */
1068 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1069
1070 /* No security checks for now -
1071 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1072 * CID range 0 - 0x1ffff
1073 */
1074 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1075 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1076 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1077 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1078
1079 /* set the VF doorbell threshold. This threshold represents the amount
1080 * of doorbells allowed in the main DORQ fifo for a specific VF.
1081 */
1082 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1083 }
1084
1085 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1086 {
1087 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1088 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1089 }
1090
1091 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1092 {
1093 struct pci_dev *dev = bp->pdev;
1094 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1095
1096 return dev->bus->number + ((dev->devfn + iov->offset +
1097 iov->stride * vfid) >> 8);
1098 }
1099
1100 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1101 {
1102 struct pci_dev *dev = bp->pdev;
1103 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1104
1105 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1106 }
1107
1108 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1109 {
1110 int i, n;
1111 struct pci_dev *dev = bp->pdev;
1112 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1113
1114 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1115 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1116 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1117
1118 size /= iov->total;
1119 vf->bars[n].bar = start + size * vf->abs_vfid;
1120 vf->bars[n].size = size;
1121 }
1122 }
1123
1124 static int bnx2x_ari_enabled(struct pci_dev *dev)
1125 {
1126 return dev->bus->self && dev->bus->self->ari_enabled;
1127 }
1128
1129 static int
1130 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1131 {
1132 int sb_id;
1133 u32 val;
1134 u8 fid, current_pf = 0;
1135
1136 /* IGU in normal mode - read CAM */
1137 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1138 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1139 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1140 continue;
1141 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1142 if (fid & IGU_FID_ENCODE_IS_PF)
1143 current_pf = fid & IGU_FID_PF_NUM_MASK;
1144 else if (current_pf == BP_FUNC(bp))
1145 bnx2x_vf_set_igu_info(bp, sb_id,
1146 (fid & IGU_FID_VF_NUM_MASK));
1147 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1148 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1149 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1150 (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1151 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1152 }
1153 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1154 return BP_VFDB(bp)->vf_sbs_pool;
1155 }
1156
1157 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1158 {
1159 if (bp->vfdb) {
1160 kfree(bp->vfdb->vfqs);
1161 kfree(bp->vfdb->vfs);
1162 kfree(bp->vfdb);
1163 }
1164 bp->vfdb = NULL;
1165 }
1166
1167 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1168 {
1169 int pos;
1170 struct pci_dev *dev = bp->pdev;
1171
1172 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1173 if (!pos) {
1174 BNX2X_ERR("failed to find SRIOV capability in device\n");
1175 return -ENODEV;
1176 }
1177
1178 iov->pos = pos;
1179 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1180 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1181 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1182 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1183 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1184 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1185 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1186 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1187 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1188
1189 return 0;
1190 }
1191
1192 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1193 {
1194 u32 val;
1195
1196 /* read the SRIOV capability structure
1197 * The fields can be read via configuration read or
1198 * directly from the device (starting at offset PCICFG_OFFSET)
1199 */
1200 if (bnx2x_sriov_pci_cfg_info(bp, iov))
1201 return -ENODEV;
1202
1203 /* get the number of SRIOV bars */
1204 iov->nres = 0;
1205
1206 /* read the first_vfid */
1207 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1208 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1209 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1210
1211 DP(BNX2X_MSG_IOV,
1212 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1213 BP_FUNC(bp),
1214 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1215 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1216
1217 return 0;
1218 }
1219
1220 /* must be called after PF bars are mapped */
1221 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1222 int num_vfs_param)
1223 {
1224 int err, i;
1225 struct bnx2x_sriov *iov;
1226 struct pci_dev *dev = bp->pdev;
1227
1228 bp->vfdb = NULL;
1229
1230 /* verify is pf */
1231 if (IS_VF(bp))
1232 return 0;
1233
1234 /* verify sriov capability is present in configuration space */
1235 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1236 return 0;
1237
1238 /* verify chip revision */
1239 if (CHIP_IS_E1x(bp))
1240 return 0;
1241
1242 /* check if SRIOV support is turned off */
1243 if (!num_vfs_param)
1244 return 0;
1245
1246 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1247 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1248 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1249 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1250 return 0;
1251 }
1252
1253 /* SRIOV can be enabled only with MSIX */
1254 if (int_mode_param == BNX2X_INT_MODE_MSI ||
1255 int_mode_param == BNX2X_INT_MODE_INTX) {
1256 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1257 return 0;
1258 }
1259
1260 err = -EIO;
1261 /* verify ari is enabled */
1262 if (!bnx2x_ari_enabled(bp->pdev)) {
1263 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1264 return 0;
1265 }
1266
1267 /* verify igu is in normal mode */
1268 if (CHIP_INT_MODE_IS_BC(bp)) {
1269 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
1270 return 0;
1271 }
1272
1273 /* allocate the vfs database */
1274 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1275 if (!bp->vfdb) {
1276 BNX2X_ERR("failed to allocate vf database\n");
1277 err = -ENOMEM;
1278 goto failed;
1279 }
1280
1281 /* get the sriov info - Linux already collected all the pertinent
1282 * information, however the sriov structure is for the private use
1283 * of the pci module. Also we want this information regardless
1284 * of the hyper-visor.
