arch: Mass conversion of smp_mb__*()
[deliverable/linux.git] / drivers / net / ethernet / brocade / bna / bnad.c
1 /*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 /*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18 #include <linux/bitops.h>
19 #include <linux/netdevice.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_vlan.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/prefetch.h>
28 #include <linux/module.h>
29
30 #include "bnad.h"
31 #include "bna.h"
32 #include "cna.h"
33
34 static DEFINE_MUTEX(bnad_fwimg_mutex);
35
36 /*
37 * Module params
38 */
39 static uint bnad_msix_disable;
40 module_param(bnad_msix_disable, uint, 0444);
41 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
42
43 static uint bnad_ioc_auto_recover = 1;
44 module_param(bnad_ioc_auto_recover, uint, 0444);
45 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
46
47 static uint bna_debugfs_enable = 1;
48 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
50 " Range[false:0|true:1]");
51
52 /*
53 * Global variables
54 */
55 static u32 bnad_rxqs_per_cq = 2;
56 static u32 bna_id;
57 static struct mutex bnad_list_mutex;
58 static LIST_HEAD(bnad_list);
59 static const u8 bnad_bcast_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
60
61 /*
62 * Local MACROS
63 */
64 #define BNAD_GET_MBOX_IRQ(_bnad) \
65 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
66 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
67 ((_bnad)->pcidev->irq))
68
69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \
70 do { \
71 (_res_info)->res_type = BNA_RES_T_MEM; \
72 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
73 (_res_info)->res_u.mem_info.num = (_num); \
74 (_res_info)->res_u.mem_info.len = (_size); \
75 } while (0)
76
77 static void
78 bnad_add_to_list(struct bnad *bnad)
79 {
80 mutex_lock(&bnad_list_mutex);
81 list_add_tail(&bnad->list_entry, &bnad_list);
82 bnad->id = bna_id++;
83 mutex_unlock(&bnad_list_mutex);
84 }
85
86 static void
87 bnad_remove_from_list(struct bnad *bnad)
88 {
89 mutex_lock(&bnad_list_mutex);
90 list_del(&bnad->list_entry);
91 mutex_unlock(&bnad_list_mutex);
92 }
93
94 /*
95 * Reinitialize completions in CQ, once Rx is taken down
96 */
97 static void
98 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
99 {
100 struct bna_cq_entry *cmpl;
101 int i;
102
103 for (i = 0; i < ccb->q_depth; i++) {
104 cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
105 cmpl->valid = 0;
106 }
107 }
108
109 /* Tx Datapath functions */
110
111
112 /* Caller should ensure that the entry at unmap_q[index] is valid */
113 static u32
114 bnad_tx_buff_unmap(struct bnad *bnad,
115 struct bnad_tx_unmap *unmap_q,
116 u32 q_depth, u32 index)
117 {
118 struct bnad_tx_unmap *unmap;
119 struct sk_buff *skb;
120 int vector, nvecs;
121
122 unmap = &unmap_q[index];
123 nvecs = unmap->nvecs;
124
125 skb = unmap->skb;
126 unmap->skb = NULL;
127 unmap->nvecs = 0;
128 dma_unmap_single(&bnad->pcidev->dev,
129 dma_unmap_addr(&unmap->vectors[0], dma_addr),
130 skb_headlen(skb), DMA_TO_DEVICE);
131 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
132 nvecs--;
133
134 vector = 0;
135 while (nvecs) {
136 vector++;
137 if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
138 vector = 0;
139 BNA_QE_INDX_INC(index, q_depth);
140 unmap = &unmap_q[index];
141 }
142
143 dma_unmap_page(&bnad->pcidev->dev,
144 dma_unmap_addr(&unmap->vectors[vector], dma_addr),
145 dma_unmap_len(&unmap->vectors[vector], dma_len),
146 DMA_TO_DEVICE);
147 dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
148 nvecs--;
149 }
150
151 BNA_QE_INDX_INC(index, q_depth);
152
153 return index;
154 }
155
156 /*
157 * Frees all pending Tx Bufs
158 * At this point no activity is expected on the Q,
159 * so DMA unmap & freeing is fine.
160 */
161 static void
162 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
163 {
164 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
165 struct sk_buff *skb;
166 int i;
167
168 for (i = 0; i < tcb->q_depth; i++) {
169 skb = unmap_q[i].skb;
170 if (!skb)
171 continue;
172 bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
173
174 dev_kfree_skb_any(skb);
175 }
176 }
177
178 /*
179 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
180 * Can be called in a) Interrupt context
181 * b) Sending context
182 */
183 static u32
184 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
185 {
186 u32 sent_packets = 0, sent_bytes = 0;
187 u32 wis, unmap_wis, hw_cons, cons, q_depth;
188 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
189 struct bnad_tx_unmap *unmap;
190 struct sk_buff *skb;
191
192 /* Just return if TX is stopped */
193 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
194 return 0;
195
196 hw_cons = *(tcb->hw_consumer_index);
197 cons = tcb->consumer_index;
198 q_depth = tcb->q_depth;
199
200 wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
201 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
202
203 while (wis) {
204 unmap = &unmap_q[cons];
205
206 skb = unmap->skb;
207
208 sent_packets++;
209 sent_bytes += skb->len;
210
211 unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
212 wis -= unmap_wis;
213
214 cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
215 dev_kfree_skb_any(skb);
216 }
217
218 /* Update consumer pointers. */
219 tcb->consumer_index = hw_cons;
220
221 tcb->txq->tx_packets += sent_packets;
222 tcb->txq->tx_bytes += sent_bytes;
223
224 return sent_packets;
225 }
226
227 static u32
228 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
229 {
230 struct net_device *netdev = bnad->netdev;
231 u32 sent = 0;
232
233 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
234 return 0;
235
236 sent = bnad_txcmpl_process(bnad, tcb);
237 if (sent) {
238 if (netif_queue_stopped(netdev) &&
239 netif_carrier_ok(netdev) &&
240 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
241 BNAD_NETIF_WAKE_THRESHOLD) {
242 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
243 netif_wake_queue(netdev);
244 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
245 }
246 }
247 }
248
249 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
250 bna_ib_ack(tcb->i_dbell, sent);
251
252 smp_mb__before_atomic();
253 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
254
255 return sent;
256 }
257
258 /* MSIX Tx Completion Handler */
259 static irqreturn_t
260 bnad_msix_tx(int irq, void *data)
261 {
262 struct bna_tcb *tcb = (struct bna_tcb *)data;
263 struct bnad *bnad = tcb->bnad;
264
265 bnad_tx_complete(bnad, tcb);
266
267 return IRQ_HANDLED;
268 }
269
270 static inline void
271 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
272 {
273 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
274
275 unmap_q->reuse_pi = -1;
276 unmap_q->alloc_order = -1;
277 unmap_q->map_size = 0;
278 unmap_q->type = BNAD_RXBUF_NONE;
279 }
280
281 /* Default is page-based allocation. Multi-buffer support - TBD */
282 static int
283 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
284 {
285 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
286 int order;
287
288 bnad_rxq_alloc_uninit(bnad, rcb);
289
290 order = get_order(rcb->rxq->buffer_size);
291
292 unmap_q->type = BNAD_RXBUF_PAGE;
293
294 if (bna_is_small_rxq(rcb->id)) {
295 unmap_q->alloc_order = 0;
296 unmap_q->map_size = rcb->rxq->buffer_size;
297 } else {
298 if (rcb->rxq->multi_buffer) {
299 unmap_q->alloc_order = 0;
300 unmap_q->map_size = rcb->rxq->buffer_size;
301 unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
302 } else {
303 unmap_q->alloc_order = order;
304 unmap_q->map_size =
305 (rcb->rxq->buffer_size > 2048) ?
306 PAGE_SIZE << order : 2048;
307 }
308 }
309
310 BUG_ON(((PAGE_SIZE << order) % unmap_q->map_size));
311
312 return 0;
313 }
314
315 static inline void
316 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
317 {
318 if (!unmap->page)
319 return;
320
321 dma_unmap_page(&bnad->pcidev->dev,
322 dma_unmap_addr(&unmap->vector, dma_addr),
323 unmap->vector.len, DMA_FROM_DEVICE);
324 put_page(unmap->page);
325 unmap->page = NULL;
326 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
327 unmap->vector.len = 0;
328 }
329
330 static inline void
331 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
332 {
333 if (!unmap->skb)
334 return;
335
336 dma_unmap_single(&bnad->pcidev->dev,
337 dma_unmap_addr(&unmap->vector, dma_addr),
338 unmap->vector.len, DMA_FROM_DEVICE);
339 dev_kfree_skb_any(unmap->skb);
340 unmap->skb = NULL;
341 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
342 unmap->vector.len = 0;
343 }
344
345 static void
346 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
347 {
348 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
349 int i;
350
351 for (i = 0; i < rcb->q_depth; i++) {
352 struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
353
354 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
355 bnad_rxq_cleanup_skb(bnad, unmap);
356 else
357 bnad_rxq_cleanup_page(bnad, unmap);
358 }
359 bnad_rxq_alloc_uninit(bnad, rcb);
360 }
361
362 static u32
363 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
364 {
365 u32 alloced, prod, q_depth;
366 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
367 struct bnad_rx_unmap *unmap, *prev;
368 struct bna_rxq_entry *rxent;
369 struct page *page;
370 u32 page_offset, alloc_size;
371 dma_addr_t dma_addr;
372
373 prod = rcb->producer_index;
374 q_depth = rcb->q_depth;
375
376 alloc_size = PAGE_SIZE << unmap_q->alloc_order;
377 alloced = 0;
378
379 while (nalloc--) {
380 unmap = &unmap_q->unmap[prod];
381
382 if (unmap_q->reuse_pi < 0) {
383 page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
384 unmap_q->alloc_order);
385 page_offset = 0;
386 } else {
387 prev = &unmap_q->unmap[unmap_q->reuse_pi];
388 page = prev->page;
389 page_offset = prev->page_offset + unmap_q->map_size;
390 get_page(page);
391 }
392
393 if (unlikely(!page)) {
394 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
395 rcb->rxq->rxbuf_alloc_failed++;
396 goto finishing;
397 }
398
399 dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
400 unmap_q->map_size, DMA_FROM_DEVICE);
401
402 unmap->page = page;
403 unmap->page_offset = page_offset;
404 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
405 unmap->vector.len = unmap_q->map_size;
406 page_offset += unmap_q->map_size;
407
408 if (page_offset < alloc_size)
409 unmap_q->reuse_pi = prod;
410 else
411 unmap_q->reuse_pi = -1;
412
413 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
414 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
415 BNA_QE_INDX_INC(prod, q_depth);
416 alloced++;
417 }
418
419 finishing:
420 if (likely(alloced)) {
421 rcb->producer_index = prod;
422 smp_mb();
423 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
424 bna_rxq_prod_indx_doorbell(rcb);
425 }
426
427 return alloced;
428 }
429
430 static u32
431 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
432 {
433 u32 alloced, prod, q_depth, buff_sz;
434 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
435 struct bnad_rx_unmap *unmap;
436 struct bna_rxq_entry *rxent;
437 struct sk_buff *skb;
438 dma_addr_t dma_addr;
439
440 buff_sz = rcb->rxq->buffer_size;
441 prod = rcb->producer_index;
442 q_depth = rcb->q_depth;
443
444 alloced = 0;
445 while (nalloc--) {
446 unmap = &unmap_q->unmap[prod];
447
448 skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
449
450 if (unlikely(!skb)) {
451 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
452 rcb->rxq->rxbuf_alloc_failed++;
453 goto finishing;
454 }
455 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
456 buff_sz, DMA_FROM_DEVICE);
457
458 unmap->skb = skb;
459 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
460 unmap->vector.len = buff_sz;
461
462 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
463 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
464 BNA_QE_INDX_INC(prod, q_depth);
465 alloced++;
466 }
467
468 finishing:
469 if (likely(alloced)) {
470 rcb->producer_index = prod;
471 smp_mb();
472 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
473 bna_rxq_prod_indx_doorbell(rcb);
474 }
475
476 return alloced;
477 }
478
479 static inline void
480 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
481 {
482 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
483 u32 to_alloc;
484
485 to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
486 if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
487 return;
488
489 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
490 bnad_rxq_refill_skb(bnad, rcb, to_alloc);
491 else
492 bnad_rxq_refill_page(bnad, rcb, to_alloc);
493 }
494
495 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
496 BNA_CQ_EF_IPV6 | \
497 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
498 BNA_CQ_EF_L4_CKSUM_OK)
499
500 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
501 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
502 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
503 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
504 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
505 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
506 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
507 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
508
509 static void
510 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
511 u32 sop_ci, u32 nvecs)
512 {
513 struct bnad_rx_unmap_q *unmap_q;
514 struct bnad_rx_unmap *unmap;
515 u32 ci, vec;
516
517 unmap_q = rcb->unmap_q;
518 for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
519 unmap = &unmap_q->unmap[ci];
520 BNA_QE_INDX_INC(ci, rcb->q_depth);
521
522 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
523 bnad_rxq_cleanup_skb(bnad, unmap);
524 else
525 bnad_rxq_cleanup_page(bnad, unmap);
526 }
527 }
528
529 static void
530 bnad_cq_setup_skb_frags(struct bna_rcb *rcb, struct sk_buff *skb,
531 u32 sop_ci, u32 nvecs, u32 last_fraglen)
532 {
533 struct bnad *bnad;
534 u32 ci, vec, len, totlen = 0;
535 struct bnad_rx_unmap_q *unmap_q;
536 struct bnad_rx_unmap *unmap;
537
538 unmap_q = rcb->unmap_q;
539 bnad = rcb->bnad;
540
541 /* prefetch header */
542 prefetch(page_address(unmap_q->unmap[sop_ci].page) +
543 unmap_q->unmap[sop_ci].page_offset);
544
545 for (vec = 1, ci = sop_ci; vec <= nvecs; vec++) {
546 unmap = &unmap_q->unmap[ci];
547 BNA_QE_INDX_INC(ci, rcb->q_depth);
548
549 dma_unmap_page(&bnad->pcidev->dev,
550 dma_unmap_addr(&unmap->vector, dma_addr),
551 unmap->vector.len, DMA_FROM_DEVICE);
552
553 len = (vec == nvecs) ?
