Merge branch 'bnxt_en-fixes'
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2015 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT (5 * HZ)
60
61 static const char version[] =
62 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 164
73
74 enum board_idx {
75 BCM57301,
76 BCM57302,
77 BCM57304,
78 BCM57402,
79 BCM57404,
80 BCM57406,
81 BCM57304_VF,
82 BCM57404_VF,
83 };
84
85 /* indexed by enum above */
86 static const struct {
87 char *name;
88 } board_info[] = {
89 { "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
90 { "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
91 { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
92 { "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
93 { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
94 { "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
95 { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
96 { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
97 };
98
99 static const struct pci_device_id bnxt_pci_tbl[] = {
100 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
101 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
102 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
103 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
104 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
105 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
106 #ifdef CONFIG_BNXT_SRIOV
107 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
108 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
109 #endif
110 { 0 }
111 };
112
113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
114
115 static const u16 bnxt_vf_req_snif[] = {
116 HWRM_FUNC_CFG,
117 HWRM_PORT_PHY_QCFG,
118 HWRM_CFA_L2_FILTER_ALLOC,
119 };
120
121 static bool bnxt_vf_pciid(enum board_idx idx)
122 {
123 return (idx == BCM57304_VF || idx == BCM57404_VF);
124 }
125
126 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
127 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
128 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
129
130 #define BNXT_CP_DB_REARM(db, raw_cons) \
131 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
132
133 #define BNXT_CP_DB(db, raw_cons) \
134 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
135
136 #define BNXT_CP_DB_IRQ_DIS(db) \
137 writel(DB_CP_IRQ_DIS_FLAGS, db)
138
139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
140 {
141 /* Tell compiler to fetch tx indices from memory. */
142 barrier();
143
144 return bp->tx_ring_size -
145 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
146 }
147
148 static const u16 bnxt_lhint_arr[] = {
149 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
150 TX_BD_FLAGS_LHINT_512_TO_1023,
151 TX_BD_FLAGS_LHINT_1024_TO_2047,
152 TX_BD_FLAGS_LHINT_1024_TO_2047,
153 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
163 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 };
169
170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
171 {
172 struct bnxt *bp = netdev_priv(dev);
173 struct tx_bd *txbd;
174 struct tx_bd_ext *txbd1;
175 struct netdev_queue *txq;
176 int i;
177 dma_addr_t mapping;
178 unsigned int length, pad = 0;
179 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
180 u16 prod, last_frag;
181 struct pci_dev *pdev = bp->pdev;
182 struct bnxt_tx_ring_info *txr;
183 struct bnxt_sw_tx_bd *tx_buf;
184
185 i = skb_get_queue_mapping(skb);
186 if (unlikely(i >= bp->tx_nr_rings)) {
187 dev_kfree_skb_any(skb);
188 return NETDEV_TX_OK;
189 }
190
191 txr = &bp->tx_ring[i];
192 txq = netdev_get_tx_queue(dev, i);
193 prod = txr->tx_prod;
194
195 free_size = bnxt_tx_avail(bp, txr);
196 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
197 netif_tx_stop_queue(txq);
198 return NETDEV_TX_BUSY;
199 }
200
201 length = skb->len;
202 len = skb_headlen(skb);
203 last_frag = skb_shinfo(skb)->nr_frags;
204
205 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
206
207 txbd->tx_bd_opaque = prod;
208
209 tx_buf = &txr->tx_buf_ring[prod];
210 tx_buf->skb = skb;
211 tx_buf->nr_frags = last_frag;
212
213 vlan_tag_flags = 0;
214 cfa_action = 0;
215 if (skb_vlan_tag_present(skb)) {
216 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
217 skb_vlan_tag_get(skb);
218 /* Currently supports 8021Q, 8021AD vlan offloads
219 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
220 */
221 if (skb->vlan_proto == htons(ETH_P_8021Q))
222 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
223 }
224
225 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
226 struct tx_push_buffer *tx_push_buf = txr->tx_push;
227 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
228 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
229 void *pdata = tx_push_buf->data;
230 u64 *end;
231 int j, push_len;
232
233 /* Set COAL_NOW to be ready quickly for the next push */
234 tx_push->tx_bd_len_flags_type =
235 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
236 TX_BD_TYPE_LONG_TX_BD |
237 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
238 TX_BD_FLAGS_COAL_NOW |
239 TX_BD_FLAGS_PACKET_END |
240 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
241
242 if (skb->ip_summed == CHECKSUM_PARTIAL)
243 tx_push1->tx_bd_hsize_lflags =
244 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
245 else
246 tx_push1->tx_bd_hsize_lflags = 0;
247
248 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
249 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
250
251 end = PTR_ALIGN(pdata + length + 1, 8) - 1;
252 *end = 0;
253
254 skb_copy_from_linear_data(skb, pdata, len);
255 pdata += len;
256 for (j = 0; j < last_frag; j++) {
257 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
258 void *fptr;
259
260 fptr = skb_frag_address_safe(frag);
261 if (!fptr)
262 goto normal_tx;
263
264 memcpy(pdata, fptr, skb_frag_size(frag));
265 pdata += skb_frag_size(frag);
266 }
267
268 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
269 txbd->tx_bd_haddr = txr->data_mapping;
270 prod = NEXT_TX(prod);
271 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
272 memcpy(txbd, tx_push1, sizeof(*txbd));
273 prod = NEXT_TX(prod);
274 tx_push->doorbell =
275 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
276 txr->tx_prod = prod;
277
278 netdev_tx_sent_queue(txq, skb->len);
279
280 push_len = (length + sizeof(*tx_push) + 7) / 8;
281 if (push_len > 16) {
282 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
283 __iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
284 push_len - 16);
285 } else {
286 __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
287 push_len);
288 }
289
290 tx_buf->is_push = 1;
291 goto tx_done;
292 }
293
294 normal_tx:
295 if (length < BNXT_MIN_PKT_SIZE) {
296 pad = BNXT_MIN_PKT_SIZE - length;
297 if (skb_pad(skb, pad)) {
298 /* SKB already freed. */
299 tx_buf->skb = NULL;
300 return NETDEV_TX_OK;
301 }
302 length = BNXT_MIN_PKT_SIZE;
303 }
304
305 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
306
307 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
308 dev_kfree_skb_any(skb);
309 tx_buf->skb = NULL;
310 return NETDEV_TX_OK;
311 }
312
313 dma_unmap_addr_set(tx_buf, mapping, mapping);
314 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
315 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
316
317 txbd->tx_bd_haddr = cpu_to_le64(mapping);
318
319 prod = NEXT_TX(prod);
320 txbd1 = (struct tx_bd_ext *)
321 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
322
323 txbd1->tx_bd_hsize_lflags = 0;
324 if (skb_is_gso(skb)) {
325 u32 hdr_len;
326
327 if (skb->encapsulation)
328 hdr_len = skb_inner_network_offset(skb) +
329 skb_inner_network_header_len(skb) +
330 inner_tcp_hdrlen(skb);
331 else
332 hdr_len = skb_transport_offset(skb) +
333 tcp_hdrlen(skb);
334
335 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
336 TX_BD_FLAGS_T_IPID |
337 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
338 length = skb_shinfo(skb)->gso_size;
339 txbd1->tx_bd_mss = cpu_to_le32(length);
340 length += hdr_len;
341 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
342 txbd1->tx_bd_hsize_lflags =
343 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
344 txbd1->tx_bd_mss = 0;
345 }
346
347 length >>= 9;
348 flags |= bnxt_lhint_arr[length];
349 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
350
351 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
352 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
353 for (i = 0; i < last_frag; i++) {
354 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
355
356 prod = NEXT_TX(prod);
357 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
358
359 len = skb_frag_size(frag);
360 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
361 DMA_TO_DEVICE);
362
363 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
364 goto tx_dma_error;
365
366 tx_buf = &txr->tx_buf_ring[prod];
367 dma_unmap_addr_set(tx_buf, mapping, mapping);
368
369 txbd->tx_bd_haddr = cpu_to_le64(mapping);
370
371 flags = len << TX_BD_LEN_SHIFT;
372 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
373 }
374
375 flags &= ~TX_BD_LEN;
376 txbd->tx_bd_len_flags_type =
377 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
378 TX_BD_FLAGS_PACKET_END);
379
380 netdev_tx_sent_queue(txq, skb->len);
381
382 /* Sync BD data before updating doorbell */
383 wmb();
384
385 prod = NEXT_TX(prod);
386 txr->tx_prod = prod;
387
388 writel(DB_KEY_TX | prod, txr->tx_doorbell);
389 writel(DB_KEY_TX | prod, txr->tx_doorbell);
390
391 tx_done:
392
393 mmiowb();
394
395 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
396 netif_tx_stop_queue(txq);
397
398 /* netif_tx_stop_queue() must be done before checking
399 * tx index in bnxt_tx_avail() below, because in
400 * bnxt_tx_int(), we update tx index before checking for
401 * netif_tx_queue_stopped().
402 */
403 smp_mb();
404 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
405 netif_tx_wake_queue(txq);
406 }
407 return NETDEV_TX_OK;
408
409 tx_dma_error:
410 last_frag = i;
411
412 /* start back at beginning and unmap skb */
413 prod = txr->tx_prod;
414 tx_buf = &txr->tx_buf_ring[prod];
415 tx_buf->skb = NULL;
416 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
417 skb_headlen(skb), PCI_DMA_TODEVICE);
418 prod = NEXT_TX(prod);
419
420 /* unmap remaining mapped pages */
421 for (i = 0; i < last_frag; i++) {
422 prod = NEXT_TX(prod);
423 tx_buf = &txr->tx_buf_ring[prod];
424 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
425 skb_frag_size(&skb_shinfo(skb)->frags[i]),
426 PCI_DMA_TODEVICE);
427 }
428
429 dev_kfree_skb_any(skb);
430 return NETDEV_TX_OK;
431 }
432
433 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
434 {
435 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
436 int index = txr - &bp->tx_ring[0];
437 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
438 u16 cons = txr->tx_cons;
439 struct pci_dev *pdev = bp->pdev;
440 int i;
441 unsigned int tx_bytes = 0;
442
443 for (i = 0; i < nr_pkts; i++) {
444 struct bnxt_sw_tx_bd *tx_buf;
445 struct sk_buff *skb;
446 int j, last;
447
448 tx_buf = &txr->tx_buf_ring[cons];
449 cons = NEXT_TX(cons);
450 skb = tx_buf->skb;
451 tx_buf->skb = NULL;
452
453 if (tx_buf->is_push) {
454 tx_buf->is_push = 0;
455 goto next_tx_int;
456 }
457
458 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
459 skb_headlen(skb), PCI_DMA_TODEVICE);
460 last = tx_buf->nr_frags;
461
462 for (j = 0; j < last; j++) {
463 cons = NEXT_TX(cons);
464 tx_buf = &txr->tx_buf_ring[cons];
465 dma_unmap_page(
466 &pdev->dev,
467 dma_unmap_addr(tx_buf, mapping),
468 skb_frag_size(&skb_shinfo(skb)->frags[j]),
469 PCI_DMA_TODEVICE);
470 }
471
472 next_tx_int:
473 cons = NEXT_TX(cons);
474
475 tx_bytes += skb->len;
476 dev_kfree_skb_any(skb);
477 }
478
479 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
480 txr->tx_cons = cons;
481
482 /* Need to make the tx_cons update visible to bnxt_start_xmit()
483 * before checking for netif_tx_queue_stopped(). Without the
484 * memory barrier, there is a small possibility that bnxt_start_xmit()
485 * will miss it and cause the queue to be stopped forever.
486 */
487 smp_mb();
488
489 if (unlikely(netif_tx_queue_stopped(txq)) &&
490 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
491 __netif_tx_lock(txq, smp_processor_id());
492 if (netif_tx_queue_stopped(txq) &&
493 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
494 txr->dev_state != BNXT_DEV_STATE_CLOSING)
495 netif_tx_wake_queue(txq);
496 __netif_tx_unlock(txq);
497 }
498 }
499
500 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
501 gfp_t gfp)
502 {
503 u8 *data;
504 struct pci_dev *pdev = bp->pdev;
505
506 data = kmalloc(bp->rx_buf_size, gfp);
507 if (!data)
508 return NULL;
509
510 *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
511 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
512
513 if (dma_mapping_error(&pdev->dev, *mapping)) {
514 kfree(data);
515 data = NULL;
516 }
517 return data;
518 }
519
520 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
521 struct bnxt_rx_ring_info *rxr,
522 u16 prod, gfp_t gfp)
523 {
524 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
525 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
526 u8 *data;
527 dma_addr_t mapping;
528
529 data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
530 if (!data)
531 return -ENOMEM;
532
533 rx_buf->data = data;
534 dma_unmap_addr_set(rx_buf, mapping, mapping);
535
536 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
537
538 return 0;
539 }
540
541 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
542 u8 *data)
543 {
544 u16 prod = rxr->rx_prod;
545 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
546 struct rx_bd *cons_bd, *prod_bd;
547
548 prod_rx_buf = &rxr->rx_buf_ring[prod];
549 cons_rx_buf = &rxr->rx_buf_ring[cons];
550
551 prod_rx_buf->data = data;
552
553 dma_unmap_addr_set(prod_rx_buf, mapping,
554 dma_unmap_addr(cons_rx_buf, mapping));
555
556 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
557 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
558
559 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
560 }
561
562 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
563 {
564 u16 next, max = rxr->rx_agg_bmap_size;
565
566 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
567 if (next >= max)
568 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
569 return next;
570 }
571
572 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
573 struct bnxt_rx_ring_info *rxr,
574 u16 prod, gfp_t gfp)
575 {
576 struct rx_bd *rxbd =
577 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
578 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
579 struct pci_dev *pdev = bp->pdev;
580 struct page *page;
581 dma_addr_t mapping;
582 u16 sw_prod = rxr->rx_sw_agg_prod;
583
584 page = alloc_page(gfp);
585 if (!page)
586 return -ENOMEM;
587
588 mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
589 PCI_DMA_FROMDEVICE);
590 if (dma_mapping_error(&pdev->dev, mapping)) {
591 __free_page(page);
592 return -EIO;
593 }
594
595 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
596 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
597
598 __set_bit(sw_prod, rxr->rx_agg_bmap);
599 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
600 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
601
602 rx_agg_buf->page = page;
603 rx_agg_buf->mapping = mapping;
604 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
605 rxbd->rx_bd_opaque = sw_prod;
606 return 0;
607 }
608
609 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
610 u32 agg_bufs)
611 {
612 struct bnxt *bp = bnapi->bp;
613 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
614 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
615 u16 prod = rxr->rx_agg_prod;
616 u16 sw_prod = rxr->rx_sw_agg_prod;
617 u32 i;
618
619 for (i = 0; i < agg_bufs; i++) {
620 u16 cons;
621 struct rx_agg_cmp *agg;
622 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
623 struct rx_bd *prod_bd;
624 struct page *page;
625
626 agg = (struct rx_agg_cmp *)
627 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
628 cons = agg->rx_agg_cmp_opaque;
629 __clear_bit(cons, rxr->rx_agg_bmap);
630
631 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
632 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
633
634 __set_bit(sw_prod, rxr->rx_agg_bmap);
635 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
636 cons_rx_buf = &rxr->rx_agg_ring[cons];
637
638 /* It is possible for sw_prod to be equal to cons, so
639 * set cons_rx_buf->page to NULL first.
640 */
641 page = cons_rx_buf->page;
642 cons_rx_buf->page = NULL;
643 prod_rx_buf->page = page;
644
645 prod_rx_buf->mapping = cons_rx_buf->mapping;
646
647 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
648
649 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
650 prod_bd->rx_bd_opaque = sw_prod;
651
652 prod = NEXT_RX_AGG(prod);
653 sw_prod = NEXT_RX_AGG(sw_prod);
654 cp_cons = NEXT_CMP(cp_cons);
655 }
656 rxr->rx_agg_prod = prod;
657 rxr->rx_sw_agg_prod = sw_prod;
658 }
659
660 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
661 struct bnxt_rx_ring_info *rxr, u16 cons,
662 u16 prod, u8 *data, dma_addr_t dma_addr,
663 unsigned int len)
664 {
665 int err;
666 struct sk_buff *skb;
667
668 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
669 if (unlikely(err)) {
670 bnxt_reuse_rx_data(rxr, cons, data);
671 return NULL;
672 }
673
674 skb = build_skb(data, 0);
675 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
676 PCI_DMA_FROMDEVICE);
677 if (!skb) {
678 kfree(data);
679 return NULL;
680 }
681
682 skb_reserve(skb, BNXT_RX_OFFSET);
683 skb_put(skb, len);
684 return skb;
685 }
686
687 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
688 struct sk_buff *skb, u16 cp_cons,
689 u32 agg_bufs)
690 {
691 struct pci_dev *pdev = bp->pdev;
692 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
693 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
694 u16 prod = rxr->rx_agg_prod;
695 u32 i;
696
697 for (i = 0; i < agg_bufs; i++) {
698 u16 cons, frag_len;
699 struct rx_agg_cmp *agg;
700 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
701 struct page *page;
702 dma_addr_t mapping;
703
704 agg = (struct rx_agg_cmp *)
705 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
706 cons = agg->rx_agg_cmp_opaque;
707 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
708 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
709
710 cons_rx_buf = &rxr->rx_agg_ring[cons];
711 skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
712 __clear_bit(cons, rxr->rx_agg_bmap);
713
714 /* It is possible for bnxt_alloc_rx_page() to allocate
715 * a sw_prod index that equals the cons index, so we
716 * need to clear the cons entry now.
717 */
718 mapping = dma_unmap_addr(cons_rx_buf, mapping);
719 page = cons_rx_buf->page;
720 cons_rx_buf->page = NULL;
721
722 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
723 struct skb_shared_info *shinfo;
724 unsigned int nr_frags;
725
726 shinfo = skb_shinfo(skb);
727 nr_frags = --shinfo->nr_frags;
728 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
729
730 dev_kfree_skb(skb);
731
732 cons_rx_buf->page = page;
733
734 /* Update prod since possibly some pages have been
735 * allocated already.
