Merge branch 'misc-4.8' into for-next-current-4.8-20160909
[deliverable/linux.git] / drivers / net / ethernet / cavium / liquidio / lio_main.c
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/if_vlan.h>
26 #include <linux/firmware.h>
27 #include <linux/ptp_clock_kernel.h>
28 #include <net/vxlan.h>
29 #include "liquidio_common.h"
30 #include "octeon_droq.h"
31 #include "octeon_iq.h"
32 #include "response_manager.h"
33 #include "octeon_device.h"
34 #include "octeon_nic.h"
35 #include "octeon_main.h"
36 #include "octeon_network.h"
37 #include "cn66xx_regs.h"
38 #include "cn66xx_device.h"
39 #include "cn68xx_device.h"
40 #include "liquidio_image.h"
41
42 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
43 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
44 MODULE_LICENSE("GPL");
45 MODULE_VERSION(LIQUIDIO_VERSION);
46 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
47 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
48 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
49
50 static int ddr_timeout = 10000;
51 module_param(ddr_timeout, int, 0644);
52 MODULE_PARM_DESC(ddr_timeout,
53 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
54
55 static u32 console_bitmask;
56 module_param(console_bitmask, int, 0644);
57 MODULE_PARM_DESC(console_bitmask,
58 "Bitmask indicating which consoles have debug output redirected to syslog.");
59
60 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
61
62 #define INCR_INSTRQUEUE_PKT_COUNT(octeon_dev_ptr, iq_no, field, count) \
63 (octeon_dev_ptr->instr_queue[iq_no]->stats.field += count)
64
65 static int debug = -1;
66 module_param(debug, int, 0644);
67 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
68
69 static char fw_type[LIO_MAX_FW_TYPE_LEN];
70 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
71 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
72
73 static int conf_type;
74 module_param(conf_type, int, 0);
75 MODULE_PARM_DESC(conf_type, "select octeon configuration 0 default 1 ovs");
76
77 static int ptp_enable = 1;
78
79 /* Bit mask values for lio->ifstate */
80 #define LIO_IFSTATE_DROQ_OPS 0x01
81 #define LIO_IFSTATE_REGISTERED 0x02
82 #define LIO_IFSTATE_RUNNING 0x04
83 #define LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
84
85 /* Polling interval for determining when NIC application is alive */
86 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
87
88 /* runtime link query interval */
89 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000
90
91 struct liquidio_if_cfg_context {
92 int octeon_id;
93
94 wait_queue_head_t wc;
95
96 int cond;
97 };
98
99 struct liquidio_if_cfg_resp {
100 u64 rh;
101 struct liquidio_if_cfg_info cfg_info;
102 u64 status;
103 };
104
105 struct oct_link_status_resp {
106 u64 rh;
107 struct oct_link_info link_info;
108 u64 status;
109 };
110
111 struct oct_timestamp_resp {
112 u64 rh;
113 u64 timestamp;
114 u64 status;
115 };
116
117 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
118
119 union tx_info {
120 u64 u64;
121 struct {
122 #ifdef __BIG_ENDIAN_BITFIELD
123 u16 gso_size;
124 u16 gso_segs;
125 u32 reserved;
126 #else
127 u32 reserved;
128 u16 gso_segs;
129 u16 gso_size;
130 #endif
131 } s;
132 };
133
134 /** Octeon device properties to be used by the NIC module.
135 * Each octeon device in the system will be represented
136 * by this structure in the NIC module.
137 */
138
139 #define OCTNIC_MAX_SG (MAX_SKB_FRAGS)
140
141 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
142 #define OCTNIC_GSO_MAX_SIZE (GSO_MAX_SIZE - OCTNIC_GSO_MAX_HEADER_SIZE)
143
144 /** Structure of a node in list of gather components maintained by
145 * NIC driver for each network device.
146 */
147 struct octnic_gather {
148 /** List manipulation. Next and prev pointers. */
149 struct list_head list;
150
151 /** Size of the gather component at sg in bytes. */
152 int sg_size;
153
154 /** Number of bytes that sg was adjusted to make it 8B-aligned. */
155 int adjust;
156
157 /** Gather component that can accommodate max sized fragment list
158 * received from the IP layer.