554 last_fraglen : unmap->vector.len;
555 totlen += len;
556
557 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
558 unmap->page, unmap->page_offset, len);
559
560 unmap->page = NULL;
561 unmap->vector.len = 0;
562 }
563
564 skb->len += totlen;
565 skb->data_len += totlen;
566 skb->truesize += totlen;
567 }
568
569 static inline void
570 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
571 struct bnad_rx_unmap *unmap, u32 len)
572 {
573 prefetch(skb->data);
574
575 dma_unmap_single(&bnad->pcidev->dev,
576 dma_unmap_addr(&unmap->vector, dma_addr),
577 unmap->vector.len, DMA_FROM_DEVICE);
578
579 skb_put(skb, len);
580 skb->protocol = eth_type_trans(skb, bnad->netdev);
581
582 unmap->skb = NULL;
583 unmap->vector.len = 0;
584 }
585
586 static u32
587 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
588 {
589 struct bna_cq_entry *cq, *cmpl, *next_cmpl;
590 struct bna_rcb *rcb = NULL;
591 struct bnad_rx_unmap_q *unmap_q;
592 struct bnad_rx_unmap *unmap = NULL;
593 struct sk_buff *skb = NULL;
594 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
595 struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
596 u32 packets = 0, len = 0, totlen = 0;
597 u32 pi, vec, sop_ci = 0, nvecs = 0;
598 u32 flags, masked_flags;
599
600 prefetch(bnad->netdev);
601
602 cq = ccb->sw_q;
603 cmpl = &cq[ccb->producer_index];
604
605 while (packets < budget) {
606 if (!cmpl->valid)
607 break;
608 /* The 'valid' field is set by the adapter, only after writing
609 * the other fields of completion entry. Hence, do not load
610 * other fields of completion entry *before* the 'valid' is
611 * loaded. Adding the rmb() here prevents the compiler and/or
612 * CPU from reordering the reads which would potentially result
613 * in reading stale values in completion entry.
614 */
615 rmb();
616
617 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
618
619 if (bna_is_small_rxq(cmpl->rxq_id))
620 rcb = ccb->rcb[1];
621 else
622 rcb = ccb->rcb[0];
623
624 unmap_q = rcb->unmap_q;
625
626 /* start of packet ci */
627 sop_ci = rcb->consumer_index;
628
629 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
630 unmap = &unmap_q->unmap[sop_ci];
631 skb = unmap->skb;
632 } else {
633 skb = napi_get_frags(&rx_ctrl->napi);
634 if (unlikely(!skb))
635 break;
636 }
637 prefetch(skb);
638
639 flags = ntohl(cmpl->flags);
640 len = ntohs(cmpl->length);
641 totlen = len;
642 nvecs = 1;
643
644 /* Check all the completions for this frame.
645 * busy-wait doesn't help much, break here.
646 */
647 if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
648 (flags & BNA_CQ_EF_EOP) == 0) {
649 pi = ccb->producer_index;
650 do {
651 BNA_QE_INDX_INC(pi, ccb->q_depth);
652 next_cmpl = &cq[pi];
653
654 if (!next_cmpl->valid)
655 break;
656 /* The 'valid' field is set by the adapter, only
657 * after writing the other fields of completion
658 * entry. Hence, do not load other fields of
659 * completion entry *before* the 'valid' is
660 * loaded. Adding the rmb() here prevents the
661 * compiler and/or CPU from reordering the reads
662 * which would potentially result in reading
663 * stale values in completion entry.
664 */
665 rmb();
666
667 len = ntohs(next_cmpl->length);
668 flags = ntohl(next_cmpl->flags);
669
670 nvecs++;
671 totlen += len;
672 } while ((flags & BNA_CQ_EF_EOP) == 0);
673
674 if (!next_cmpl->valid)
675 break;
676 }
677
678 /* TODO: BNA_CQ_EF_LOCAL ? */
679 if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
680 BNA_CQ_EF_FCS_ERROR |
681 BNA_CQ_EF_TOO_LONG))) {
682 bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
683 rcb->rxq->rx_packets_with_error++;
684
685 goto next;
686 }
687
688 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
689 bnad_cq_setup_skb(bnad, skb, unmap, len);
690 else
691 bnad_cq_setup_skb_frags(rcb, skb, sop_ci, nvecs, len);
692
693 packets++;
694 rcb->rxq->rx_packets++;
695 rcb->rxq->rx_bytes += totlen;
696 ccb->bytes_per_intr += totlen;
697
698 masked_flags = flags & flags_cksum_prot_mask;
699
700 if (likely
701 ((bnad->netdev->features & NETIF_F_RXCSUM) &&
702 ((masked_flags == flags_tcp4) ||
703 (masked_flags == flags_udp4) ||
704 (masked_flags == flags_tcp6) ||
705 (masked_flags == flags_udp6))))
706 skb->ip_summed = CHECKSUM_UNNECESSARY;
707 else
708 skb_checksum_none_assert(skb);
709
710 if ((flags & BNA_CQ_EF_VLAN) &&
711 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
712 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
713
714 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
715 netif_receive_skb(skb);
716 else
717 napi_gro_frags(&rx_ctrl->napi);
718
719 next:
720 BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
721 for (vec = 0; vec < nvecs; vec++) {
722 cmpl = &cq[ccb->producer_index];
723 cmpl->valid = 0;
724 BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
725 }
726 cmpl = &cq[ccb->producer_index];
727 }
728
729 napi_gro_flush(&rx_ctrl->napi, false);
730 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
731 bna_ib_ack_disable_irq(ccb->i_dbell, packets);
732
733 bnad_rxq_post(bnad, ccb->rcb[0]);
734 if (ccb->rcb[1])
735 bnad_rxq_post(bnad, ccb->rcb[1]);
736
737 return packets;
738 }
739
740 static void
741 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
742 {
743 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
744 struct napi_struct *napi = &rx_ctrl->napi;
745
746 if (likely(napi_schedule_prep(napi))) {
747 __napi_schedule(napi);
748 rx_ctrl->rx_schedule++;
749 }
750 }
751
752 /* MSIX Rx Path Handler */
753 static irqreturn_t
754 bnad_msix_rx(int irq, void *data)
755 {
756 struct bna_ccb *ccb = (struct bna_ccb *)data;
757
758 if (ccb) {
759 ((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
760 bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
761 }
762
763 return IRQ_HANDLED;
764 }
765
766 /* Interrupt handlers */
767
768 /* Mbox Interrupt Handlers */
769 static irqreturn_t
770 bnad_msix_mbox_handler(int irq, void *data)
771 {
772 u32 intr_status;
773 unsigned long flags;
774 struct bnad *bnad = (struct bnad *)data;
775
776 spin_lock_irqsave(&bnad->bna_lock, flags);
777 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
778 spin_unlock_irqrestore(&bnad->bna_lock, flags);
779 return IRQ_HANDLED;
780 }
781
782 bna_intr_status_get(&bnad->bna, intr_status);
783
784 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
785 bna_mbox_handler(&bnad->bna, intr_status);
786
787 spin_unlock_irqrestore(&bnad->bna_lock, flags);
788
789 return IRQ_HANDLED;
790 }
791
792 static irqreturn_t
793 bnad_isr(int irq, void *data)
794 {
795 int i, j;
796 u32 intr_status;
797 unsigned long flags;
798 struct bnad *bnad = (struct bnad *)data;
799 struct bnad_rx_info *rx_info;
800 struct bnad_rx_ctrl *rx_ctrl;
801 struct bna_tcb *tcb = NULL;
802
803 spin_lock_irqsave(&bnad->bna_lock, flags);
804 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
805 spin_unlock_irqrestore(&bnad->bna_lock, flags);
806 return IRQ_NONE;
807 }
808
809 bna_intr_status_get(&bnad->bna, intr_status);
810
811 if (unlikely(!intr_status)) {
812 spin_unlock_irqrestore(&bnad->bna_lock, flags);
813 return IRQ_NONE;
814 }
815
816 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
817 bna_mbox_handler(&bnad->bna, intr_status);
818
819 spin_unlock_irqrestore(&bnad->bna_lock, flags);
820
821 if (!BNA_IS_INTX_DATA_INTR(intr_status))
822 return IRQ_HANDLED;
823
824 /* Process data interrupts */
825 /* Tx processing */
826 for (i = 0; i < bnad->num_tx; i++) {
827 for (j = 0; j < bnad->num_txq_per_tx; j++) {
828 tcb = bnad->tx_info[i].tcb[j];
829 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
830 bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
831 }
832 }
833 /* Rx processing */
834 for (i = 0; i < bnad->num_rx; i++) {
835 rx_info = &bnad->rx_info[i];
836 if (!rx_info->rx)
837 continue;
838 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
839 rx_ctrl = &rx_info->rx_ctrl[j];
840 if (rx_ctrl->ccb)
841 bnad_netif_rx_schedule_poll(bnad,
842 rx_ctrl->ccb);
843 }
844 }
845 return IRQ_HANDLED;
846 }
847
848 /*
849 * Called in interrupt / callback context
850 * with bna_lock held, so cfg_flags access is OK
851 */
852 static void
853 bnad_enable_mbox_irq(struct bnad *bnad)
854 {
855 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
856
857 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
858 }
859
860 /*
861 * Called with bnad->bna_lock held b'cos of
862 * bnad->cfg_flags access.
863 */
864 static void
865 bnad_disable_mbox_irq(struct bnad *bnad)
866 {
867 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
868
869 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
870 }
871
872 static void
873 bnad_set_netdev_perm_addr(struct bnad *bnad)
874 {
875 struct net_device *netdev = bnad->netdev;
876
877 memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
878 if (is_zero_ether_addr(netdev->dev_addr))
879 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
880 }
881
882 /* Control Path Handlers */
883
884 /* Callbacks */
885 void
886 bnad_cb_mbox_intr_enable(struct bnad *bnad)
887 {
888 bnad_enable_mbox_irq(bnad);
889 }
890
891 void
892 bnad_cb_mbox_intr_disable(struct bnad *bnad)
893 {
894 bnad_disable_mbox_irq(bnad);
895 }
896
897 void
898 bnad_cb_ioceth_ready(struct bnad *bnad)
899 {
900 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
901 complete(&bnad->bnad_completions.ioc_comp);
902 }
903
904 void
905 bnad_cb_ioceth_failed(struct bnad *bnad)
906 {
907 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
908 complete(&bnad->bnad_completions.ioc_comp);
909 }
910
911 void
912 bnad_cb_ioceth_disabled(struct bnad *bnad)
913 {
914 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
915 complete(&bnad->bnad_completions.ioc_comp);
916 }
917
918 static void
919 bnad_cb_enet_disabled(void *arg)
920 {
921 struct bnad *bnad = (struct bnad *)arg;
922
923 netif_carrier_off(bnad->netdev);
924 complete(&bnad->bnad_completions.enet_comp);
925 }
926
927 void
928 bnad_cb_ethport_link_status(struct bnad *bnad,
929 enum bna_link_status link_status)
930 {
931 bool link_up = false;
932
933 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
934
935 if (link_status == BNA_CEE_UP) {
936 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
937 BNAD_UPDATE_CTR(bnad, cee_toggle);
938 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
939 } else {
940 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
941 BNAD_UPDATE_CTR(bnad, cee_toggle);
942 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
943 }
944
945 if (link_up) {
946 if (!netif_carrier_ok(bnad->netdev)) {
947 uint tx_id, tcb_id;
948 printk(KERN_WARNING "bna: %s link up\n",
949 bnad->netdev->name);
950 netif_carrier_on(bnad->netdev);
951 BNAD_UPDATE_CTR(bnad, link_toggle);
952 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
953 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
954 tcb_id++) {
955 struct bna_tcb *tcb =
956 bnad->tx_info[tx_id].tcb[tcb_id];
957 u32 txq_id;
958 if (!tcb)
959 continue;
960
961 txq_id = tcb->id;
962
963 if (test_bit(BNAD_TXQ_TX_STARTED,
964 &tcb->flags)) {
965 /*
966 * Force an immediate
967 * Transmit Schedule */
968 printk(KERN_INFO "bna: %s %d "
969 "TXQ_STARTED\n",
970 bnad->netdev->name,
971 txq_id);
972 netif_wake_subqueue(
973 bnad->netdev,
974 txq_id);
975 BNAD_UPDATE_CTR(bnad,
976 netif_queue_wakeup);
977 } else {
978 netif_stop_subqueue(
979 bnad->netdev,
980 txq_id);
981 BNAD_UPDATE_CTR(bnad,
982 netif_queue_stop);
983 }
984 }
985 }
986 }
987 } else {
988 if (netif_carrier_ok(bnad->netdev)) {
989 printk(KERN_WARNING "bna: %s link down\n",
990 bnad->netdev->name);
991 netif_carrier_off(bnad->netdev);
992 BNAD_UPDATE_CTR(bnad, link_toggle);
993 }
994 }
995 }
996
997 static void
998 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
999 {
1000 struct bnad *bnad = (struct bnad *)arg;
1001
1002 complete(&bnad->bnad_completions.tx_comp);
1003 }
1004
1005 static void
1006 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1007 {
1008 struct bnad_tx_info *tx_info =
1009 (struct bnad_tx_info *)tcb->txq->tx->priv;
1010
1011 tcb->priv = tcb;
1012 tx_info->tcb[tcb->id] = tcb;
1013 }
1014
1015 static void
1016 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1017 {
1018 struct bnad_tx_info *tx_info =
1019 (struct bnad_tx_info *)tcb->txq->tx->priv;
1020
1021 tx_info->tcb[tcb->id] = NULL;
1022 tcb->priv = NULL;
1023 }
1024
1025 static void
1026 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1027 {
1028 struct bnad_rx_info *rx_info =
1029 (struct bnad_rx_info *)ccb->cq->rx->priv;
1030
1031 rx_info->rx_ctrl[ccb->id].ccb = ccb;
1032 ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1033 }
1034
1035 static void
1036 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1037 {
1038 struct bnad_rx_info *rx_info =
1039 (struct bnad_rx_info *)ccb->cq->rx->priv;
1040
1041 rx_info->rx_ctrl[ccb->id].ccb = NULL;
1042 }
1043
1044 static void
1045 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1046 {
1047 struct bnad_tx_info *tx_info =
1048 (struct bnad_tx_info *)tx->priv;
1049 struct bna_tcb *tcb;
1050 u32 txq_id;
1051 int i;
1052
1053 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1054 tcb = tx_info->tcb[i];
1055 if (!tcb)
1056 continue;
1057 txq_id = tcb->id;
1058 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1059 netif_stop_subqueue(bnad->netdev, txq_id);
1060 printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
1061 bnad->netdev->name, txq_id);
1062 }
1063 }
1064
1065 static void
1066 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1067 {
1068 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1069 struct bna_tcb *tcb;
1070 u32 txq_id;
1071 int i;
1072
1073 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1074 tcb = tx_info->tcb[i];
1075 if (!tcb)
1076 continue;
1077 txq_id = tcb->id;
1078
1079 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1080 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1081 BUG_ON(*(tcb->hw_consumer_index) != 0);
1082
1083 if (netif_carrier_ok(bnad->netdev)) {
1084 printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
1085 bnad->netdev->name, txq_id);
1086 netif_wake_subqueue(bnad->netdev, txq_id);
1087 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1088 }
1089 }
1090
1091 /*
1092 * Workaround for first ioceth enable failure & we
1093 * get a 0 MAC address. We try to get the MAC address
1094 * again here.