1285 */
1286 iov = &(bp->vfdb->sriov);
1287 err = bnx2x_sriov_info(bp, iov);
1288 if (err)
1289 goto failed;
1290
1291 /* SR-IOV capability was enabled but there are no VFs*/
1292 if (iov->total == 0)
1293 goto failed;
1294
1295 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1296
1297 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1298 num_vfs_param, iov->nr_virtfn);
1299
1300 /* allocate the vf array */
1301 bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1302 BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1303 if (!bp->vfdb->vfs) {
1304 BNX2X_ERR("failed to allocate vf array\n");
1305 err = -ENOMEM;
1306 goto failed;
1307 }
1308
1309 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1310 for_each_vf(bp, i) {
1311 bnx2x_vf(bp, i, index) = i;
1312 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1313 bnx2x_vf(bp, i, state) = VF_FREE;
1314 mutex_init(&bnx2x_vf(bp, i, op_mutex));
1315 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1316 }
1317
1318 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1319 if (!bnx2x_get_vf_igu_cam_info(bp)) {
1320 BNX2X_ERR("No entries in IGU CAM for vfs\n");
1321 err = -EINVAL;
1322 goto failed;
1323 }
1324
1325 /* allocate the queue arrays for all VFs */
1326 bp->vfdb->vfqs = kzalloc(
1327 BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1328 GFP_KERNEL);
1329
1330 if (!bp->vfdb->vfqs) {
1331 BNX2X_ERR("failed to allocate vf queue array\n");
1332 err = -ENOMEM;
1333 goto failed;
1334 }
1335
1336 /* Prepare the VFs event synchronization mechanism */
1337 mutex_init(&bp->vfdb->event_mutex);
1338
1339 mutex_init(&bp->vfdb->bulletin_mutex);
1340
1341 return 0;
1342 failed:
1343 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1344 __bnx2x_iov_free_vfdb(bp);
1345 return err;
1346 }
1347
1348 void bnx2x_iov_remove_one(struct bnx2x *bp)
1349 {
1350 int vf_idx;
1351
1352 /* if SRIOV is not enabled there's nothing to do */
1353 if (!IS_SRIOV(bp))
1354 return;
1355
1356 bnx2x_disable_sriov(bp);
1357
1358 /* disable access to all VFs */
1359 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1360 bnx2x_pretend_func(bp,
1361 HW_VF_HANDLE(bp,
1362 bp->vfdb->sriov.first_vf_in_pf +
1363 vf_idx));
1364 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1365 bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1366 bnx2x_vf_enable_internal(bp, 0);
1367 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1368 }
1369
1370 /* free vf database */
1371 __bnx2x_iov_free_vfdb(bp);
1372 }
1373
1374 void bnx2x_iov_free_mem(struct bnx2x *bp)
1375 {
1376 int i;
1377
1378 if (!IS_SRIOV(bp))
1379 return;
1380
1381 /* free vfs hw contexts */
1382 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1383 struct hw_dma *cxt = &bp->vfdb->context[i];
1384 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1385 }
1386
1387 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1388 BP_VFDB(bp)->sp_dma.mapping,
1389 BP_VFDB(bp)->sp_dma.size);
1390
1391 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1392 BP_VF_MBX_DMA(bp)->mapping,
1393 BP_VF_MBX_DMA(bp)->size);
1394
1395 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1396 BP_VF_BULLETIN_DMA(bp)->mapping,
1397 BP_VF_BULLETIN_DMA(bp)->size);
1398 }
1399
1400 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1401 {
1402 size_t tot_size;
1403 int i, rc = 0;
1404
1405 if (!IS_SRIOV(bp))
1406 return rc;
1407
1408 /* allocate vfs hw contexts */
1409 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1410 BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1411
1412 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1413 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1414 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1415
1416 if (cxt->size) {
1417 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1418 if (!cxt->addr)
1419 goto alloc_mem_err;
1420 } else {
1421 cxt->addr = NULL;
1422 cxt->mapping = 0;
1423 }
1424 tot_size -= cxt->size;
1425 }
1426
1427 /* allocate vfs ramrods dma memory - client_init and set_mac */
1428 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1429 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1430 tot_size);
1431 if (!BP_VFDB(bp)->sp_dma.addr)
1432 goto alloc_mem_err;
1433 BP_VFDB(bp)->sp_dma.size = tot_size;
1434
1435 /* allocate mailboxes */
1436 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1437 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1438 tot_size);
1439 if (!BP_VF_MBX_DMA(bp)->addr)
1440 goto alloc_mem_err;
1441
1442 BP_VF_MBX_DMA(bp)->size = tot_size;
1443
1444 /* allocate local bulletin boards */
1445 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1446 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1447 tot_size);
1448 if (!BP_VF_BULLETIN_DMA(bp)->addr)
1449 goto alloc_mem_err;
1450
1451 BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1452
1453 return 0;
1454
1455 alloc_mem_err:
1456 return -ENOMEM;
1457 }
1458
1459 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1460 struct bnx2x_vf_queue *q)
1461 {
1462 u8 cl_id = vfq_cl_id(vf, q);
1463 u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1464 unsigned long q_type = 0;
1465
1466 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1467 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1468
1469 /* Queue State object */
1470 bnx2x_init_queue_obj(bp, &q->sp_obj,
1471 cl_id, &q->cid, 1, func_id,
1472 bnx2x_vf_sp(bp, vf, q_data),
1473 bnx2x_vf_sp_map(bp, vf, q_data),
1474 q_type);
1475
1476 /* sp indication is set only when vlan/mac/etc. are initialized */
1477 q->sp_initialized = false;
1478
1479 DP(BNX2X_MSG_IOV,
1480 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1481 vf->abs_vfid, q->sp_obj.func_id, q->cid);
1482 }
1483
1484 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1485 {
1486 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1487
1488 if (supported &
1489 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1490 return 20000;
1491
1492 return 10000; /* assume lowest supported speed is 10G */
1493 }
1494
1495 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1496 {
1497 struct bnx2x_link_report_data *state = &bp->last_reported_link;
1498 struct pf_vf_bulletin_content *bulletin;
1499 struct bnx2x_virtf *vf;
1500 bool update = true;
1501 int rc = 0;
1502
1503 /* sanity and init */
1504 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1505 if (rc)
1506 return rc;
1507
1508 mutex_lock(&bp->vfdb->bulletin_mutex);
1509
1510 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1511 bulletin->valid_bitmap |= 1 << LINK_VALID;
1512
1513 bulletin->link_speed = state->line_speed;
1514 bulletin->link_flags = 0;
1515 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1516 &state->link_report_flags))
1517 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1518 if (test_bit(BNX2X_LINK_REPORT_FD,
1519 &state->link_report_flags))
1520 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1521 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1522 &state->link_report_flags))
1523 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1524 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1525 &state->link_report_flags))
1526 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1527 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1528 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1529 bulletin->valid_bitmap |= 1 << LINK_VALID;
1530 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1531 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1532 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1533 bulletin->valid_bitmap |= 1 << LINK_VALID;
1534 bulletin->link_speed = bnx2x_max_speed_cap(bp);
1535 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1536 } else {
1537 update = false;
1538 }
1539
1540 if (update) {
1541 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1542 "vf %d mode %u speed %d flags %x\n", idx,
1543 vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1544
1545 /* Post update on VF's bulletin board */
1546 rc = bnx2x_post_vf_bulletin(bp, idx);
1547 if (rc) {
1548 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1549 goto out;
1550 }
1551 }
1552
1553 out:
1554 mutex_unlock(&bp->vfdb->bulletin_mutex);
1555 return rc;
1556 }
1557
1558 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1559 {
1560 struct bnx2x *bp = netdev_priv(dev);
1561 struct bnx2x_virtf *vf = BP_VF(bp, idx);
1562
1563 if (!vf)
1564 return -EINVAL;
1565
1566 if (vf->link_cfg == link_state)
1567 return 0; /* nothing todo */
1568
1569 vf->link_cfg = link_state;
1570
1571 return bnx2x_iov_link_update_vf(bp, idx);
1572 }
1573
1574 void bnx2x_iov_link_update(struct bnx2x *bp)
1575 {
1576 int vfid;
1577
1578 if (!IS_SRIOV(bp))
1579 return;
1580
1581 for_each_vf(bp, vfid)
1582 bnx2x_iov_link_update_vf(bp, vfid);
1583 }
1584
1585 /* called by bnx2x_nic_load */
1586 int bnx2x_iov_nic_init(struct bnx2x *bp)
1587 {
1588 int vfid;
1589
1590 if (!IS_SRIOV(bp)) {
1591 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1592 return 0;
1593 }
1594
1595 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1596
1597 /* let FLR complete ... */
1598 msleep(100);
1599
1600 /* initialize vf database */
1601 for_each_vf(bp, vfid) {
1602 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1603
1604 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1605 BNX2X_CIDS_PER_VF;
1606
1607 union cdu_context *base_cxt = (union cdu_context *)
1608 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1609 (base_vf_cid & (ILT_PAGE_CIDS-1));
1610
1611 DP(BNX2X_MSG_IOV,
1612 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1613 vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1614 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1615
1616 /* init statically provisioned resources */
1617 bnx2x_iov_static_resc(bp, vf);
1618
1619 /* queues are initialized during VF-ACQUIRE */
1620 vf->filter_state = 0;
1621 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1622
1623 /* init mcast object - This object will be re-initialized
1624 * during VF-ACQUIRE with the proper cl_id and cid.