159 */
160 struct octeon_sg_entry *sg;
161
162 u64 sg_dma_ptr;
163 };
164
165 /** This structure is used by NIC driver to store information required
166 * to free the sk_buff when the packet has been fetched by Octeon.
167 * Bytes offset below assume worst-case of a 64-bit system.
168 */
169 struct octnet_buf_free_info {
170 /** Bytes 1-8. Pointer to network device private structure. */
171 struct lio *lio;
172
173 /** Bytes 9-16. Pointer to sk_buff. */
174 struct sk_buff *skb;
175
176 /** Bytes 17-24. Pointer to gather list. */
177 struct octnic_gather *g;
178
179 /** Bytes 25-32. Physical address of skb->data or gather list. */
180 u64 dptr;
181
182 /** Bytes 33-47. Piggybacked soft command, if any */
183 struct octeon_soft_command *sc;
184 };
185
186 struct handshake {
187 struct completion init;
188 struct completion started;
189 struct pci_dev *pci_dev;
190 int init_ok;
191 int started_ok;
192 };
193
194 struct octeon_device_priv {
195 /** Tasklet structures for this device. */
196 struct tasklet_struct droq_tasklet;
197 unsigned long napi_mask;
198 };
199
200 static int octeon_device_init(struct octeon_device *);
201 static void liquidio_remove(struct pci_dev *pdev);
202 static int liquidio_probe(struct pci_dev *pdev,
203 const struct pci_device_id *ent);
204
205 static struct handshake handshake[MAX_OCTEON_DEVICES];
206 static struct completion first_stage;
207
208 static void octeon_droq_bh(unsigned long pdev)
209 {
210 int q_no;
211 int reschedule = 0;
212 struct octeon_device *oct = (struct octeon_device *)pdev;
213 struct octeon_device_priv *oct_priv =
214 (struct octeon_device_priv *)oct->priv;
215
216 /* for (q_no = 0; q_no < oct->num_oqs; q_no++) { */
217 for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) {
218 if (!(oct->io_qmask.oq & (1ULL << q_no)))
219 continue;
220 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
221 MAX_PACKET_BUDGET);
222 }
223
224 if (reschedule)
225 tasklet_schedule(&oct_priv->droq_tasklet);
226 }
227
228 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
229 {
230 struct octeon_device_priv *oct_priv =
231 (struct octeon_device_priv *)oct->priv;
232 int retry = 100, pkt_cnt = 0, pending_pkts = 0;
233 int i;
234
235 do {
236 pending_pkts = 0;
237
238 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
239 if (!(oct->io_qmask.oq & (1ULL << i)))
240 continue;
241 pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]);
242 }
243 if (pkt_cnt > 0) {
244 pending_pkts += pkt_cnt;
245 tasklet_schedule(&oct_priv->droq_tasklet);
246 }
247 pkt_cnt = 0;
248 schedule_timeout_uninterruptible(1);
249
250 } while (retry-- && pending_pkts);
251
252 return pkt_cnt;
253 }
254
255 void octeon_report_tx_completion_to_bql(void *txq, unsigned int pkts_compl,
256 unsigned int bytes_compl)
257 {
258 struct netdev_queue *netdev_queue = txq;
259
260 netdev_tx_completed_queue(netdev_queue, pkts_compl, bytes_compl);
261 }
262
263 void octeon_update_tx_completion_counters(void *buf, int reqtype,
264 unsigned int *pkts_compl,
265 unsigned int *bytes_compl)
266 {
267 struct octnet_buf_free_info *finfo;
268 struct sk_buff *skb = NULL;
269 struct octeon_soft_command *sc;
270
271 switch (reqtype) {
272 case REQTYPE_NORESP_NET:
273 case REQTYPE_NORESP_NET_SG:
274 finfo = buf;
275 skb = finfo->skb;
276 break;
277
278 case REQTYPE_RESP_NET_SG:
279 case REQTYPE_RESP_NET:
280 sc = buf;
281 skb = sc->callback_arg;
282 break;
283
284 default:
285 return;
286 }
287
288 (*pkts_compl)++;