1095 */
1096 if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
1097 bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
1098 bnad_set_netdev_perm_addr(bnad);
1099 }
1100 }
1101
1102 /*
1103 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1104 */
1105 static void
1106 bnad_tx_cleanup(struct delayed_work *work)
1107 {
1108 struct bnad_tx_info *tx_info =
1109 container_of(work, struct bnad_tx_info, tx_cleanup_work);
1110 struct bnad *bnad = NULL;
1111 struct bna_tcb *tcb;
1112 unsigned long flags;
1113 u32 i, pending = 0;
1114
1115 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1116 tcb = tx_info->tcb[i];
1117 if (!tcb)
1118 continue;
1119
1120 bnad = tcb->bnad;
1121
1122 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1123 pending++;
1124 continue;
1125 }
1126
1127 bnad_txq_cleanup(bnad, tcb);
1128
1129 smp_mb__before_atomic();
1130 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1131 }
1132
1133 if (pending) {
1134 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1135 msecs_to_jiffies(1));
1136 return;
1137 }
1138
1139 spin_lock_irqsave(&bnad->bna_lock, flags);
1140 bna_tx_cleanup_complete(tx_info->tx);
1141 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1142 }
1143
1144 static void
1145 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1146 {
1147 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1148 struct bna_tcb *tcb;
1149 int i;
1150
1151 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1152 tcb = tx_info->tcb[i];
1153 if (!tcb)
1154 continue;
1155 }
1156
1157 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1158 }
1159
1160 static void
1161 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1162 {
1163 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1164 struct bna_ccb *ccb;
1165 struct bnad_rx_ctrl *rx_ctrl;
1166 int i;
1167
1168 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1169 rx_ctrl = &rx_info->rx_ctrl[i];
1170 ccb = rx_ctrl->ccb;
1171 if (!ccb)
1172 continue;
1173
1174 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1175
1176 if (ccb->rcb[1])
1177 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1178 }
1179 }
1180
1181 /*
1182 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1183 */
1184 static void
1185 bnad_rx_cleanup(void *work)
1186 {
1187 struct bnad_rx_info *rx_info =
1188 container_of(work, struct bnad_rx_info, rx_cleanup_work);
1189 struct bnad_rx_ctrl *rx_ctrl;
1190 struct bnad *bnad = NULL;
1191 unsigned long flags;
1192 u32 i;
1193
1194 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1195 rx_ctrl = &rx_info->rx_ctrl[i];
1196
1197 if (!rx_ctrl->ccb)
1198 continue;
1199
1200 bnad = rx_ctrl->ccb->bnad;
1201
1202 /*
1203 * Wait till the poll handler has exited
1204 * and nothing can be scheduled anymore
1205 */
1206 napi_disable(&rx_ctrl->napi);
1207
1208 bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1209 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1210 if (rx_ctrl->ccb->rcb[1])
1211 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1212 }
1213
1214 spin_lock_irqsave(&bnad->bna_lock, flags);
1215 bna_rx_cleanup_complete(rx_info->rx);
1216 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1217 }
1218
1219 static void
1220 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1221 {
1222 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1223 struct bna_ccb *ccb;
1224 struct bnad_rx_ctrl *rx_ctrl;
1225 int i;
1226
1227 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1228 rx_ctrl = &rx_info->rx_ctrl[i];
1229 ccb = rx_ctrl->ccb;
1230 if (!ccb)
1231 continue;
1232
1233 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1234
1235 if (ccb->rcb[1])
1236 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1237 }
1238
1239 queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1240 }
1241
1242 static void
1243 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1244 {
1245 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1246 struct bna_ccb *ccb;
1247 struct bna_rcb *rcb;
1248 struct bnad_rx_ctrl *rx_ctrl;
1249 int i, j;
1250
1251 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1252 rx_ctrl = &rx_info->rx_ctrl[i];
1253 ccb = rx_ctrl->ccb;
1254 if (!ccb)
1255 continue;
1256
1257 napi_enable(&rx_ctrl->napi);
1258
1259 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1260 rcb = ccb->rcb[j];
1261 if (!rcb)
1262 continue;
1263
1264 bnad_rxq_alloc_init(bnad, rcb);
1265 set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1266 set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1267 bnad_rxq_post(bnad, rcb);
1268 }
1269 }
1270 }
1271
1272 static void
1273 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1274 {
1275 struct bnad *bnad = (struct bnad *)arg;
1276
1277 complete(&bnad->bnad_completions.rx_comp);
1278 }
1279
1280 static void
1281 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1282 {
1283 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1284 complete(&bnad->bnad_completions.mcast_comp);
1285 }
1286
1287 void
1288 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1289 struct bna_stats *stats)
1290 {
1291 if (status == BNA_CB_SUCCESS)
1292 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1293
1294 if (!netif_running(bnad->netdev) ||
1295 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1296 return;
1297
1298 mod_timer(&bnad->stats_timer,
1299 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1300 }
1301
1302 static void
1303 bnad_cb_enet_mtu_set(struct bnad *bnad)
1304 {
1305 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1306 complete(&bnad->bnad_completions.mtu_comp);
1307 }
1308
1309 void
1310 bnad_cb_completion(void *arg, enum bfa_status status)
1311 {
1312 struct bnad_iocmd_comp *iocmd_comp =
1313 (struct bnad_iocmd_comp *)arg;
1314
1315 iocmd_comp->comp_status = (u32) status;
1316 complete(&iocmd_comp->comp);
1317 }
1318
1319 /* Resource allocation, free functions */
1320
1321 static void
1322 bnad_mem_free(struct bnad *bnad,
1323 struct bna_mem_info *mem_info)
1324 {
1325 int i;
1326 dma_addr_t dma_pa;
1327
1328 if (mem_info->mdl == NULL)
1329 return;
1330
1331 for (i = 0; i < mem_info->num; i++) {
1332 if (mem_info->mdl[i].kva != NULL) {
1333 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1334 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1335 dma_pa);
1336 dma_free_coherent(&bnad->pcidev->dev,
1337 mem_info->mdl[i].len,
1338 mem_info->mdl[i].kva, dma_pa);
1339 } else
1340 kfree(mem_info->mdl[i].kva);
1341 }
1342 }
1343 kfree(mem_info->mdl);
1344 mem_info->mdl = NULL;
1345 }
1346
1347 static int
1348 bnad_mem_alloc(struct bnad *bnad,
1349 struct bna_mem_info *mem_info)
1350 {
1351 int i;
1352 dma_addr_t dma_pa;
1353
1354 if ((mem_info->num == 0) || (mem_info->len == 0)) {
1355 mem_info->mdl = NULL;
1356 return 0;
1357 }
1358
1359 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1360 GFP_KERNEL);
1361 if (mem_info->mdl == NULL)
1362 return -ENOMEM;
1363
1364 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1365 for (i = 0; i < mem_info->num; i++) {
1366 mem_info->mdl[i].len = mem_info->len;
1367 mem_info->mdl[i].kva =
1368 dma_alloc_coherent(&bnad->pcidev->dev,
1369 mem_info->len, &dma_pa,
1370 GFP_KERNEL);
1371 if (mem_info->mdl[i].kva == NULL)
1372 goto err_return;
1373
1374 BNA_SET_DMA_ADDR(dma_pa,
1375 &(mem_info->mdl[i].dma));
1376 }
1377 } else {
1378 for (i = 0; i < mem_info->num; i++) {
1379 mem_info->mdl[i].len = mem_info->len;
1380 mem_info->mdl[i].kva = kzalloc(mem_info->len,
1381 GFP_KERNEL);
1382 if (mem_info->mdl[i].kva == NULL)
1383 goto err_return;
1384 }
1385 }
1386
1387 return 0;
1388
1389 err_return:
1390 bnad_mem_free(bnad, mem_info);
1391 return -ENOMEM;
1392 }
1393
1394 /* Free IRQ for Mailbox */
1395 static void
1396 bnad_mbox_irq_free(struct bnad *bnad)
1397 {
1398 int irq;
1399 unsigned long flags;
1400
1401 spin_lock_irqsave(&bnad->bna_lock, flags);
1402 bnad_disable_mbox_irq(bnad);
1403 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1404
1405 irq = BNAD_GET_MBOX_IRQ(bnad);
1406 free_irq(irq, bnad);
1407 }
1408
1409 /*
1410 * Allocates IRQ for Mailbox, but keep it disabled
1411 * This will be enabled once we get the mbox enable callback
1412 * from bna
1413 */
1414 static int
1415 bnad_mbox_irq_alloc(struct bnad *bnad)
1416 {
1417 int err = 0;
1418 unsigned long irq_flags, flags;
1419 u32 irq;
1420 irq_handler_t irq_handler;
1421
1422 spin_lock_irqsave(&bnad->bna_lock, flags);
1423 if (bnad->cfg_flags & BNAD_CF_MSIX) {
1424 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1425 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1426 irq_flags = 0;
1427 } else {
1428 irq_handler = (irq_handler_t)bnad_isr;
1429 irq = bnad->pcidev->irq;
1430 irq_flags = IRQF_SHARED;
1431 }
1432
1433 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1434 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1435
1436 /*
1437 * Set the Mbox IRQ disable flag, so that the IRQ handler
1438 * called from request_irq() for SHARED IRQs do not execute
1439 */
1440 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1441
1442 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1443
1444 err = request_irq(irq, irq_handler, irq_flags,
1445 bnad->mbox_irq_name, bnad);
1446
1447 return err;
1448 }
1449
1450 static void
1451 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1452 {
1453 kfree(intr_info->idl);
1454 intr_info->idl = NULL;
1455 }
1456
1457 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1458 static int
1459 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1460 u32 txrx_id, struct bna_intr_info *intr_info)
1461 {
1462 int i, vector_start = 0;
1463 u32 cfg_flags;
1464 unsigned long flags;
1465
1466 spin_lock_irqsave(&bnad->bna_lock, flags);
1467 cfg_flags = bnad->cfg_flags;
1468 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1469
1470 if (cfg_flags & BNAD_CF_MSIX) {
1471 intr_info->intr_type = BNA_INTR_T_MSIX;
1472 intr_info->idl = kcalloc(intr_info->num,
1473 sizeof(struct bna_intr_descr),
1474 GFP_KERNEL);
1475 if (!intr_info->idl)
1476 return -ENOMEM;
1477
1478 switch (src) {
1479 case BNAD_INTR_TX:
1480 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1481 break;
1482
1483 case BNAD_INTR_RX:
1484 vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1485 (bnad->num_tx * bnad->num_txq_per_tx) +
1486 txrx_id;
1487 break;
1488
1489 default:
1490 BUG();
1491 }
1492
1493 for (i = 0; i < intr_info->num; i++)
1494 intr_info->idl[i].vector = vector_start + i;
1495 } else {
1496 intr_info->intr_type = BNA_INTR_T_INTX;
1497 intr_info->num = 1;
1498 intr_info->idl = kcalloc(intr_info->num,
1499 sizeof(struct bna_intr_descr),
1500 GFP_KERNEL);
1501 if (!intr_info->idl)
1502 return -ENOMEM;
1503
1504 switch (src) {
1505 case BNAD_INTR_TX:
1506 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1507 break;
1508
1509 case BNAD_INTR_RX:
1510 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1511 break;
1512 }
1513 }
1514 return 0;
1515 }
1516
1517 /* NOTE: Should be called for MSIX only
1518 * Unregisters Tx MSIX vector(s) from the kernel
1519 */
1520 static void
1521 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1522 int num_txqs)
1523 {
1524 int i;
1525 int vector_num;
1526
1527 for (i = 0; i < num_txqs; i++) {
1528 if (tx_info->tcb[i] == NULL)
1529 continue;
1530
1531 vector_num = tx_info->tcb[i]->intr_vector;
1532 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1533 }
1534 }
1535
1536 /* NOTE: Should be called for MSIX only
1537 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1538 */
1539 static int
1540 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1541 u32 tx_id, int num_txqs)
1542 {
1543 int i;
1544 int err;
1545 int vector_num;
1546
1547 for (i = 0; i < num_txqs; i++) {
1548 vector_num = tx_info->tcb[i]->intr_vector;
1549 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1550 tx_id + tx_info->tcb[i]->id);
1551 err = request_irq(bnad->msix_table[vector_num].vector,
1552 (irq_handler_t)bnad_msix_tx, 0,
1553 tx_info->tcb[i]->name,
1554 tx_info->tcb[i]);
1555 if (err)
1556 goto err_return;
1557 }
1558
1559 return 0;
1560
1561 err_return:
1562 if (i > 0)
1563 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1564 return -1;
1565 }
1566
1567 /* NOTE: Should be called for MSIX only
1568 * Unregisters Rx MSIX vector(s) from the kernel
1569 */
1570 static void
1571 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1572 int num_rxps)
1573 {
1574 int i;
1575 int vector_num;
1576
1577 for (i = 0; i < num_rxps; i++) {
1578 if (rx_info->rx_ctrl[i].ccb == NULL)
1579 continue;
1580
1581 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1582 free_irq(bnad->msix_table[vector_num].vector,
1583 rx_info->rx_ctrl[i].ccb);
1584 }
1585 }
1586
1587 /* NOTE: Should be called for MSIX only
1588 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1589 */
1590 static int
1591 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1592 u32 rx_id, int num_rxps)
1593 {
1594 int i;
1595 int err;
1596 int vector_num;
1597
1598 for (i = 0; i < num_rxps; i++) {
1599 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1600 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1601 bnad->netdev->name,
1602 rx_id + rx_info->rx_ctrl[i].ccb->id);
1603 err = request_irq(bnad->msix_table[vector_num].vector,
1604 (irq_handler_t)bnad_msix_rx, 0,
1605 rx_info->rx_ctrl[i].ccb->name,
1606 rx_info->rx_ctrl[i].ccb);
1607 if (err)
1608 goto err_return;
1609 }
1610
1611 return 0;
1612
1613 err_return:
1614 if (i > 0)
1615 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1616 return -1;
1617 }
1618
1619 /* Free Tx object Resources */
1620 static void
1621 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1622 {
1623 int i;
1624