1625 * It needs to be initialized here so that it can be safely
1626 * handled by a subsequent FLR flow.
1627 */
1628 vf->mcast_list_len = 0;
1629 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1630 0xFF, 0xFF, 0xFF,
1631 bnx2x_vf_sp(bp, vf, mcast_rdata),
1632 bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1633 BNX2X_FILTER_MCAST_PENDING,
1634 &vf->filter_state,
1635 BNX2X_OBJ_TYPE_RX_TX);
1636
1637 /* set the mailbox message addresses */
1638 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1639 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1640 MBX_MSG_ALIGNED_SIZE);
1641
1642 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1643 vfid * MBX_MSG_ALIGNED_SIZE;
1644
1645 /* Enable vf mailbox */
1646 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1647 }
1648
1649 /* Final VF init */
1650 for_each_vf(bp, vfid) {
1651 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1652
1653 /* fill in the BDF and bars */
1654 vf->bus = bnx2x_vf_bus(bp, vfid);
1655 vf->devfn = bnx2x_vf_devfn(bp, vfid);
1656 bnx2x_vf_set_bars(bp, vf);
1657
1658 DP(BNX2X_MSG_IOV,
1659 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1660 vf->abs_vfid, vf->bus, vf->devfn,
1661 (unsigned)vf->bars[0].bar, vf->bars[0].size,
1662 (unsigned)vf->bars[1].bar, vf->bars[1].size,
1663 (unsigned)vf->bars[2].bar, vf->bars[2].size);
1664 }
1665
1666 return 0;
1667 }
1668
1669 /* called by bnx2x_chip_cleanup */
1670 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1671 {
1672 int i;
1673
1674 if (!IS_SRIOV(bp))
1675 return 0;
1676
1677 /* release all the VFs */
1678 for_each_vf(bp, i)
1679 bnx2x_vf_release(bp, BP_VF(bp, i));
1680
1681 return 0;
1682 }
1683
1684 /* called by bnx2x_init_hw_func, returns the next ilt line */
1685 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1686 {
1687 int i;
1688 struct bnx2x_ilt *ilt = BP_ILT(bp);
1689
1690 if (!IS_SRIOV(bp))
1691 return line;
1692
1693 /* set vfs ilt lines */
1694 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1695 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1696
1697 ilt->lines[line+i].page = hw_cxt->addr;
1698 ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1699 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1700 }
1701 return line + i;
1702 }
1703
1704 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1705 {
1706 return ((cid >= BNX2X_FIRST_VF_CID) &&
1707 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1708 }
1709
1710 static
1711 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1712 struct bnx2x_vf_queue *vfq,
1713 union event_ring_elem *elem)
1714 {
1715 unsigned long ramrod_flags = 0;
1716 int rc = 0;
1717
1718 /* Always push next commands out, don't wait here */
1719 set_bit(RAMROD_CONT, &ramrod_flags);
1720
1721 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
1722 case BNX2X_FILTER_MAC_PENDING:
1723 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1724 &ramrod_flags);
1725 break;
1726 case BNX2X_FILTER_VLAN_PENDING:
1727 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1728 &ramrod_flags);
1729 break;
1730 default:
1731 BNX2X_ERR("Unsupported classification command: %d\n",
1732 elem->message.data.eth_event.echo);
1733 return;
1734 }
1735 if (rc < 0)
1736 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1737 else if (rc > 0)
1738 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1739 }
1740
1741 static
1742 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1743 struct bnx2x_virtf *vf)
1744 {
1745 struct bnx2x_mcast_ramrod_params rparam = {NULL};
1746 int rc;
1747
1748 rparam.mcast_obj = &vf->mcast_obj;
1749 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1750
1751 /* If there are pending mcast commands - send them */
1752 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1753 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1754 if (rc < 0)
1755 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1756 rc);
1757 }
1758 }
1759
1760 static
1761 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1762 struct bnx2x_virtf *vf)
1763 {
1764 smp_mb__before_atomic();
1765 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1766 smp_mb__after_atomic();
1767 }
1768
1769 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1770 struct bnx2x_virtf *vf)
1771 {
1772 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1773 }
1774
1775 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1776 {
1777 struct bnx2x_virtf *vf;
1778 int qidx = 0, abs_vfid;
1779 u8 opcode;
1780 u16 cid = 0xffff;
1781
1782 if (!IS_SRIOV(bp))
1783 return 1;
1784
1785 /* first get the cid - the only events we handle here are cfc-delete
1786 * and set-mac completion
1787 */
1788 opcode = elem->message.opcode;
1789
1790 switch (opcode) {
1791 case EVENT_RING_OPCODE_CFC_DEL:
1792 cid = SW_CID((__force __le32)
1793 elem->message.data.cfc_del_event.cid);
1794 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1795 break;
1796 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1797 case EVENT_RING_OPCODE_MULTICAST_RULES:
1798 case EVENT_RING_OPCODE_FILTERS_RULES:
1799 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1800 cid = (elem->message.data.eth_event.echo &
1801 BNX2X_SWCID_MASK);
1802 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1803 break;
1804 case EVENT_RING_OPCODE_VF_FLR:
1805 abs_vfid = elem->message.data.vf_flr_event.vf_id;
1806 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1807 abs_vfid);
1808 goto get_vf;
1809 case EVENT_RING_OPCODE_MALICIOUS_VF:
1810 abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1811 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1812 abs_vfid,
1813 elem->message.data.malicious_vf_event.err_id);
1814 goto get_vf;
1815 default:
1816 return 1;
1817 }
1818
1819 /* check if the cid is the VF range */
1820 if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1821 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1822 return 1;
1823 }
1824
1825 /* extract vf and rxq index from vf_cid - relies on the following:
1826 * 1. vfid on cid reflects the true abs_vfid
1827 * 2. The max number of VFs (per path) is 64
1828 */
1829 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1830 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1831 get_vf:
1832 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1833
1834 if (!vf) {
1835 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1836 cid, abs_vfid);
1837 return 0;
1838 }
1839
1840 switch (opcode) {
1841 case EVENT_RING_OPCODE_CFC_DEL:
1842 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1843 vf->abs_vfid, qidx);
1844 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1845 &vfq_get(vf,
1846 qidx)->sp_obj,
1847 BNX2X_Q_CMD_CFC_DEL);
1848 break;
1849 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1850 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1851 vf->abs_vfid, qidx);
1852 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1853 break;
1854 case EVENT_RING_OPCODE_MULTICAST_RULES:
1855 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1856 vf->abs_vfid, qidx);
1857 bnx2x_vf_handle_mcast_eqe(bp, vf);
1858 break;
1859 case EVENT_RING_OPCODE_FILTERS_RULES:
1860 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1861 vf->abs_vfid, qidx);
1862 bnx2x_vf_handle_filters_eqe(bp, vf);