289 *bytes_compl += skb->len;
290 }
291
292 void octeon_report_sent_bytes_to_bql(void *buf, int reqtype)
293 {
294 struct octnet_buf_free_info *finfo;
295 struct sk_buff *skb;
296 struct octeon_soft_command *sc;
297 struct netdev_queue *txq;
298
299 switch (reqtype) {
300 case REQTYPE_NORESP_NET:
301 case REQTYPE_NORESP_NET_SG:
302 finfo = buf;
303 skb = finfo->skb;
304 break;
305
306 case REQTYPE_RESP_NET_SG:
307 case REQTYPE_RESP_NET:
308 sc = buf;
309 skb = sc->callback_arg;
310 break;
311
312 default:
313 return;
314 }
315
316 txq = netdev_get_tx_queue(skb->dev, skb_get_queue_mapping(skb));
317 netdev_tx_sent_queue(txq, skb->len);
318 }
319
320 int octeon_console_debug_enabled(u32 console)
321 {
322 return (console_bitmask >> (console)) & 0x1;
323 }
324
325 /**
326 * \brief Forces all IO queues off on a given device
327 * @param oct Pointer to Octeon device
328 */
329 static void force_io_queues_off(struct octeon_device *oct)
330 {
331 if ((oct->chip_id == OCTEON_CN66XX) ||
332 (oct->chip_id == OCTEON_CN68XX)) {
333 /* Reset the Enable bits for Input Queues. */
334 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
335
336 /* Reset the Enable bits for Output Queues. */
337 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
338 }
339 }
340
341 /**
342 * \brief wait for all pending requests to complete
343 * @param oct Pointer to Octeon device
344 *
345 * Called during shutdown sequence
346 */
347 static int wait_for_pending_requests(struct octeon_device *oct)
348 {
349 int i, pcount = 0;
350
351 for (i = 0; i < 100; i++) {
352 pcount =
353 atomic_read(&oct->response_list
354 [OCTEON_ORDERED_SC_LIST].pending_req_count);
355 if (pcount)
356 schedule_timeout_uninterruptible(HZ / 10);
357 else
358 break;
359 }
360
361 if (pcount)
362 return 1;
363
364 return 0;
365 }
366
367 /**
368 * \brief Cause device to go quiet so it can be safely removed/reset/etc
369 * @param oct Pointer to Octeon device
370 */
371 static inline void pcierror_quiesce_device(struct octeon_device *oct)
372 {
373 int i;
374
375 /* Disable the input and output queues now. No more packets will
376 * arrive from Octeon, but we should wait for all packet processing
377 * to finish.
378 */
379 force_io_queues_off(oct);
380
381 /* To allow for in-flight requests */
382 schedule_timeout_uninterruptible(100);
383
384 if (wait_for_pending_requests(oct))
385 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
386
387 /* Force all requests waiting to be fetched by OCTEON to complete. */
388 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
389 struct octeon_instr_queue *iq;
390
391 if (!(oct->io_qmask.iq & (1ULL << i)))
392 continue;
393 iq = oct->instr_queue[i];
394
395 if (atomic_read(&iq->instr_pending)) {
396 spin_lock_bh(&iq->lock);
397 iq->fill_cnt = 0;
398 iq->octeon_read_index = iq->host_write_index;
399 iq->stats.instr_processed +=
400 atomic_read(&iq->instr_pending);
401 lio_process_iq_request_list(oct, iq, 0);
402 spin_unlock_bh(&iq->lock);
403 }
404 }
405
406 /* Force all pending ordered list requests to time out. */
407 lio_process_ordered_list(oct, 1);
408
409 /* We do not need to wait for output queue packets to be processed. */
410 }
411
412 /**
413 * \brief Cleanup PCI AER uncorrectable error status
414 * @param dev Pointer to PCI device
415 */
416 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
417 {
418 int pos = 0x100;
419 u32 status, mask;
420
421 pr_info("%s :\n", __func__);
422
423 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