1625 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1626 if (res_info[i].res_type == BNA_RES_T_MEM)
1627 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1628 else if (res_info[i].res_type == BNA_RES_T_INTR)
1629 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1630 }
1631 }
1632
1633 /* Allocates memory and interrupt resources for Tx object */
1634 static int
1635 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1636 u32 tx_id)
1637 {
1638 int i, err = 0;
1639
1640 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1641 if (res_info[i].res_type == BNA_RES_T_MEM)
1642 err = bnad_mem_alloc(bnad,
1643 &res_info[i].res_u.mem_info);
1644 else if (res_info[i].res_type == BNA_RES_T_INTR)
1645 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1646 &res_info[i].res_u.intr_info);
1647 if (err)
1648 goto err_return;
1649 }
1650 return 0;
1651
1652 err_return:
1653 bnad_tx_res_free(bnad, res_info);
1654 return err;
1655 }
1656
1657 /* Free Rx object Resources */
1658 static void
1659 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1660 {
1661 int i;
1662
1663 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1664 if (res_info[i].res_type == BNA_RES_T_MEM)
1665 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1666 else if (res_info[i].res_type == BNA_RES_T_INTR)
1667 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1668 }
1669 }
1670
1671 /* Allocates memory and interrupt resources for Rx object */
1672 static int
1673 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1674 uint rx_id)
1675 {
1676 int i, err = 0;
1677
1678 /* All memory needs to be allocated before setup_ccbs */
1679 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1680 if (res_info[i].res_type == BNA_RES_T_MEM)
1681 err = bnad_mem_alloc(bnad,
1682 &res_info[i].res_u.mem_info);
1683 else if (res_info[i].res_type == BNA_RES_T_INTR)
1684 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1685 &res_info[i].res_u.intr_info);
1686 if (err)
1687 goto err_return;
1688 }
1689 return 0;
1690
1691 err_return:
1692 bnad_rx_res_free(bnad, res_info);
1693 return err;
1694 }
1695
1696 /* Timer callbacks */
1697 /* a) IOC timer */
1698 static void
1699 bnad_ioc_timeout(unsigned long data)
1700 {
1701 struct bnad *bnad = (struct bnad *)data;
1702 unsigned long flags;
1703
1704 spin_lock_irqsave(&bnad->bna_lock, flags);
1705 bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1706 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1707 }
1708
1709 static void
1710 bnad_ioc_hb_check(unsigned long data)
1711 {
1712 struct bnad *bnad = (struct bnad *)data;
1713 unsigned long flags;
1714
1715 spin_lock_irqsave(&bnad->bna_lock, flags);
1716 bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1717 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1718 }
1719
1720 static void
1721 bnad_iocpf_timeout(unsigned long data)
1722 {
1723 struct bnad *bnad = (struct bnad *)data;
1724 unsigned long flags;
1725
1726 spin_lock_irqsave(&bnad->bna_lock, flags);
1727 bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1728 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1729 }
1730
1731 static void
1732 bnad_iocpf_sem_timeout(unsigned long data)
1733 {
1734 struct bnad *bnad = (struct bnad *)data;
1735 unsigned long flags;
1736
1737 spin_lock_irqsave(&bnad->bna_lock, flags);
1738 bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1739 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1740 }
1741
1742 /*
1743 * All timer routines use bnad->bna_lock to protect against
1744 * the following race, which may occur in case of no locking:
1745 * Time CPU m CPU n
1746 * 0 1 = test_bit
1747 * 1 clear_bit
1748 * 2 del_timer_sync
1749 * 3 mod_timer
1750 */
1751
1752 /* b) Dynamic Interrupt Moderation Timer */
1753 static void
1754 bnad_dim_timeout(unsigned long data)
1755 {
1756 struct bnad *bnad = (struct bnad *)data;
1757 struct bnad_rx_info *rx_info;
1758 struct bnad_rx_ctrl *rx_ctrl;
1759 int i, j;
1760 unsigned long flags;
1761
1762 if (!netif_carrier_ok(bnad->netdev))
1763 return;
1764
1765 spin_lock_irqsave(&bnad->bna_lock, flags);
1766 for (i = 0; i < bnad->num_rx; i++) {
1767 rx_info = &bnad->rx_info[i];
1768 if (!rx_info->rx)
1769 continue;
1770 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1771 rx_ctrl = &rx_info->rx_ctrl[j];
1772 if (!rx_ctrl->ccb)
1773 continue;
1774 bna_rx_dim_update(rx_ctrl->ccb);
1775 }
1776 }
1777
1778 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1779 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1780 mod_timer(&bnad->dim_timer,
1781 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1782 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1783 }
1784
1785 /* c) Statistics Timer */
1786 static void
1787 bnad_stats_timeout(unsigned long data)
1788 {
1789 struct bnad *bnad = (struct bnad *)data;
1790 unsigned long flags;
1791
1792 if (!netif_running(bnad->netdev) ||
1793 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1794 return;
1795
1796 spin_lock_irqsave(&bnad->bna_lock, flags);
1797 bna_hw_stats_get(&bnad->bna);
1798 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1799 }
1800
1801 /*
1802 * Set up timer for DIM
1803 * Called with bnad->bna_lock held
1804 */
1805 void
1806 bnad_dim_timer_start(struct bnad *bnad)
1807 {
1808 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1809 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1810 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1811 (unsigned long)bnad);
1812 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1813 mod_timer(&bnad->dim_timer,
1814 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1815 }
1816 }
1817
1818 /*
1819 * Set up timer for statistics
1820 * Called with mutex_lock(&bnad->conf_mutex) held
1821 */
1822 static void
1823 bnad_stats_timer_start(struct bnad *bnad)
1824 {
1825 unsigned long flags;
1826
1827 spin_lock_irqsave(&bnad->bna_lock, flags);
1828 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1829 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1830 (unsigned long)bnad);
1831 mod_timer(&bnad->stats_timer,
1832 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1833 }
1834 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1835 }
1836
1837 /*
1838 * Stops the stats timer
1839 * Called with mutex_lock(&bnad->conf_mutex) held
1840 */
1841 static void
1842 bnad_stats_timer_stop(struct bnad *bnad)
1843 {
1844 int to_del = 0;
1845 unsigned long flags;
1846
1847 spin_lock_irqsave(&bnad->bna_lock, flags);
1848 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1849 to_del = 1;
1850 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1851 if (to_del)
1852 del_timer_sync(&bnad->stats_timer);
1853 }
1854
1855 /* Utilities */
1856
1857 static void
1858 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1859 {
1860 int i = 1; /* Index 0 has broadcast address */
1861 struct netdev_hw_addr *mc_addr;
1862
1863 netdev_for_each_mc_addr(mc_addr, netdev) {
1864 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1865 ETH_ALEN);
1866 i++;
1867 }
1868 }
1869
1870 static int
1871 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1872 {
1873 struct bnad_rx_ctrl *rx_ctrl =
1874 container_of(napi, struct bnad_rx_ctrl, napi);
1875 struct bnad *bnad = rx_ctrl->bnad;
1876 int rcvd = 0;
1877
1878 rx_ctrl->rx_poll_ctr++;
1879
1880 if (!netif_carrier_ok(bnad->netdev))
1881 goto poll_exit;
1882
1883 rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1884 if (rcvd >= budget)
1885 return rcvd;
1886
1887 poll_exit:
1888 napi_complete(napi);
1889
1890 rx_ctrl->rx_complete++;
1891
1892 if (rx_ctrl->ccb)
1893 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1894
1895 return rcvd;
1896 }
1897
1898 #define BNAD_NAPI_POLL_QUOTA 64
1899 static void
1900 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1901 {
1902 struct bnad_rx_ctrl *rx_ctrl;
1903 int i;
1904
1905 /* Initialize & enable NAPI */
1906 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1907 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1908 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1909 bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1910 }
1911 }
1912
1913 static void
1914 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1915 {
1916 int i;
1917
1918 /* First disable and then clean up */
1919 for (i = 0; i < bnad->num_rxp_per_rx; i++)
1920 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1921 }
1922
1923 /* Should be held with conf_lock held */
1924 void
1925 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1926 {
1927 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1928 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1929 unsigned long flags;
1930
1931 if (!tx_info->tx)
1932 return;
1933
1934 init_completion(&bnad->bnad_completions.tx_comp);
1935 spin_lock_irqsave(&bnad->bna_lock, flags);
1936 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1937 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1938 wait_for_completion(&bnad->bnad_completions.tx_comp);
1939
1940 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1941 bnad_tx_msix_unregister(bnad, tx_info,
1942 bnad->num_txq_per_tx);
1943
1944 spin_lock_irqsave(&bnad->bna_lock, flags);
1945 bna_tx_destroy(tx_info->tx);
1946 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1947
1948 tx_info->tx = NULL;
1949 tx_info->tx_id = 0;
1950
1951 bnad_tx_res_free(bnad, res_info);
1952 }
1953
1954 /* Should be held with conf_lock held */
1955 int
1956 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1957 {
1958 int err;
1959 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1960 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1961 struct bna_intr_info *intr_info =
1962 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1963 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1964 static const struct bna_tx_event_cbfn tx_cbfn = {
1965 .tcb_setup_cbfn = bnad_cb_tcb_setup,
1966 .tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1967 .tx_stall_cbfn = bnad_cb_tx_stall,
1968 .tx_resume_cbfn = bnad_cb_tx_resume,
1969 .tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1970 };
1971
1972 struct bna_tx *tx;
1973 unsigned long flags;
1974
1975 tx_info->tx_id = tx_id;
1976
1977 /* Initialize the Tx object configuration */
1978 tx_config->num_txq = bnad->num_txq_per_tx;
1979 tx_config->txq_depth = bnad->txq_depth;
1980 tx_config->tx_type = BNA_TX_T_REGULAR;
1981 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1982
1983 /* Get BNA's resource requirement for one tx object */
1984 spin_lock_irqsave(&bnad->bna_lock, flags);
1985 bna_tx_res_req(bnad->num_txq_per_tx,
1986 bnad->txq_depth, res_info);
1987 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1988
1989 /* Fill Unmap Q memory requirements */
1990 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1991 bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1992 bnad->txq_depth));
1993
1994 /* Allocate resources */
1995 err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1996 if (err)
1997 return err;
1998
1999 /* Ask BNA to create one Tx object, supplying required resources */
2000 spin_lock_irqsave(&bnad->bna_lock, flags);
2001 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
2002 tx_info);
2003 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2004 if (!tx) {
2005 err = -ENOMEM;
2006 goto err_return;
2007 }
2008 tx_info->tx = tx;
2009
2010 INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
2011 (work_func_t)bnad_tx_cleanup);
2012
2013 /* Register ISR for the Tx object */
2014 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2015 err = bnad_tx_msix_register(bnad, tx_info,
2016 tx_id, bnad->num_txq_per_tx);
2017 if (err)
2018 goto cleanup_tx;
2019 }
2020
2021 spin_lock_irqsave(&bnad->bna_lock, flags);
2022 bna_tx_enable(tx);
2023 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2024
2025 return 0;
2026
2027 cleanup_tx:
2028 spin_lock_irqsave(&bnad->bna_lock, flags);
2029 bna_tx_destroy(tx_info->tx);
2030 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2031 tx_info->tx = NULL;
2032 tx_info->tx_id = 0;
2033 err_return:
2034 bnad_tx_res_free(bnad, res_info);
2035 return err;
2036 }
2037
2038 /* Setup the rx config for bna_rx_create */
2039 /* bnad decides the configuration */
2040 static void
2041 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2042 {
2043 memset(rx_config, 0, sizeof(*rx_config));
2044 rx_config->rx_type = BNA_RX_T_REGULAR;
2045 rx_config->num_paths = bnad->num_rxp_per_rx;
2046 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2047
2048 if (bnad->num_rxp_per_rx > 1) {
2049 rx_config->rss_status = BNA_STATUS_T_ENABLED;
2050 rx_config->rss_config.hash_type =
2051 (BFI_ENET_RSS_IPV6 |
2052 BFI_ENET_RSS_IPV6_TCP |
2053 BFI_ENET_RSS_IPV4 |
2054 BFI_ENET_RSS_IPV4_TCP);
2055 rx_config->rss_config.hash_mask =
2056 bnad->num_rxp_per_rx - 1;
2057 get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
2058 sizeof(rx_config->rss_config.toeplitz_hash_key));
2059 } else {
2060 rx_config->rss_status = BNA_STATUS_T_DISABLED;
2061 memset(&rx_config->rss_config, 0,
2062 sizeof(rx_config->rss_config));
2063 }
2064
2065 rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2066 rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2067
2068 /* BNA_RXP_SINGLE - one data-buffer queue
2069 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2070 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2071 */
2072 /* TODO: configurable param for queue type */
2073 rx_config->rxp_type = BNA_RXP_SLR;
2074
2075 if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2076 rx_config->frame_size > 4096) {
2077 /* though size_routing_enable is set in SLR,
2078 * small packets may get routed to same rxq.