736 */
737 rxr->rx_agg_prod = prod;
738 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
739 return NULL;
740 }
741
742 dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
743 PCI_DMA_FROMDEVICE);
744
745 skb->data_len += frag_len;
746 skb->len += frag_len;
747 skb->truesize += PAGE_SIZE;
748
749 prod = NEXT_RX_AGG(prod);
750 cp_cons = NEXT_CMP(cp_cons);
751 }
752 rxr->rx_agg_prod = prod;
753 return skb;
754 }
755
756 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
757 u8 agg_bufs, u32 *raw_cons)
758 {
759 u16 last;
760 struct rx_agg_cmp *agg;
761
762 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
763 last = RING_CMP(*raw_cons);
764 agg = (struct rx_agg_cmp *)
765 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
766 return RX_AGG_CMP_VALID(agg, *raw_cons);
767 }
768
769 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
770 unsigned int len,
771 dma_addr_t mapping)
772 {
773 struct bnxt *bp = bnapi->bp;
774 struct pci_dev *pdev = bp->pdev;
775 struct sk_buff *skb;
776
777 skb = napi_alloc_skb(&bnapi->napi, len);
778 if (!skb)
779 return NULL;
780
781 dma_sync_single_for_cpu(&pdev->dev, mapping,
782 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
783
784 memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
785
786 dma_sync_single_for_device(&pdev->dev, mapping,
787 bp->rx_copy_thresh,
788 PCI_DMA_FROMDEVICE);
789
790 skb_put(skb, len);
791 return skb;
792 }
793
794 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
795 struct rx_tpa_start_cmp *tpa_start,
796 struct rx_tpa_start_cmp_ext *tpa_start1)
797 {
798 u8 agg_id = TPA_START_AGG_ID(tpa_start);
799 u16 cons, prod;
800 struct bnxt_tpa_info *tpa_info;
801 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
802 struct rx_bd *prod_bd;
803 dma_addr_t mapping;
804
805 cons = tpa_start->rx_tpa_start_cmp_opaque;
806 prod = rxr->rx_prod;
807 cons_rx_buf = &rxr->rx_buf_ring[cons];
808 prod_rx_buf = &rxr->rx_buf_ring[prod];
809 tpa_info = &rxr->rx_tpa[agg_id];
810
811 prod_rx_buf->data = tpa_info->data;
812
813 mapping = tpa_info->mapping;
814 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
815
816 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
817
818 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
819
820 tpa_info->data = cons_rx_buf->data;
821 cons_rx_buf->data = NULL;
822 tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
823
824 tpa_info->len =
825 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
826 RX_TPA_START_CMP_LEN_SHIFT;
827 if (likely(TPA_START_HASH_VALID(tpa_start))) {
828 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
829
830 tpa_info->hash_type = PKT_HASH_TYPE_L4;
831 tpa_info->gso_type = SKB_GSO_TCPV4;
832 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
833 if (hash_type == 3)
834 tpa_info->gso_type = SKB_GSO_TCPV6;
835 tpa_info->rss_hash =
836 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
837 } else {
838 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
839 tpa_info->gso_type = 0;
840 if (netif_msg_rx_err(bp))
841 netdev_warn(bp->dev, "TPA packet without valid hash\n");
842 }
843 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
844 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
845
846 rxr->rx_prod = NEXT_RX(prod);
847 cons = NEXT_RX(cons);
848 cons_rx_buf = &rxr->rx_buf_ring[cons];
849
850 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
851 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
852 cons_rx_buf->data = NULL;
853 }
854
855 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
856 u16 cp_cons, u32 agg_bufs)
857 {
858 if (agg_bufs)
859 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
860 }
861
862 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
863 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
864
865 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
866 struct rx_tpa_end_cmp *tpa_end,
867 struct rx_tpa_end_cmp_ext *tpa_end1,
868 struct sk_buff *skb)
869 {
870 #ifdef CONFIG_INET
871 struct tcphdr *th;
872 int payload_off, tcp_opt_len = 0;
873 int len, nw_off;
874 u16 segs;
875
876 segs = TPA_END_TPA_SEGS(tpa_end);
877 if (segs == 1)
878 return skb;
879
880 NAPI_GRO_CB(skb)->count = segs;
881 skb_shinfo(skb)->gso_size =
882 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
883 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
884 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
885 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
886 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
887 if (TPA_END_GRO_TS(tpa_end))
888 tcp_opt_len = 12;
889
890 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
891 struct iphdr *iph;
892
893 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
894 ETH_HLEN;
895 skb_set_network_header(skb, nw_off);
896 iph = ip_hdr(skb);
897 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
898 len = skb->len - skb_transport_offset(skb);
899 th = tcp_hdr(skb);
900 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
901 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
902 struct ipv6hdr *iph;
903
904 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
905 ETH_HLEN;
906 skb_set_network_header(skb, nw_off);
907 iph = ipv6_hdr(skb);
908 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
909 len = skb->len - skb_transport_offset(skb);
910 th = tcp_hdr(skb);
911 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
912 } else {
913 dev_kfree_skb_any(skb);
914 return NULL;
915 }
916 tcp_gro_complete(skb);
917
918 if (nw_off) { /* tunnel */
919 struct udphdr *uh = NULL;
920
921 if (skb->protocol == htons(ETH_P_IP)) {
922 struct iphdr *iph = (struct iphdr *)skb->data;
923
924 if (iph->protocol == IPPROTO_UDP)
925 uh = (struct udphdr *)(iph + 1);
926 } else {
927 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
928
929 if (iph->nexthdr == IPPROTO_UDP)
930 uh = (struct udphdr *)(iph + 1);
931 }
932 if (uh) {
933 if (uh->check)
934 skb_shinfo(skb)->gso_type |=
935 SKB_GSO_UDP_TUNNEL_CSUM;
936 else
937 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
938 }
939 }
940 #endif
941 return skb;
942 }
943
944 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
945 struct bnxt_napi *bnapi,
946 u32 *raw_cons,
947 struct rx_tpa_end_cmp *tpa_end,
948 struct rx_tpa_end_cmp_ext *tpa_end1,
949 bool *agg_event)
950 {
951 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
952 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
953 u8 agg_id = TPA_END_AGG_ID(tpa_end);
954 u8 *data, agg_bufs;
955 u16 cp_cons = RING_CMP(*raw_cons);
956 unsigned int len;
957 struct bnxt_tpa_info *tpa_info;
958 dma_addr_t mapping;
959 struct sk_buff *skb;
960
961 tpa_info = &rxr->rx_tpa[agg_id];
962 data = tpa_info->data;
963 prefetch(data);
964 len = tpa_info->len;
965 mapping = tpa_info->mapping;
966
967 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
968 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
969
970 if (agg_bufs) {
971 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
972 return ERR_PTR(-EBUSY);
973
974 *agg_event = true;
975 cp_cons = NEXT_CMP(cp_cons);
976 }
977
978 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
979 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
980 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
981 agg_bufs, (int)MAX_SKB_FRAGS);
982 return NULL;
983 }
984
985 if (len <= bp->rx_copy_thresh) {
986 skb = bnxt_copy_skb(bnapi, data, len, mapping);
987 if (!skb) {
988 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
989 return NULL;
990 }
991 } else {
992 u8 *new_data;
993 dma_addr_t new_mapping;
994
995 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
996 if (!new_data) {
997 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
998 return NULL;
999 }
1000
1001 tpa_info->data = new_data;
1002 tpa_info->mapping = new_mapping;
1003
1004 skb = build_skb(data, 0);
1005 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1006 PCI_DMA_FROMDEVICE);
1007
1008 if (!skb) {
1009 kfree(data);
1010 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1011 return NULL;
1012 }
1013 skb_reserve(skb, BNXT_RX_OFFSET);
1014 skb_put(skb, len);
1015 }
1016
1017 if (agg_bufs) {
1018 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1019 if (!skb) {
1020 /* Page reuse already handled by bnxt_rx_pages(). */
1021 return NULL;
1022 }
1023 }
1024 skb->protocol = eth_type_trans(skb, bp->dev);
1025
1026 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1027 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1028
1029 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1030 netdev_features_t features = skb->dev->features;
1031 u16 vlan_proto = tpa_info->metadata >>
1032 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1033
1034 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1035 vlan_proto == ETH_P_8021Q) ||
1036 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1037 vlan_proto == ETH_P_8021AD)) {
1038 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1039 tpa_info->metadata &
1040 RX_CMP_FLAGS2_METADATA_VID_MASK);
1041 }
1042 }
1043
1044 skb_checksum_none_assert(skb);
1045 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1046 skb->ip_summed = CHECKSUM_UNNECESSARY;
1047 skb->csum_level =
1048 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1049 }
1050
1051 if (TPA_END_GRO(tpa_end))
1052 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1053
1054 return skb;
1055 }
1056
1057 /* returns the following:
1058 * 1 - 1 packet successfully received
1059 * 0 - successful TPA_START, packet not completed yet
1060 * -EBUSY - completion ring does not have all the agg buffers yet
1061 * -ENOMEM - packet aborted due to out of memory
1062 * -EIO - packet aborted due to hw error indicated in BD
1063 */
1064 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1065 bool *agg_event)
1066 {
1067 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1068 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1069 struct net_device *dev = bp->dev;
1070 struct rx_cmp *rxcmp;
1071 struct rx_cmp_ext *rxcmp1;
1072 u32 tmp_raw_cons = *raw_cons;
1073 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1074 struct bnxt_sw_rx_bd *rx_buf;
1075 unsigned int len;
1076 u8 *data, agg_bufs, cmp_type;
1077 dma_addr_t dma_addr;
1078 struct sk_buff *skb;
1079 int rc = 0;
1080
1081 rxcmp = (struct rx_cmp *)
1082 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1083
1084 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1085 cp_cons = RING_CMP(tmp_raw_cons);
1086 rxcmp1 = (struct rx_cmp_ext *)
1087 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1088
1089 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1090 return -EBUSY;
1091
1092 cmp_type = RX_CMP_TYPE(rxcmp);
1093
1094 prod = rxr->rx_prod;
1095
1096 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1097 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1098 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1099
1100 goto next_rx_no_prod;
1101
1102 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1103 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1104 (struct rx_tpa_end_cmp *)rxcmp,
1105 (struct rx_tpa_end_cmp_ext *)rxcmp1,
1106 agg_event);
1107
1108 if (unlikely(IS_ERR(skb)))
1109 return -EBUSY;
1110
1111 rc = -ENOMEM;
1112 if (likely(skb)) {
1113 skb_record_rx_queue(skb, bnapi->index);
1114 skb_mark_napi_id(skb, &bnapi->napi);
1115 if (bnxt_busy_polling(bnapi))
1116 netif_receive_skb(skb);
1117 else
1118 napi_gro_receive(&bnapi->napi, skb);
1119 rc = 1;
1120 }
1121 goto next_rx_no_prod;
1122 }
1123
1124 cons = rxcmp->rx_cmp_opaque;
1125 rx_buf = &rxr->rx_buf_ring[cons];
1126 data = rx_buf->data;
1127 prefetch(data);
1128
1129 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1130 RX_CMP_AGG_BUFS_SHIFT;
1131
1132 if (agg_bufs) {
1133 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1134 return -EBUSY;
1135
1136 cp_cons = NEXT_CMP(cp_cons);
1137 *agg_event = true;
1138 }
1139
1140 rx_buf->data = NULL;
1141 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1142 bnxt_reuse_rx_data(rxr, cons, data);
1143 if (agg_bufs)
1144 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1145
1146 rc = -EIO;
1147 goto next_rx;
1148 }
1149
1150 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1151 dma_addr = dma_unmap_addr(rx_buf, mapping);
1152
1153 if (len <= bp->rx_copy_thresh) {
1154 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1155 bnxt_reuse_rx_data(rxr, cons, data);
1156 if (!skb) {
1157 rc = -ENOMEM;
1158 goto next_rx;
1159 }
1160 } else {
1161 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1162 if (!skb) {
1163 rc = -ENOMEM;
1164 goto next_rx;
1165 }
1166 }
1167
1168 if (agg_bufs) {
1169 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1170 if (!skb) {
1171 rc = -ENOMEM;
1172 goto next_rx;
1173 }
1174 }
1175
1176 if (RX_CMP_HASH_VALID(rxcmp)) {
1177 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1178 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1179
1180 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1181 if (hash_type != 1 && hash_type != 3)
1182 type = PKT_HASH_TYPE_L3;
1183 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1184 }
1185
1186 skb->protocol = eth_type_trans(skb, dev);
1187
1188 if (rxcmp1->rx_cmp_flags2 &
1189 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1190 netdev_features_t features = skb->dev->features;
1191 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1192 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1193
1194 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1195 vlan_proto == ETH_P_8021Q) ||
1196 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1197 vlan_proto == ETH_P_8021AD))
1198 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1199 meta_data &
1200 RX_CMP_FLAGS2_METADATA_VID_MASK);
1201 }
1202
1203 skb_checksum_none_assert(skb);
1204 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1205 if (dev->features & NETIF_F_RXCSUM) {
1206 skb->ip_summed = CHECKSUM_UNNECESSARY;
1207 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1208 }
1209 } else {
1210 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1211 if (dev->features & NETIF_F_RXCSUM)
1212 cpr->rx_l4_csum_errors++;
1213 }
1214 }
1215
1216 skb_record_rx_queue(skb, bnapi->index);
1217 skb_mark_napi_id(skb, &bnapi->napi);
1218 if (bnxt_busy_polling(bnapi))
1219 netif_receive_skb(skb);
1220 else
1221 napi_gro_receive(&bnapi->napi, skb);
1222 rc = 1;
1223
1224 next_rx:
1225 rxr->rx_prod = NEXT_RX(prod);
1226
1227 next_rx_no_prod:
1228 *raw_cons = tmp_raw_cons;
1229
1230 return rc;
1231 }
1232
1233 static int bnxt_async_event_process(struct bnxt *bp,
1234 struct hwrm_async_event_cmpl *cmpl)
1235 {
1236 u16 event_id = le16_to_cpu(cmpl->event_id);
1237
1238 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1239 switch (event_id) {
1240 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1241 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1242 schedule_work(&bp->sp_task);
1243 break;
1244 default:
1245 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1246 event_id);
1247 break;
1248 }
1249 return 0;
1250 }
1251
1252 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1253 {
1254 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1255 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1256 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1257 (struct hwrm_fwd_req_cmpl *)txcmp;
1258
1259 switch (cmpl_type) {
1260 case CMPL_BASE_TYPE_HWRM_DONE:
1261 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1262 if (seq_id == bp->hwrm_intr_seq_id)
1263 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1264 else
1265 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1266 break;
1267
1268 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1269 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1270
1271 if ((vf_id < bp->pf.first_vf_id) ||
1272 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1273 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1274 vf_id);
1275 return -EINVAL;
1276 }
1277
1278 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1279 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1280 schedule_work(&bp->sp_task);
1281 break;
1282
1283 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1284 bnxt_async_event_process(bp,
1285 (struct hwrm_async_event_cmpl *)txcmp);
1286
1287 default:
1288 break;
1289 }
1290
1291 return 0;
1292 }
1293
1294 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1295 {
1296 struct bnxt_napi *bnapi = dev_instance;
1297 struct bnxt *bp = bnapi->bp;
1298 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1299 u32 cons = RING_CMP(cpr->cp_raw_cons);
1300
1301 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1302 napi_schedule(&bnapi->napi);
1303 return IRQ_HANDLED;
1304 }
1305
1306 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1307 {
1308 u32 raw_cons = cpr->cp_raw_cons;
1309 u16 cons = RING_CMP(raw_cons);
1310 struct tx_cmp *txcmp;
1311
1312 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1313
1314 return TX_CMP_VALID(txcmp, raw_cons);
1315 }
1316
1317 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1318 {
1319 struct bnxt_napi *bnapi = dev_instance;
1320 struct bnxt *bp = bnapi->bp;
1321 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1322 u32 cons = RING_CMP(cpr->cp_raw_cons);
1323 u32 int_status;
1324
1325 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1326
1327 if (!bnxt_has_work(bp, cpr)) {
1328 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1329 /* return if erroneous interrupt */
1330 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1331 return IRQ_NONE;
1332 }
1333
1334 /* disable ring IRQ */
1335 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1336
1337 /* Return here if interrupt is shared and is disabled. */
1338 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1339 return IRQ_HANDLED;
1340
1341 napi_schedule(&bnapi->napi);
1342 return IRQ_HANDLED;
1343 }
1344
1345 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1346 {
1347 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1348 u32 raw_cons = cpr->cp_raw_cons;
1349 u32 cons;
1350 int tx_pkts = 0;
1351 int rx_pkts = 0;
1352 bool rx_event = false;
1353 bool agg_event = false;
1354 struct tx_cmp *txcmp;
1355
1356 while (1) {
1357 int rc;
1358
1359 cons = RING_CMP(raw_cons);
1360 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1361
1362 if (!TX_CMP_VALID(txcmp, raw_cons))
1363 break;
1364
1365 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1366 tx_pkts++;
1367 /* return full budget so NAPI will complete. */
1368 if (unlikely(tx_pkts > bp->tx_wake_thresh))
1369 rx_pkts = budget;
1370 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1371 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1372 if (likely(rc >= 0))
1373 rx_pkts += rc;
1374 else if (rc == -EBUSY) /* partial completion */
1375 break;
1376 rx_event = true;
1377 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1378 CMPL_BASE_TYPE_HWRM_DONE) ||
1379 (TX_CMP_TYPE(txcmp) ==
1380 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1381 (TX_CMP_TYPE(txcmp) ==
1382 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1383 bnxt_hwrm_handler(bp, txcmp);
1384 }
1385 raw_cons = NEXT_RAW_CMP(raw_cons);
1386
1387 if (rx_pkts == budget)
1388 break;
1389 }
1390
1391 cpr->cp_raw_cons = raw_cons;
1392 /* ACK completion ring before freeing tx ring and producing new
1393 * buffers in rx/agg rings to prevent overflowing the completion
1394 * ring.