424 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
425 if (dev->error_state == pci_channel_io_normal)
426 status &= ~mask; /* Clear corresponding nonfatal bits */
427 else
428 status &= mask; /* Clear corresponding fatal bits */
429 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
430 }
431
432 /**
433 * \brief Stop all PCI IO to a given device
434 * @param dev Pointer to Octeon device
435 */
436 static void stop_pci_io(struct octeon_device *oct)
437 {
438 /* No more instructions will be forwarded. */
439 atomic_set(&oct->status, OCT_DEV_IN_RESET);
440
441 pci_disable_device(oct->pci_dev);
442
443 /* Disable interrupts */
444 oct->fn_list.disable_interrupt(oct->chip);
445
446 pcierror_quiesce_device(oct);
447
448 /* Release the interrupt line */
449 free_irq(oct->pci_dev->irq, oct);
450
451 if (oct->flags & LIO_FLAG_MSI_ENABLED)
452 pci_disable_msi(oct->pci_dev);
453
454 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
455 lio_get_state_string(&oct->status));
456
457 /* cn63xx_cleanup_aer_uncorrect_error_status(oct->pci_dev); */
458 /* making it a common function for all OCTEON models */
459 cleanup_aer_uncorrect_error_status(oct->pci_dev);
460 }
461
462 /**
463 * \brief called when PCI error is detected
464 * @param pdev Pointer to PCI device
465 * @param state The current pci connection state
466 *
467 * This function is called after a PCI bus error affecting
468 * this device has been detected.
469 */
470 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
471 pci_channel_state_t state)
472 {
473 struct octeon_device *oct = pci_get_drvdata(pdev);
474
475 /* Non-correctable Non-fatal errors */
476 if (state == pci_channel_io_normal) {
477 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
478 cleanup_aer_uncorrect_error_status(oct->pci_dev);
479 return PCI_ERS_RESULT_CAN_RECOVER;
480 }
481
482 /* Non-correctable Fatal errors */
483 dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
484 stop_pci_io(oct);
485
486 /* Always return a DISCONNECT. There is no support for recovery but only
487 * for a clean shutdown.
488 */
489 return PCI_ERS_RESULT_DISCONNECT;
490 }
491
492 /**
493 * \brief mmio handler
494 * @param pdev Pointer to PCI device
495 */
496 static pci_ers_result_t liquidio_pcie_mmio_enabled(
497 struct pci_dev *pdev __attribute__((unused)))
498 {
499 /* We should never hit this since we never ask for a reset for a Fatal
500 * Error. We always return DISCONNECT in io_error above.
501 * But play safe and return RECOVERED for now.
502 */
503 return PCI_ERS_RESULT_RECOVERED;
504 }
505
506 /**
507 * \brief called after the pci bus has been reset.
508 * @param pdev Pointer to PCI device
509 *
510 * Restart the card from scratch, as if from a cold-boot. Implementation
511 * resembles the first-half of the octeon_resume routine.
512 */
513 static pci_ers_result_t liquidio_pcie_slot_reset(
514 struct pci_dev *pdev __attribute__((unused)))
515 {
516 /* We should never hit this since we never ask for a reset for a Fatal
517 * Error. We always return DISCONNECT in io_error above.
518 * But play safe and return RECOVERED for now.
519 */
520 return PCI_ERS_RESULT_RECOVERED;
521 }
522
523 /**
524 * \brief called when traffic can start flowing again.
525 * @param pdev Pointer to PCI device
526 *
527 * This callback is called when the error recovery driver tells us that
528 * its OK to resume normal operation. Implementation resembles the
529 * second-half of the octeon_resume routine.