1863 break;
1864 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1865 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1866 vf->abs_vfid, qidx);
1867 bnx2x_vf_handle_rss_update_eqe(bp, vf);
1868 case EVENT_RING_OPCODE_VF_FLR:
1869 case EVENT_RING_OPCODE_MALICIOUS_VF:
1870 /* Do nothing for now */
1871 return 0;
1872 }
1873
1874 return 0;
1875 }
1876
1877 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1878 {
1879 /* extract the vf from vf_cid - relies on the following:
1880 * 1. vfid on cid reflects the true abs_vfid
1881 * 2. The max number of VFs (per path) is 64
1882 */
1883 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1884 return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1885 }
1886
1887 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1888 struct bnx2x_queue_sp_obj **q_obj)
1889 {
1890 struct bnx2x_virtf *vf;
1891
1892 if (!IS_SRIOV(bp))
1893 return;
1894
1895 vf = bnx2x_vf_by_cid(bp, vf_cid);
1896
1897 if (vf) {
1898 /* extract queue index from vf_cid - relies on the following:
1899 * 1. vfid on cid reflects the true abs_vfid
1900 * 2. The max number of VFs (per path) is 64
1901 */
1902 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1903 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1904 } else {
1905 BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1906 }
1907 }
1908
1909 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1910 {
1911 int i;
1912 int first_queue_query_index, num_queues_req;
1913 dma_addr_t cur_data_offset;
1914 struct stats_query_entry *cur_query_entry;
1915 u8 stats_count = 0;
1916 bool is_fcoe = false;
1917
1918 if (!IS_SRIOV(bp))
1919 return;
1920
1921 if (!NO_FCOE(bp))
1922 is_fcoe = true;
1923
1924 /* fcoe adds one global request and one queue request */
1925 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1926 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1927 (is_fcoe ? 0 : 1);
1928
1929 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1930 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1931 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1932 first_queue_query_index + num_queues_req);
1933
1934 cur_data_offset = bp->fw_stats_data_mapping +
1935 offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1936 num_queues_req * sizeof(struct per_queue_stats);
1937
1938 cur_query_entry = &bp->fw_stats_req->
1939 query[first_queue_query_index + num_queues_req];
1940
1941 for_each_vf(bp, i) {
1942 int j;
1943 struct bnx2x_virtf *vf = BP_VF(bp, i);
1944
1945 if (vf->state != VF_ENABLED) {
1946 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1947 "vf %d not enabled so no stats for it\n",
1948 vf->abs_vfid);
1949 continue;
1950 }
1951
1952 DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1953 for_each_vfq(vf, j) {
1954 struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1955
1956 dma_addr_t q_stats_addr =
1957 vf->fw_stat_map + j * vf->stats_stride;
1958
1959 /* collect stats fro active queues only */
1960 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1961 BNX2X_Q_LOGICAL_STATE_STOPPED)
1962 continue;
1963
1964 /* create stats query entry for this queue */
1965 cur_query_entry->kind = STATS_TYPE_QUEUE;
1966 cur_query_entry->index = vfq_stat_id(vf, rxq);
1967 cur_query_entry->funcID =
1968 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1969 cur_query_entry->address.hi =
1970 cpu_to_le32(U64_HI(q_stats_addr));
1971 cur_query_entry->address.lo =
1972 cpu_to_le32(U64_LO(q_stats_addr));
1973 DP(BNX2X_MSG_IOV,
1974 "added address %x %x for vf %d queue %d client %d\n",
1975 cur_query_entry->address.hi,
1976 cur_query_entry->address.lo, cur_query_entry->funcID,
1977 j, cur_query_entry->index);
1978 cur_query_entry++;
1979 cur_data_offset += sizeof(struct per_queue_stats);
1980 stats_count++;
1981
1982 /* all stats are coalesced to the leading queue */
1983 if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1984 break;
1985 }
1986 }
1987 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1988 }
1989
1990 /* VF API helpers */
1991 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1992 u8 enable)
1993 {
1994 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1995 u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1996
1997 REG_WR(bp, reg, val);
1998 }
1999
2000 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
2001 {
2002 int i;
2003
2004 for_each_vfq(vf, i)
2005 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2006 vfq_qzone_id(vf, vfq_get(vf, i)), false);
2007 }
2008
2009 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
2010 {
2011 u32 val;
2012
2013 /* clear the VF configuration - pretend */
2014 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
2015 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
2016 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
2017 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
2018 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
2019 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2020 }
2021
2022 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
2023 {
2024 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
2025 BNX2X_VF_MAX_QUEUES);
2026 }
2027
2028 static
2029 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
2030 struct vf_pf_resc_request *req_resc)
2031 {
2032 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2033 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2034
2035 /* Save a vlan filter for the Hypervisor */
2036 return ((req_resc->num_rxqs <= rxq_cnt) &&
2037 (req_resc->num_txqs <= txq_cnt) &&
2038 (req_resc->num_sbs <= vf_sb_count(vf)) &&
2039 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2040 (req_resc->num_vlan_filters <= vf_vlan_rules_visible_cnt(vf)));
2041 }
2042
2043 /* CORE VF API */
2044 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2045 struct vf_pf_resc_request *resc)
2046 {
2047 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2048 BNX2X_CIDS_PER_VF;
2049
2050 union cdu_context *base_cxt = (union cdu_context *)
2051 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2052 (base_vf_cid & (ILT_PAGE_CIDS-1));
2053 int i;
2054
2055 /* if state is 'acquired' the VF was not released or FLR'd, in
2056 * this case the returned resources match the acquired already
2057 * acquired resources. Verify that the requested numbers do
2058 * not exceed the already acquired numbers.
2059 */
2060 if (vf->state == VF_ACQUIRED) {
2061 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2062 vf->abs_vfid);
2063
2064 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2065 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2066 vf->abs_vfid);
2067 return -EINVAL;
2068 }
2069 return 0;
2070 }
2071
2072 /* Otherwise vf state must be 'free' or 'reset' */
2073 if (vf->state != VF_FREE && vf->state != VF_RESET) {
2074 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2075 vf->abs_vfid, vf->state);
2076 return -EINVAL;
2077 }
2078
2079 /* static allocation:
2080 * the global maximum number are fixed per VF. Fail the request if
2081 * requested number exceed these globals
2082 */
2083 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2084 DP(BNX2X_MSG_IOV,
2085 "cannot fulfill vf resource request. Placing maximal available values in response\n");