2079 * set buf_size to 2048 instead of PAGE_SIZE.
2080 */
2081 rx_config->q0_buf_size = 2048;
2082 /* this should be in multiples of 2 */
2083 rx_config->q0_num_vecs = 4;
2084 rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2085 rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2086 } else {
2087 rx_config->q0_buf_size = rx_config->frame_size;
2088 rx_config->q0_num_vecs = 1;
2089 rx_config->q0_depth = bnad->rxq_depth;
2090 }
2091
2092 /* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2093 if (rx_config->rxp_type == BNA_RXP_SLR) {
2094 rx_config->q1_depth = bnad->rxq_depth;
2095 rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2096 }
2097
2098 rx_config->vlan_strip_status =
2099 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2100 BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2101 }
2102
2103 static void
2104 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2105 {
2106 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2107 int i;
2108
2109 for (i = 0; i < bnad->num_rxp_per_rx; i++)
2110 rx_info->rx_ctrl[i].bnad = bnad;
2111 }
2112
2113 /* Called with mutex_lock(&bnad->conf_mutex) held */
2114 static u32
2115 bnad_reinit_rx(struct bnad *bnad)
2116 {
2117 struct net_device *netdev = bnad->netdev;
2118 u32 err = 0, current_err = 0;
2119 u32 rx_id = 0, count = 0;
2120 unsigned long flags;
2121
2122 /* destroy and create new rx objects */
2123 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2124 if (!bnad->rx_info[rx_id].rx)
2125 continue;
2126 bnad_destroy_rx(bnad, rx_id);
2127 }
2128
2129 spin_lock_irqsave(&bnad->bna_lock, flags);
2130 bna_enet_mtu_set(&bnad->bna.enet,
2131 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2132 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2133
2134 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2135 count++;
2136 current_err = bnad_setup_rx(bnad, rx_id);
2137 if (current_err && !err) {
2138 err = current_err;
2139 pr_err("RXQ:%u setup failed\n", rx_id);
2140 }
2141 }
2142
2143 /* restore rx configuration */
2144 if (bnad->rx_info[0].rx && !err) {
2145 bnad_restore_vlans(bnad, 0);
2146 bnad_enable_default_bcast(bnad);
2147 spin_lock_irqsave(&bnad->bna_lock, flags);
2148 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2149 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2150 bnad_set_rx_mode(netdev);
2151 }
2152
2153 return count;
2154 }
2155
2156 /* Called with bnad_conf_lock() held */
2157 void
2158 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2159 {
2160 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2161 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2162 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2163 unsigned long flags;
2164 int to_del = 0;
2165
2166 if (!rx_info->rx)
2167 return;
2168
2169 if (0 == rx_id) {
2170 spin_lock_irqsave(&bnad->bna_lock, flags);
2171 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2172 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2173 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2174 to_del = 1;
2175 }
2176 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2177 if (to_del)
2178 del_timer_sync(&bnad->dim_timer);
2179 }
2180
2181 init_completion(&bnad->bnad_completions.rx_comp);
2182 spin_lock_irqsave(&bnad->bna_lock, flags);
2183 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2184 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2185 wait_for_completion(&bnad->bnad_completions.rx_comp);
2186
2187 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2188 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2189
2190 bnad_napi_delete(bnad, rx_id);
2191
2192 spin_lock_irqsave(&bnad->bna_lock, flags);
2193 bna_rx_destroy(rx_info->rx);
2194
2195 rx_info->rx = NULL;
2196 rx_info->rx_id = 0;
2197 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2198
2199 bnad_rx_res_free(bnad, res_info);
2200 }
2201
2202 /* Called with mutex_lock(&bnad->conf_mutex) held */
2203 int
2204 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2205 {
2206 int err;
2207 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2208 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2209 struct bna_intr_info *intr_info =
2210 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2211 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2212 static const struct bna_rx_event_cbfn rx_cbfn = {
2213 .rcb_setup_cbfn = NULL,
2214 .rcb_destroy_cbfn = NULL,
2215 .ccb_setup_cbfn = bnad_cb_ccb_setup,
2216 .ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2217 .rx_stall_cbfn = bnad_cb_rx_stall,
2218 .rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2219 .rx_post_cbfn = bnad_cb_rx_post,
2220 };
2221 struct bna_rx *rx;
2222 unsigned long flags;
2223
2224 rx_info->rx_id = rx_id;
2225
2226 /* Initialize the Rx object configuration */
2227 bnad_init_rx_config(bnad, rx_config);
2228
2229 /* Get BNA's resource requirement for one Rx object */
2230 spin_lock_irqsave(&bnad->bna_lock, flags);
2231 bna_rx_res_req(rx_config, res_info);
2232 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2233
2234 /* Fill Unmap Q memory requirements */
2235 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2236 rx_config->num_paths,
2237 (rx_config->q0_depth *
2238 sizeof(struct bnad_rx_unmap)) +
2239 sizeof(struct bnad_rx_unmap_q));
2240
2241 if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2242 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2243 rx_config->num_paths,
2244 (rx_config->q1_depth *
2245 sizeof(struct bnad_rx_unmap) +
2246 sizeof(struct bnad_rx_unmap_q)));
2247 }
2248 /* Allocate resource */
2249 err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2250 if (err)
2251 return err;
2252
2253 bnad_rx_ctrl_init(bnad, rx_id);
2254
2255 /* Ask BNA to create one Rx object, supplying required resources */
2256 spin_lock_irqsave(&bnad->bna_lock, flags);
2257 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2258 rx_info);
2259 if (!rx) {
2260 err = -ENOMEM;
2261 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2262 goto err_return;
2263 }
2264 rx_info->rx = rx;
2265 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2266
2267 INIT_WORK(&rx_info->rx_cleanup_work,
2268 (work_func_t)(bnad_rx_cleanup));
2269
2270 /*
2271 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2272 * so that IRQ handler cannot schedule NAPI at this point.
2273 */
2274 bnad_napi_add(bnad, rx_id);
2275
2276 /* Register ISR for the Rx object */
2277 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2278 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2279 rx_config->num_paths);
2280 if (err)
2281 goto err_return;
2282 }
2283
2284 spin_lock_irqsave(&bnad->bna_lock, flags);
2285 if (0 == rx_id) {
2286 /* Set up Dynamic Interrupt Moderation Vector */
2287 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2288 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2289
2290 /* Enable VLAN filtering only on the default Rx */
2291 bna_rx_vlanfilter_enable(rx);
2292
2293 /* Start the DIM timer */
2294 bnad_dim_timer_start(bnad);
2295 }
2296
2297 bna_rx_enable(rx);
2298 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2299
2300 return 0;
2301
2302 err_return:
2303 bnad_destroy_rx(bnad, rx_id);
2304 return err;
2305 }
2306
2307 /* Called with conf_lock & bnad->bna_lock held */
2308 void
2309 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2310 {
2311 struct bnad_tx_info *tx_info;
2312
2313 tx_info = &bnad->tx_info[0];
2314 if (!tx_info->tx)
2315 return;
2316
2317 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2318 }
2319
2320 /* Called with conf_lock & bnad->bna_lock held */
2321 void
2322 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2323 {
2324 struct bnad_rx_info *rx_info;
2325 int i;
2326
2327 for (i = 0; i < bnad->num_rx; i++) {
2328 rx_info = &bnad->rx_info[i];
2329 if (!rx_info->rx)
2330 continue;
2331 bna_rx_coalescing_timeo_set(rx_info->rx,
2332 bnad->rx_coalescing_timeo);
2333 }
2334 }
2335
2336 /*
2337 * Called with bnad->bna_lock held
2338 */
2339 int
2340 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2341 {
2342 int ret;
2343
2344 if (!is_valid_ether_addr(mac_addr))
2345 return -EADDRNOTAVAIL;
2346
2347 /* If datapath is down, pretend everything went through */
2348 if (!bnad->rx_info[0].rx)
2349 return 0;
2350
2351 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2352 if (ret != BNA_CB_SUCCESS)
2353 return -EADDRNOTAVAIL;
2354
2355 return 0;
2356 }
2357
2358 /* Should be called with conf_lock held */
2359 int
2360 bnad_enable_default_bcast(struct bnad *bnad)
2361 {
2362 struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2363 int ret;
2364 unsigned long flags;
2365
2366 init_completion(&bnad->bnad_completions.mcast_comp);
2367
2368 spin_lock_irqsave(&bnad->bna_lock, flags);
2369 ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2370 bnad_cb_rx_mcast_add);
2371 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2372
2373 if (ret == BNA_CB_SUCCESS)
2374 wait_for_completion(&bnad->bnad_completions.mcast_comp);
2375 else
2376 return -ENODEV;
2377
2378 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2379 return -ENODEV;
2380
2381 return 0;
2382 }
2383
2384 /* Called with mutex_lock(&bnad->conf_mutex) held */
2385 void
2386 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2387 {
2388 u16 vid;
2389 unsigned long flags;
2390
2391 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2392 spin_lock_irqsave(&bnad->bna_lock, flags);
2393 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2394 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2395 }
2396 }
2397
2398 /* Statistics utilities */
2399 void
2400 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2401 {
2402 int i, j;
2403
2404 for (i = 0; i < bnad->num_rx; i++) {
2405 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2406 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2407 stats->rx_packets += bnad->rx_info[i].
2408 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2409 stats->rx_bytes += bnad->rx_info[i].
2410 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2411 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2412 bnad->rx_info[i].rx_ctrl[j].ccb->
2413 rcb[1]->rxq) {
2414 stats->rx_packets +=
2415 bnad->rx_info[i].rx_ctrl[j].
2416 ccb->rcb[1]->rxq->rx_packets;
2417 stats->rx_bytes +=
2418 bnad->rx_info[i].rx_ctrl[j].
2419 ccb->rcb[1]->rxq->rx_bytes;
2420 }
2421 }
2422 }
2423 }
2424 for (i = 0; i < bnad->num_tx; i++) {
2425 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2426 if (bnad->tx_info[i].tcb[j]) {
2427 stats->tx_packets +=
2428 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2429 stats->tx_bytes +=
2430 bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2431 }
2432 }
2433 }
2434 }
2435
2436 /*
2437 * Must be called with the bna_lock held.
2438 */
2439 void
2440 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2441 {
2442 struct bfi_enet_stats_mac *mac_stats;
2443 u32 bmap;
2444 int i;
2445
2446 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2447 stats->rx_errors =
2448 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2449 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2450 mac_stats->rx_undersize;
2451 stats->tx_errors = mac_stats->tx_fcs_error +
2452 mac_stats->tx_undersize;
2453 stats->rx_dropped = mac_stats->rx_drop;
2454 stats->tx_dropped = mac_stats->tx_drop;
2455 stats->multicast = mac_stats->rx_multicast;
2456 stats->collisions = mac_stats->tx_total_collision;
2457
2458 stats->rx_length_errors = mac_stats->rx_frame_length_error;
2459
2460 /* receive ring buffer overflow ?? */
2461
2462 stats->rx_crc_errors = mac_stats->rx_fcs_error;
2463 stats->rx_frame_errors = mac_stats->rx_alignment_error;
2464 /* recv'r fifo overrun */
2465 bmap = bna_rx_rid_mask(&bnad->bna);
2466 for (i = 0; bmap; i++) {
2467 if (bmap & 1) {
2468 stats->rx_fifo_errors +=
2469 bnad->stats.bna_stats->
2470 hw_stats.rxf_stats[i].frame_drops;
2471 break;
2472 }
2473 bmap >>= 1;
2474 }
2475 }
2476
2477 static void
2478 bnad_mbox_irq_sync(struct bnad *bnad)
2479 {
2480 u32 irq;
2481 unsigned long flags;
2482
2483 spin_lock_irqsave(&bnad->bna_lock, flags);
2484 if (bnad->cfg_flags & BNAD_CF_MSIX)
2485 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2486 else
2487 irq = bnad->pcidev->irq;
2488 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2489
2490 synchronize_irq(irq);
2491 }
2492
2493 /* Utility used by bnad_start_xmit, for doing TSO */
2494 static int
2495 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2496 {
2497 int err;
2498
2499 err = skb_cow_head(skb, 0);
2500 if (err < 0) {
2501 BNAD_UPDATE_CTR(bnad, tso_err);
2502 return err;
2503 }
2504
2505 /*
2506 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2507 * excluding the length field.