530 */
531 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused)))
532 {
533 /* Nothing to be done here. */
534 }
535
536 #ifdef CONFIG_PM
537 /**
538 * \brief called when suspending
539 * @param pdev Pointer to PCI device
540 * @param state state to suspend to
541 */
542 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)),
543 pm_message_t state __attribute__((unused)))
544 {
545 return 0;
546 }
547
548 /**
549 * \brief called when resuming
550 * @param pdev Pointer to PCI device
551 */
552 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused)))
553 {
554 return 0;
555 }
556 #endif
557
558 /* For PCI-E Advanced Error Recovery (AER) Interface */
559 static const struct pci_error_handlers liquidio_err_handler = {
560 .error_detected = liquidio_pcie_error_detected,
561 .mmio_enabled = liquidio_pcie_mmio_enabled,
562 .slot_reset = liquidio_pcie_slot_reset,
563 .resume = liquidio_pcie_resume,
564 };
565
566 static const struct pci_device_id liquidio_pci_tbl[] = {
567 { /* 68xx */
568 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
569 },
570 { /* 66xx */
571 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
572 },
573 {
574 0, 0, 0, 0, 0, 0, 0
575 }
576 };
577 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
578
579 static struct pci_driver liquidio_pci_driver = {
580 .name = "LiquidIO",
581 .id_table = liquidio_pci_tbl,
582 .probe = liquidio_probe,
583 .remove = liquidio_remove,
584 .err_handler = &liquidio_err_handler, /* For AER */
585
586 #ifdef CONFIG_PM
587 .suspend = liquidio_suspend,
588 .resume = liquidio_resume,
589 #endif
590
591 };
592
593 /**
594 * \brief register PCI driver
595 */
596 static int liquidio_init_pci(void)
597 {
598 return pci_register_driver(&liquidio_pci_driver);
599 }
600
601 /**
602 * \brief unregister PCI driver
603 */
604 static void liquidio_deinit_pci(void)
605 {
606 pci_unregister_driver(&liquidio_pci_driver);
607 }
608
609 /**
610 * \brief check interface state
611 * @param lio per-network private data
612 * @param state_flag flag state to check
613 */
614 static inline int ifstate_check(struct lio *lio, int state_flag)
615 {
616 return atomic_read(&lio->ifstate) & state_flag;
617 }
618
619 /**
620 * \brief set interface state
621 * @param lio per-network private data
622 * @param state_flag flag state to set
623 */
624 static inline void ifstate_set(struct lio *lio, int state_flag)
625 {
626 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
627 }
628
629 /**
630 * \brief clear interface state
631 * @param lio per-network private data
632 * @param state_flag flag state to clear
633 */
634 static inline void ifstate_reset(struct lio *lio, int state_flag)
635 {
636 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
637 }
638
639 /**
640 * \brief Stop Tx queues
641 * @param netdev network device
642 */
643 static inline void txqs_stop(struct net_device *netdev)
644 {
645 if (netif_is_multiqueue(netdev)) {
646 int i;
647
648 for (i = 0; i < netdev->num_tx_queues; i++)
649 netif_stop_subqueue(netdev, i);
650 } else {
651 netif_stop_queue(netdev);
652 }
653 }
654
655 /**
656 * \brief Start Tx queues
657 * @param netdev network device
658 */
659 static inline void txqs_start(struct net_device *netdev)
660 {
661 if (netif_is_multiqueue(netdev)) {
662 int i;
663
664 for (i = 0; i < netdev->num_tx_queues; i++)
665 netif_start_subqueue(netdev, i);
666 } else {
667 netif_start_queue(netdev);
668 }
669 }
670
671 /**
672 * \brief Wake Tx queues
673 * @param netdev network device
674 */
675 static inline void txqs_wake(struct net_device *netdev)
676 {
677 struct lio *lio = GET_LIO(netdev);