1395 */
1396 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1397
1398 if (tx_pkts)
1399 bnxt_tx_int(bp, bnapi, tx_pkts);
1400
1401 if (rx_event) {
1402 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1403
1404 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1405 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1406 if (agg_event) {
1407 writel(DB_KEY_RX | rxr->rx_agg_prod,
1408 rxr->rx_agg_doorbell);
1409 writel(DB_KEY_RX | rxr->rx_agg_prod,
1410 rxr->rx_agg_doorbell);
1411 }
1412 }
1413 return rx_pkts;
1414 }
1415
1416 static int bnxt_poll(struct napi_struct *napi, int budget)
1417 {
1418 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1419 struct bnxt *bp = bnapi->bp;
1420 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1421 int work_done = 0;
1422
1423 if (!bnxt_lock_napi(bnapi))
1424 return budget;
1425
1426 while (1) {
1427 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1428
1429 if (work_done >= budget)
1430 break;
1431
1432 if (!bnxt_has_work(bp, cpr)) {
1433 napi_complete(napi);
1434 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1435 break;
1436 }
1437 }
1438 mmiowb();
1439 bnxt_unlock_napi(bnapi);
1440 return work_done;
1441 }
1442
1443 #ifdef CONFIG_NET_RX_BUSY_POLL
1444 static int bnxt_busy_poll(struct napi_struct *napi)
1445 {
1446 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1447 struct bnxt *bp = bnapi->bp;
1448 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1449 int rx_work, budget = 4;
1450
1451 if (atomic_read(&bp->intr_sem) != 0)
1452 return LL_FLUSH_FAILED;
1453
1454 if (!bnxt_lock_poll(bnapi))
1455 return LL_FLUSH_BUSY;
1456
1457 rx_work = bnxt_poll_work(bp, bnapi, budget);
1458
1459 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1460
1461 bnxt_unlock_poll(bnapi);
1462 return rx_work;
1463 }
1464 #endif
1465
1466 static void bnxt_free_tx_skbs(struct bnxt *bp)
1467 {
1468 int i, max_idx;
1469 struct pci_dev *pdev = bp->pdev;
1470
1471 if (!bp->tx_ring)
1472 return;
1473
1474 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1475 for (i = 0; i < bp->tx_nr_rings; i++) {
1476 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1477 int j;
1478
1479 for (j = 0; j < max_idx;) {
1480 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1481 struct sk_buff *skb = tx_buf->skb;
1482 int k, last;
1483
1484 if (!skb) {
1485 j++;
1486 continue;
1487 }
1488
1489 tx_buf->skb = NULL;
1490
1491 if (tx_buf->is_push) {
1492 dev_kfree_skb(skb);
1493 j += 2;
1494 continue;
1495 }
1496
1497 dma_unmap_single(&pdev->dev,
1498 dma_unmap_addr(tx_buf, mapping),
1499 skb_headlen(skb),
1500 PCI_DMA_TODEVICE);
1501
1502 last = tx_buf->nr_frags;
1503 j += 2;
1504 for (k = 0; k < last; k++, j++) {
1505 int ring_idx = j & bp->tx_ring_mask;
1506 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1507
1508 tx_buf = &txr->tx_buf_ring[ring_idx];
1509 dma_unmap_page(
1510 &pdev->dev,
1511 dma_unmap_addr(tx_buf, mapping),
1512 skb_frag_size(frag), PCI_DMA_TODEVICE);
1513 }
1514 dev_kfree_skb(skb);
1515 }
1516 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1517 }
1518 }
1519
1520 static void bnxt_free_rx_skbs(struct bnxt *bp)
1521 {
1522 int i, max_idx, max_agg_idx;
1523 struct pci_dev *pdev = bp->pdev;
1524
1525 if (!bp->rx_ring)
1526 return;
1527
1528 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1529 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1530 for (i = 0; i < bp->rx_nr_rings; i++) {
1531 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1532 int j;
1533
1534 if (rxr->rx_tpa) {
1535 for (j = 0; j < MAX_TPA; j++) {
1536 struct bnxt_tpa_info *tpa_info =
1537 &rxr->rx_tpa[j];
1538 u8 *data = tpa_info->data;
1539
1540 if (!data)
1541 continue;
1542
1543 dma_unmap_single(
1544 &pdev->dev,
1545 dma_unmap_addr(tpa_info, mapping),
1546 bp->rx_buf_use_size,
1547 PCI_DMA_FROMDEVICE);
1548
1549 tpa_info->data = NULL;
1550
1551 kfree(data);
1552 }
1553 }
1554
1555 for (j = 0; j < max_idx; j++) {
1556 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1557 u8 *data = rx_buf->data;
1558
1559 if (!data)
1560 continue;
1561
1562 dma_unmap_single(&pdev->dev,
1563 dma_unmap_addr(rx_buf, mapping),
1564 bp->rx_buf_use_size,
1565 PCI_DMA_FROMDEVICE);
1566
1567 rx_buf->data = NULL;
1568
1569 kfree(data);
1570 }
1571
1572 for (j = 0; j < max_agg_idx; j++) {
1573 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1574 &rxr->rx_agg_ring[j];
1575 struct page *page = rx_agg_buf->page;
1576
1577 if (!page)
1578 continue;
1579
1580 dma_unmap_page(&pdev->dev,
1581 dma_unmap_addr(rx_agg_buf, mapping),
1582 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1583
1584 rx_agg_buf->page = NULL;
1585 __clear_bit(j, rxr->rx_agg_bmap);
1586
1587 __free_page(page);
1588 }
1589 }
1590 }
1591
1592 static void bnxt_free_skbs(struct bnxt *bp)
1593 {
1594 bnxt_free_tx_skbs(bp);
1595 bnxt_free_rx_skbs(bp);
1596 }
1597
1598 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1599 {
1600 struct pci_dev *pdev = bp->pdev;
1601 int i;
1602
1603 for (i = 0; i < ring->nr_pages; i++) {
1604 if (!ring->pg_arr[i])
1605 continue;
1606
1607 dma_free_coherent(&pdev->dev, ring->page_size,
1608 ring->pg_arr[i], ring->dma_arr[i]);
1609
1610 ring->pg_arr[i] = NULL;
1611 }
1612 if (ring->pg_tbl) {
1613 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1614 ring->pg_tbl, ring->pg_tbl_map);
1615 ring->pg_tbl = NULL;
1616 }
1617 if (ring->vmem_size && *ring->vmem) {
1618 vfree(*ring->vmem);
1619 *ring->vmem = NULL;
1620 }
1621 }
1622
1623 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1624 {
1625 int i;
1626 struct pci_dev *pdev = bp->pdev;
1627
1628 if (ring->nr_pages > 1) {
1629 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1630 ring->nr_pages * 8,
1631 &ring->pg_tbl_map,
1632 GFP_KERNEL);
1633 if (!ring->pg_tbl)
1634 return -ENOMEM;
1635 }
1636
1637 for (i = 0; i < ring->nr_pages; i++) {
1638 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1639 ring->page_size,
1640 &ring->dma_arr[i],
1641 GFP_KERNEL);
1642 if (!ring->pg_arr[i])
1643 return -ENOMEM;
1644
1645 if (ring->nr_pages > 1)
1646 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1647 }
1648
1649 if (ring->vmem_size) {
1650 *ring->vmem = vzalloc(ring->vmem_size);
1651 if (!(*ring->vmem))
1652 return -ENOMEM;
1653 }
1654 return 0;
1655 }
1656
1657 static void bnxt_free_rx_rings(struct bnxt *bp)
1658 {
1659 int i;
1660
1661 if (!bp->rx_ring)
1662 return;
1663
1664 for (i = 0; i < bp->rx_nr_rings; i++) {
1665 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1666 struct bnxt_ring_struct *ring;
1667
1668 kfree(rxr->rx_tpa);
1669 rxr->rx_tpa = NULL;
1670
1671 kfree(rxr->rx_agg_bmap);
1672 rxr->rx_agg_bmap = NULL;
1673
1674 ring = &rxr->rx_ring_struct;
1675 bnxt_free_ring(bp, ring);
1676
1677 ring = &rxr->rx_agg_ring_struct;
1678 bnxt_free_ring(bp, ring);
1679 }
1680 }
1681
1682 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1683 {
1684 int i, rc, agg_rings = 0, tpa_rings = 0;
1685
1686 if (!bp->rx_ring)
1687 return -ENOMEM;
1688
1689 if (bp->flags & BNXT_FLAG_AGG_RINGS)
1690 agg_rings = 1;
1691
1692 if (bp->flags & BNXT_FLAG_TPA)
1693 tpa_rings = 1;
1694
1695 for (i = 0; i < bp->rx_nr_rings; i++) {
1696 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1697 struct bnxt_ring_struct *ring;
1698
1699 ring = &rxr->rx_ring_struct;
1700
1701 rc = bnxt_alloc_ring(bp, ring);
1702 if (rc)
1703 return rc;
1704
1705 if (agg_rings) {
1706 u16 mem_size;
1707
1708 ring = &rxr->rx_agg_ring_struct;
1709 rc = bnxt_alloc_ring(bp, ring);
1710 if (rc)
1711 return rc;
1712
1713 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1714 mem_size = rxr->rx_agg_bmap_size / 8;
1715 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1716 if (!rxr->rx_agg_bmap)
1717 return -ENOMEM;
1718
1719 if (tpa_rings) {
1720 rxr->rx_tpa = kcalloc(MAX_TPA,
1721 sizeof(struct bnxt_tpa_info),
1722 GFP_KERNEL);
1723 if (!rxr->rx_tpa)
1724 return -ENOMEM;
1725 }
1726 }
1727 }
1728 return 0;
1729 }
1730
1731 static void bnxt_free_tx_rings(struct bnxt *bp)
1732 {
1733 int i;
1734 struct pci_dev *pdev = bp->pdev;
1735
1736 if (!bp->tx_ring)
1737 return;
1738
1739 for (i = 0; i < bp->tx_nr_rings; i++) {
1740 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1741 struct bnxt_ring_struct *ring;
1742
1743 if (txr->tx_push) {
1744 dma_free_coherent(&pdev->dev, bp->tx_push_size,
1745 txr->tx_push, txr->tx_push_mapping);
1746 txr->tx_push = NULL;
1747 }
1748
1749 ring = &txr->tx_ring_struct;
1750
1751 bnxt_free_ring(bp, ring);
1752 }
1753 }
1754
1755 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1756 {
1757 int i, j, rc;
1758 struct pci_dev *pdev = bp->pdev;
1759
1760 bp->tx_push_size = 0;
1761 if (bp->tx_push_thresh) {
1762 int push_size;
1763
1764 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1765 bp->tx_push_thresh);
1766
1767 if (push_size > 256) {
1768 push_size = 0;
1769 bp->tx_push_thresh = 0;
1770 }
1771
1772 bp->tx_push_size = push_size;
1773 }
1774
1775 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1776 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1777 struct bnxt_ring_struct *ring;
1778
1779 ring = &txr->tx_ring_struct;
1780
1781 rc = bnxt_alloc_ring(bp, ring);
1782 if (rc)
1783 return rc;
1784
1785 if (bp->tx_push_size) {
1786 dma_addr_t mapping;
1787
1788 /* One pre-allocated DMA buffer to backup
1789 * TX push operation
1790 */
1791 txr->tx_push = dma_alloc_coherent(&pdev->dev,
1792 bp->tx_push_size,
1793 &txr->tx_push_mapping,
1794 GFP_KERNEL);
1795
1796 if (!txr->tx_push)
1797 return -ENOMEM;
1798
1799 mapping = txr->tx_push_mapping +
1800 sizeof(struct tx_push_bd);
1801 txr->data_mapping = cpu_to_le64(mapping);
1802
1803 memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
1804 }
1805 ring->queue_id = bp->q_info[j].queue_id;
1806 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1807 j++;
1808 }
1809 return 0;
1810 }
1811
1812 static void bnxt_free_cp_rings(struct bnxt *bp)
1813 {
1814 int i;
1815
1816 if (!bp->bnapi)
1817 return;
1818
1819 for (i = 0; i < bp->cp_nr_rings; i++) {
1820 struct bnxt_napi *bnapi = bp->bnapi[i];
1821 struct bnxt_cp_ring_info *cpr;
1822 struct bnxt_ring_struct *ring;
1823
1824 if (!bnapi)
1825 continue;
1826
1827 cpr = &bnapi->cp_ring;
1828 ring = &cpr->cp_ring_struct;
1829
1830 bnxt_free_ring(bp, ring);
1831 }
1832 }
1833
1834 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1835 {
1836 int i, rc;
1837
1838 for (i = 0; i < bp->cp_nr_rings; i++) {
1839 struct bnxt_napi *bnapi = bp->bnapi[i];
1840 struct bnxt_cp_ring_info *cpr;
1841 struct bnxt_ring_struct *ring;
1842
1843 if (!bnapi)
1844 continue;
1845
1846 cpr = &bnapi->cp_ring;
1847 ring = &cpr->cp_ring_struct;
1848
1849 rc = bnxt_alloc_ring(bp, ring);
1850 if (rc)
1851 return rc;
1852 }
1853 return 0;
1854 }
1855
1856 static void bnxt_init_ring_struct(struct bnxt *bp)
1857 {
1858 int i;
1859
1860 for (i = 0; i < bp->cp_nr_rings; i++) {
1861 struct bnxt_napi *bnapi = bp->bnapi[i];
1862 struct bnxt_cp_ring_info *cpr;
1863 struct bnxt_rx_ring_info *rxr;
1864 struct bnxt_tx_ring_info *txr;
1865 struct bnxt_ring_struct *ring;
1866
1867 if (!bnapi)
1868 continue;
1869
1870 cpr = &bnapi->cp_ring;
1871 ring = &cpr->cp_ring_struct;
1872 ring->nr_pages = bp->cp_nr_pages;
1873 ring->page_size = HW_CMPD_RING_SIZE;
1874 ring->pg_arr = (void **)cpr->cp_desc_ring;
1875 ring->dma_arr = cpr->cp_desc_mapping;
1876 ring->vmem_size = 0;
1877
1878 rxr = bnapi->rx_ring;
1879 if (!rxr)
1880 goto skip_rx;
1881
1882 ring = &rxr->rx_ring_struct;
1883 ring->nr_pages = bp->rx_nr_pages;
1884 ring->page_size = HW_RXBD_RING_SIZE;
1885 ring->pg_arr = (void **)rxr->rx_desc_ring;
1886 ring->dma_arr = rxr->rx_desc_mapping;
1887 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1888 ring->vmem = (void **)&rxr->rx_buf_ring;
1889
1890 ring = &rxr->rx_agg_ring_struct;
1891 ring->nr_pages = bp->rx_agg_nr_pages;
1892 ring->page_size = HW_RXBD_RING_SIZE;
1893 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1894 ring->dma_arr = rxr->rx_agg_desc_mapping;
1895 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1896 ring->vmem = (void **)&rxr->rx_agg_ring;
1897
1898 skip_rx:
1899 txr = bnapi->tx_ring;
1900 if (!txr)
1901 continue;
1902
1903 ring = &txr->tx_ring_struct;
1904 ring->nr_pages = bp->tx_nr_pages;
1905 ring->page_size = HW_RXBD_RING_SIZE;
1906 ring->pg_arr = (void **)txr->tx_desc_ring;
1907 ring->dma_arr = txr->tx_desc_mapping;
1908 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1909 ring->vmem = (void **)&txr->tx_buf_ring;
1910 }
1911 }
1912
1913 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1914 {
1915 int i;
1916 u32 prod;
1917 struct rx_bd **rx_buf_ring;
1918
1919 rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1920 for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1921 int j;
1922 struct rx_bd *rxbd;
1923
1924 rxbd = rx_buf_ring[i];
1925 if (!rxbd)
1926 continue;
1927
1928 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1929 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1930 rxbd->rx_bd_opaque = prod;
1931 }
1932 }
1933 }
1934
1935 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1936 {
1937 struct net_device *dev = bp->dev;
1938 struct bnxt_rx_ring_info *rxr;
1939 struct bnxt_ring_struct *ring;
1940 u32 prod, type;
1941 int i;
1942
1943 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1944 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1945
1946 if (NET_IP_ALIGN == 2)
1947 type |= RX_BD_FLAGS_SOP;
1948
1949 rxr = &bp->rx_ring[ring_nr];
1950 ring = &rxr->rx_ring_struct;
1951 bnxt_init_rxbd_pages(ring, type);
1952
1953 prod = rxr->rx_prod;
1954 for (i = 0; i < bp->rx_ring_size; i++) {
1955 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1956 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1957 ring_nr, i, bp->rx_ring_size);
1958 break;
1959 }
1960 prod = NEXT_RX(prod);
1961 }
1962 rxr->rx_prod = prod;
1963 ring->fw_ring_id = INVALID_HW_RING_ID;
1964
1965 ring = &rxr->rx_agg_ring_struct;
1966 ring->fw_ring_id = INVALID_HW_RING_ID;
1967
1968 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1969 return 0;
1970
1971 type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1972 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1973
1974 bnxt_init_rxbd_pages(ring, type);
1975
1976 prod = rxr->rx_agg_prod;
1977 for (i = 0; i < bp->rx_agg_ring_size; i++) {
1978 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
1979 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
1980 ring_nr, i, bp->rx_ring_size);
1981 break;
1982 }
1983 prod = NEXT_RX_AGG(prod);
1984 }
1985 rxr->rx_agg_prod = prod;
1986
1987 if (bp->flags & BNXT_FLAG_TPA) {
1988 if (rxr->rx_tpa) {
1989 u8 *data;
1990 dma_addr_t mapping;
1991
1992 for (i = 0; i < MAX_TPA; i++) {
1993 data = __bnxt_alloc_rx_data(bp, &mapping,
1994 GFP_KERNEL);
1995 if (!data)
1996 return -ENOMEM;
1997
1998 rxr->rx_tpa[i].data = data;
1999 rxr->rx_tpa[i].mapping = mapping;
2000 }
2001 } else {
2002 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2003 return -ENOMEM;
2004 }
2005 }
2006
2007 return 0;
2008 }
2009
2010 static int bnxt_init_rx_rings(struct bnxt *bp)
2011 {
2012 int i, rc = 0;
2013
2014 for (i = 0; i < bp->rx_nr_rings; i++) {
2015 rc = bnxt_init_one_rx_ring(bp, i);
2016 if (rc)
2017 break;
2018 }
2019
2020 return rc;
2021 }
2022
2023 static int bnxt_init_tx_rings(struct bnxt *bp)
2024 {
2025 u16 i;
2026
2027 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2028 MAX_SKB_FRAGS + 1);
2029
2030 for (i = 0; i < bp->tx_nr_rings; i++) {
2031 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2032 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2033
2034 ring->fw_ring_id = INVALID_HW_RING_ID;
2035 }
2036
2037 return 0;
2038 }
2039
2040 static void bnxt_free_ring_grps(struct bnxt *bp)
2041 {
2042 kfree(bp->grp_info);
2043 bp->grp_info = NULL;
2044 }
2045
2046 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2047 {
2048 int i;
2049
2050 if (irq_re_init) {
2051 bp->grp_info = kcalloc(bp->cp_nr_rings,
2052 sizeof(struct bnxt_ring_grp_info),
2053 GFP_KERNEL);
2054 if (!bp->grp_info)
2055 return -ENOMEM;
2056 }
2057 for (i = 0; i < bp->cp_nr_rings; i++) {
2058 if (irq_re_init)
2059 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2060 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2061 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2062 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2063 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2064 }
2065 return 0;
2066 }
2067
2068 static void bnxt_free_vnics(struct bnxt *bp)
2069 {
2070 kfree(bp->vnic_info);
2071 bp->vnic_info = NULL;
2072 bp->nr_vnics = 0;
2073 }
2074
2075 static int bnxt_alloc_vnics(struct bnxt *bp)
2076 {
2077 int num_vnics = 1;
2078
2079 #ifdef CONFIG_RFS_ACCEL
2080 if (bp->flags & BNXT_FLAG_RFS)
2081 num_vnics += bp->rx_nr_rings;
2082 #endif
2083
2084 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2085 GFP_KERNEL);
2086 if (!bp->vnic_info)
2087 return -ENOMEM;
2088
2089 bp->nr_vnics = num_vnics;
2090 return 0;
2091 }
2092
2093 static void bnxt_init_vnics(struct bnxt *bp)
2094 {
2095 int i;
2096
2097 for (i = 0; i < bp->nr_vnics; i++) {
2098 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2099
2100 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2101 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2102 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2103
2104 if (bp->vnic_info[i].rss_hash_key) {
2105 if (i == 0)
2106 prandom_bytes(vnic->rss_hash_key,
2107 HW_HASH_KEY_SIZE);
2108 else
2109 memcpy(vnic->rss_hash_key,
2110 bp->vnic_info[0].rss_hash_key,
2111 HW_HASH_KEY_SIZE);
2112 }
2113 }
2114 }
2115
2116 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2117 {
2118 int pages;
2119
2120 pages = ring_size / desc_per_pg;
2121
2122 if (!pages)
2123 return 1;
2124
2125 pages++;
2126
2127 while (pages & (pages - 1))
2128 pages++;
2129
2130 return pages;
2131 }
2132
2133 static void bnxt_set_tpa_flags(struct bnxt *bp)
2134 {
2135 bp->flags &= ~BNXT_FLAG_TPA;
2136 if (bp->dev->features & NETIF_F_LRO)
2137 bp->flags |= BNXT_FLAG_LRO;
2138 if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2139 bp->flags |= BNXT_FLAG_GRO;
2140 }
2141
2142 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2143 * be set on entry.