2508 */
2509 if (skb->protocol == htons(ETH_P_IP)) {
2510 struct iphdr *iph = ip_hdr(skb);
2511
2512 /* Do we really need these? */
2513 iph->tot_len = 0;
2514 iph->check = 0;
2515
2516 tcp_hdr(skb)->check =
2517 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2518 IPPROTO_TCP, 0);
2519 BNAD_UPDATE_CTR(bnad, tso4);
2520 } else {
2521 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2522
2523 ipv6h->payload_len = 0;
2524 tcp_hdr(skb)->check =
2525 ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2526 IPPROTO_TCP, 0);
2527 BNAD_UPDATE_CTR(bnad, tso6);
2528 }
2529
2530 return 0;
2531 }
2532
2533 /*
2534 * Initialize Q numbers depending on Rx Paths
2535 * Called with bnad->bna_lock held, because of cfg_flags
2536 * access.
2537 */
2538 static void
2539 bnad_q_num_init(struct bnad *bnad)
2540 {
2541 int rxps;
2542
2543 rxps = min((uint)num_online_cpus(),
2544 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2545
2546 if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2547 rxps = 1; /* INTx */
2548
2549 bnad->num_rx = 1;
2550 bnad->num_tx = 1;
2551 bnad->num_rxp_per_rx = rxps;
2552 bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2553 }
2554
2555 /*
2556 * Adjusts the Q numbers, given a number of msix vectors
2557 * Give preference to RSS as opposed to Tx priority Queues,
2558 * in such a case, just use 1 Tx Q
2559 * Called with bnad->bna_lock held b'cos of cfg_flags access
2560 */
2561 static void
2562 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2563 {
2564 bnad->num_txq_per_tx = 1;
2565 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
2566 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2567 (bnad->cfg_flags & BNAD_CF_MSIX)) {
2568 bnad->num_rxp_per_rx = msix_vectors -
2569 (bnad->num_tx * bnad->num_txq_per_tx) -
2570 BNAD_MAILBOX_MSIX_VECTORS;
2571 } else
2572 bnad->num_rxp_per_rx = 1;
2573 }
2574
2575 /* Enable / disable ioceth */
2576 static int
2577 bnad_ioceth_disable(struct bnad *bnad)
2578 {
2579 unsigned long flags;
2580 int err = 0;
2581
2582 spin_lock_irqsave(&bnad->bna_lock, flags);
2583 init_completion(&bnad->bnad_completions.ioc_comp);
2584 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2585 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2586
2587 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2588 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2589
2590 err = bnad->bnad_completions.ioc_comp_status;
2591 return err;
2592 }
2593
2594 static int
2595 bnad_ioceth_enable(struct bnad *bnad)
2596 {
2597 int err = 0;
2598 unsigned long flags;
2599
2600 spin_lock_irqsave(&bnad->bna_lock, flags);
2601 init_completion(&bnad->bnad_completions.ioc_comp);
2602 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2603 bna_ioceth_enable(&bnad->bna.ioceth);
2604 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2605
2606 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2607 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2608
2609 err = bnad->bnad_completions.ioc_comp_status;
2610
2611 return err;
2612 }
2613
2614 /* Free BNA resources */
2615 static void
2616 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2617 u32 res_val_max)
2618 {
2619 int i;
2620
2621 for (i = 0; i < res_val_max; i++)
2622 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2623 }
2624
2625 /* Allocates memory and interrupt resources for BNA */
2626 static int
2627 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2628 u32 res_val_max)
2629 {
2630 int i, err;
2631
2632 for (i = 0; i < res_val_max; i++) {
2633 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2634 if (err)
2635 goto err_return;
2636 }
2637 return 0;
2638
2639 err_return:
2640 bnad_res_free(bnad, res_info, res_val_max);
2641 return err;
2642 }
2643
2644 /* Interrupt enable / disable */
2645 static void
2646 bnad_enable_msix(struct bnad *bnad)
2647 {
2648 int i, ret;
2649 unsigned long flags;
2650
2651 spin_lock_irqsave(&bnad->bna_lock, flags);
2652 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2653 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2654 return;
2655 }
2656 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2657
2658 if (bnad->msix_table)
2659 return;
2660
2661 bnad->msix_table =
2662 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2663
2664 if (!bnad->msix_table)
2665 goto intx_mode;
2666
2667 for (i = 0; i < bnad->msix_num; i++)
2668 bnad->msix_table[i].entry = i;
2669
2670 ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2671 1, bnad->msix_num);
2672 if (ret < 0) {
2673 goto intx_mode;
2674 } else if (ret < bnad->msix_num) {
2675 pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2676 ret, bnad->msix_num);
2677
2678 spin_lock_irqsave(&bnad->bna_lock, flags);
2679 /* ret = #of vectors that we got */
2680 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2681 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2682 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2683
2684 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2685 BNAD_MAILBOX_MSIX_VECTORS;
2686
2687 if (bnad->msix_num > ret) {
2688 pci_disable_msix(bnad->pcidev);
2689 goto intx_mode;
2690 }
2691 }
2692
2693 pci_intx(bnad->pcidev, 0);
2694
2695 return;
2696
2697 intx_mode:
2698 pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2699
2700 kfree(bnad->msix_table);
2701 bnad->msix_table = NULL;
2702 bnad->msix_num = 0;
2703 spin_lock_irqsave(&bnad->bna_lock, flags);
2704 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2705 bnad_q_num_init(bnad);
2706 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2707 }
2708
2709 static void
2710 bnad_disable_msix(struct bnad *bnad)
2711 {
2712 u32 cfg_flags;
2713 unsigned long flags;
2714
2715 spin_lock_irqsave(&bnad->bna_lock, flags);
2716 cfg_flags = bnad->cfg_flags;
2717 if (bnad->cfg_flags & BNAD_CF_MSIX)
2718 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2719 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2720
2721 if (cfg_flags & BNAD_CF_MSIX) {
2722 pci_disable_msix(bnad->pcidev);
2723 kfree(bnad->msix_table);
2724 bnad->msix_table = NULL;
2725 }
2726 }
2727
2728 /* Netdev entry points */
2729 static int
2730 bnad_open(struct net_device *netdev)
2731 {
2732 int err;
2733 struct bnad *bnad = netdev_priv(netdev);
2734 struct bna_pause_config pause_config;
2735 unsigned long flags;
2736
2737 mutex_lock(&bnad->conf_mutex);
2738
2739 /* Tx */
2740 err = bnad_setup_tx(bnad, 0);
2741 if (err)
2742 goto err_return;
2743
2744 /* Rx */
2745 err = bnad_setup_rx(bnad, 0);
2746 if (err)
2747 goto cleanup_tx;
2748
2749 /* Port */
2750 pause_config.tx_pause = 0;
2751 pause_config.rx_pause = 0;
2752
2753 spin_lock_irqsave(&bnad->bna_lock, flags);
2754 bna_enet_mtu_set(&bnad->bna.enet,
2755 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2756 bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2757 bna_enet_enable(&bnad->bna.enet);
2758 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2759
2760 /* Enable broadcast */
2761 bnad_enable_default_bcast(bnad);
2762
2763 /* Restore VLANs, if any */
2764 bnad_restore_vlans(bnad, 0);
2765
2766 /* Set the UCAST address */
2767 spin_lock_irqsave(&bnad->bna_lock, flags);
2768 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2769 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2770
2771 /* Start the stats timer */
2772 bnad_stats_timer_start(bnad);
2773
2774 mutex_unlock(&bnad->conf_mutex);
2775
2776 return 0;
2777
2778 cleanup_tx:
2779 bnad_destroy_tx(bnad, 0);
2780
2781 err_return:
2782 mutex_unlock(&bnad->conf_mutex);
2783 return err;
2784 }
2785
2786 static int
2787 bnad_stop(struct net_device *netdev)
2788 {
2789 struct bnad *bnad = netdev_priv(netdev);
2790 unsigned long flags;
2791
2792 mutex_lock(&bnad->conf_mutex);
2793
2794 /* Stop the stats timer */
2795 bnad_stats_timer_stop(bnad);
2796
2797 init_completion(&bnad->bnad_completions.enet_comp);
2798
2799 spin_lock_irqsave(&bnad->bna_lock, flags);
2800 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2801 bnad_cb_enet_disabled);
2802 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2803
2804 wait_for_completion(&bnad->bnad_completions.enet_comp);
2805
2806 bnad_destroy_tx(bnad, 0);
2807 bnad_destroy_rx(bnad, 0);
2808
2809 /* Synchronize mailbox IRQ */
2810 bnad_mbox_irq_sync(bnad);
2811
2812 mutex_unlock(&bnad->conf_mutex);
2813
2814 return 0;
2815 }
2816
2817 /* TX */
2818 /* Returns 0 for success */
2819 static int
2820 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2821 struct sk_buff *skb, struct bna_txq_entry *txqent)
2822 {
2823 u16 flags = 0;
2824 u32 gso_size;
2825 u16 vlan_tag = 0;
2826
2827 if (vlan_tx_tag_present(skb)) {
2828 vlan_tag = (u16)vlan_tx_tag_get(skb);
2829 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2830 }
2831 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2832 vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2833 | (vlan_tag & 0x1fff);
2834 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2835 }
2836 txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2837
2838 if (skb_is_gso(skb)) {
2839 gso_size = skb_shinfo(skb)->gso_size;
2840 if (unlikely(gso_size > bnad->netdev->mtu)) {
2841 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2842 return -EINVAL;
2843 }
2844 if (unlikely((gso_size + skb_transport_offset(skb) +
2845 tcp_hdrlen(skb)) >= skb->len)) {
2846 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2847 txqent->hdr.wi.lso_mss = 0;
2848 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2849 } else {
2850 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2851 txqent->hdr.wi.lso_mss = htons(gso_size);
2852 }
2853
2854 if (bnad_tso_prepare(bnad, skb)) {
2855 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2856 return -EINVAL;
2857 }
2858
2859 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2860 txqent->hdr.wi.l4_hdr_size_n_offset =
2861 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2862 tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2863 } else {
2864 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2865 txqent->hdr.wi.lso_mss = 0;
2866
2867 if (unlikely(skb->len > (bnad->netdev->mtu + ETH_HLEN))) {
2868 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2869 return -EINVAL;
2870 }
2871
2872 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2873 u8 proto = 0;
2874
2875 if (skb->protocol == htons(ETH_P_IP))
2876 proto = ip_hdr(skb)->protocol;
2877 #ifdef NETIF_F_IPV6_CSUM
2878 else if (skb->protocol == htons(ETH_P_IPV6)) {
2879 /* nexthdr may not be TCP immediately. */
2880 proto = ipv6_hdr(skb)->nexthdr;
2881 }
2882 #endif
2883 if (proto == IPPROTO_TCP) {
2884 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2885 txqent->hdr.wi.l4_hdr_size_n_offset =
2886 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2887 (0, skb_transport_offset(skb)));
2888
2889 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2890
2891 if (unlikely(skb_headlen(skb) <
2892 skb_transport_offset(skb) +
2893 tcp_hdrlen(skb))) {
2894 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2895 return -EINVAL;
2896 }
2897 } else if (proto == IPPROTO_UDP) {
2898 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2899 txqent->hdr.wi.l4_hdr_size_n_offset =
2900 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2901 (0, skb_transport_offset(skb)));
2902
2903 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2904 if (unlikely(skb_headlen(skb) <
2905 skb_transport_offset(skb) +
2906 sizeof(struct udphdr))) {
2907 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2908 return -EINVAL;
2909 }
2910 } else {
2911
2912 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2913 return -EINVAL;
2914 }
2915 } else
2916 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2917 }
2918
2919 txqent->hdr.wi.flags = htons(flags);
2920 txqent->hdr.wi.frame_length = htonl(skb->len);
2921
2922 return 0;
2923 }
2924
2925 /*
2926 * bnad_start_xmit : Netdev entry point for Transmit
2927 * Called under lock held by net_device
2928 */
2929 static netdev_tx_t
2930 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2931 {
2932 struct bnad *bnad = netdev_priv(netdev);
2933 u32 txq_id = 0;
2934 struct bna_tcb *tcb = NULL;
2935 struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2936 u32 prod, q_depth, vect_id;
2937 u32 wis, vectors, len;
2938 int i;
2939 dma_addr_t dma_addr;
2940 struct bna_txq_entry *txqent;
2941
2942 len = skb_headlen(skb);
2943
2944 /* Sanity checks for the skb */
2945
2946 if (unlikely(skb->len <= ETH_HLEN)) {
2947 dev_kfree_skb_any(skb);
2948 BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2949 return NETDEV_TX_OK;
2950 }
2951 if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2952 dev_kfree_skb_any(skb);
2953 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2954 return NETDEV_TX_OK;
2955 }
2956 if (unlikely(len == 0)) {
2957 dev_kfree_skb_any(skb);
2958 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2959 return NETDEV_TX_OK;
2960 }
2961
2962 tcb = bnad->tx_info[0].tcb[txq_id];
2963
2964 /*
2965 * Takes care of the Tx that is scheduled between clearing the flag
2966 * and the netif_tx_stop_all_queues() call.