678
679 if (netif_is_multiqueue(netdev)) {
680 int i;
681
682 for (i = 0; i < netdev->num_tx_queues; i++) {
683 int qno = lio->linfo.txpciq[i %
684 (lio->linfo.num_txpciq)].s.q_no;
685
686 if (__netif_subqueue_stopped(netdev, i)) {
687 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno,
688 tx_restart, 1);
689 netif_wake_subqueue(netdev, i);
690 }
691 }
692 } else {
693 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
694 tx_restart, 1);
695 netif_wake_queue(netdev);
696 }
697 }
698
699 /**
700 * \brief Stop Tx queue
701 * @param netdev network device
702 */
703 static void stop_txq(struct net_device *netdev)
704 {
705 txqs_stop(netdev);
706 }
707
708 /**
709 * \brief Start Tx queue
710 * @param netdev network device
711 */
712 static void start_txq(struct net_device *netdev)
713 {
714 struct lio *lio = GET_LIO(netdev);
715
716 if (lio->linfo.link.s.link_up) {
717 txqs_start(netdev);
718 return;
719 }
720 }
721
722 /**
723 * \brief Wake a queue
724 * @param netdev network device
725 * @param q which queue to wake
726 */
727 static inline void wake_q(struct net_device *netdev, int q)
728 {
729 if (netif_is_multiqueue(netdev))
730 netif_wake_subqueue(netdev, q);
731 else
732 netif_wake_queue(netdev);
733 }
734
735 /**
736 * \brief Stop a queue
737 * @param netdev network device
738 * @param q which queue to stop
739 */
740 static inline void stop_q(struct net_device *netdev, int q)
741 {
742 if (netif_is_multiqueue(netdev))
743 netif_stop_subqueue(netdev, q);
744 else
745 netif_stop_queue(netdev);
746 }
747
748 /**
749 * \brief Check Tx queue status, and take appropriate action
750 * @param lio per-network private data
751 * @returns 0 if full, number of queues woken up otherwise
752 */
753 static inline int check_txq_status(struct lio *lio)
754 {
755 int ret_val = 0;
756
757 if (netif_is_multiqueue(lio->netdev)) {
758 int numqs = lio->netdev->num_tx_queues;
759 int q, iq = 0;
760
761 /* check each sub-queue state */
762 for (q = 0; q < numqs; q++) {
763 iq = lio->linfo.txpciq[q %
764 (lio->linfo.num_txpciq)].s.q_no;
765 if (octnet_iq_is_full(lio->oct_dev, iq))
766 continue;
767 if (__netif_subqueue_stopped(lio->netdev, q)) {
768 wake_q(lio->netdev, q);
769 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq,
770 tx_restart, 1);
771 ret_val++;
772 }
773 }
774 } else {
775 if (octnet_iq_is_full(lio->oct_dev, lio->txq))
776 return 0;
777 wake_q(lio->netdev, lio->txq);
778 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
779 tx_restart, 1);
780 ret_val = 1;
781 }
782 return ret_val;
783 }
784
785 /**
786 * Remove the node at the head of the list. The list would be empty at
787 * the end of this call if there are no more nodes in the list.
788 */
789 static inline struct list_head *list_delete_head(struct list_head *root)
790 {
791 struct list_head *node;
792
793 if ((root->prev == root) && (root->next == root))
794 node = NULL;
795 else
796 node = root->next;
797
798 if (node)
799 list_del(node);
800
801 return node;
802 }
803
804 /**
805 * \brief Delete gather lists
806 * @param lio per-network private data
807 */
808 static void delete_glists(struct lio *lio)
809 {
810 struct octnic_gather *g;
811 int i;
812
813 if (!lio->glist)
814 return;
815
816 for (i = 0; i < lio->linfo.num_txpciq; i++) {
817 do {
818 g = (struct octnic_gather *)
819 list_delete_head(&lio->glist[i]);
820 if (g) {
821 if (g->sg) {
822 dma_unmap_single(&lio->oct_dev->
823 pci_dev->dev,
824 g->sg_dma_ptr,
825 g->sg_size,
826 DMA_TO_DEVICE);
827 kfree((void *)((unsigned long)g->sg -
828 g->adjust));
829 }
830 kfree(g);
831 }
832 } while (g);
833 }
834