2144 */
2145 void bnxt_set_ring_params(struct bnxt *bp)
2146 {
2147 u32 ring_size, rx_size, rx_space;
2148 u32 agg_factor = 0, agg_ring_size = 0;
2149
2150 /* 8 for CRC and VLAN */
2151 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2152
2153 rx_space = rx_size + NET_SKB_PAD +
2154 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2155
2156 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2157 ring_size = bp->rx_ring_size;
2158 bp->rx_agg_ring_size = 0;
2159 bp->rx_agg_nr_pages = 0;
2160
2161 if (bp->flags & BNXT_FLAG_TPA)
2162 agg_factor = 4;
2163
2164 bp->flags &= ~BNXT_FLAG_JUMBO;
2165 if (rx_space > PAGE_SIZE) {
2166 u32 jumbo_factor;
2167
2168 bp->flags |= BNXT_FLAG_JUMBO;
2169 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2170 if (jumbo_factor > agg_factor)
2171 agg_factor = jumbo_factor;
2172 }
2173 agg_ring_size = ring_size * agg_factor;
2174
2175 if (agg_ring_size) {
2176 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2177 RX_DESC_CNT);
2178 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2179 u32 tmp = agg_ring_size;
2180
2181 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2182 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2183 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2184 tmp, agg_ring_size);
2185 }
2186 bp->rx_agg_ring_size = agg_ring_size;
2187 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2188 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2189 rx_space = rx_size + NET_SKB_PAD +
2190 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2191 }
2192
2193 bp->rx_buf_use_size = rx_size;
2194 bp->rx_buf_size = rx_space;
2195
2196 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2197 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2198
2199 ring_size = bp->tx_ring_size;
2200 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2201 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2202
2203 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2204 bp->cp_ring_size = ring_size;
2205
2206 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2207 if (bp->cp_nr_pages > MAX_CP_PAGES) {
2208 bp->cp_nr_pages = MAX_CP_PAGES;
2209 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2210 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2211 ring_size, bp->cp_ring_size);
2212 }
2213 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2214 bp->cp_ring_mask = bp->cp_bit - 1;
2215 }
2216
2217 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2218 {
2219 int i;
2220 struct bnxt_vnic_info *vnic;
2221 struct pci_dev *pdev = bp->pdev;
2222
2223 if (!bp->vnic_info)
2224 return;
2225
2226 for (i = 0; i < bp->nr_vnics; i++) {
2227 vnic = &bp->vnic_info[i];
2228
2229 kfree(vnic->fw_grp_ids);
2230 vnic->fw_grp_ids = NULL;
2231
2232 kfree(vnic->uc_list);
2233 vnic->uc_list = NULL;
2234
2235 if (vnic->mc_list) {
2236 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2237 vnic->mc_list, vnic->mc_list_mapping);
2238 vnic->mc_list = NULL;
2239 }
2240
2241 if (vnic->rss_table) {
2242 dma_free_coherent(&pdev->dev, PAGE_SIZE,
2243 vnic->rss_table,
2244 vnic->rss_table_dma_addr);
2245 vnic->rss_table = NULL;
2246 }
2247
2248 vnic->rss_hash_key = NULL;
2249 vnic->flags = 0;
2250 }
2251 }
2252
2253 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2254 {
2255 int i, rc = 0, size;
2256 struct bnxt_vnic_info *vnic;
2257 struct pci_dev *pdev = bp->pdev;
2258 int max_rings;
2259
2260 for (i = 0; i < bp->nr_vnics; i++) {
2261 vnic = &bp->vnic_info[i];
2262
2263 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2264 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2265
2266 if (mem_size > 0) {
2267 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2268 if (!vnic->uc_list) {
2269 rc = -ENOMEM;
2270 goto out;
2271 }
2272 }
2273 }
2274
2275 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2276 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2277 vnic->mc_list =
2278 dma_alloc_coherent(&pdev->dev,
2279 vnic->mc_list_size,
2280 &vnic->mc_list_mapping,
2281 GFP_KERNEL);
2282 if (!vnic->mc_list) {
2283 rc = -ENOMEM;
2284 goto out;
2285 }
2286 }
2287
2288 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2289 max_rings = bp->rx_nr_rings;
2290 else
2291 max_rings = 1;
2292
2293 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2294 if (!vnic->fw_grp_ids) {
2295 rc = -ENOMEM;
2296 goto out;
2297 }
2298
2299 /* Allocate rss table and hash key */
2300 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2301 &vnic->rss_table_dma_addr,
2302 GFP_KERNEL);
2303 if (!vnic->rss_table) {
2304 rc = -ENOMEM;
2305 goto out;
2306 }
2307
2308 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2309
2310 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2311 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2312 }
2313 return 0;
2314
2315 out:
2316 return rc;
2317 }
2318
2319 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2320 {
2321 struct pci_dev *pdev = bp->pdev;
2322
2323 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2324 bp->hwrm_cmd_resp_dma_addr);
2325
2326 bp->hwrm_cmd_resp_addr = NULL;
2327 if (bp->hwrm_dbg_resp_addr) {
2328 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2329 bp->hwrm_dbg_resp_addr,
2330 bp->hwrm_dbg_resp_dma_addr);
2331
2332 bp->hwrm_dbg_resp_addr = NULL;
2333 }
2334 }
2335
2336 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2337 {
2338 struct pci_dev *pdev = bp->pdev;
2339
2340 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2341 &bp->hwrm_cmd_resp_dma_addr,
2342 GFP_KERNEL);
2343 if (!bp->hwrm_cmd_resp_addr)
2344 return -ENOMEM;
2345 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2346 HWRM_DBG_REG_BUF_SIZE,
2347 &bp->hwrm_dbg_resp_dma_addr,
2348 GFP_KERNEL);
2349 if (!bp->hwrm_dbg_resp_addr)
2350 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2351
2352 return 0;
2353 }
2354
2355 static void bnxt_free_stats(struct bnxt *bp)
2356 {
2357 u32 size, i;
2358 struct pci_dev *pdev = bp->pdev;
2359
2360 if (!bp->bnapi)
2361 return;
2362
2363 size = sizeof(struct ctx_hw_stats);
2364
2365 for (i = 0; i < bp->cp_nr_rings; i++) {
2366 struct bnxt_napi *bnapi = bp->bnapi[i];
2367 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2368
2369 if (cpr->hw_stats) {
2370 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2371 cpr->hw_stats_map);
2372 cpr->hw_stats = NULL;
2373 }
2374 }
2375 }
2376
2377 static int bnxt_alloc_stats(struct bnxt *bp)
2378 {
2379 u32 size, i;
2380 struct pci_dev *pdev = bp->pdev;
2381
2382 size = sizeof(struct ctx_hw_stats);
2383
2384 for (i = 0; i < bp->cp_nr_rings; i++) {
2385 struct bnxt_napi *bnapi = bp->bnapi[i];
2386 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2387
2388 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2389 &cpr->hw_stats_map,
2390 GFP_KERNEL);
2391 if (!cpr->hw_stats)
2392 return -ENOMEM;
2393
2394 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2395 }
2396 return 0;
2397 }
2398
2399 static void bnxt_clear_ring_indices(struct bnxt *bp)
2400 {
2401 int i;
2402
2403 if (!bp->bnapi)
2404 return;
2405
2406 for (i = 0; i < bp->cp_nr_rings; i++) {
2407 struct bnxt_napi *bnapi = bp->bnapi[i];
2408 struct bnxt_cp_ring_info *cpr;
2409 struct bnxt_rx_ring_info *rxr;
2410 struct bnxt_tx_ring_info *txr;
2411
2412 if (!bnapi)
2413 continue;
2414
2415 cpr = &bnapi->cp_ring;
2416 cpr->cp_raw_cons = 0;
2417
2418 txr = bnapi->tx_ring;
2419 if (txr) {
2420 txr->tx_prod = 0;
2421 txr->tx_cons = 0;
2422 }
2423
2424 rxr = bnapi->rx_ring;
2425 if (rxr) {
2426 rxr->rx_prod = 0;
2427 rxr->rx_agg_prod = 0;
2428 rxr->rx_sw_agg_prod = 0;
2429 }
2430 }
2431 }
2432
2433 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2434 {
2435 #ifdef CONFIG_RFS_ACCEL
2436 int i;
2437
2438 /* Under rtnl_lock and all our NAPIs have been disabled. It's
2439 * safe to delete the hash table.
2440 */
2441 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2442 struct hlist_head *head;
2443 struct hlist_node *tmp;
2444 struct bnxt_ntuple_filter *fltr;
2445
2446 head = &bp->ntp_fltr_hash_tbl[i];
2447 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2448 hlist_del(&fltr->hash);
2449 kfree(fltr);
2450 }
2451 }
2452 if (irq_reinit) {
2453 kfree(bp->ntp_fltr_bmap);
2454 bp->ntp_fltr_bmap = NULL;
2455 }
2456 bp->ntp_fltr_count = 0;
2457 #endif
2458 }
2459
2460 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2461 {
2462 #ifdef CONFIG_RFS_ACCEL
2463 int i, rc = 0;
2464
2465 if (!(bp->flags & BNXT_FLAG_RFS))
2466 return 0;
2467
2468 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2469 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2470
2471 bp->ntp_fltr_count = 0;
2472 bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2473 GFP_KERNEL);
2474
2475 if (!bp->ntp_fltr_bmap)
2476 rc = -ENOMEM;
2477
2478 return rc;
2479 #else
2480 return 0;
2481 #endif
2482 }
2483
2484 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2485 {
2486 bnxt_free_vnic_attributes(bp);
2487 bnxt_free_tx_rings(bp);
2488 bnxt_free_rx_rings(bp);
2489 bnxt_free_cp_rings(bp);
2490 bnxt_free_ntp_fltrs(bp, irq_re_init);
2491 if (irq_re_init) {
2492 bnxt_free_stats(bp);
2493 bnxt_free_ring_grps(bp);
2494 bnxt_free_vnics(bp);
2495 kfree(bp->tx_ring);
2496 bp->tx_ring = NULL;
2497 kfree(bp->rx_ring);
2498 bp->rx_ring = NULL;
2499 kfree(bp->bnapi);
2500 bp->bnapi = NULL;
2501 } else {
2502 bnxt_clear_ring_indices(bp);
2503 }
2504 }
2505
2506 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2507 {
2508 int i, j, rc, size, arr_size;
2509 void *bnapi;
2510
2511 if (irq_re_init) {
2512 /* Allocate bnapi mem pointer array and mem block for
2513 * all queues
2514 */
2515 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2516 bp->cp_nr_rings);
2517 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2518 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2519 if (!bnapi)
2520 return -ENOMEM;
2521
2522 bp->bnapi = bnapi;
2523 bnapi += arr_size;
2524 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2525 bp->bnapi[i] = bnapi;
2526 bp->bnapi[i]->index = i;
2527 bp->bnapi[i]->bp = bp;
2528 }
2529
2530 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2531 sizeof(struct bnxt_rx_ring_info),
2532 GFP_KERNEL);
2533 if (!bp->rx_ring)
2534 return -ENOMEM;
2535
2536 for (i = 0; i < bp->rx_nr_rings; i++) {
2537 bp->rx_ring[i].bnapi = bp->bnapi[i];
2538 bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2539 }
2540
2541 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2542 sizeof(struct bnxt_tx_ring_info),
2543 GFP_KERNEL);
2544 if (!bp->tx_ring)
2545 return -ENOMEM;
2546
2547 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2548 j = 0;
2549 else
2550 j = bp->rx_nr_rings;
2551
2552 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2553 bp->tx_ring[i].bnapi = bp->bnapi[j];
2554 bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2555 }
2556
2557 rc = bnxt_alloc_stats(bp);
2558 if (rc)
2559 goto alloc_mem_err;
2560
2561 rc = bnxt_alloc_ntp_fltrs(bp);
2562 if (rc)
2563 goto alloc_mem_err;
2564
2565 rc = bnxt_alloc_vnics(bp);
2566 if (rc)
2567 goto alloc_mem_err;
2568 }
2569
2570 bnxt_init_ring_struct(bp);
2571
2572 rc = bnxt_alloc_rx_rings(bp);
2573 if (rc)
2574 goto alloc_mem_err;
2575
2576 rc = bnxt_alloc_tx_rings(bp);
2577 if (rc)
2578 goto alloc_mem_err;
2579
2580 rc = bnxt_alloc_cp_rings(bp);
2581 if (rc)
2582 goto alloc_mem_err;
2583
2584 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2585 BNXT_VNIC_UCAST_FLAG;
2586 rc = bnxt_alloc_vnic_attributes(bp);
2587 if (rc)
2588 goto alloc_mem_err;
2589 return 0;
2590
2591 alloc_mem_err:
2592 bnxt_free_mem(bp, true);
2593 return rc;
2594 }
2595
2596 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2597 u16 cmpl_ring, u16 target_id)
2598 {
2599 struct hwrm_cmd_req_hdr *req = request;
2600
2601 req->cmpl_ring_req_type =
2602 cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT));
2603 req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT);
2604 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2605 }
2606
2607 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2608 {
2609 int i, intr_process, rc;
2610 struct hwrm_cmd_req_hdr *req = msg;
2611 u32 *data = msg;
2612 __le32 *resp_len, *valid;
2613 u16 cp_ring_id, len = 0;
2614 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2615
2616 req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++);
2617 memset(resp, 0, PAGE_SIZE);
2618 cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) &
2619 HWRM_CMPL_RING_MASK) >>
2620 HWRM_CMPL_RING_SFT;
2621 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2622
2623 /* Write request msg to hwrm channel */
2624 __iowrite32_copy(bp->bar0, data, msg_len / 4);
2625
2626 for (i = msg_len; i < HWRM_MAX_REQ_LEN; i += 4)
2627 writel(0, bp->bar0 + i);
2628
2629 /* currently supports only one outstanding message */
2630 if (intr_process)
2631 bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) &
2632 HWRM_SEQ_ID_MASK;
2633
2634 /* Ring channel doorbell */
2635 writel(1, bp->bar0 + 0x100);
2636
2637 i = 0;
2638 if (intr_process) {
2639 /* Wait until hwrm response cmpl interrupt is processed */
2640 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2641 i++ < timeout) {
2642 usleep_range(600, 800);
2643 }
2644
2645 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2646 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2647 req->cmpl_ring_req_type);
2648 return -1;
2649 }
2650 } else {
2651 /* Check if response len is updated */
2652 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2653 for (i = 0; i < timeout; i++) {
2654 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2655 HWRM_RESP_LEN_SFT;
2656 if (len)
2657 break;
2658 usleep_range(600, 800);
2659 }
2660
2661 if (i >= timeout) {
2662 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2663 timeout, req->cmpl_ring_req_type,
2664 req->target_id_seq_id, *resp_len);
2665 return -1;
2666 }
2667
2668 /* Last word of resp contains valid bit */
2669 valid = bp->hwrm_cmd_resp_addr + len - 4;
2670 for (i = 0; i < timeout; i++) {
2671 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2672 break;
2673 usleep_range(600, 800);
2674 }
2675
2676 if (i >= timeout) {
2677 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2678 timeout, req->cmpl_ring_req_type,
2679 req->target_id_seq_id, len, *valid);
2680 return -1;
2681 }
2682 }
2683
2684 rc = le16_to_cpu(resp->error_code);
2685 if (rc) {
2686 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2687 le16_to_cpu(resp->req_type),
2688 le16_to_cpu(resp->seq_id), rc);
2689 return rc;
2690 }
2691 return 0;
2692 }
2693
2694 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2695 {
2696 int rc;
2697
2698 mutex_lock(&bp->hwrm_cmd_lock);
2699 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2700 mutex_unlock(&bp->hwrm_cmd_lock);
2701 return rc;
2702 }
2703
2704 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2705 {
2706 struct hwrm_func_drv_rgtr_input req = {0};
2707 int i;
2708
2709 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2710
2711 req.enables =
2712 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2713 FUNC_DRV_RGTR_REQ_ENABLES_VER |
2714 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2715
2716 /* TODO: current async event fwd bits are not defined and the firmware
2717 * only checks if it is non-zero to enable async event forwarding
2718 */
2719 req.async_event_fwd[0] |= cpu_to_le32(1);
2720 req.os_type = cpu_to_le16(1);
2721 req.ver_maj = DRV_VER_MAJ;
2722 req.ver_min = DRV_VER_MIN;
2723 req.ver_upd = DRV_VER_UPD;
2724
2725 if (BNXT_PF(bp)) {
2726 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2727 u32 *data = (u32 *)vf_req_snif_bmap;
2728
2729 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2730 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2731 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2732
2733 for (i = 0; i < 8; i++)
2734 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2735
2736 req.enables |=
2737 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2738 }
2739
2740 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2741 }
2742
2743 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2744 {
2745 struct hwrm_func_drv_unrgtr_input req = {0};
2746
2747 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2748 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2749 }
2750
2751 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2752 {
2753 u32 rc = 0;
2754 struct hwrm_tunnel_dst_port_free_input req = {0};
2755
2756 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2757 req.tunnel_type = tunnel_type;
2758
2759 switch (tunnel_type) {
2760 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2761 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2762 break;
2763 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2764 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2765 break;
2766 default:
2767 break;
2768 }
2769
2770 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2771 if (rc)
2772 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2773 rc);
2774 return rc;
2775 }
2776
2777 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2778 u8 tunnel_type)
2779 {
2780 u32 rc = 0;
2781 struct hwrm_tunnel_dst_port_alloc_input req = {0};
2782 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2783
2784 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2785
2786 req.tunnel_type = tunnel_type;
2787 req.tunnel_dst_port_val = port;
2788
2789 mutex_lock(&bp->hwrm_cmd_lock);
2790 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2791 if (rc) {
2792 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2793 rc);
2794 goto err_out;
2795 }
2796
2797 if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2798 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2799
2800 else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2801 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2802 err_out:
2803 mutex_unlock(&bp->hwrm_cmd_lock);
2804 return rc;
2805 }
2806
2807 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2808 {
2809 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2810 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2811
2812 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2813 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2814
2815 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2816 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2817 req.mask = cpu_to_le32(vnic->rx_mask);
2818 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2819 }
2820
2821 #ifdef CONFIG_RFS_ACCEL
2822 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2823 struct bnxt_ntuple_filter *fltr)
2824 {
2825 struct hwrm_cfa_ntuple_filter_free_input req = {0};
2826
2827 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2828 req.ntuple_filter_id = fltr->filter_id;
2829 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2830 }
2831
2832 #define BNXT_NTP_FLTR_FLAGS \
2833 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
2834 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
2835 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
2836 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
2837 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
2838 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
2839 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
2840 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
2841 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
2842 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
2843 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
2844 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
2845 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
2846 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
2847
2848 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2849 struct bnxt_ntuple_filter *fltr)
2850 {
2851 int rc = 0;
2852 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2853 struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2854 bp->hwrm_cmd_resp_addr;
2855 struct flow_keys *keys = &fltr->fkeys;
2856 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2857
2858 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2859 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2860
2861 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2862
2863 req.ethertype = htons(ETH_P_IP);
2864 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2865 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
2866 req.ip_protocol = keys->basic.ip_proto;
2867
2868 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2869 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2870 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2871 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2872
2873 req.src_port = keys->ports.src;
2874 req.src_port_mask = cpu_to_be16(0xffff);
2875 req.dst_port = keys->ports.dst;
2876 req.dst_port_mask = cpu_to_be16(0xffff);
2877
2878 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
2879 mutex_lock(&bp->hwrm_cmd_lock);
2880 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2881 if (!rc)
2882 fltr->filter_id = resp->ntuple_filter_id;
2883 mutex_unlock(&bp->hwrm_cmd_lock);
2884 return rc;
2885 }
2886 #endif
2887
2888 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2889 u8 *mac_addr)
2890 {
2891 u32 rc = 0;
2892 struct hwrm_cfa_l2_filter_alloc_input req = {0};
2893 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2894
2895 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2896 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2897 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2898 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2899 req.enables =
2900 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2901 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
2902 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2903 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2904 req.l2_addr_mask[0] = 0xff;
2905 req.l2_addr_mask[1] = 0xff;
2906 req.l2_addr_mask[2] = 0xff;
2907 req.l2_addr_mask[3] = 0xff;
2908 req.l2_addr_mask[4] = 0xff;
2909 req.l2_addr_mask[5] = 0xff;
2910
2911 mutex_lock(&bp->hwrm_cmd_lock);
2912 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2913 if (!rc)
2914 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2915 resp->l2_filter_id;
2916 mutex_unlock(&bp->hwrm_cmd_lock);
2917 return rc;
2918 }
2919
2920 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2921 {
2922 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2923 int rc = 0;
2924
2925 /* Any associated ntuple filters will also be cleared by firmware. */
2926 mutex_lock(&bp->hwrm_cmd_lock);
2927 for (i = 0; i < num_of_vnics; i++) {
2928 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2929
2930 for (j = 0; j < vnic->uc_filter_count; j++) {
2931 struct hwrm_cfa_l2_filter_free_input req = {0};
2932
2933 bnxt_hwrm_cmd_hdr_init(bp, &req,
2934 HWRM_CFA_L2_FILTER_FREE, -1, -1);
2935
2936 req.l2_filter_id = vnic->fw_l2_filter_id[j];
2937
2938 rc = _hwrm_send_message(bp, &req, sizeof(req),
2939 HWRM_CMD_TIMEOUT);
2940 }
2941 vnic->uc_filter_count = 0;
2942 }
2943 mutex_unlock(&bp->hwrm_cmd_lock);
2944
2945 return rc;
2946 }
2947
2948 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2949 {
2950 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2951 struct hwrm_vnic_tpa_cfg_input req = {0};
2952
2953 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
2954
2955 if (tpa_flags) {
2956 u16 mss = bp->dev->mtu - 40;
2957 u32 nsegs, n, segs = 0, flags;
2958
2959 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
2960 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
2961 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
2962 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
2963 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
2964 if (tpa_flags & BNXT_FLAG_GRO)
2965 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
2966
2967 req.flags = cpu_to_le32(flags);
2968
2969 req.enables =
2970 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
2971 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
2972 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
2973
2974 /* Number of segs are log2 units, and first packet is not
2975 * included as part of this units.