2086 /* set the max resource in the vf */
2087 return -ENOMEM;
2088 }
2089
2090 /* Set resources counters - 0 request means max available */
2091 vf_sb_count(vf) = resc->num_sbs;
2092 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2093 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2094 if (resc->num_mac_filters)
2095 vf_mac_rules_cnt(vf) = resc->num_mac_filters;
2096 /* Add an additional vlan filter credit for the hypervisor */
2097 bnx2x_iov_re_set_vlan_filters(bp, vf, resc->num_vlan_filters + 1);
2098
2099 DP(BNX2X_MSG_IOV,
2100 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2101 vf_sb_count(vf), vf_rxq_count(vf),
2102 vf_txq_count(vf), vf_mac_rules_cnt(vf),
2103 vf_vlan_rules_visible_cnt(vf));
2104
2105 /* Initialize the queues */
2106 if (!vf->vfqs) {
2107 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2108 return -EINVAL;
2109 }
2110
2111 for_each_vfq(vf, i) {
2112 struct bnx2x_vf_queue *q = vfq_get(vf, i);
2113
2114 if (!q) {
2115 BNX2X_ERR("q number %d was not allocated\n", i);
2116 return -EINVAL;
2117 }
2118
2119 q->index = i;
2120 q->cxt = &((base_cxt + i)->eth);
2121 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2122
2123 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2124 vf->abs_vfid, i, q->index, q->cid, q->cxt);
2125
2126 /* init SP objects */
2127 bnx2x_vfq_init(bp, vf, q);
2128 }
2129 vf->state = VF_ACQUIRED;
2130 return 0;
2131 }
2132
2133 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2134 {
2135 struct bnx2x_func_init_params func_init = {0};
2136 u16 flags = 0;
2137 int i;
2138
2139 /* the sb resources are initialized at this point, do the
2140 * FW/HW initializations
2141 */
2142 for_each_vf_sb(vf, i)
2143 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2144 vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2145
2146 /* Sanity checks */
2147 if (vf->state != VF_ACQUIRED) {
2148 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2149 vf->abs_vfid, vf->state);
2150 return -EINVAL;
2151 }
2152
2153 /* let FLR complete ... */
2154 msleep(100);
2155
2156 /* FLR cleanup epilogue */
2157 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2158 return -EBUSY;
2159
2160 /* reset IGU VF statistics: MSIX */
2161 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2162
2163 /* vf init */
2164 if (vf->cfg_flags & VF_CFG_STATS)
2165 flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
2166
2167 if (vf->cfg_flags & VF_CFG_TPA)
2168 flags |= FUNC_FLG_TPA;
2169
2170 if (is_vf_multi(vf))
2171 flags |= FUNC_FLG_RSS;
2172
2173 /* function setup */
2174 func_init.func_flgs = flags;
2175 func_init.pf_id = BP_FUNC(bp);
2176 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2177 func_init.fw_stat_map = vf->fw_stat_map;
2178 func_init.spq_map = vf->spq_map;
2179 func_init.spq_prod = 0;
2180 bnx2x_func_init(bp, &func_init);
2181
2182 /* Enable the vf */
2183 bnx2x_vf_enable_access(bp, vf->abs_vfid);
2184 bnx2x_vf_enable_traffic(bp, vf);
2185
2186 /* queue protection table */
2187 for_each_vfq(vf, i)
2188 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2189 vfq_qzone_id(vf, vfq_get(vf, i)), true);
2190
2191 vf->state = VF_ENABLED;
2192
2193 /* update vf bulletin board */
2194 bnx2x_post_vf_bulletin(bp, vf->index);
2195
2196 return 0;
2197 }
2198
2199 struct set_vf_state_cookie {
2200 struct bnx2x_virtf *vf;
2201 u8 state;
2202 };
2203
2204 static void bnx2x_set_vf_state(void *cookie)
2205 {
2206 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2207
2208 p->vf->state = p->state;
2209 }
2210
2211 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2212 {
2213 int rc = 0, i;
2214
2215 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2216
2217 /* Close all queues */
2218 for (i = 0; i < vf_rxq_count(vf); i++) {
2219 rc = bnx2x_vf_queue_teardown(bp, vf, i);
2220 if (rc)
2221 goto op_err;
2222 }
2223
2224 /* disable the interrupts */
2225 DP(BNX2X_MSG_IOV, "disabling igu\n");
2226 bnx2x_vf_igu_disable(bp, vf);
2227
2228 /* disable the VF */
2229 DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2230 bnx2x_vf_clr_qtbl(bp, vf);
2231
2232 /* need to make sure there are no outstanding stats ramrods which may
2233 * cause the device to access the VF's stats buffer which it will free
2234 * as soon as we return from the close flow.
2235 */
2236 {
2237 struct set_vf_state_cookie cookie;
2238
2239 cookie.vf = vf;
2240 cookie.state = VF_ACQUIRED;
2241 bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2242 }
2243
2244 DP(BNX2X_MSG_IOV, "set state to acquired\n");
2245
2246 return 0;
2247 op_err:
2248 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2249 return rc;
2250 }
2251
2252 /* VF release can be called either: 1. The VF was acquired but
2253 * not enabled 2. the vf was enabled or in the process of being
2254 * enabled
2255 */
2256 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2257 {
2258 int rc;
2259
2260 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2261 vf->state == VF_FREE ? "Free" :
2262 vf->state == VF_ACQUIRED ? "Acquired" :
2263 vf->state == VF_ENABLED ? "Enabled" :
2264 vf->state == VF_RESET ? "Reset" :
2265 "Unknown");
2266
2267 switch (vf->state) {
2268 case VF_ENABLED:
2269 rc = bnx2x_vf_close(bp, vf);
2270 if (rc)
2271 goto op_err;
2272 /* Fallthrough to release resources */
2273 case VF_ACQUIRED:
2274 DP(BNX2X_MSG_IOV, "about to free resources\n");
2275 bnx2x_vf_free_resc(bp, vf);
2276 break;
2277
2278 case VF_FREE:
2279 case VF_RESET:
2280 default:
2281 break;
2282 }
2283 return 0;
2284 op_err:
2285 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2286 return rc;
2287 }
2288
2289 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2290 struct bnx2x_config_rss_params *rss)
2291 {
2292 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2293 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2294 return bnx2x_config_rss(bp, rss);
2295 }
2296
2297 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2298 struct vfpf_tpa_tlv *tlv,
2299 struct bnx2x_queue_update_tpa_params *params)
2300 {
2301 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2302 struct bnx2x_queue_state_params qstate;
2303 int qid, rc = 0;
2304
2305 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2306
2307 /* Set ramrod params */
2308 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2309 memcpy(&qstate.params.update_tpa, params,
2310 sizeof(struct bnx2x_queue_update_tpa_params));
2311 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2312 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2313
2314 for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2315 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2316 qstate.params.update_tpa.sge_map = sge_addr[qid];
2317 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2318 vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2319 U64_LO(sge_addr[qid]));
2320 rc = bnx2x_queue_state_change(bp, &qstate);
2321 if (rc) {
2322 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2323 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2324 vf->abs_vfid, qid);
2325 return rc;
2326 }
2327 }
2328
2329 return rc;
2330 }
2331
2332 /* VF release ~ VF close + VF release-resources
2333 * Release is the ultimate SW shutdown and is called whenever an
2334 * irrecoverable error is encountered.