835 kfree((void *)lio->glist);
836 }
837
838 /**
839 * \brief Setup gather lists
840 * @param lio per-network private data
841 */
842 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs)
843 {
844 int i, j;
845 struct octnic_gather *g;
846
847 lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock),
848 GFP_KERNEL);
849 if (!lio->glist_lock)
850 return 1;
851
852 lio->glist = kcalloc(num_iqs, sizeof(*lio->glist),
853 GFP_KERNEL);
854 if (!lio->glist) {
855 kfree((void *)lio->glist_lock);
856 return 1;
857 }
858
859 for (i = 0; i < num_iqs; i++) {
860 int numa_node = cpu_to_node(i % num_online_cpus());
861
862 spin_lock_init(&lio->glist_lock[i]);
863
864 INIT_LIST_HEAD(&lio->glist[i]);
865
866 for (j = 0; j < lio->tx_qsize; j++) {
867 g = kzalloc_node(sizeof(*g), GFP_KERNEL,
868 numa_node);
869 if (!g)
870 g = kzalloc(sizeof(*g), GFP_KERNEL);
871 if (!g)
872 break;
873
874 g->sg_size = ((ROUNDUP4(OCTNIC_MAX_SG) >> 2) *
875 OCT_SG_ENTRY_SIZE);
876
877 g->sg = kmalloc_node(g->sg_size + 8,
878 GFP_KERNEL, numa_node);
879 if (!g->sg)
880 g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
881 if (!g->sg) {
882 kfree(g);
883 break;
884 }
885
886 /* The gather component should be aligned on 64-bit
887 * boundary
888 */
889 if (((unsigned long)g->sg) & 7) {
890 g->adjust = 8 - (((unsigned long)g->sg) & 7);
891 g->sg = (struct octeon_sg_entry *)
892 ((unsigned long)g->sg + g->adjust);
893 }
894 g->sg_dma_ptr = dma_map_single(&oct->pci_dev->dev,
895 g->sg, g->sg_size,
896 DMA_TO_DEVICE);
897 if (dma_mapping_error(&oct->pci_dev->dev,
898 g->sg_dma_ptr)) {
899 kfree((void *)((unsigned long)g->sg -
900 g->adjust));
901 kfree(g);
902 break;
903 }
904
905 list_add_tail(&g->list, &lio->glist[i]);
906 }
907
908 if (j != lio->tx_qsize) {
909 delete_glists(lio);
910 return 1;
911 }
912 }
913
914 return 0;
915 }
916
917 /**
918 * \brief Print link information
919 * @param netdev network device
920 */
921 static void print_link_info(struct net_device *netdev)
922 {
923 struct lio *lio = GET_LIO(netdev);
924
925 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
926 struct oct_link_info *linfo = &lio->linfo;
927
928 if (linfo->link.s.link_up) {
929 netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
930 linfo->link.s.speed,
931 (linfo->link.s.duplex) ? "Full" : "Half");
932 } else {
933 netif_info(lio, link, lio->netdev, "Link Down\n");
934 }
935 }
936 }
937
938 /**
939 * \brief Update link status
940 * @param netdev network device
941 * @param ls link status structure
942 *
943 * Called on receipt of a link status response from the core application to
944 * update each interface's link status.
945 */
946 static inline void update_link_status(struct net_device *netdev,
947 union oct_link_status *ls)
948 {
949 struct lio *lio = GET_LIO(netdev);
950 int changed = (lio->linfo.link.u64 != ls->u64);
951
952 lio->linfo.link.u64 = ls->u64;
953
954 if ((lio->intf_open) && (changed)) {
955 print_link_info(netdev);
956 lio->link_changes++;
957
958 if (lio->linfo.link.s.link_up) {
959 netif_carrier_on(netdev);
960 /* start_txq(netdev); */
961 txqs_wake(netdev);
962 } else {
963 netif_carrier_off(netdev);
964 stop_txq(netdev);
965 }
966 }
967 }
968
969 /* Runs in interrupt context. */
970 static void update_txq_status(struct octeon_device *oct, int iq_num)
971 {
972 struct net_device *netdev;
973 struct lio *lio;
974 struct octeon_instr_queue *iq = oct->instr_queue[iq_num];
975
976 /*octeon_update_iq_read_idx(oct, iq);*/
977
978 netdev = oct->props[iq->ifidx].netdev;
979
980 /* This is needed because the first IQ does not have
981 * a netdev associated with it.