2976 */
2977 if (mss <= PAGE_SIZE) {
2978 n = PAGE_SIZE / mss;
2979 nsegs = (MAX_SKB_FRAGS - 1) * n;
2980 } else {
2981 n = mss / PAGE_SIZE;
2982 if (mss & (PAGE_SIZE - 1))
2983 n++;
2984 nsegs = (MAX_SKB_FRAGS - n) / n;
2985 }
2986
2987 segs = ilog2(nsegs);
2988 req.max_agg_segs = cpu_to_le16(segs);
2989 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
2990
2991 req.min_agg_len = cpu_to_le32(512);
2992 }
2993 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2994
2995 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2996 }
2997
2998 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
2999 {
3000 u32 i, j, max_rings;
3001 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3002 struct hwrm_vnic_rss_cfg_input req = {0};
3003
3004 if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
3005 return 0;
3006
3007 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3008 if (set_rss) {
3009 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3010 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3011 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3012 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3013
3014 req.hash_type = cpu_to_le32(vnic->hash_type);
3015
3016 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3017 max_rings = bp->rx_nr_rings;
3018 else
3019 max_rings = 1;
3020
3021 /* Fill the RSS indirection table with ring group ids */
3022 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3023 if (j == max_rings)
3024 j = 0;
3025 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3026 }
3027
3028 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3029 req.hash_key_tbl_addr =
3030 cpu_to_le64(vnic->rss_hash_key_dma_addr);
3031 }
3032 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3033 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3034 }
3035
3036 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3037 {
3038 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3039 struct hwrm_vnic_plcmodes_cfg_input req = {0};
3040
3041 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3042 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3043 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3044 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3045 req.enables =
3046 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3047 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3048 /* thresholds not implemented in firmware yet */
3049 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3050 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3051 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3052 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3053 }
3054
3055 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3056 {
3057 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3058
3059 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3060 req.rss_cos_lb_ctx_id =
3061 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3062
3063 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3064 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3065 }
3066
3067 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3068 {
3069 int i;
3070
3071 for (i = 0; i < bp->nr_vnics; i++) {
3072 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3073
3074 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3075 bnxt_hwrm_vnic_ctx_free_one(bp, i);
3076 }
3077 bp->rsscos_nr_ctxs = 0;
3078 }
3079
3080 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3081 {
3082 int rc;
3083 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3084 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3085 bp->hwrm_cmd_resp_addr;
3086
3087 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3088 -1);
3089
3090 mutex_lock(&bp->hwrm_cmd_lock);
3091 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3092 if (!rc)
3093 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3094 le16_to_cpu(resp->rss_cos_lb_ctx_id);
3095 mutex_unlock(&bp->hwrm_cmd_lock);
3096
3097 return rc;
3098 }
3099
3100 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3101 {
3102 unsigned int ring = 0, grp_idx;
3103 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3104 struct hwrm_vnic_cfg_input req = {0};
3105
3106 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3107 /* Only RSS support for now TBD: COS & LB */
3108 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3109 VNIC_CFG_REQ_ENABLES_RSS_RULE);
3110 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3111 req.cos_rule = cpu_to_le16(0xffff);
3112 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3113 ring = 0;
3114 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3115 ring = vnic_id - 1;
3116
3117 grp_idx = bp->rx_ring[ring].bnapi->index;
3118 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3119 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3120
3121 req.lb_rule = cpu_to_le16(0xffff);
3122 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3123 VLAN_HLEN);
3124
3125 if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3126 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3127
3128 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3129 }
3130
3131 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3132 {
3133 u32 rc = 0;
3134
3135 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3136 struct hwrm_vnic_free_input req = {0};
3137
3138 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3139 req.vnic_id =
3140 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3141
3142 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3143 if (rc)
3144 return rc;
3145 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3146 }
3147 return rc;
3148 }
3149
3150 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3151 {
3152 u16 i;
3153
3154 for (i = 0; i < bp->nr_vnics; i++)
3155 bnxt_hwrm_vnic_free_one(bp, i);
3156 }
3157
3158 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3159 unsigned int start_rx_ring_idx,
3160 unsigned int nr_rings)
3161 {
3162 int rc = 0;
3163 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3164 struct hwrm_vnic_alloc_input req = {0};
3165 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3166
3167 /* map ring groups to this vnic */
3168 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3169 grp_idx = bp->rx_ring[i].bnapi->index;
3170 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3171 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3172 j, nr_rings);
3173 break;
3174 }
3175 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3176 bp->grp_info[grp_idx].fw_grp_id;
3177 }
3178
3179 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3180 if (vnic_id == 0)
3181 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3182
3183 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3184
3185 mutex_lock(&bp->hwrm_cmd_lock);
3186 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3187 if (!rc)
3188 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3189 mutex_unlock(&bp->hwrm_cmd_lock);
3190 return rc;
3191 }
3192
3193 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3194 {
3195 u16 i;
3196 u32 rc = 0;
3197
3198 mutex_lock(&bp->hwrm_cmd_lock);
3199 for (i = 0; i < bp->rx_nr_rings; i++) {
3200 struct hwrm_ring_grp_alloc_input req = {0};
3201 struct hwrm_ring_grp_alloc_output *resp =
3202 bp->hwrm_cmd_resp_addr;
3203 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3204
3205 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3206
3207 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3208 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3209 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3210 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3211
3212 rc = _hwrm_send_message(bp, &req, sizeof(req),
3213 HWRM_CMD_TIMEOUT);
3214 if (rc)
3215 break;
3216
3217 bp->grp_info[grp_idx].fw_grp_id =
3218 le32_to_cpu(resp->ring_group_id);
3219 }
3220 mutex_unlock(&bp->hwrm_cmd_lock);
3221 return rc;
3222 }
3223
3224 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3225 {
3226 u16 i;
3227 u32 rc = 0;
3228 struct hwrm_ring_grp_free_input req = {0};
3229
3230 if (!bp->grp_info)
3231 return 0;
3232
3233 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3234
3235 mutex_lock(&bp->hwrm_cmd_lock);
3236 for (i = 0; i < bp->cp_nr_rings; i++) {
3237 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3238 continue;
3239 req.ring_group_id =
3240 cpu_to_le32(bp->grp_info[i].fw_grp_id);
3241
3242 rc = _hwrm_send_message(bp, &req, sizeof(req),
3243 HWRM_CMD_TIMEOUT);
3244 if (rc)
3245 break;
3246 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3247 }
3248 mutex_unlock(&bp->hwrm_cmd_lock);
3249 return rc;
3250 }
3251
3252 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3253 struct bnxt_ring_struct *ring,
3254 u32 ring_type, u32 map_index,
3255 u32 stats_ctx_id)
3256 {
3257 int rc = 0, err = 0;
3258 struct hwrm_ring_alloc_input req = {0};
3259 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3260 u16 ring_id;
3261
3262 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3263
3264 req.enables = 0;
3265 if (ring->nr_pages > 1) {
3266 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3267 /* Page size is in log2 units */
3268 req.page_size = BNXT_PAGE_SHIFT;
3269 req.page_tbl_depth = 1;
3270 } else {
3271 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
3272 }
3273 req.fbo = 0;
3274 /* Association of ring index with doorbell index and MSIX number */
3275 req.logical_id = cpu_to_le16(map_index);
3276
3277 switch (ring_type) {
3278 case HWRM_RING_ALLOC_TX:
3279 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3280 /* Association of transmit ring with completion ring */
3281 req.cmpl_ring_id =
3282 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3283 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3284 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3285 req.queue_id = cpu_to_le16(ring->queue_id);
3286 break;
3287 case HWRM_RING_ALLOC_RX:
3288 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3289 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3290 break;
3291 case HWRM_RING_ALLOC_AGG:
3292 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3293 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3294 break;
3295 case HWRM_RING_ALLOC_CMPL:
3296 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3297 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3298 if (bp->flags & BNXT_FLAG_USING_MSIX)
3299 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3300 break;
3301 default:
3302 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3303 ring_type);
3304 return -1;
3305 }
3306
3307 mutex_lock(&bp->hwrm_cmd_lock);
3308 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3309 err = le16_to_cpu(resp->error_code);
3310 ring_id = le16_to_cpu(resp->ring_id);
3311 mutex_unlock(&bp->hwrm_cmd_lock);
3312
3313 if (rc || err) {
3314 switch (ring_type) {
3315 case RING_FREE_REQ_RING_TYPE_CMPL:
3316 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3317 rc, err);
3318 return -1;
3319
3320 case RING_FREE_REQ_RING_TYPE_RX:
3321 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3322 rc, err);
3323 return -1;
3324
3325 case RING_FREE_REQ_RING_TYPE_TX:
3326 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3327 rc, err);
3328 return -1;
3329
3330 default:
3331 netdev_err(bp->dev, "Invalid ring\n");
3332 return -1;
3333 }
3334 }
3335 ring->fw_ring_id = ring_id;
3336 return rc;
3337 }
3338
3339 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3340 {
3341 int i, rc = 0;
3342
3343 for (i = 0; i < bp->cp_nr_rings; i++) {
3344 struct bnxt_napi *bnapi = bp->bnapi[i];
3345 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3346 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3347
3348 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3349 INVALID_STATS_CTX_ID);
3350 if (rc)
3351 goto err_out;
3352 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3353 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3354 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3355 }
3356
3357 for (i = 0; i < bp->tx_nr_rings; i++) {
3358 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3359 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3360 u32 map_idx = txr->bnapi->index;
3361 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3362
3363 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3364 map_idx, fw_stats_ctx);
3365 if (rc)
3366 goto err_out;
3367 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3368 }
3369
3370 for (i = 0; i < bp->rx_nr_rings; i++) {
3371 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3372 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3373 u32 map_idx = rxr->bnapi->index;
3374
3375 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3376 map_idx, INVALID_STATS_CTX_ID);
3377 if (rc)
3378 goto err_out;
3379 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3380 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3381 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3382 }
3383
3384 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3385 for (i = 0; i < bp->rx_nr_rings; i++) {
3386 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3387 struct bnxt_ring_struct *ring =
3388 &rxr->rx_agg_ring_struct;
3389 u32 grp_idx = rxr->bnapi->index;
3390 u32 map_idx = grp_idx + bp->rx_nr_rings;
3391
3392 rc = hwrm_ring_alloc_send_msg(bp, ring,
3393 HWRM_RING_ALLOC_AGG,
3394 map_idx,
3395 INVALID_STATS_CTX_ID);
3396 if (rc)
3397 goto err_out;
3398
3399 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3400 writel(DB_KEY_RX | rxr->rx_agg_prod,
3401 rxr->rx_agg_doorbell);
3402 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3403 }
3404 }
3405 err_out:
3406 return rc;
3407 }
3408
3409 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3410 struct bnxt_ring_struct *ring,
3411 u32 ring_type, int cmpl_ring_id)
3412 {
3413 int rc;
3414 struct hwrm_ring_free_input req = {0};
3415 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3416 u16 error_code;
3417
3418 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3419 req.ring_type = ring_type;
3420 req.ring_id = cpu_to_le16(ring->fw_ring_id);
3421
3422 mutex_lock(&bp->hwrm_cmd_lock);
3423 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3424 error_code = le16_to_cpu(resp->error_code);
3425 mutex_unlock(&bp->hwrm_cmd_lock);
3426
3427 if (rc || error_code) {
3428 switch (ring_type) {
3429 case RING_FREE_REQ_RING_TYPE_CMPL:
3430 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3431 rc);
3432 return rc;
3433 case RING_FREE_REQ_RING_TYPE_RX:
3434 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3435 rc);
3436 return rc;
3437 case RING_FREE_REQ_RING_TYPE_TX:
3438 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3439 rc);
3440 return rc;
3441 default:
3442 netdev_err(bp->dev, "Invalid ring\n");
3443 return -1;
3444 }
3445 }
3446 return 0;
3447 }
3448
3449 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3450 {
3451 int i;
3452
3453 if (!bp->bnapi)
3454 return;
3455
3456 for (i = 0; i < bp->tx_nr_rings; i++) {
3457 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3458 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3459 u32 grp_idx = txr->bnapi->index;
3460 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3461
3462 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3463 hwrm_ring_free_send_msg(bp, ring,
3464 RING_FREE_REQ_RING_TYPE_TX,
3465 close_path ? cmpl_ring_id :
3466 INVALID_HW_RING_ID);
3467 ring->fw_ring_id = INVALID_HW_RING_ID;
3468 }
3469 }
3470
3471 for (i = 0; i < bp->rx_nr_rings; i++) {
3472 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3473 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3474 u32 grp_idx = rxr->bnapi->index;
3475 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3476
3477 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3478 hwrm_ring_free_send_msg(bp, ring,
3479 RING_FREE_REQ_RING_TYPE_RX,
3480 close_path ? cmpl_ring_id :
3481 INVALID_HW_RING_ID);
3482 ring->fw_ring_id = INVALID_HW_RING_ID;
3483 bp->grp_info[grp_idx].rx_fw_ring_id =
3484 INVALID_HW_RING_ID;
3485 }
3486 }
3487
3488 for (i = 0; i < bp->rx_nr_rings; i++) {
3489 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3490 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3491 u32 grp_idx = rxr->bnapi->index;
3492 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3493
3494 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3495 hwrm_ring_free_send_msg(bp, ring,
3496 RING_FREE_REQ_RING_TYPE_RX,
3497 close_path ? cmpl_ring_id :
3498 INVALID_HW_RING_ID);
3499 ring->fw_ring_id = INVALID_HW_RING_ID;
3500 bp->grp_info[grp_idx].agg_fw_ring_id =
3501 INVALID_HW_RING_ID;
3502 }
3503 }
3504
3505 for (i = 0; i < bp->cp_nr_rings; i++) {
3506 struct bnxt_napi *bnapi = bp->bnapi[i];
3507 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3508 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3509
3510 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3511 hwrm_ring_free_send_msg(bp, ring,
3512 RING_FREE_REQ_RING_TYPE_CMPL,
3513 INVALID_HW_RING_ID);
3514 ring->fw_ring_id = INVALID_HW_RING_ID;
3515 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3516 }
3517 }
3518 }
3519
3520 int bnxt_hwrm_set_coal(struct bnxt *bp)
3521 {
3522 int i, rc = 0;
3523 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
3524 u16 max_buf, max_buf_irq;
3525 u16 buf_tmr, buf_tmr_irq;
3526 u32 flags;
3527
3528 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
3529 -1, -1);
3530
3531 /* Each rx completion (2 records) should be DMAed immediately */
3532 max_buf = min_t(u16, bp->coal_bufs / 4, 2);
3533 /* max_buf must not be zero */
3534 max_buf = clamp_t(u16, max_buf, 1, 63);
3535 max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63);
3536 buf_tmr = max_t(u16, bp->coal_ticks / 4, 1);
3537 buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1);
3538
3539 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3540
3541 /* RING_IDLE generates more IRQs for lower latency. Enable it only
3542 * if coal_ticks is less than 25 us.