2335 */
2336 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2337 {
2338 int rc;
2339
2340 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2341 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2342
2343 rc = bnx2x_vf_free(bp, vf);
2344 if (rc)
2345 WARN(rc,
2346 "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2347 vf->abs_vfid, rc);
2348 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2349 return rc;
2350 }
2351
2352 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2353 enum channel_tlvs tlv)
2354 {
2355 /* we don't lock the channel for unsupported tlvs */
2356 if (!bnx2x_tlv_supported(tlv)) {
2357 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2358 return;
2359 }
2360
2361 /* lock the channel */
2362 mutex_lock(&vf->op_mutex);
2363
2364 /* record the locking op */
2365 vf->op_current = tlv;
2366
2367 /* log the lock */
2368 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2369 vf->abs_vfid, tlv);
2370 }
2371
2372 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2373 enum channel_tlvs expected_tlv)
2374 {
2375 enum channel_tlvs current_tlv;
2376
2377 if (!vf) {
2378 BNX2X_ERR("VF was %p\n", vf);
2379 return;
2380 }
2381
2382 current_tlv = vf->op_current;
2383
2384 /* we don't unlock the channel for unsupported tlvs */
2385 if (!bnx2x_tlv_supported(expected_tlv))
2386 return;
2387
2388 WARN(expected_tlv != vf->op_current,
2389 "lock mismatch: expected %d found %d", expected_tlv,
2390 vf->op_current);
2391
2392 /* record the locking op */
2393 vf->op_current = CHANNEL_TLV_NONE;
2394
2395 /* lock the channel */
2396 mutex_unlock(&vf->op_mutex);
2397
2398 /* log the unlock */
2399 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2400 vf->abs_vfid, current_tlv);
2401 }
2402
2403 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2404 {
2405 struct bnx2x_queue_state_params q_params;
2406 u32 prev_flags;
2407 int i, rc;
2408
2409 /* Verify changes are needed and record current Tx switching state */
2410 prev_flags = bp->flags;
2411 if (enable)
2412 bp->flags |= TX_SWITCHING;
2413 else
2414 bp->flags &= ~TX_SWITCHING;
2415 if (prev_flags == bp->flags)
2416 return 0;
2417
2418 /* Verify state enables the sending of queue ramrods */
2419 if ((bp->state != BNX2X_STATE_OPEN) ||
2420 (bnx2x_get_q_logical_state(bp,
2421 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2422 BNX2X_Q_LOGICAL_STATE_ACTIVE))
2423 return 0;
2424
2425 /* send q. update ramrod to configure Tx switching */
2426 memset(&q_params, 0, sizeof(q_params));
2427 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2428 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2429 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2430 &q_params.params.update.update_flags);
2431 if (enable)
2432 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2433 &q_params.params.update.update_flags);
2434 else
2435 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2436 &q_params.params.update.update_flags);
2437
2438 /* send the ramrod on all the queues of the PF */
2439 for_each_eth_queue(bp, i) {
2440 struct bnx2x_fastpath *fp = &bp->fp[i];
2441
2442 /* Set the appropriate Queue object */
2443 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2444
2445 /* Update the Queue state */
2446 rc = bnx2x_queue_state_change(bp, &q_params);
2447 if (rc) {
2448 BNX2X_ERR("Failed to configure Tx switching\n");
2449 return rc;
2450 }
2451 }
2452
2453 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2454 return 0;
2455 }
2456
2457 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2458 {
2459 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2460
2461 if (!IS_SRIOV(bp)) {
2462 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2463 return -EINVAL;
2464 }
2465
2466 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2467 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2468
2469 /* HW channel is only operational when PF is up */
2470 if (bp->state != BNX2X_STATE_OPEN) {
2471 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2472 return -EINVAL;
2473 }
2474
2475 /* we are always bound by the total_vfs in the configuration space */
2476 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2477 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2478 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2479 num_vfs_param = BNX2X_NR_VIRTFN(bp);
2480 }
2481
2482 bp->requested_nr_virtfn = num_vfs_param;
2483 if (num_vfs_param == 0) {
2484 bnx2x_set_pf_tx_switching(bp, false);
2485 bnx2x_disable_sriov(bp);
2486 return 0;
2487 } else {
2488 return bnx2x_enable_sriov(bp);
2489 }
2490 }
2491
2492 #define IGU_ENTRY_SIZE 4
2493
2494 int bnx2x_enable_sriov(struct bnx2x *bp)
2495 {
2496 int rc = 0, req_vfs = bp->requested_nr_virtfn;
2497 int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2498 u32 igu_entry, address;
2499 u16 num_vf_queues;
2500
2501 if (req_vfs == 0)
2502 return 0;
2503
2504 first_vf = bp->vfdb->sriov.first_vf_in_pf;
2505
2506 /* statically distribute vf sb pool between VFs */
2507 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2508 BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2509
2510 /* zero previous values learned from igu cam */
2511 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2512 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2513
2514 vf->sb_count = 0;
2515 vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2516 }
2517 bp->vfdb->vf_sbs_pool = 0;
2518
2519 /* prepare IGU cam */
2520 sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2521 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2522 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2523 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2524 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2525 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2526 IGU_REG_MAPPING_MEMORY_VALID;
2527 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2528 sb_idx, vf_idx);
2529 REG_WR(bp, address, igu_entry);
2530 sb_idx++;
2531 address += IGU_ENTRY_SIZE;
2532 }
2533 }
2534
2535 /* Reinitialize vf database according to igu cam */
2536 bnx2x_get_vf_igu_cam_info(bp);
2537
2538 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2539 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2540
2541 qcount = 0;
2542 for_each_vf(bp, vf_idx) {
2543 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2544
2545 /* set local queue arrays */
2546 vf->vfqs = &bp->vfdb->vfqs[qcount];
2547 qcount += vf_sb_count(vf);
2548 bnx2x_iov_static_resc(bp, vf);
2549 }
2550
2551 /* prepare msix vectors in VF configuration space - the value in the
2552 * PCI configuration space should be the index of the last entry,
2553 * namely one less than the actual size of the table
2554 */
2555 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2556 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2557 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2558 num_vf_queues - 1);
2559 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2560 vf_idx, num_vf_queues - 1);
2561 }
2562 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2563
2564 /* enable sriov. This will probe all the VFs, and consequentially cause
2565 * the "acquire" messages to appear on the VF PF channel.
2566 */
2567 DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2568 bnx2x_disable_sriov(bp);
2569
2570 rc = bnx2x_set_pf_tx_switching(bp, true);
2571 if (rc)
2572 return rc;
2573
2574 rc = pci_enable_sriov(bp->pdev, req_vfs);
2575 if (rc) {
2576 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2577 return rc;
2578 }
2579 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2580 return req_vfs;
2581 }
2582
2583 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2584 {
2585 int vfidx;
2586 struct pf_vf_bulletin_content *bulletin;
2587
2588 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2589 for_each_vf(bp, vfidx) {
2590 bulletin = BP_VF_BULLETIN(bp, vfidx);
2591 if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
2592 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
2593 }
2594 }
2595
2596 void bnx2x_disable_sriov(struct bnx2x *bp)
2597 {
2598 if (pci_vfs_assigned(bp->pdev)) {
2599 DP(BNX2X_MSG_IOV,
2600 "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2601 return;
2602 }
2603
2604 pci_disable_sriov(bp->pdev);
2605 }
2606
2607 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2608 struct bnx2x_virtf **vf,
2609 struct pf_vf_bulletin_content **bulletin,
2610 bool test_queue)
2611 {
2612 if (bp->state != BNX2X_STATE_OPEN) {
2613 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2614 return -EINVAL;
2615 }
2616
2617 if (!IS_SRIOV(bp)) {
2618 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2619 return -EINVAL;
2620 }
2621
2622 if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2623 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2624 vfidx, BNX2X_NR_VIRTFN(bp));
2625 return -EINVAL;
2626 }
2627
2628 /* init members */
2629 *vf = BP_VF(bp, vfidx);
2630 *bulletin = BP_VF_BULLETIN(bp, vfidx);
2631
2632 if (!*vf) {
2633 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2634 return -EINVAL;
2635 }
2636
2637 if (test_queue && !(*vf)->vfqs) {
2638 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2639 vfidx);
2640 return -EINVAL;
2641 }
2642
2643 if (!*bulletin) {
2644 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2645 vfidx);
2646 return -EINVAL;
2647 }
2648
2649 return 0;
2650 }
2651
2652 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2653 struct ifla_vf_info *ivi)
2654 {
2655 struct bnx2x *bp = netdev_priv(dev);
2656 struct bnx2x_virtf *vf = NULL;
2657 struct pf_vf_bulletin_content *bulletin = NULL;
2658 struct bnx2x_vlan_mac_obj *mac_obj;
2659 struct bnx2x_vlan_mac_obj *vlan_obj;
2660 int rc;
2661
2662 /* sanity and init */
2663 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2664 if (rc)
2665 return rc;
2666
2667 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2668 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2669 if (!mac_obj || !vlan_obj) {
2670 BNX2X_ERR("VF partially initialized\n");
2671 return -EINVAL;
2672 }
2673
2674 ivi->vf = vfidx;
2675 ivi->qos = 0;
2676 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2677 ivi->min_tx_rate = 0;
2678 ivi->spoofchk = 1; /*always enabled */
2679 if (vf->state == VF_ENABLED) {
2680 /* mac and vlan are in vlan_mac objects */
2681 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2682 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2683 0, ETH_ALEN);
2684 vlan_obj->get_n_elements(bp, vlan_obj, 1,
2685 (u8 *)&ivi->vlan, 0,
2686 VLAN_HLEN);
2687 }
2688 } else {
2689 mutex_lock(&bp->vfdb->bulletin_mutex);
2690 /* mac */
2691 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2692 /* mac configured by ndo so its in bulletin board */
2693 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2694 else
2695 /* function has not been loaded yet. Show mac as 0s */
2696 memset(&ivi->mac, 0, ETH_ALEN);
2697
2698 /* vlan */
2699 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2700 /* vlan configured by ndo so its in bulletin board */
2701 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2702 else
2703 /* function has not been loaded yet. Show vlans as 0s */
2704 memset(&ivi->vlan, 0, VLAN_HLEN);
2705
2706 mutex_unlock(&bp->vfdb->bulletin_mutex);
2707 }
2708
2709 return 0;
2710 }
2711
2712 /* New mac for VF. Consider these cases:
2713 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2714 * supply at acquire.