2967 */
2968 if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2969 dev_kfree_skb_any(skb);
2970 BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2971 return NETDEV_TX_OK;
2972 }
2973
2974 q_depth = tcb->q_depth;
2975 prod = tcb->producer_index;
2976 unmap_q = tcb->unmap_q;
2977
2978 vectors = 1 + skb_shinfo(skb)->nr_frags;
2979 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
2980
2981 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2982 dev_kfree_skb_any(skb);
2983 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2984 return NETDEV_TX_OK;
2985 }
2986
2987 /* Check for available TxQ resources */
2988 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2989 if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2990 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2991 u32 sent;
2992 sent = bnad_txcmpl_process(bnad, tcb);
2993 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2994 bna_ib_ack(tcb->i_dbell, sent);
2995 smp_mb__before_atomic();
2996 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2997 } else {
2998 netif_stop_queue(netdev);
2999 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3000 }
3001
3002 smp_mb();
3003 /*
3004 * Check again to deal with race condition between
3005 * netif_stop_queue here, and netif_wake_queue in
3006 * interrupt handler which is not inside netif tx lock.
3007 */
3008 if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3009 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3010 return NETDEV_TX_BUSY;
3011 } else {
3012 netif_wake_queue(netdev);
3013 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
3014 }
3015 }
3016
3017 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3018 head_unmap = &unmap_q[prod];
3019
3020 /* Program the opcode, flags, frame_len, num_vectors in WI */
3021 if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3022 dev_kfree_skb_any(skb);
3023 return NETDEV_TX_OK;
3024 }
3025 txqent->hdr.wi.reserved = 0;
3026 txqent->hdr.wi.num_vectors = vectors;
3027
3028 head_unmap->skb = skb;
3029 head_unmap->nvecs = 0;
3030
3031 /* Program the vectors */
3032 unmap = head_unmap;
3033 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3034 len, DMA_TO_DEVICE);
3035 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3036 txqent->vector[0].length = htons(len);
3037 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3038 head_unmap->nvecs++;
3039
3040 for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3041 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
3042 u32 size = skb_frag_size(frag);
3043
3044 if (unlikely(size == 0)) {
3045 /* Undo the changes starting at tcb->producer_index */
3046 bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3047 tcb->producer_index);
3048 dev_kfree_skb_any(skb);
3049 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3050 return NETDEV_TX_OK;
3051 }
3052
3053 len += size;
3054
3055 vect_id++;
3056 if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3057 vect_id = 0;
3058 BNA_QE_INDX_INC(prod, q_depth);
3059 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3060 txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3061 unmap = &unmap_q[prod];
3062 }
3063
3064 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3065 0, size, DMA_TO_DEVICE);
3066 dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3067 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3068 txqent->vector[vect_id].length = htons(size);
3069 dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3070 dma_addr);
3071 head_unmap->nvecs++;
3072 }
3073
3074 if (unlikely(len != skb->len)) {
3075 /* Undo the changes starting at tcb->producer_index */
3076 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3077 dev_kfree_skb_any(skb);
3078 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3079 return NETDEV_TX_OK;
3080 }
3081
3082 BNA_QE_INDX_INC(prod, q_depth);
3083 tcb->producer_index = prod;
3084
3085 smp_mb();
3086
3087 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3088 return NETDEV_TX_OK;
3089
3090 skb_tx_timestamp(skb);
3091
3092 bna_txq_prod_indx_doorbell(tcb);
3093 smp_mb();
3094
3095 return NETDEV_TX_OK;
3096 }
3097
3098 /*
3099 * Used spin_lock to synchronize reading of stats structures, which
3100 * is written by BNA under the same lock.
3101 */
3102 static struct rtnl_link_stats64 *
3103 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3104 {
3105 struct bnad *bnad = netdev_priv(netdev);
3106 unsigned long flags;
3107
3108 spin_lock_irqsave(&bnad->bna_lock, flags);
3109
3110 bnad_netdev_qstats_fill(bnad, stats);
3111 bnad_netdev_hwstats_fill(bnad, stats);
3112
3113 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3114
3115 return stats;
3116 }
3117
3118 static void
3119 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3120 {
3121 struct net_device *netdev = bnad->netdev;
3122 int uc_count = netdev_uc_count(netdev);
3123 enum bna_cb_status ret;
3124 u8 *mac_list;
3125 struct netdev_hw_addr *ha;
3126 int entry;
3127
3128 if (netdev_uc_empty(bnad->netdev)) {
3129 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
3130 return;
3131 }
3132
3133 if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3134 goto mode_default;
3135
3136 mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC);
3137 if (mac_list == NULL)
3138 goto mode_default;
3139
3140 entry = 0;
3141 netdev_for_each_uc_addr(ha, netdev) {
3142 memcpy(&mac_list[entry * ETH_ALEN],
3143 &ha->addr[0], ETH_ALEN);
3144 entry++;
3145 }
3146
3147 ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry,
3148 mac_list, NULL);
3149 kfree(mac_list);
3150
3151 if (ret != BNA_CB_SUCCESS)
3152 goto mode_default;
3153
3154 return;
3155
3156 /* ucast packets not in UCAM are routed to default function */
3157 mode_default:
3158 bnad->cfg_flags |= BNAD_CF_DEFAULT;
3159 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
3160 }
3161
3162 static void
3163 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3164 {
3165 struct net_device *netdev = bnad->netdev;
3166 int mc_count = netdev_mc_count(netdev);
3167 enum bna_cb_status ret;
3168 u8 *mac_list;
3169
3170 if (netdev->flags & IFF_ALLMULTI)
3171 goto mode_allmulti;
3172
3173 if (netdev_mc_empty(netdev))
3174 return;
3175
3176 if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3177 goto mode_allmulti;
3178
3179 mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC);
3180
3181 if (mac_list == NULL)
3182 goto mode_allmulti;
3183
3184 memcpy(&mac_list[0], &bnad_bcast_addr[0], ETH_ALEN);
3185
3186 /* copy rest of the MCAST addresses */
3187 bnad_netdev_mc_list_get(netdev, mac_list);
3188 ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
3189 mac_list, NULL);
3190 kfree(mac_list);
3191
3192 if (ret != BNA_CB_SUCCESS)
3193 goto mode_allmulti;
3194
3195 return;
3196
3197 mode_allmulti:
3198 bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3199 bna_rx_mcast_delall(bnad->rx_info[0].rx, NULL);
3200 }
3201
3202 void
3203 bnad_set_rx_mode(struct net_device *netdev)
3204 {
3205 struct bnad *bnad = netdev_priv(netdev);
3206 enum bna_rxmode new_mode, mode_mask;
3207 unsigned long flags;
3208
3209 spin_lock_irqsave(&bnad->bna_lock, flags);
3210
3211 if (bnad->rx_info[0].rx == NULL) {
3212 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3213 return;
3214 }
3215
3216 /* clear bnad flags to update it with new settings */
3217 bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3218 BNAD_CF_ALLMULTI);
3219
3220 new_mode = 0;
3221 if (netdev->flags & IFF_PROMISC) {
3222 new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3223 bnad->cfg_flags |= BNAD_CF_PROMISC;
3224 } else {
3225 bnad_set_rx_mcast_fltr(bnad);
3226
3227 if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3228 new_mode |= BNA_RXMODE_ALLMULTI;
3229
3230 bnad_set_rx_ucast_fltr(bnad);
3231
3232 if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3233 new_mode |= BNA_RXMODE_DEFAULT;
3234 }
3235
3236 mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3237 BNA_RXMODE_ALLMULTI;
3238 bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask, NULL);
3239
3240 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3241 }
3242
3243 /*
3244 * bna_lock is used to sync writes to netdev->addr
3245 * conf_lock cannot be used since this call may be made
3246 * in a non-blocking context.
3247 */
3248 static int
3249 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
3250 {
3251 int err;
3252 struct bnad *bnad = netdev_priv(netdev);
3253 struct sockaddr *sa = (struct sockaddr *)mac_addr;
3254 unsigned long flags;
3255
3256 spin_lock_irqsave(&bnad->bna_lock, flags);
3257
3258 err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3259
3260 if (!err)
3261 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
3262
3263 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3264
3265 return err;
3266 }
3267
3268 static int
3269 bnad_mtu_set(struct bnad *bnad, int frame_size)
3270 {
3271 unsigned long flags;
3272
3273 init_completion(&bnad->bnad_completions.mtu_comp);
3274
3275 spin_lock_irqsave(&bnad->bna_lock, flags);
3276 bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3277 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3278
3279 wait_for_completion(&bnad->bnad_completions.mtu_comp);
3280
3281 return bnad->bnad_completions.mtu_comp_status;
3282 }
3283
3284 static int
3285 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3286 {
3287 int err, mtu;
3288 struct bnad *bnad = netdev_priv(netdev);
3289 u32 rx_count = 0, frame, new_frame;
3290
3291 if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3292 return -EINVAL;
3293
3294 mutex_lock(&bnad->conf_mutex);
3295
3296 mtu = netdev->mtu;
3297 netdev->mtu = new_mtu;
3298
3299 frame = BNAD_FRAME_SIZE(mtu);
3300 new_frame = BNAD_FRAME_SIZE(new_mtu);
3301
3302 /* check if multi-buffer needs to be enabled */
3303 if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3304 netif_running(bnad->netdev)) {
3305 /* only when transition is over 4K */
3306 if ((frame <= 4096 && new_frame > 4096) ||
3307 (frame > 4096 && new_frame <= 4096))
3308 rx_count = bnad_reinit_rx(bnad);
3309 }
3310
3311 /* rx_count > 0 - new rx created
3312 * - Linux set err = 0 and return
3313 */
3314 err = bnad_mtu_set(bnad, new_frame);
3315 if (err)
3316 err = -EBUSY;
3317
3318 mutex_unlock(&bnad->conf_mutex);
3319 return err;
3320 }
3321
3322 static int
3323 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3324 {
3325 struct bnad *bnad = netdev_priv(netdev);
3326 unsigned long flags;
3327
3328 if (!bnad->rx_info[0].rx)
3329 return 0;
3330
3331 mutex_lock(&bnad->conf_mutex);
3332
3333 spin_lock_irqsave(&bnad->bna_lock, flags);
3334 bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3335 set_bit(vid, bnad->active_vlans);
3336 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3337
3338 mutex_unlock(&bnad->conf_mutex);
3339
3340 return 0;
3341 }
3342
3343 static int
3344 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3345 {
3346 struct bnad *bnad = netdev_priv(netdev);
3347 unsigned long flags;
3348
3349 if (!bnad->rx_info[0].rx)
3350 return 0;
3351
3352 mutex_lock(&bnad->conf_mutex);
3353
3354 spin_lock_irqsave(&bnad->bna_lock, flags);
3355 clear_bit(vid, bnad->active_vlans);
3356 bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3357 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3358
3359 mutex_unlock(&bnad->conf_mutex);
3360
3361 return 0;
3362 }
3363
3364 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3365 {
3366 struct bnad *bnad = netdev_priv(dev);
3367 netdev_features_t changed = features ^ dev->features;
3368
3369 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3370 unsigned long flags;
3371
3372 spin_lock_irqsave(&bnad->bna_lock, flags);
3373
3374 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3375 bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3376 else
3377 bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3378
3379 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3380 }
3381
3382 return 0;
3383 }
3384
3385 #ifdef CONFIG_NET_POLL_CONTROLLER
3386 static void
3387 bnad_netpoll(struct net_device *netdev)
3388 {
3389 struct bnad *bnad = netdev_priv(netdev);
3390 struct bnad_rx_info *rx_info;
3391 struct bnad_rx_ctrl *rx_ctrl;
3392 u32 curr_mask;
3393 int i, j;
3394
3395 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3396 bna_intx_disable(&bnad->bna, curr_mask);
3397 bnad_isr(bnad->pcidev->irq, netdev);
3398 bna_intx_enable(&bnad->bna, curr_mask);
3399 } else {
3400 /*
3401 * Tx processing may happen in sending context, so no need
3402 * to explicitly process completions here
3403 */
3404
3405 /* Rx processing */
3406 for (i = 0; i < bnad->num_rx; i++) {
3407 rx_info = &bnad->rx_info[i];
3408 if (!rx_info->rx)
3409 continue;
3410 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3411 rx_ctrl = &rx_info->rx_ctrl[j];
3412 if (rx_ctrl->ccb)
3413 bnad_netif_rx_schedule_poll(bnad,
3414 rx_ctrl->ccb);
3415 }
3416 }
3417 }
3418 }
3419 #endif
3420
3421 static const struct net_device_ops bnad_netdev_ops = {
3422 .ndo_open = bnad_open,
3423 .ndo_stop = bnad_stop,
3424 .ndo_start_xmit = bnad_start_xmit,
3425 .ndo_get_stats64 = bnad_get_stats64,
3426 .ndo_set_rx_mode = bnad_set_rx_mode,
3427 .ndo_validate_addr = eth_validate_addr,
3428 .ndo_set_mac_address = bnad_set_mac_address,
3429 .ndo_change_mtu = bnad_change_mtu,
3430 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
3431 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
3432 .ndo_set_features = bnad_set_features,
3433 #ifdef CONFIG_NET_POLL_CONTROLLER
3434 .ndo_poll_controller = bnad_netpoll
3435 #endif
3436 };
3437
3438 static void
3439 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3440 {
3441 struct net_device *netdev = bnad->netdev;
3442
3443 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3444 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3445 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3446 NETIF_F_HW_VLAN_CTAG_RX;
3447
3448 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3449 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3450 NETIF_F_TSO | NETIF_F_TSO6;
3451
3452 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
3453
3454 if (using_dac)
3455 netdev->features |= NETIF_F_HIGHDMA;
3456
3457 netdev->mem_start = bnad->mmio_start;
3458 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3459
3460 netdev->netdev_ops = &bnad_netdev_ops;
3461 bnad_set_ethtool_ops(netdev);
3462 }
3463
3464 /*
3465 * 1. Initialize the bnad structure
3466 * 2. Setup netdev pointer in pci_dev
3467 * 3. Initialize no. of TxQ & CQs & MSIX vectors
3468 * 4. Initialize work queue.