3543 */
3544 if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25)
3545 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3546
3547 req.flags = cpu_to_le16(flags);
3548 req.num_cmpl_dma_aggr = cpu_to_le16(max_buf);
3549 req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq);
3550 req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr);
3551 req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq);
3552 req.int_lat_tmr_min = cpu_to_le16(buf_tmr);
3553 req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks);
3554 req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs);
3555
3556 mutex_lock(&bp->hwrm_cmd_lock);
3557 for (i = 0; i < bp->cp_nr_rings; i++) {
3558 req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3559
3560 rc = _hwrm_send_message(bp, &req, sizeof(req),
3561 HWRM_CMD_TIMEOUT);
3562 if (rc)
3563 break;
3564 }
3565 mutex_unlock(&bp->hwrm_cmd_lock);
3566 return rc;
3567 }
3568
3569 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3570 {
3571 int rc = 0, i;
3572 struct hwrm_stat_ctx_free_input req = {0};
3573
3574 if (!bp->bnapi)
3575 return 0;
3576
3577 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3578
3579 mutex_lock(&bp->hwrm_cmd_lock);
3580 for (i = 0; i < bp->cp_nr_rings; i++) {
3581 struct bnxt_napi *bnapi = bp->bnapi[i];
3582 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3583
3584 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3585 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3586
3587 rc = _hwrm_send_message(bp, &req, sizeof(req),
3588 HWRM_CMD_TIMEOUT);
3589 if (rc)
3590 break;
3591
3592 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3593 }
3594 }
3595 mutex_unlock(&bp->hwrm_cmd_lock);
3596 return rc;
3597 }
3598
3599 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3600 {
3601 int rc = 0, i;
3602 struct hwrm_stat_ctx_alloc_input req = {0};
3603 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3604
3605 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3606
3607 req.update_period_ms = cpu_to_le32(1000);
3608
3609 mutex_lock(&bp->hwrm_cmd_lock);
3610 for (i = 0; i < bp->cp_nr_rings; i++) {
3611 struct bnxt_napi *bnapi = bp->bnapi[i];
3612 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3613
3614 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3615
3616 rc = _hwrm_send_message(bp, &req, sizeof(req),
3617 HWRM_CMD_TIMEOUT);
3618 if (rc)
3619 break;
3620
3621 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3622
3623 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3624 }
3625 mutex_unlock(&bp->hwrm_cmd_lock);
3626 return 0;
3627 }
3628
3629 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3630 {
3631 int rc = 0;
3632 struct hwrm_func_qcaps_input req = {0};
3633 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3634
3635 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3636 req.fid = cpu_to_le16(0xffff);
3637
3638 mutex_lock(&bp->hwrm_cmd_lock);
3639 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3640 if (rc)
3641 goto hwrm_func_qcaps_exit;
3642
3643 if (BNXT_PF(bp)) {
3644 struct bnxt_pf_info *pf = &bp->pf;
3645
3646 pf->fw_fid = le16_to_cpu(resp->fid);
3647 pf->port_id = le16_to_cpu(resp->port_id);
3648 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3649 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3650 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3651 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3652 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3653 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3654 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3655 if (!pf->max_hw_ring_grps)
3656 pf->max_hw_ring_grps = pf->max_tx_rings;
3657 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3658 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3659 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3660 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3661 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3662 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3663 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3664 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3665 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3666 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3667 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3668 } else {
3669 #ifdef CONFIG_BNXT_SRIOV
3670 struct bnxt_vf_info *vf = &bp->vf;
3671
3672 vf->fw_fid = le16_to_cpu(resp->fid);
3673 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3674 if (is_valid_ether_addr(vf->mac_addr))
3675 /* overwrite netdev dev_adr with admin VF MAC */
3676 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3677 else
3678 random_ether_addr(bp->dev->dev_addr);
3679
3680 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3681 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3682 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3683 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3684 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3685 if (!vf->max_hw_ring_grps)
3686 vf->max_hw_ring_grps = vf->max_tx_rings;
3687 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3688 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3689 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3690 #endif
3691 }
3692
3693 bp->tx_push_thresh = 0;
3694 if (resp->flags &
3695 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3696 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3697
3698 hwrm_func_qcaps_exit:
3699 mutex_unlock(&bp->hwrm_cmd_lock);
3700 return rc;
3701 }
3702
3703 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3704 {
3705 struct hwrm_func_reset_input req = {0};
3706
3707 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3708 req.enables = 0;
3709
3710 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3711 }
3712
3713 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3714 {
3715 int rc = 0;
3716 struct hwrm_queue_qportcfg_input req = {0};
3717 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3718 u8 i, *qptr;
3719
3720 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3721
3722 mutex_lock(&bp->hwrm_cmd_lock);
3723 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3724 if (rc)
3725 goto qportcfg_exit;
3726
3727 if (!resp->max_configurable_queues) {
3728 rc = -EINVAL;
3729 goto qportcfg_exit;
3730 }
3731 bp->max_tc = resp->max_configurable_queues;
3732 if (bp->max_tc > BNXT_MAX_QUEUE)
3733 bp->max_tc = BNXT_MAX_QUEUE;
3734
3735 qptr = &resp->queue_id0;
3736 for (i = 0; i < bp->max_tc; i++) {
3737 bp->q_info[i].queue_id = *qptr++;
3738 bp->q_info[i].queue_profile = *qptr++;
3739 }
3740
3741 qportcfg_exit:
3742 mutex_unlock(&bp->hwrm_cmd_lock);
3743 return rc;
3744 }
3745
3746 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3747 {
3748 int rc;
3749 struct hwrm_ver_get_input req = {0};
3750 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3751
3752 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3753 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3754 req.hwrm_intf_min = HWRM_VERSION_MINOR;
3755 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3756 mutex_lock(&bp->hwrm_cmd_lock);
3757 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3758 if (rc)
3759 goto hwrm_ver_get_exit;
3760
3761 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3762
3763 if (resp->hwrm_intf_maj < 1) {
3764 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3765 resp->hwrm_intf_maj, resp->hwrm_intf_min,
3766 resp->hwrm_intf_upd);
3767 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3768 }
3769 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d",
3770 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3771 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3772
3773 hwrm_ver_get_exit:
3774 mutex_unlock(&bp->hwrm_cmd_lock);
3775 return rc;
3776 }
3777
3778 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3779 {
3780 if (bp->vxlan_port_cnt) {
3781 bnxt_hwrm_tunnel_dst_port_free(
3782 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3783 }
3784 bp->vxlan_port_cnt = 0;
3785 if (bp->nge_port_cnt) {
3786 bnxt_hwrm_tunnel_dst_port_free(
3787 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3788 }
3789 bp->nge_port_cnt = 0;
3790 }
3791
3792 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3793 {
3794 int rc, i;
3795 u32 tpa_flags = 0;
3796
3797 if (set_tpa)
3798 tpa_flags = bp->flags & BNXT_FLAG_TPA;
3799 for (i = 0; i < bp->nr_vnics; i++) {
3800 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3801 if (rc) {
3802 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3803 rc, i);
3804 return rc;
3805 }
3806 }
3807 return 0;
3808 }
3809
3810 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3811 {
3812 int i;
3813
3814 for (i = 0; i < bp->nr_vnics; i++)
3815 bnxt_hwrm_vnic_set_rss(bp, i, false);
3816 }
3817
3818 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3819 bool irq_re_init)
3820 {
3821 if (bp->vnic_info) {
3822 bnxt_hwrm_clear_vnic_filter(bp);
3823 /* clear all RSS setting before free vnic ctx */
3824 bnxt_hwrm_clear_vnic_rss(bp);
3825 bnxt_hwrm_vnic_ctx_free(bp);
3826 /* before free the vnic, undo the vnic tpa settings */
3827 if (bp->flags & BNXT_FLAG_TPA)
3828 bnxt_set_tpa(bp, false);
3829 bnxt_hwrm_vnic_free(bp);
3830 }
3831 bnxt_hwrm_ring_free(bp, close_path);
3832 bnxt_hwrm_ring_grp_free(bp);
3833 if (irq_re_init) {
3834 bnxt_hwrm_stat_ctx_free(bp);
3835 bnxt_hwrm_free_tunnel_ports(bp);
3836 }
3837 }
3838
3839 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3840 {
3841 int rc;
3842
3843 /* allocate context for vnic */
3844 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3845 if (rc) {
3846 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3847 vnic_id, rc);
3848 goto vnic_setup_err;
3849 }
3850 bp->rsscos_nr_ctxs++;
3851
3852 /* configure default vnic, ring grp */
3853 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3854 if (rc) {
3855 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3856 vnic_id, rc);
3857 goto vnic_setup_err;
3858 }
3859
3860 /* Enable RSS hashing on vnic */
3861 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3862 if (rc) {
3863 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3864 vnic_id, rc);
3865 goto vnic_setup_err;
3866 }
3867
3868 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3869 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3870 if (rc) {
3871 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3872 vnic_id, rc);
3873 }
3874 }
3875
3876 vnic_setup_err:
3877 return rc;
3878 }
3879
3880 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3881 {
3882 #ifdef CONFIG_RFS_ACCEL
3883 int i, rc = 0;
3884
3885 for (i = 0; i < bp->rx_nr_rings; i++) {
3886 u16 vnic_id = i + 1;
3887 u16 ring_id = i;
3888
3889 if (vnic_id >= bp->nr_vnics)
3890 break;
3891
3892 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3893 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
3894 if (rc) {
3895 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3896 vnic_id, rc);
3897 break;
3898 }
3899 rc = bnxt_setup_vnic(bp, vnic_id);
3900 if (rc)
3901 break;
3902 }
3903 return rc;
3904 #else
3905 return 0;
3906 #endif
3907 }
3908
3909 static int bnxt_cfg_rx_mode(struct bnxt *);
3910
3911 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
3912 {
3913 int rc = 0;
3914
3915 if (irq_re_init) {
3916 rc = bnxt_hwrm_stat_ctx_alloc(bp);
3917 if (rc) {
3918 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
3919 rc);
3920 goto err_out;
3921 }
3922 }
3923
3924 rc = bnxt_hwrm_ring_alloc(bp);
3925 if (rc) {
3926 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
3927 goto err_out;
3928 }
3929
3930 rc = bnxt_hwrm_ring_grp_alloc(bp);
3931 if (rc) {
3932 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
3933 goto err_out;
3934 }
3935
3936 /* default vnic 0 */
3937 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
3938 if (rc) {
3939 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
3940 goto err_out;
3941 }
3942
3943 rc = bnxt_setup_vnic(bp, 0);
3944 if (rc)
3945 goto err_out;
3946
3947 if (bp->flags & BNXT_FLAG_RFS) {
3948 rc = bnxt_alloc_rfs_vnics(bp);
3949 if (rc)
3950 goto err_out;
3951 }
3952
3953 if (bp->flags & BNXT_FLAG_TPA) {
3954 rc = bnxt_set_tpa(bp, true);
3955 if (rc)
3956 goto err_out;
3957 }
3958
3959 if (BNXT_VF(bp))
3960 bnxt_update_vf_mac(bp);
3961
3962 /* Filter for default vnic 0 */
3963 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
3964 if (rc) {
3965 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
3966 goto err_out;
3967 }
3968 bp->vnic_info[0].uc_filter_count = 1;
3969
3970 bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
3971
3972 if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
3973 bp->vnic_info[0].rx_mask |=
3974 CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
3975
3976 rc = bnxt_cfg_rx_mode(bp);
3977 if (rc)
3978 goto err_out;
3979
3980 rc = bnxt_hwrm_set_coal(bp);
3981 if (rc)
3982 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
3983 rc);
3984
3985 return 0;
3986
3987 err_out:
3988 bnxt_hwrm_resource_free(bp, 0, true);
3989
3990 return rc;
3991 }
3992
3993 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
3994 {
3995 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
3996 return 0;
3997 }
3998
3999 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4000 {
4001 bnxt_init_rx_rings(bp);
4002 bnxt_init_tx_rings(bp);
4003 bnxt_init_ring_grps(bp, irq_re_init);
4004 bnxt_init_vnics(bp);
4005
4006 return bnxt_init_chip(bp, irq_re_init);
4007 }
4008
4009 static void bnxt_disable_int(struct bnxt *bp)
4010 {
4011 int i;
4012
4013 if (!bp->bnapi)
4014 return;
4015
4016 for (i = 0; i < bp->cp_nr_rings; i++) {
4017 struct bnxt_napi *bnapi = bp->bnapi[i];
4018 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4019
4020 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4021 }
4022 }
4023
4024 static void bnxt_enable_int(struct bnxt *bp)
4025 {
4026 int i;
4027
4028 atomic_set(&bp->intr_sem, 0);
4029 for (i = 0; i < bp->cp_nr_rings; i++) {
4030 struct bnxt_napi *bnapi = bp->bnapi[i];
4031 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4032
4033 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4034 }
4035 }
4036
4037 static int bnxt_set_real_num_queues(struct bnxt *bp)
4038 {
4039 int rc;
4040 struct net_device *dev = bp->dev;
4041
4042 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4043 if (rc)
4044 return rc;
4045
4046 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4047 if (rc)
4048 return rc;
4049
4050 #ifdef CONFIG_RFS_ACCEL
4051 if (bp->flags & BNXT_FLAG_RFS)
4052 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4053 #endif
4054
4055 return rc;
4056 }
4057
4058 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4059 bool shared)
4060 {
4061 int _rx = *rx, _tx = *tx;
4062
4063 if (shared) {
4064 *rx = min_t(int, _rx, max);
4065 *tx = min_t(int, _tx, max);
4066 } else {
4067 if (max < 2)
4068 return -ENOMEM;
4069
4070 while (_rx + _tx > max) {
4071 if (_rx > _tx && _rx > 1)
4072 _rx--;
4073 else if (_tx > 1)
4074 _tx--;
4075 }
4076 *rx = _rx;
4077 *tx = _tx;
4078 }
4079 return 0;
4080 }
4081
4082 static int bnxt_setup_msix(struct bnxt *bp)
4083 {
4084 struct msix_entry *msix_ent;
4085 struct net_device *dev = bp->dev;
4086 int i, total_vecs, rc = 0, min = 1;
4087 const int len = sizeof(bp->irq_tbl[0].name);
4088
4089 bp->flags &= ~BNXT_FLAG_USING_MSIX;
4090 total_vecs = bp->cp_nr_rings;
4091
4092 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4093 if (!msix_ent)
4094 return -ENOMEM;
4095
4096 for (i = 0; i < total_vecs; i++) {
4097 msix_ent[i].entry = i;
4098 msix_ent[i].vector = 0;
4099 }
4100
4101 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4102 min = 2;
4103
4104 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4105 if (total_vecs < 0) {
4106 rc = -ENODEV;
4107 goto msix_setup_exit;
4108 }
4109
4110 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4111 if (bp->irq_tbl) {
4112 int tcs;
4113
4114 /* Trim rings based upon num of vectors allocated */
4115 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4116 total_vecs, min == 1);
4117 if (rc)
4118 goto msix_setup_exit;
4119
4120 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4121 tcs = netdev_get_num_tc(dev);
4122 if (tcs > 1) {
4123 bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4124 if (bp->tx_nr_rings_per_tc == 0) {
4125 netdev_reset_tc(dev);
4126 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4127 } else {
4128 int i, off, count;
4129
4130 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4131 for (i = 0; i < tcs; i++) {
4132 count = bp->tx_nr_rings_per_tc;
4133 off = i * count;
4134 netdev_set_tc_queue(dev, i, count, off);
4135 }
4136 }
4137 }
4138 bp->cp_nr_rings = total_vecs;
4139
4140 for (i = 0; i < bp->cp_nr_rings; i++) {
4141 char *attr;
4142
4143 bp->irq_tbl[i].vector = msix_ent[i].vector;
4144 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4145 attr = "TxRx";
4146 else if (i < bp->rx_nr_rings)
4147 attr = "rx";
4148 else
4149 attr = "tx";
4150
4151 snprintf(bp->irq_tbl[i].name, len,
4152 "%s-%s-%d", dev->name, attr, i);
4153 bp->irq_tbl[i].handler = bnxt_msix;
4154 }
4155 rc = bnxt_set_real_num_queues(bp);
4156 if (rc)
4157 goto msix_setup_exit;
4158 } else {
4159 rc = -ENOMEM;
4160 goto msix_setup_exit;
4161 }
4162 bp->flags |= BNXT_FLAG_USING_MSIX;
4163 kfree(msix_ent);
4164 return 0;
4165
4166 msix_setup_exit:
4167 netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4168 pci_disable_msix(bp->pdev);
4169 kfree(msix_ent);
4170 return rc;
4171 }
4172
4173 static int bnxt_setup_inta(struct bnxt *bp)
4174 {
4175 int rc;
4176 const int len = sizeof(bp->irq_tbl[0].name);
4177
4178 if (netdev_get_num_tc(bp->dev))
4179 netdev_reset_tc(bp->dev);
4180
4181 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4182 if (!bp->irq_tbl) {
4183 rc = -ENOMEM;
4184 return rc;
4185 }
4186 bp->rx_nr_rings = 1;
4187 bp->tx_nr_rings = 1;
4188 bp->cp_nr_rings = 1;
4189 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4190 bp->flags |= BNXT_FLAG_SHARED_RINGS;
4191 bp->irq_tbl[0].vector = bp->pdev->irq;
4192 snprintf(bp->irq_tbl[0].name, len,
4193 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4194 bp->irq_tbl[0].handler = bnxt_inta;
4195 rc = bnxt_set_real_num_queues(bp);
4196 return rc;
4197 }
4198
4199 static int bnxt_setup_int_mode(struct bnxt *bp)
4200 {
4201 int rc = 0;
4202
4203 if (bp->flags & BNXT_FLAG_MSIX_CAP)
4204 rc = bnxt_setup_msix(bp);
4205
4206 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4207 /* fallback to INTA */
4208 rc = bnxt_setup_inta(bp);
4209 }
4210 return rc;
4211 }
4212
4213 static void bnxt_free_irq(struct bnxt *bp)
4214 {
4215 struct bnxt_irq *irq;
4216 int i;
4217
4218 #ifdef CONFIG_RFS_ACCEL
4219 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4220 bp->dev->rx_cpu_rmap = NULL;
4221 #endif
4222 if (!bp->irq_tbl)
4223 return;
4224
4225 for (i = 0; i < bp->cp_nr_rings; i++) {
4226 irq = &bp->irq_tbl[i];
4227 if (irq->requested)
4228 free_irq(irq->vector, bp->bnapi[i]);
4229 irq->requested = 0;
4230 }
4231 if (bp->flags & BNXT_FLAG_USING_MSIX)
4232 pci_disable_msix(bp->pdev);
4233 kfree(bp->irq_tbl);
4234 bp->irq_tbl = NULL;
4235 }
4236
4237 static int bnxt_request_irq(struct bnxt *bp)
4238 {
4239 int i, j, rc = 0;
4240 unsigned long flags = 0;
4241 #ifdef CONFIG_RFS_ACCEL
4242 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4243 #endif
4244
4245 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4246 flags = IRQF_SHARED;
4247
4248 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4249 struct bnxt_irq *irq = &bp->irq_tbl[i];
4250 #ifdef CONFIG_RFS_ACCEL
4251 if (rmap && bp->bnapi[i]->rx_ring) {
4252 rc = irq_cpu_rmap_add(rmap, irq->vector);
4253 if (rc)
4254 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4255 j);
4256 j++;
4257 }
4258 #endif
4259 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4260 bp->bnapi[i]);
4261 if (rc)
4262 break;
4263
4264 irq->requested = 1;
4265 }
4266 return rc;
4267 }
4268
4269 static void bnxt_del_napi(struct bnxt *bp)
4270 {
4271 int i;
4272
4273 if (!bp->bnapi)
4274 return;
4275
4276 for (i = 0; i < bp->cp_nr_rings; i++) {
4277 struct bnxt_napi *bnapi = bp->bnapi[i];
4278
4279 napi_hash_del(&bnapi->napi);
4280 netif_napi_del(&bnapi->napi);
4281 }
4282 }
4283
4284 static void bnxt_init_napi(struct bnxt *bp)
4285 {
4286 int i;
4287 struct bnxt_napi *bnapi;
4288
4289 if (bp->flags & BNXT_FLAG_USING_MSIX) {
4290 for (i = 0; i < bp->cp_nr_rings; i++) {
4291 bnapi = bp->bnapi[i];
4292 netif_napi_add(bp->dev, &bnapi->napi,
4293 bnxt_poll, 64);
4294 }
4295 } else {
4296 bnapi = bp->bnapi[0];
4297 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4298 }
4299 }
4300
4301 static void bnxt_disable_napi(struct bnxt *bp)
4302 {
4303 int i;
4304
4305 if (!bp->bnapi)
4306 return;
4307
4308 for (i = 0; i < bp->cp_nr_rings; i++) {
4309 napi_disable(&bp->bnapi[i]->napi);
4310 bnxt_disable_poll(bp->bnapi[i]);
4311 }
4312 }
4313
4314 static void bnxt_enable_napi(struct bnxt *bp)
4315 {
4316 int i;
4317
4318 for (i = 0; i < bp->cp_nr_rings; i++) {
4319 bnxt_enable_poll(bp->bnapi[i]);
4320 napi_enable(&bp->bnapi[i]->napi);
4321 }
4322 }
4323
4324 static void bnxt_tx_disable(struct bnxt *bp)
4325 {
4326 int i;
4327 struct bnxt_tx_ring_info *txr;
4328 struct netdev_queue *txq;
4329
4330 if (bp->tx_ring) {
4331 for (i = 0; i < bp->tx_nr_rings; i++) {
4332 txr = &bp->tx_ring[i];
4333 txq = netdev_get_tx_queue(bp->dev, i);
4334 __netif_tx_lock(txq, smp_processor_id());
4335 txr->dev_state = BNXT_DEV_STATE_CLOSING;
4336 __netif_tx_unlock(txq);
4337 }
4338 }
4339 /* Stop all TX queues */
4340 netif_tx_disable(bp->dev);
4341 netif_carrier_off(bp->dev);
4342 }
4343
4344 static void bnxt_tx_enable(struct bnxt *bp)
4345 {
4346 int i;
4347 struct bnxt_tx_ring_info *txr;
4348 struct netdev_queue *txq;
4349
4350 for (i = 0; i < bp->tx_nr_rings; i++) {
4351 txr = &bp->tx_ring[i];
4352 txq = netdev_get_tx_queue(bp->dev, i);
4353 txr->dev_state = 0;
4354 }
4355 netif_tx_wake_all_queues(bp->dev);
4356 if (bp->link_info.link_up)
4357 netif_carrier_on(bp->dev);
4358 }
4359
4360 static void bnxt_report_link(struct bnxt *bp)
4361 {
4362 if (bp->link_info.link_up) {
4363 const char *duplex;
4364 const char *flow_ctrl;
4365 u16 speed;
4366
4367 netif_carrier_on(bp->dev);
4368 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4369 duplex = "full";
4370 else
4371 duplex = "half";
4372 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4373 flow_ctrl = "ON - receive & transmit";
4374 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4375 flow_ctrl = "ON - transmit";
4376 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4377 flow_ctrl = "ON - receive";
4378 else
4379 flow_ctrl = "none";
4380 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4381 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4382 speed, duplex, flow_ctrl);
4383 } else {
4384 netif_carrier_off(bp->dev);
4385 netdev_err(bp->dev, "NIC Link is Down\n");
4386 }
4387 }
4388
4389 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4390 {
4391 int rc = 0;
4392 struct bnxt_link_info *link_info = &bp->link_info;
4393 struct hwrm_port_phy_qcfg_input req = {0};
4394 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4395 u8 link_up = link_info->link_up;
4396
4397 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4398
4399 mutex_lock(&bp->hwrm_cmd_lock);
4400 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4401 if (rc) {
4402 mutex_unlock(&bp->hwrm_cmd_lock);
4403 return rc;
4404 }
4405
4406 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4407 link_info->phy_link_status = resp->link;
4408 link_info->duplex = resp->duplex;
4409 link_info->pause = resp->pause;
4410 link_info->auto_mode = resp->auto_mode;
4411 link_info->auto_pause_setting = resp->auto_pause;
4412 link_info->force_pause_setting = resp->force_pause;
4413 link_info->duplex_setting = resp->duplex;
4414 if (link_info->phy_link_status == BNXT_LINK_LINK)
4415 link_info->link_speed = le16_to_cpu(resp->link_speed);
4416 else
4417 link_info->link_speed = 0;
4418 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4419 link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4420 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4421 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4422 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4423 link_info->phy_ver[0] = resp->phy_maj;
4424 link_info->phy_ver[1] = resp->phy_min;
4425 link_info->phy_ver[2] = resp->phy_bld;
4426 link_info->media_type = resp->media_type;
4427 link_info->transceiver = resp->transceiver_type;
4428 link_info->phy_addr = resp->phy_addr;
4429
4430 /* TODO: need to add more logic to report VF link */
4431 if (chng_link_state) {
4432 if (link_info->phy_link_status == BNXT_LINK_LINK)
4433 link_info->link_up = 1;
4434 else
4435 link_info->link_up = 0;
4436 if (link_up != link_info->link_up)
4437 bnxt_report_link(bp);
4438 } else {
4439 /* alwasy link down if not require to update link state */
4440 link_info->link_up = 0;
4441 }
4442 mutex_unlock(&bp->hwrm_cmd_lock);
4443 return 0;
4444 }
4445
4446 static void
4447 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4448 {
4449 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4450 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4451 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4452 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4453 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4454 req->enables |=
4455 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4456 } else {
4457 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4458 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4459 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4460 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4461 req->enables |=
4462 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4463 }
4464 }
4465
4466 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4467 struct hwrm_port_phy_cfg_input *req)
4468 {
4469 u8 autoneg = bp->link_info.autoneg;
4470 u16 fw_link_speed = bp->link_info.req_link_speed;
4471 u32 advertising = bp->link_info.advertising;
4472
4473 if (autoneg & BNXT_AUTONEG_SPEED) {
4474 req->auto_mode |=
4475 PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4476
4477 req->enables |= cpu_to_le32(
4478 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4479 req->auto_link_speed_mask = cpu_to_le16(advertising);
4480
4481 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4482 req->flags |=
4483 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4484 } else {
4485 req->force_link_speed = cpu_to_le16(fw_link_speed);
4486 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4487 }
4488
4489 /* currently don't support half duplex */
4490 req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4491 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4492 /* tell chimp that the setting takes effect immediately */
4493 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4494 }
4495
4496 int bnxt_hwrm_set_pause(struct bnxt *bp)
4497 {
4498 struct hwrm_port_phy_cfg_input req = {0};
4499 int rc;
4500
4501 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4502 bnxt_hwrm_set_pause_common(bp, &req);
4503
4504 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4505 bp->link_info.force_link_chng)
4506 bnxt_hwrm_set_link_common(bp, &req);
4507
4508 mutex_lock(&bp->hwrm_cmd_lock);
4509 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4510 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4511 /* since changing of pause setting doesn't trigger any link
4512 * change event, the driver needs to update the current pause
4513 * result upon successfully return of the phy_cfg command
4514 */
4515 bp->link_info.pause =
4516 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4517 bp->link_info.auto_pause_setting = 0;
4518 if (!bp->link_info.force_link_chng)
4519 bnxt_report_link(bp);
4520 }
4521 bp->link_info.force_link_chng = false;
4522 mutex_unlock(&bp->hwrm_cmd_lock);
4523 return rc;
4524 }
4525
4526 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4527 {
4528 struct hwrm_port_phy_cfg_input req = {0};
4529
4530 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4531 if (set_pause)
4532 bnxt_hwrm_set_pause_common(bp, &req);
4533
4534 bnxt_hwrm_set_link_common(bp, &req);
4535 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4536 }
4537
4538 static int bnxt_update_phy_setting(struct bnxt *bp)
4539 {
4540 int rc;
4541 bool update_link = false;
4542 bool update_pause = false;
4543 struct bnxt_link_info *link_info = &bp->link_info;
4544
4545 rc = bnxt_update_link(bp, true);
4546 if (rc) {
4547 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4548 rc);
4549 return rc;
4550 }
4551 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4552 link_info->auto_pause_setting != link_info->req_flow_ctrl)
4553 update_pause = true;
4554 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4555 link_info->force_pause_setting != link_info->req_flow_ctrl)
4556 update_pause = true;
4557 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4558 if (BNXT_AUTO_MODE(link_info->auto_mode))
4559 update_link = true;
4560 if (link_info->req_link_speed != link_info->force_link_speed)
4561 update_link = true;
4562 if (link_info->req_duplex != link_info->duplex_setting)
4563 update_link = true;
4564 } else {
4565 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4566 update_link = true;
4567 if (link_info->advertising != link_info->auto_link_speeds)
4568 update_link = true;
4569 }
4570
4571 if (update_link)
4572 rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4573 else if (update_pause)
4574 rc = bnxt_hwrm_set_pause(bp);
4575 if (rc) {
4576 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4577 rc);
4578 return rc;
4579 }
4580
4581 return rc;
4582 }
4583
4584 /* Common routine to pre-map certain register block to different GRC window.