2715 * 2. VF has already been acquired but has not yet initialized - store in local
2716 * bulletin board. mac will be posted on VF bulletin board after VF init. VF
2717 * will configure this mac when it is ready.
2718 * 3. VF has already initialized but has not yet setup a queue - post the new
2719 * mac on VF's bulletin board right now. VF will configure this mac when it
2720 * is ready.
2721 * 4. VF has already set a queue - delete any macs already configured for this
2722 * queue and manually config the new mac.
2723 * In any event, once this function has been called refuse any attempts by the
2724 * VF to configure any mac for itself except for this mac. In case of a race
2725 * where the VF fails to see the new post on its bulletin board before sending a
2726 * mac configuration request, the PF will simply fail the request and VF can try
2727 * again after consulting its bulletin board.
2728 */
2729 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2730 {
2731 struct bnx2x *bp = netdev_priv(dev);
2732 int rc, q_logical_state;
2733 struct bnx2x_virtf *vf = NULL;
2734 struct pf_vf_bulletin_content *bulletin = NULL;
2735
2736 if (!is_valid_ether_addr(mac)) {
2737 BNX2X_ERR("mac address invalid\n");
2738 return -EINVAL;
2739 }
2740
2741 /* sanity and init */
2742 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2743 if (rc)
2744 return rc;
2745
2746 mutex_lock(&bp->vfdb->bulletin_mutex);
2747
2748 /* update PF's copy of the VF's bulletin. Will no longer accept mac
2749 * configuration requests from vf unless match this mac
2750 */
2751 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2752 memcpy(bulletin->mac, mac, ETH_ALEN);
2753
2754 /* Post update on VF's bulletin board */
2755 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2756
2757 /* release lock before checking return code */
2758 mutex_unlock(&bp->vfdb->bulletin_mutex);
2759
2760 if (rc) {
2761 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2762 return rc;
2763 }
2764
2765 q_logical_state =
2766 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2767 if (vf->state == VF_ENABLED &&
2768 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2769 /* configure the mac in device on this vf's queue */
2770 unsigned long ramrod_flags = 0;
2771 struct bnx2x_vlan_mac_obj *mac_obj;
2772
2773 /* User should be able to see failure reason in system logs */
2774 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2775 return -EINVAL;
2776
2777 /* must lock vfpf channel to protect against vf flows */
2778 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2779
2780 /* remove existing eth macs */
2781 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2782 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2783 if (rc) {
2784 BNX2X_ERR("failed to delete eth macs\n");
2785 rc = -EINVAL;
2786 goto out;
2787 }
2788
2789 /* remove existing uc list macs */
2790 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2791 if (rc) {
2792 BNX2X_ERR("failed to delete uc_list macs\n");
2793 rc = -EINVAL;
2794 goto out;
2795 }
2796
2797 /* configure the new mac to device */
2798 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2799 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2800 BNX2X_ETH_MAC, &ramrod_flags);
2801
2802 out:
2803 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2804 }
2805
2806 return rc;
2807 }
2808
2809 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
2810 {
2811 struct bnx2x_queue_state_params q_params = {NULL};
2812 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2813 struct bnx2x_queue_update_params *update_params;
2814 struct pf_vf_bulletin_content *bulletin = NULL;
2815 struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2816 struct bnx2x *bp = netdev_priv(dev);
2817 struct bnx2x_vlan_mac_obj *vlan_obj;
2818 unsigned long vlan_mac_flags = 0;
2819 unsigned long ramrod_flags = 0;
2820 struct bnx2x_virtf *vf = NULL;
2821 unsigned long accept_flags;
2822 int rc;
2823
2824 if (vlan > 4095) {
2825 BNX2X_ERR("illegal vlan value %d\n", vlan);
2826 return -EINVAL;
2827 }
2828
2829 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2830 vfidx, vlan, 0);
2831
2832 /* sanity and init */
2833 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2834 if (rc)
2835 return rc;
2836
2837 /* update PF's copy of the VF's bulletin. No point in posting the vlan
2838 * to the VF since it doesn't have anything to do with it. But it useful
2839 * to store it here in case the VF is not up yet and we can only
2840 * configure the vlan later when it does. Treat vlan id 0 as remove the
2841 * Host tag.
2842 */
2843 mutex_lock(&bp->vfdb->bulletin_mutex);
2844
2845 if (vlan > 0)
2846 bulletin->valid_bitmap |= 1 << VLAN_VALID;
2847 else
2848 bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2849 bulletin->vlan = vlan;
2850
2851 mutex_unlock(&bp->vfdb->bulletin_mutex);
2852
2853 /* is vf initialized and queue set up? */
2854 if (vf->state != VF_ENABLED ||
2855 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2856 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2857 return rc;
2858
2859 /* User should be able to see error in system logs */
2860 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2861 return -EINVAL;
2862
2863 /* must lock vfpf channel to protect against vf flows */
2864 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2865
2866 /* remove existing vlans */
2867 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2868 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2869 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2870 &ramrod_flags);
2871 if (rc) {
2872 BNX2X_ERR("failed to delete vlans\n");
2873 rc = -EINVAL;
2874 goto out;
2875 }
2876
2877 /* need to remove/add the VF's accept_any_vlan bit */
2878 accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2879 if (vlan)
2880 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2881 else
2882 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2883
2884 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2885 accept_flags);
2886 bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2887 bnx2x_config_rx_mode(bp, &rx_ramrod);
2888
2889 /* configure the new vlan to device */
2890 memset(&ramrod_param, 0, sizeof(ramrod_param));
2891 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2892 ramrod_param.vlan_mac_obj = vlan_obj;
2893 ramrod_param.ramrod_flags = ramrod_flags;
2894 set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
2895 &ramrod_param.user_req.vlan_mac_flags);
2896 ramrod_param.user_req.u.vlan.vlan = vlan;
2897 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
2898 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2899 if (rc) {
2900 BNX2X_ERR("failed to configure vlan\n");
2901 rc = -EINVAL;
2902 goto out;
2903 }
2904
2905 /* send queue update ramrod to configure default vlan and silent
2906 * vlan removal
2907 */
2908 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2909 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2910 q_params.q_obj = &bnx2x_leading_vfq(vf, sp_obj);
2911 update_params = &q_params.params.update;
2912 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2913 &update_params->update_flags);
2914 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2915 &update_params->update_flags);
2916 if (vlan == 0) {
2917 /* if vlan is 0 then we want to leave the VF traffic
2918 * untagged, and leave the incoming traffic untouched
2919 * (i.e. do not remove any vlan tags).