3469 */
3470 static int
3471 bnad_init(struct bnad *bnad,
3472 struct pci_dev *pdev, struct net_device *netdev)
3473 {
3474 unsigned long flags;
3475
3476 SET_NETDEV_DEV(netdev, &pdev->dev);
3477 pci_set_drvdata(pdev, netdev);
3478
3479 bnad->netdev = netdev;
3480 bnad->pcidev = pdev;
3481 bnad->mmio_start = pci_resource_start(pdev, 0);
3482 bnad->mmio_len = pci_resource_len(pdev, 0);
3483 bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3484 if (!bnad->bar0) {
3485 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3486 return -ENOMEM;
3487 }
3488 pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3489 (unsigned long long) bnad->mmio_len);
3490
3491 spin_lock_irqsave(&bnad->bna_lock, flags);
3492 if (!bnad_msix_disable)
3493 bnad->cfg_flags = BNAD_CF_MSIX;
3494
3495 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3496
3497 bnad_q_num_init(bnad);
3498 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3499
3500 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3501 (bnad->num_rx * bnad->num_rxp_per_rx) +
3502 BNAD_MAILBOX_MSIX_VECTORS;
3503
3504 bnad->txq_depth = BNAD_TXQ_DEPTH;
3505 bnad->rxq_depth = BNAD_RXQ_DEPTH;
3506
3507 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3508 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3509
3510 sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3511 bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3512 if (!bnad->work_q) {
3513 iounmap(bnad->bar0);
3514 return -ENOMEM;
3515 }
3516
3517 return 0;
3518 }
3519
3520 /*
3521 * Must be called after bnad_pci_uninit()
3522 * so that iounmap() and pci_set_drvdata(NULL)
3523 * happens only after PCI uninitialization.
3524 */
3525 static void
3526 bnad_uninit(struct bnad *bnad)
3527 {
3528 if (bnad->work_q) {
3529 flush_workqueue(bnad->work_q);
3530 destroy_workqueue(bnad->work_q);
3531 bnad->work_q = NULL;
3532 }
3533
3534 if (bnad->bar0)
3535 iounmap(bnad->bar0);
3536 }
3537
3538 /*
3539 * Initialize locks
3540 a) Per ioceth mutes used for serializing configuration
3541 changes from OS interface
3542 b) spin lock used to protect bna state machine
3543 */
3544 static void
3545 bnad_lock_init(struct bnad *bnad)
3546 {
3547 spin_lock_init(&bnad->bna_lock);
3548 mutex_init(&bnad->conf_mutex);
3549 mutex_init(&bnad_list_mutex);
3550 }
3551
3552 static void
3553 bnad_lock_uninit(struct bnad *bnad)
3554 {
3555 mutex_destroy(&bnad->conf_mutex);
3556 mutex_destroy(&bnad_list_mutex);
3557 }
3558
3559 /* PCI Initialization */
3560 static int
3561 bnad_pci_init(struct bnad *bnad,
3562 struct pci_dev *pdev, bool *using_dac)
3563 {
3564 int err;
3565
3566 err = pci_enable_device(pdev);
3567 if (err)
3568 return err;
3569 err = pci_request_regions(pdev, BNAD_NAME);
3570 if (err)
3571 goto disable_device;
3572 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3573 *using_dac = true;
3574 } else {
3575 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3576 if (err)
3577 goto release_regions;
3578 *using_dac = false;
3579 }
3580 pci_set_master(pdev);
3581 return 0;
3582
3583 release_regions:
3584 pci_release_regions(pdev);
3585 disable_device:
3586 pci_disable_device(pdev);
3587
3588 return err;
3589 }
3590
3591 static void
3592 bnad_pci_uninit(struct pci_dev *pdev)
3593 {
3594 pci_release_regions(pdev);
3595 pci_disable_device(pdev);
3596 }
3597
3598 static int
3599 bnad_pci_probe(struct pci_dev *pdev,
3600 const struct pci_device_id *pcidev_id)
3601 {
3602 bool using_dac;
3603 int err;
3604 struct bnad *bnad;
3605 struct bna *bna;
3606 struct net_device *netdev;
3607 struct bfa_pcidev pcidev_info;
3608 unsigned long flags;
3609
3610 pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3611 pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3612
3613 mutex_lock(&bnad_fwimg_mutex);
3614 if (!cna_get_firmware_buf(pdev)) {
3615 mutex_unlock(&bnad_fwimg_mutex);
3616 pr_warn("Failed to load Firmware Image!\n");
3617 return -ENODEV;
3618 }
3619 mutex_unlock(&bnad_fwimg_mutex);
3620
3621 /*
3622 * Allocates sizeof(struct net_device + struct bnad)
3623 * bnad = netdev->priv
3624 */
3625 netdev = alloc_etherdev(sizeof(struct bnad));
3626 if (!netdev) {
3627 err = -ENOMEM;
3628 return err;
3629 }
3630 bnad = netdev_priv(netdev);
3631 bnad_lock_init(bnad);
3632 bnad_add_to_list(bnad);
3633
3634 mutex_lock(&bnad->conf_mutex);
3635 /*
3636 * PCI initialization
3637 * Output : using_dac = 1 for 64 bit DMA
3638 * = 0 for 32 bit DMA
3639 */
3640 using_dac = false;
3641 err = bnad_pci_init(bnad, pdev, &using_dac);
3642 if (err)
3643 goto unlock_mutex;
3644
3645 /*
3646 * Initialize bnad structure
3647 * Setup relation between pci_dev & netdev
3648 */
3649 err = bnad_init(bnad, pdev, netdev);
3650 if (err)
3651 goto pci_uninit;
3652
3653 /* Initialize netdev structure, set up ethtool ops */
3654 bnad_netdev_init(bnad, using_dac);
3655
3656 /* Set link to down state */
3657 netif_carrier_off(netdev);
3658
3659 /* Setup the debugfs node for this bfad */
3660 if (bna_debugfs_enable)
3661 bnad_debugfs_init(bnad);
3662
3663 /* Get resource requirement form bna */
3664 spin_lock_irqsave(&bnad->bna_lock, flags);
3665 bna_res_req(&bnad->res_info[0]);
3666 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3667
3668 /* Allocate resources from bna */
3669 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3670 if (err)
3671 goto drv_uninit;
3672
3673 bna = &bnad->bna;
3674
3675 /* Setup pcidev_info for bna_init() */
3676 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3677 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3678 pcidev_info.device_id = bnad->pcidev->device;
3679 pcidev_info.pci_bar_kva = bnad->bar0;
3680
3681 spin_lock_irqsave(&bnad->bna_lock, flags);
3682 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3683 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3684
3685 bnad->stats.bna_stats = &bna->stats;
3686
3687 bnad_enable_msix(bnad);
3688 err = bnad_mbox_irq_alloc(bnad);
3689 if (err)
3690 goto res_free;
3691
3692 /* Set up timers */
3693 setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3694 ((unsigned long)bnad));
3695 setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3696 ((unsigned long)bnad));
3697 setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3698 ((unsigned long)bnad));
3699 setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3700 ((unsigned long)bnad));
3701
3702 /* Now start the timer before calling IOC */
3703 mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
3704 jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3705
3706 /*
3707 * Start the chip
3708 * If the call back comes with error, we bail out.
3709 * This is a catastrophic error.
3710 */
3711 err = bnad_ioceth_enable(bnad);
3712 if (err) {
3713 pr_err("BNA: Initialization failed err=%d\n",
3714 err);
3715 goto probe_success;
3716 }
3717
3718 spin_lock_irqsave(&bnad->bna_lock, flags);
3719 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3720 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3721 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3722 bna_attr(bna)->num_rxp - 1);
3723 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3724 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3725 err = -EIO;
3726 }
3727 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3728 if (err)
3729 goto disable_ioceth;
3730
3731 spin_lock_irqsave(&bnad->bna_lock, flags);
3732 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3733 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3734
3735 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3736 if (err) {
3737 err = -EIO;
3738 goto disable_ioceth;
3739 }
3740
3741 spin_lock_irqsave(&bnad->bna_lock, flags);
3742 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3743 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3744
3745 /* Get the burnt-in mac */
3746 spin_lock_irqsave(&bnad->bna_lock, flags);
3747 bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3748 bnad_set_netdev_perm_addr(bnad);
3749 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3750
3751 mutex_unlock(&bnad->conf_mutex);
3752
3753 /* Finally, reguister with net_device layer */
3754 err = register_netdev(netdev);
3755 if (err) {
3756 pr_err("BNA : Registering with netdev failed\n");
3757 goto probe_uninit;
3758 }
3759 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3760
3761 return 0;
3762
3763 probe_success:
3764 mutex_unlock(&bnad->conf_mutex);
3765 return 0;
3766
3767 probe_uninit:
3768 mutex_lock(&bnad->conf_mutex);
3769 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3770 disable_ioceth:
3771 bnad_ioceth_disable(bnad);
3772 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3773 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3774 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3775 spin_lock_irqsave(&bnad->bna_lock, flags);
3776 bna_uninit(bna);
3777 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3778 bnad_mbox_irq_free(bnad);
3779 bnad_disable_msix(bnad);
3780 res_free:
3781 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3782 drv_uninit:
3783 /* Remove the debugfs node for this bnad */
3784 kfree(bnad->regdata);
3785 bnad_debugfs_uninit(bnad);
3786 bnad_uninit(bnad);
3787 pci_uninit:
3788 bnad_pci_uninit(pdev);
3789 unlock_mutex:
3790 mutex_unlock(&bnad->conf_mutex);
3791 bnad_remove_from_list(bnad);
3792 bnad_lock_uninit(bnad);
3793 free_netdev(netdev);
3794 return err;
3795 }
3796
3797 static void
3798 bnad_pci_remove(struct pci_dev *pdev)
3799 {
3800 struct net_device *netdev = pci_get_drvdata(pdev);
3801 struct bnad *bnad;
3802 struct bna *bna;
3803 unsigned long flags;
3804
3805 if (!netdev)
3806 return;
3807
3808 pr_info("%s bnad_pci_remove\n", netdev->name);
3809 bnad = netdev_priv(netdev);
3810 bna = &bnad->bna;
3811
3812 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3813 unregister_netdev(netdev);
3814
3815 mutex_lock(&bnad->conf_mutex);
3816 bnad_ioceth_disable(bnad);
3817 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3818 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3819 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3820 spin_lock_irqsave(&bnad->bna_lock, flags);
3821 bna_uninit(bna);
3822 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3823
3824 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3825 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3826 bnad_mbox_irq_free(bnad);
3827 bnad_disable_msix(bnad);
3828 bnad_pci_uninit(pdev);
3829 mutex_unlock(&bnad->conf_mutex);
3830 bnad_remove_from_list(bnad);
3831 bnad_lock_uninit(bnad);
3832 /* Remove the debugfs node for this bnad */
3833 kfree(bnad->regdata);
3834 bnad_debugfs_uninit(bnad);
3835 bnad_uninit(bnad);
3836 free_netdev(netdev);
3837 }
3838
3839 static DEFINE_PCI_DEVICE_TABLE(bnad_pci_id_table) = {
3840 {
3841 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3842 PCI_DEVICE_ID_BROCADE_CT),
3843 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3844 .class_mask = 0xffff00
3845 },
3846 {
3847 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3848 BFA_PCI_DEVICE_ID_CT2),
3849 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3850 .class_mask = 0xffff00
3851 },
3852 {0, },
3853 };
3854
3855 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3856
3857 static struct pci_driver bnad_pci_driver = {
3858 .name = BNAD_NAME,
3859 .id_table = bnad_pci_id_table,
3860 .probe = bnad_pci_probe,
3861 .remove = bnad_pci_remove,
3862 };
3863
3864 static int __init
3865 bnad_module_init(void)
3866 {
3867 int err;
3868
3869 pr_info("Brocade 10G Ethernet driver - version: %s\n",
3870 BNAD_VERSION);
3871
3872 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3873
3874 err = pci_register_driver(&bnad_pci_driver);
3875 if (err < 0) {
3876 pr_err("bna : PCI registration failed in module init "
3877 "(%d)\n", err);
3878 return err;
3879 }
3880
3881 return 0;
3882 }
3883
3884 static void __exit
3885 bnad_module_exit(void)
3886 {
3887 pci_unregister_driver(&bnad_pci_driver);
3888 release_firmware(bfi_fw);
3889 }
3890
3891 module_init(bnad_module_init);
3892 module_exit(bnad_module_exit);
3893
3894 MODULE_AUTHOR("Brocade");
3895 MODULE_LICENSE("GPL");
3896 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3897 MODULE_VERSION(BNAD_VERSION);
3898 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3899 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
This page took 0.148373 seconds and 5 git commands to generate.