4585 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4586 * in PF and 3 windows in VF that can be customized to map in different
4587 * register blocks.
4588 */
4589 static void bnxt_preset_reg_win(struct bnxt *bp)
4590 {
4591 if (BNXT_PF(bp)) {
4592 /* CAG registers map to GRC window #4 */
4593 writel(BNXT_CAG_REG_BASE,
4594 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4595 }
4596 }
4597
4598 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4599 {
4600 int rc = 0;
4601
4602 bnxt_preset_reg_win(bp);
4603 netif_carrier_off(bp->dev);
4604 if (irq_re_init) {
4605 rc = bnxt_setup_int_mode(bp);
4606 if (rc) {
4607 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4608 rc);
4609 return rc;
4610 }
4611 }
4612 if ((bp->flags & BNXT_FLAG_RFS) &&
4613 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4614 /* disable RFS if falling back to INTA */
4615 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4616 bp->flags &= ~BNXT_FLAG_RFS;
4617 }
4618
4619 rc = bnxt_alloc_mem(bp, irq_re_init);
4620 if (rc) {
4621 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4622 goto open_err_free_mem;
4623 }
4624
4625 if (irq_re_init) {
4626 bnxt_init_napi(bp);
4627 rc = bnxt_request_irq(bp);
4628 if (rc) {
4629 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4630 goto open_err;
4631 }
4632 }
4633
4634 bnxt_enable_napi(bp);
4635
4636 rc = bnxt_init_nic(bp, irq_re_init);
4637 if (rc) {
4638 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4639 goto open_err;
4640 }
4641
4642 if (link_re_init) {
4643 rc = bnxt_update_phy_setting(bp);
4644 if (rc)
4645 netdev_warn(bp->dev, "failed to update phy settings\n");
4646 }
4647
4648 if (irq_re_init) {
4649 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4650 vxlan_get_rx_port(bp->dev);
4651 #endif
4652 if (!bnxt_hwrm_tunnel_dst_port_alloc(
4653 bp, htons(0x17c1),
4654 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4655 bp->nge_port_cnt = 1;
4656 }
4657
4658 set_bit(BNXT_STATE_OPEN, &bp->state);
4659 bnxt_enable_int(bp);
4660 /* Enable TX queues */
4661 bnxt_tx_enable(bp);
4662 mod_timer(&bp->timer, jiffies + bp->current_interval);
4663 bnxt_update_link(bp, true);
4664
4665 return 0;
4666
4667 open_err:
4668 bnxt_disable_napi(bp);
4669 bnxt_del_napi(bp);
4670
4671 open_err_free_mem:
4672 bnxt_free_skbs(bp);
4673 bnxt_free_irq(bp);
4674 bnxt_free_mem(bp, true);
4675 return rc;
4676 }
4677
4678 /* rtnl_lock held */
4679 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4680 {
4681 int rc = 0;
4682
4683 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4684 if (rc) {
4685 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4686 dev_close(bp->dev);
4687 }
4688 return rc;
4689 }
4690
4691 static int bnxt_open(struct net_device *dev)
4692 {
4693 struct bnxt *bp = netdev_priv(dev);
4694 int rc = 0;
4695
4696 rc = bnxt_hwrm_func_reset(bp);
4697 if (rc) {
4698 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4699 rc);
4700 rc = -1;
4701 return rc;
4702 }
4703 return __bnxt_open_nic(bp, true, true);
4704 }
4705
4706 static void bnxt_disable_int_sync(struct bnxt *bp)
4707 {
4708 int i;
4709
4710 atomic_inc(&bp->intr_sem);
4711 if (!netif_running(bp->dev))
4712 return;
4713
4714 bnxt_disable_int(bp);
4715 for (i = 0; i < bp->cp_nr_rings; i++)
4716 synchronize_irq(bp->irq_tbl[i].vector);
4717 }
4718
4719 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4720 {
4721 int rc = 0;
4722
4723 #ifdef CONFIG_BNXT_SRIOV
4724 if (bp->sriov_cfg) {
4725 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4726 !bp->sriov_cfg,
4727 BNXT_SRIOV_CFG_WAIT_TMO);
4728 if (rc)
4729 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4730 }
4731 #endif
4732 /* Change device state to avoid TX queue wake up's */
4733 bnxt_tx_disable(bp);
4734
4735 clear_bit(BNXT_STATE_OPEN, &bp->state);
4736 smp_mb__after_atomic();
4737 while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4738 msleep(20);
4739
4740 /* Flush rings before disabling interrupts */
4741 bnxt_shutdown_nic(bp, irq_re_init);
4742
4743 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4744
4745 bnxt_disable_napi(bp);
4746 bnxt_disable_int_sync(bp);
4747 del_timer_sync(&bp->timer);
4748 bnxt_free_skbs(bp);
4749
4750 if (irq_re_init) {
4751 bnxt_free_irq(bp);
4752 bnxt_del_napi(bp);
4753 }
4754 bnxt_free_mem(bp, irq_re_init);
4755 return rc;
4756 }
4757
4758 static int bnxt_close(struct net_device *dev)
4759 {
4760 struct bnxt *bp = netdev_priv(dev);
4761
4762 bnxt_close_nic(bp, true, true);
4763 return 0;
4764 }
4765
4766 /* rtnl_lock held */
4767 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4768 {
4769 switch (cmd) {
4770 case SIOCGMIIPHY:
4771 /* fallthru */
4772 case SIOCGMIIREG: {
4773 if (!netif_running(dev))
4774 return -EAGAIN;
4775
4776 return 0;
4777 }
4778
4779 case SIOCSMIIREG:
4780 if (!netif_running(dev))
4781 return -EAGAIN;
4782
4783 return 0;
4784
4785 default:
4786 /* do nothing */
4787 break;
4788 }
4789 return -EOPNOTSUPP;
4790 }
4791
4792 static struct rtnl_link_stats64 *
4793 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4794 {
4795 u32 i;
4796 struct bnxt *bp = netdev_priv(dev);
4797
4798 memset(stats, 0, sizeof(struct rtnl_link_stats64));
4799
4800 if (!bp->bnapi)
4801 return stats;
4802
4803 /* TODO check if we need to synchronize with bnxt_close path */
4804 for (i = 0; i < bp->cp_nr_rings; i++) {
4805 struct bnxt_napi *bnapi = bp->bnapi[i];
4806 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4807 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4808
4809 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4810 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4811 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4812
4813 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4814 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4815 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4816
4817 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4818 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4819 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4820
4821 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4822 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4823 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4824
4825 stats->rx_missed_errors +=
4826 le64_to_cpu(hw_stats->rx_discard_pkts);
4827
4828 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4829
4830 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4831 }
4832
4833 return stats;
4834 }
4835
4836 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4837 {
4838 struct net_device *dev = bp->dev;
4839 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4840 struct netdev_hw_addr *ha;
4841 u8 *haddr;
4842 int mc_count = 0;
4843 bool update = false;
4844 int off = 0;
4845
4846 netdev_for_each_mc_addr(ha, dev) {
4847 if (mc_count >= BNXT_MAX_MC_ADDRS) {
4848 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4849 vnic->mc_list_count = 0;
4850 return false;
4851 }
4852 haddr = ha->addr;
4853 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4854 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4855 update = true;
4856 }
4857 off += ETH_ALEN;
4858 mc_count++;
4859 }
4860 if (mc_count)
4861 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4862
4863 if (mc_count != vnic->mc_list_count) {
4864 vnic->mc_list_count = mc_count;
4865 update = true;
4866 }
4867 return update;
4868 }
4869
4870 static bool bnxt_uc_list_updated(struct bnxt *bp)
4871 {
4872 struct net_device *dev = bp->dev;
4873 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4874 struct netdev_hw_addr *ha;
4875 int off = 0;
4876
4877 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4878 return true;
4879
4880 netdev_for_each_uc_addr(ha, dev) {
4881 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
4882 return true;
4883
4884 off += ETH_ALEN;
4885 }
4886 return false;
4887 }
4888
4889 static void bnxt_set_rx_mode(struct net_device *dev)
4890 {
4891 struct bnxt *bp = netdev_priv(dev);
4892 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4893 u32 mask = vnic->rx_mask;
4894 bool mc_update = false;
4895 bool uc_update;
4896
4897 if (!netif_running(dev))
4898 return;
4899
4900 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
4901 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
4902 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
4903
4904 /* Only allow PF to be in promiscuous mode */
4905 if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4906 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4907
4908 uc_update = bnxt_uc_list_updated(bp);
4909
4910 if (dev->flags & IFF_ALLMULTI) {
4911 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4912 vnic->mc_list_count = 0;
4913 } else {
4914 mc_update = bnxt_mc_list_updated(bp, &mask);
4915 }
4916
4917 if (mask != vnic->rx_mask || uc_update || mc_update) {
4918 vnic->rx_mask = mask;
4919
4920 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
4921 schedule_work(&bp->sp_task);
4922 }
4923 }
4924
4925 static int bnxt_cfg_rx_mode(struct bnxt *bp)
4926 {
4927 struct net_device *dev = bp->dev;
4928 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4929 struct netdev_hw_addr *ha;
4930 int i, off = 0, rc;
4931 bool uc_update;
4932
4933 netif_addr_lock_bh(dev);
4934 uc_update = bnxt_uc_list_updated(bp);
4935 netif_addr_unlock_bh(dev);
4936
4937 if (!uc_update)
4938 goto skip_uc;
4939
4940 mutex_lock(&bp->hwrm_cmd_lock);
4941 for (i = 1; i < vnic->uc_filter_count; i++) {
4942 struct hwrm_cfa_l2_filter_free_input req = {0};
4943
4944 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
4945 -1);
4946
4947 req.l2_filter_id = vnic->fw_l2_filter_id[i];
4948
4949 rc = _hwrm_send_message(bp, &req, sizeof(req),
4950 HWRM_CMD_TIMEOUT);
4951 }
4952 mutex_unlock(&bp->hwrm_cmd_lock);
4953
4954 vnic->uc_filter_count = 1;
4955
4956 netif_addr_lock_bh(dev);
4957 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
4958 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4959 } else {
4960 netdev_for_each_uc_addr(ha, dev) {
4961 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
4962 off += ETH_ALEN;
4963 vnic->uc_filter_count++;
4964 }
4965 }
4966 netif_addr_unlock_bh(dev);
4967
4968 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
4969 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
4970 if (rc) {
4971 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
4972 rc);
4973 vnic->uc_filter_count = i;
4974 return rc;
4975 }
4976 }
4977
4978 skip_uc:
4979 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4980 if (rc)
4981 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
4982 rc);
4983
4984 return rc;
4985 }
4986
4987 static bool bnxt_rfs_capable(struct bnxt *bp)
4988 {
4989 #ifdef CONFIG_RFS_ACCEL
4990 struct bnxt_pf_info *pf = &bp->pf;
4991 int vnics;
4992
4993 if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
4994 return false;
4995
4996 vnics = 1 + bp->rx_nr_rings;
4997 if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
4998 return false;
4999
5000 return true;
5001 #else
5002 return false;
5003 #endif
5004 }
5005
5006 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5007 netdev_features_t features)
5008 {
5009 struct bnxt *bp = netdev_priv(dev);
5010
5011 if (!bnxt_rfs_capable(bp))
5012 features &= ~NETIF_F_NTUPLE;
5013 return features;
5014 }
5015
5016 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5017 {
5018 struct bnxt *bp = netdev_priv(dev);
5019 u32 flags = bp->flags;
5020 u32 changes;
5021 int rc = 0;
5022 bool re_init = false;
5023 bool update_tpa = false;
5024
5025 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5026 if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5027 flags |= BNXT_FLAG_GRO;
5028 if (features & NETIF_F_LRO)
5029 flags |= BNXT_FLAG_LRO;
5030
5031 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5032 flags |= BNXT_FLAG_STRIP_VLAN;
5033
5034 if (features & NETIF_F_NTUPLE)
5035 flags |= BNXT_FLAG_RFS;
5036
5037 changes = flags ^ bp->flags;
5038 if (changes & BNXT_FLAG_TPA) {
5039 update_tpa = true;
5040 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5041 (flags & BNXT_FLAG_TPA) == 0)
5042 re_init = true;
5043 }
5044
5045 if (changes & ~BNXT_FLAG_TPA)
5046 re_init = true;
5047
5048 if (flags != bp->flags) {
5049 u32 old_flags = bp->flags;
5050
5051 bp->flags = flags;
5052
5053 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5054 if (update_tpa)
5055 bnxt_set_ring_params(bp);
5056 return rc;
5057 }
5058
5059 if (re_init) {
5060 bnxt_close_nic(bp, false, false);
5061 if (update_tpa)
5062 bnxt_set_ring_params(bp);
5063
5064 return bnxt_open_nic(bp, false, false);
5065 }
5066 if (update_tpa) {
5067 rc = bnxt_set_tpa(bp,
5068 (flags & BNXT_FLAG_TPA) ?
5069 true : false);
5070 if (rc)
5071 bp->flags = old_flags;
5072 }
5073 }
5074 return rc;
5075 }
5076
5077 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5078 {
5079 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5080 int i = bnapi->index;
5081
5082 if (!txr)
5083 return;
5084
5085 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5086 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5087 txr->tx_cons);
5088 }
5089
5090 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5091 {
5092 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5093 int i = bnapi->index;
5094
5095 if (!rxr)
5096 return;
5097
5098 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5099 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5100 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5101 rxr->rx_sw_agg_prod);
5102 }
5103
5104 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5105 {
5106 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5107 int i = bnapi->index;
5108
5109 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5110 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5111 }
5112
5113 static void bnxt_dbg_dump_states(struct bnxt *bp)
5114 {
5115 int i;
5116 struct bnxt_napi *bnapi;
5117
5118 for (i = 0; i < bp->cp_nr_rings; i++) {
5119 bnapi = bp->bnapi[i];
5120 if (netif_msg_drv(bp)) {
5121 bnxt_dump_tx_sw_state(bnapi);
5122 bnxt_dump_rx_sw_state(bnapi);
5123 bnxt_dump_cp_sw_state(bnapi);
5124 }
5125 }
5126 }
5127
5128 static void bnxt_reset_task(struct bnxt *bp)
5129 {
5130 bnxt_dbg_dump_states(bp);
5131 if (netif_running(bp->dev)) {
5132 bnxt_close_nic(bp, false, false);
5133 bnxt_open_nic(bp, false, false);
5134 }
5135 }
5136
5137 static void bnxt_tx_timeout(struct net_device *dev)
5138 {
5139 struct bnxt *bp = netdev_priv(dev);
5140
5141 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
5142 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5143 schedule_work(&bp->sp_task);
5144 }
5145
5146 #ifdef CONFIG_NET_POLL_CONTROLLER
5147 static void bnxt_poll_controller(struct net_device *dev)
5148 {
5149 struct bnxt *bp = netdev_priv(dev);
5150 int i;
5151
5152 for (i = 0; i < bp->cp_nr_rings; i++) {
5153 struct bnxt_irq *irq = &bp->irq_tbl[i];
5154
5155 disable_irq(irq->vector);
5156 irq->handler(irq->vector, bp->bnapi[i]);
5157 enable_irq(irq->vector);
5158 }
5159 }
5160 #endif
5161
5162 static void bnxt_timer(unsigned long data)
5163 {
5164 struct bnxt *bp = (struct bnxt *)data;
5165 struct net_device *dev = bp->dev;
5166
5167 if (!netif_running(dev))
5168 return;
5169
5170 if (atomic_read(&bp->intr_sem) != 0)
5171 goto bnxt_restart_timer;
5172
5173 bnxt_restart_timer:
5174 mod_timer(&bp->timer, jiffies + bp->current_interval);
5175 }
5176
5177 static void bnxt_cfg_ntp_filters(struct bnxt *);
5178
5179 static void bnxt_sp_task(struct work_struct *work)
5180 {
5181 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5182 int rc;
5183
5184 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5185 smp_mb__after_atomic();
5186 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5187 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5188 return;
5189 }
5190
5191 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5192 bnxt_cfg_rx_mode(bp);
5193
5194 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5195 bnxt_cfg_ntp_filters(bp);
5196 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5197 rc = bnxt_update_link(bp, true);
5198 if (rc)
5199 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5200 rc);
5201 }
5202 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5203 bnxt_hwrm_exec_fwd_req(bp);
5204 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5205 bnxt_hwrm_tunnel_dst_port_alloc(
5206 bp, bp->vxlan_port,
5207 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5208 }
5209 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5210 bnxt_hwrm_tunnel_dst_port_free(
5211 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5212 }
5213 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5214 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5215 * for BNXT_STATE_IN_SP_TASK to clear.