2920 */
2921 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2922 &update_params->update_flags);
2923 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2924 &update_params->update_flags);
2925 } else {
2926 /* configure default vlan to vf queue and set silent
2927 * vlan removal (the vf remains unaware of this vlan).
2928 */
2929 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2930 &update_params->update_flags);
2931 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2932 &update_params->update_flags);
2933 update_params->def_vlan = vlan;
2934 update_params->silent_removal_value =
2935 vlan & VLAN_VID_MASK;
2936 update_params->silent_removal_mask = VLAN_VID_MASK;
2937 }
2938
2939 /* Update the Queue state */
2940 rc = bnx2x_queue_state_change(bp, &q_params);
2941 if (rc) {
2942 BNX2X_ERR("Failed to configure default VLAN\n");
2943 goto out;
2944 }
2945
2946
2947 /* clear the flag indicating that this VF needs its vlan
2948 * (will only be set if the HV configured the Vlan before vf was
2949 * up and we were called because the VF came up later
2950 */
2951 out:
2952 vf->cfg_flags &= ~VF_CFG_VLAN;
2953 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2954
2955 return rc;
2956 }
2957
2958 /* crc is the first field in the bulletin board. Compute the crc over the
2959 * entire bulletin board excluding the crc field itself. Use the length field
2960 * as the Bulletin Board was posted by a PF with possibly a different version
2961 * from the vf which will sample it. Therefore, the length is computed by the
2962 * PF and then used blindly by the VF.
2963 */
2964 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
2965 {
2966 return crc32(BULLETIN_CRC_SEED,
2967 ((u8 *)bulletin) + sizeof(bulletin->crc),
2968 bulletin->length - sizeof(bulletin->crc));
2969 }
2970
2971 /* Check for new posts on the bulletin board */
2972 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2973 {
2974 struct pf_vf_bulletin_content *bulletin;
2975 int attempts;
2976
2977 /* sampling structure in mid post may result with corrupted data
2978 * validate crc to ensure coherency.
2979 */
2980 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2981 u32 crc;
2982
2983 /* sample the bulletin board */
2984 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
2985 sizeof(union pf_vf_bulletin));
2986
2987 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
2988
2989 if (bp->shadow_bulletin.content.crc == crc)
2990 break;
2991
2992 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2993 bp->shadow_bulletin.content.crc, crc);
2994 }
2995
2996 if (attempts >= BULLETIN_ATTEMPTS) {
2997 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2998 attempts);
2999 return PFVF_BULLETIN_CRC_ERR;
3000 }
3001 bulletin = &bp->shadow_bulletin.content;
3002
3003 /* bulletin board hasn't changed since last sample */
3004 if (bp->old_bulletin.version == bulletin->version)
3005 return PFVF_BULLETIN_UNCHANGED;
3006
3007 /* the mac address in bulletin board is valid and is new */
3008 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3009 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3010 /* update new mac to net device */
3011 memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3012 }
3013
3014 if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3015 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3016 bulletin->link_speed, bulletin->link_flags);
3017
3018 bp->vf_link_vars.line_speed = bulletin->link_speed;
3019 bp->vf_link_vars.link_report_flags = 0;
3020 /* Link is down */
3021 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3022 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3023 &bp->vf_link_vars.link_report_flags);
3024 /* Full DUPLEX */
3025 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3026 __set_bit(BNX2X_LINK_REPORT_FD,
3027 &bp->vf_link_vars.link_report_flags);
3028 /* Rx Flow Control is ON */
3029 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3030 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3031 &bp->vf_link_vars.link_report_flags);
3032 /* Tx Flow Control is ON */
3033 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3034 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3035 &bp->vf_link_vars.link_report_flags);
3036 __bnx2x_link_report(bp);
3037 }
3038
3039 /* copy new bulletin board to bp */
3040 memcpy(&bp->old_bulletin, bulletin,
3041 sizeof(struct pf_vf_bulletin_content));
3042
3043 return PFVF_BULLETIN_UPDATED;
3044 }
3045
3046 void bnx2x_timer_sriov(struct bnx2x *bp)
3047 {
3048 bnx2x_sample_bulletin(bp);
3049
3050 /* if channel is down we need to self destruct */
3051 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3052 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3053 BNX2X_MSG_IOV);
3054 }
3055
3056 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3057 {
3058 /* vf doorbells are embedded within the regview */
3059 return bp->regview + PXP_VF_ADDR_DB_START;
3060 }
3061
3062 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3063 {
3064 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3065 sizeof(struct bnx2x_vf_mbx_msg));
3066 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
3067 sizeof(union pf_vf_bulletin));
3068 }
3069
3070 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3071 {
3072 mutex_init(&bp->vf2pf_mutex);
3073
3074 /* allocate vf2pf mailbox for vf to pf channel */
3075 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3076 sizeof(struct bnx2x_vf_mbx_msg));
3077 if (!bp->vf2pf_mbox)
3078 goto alloc_mem_err;
3079
3080 /* allocate pf 2 vf bulletin board */
3081 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3082 sizeof(union pf_vf_bulletin));
3083 if (!bp->pf2vf_bulletin)
3084 goto alloc_mem_err;
3085
3086 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3087
3088 return 0;
3089
3090 alloc_mem_err:
3091 bnx2x_vf_pci_dealloc(bp);
3092 return -ENOMEM;
3093 }
3094
3095 void bnx2x_iov_channel_down(struct bnx2x *bp)
3096 {
3097 int vf_idx;
3098 struct pf_vf_bulletin_content *bulletin;
3099
3100 if (!IS_SRIOV(bp))
3101 return;
3102
3103 for_each_vf(bp, vf_idx) {
3104 /* locate this VFs bulletin board and update the channel down
3105 * bit
3106 */
3107 bulletin = BP_VF_BULLETIN(bp, vf_idx);
3108 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3109
3110 /* update vf bulletin board */
3111 bnx2x_post_vf_bulletin(bp, vf_idx);
3112 }
3113 }
3114
3115 void bnx2x_iov_task(struct work_struct *work)
3116 {
3117 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3118
3119 if (!netif_running(bp->dev))
3120 return;
3121
3122 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3123 &bp->iov_task_state))
3124 bnx2x_vf_handle_flr_event(bp);
3125
3126 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3127 &bp->iov_task_state))
3128 bnx2x_vf_mbx(bp);
3129 }
3130
3131 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3132 {
3133 smp_mb__before_atomic();
3134 set_bit(flag, &bp->iov_task_state);
3135 smp_mb__after_atomic();
3136 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3137 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3138 }
This page took 0.092305 seconds and 4 git commands to generate.