5216 */
5217 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5218 rtnl_lock();
5219 bnxt_reset_task(bp);
5220 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5221 rtnl_unlock();
5222 }
5223
5224 smp_mb__before_atomic();
5225 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5226 }
5227
5228 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5229 {
5230 int rc;
5231 struct bnxt *bp = netdev_priv(dev);
5232
5233 SET_NETDEV_DEV(dev, &pdev->dev);
5234
5235 /* enable device (incl. PCI PM wakeup), and bus-mastering */
5236 rc = pci_enable_device(pdev);
5237 if (rc) {
5238 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5239 goto init_err;
5240 }
5241
5242 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5243 dev_err(&pdev->dev,
5244 "Cannot find PCI device base address, aborting\n");
5245 rc = -ENODEV;
5246 goto init_err_disable;
5247 }
5248
5249 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5250 if (rc) {
5251 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5252 goto init_err_disable;
5253 }
5254
5255 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5256 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5257 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5258 goto init_err_disable;
5259 }
5260
5261 pci_set_master(pdev);
5262
5263 bp->dev = dev;
5264 bp->pdev = pdev;
5265
5266 bp->bar0 = pci_ioremap_bar(pdev, 0);
5267 if (!bp->bar0) {
5268 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5269 rc = -ENOMEM;
5270 goto init_err_release;
5271 }
5272
5273 bp->bar1 = pci_ioremap_bar(pdev, 2);
5274 if (!bp->bar1) {
5275 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5276 rc = -ENOMEM;
5277 goto init_err_release;
5278 }
5279
5280 bp->bar2 = pci_ioremap_bar(pdev, 4);
5281 if (!bp->bar2) {
5282 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5283 rc = -ENOMEM;
5284 goto init_err_release;
5285 }
5286
5287 INIT_WORK(&bp->sp_task, bnxt_sp_task);
5288
5289 spin_lock_init(&bp->ntp_fltr_lock);
5290
5291 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5292 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5293
5294 bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4);
5295 bp->coal_bufs = 20;
5296 bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1);
5297 bp->coal_bufs_irq = 2;
5298
5299 init_timer(&bp->timer);
5300 bp->timer.data = (unsigned long)bp;
5301 bp->timer.function = bnxt_timer;
5302 bp->current_interval = BNXT_TIMER_INTERVAL;
5303
5304 clear_bit(BNXT_STATE_OPEN, &bp->state);
5305
5306 return 0;
5307
5308 init_err_release:
5309 if (bp->bar2) {
5310 pci_iounmap(pdev, bp->bar2);
5311 bp->bar2 = NULL;
5312 }
5313
5314 if (bp->bar1) {
5315 pci_iounmap(pdev, bp->bar1);
5316 bp->bar1 = NULL;
5317 }
5318
5319 if (bp->bar0) {
5320 pci_iounmap(pdev, bp->bar0);
5321 bp->bar0 = NULL;
5322 }
5323
5324 pci_release_regions(pdev);
5325
5326 init_err_disable:
5327 pci_disable_device(pdev);
5328
5329 init_err:
5330 return rc;
5331 }
5332
5333 /* rtnl_lock held */
5334 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5335 {
5336 struct sockaddr *addr = p;
5337 struct bnxt *bp = netdev_priv(dev);
5338 int rc = 0;
5339
5340 if (!is_valid_ether_addr(addr->sa_data))
5341 return -EADDRNOTAVAIL;
5342
5343 #ifdef CONFIG_BNXT_SRIOV
5344 if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5345 return -EADDRNOTAVAIL;
5346 #endif
5347
5348 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5349 return 0;
5350
5351 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5352 if (netif_running(dev)) {
5353 bnxt_close_nic(bp, false, false);
5354 rc = bnxt_open_nic(bp, false, false);
5355 }
5356
5357 return rc;
5358 }
5359
5360 /* rtnl_lock held */
5361 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5362 {
5363 struct bnxt *bp = netdev_priv(dev);
5364
5365 if (new_mtu < 60 || new_mtu > 9000)
5366 return -EINVAL;
5367
5368 if (netif_running(dev))
5369 bnxt_close_nic(bp, false, false);
5370
5371 dev->mtu = new_mtu;
5372 bnxt_set_ring_params(bp);
5373
5374 if (netif_running(dev))
5375 return bnxt_open_nic(bp, false, false);
5376
5377 return 0;
5378 }
5379
5380 static int bnxt_setup_tc(struct net_device *dev, u8 tc)
5381 {
5382 struct bnxt *bp = netdev_priv(dev);
5383
5384 if (tc > bp->max_tc) {
5385 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5386 tc, bp->max_tc);
5387 return -EINVAL;
5388 }
5389
5390 if (netdev_get_num_tc(dev) == tc)
5391 return 0;
5392
5393 if (tc) {
5394 int max_rx_rings, max_tx_rings, rc;
5395 bool sh = false;
5396
5397 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5398 sh = true;
5399
5400 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5401 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5402 return -ENOMEM;
5403 }
5404
5405 /* Needs to close the device and do hw resource re-allocations */
5406 if (netif_running(bp->dev))
5407 bnxt_close_nic(bp, true, false);
5408
5409 if (tc) {
5410 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5411 netdev_set_num_tc(dev, tc);
5412 } else {
5413 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5414 netdev_reset_tc(dev);
5415 }
5416 bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5417 bp->num_stat_ctxs = bp->cp_nr_rings;
5418
5419 if (netif_running(bp->dev))
5420 return bnxt_open_nic(bp, true, false);
5421
5422 return 0;
5423 }
5424
5425 #ifdef CONFIG_RFS_ACCEL
5426 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5427 struct bnxt_ntuple_filter *f2)
5428 {
5429 struct flow_keys *keys1 = &f1->fkeys;
5430 struct flow_keys *keys2 = &f2->fkeys;
5431
5432 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5433 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5434 keys1->ports.ports == keys2->ports.ports &&
5435 keys1->basic.ip_proto == keys2->basic.ip_proto &&
5436 keys1->basic.n_proto == keys2->basic.n_proto &&
5437 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5438 return true;
5439
5440 return false;
5441 }
5442
5443 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5444 u16 rxq_index, u32 flow_id)
5445 {
5446 struct bnxt *bp = netdev_priv(dev);
5447 struct bnxt_ntuple_filter *fltr, *new_fltr;
5448 struct flow_keys *fkeys;
5449 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5450 int rc = 0, idx, bit_id;
5451 struct hlist_head *head;
5452
5453 if (skb->encapsulation)
5454 return -EPROTONOSUPPORT;
5455
5456 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5457 if (!new_fltr)
5458 return -ENOMEM;
5459
5460 fkeys = &new_fltr->fkeys;
5461 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5462 rc = -EPROTONOSUPPORT;
5463 goto err_free;
5464 }
5465
5466 if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5467 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5468 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5469 rc = -EPROTONOSUPPORT;
5470 goto err_free;
5471 }
5472
5473 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5474
5475 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5476 head = &bp->ntp_fltr_hash_tbl[idx];
5477 rcu_read_lock();
5478 hlist_for_each_entry_rcu(fltr, head, hash) {
5479 if (bnxt_fltr_match(fltr, new_fltr)) {
5480 rcu_read_unlock();
5481 rc = 0;
5482 goto err_free;
5483 }
5484 }
5485 rcu_read_unlock();
5486
5487 spin_lock_bh(&bp->ntp_fltr_lock);
5488 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5489 BNXT_NTP_FLTR_MAX_FLTR, 0);
5490 if (bit_id < 0) {
5491 spin_unlock_bh(&bp->ntp_fltr_lock);
5492 rc = -ENOMEM;
5493 goto err_free;
5494 }
5495
5496 new_fltr->sw_id = (u16)bit_id;
5497 new_fltr->flow_id = flow_id;
5498 new_fltr->rxq = rxq_index;
5499 hlist_add_head_rcu(&new_fltr->hash, head);
5500 bp->ntp_fltr_count++;
5501 spin_unlock_bh(&bp->ntp_fltr_lock);
5502
5503 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5504 schedule_work(&bp->sp_task);
5505
5506 return new_fltr->sw_id;
5507
5508 err_free:
5509 kfree(new_fltr);
5510 return rc;
5511 }
5512
5513 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5514 {
5515 int i;
5516
5517 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5518 struct hlist_head *head;
5519 struct hlist_node *tmp;
5520 struct bnxt_ntuple_filter *fltr;
5521 int rc;
5522
5523 head = &bp->ntp_fltr_hash_tbl[i];
5524 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5525 bool del = false;
5526
5527 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5528 if (rps_may_expire_flow(bp->dev, fltr->rxq,
5529 fltr->flow_id,
5530 fltr->sw_id)) {
5531 bnxt_hwrm_cfa_ntuple_filter_free(bp,
5532 fltr);
5533 del = true;
5534 }
5535 } else {
5536 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5537 fltr);
5538 if (rc)
5539 del = true;
5540 else
5541 set_bit(BNXT_FLTR_VALID, &fltr->state);
5542 }
5543
5544 if (del) {
5545 spin_lock_bh(&bp->ntp_fltr_lock);
5546 hlist_del_rcu(&fltr->hash);
5547 bp->ntp_fltr_count--;
5548 spin_unlock_bh(&bp->ntp_fltr_lock);
5549 synchronize_rcu();
5550 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5551 kfree(fltr);
5552 }
5553 }
5554 }
5555 }
5556
5557 #else
5558
5559 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5560 {
5561 }
5562
5563 #endif /* CONFIG_RFS_ACCEL */
5564
5565 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5566 __be16 port)
5567 {
5568 struct bnxt *bp = netdev_priv(dev);
5569
5570 if (!netif_running(dev))
5571 return;
5572
5573 if (sa_family != AF_INET6 && sa_family != AF_INET)
5574 return;
5575
5576 if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5577 return;
5578
5579 bp->vxlan_port_cnt++;
5580 if (bp->vxlan_port_cnt == 1) {
5581 bp->vxlan_port = port;
5582 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5583 schedule_work(&bp->sp_task);
5584 }
5585 }
5586
5587 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5588 __be16 port)
5589 {
5590 struct bnxt *bp = netdev_priv(dev);
5591
5592 if (!netif_running(dev))
5593 return;
5594
5595 if (sa_family != AF_INET6 && sa_family != AF_INET)
5596 return;
5597
5598 if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5599 bp->vxlan_port_cnt--;
5600
5601 if (bp->vxlan_port_cnt == 0) {
5602 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5603 schedule_work(&bp->sp_task);
5604 }
5605 }
5606 }
5607
5608 static const struct net_device_ops bnxt_netdev_ops = {
5609 .ndo_open = bnxt_open,
5610 .ndo_start_xmit = bnxt_start_xmit,
5611 .ndo_stop = bnxt_close,
5612 .ndo_get_stats64 = bnxt_get_stats64,
5613 .ndo_set_rx_mode = bnxt_set_rx_mode,
5614 .ndo_do_ioctl = bnxt_ioctl,
5615 .ndo_validate_addr = eth_validate_addr,
5616 .ndo_set_mac_address = bnxt_change_mac_addr,
5617 .ndo_change_mtu = bnxt_change_mtu,
5618 .ndo_fix_features = bnxt_fix_features,
5619 .ndo_set_features = bnxt_set_features,
5620 .ndo_tx_timeout = bnxt_tx_timeout,
5621 #ifdef CONFIG_BNXT_SRIOV
5622 .ndo_get_vf_config = bnxt_get_vf_config,
5623 .ndo_set_vf_mac = bnxt_set_vf_mac,
5624 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
5625 .ndo_set_vf_rate = bnxt_set_vf_bw,
5626 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
5627 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
5628 #endif
5629 #ifdef CONFIG_NET_POLL_CONTROLLER
5630 .ndo_poll_controller = bnxt_poll_controller,
5631 #endif
5632 .ndo_setup_tc = bnxt_setup_tc,
5633 #ifdef CONFIG_RFS_ACCEL
5634 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
5635 #endif
5636 .ndo_add_vxlan_port = bnxt_add_vxlan_port,
5637 .ndo_del_vxlan_port = bnxt_del_vxlan_port,
5638 #ifdef CONFIG_NET_RX_BUSY_POLL
5639 .ndo_busy_poll = bnxt_busy_poll,
5640 #endif
5641 };
5642
5643 static void bnxt_remove_one(struct pci_dev *pdev)
5644 {
5645 struct net_device *dev = pci_get_drvdata(pdev);
5646 struct bnxt *bp = netdev_priv(dev);
5647
5648 if (BNXT_PF(bp))
5649 bnxt_sriov_disable(bp);
5650
5651 unregister_netdev(dev);
5652 cancel_work_sync(&bp->sp_task);
5653 bp->sp_event = 0;
5654
5655 bnxt_hwrm_func_drv_unrgtr(bp);
5656 bnxt_free_hwrm_resources(bp);
5657 pci_iounmap(pdev, bp->bar2);
5658 pci_iounmap(pdev, bp->bar1);
5659 pci_iounmap(pdev, bp->bar0);
5660 free_netdev(dev);
5661
5662 pci_release_regions(pdev);
5663 pci_disable_device(pdev);
5664 }
5665
5666 static int bnxt_probe_phy(struct bnxt *bp)
5667 {
5668 int rc = 0;
5669 struct bnxt_link_info *link_info = &bp->link_info;
5670 char phy_ver[PHY_VER_STR_LEN];
5671
5672 rc = bnxt_update_link(bp, false);
5673 if (rc) {
5674 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5675 rc);
5676 return rc;
5677 }
5678
5679 /*initialize the ethool setting copy with NVM settings */
5680 if (BNXT_AUTO_MODE(link_info->auto_mode)) {
5681 link_info->autoneg = BNXT_AUTONEG_SPEED |
5682 BNXT_AUTONEG_FLOW_CTRL;
5683 link_info->advertising = link_info->auto_link_speeds;
5684 link_info->req_flow_ctrl = link_info->auto_pause_setting;
5685 } else {
5686 link_info->req_link_speed = link_info->force_link_speed;
5687 link_info->req_duplex = link_info->duplex_setting;
5688 link_info->req_flow_ctrl = link_info->force_pause_setting;
5689 }
5690 snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d",
5691 link_info->phy_ver[0],
5692 link_info->phy_ver[1],
5693 link_info->phy_ver[2]);
5694 strcat(bp->fw_ver_str, phy_ver);
5695 return rc;
5696 }
5697
5698 static int bnxt_get_max_irq(struct pci_dev *pdev)
5699 {
5700 u16 ctrl;
5701
5702 if (!pdev->msix_cap)
5703 return 1;
5704
5705 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5706 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5707 }
5708
5709 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
5710 int *max_cp)
5711 {
5712 int max_ring_grps = 0;
5713
5714 #ifdef CONFIG_BNXT_SRIOV
5715 if (!BNXT_PF(bp)) {
5716 *max_tx = bp->vf.max_tx_rings;
5717 *max_rx = bp->vf.max_rx_rings;
5718 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5719 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
5720 max_ring_grps = bp->vf.max_hw_ring_grps;
5721 } else
5722 #endif
5723 {
5724 *max_tx = bp->pf.max_tx_rings;
5725 *max_rx = bp->pf.max_rx_rings;
5726 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5727 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
5728 max_ring_grps = bp->pf.max_hw_ring_grps;
5729 }
5730
5731 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5732 *max_rx >>= 1;
5733 *max_rx = min_t(int, *max_rx, max_ring_grps);
5734 }
5735
5736 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
5737 {
5738 int rx, tx, cp;
5739
5740 _bnxt_get_max_rings(bp, &rx, &tx, &cp);
5741 if (!rx || !tx || !cp)
5742 return -ENOMEM;
5743
5744 *max_rx = rx;
5745 *max_tx = tx;
5746 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
5747 }
5748
5749 static int bnxt_set_dflt_rings(struct bnxt *bp)
5750 {
5751 int dflt_rings, max_rx_rings, max_tx_rings, rc;
5752 bool sh = true;
5753
5754 if (sh)
5755 bp->flags |= BNXT_FLAG_SHARED_RINGS;
5756 dflt_rings = netif_get_num_default_rss_queues();
5757 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5758 if (rc)
5759 return rc;
5760 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5761 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5762 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5763 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5764 bp->tx_nr_rings + bp->rx_nr_rings;
5765 bp->num_stat_ctxs = bp->cp_nr_rings;
5766 return rc;
5767 }
5768
5769 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5770 {
5771 static int version_printed;
5772 struct net_device *dev;
5773 struct bnxt *bp;
5774 int rc, max_irqs;
5775
5776 if (version_printed++ == 0)
5777 pr_info("%s", version);
5778
5779 max_irqs = bnxt_get_max_irq(pdev);
5780 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5781 if (!dev)
5782 return -ENOMEM;
5783
5784 bp = netdev_priv(dev);
5785
5786 if (bnxt_vf_pciid(ent->driver_data))
5787 bp->flags |= BNXT_FLAG_VF;
5788
5789 if (pdev->msix_cap)
5790 bp->flags |= BNXT_FLAG_MSIX_CAP;
5791
5792 rc = bnxt_init_board(pdev, dev);
5793 if (rc < 0)
5794 goto init_err_free;
5795
5796 dev->netdev_ops = &bnxt_netdev_ops;
5797 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5798 dev->ethtool_ops = &bnxt_ethtool_ops;
5799
5800 pci_set_drvdata(pdev, dev);
5801
5802 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5803 NETIF_F_TSO | NETIF_F_TSO6 |
5804 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5805 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5806 NETIF_F_RXHASH |
5807 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5808
5809 dev->hw_enc_features =
5810 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5811 NETIF_F_TSO | NETIF_F_TSO6 |
5812 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5813 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5814 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5815 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5816 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5817 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5818 dev->priv_flags |= IFF_UNICAST_FLT;
5819
5820 #ifdef CONFIG_BNXT_SRIOV
5821 init_waitqueue_head(&bp->sriov_cfg_wait);
5822 #endif
5823 rc = bnxt_alloc_hwrm_resources(bp);
5824 if (rc)
5825 goto init_err;
5826
5827 mutex_init(&bp->hwrm_cmd_lock);
5828 bnxt_hwrm_ver_get(bp);
5829
5830 rc = bnxt_hwrm_func_drv_rgtr(bp);
5831 if (rc)
5832 goto init_err;
5833
5834 /* Get the MAX capabilities for this function */
5835 rc = bnxt_hwrm_func_qcaps(bp);
5836 if (rc) {
5837 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5838 rc);
5839 rc = -1;
5840 goto init_err;
5841 }
5842
5843 rc = bnxt_hwrm_queue_qportcfg(bp);
5844 if (rc) {
5845 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5846 rc);
5847 rc = -1;
5848 goto init_err;
5849 }
5850
5851 bnxt_set_tpa_flags(bp);
5852 bnxt_set_ring_params(bp);
5853 if (BNXT_PF(bp))
5854 bp->pf.max_irqs = max_irqs;
5855 #if defined(CONFIG_BNXT_SRIOV)
5856 else
5857 bp->vf.max_irqs = max_irqs;
5858 #endif
5859 bnxt_set_dflt_rings(bp);
5860
5861 if (BNXT_PF(bp)) {
5862 dev->hw_features |= NETIF_F_NTUPLE;
5863 if (bnxt_rfs_capable(bp)) {
5864 bp->flags |= BNXT_FLAG_RFS;
5865 dev->features |= NETIF_F_NTUPLE;
5866 }
5867 }
5868
5869 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
5870 bp->flags |= BNXT_FLAG_STRIP_VLAN;
5871
5872 rc = bnxt_probe_phy(bp);
5873 if (rc)
5874 goto init_err;
5875
5876 rc = register_netdev(dev);
5877 if (rc)
5878 goto init_err;
5879
5880 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
5881 board_info[ent->driver_data].name,
5882 (long)pci_resource_start(pdev, 0), dev->dev_addr);
5883
5884 return 0;
5885
5886 init_err:
5887 pci_iounmap(pdev, bp->bar0);
5888 pci_release_regions(pdev);
5889 pci_disable_device(pdev);
5890
5891 init_err_free:
5892 free_netdev(dev);
5893 return rc;
5894 }
5895
5896 static struct pci_driver bnxt_pci_driver = {
5897 .name = DRV_MODULE_NAME,
5898 .id_table = bnxt_pci_tbl,
5899 .probe = bnxt_init_one,
5900 .remove = bnxt_remove_one,
5901 #if defined(CONFIG_BNXT_SRIOV)
5902 .sriov_configure = bnxt_sriov_configure,
5903 #endif
5904 };
5905
5906 module_pci_driver(bnxt_pci_driver);
This page took 0.191551 seconds and 6 git commands to generate.