982 */
983 if (!netdev)
984 return;
985
986 lio = GET_LIO(netdev);
987 if (netif_is_multiqueue(netdev)) {
988 if (__netif_subqueue_stopped(netdev, iq->q_index) &&
989 lio->linfo.link.s.link_up &&
990 (!octnet_iq_is_full(oct, iq_num))) {
991 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num,
992 tx_restart, 1);
993 netif_wake_subqueue(netdev, iq->q_index);
994 } else {
995 if (!octnet_iq_is_full(oct, lio->txq)) {
996 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev,
997 lio->txq,
998 tx_restart, 1);
999 wake_q(netdev, lio->txq);
1000 }
1001 }
1002 }
1003 }
1004
1005 /**
1006 * \brief Droq packet processor sceduler
1007 * @param oct octeon device
1008 */
1009 static
1010 void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
1011 {
1012 struct octeon_device_priv *oct_priv =
1013 (struct octeon_device_priv *)oct->priv;
1014 u64 oq_no;
1015 struct octeon_droq *droq;
1016
1017 if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
1018 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct);
1019 oq_no++) {
1020 if (!(oct->droq_intr & (1ULL << oq_no)))
1021 continue;
1022
1023 droq = oct->droq[oq_no];
1024
1025 if (droq->ops.poll_mode) {
1026 droq->ops.napi_fn(droq);
1027 oct_priv->napi_mask |= (1 << oq_no);
1028 } else {
1029 tasklet_schedule(&oct_priv->droq_tasklet);
1030 }
1031 }
1032 }
1033 }
1034
1035 /**
1036 * \brief Interrupt handler for octeon
1037 * @param irq unused
1038 * @param dev octeon device
1039 */
1040 static
1041 irqreturn_t liquidio_intr_handler(int irq __attribute__((unused)), void *dev)
1042 {
1043 struct octeon_device *oct = (struct octeon_device *)dev;
1044 irqreturn_t ret;
1045
1046 /* Disable our interrupts for the duration of ISR */
1047 oct->fn_list.disable_interrupt(oct->chip);
1048
1049 ret = oct->fn_list.process_interrupt_regs(oct);
1050
1051 if (ret == IRQ_HANDLED)
1052 liquidio_schedule_droq_pkt_handlers(oct);
1053
1054 /* Re-enable our interrupts */
1055 if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
1056 oct->fn_list.enable_interrupt(oct->chip);
1057
1058 return ret;
1059 }
1060
1061 /**
1062 * \brief Setup interrupt for octeon device
1063 * @param oct octeon device
1064 *
1065 * Enable interrupt in Octeon device as given in the PCI interrupt mask.
1066 */
1067 static int octeon_setup_interrupt(struct octeon_device *oct)
1068 {
1069 int irqret, err;
1070
1071 err = pci_enable_msi(oct->pci_dev);
1072 if (err)
1073 dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
1074 err);
1075 else
1076 oct->flags |= LIO_FLAG_MSI_ENABLED;
1077
1078 irqret = request_irq(oct->pci_dev->irq, liquidio_intr_handler,
1079 IRQF_SHARED, "octeon", oct);
1080 if (irqret) {
1081 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1082 pci_disable_msi(oct->pci_dev);
1083 dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
1084 irqret);
1085 return 1;
1086 }
1087
1088 return 0;
1089 }
1090
1091 /**
1092 * \brief PCI probe handler
1093 * @param pdev PCI device structure
1094 * @param ent unused
1095 */
1096 static int
1097 liquidio_probe(struct pci_dev *pdev,
1098 const struct pci_device_id *ent __attribute__((unused)))
1099 {
1100 struct octeon_device *oct_dev = NULL;
1101 struct handshake *hs;
1102
1103 oct_dev = octeon_allocate_device(pdev->device,
1104 sizeof(struct octeon_device_priv));
1105 if (!oct_dev) {
1106 dev_err(&pdev->dev, "Unable to allocate device\n");
1107 return -ENOMEM;
1108 }
1109
1110 dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1111 (u32)pdev->vendor, (u32)pdev->device);
1112
1113 /* Assign octeon_device for this device to the private data area. */
1114 pci_set_drvdata(pdev, oct_dev);
1115
1116 /* set linux specific device pointer */
1117 oct_dev->pci_dev = (void *)pdev;
1118
1119 hs = &handshake[oct_dev->octeon_id];
1120 init_completion(&hs->init);
1121 init_completion(&hs->started);
1122 hs->pci_dev = pdev;
1123
1124 if (oct_dev->octeon_id == 0)
1125 /* first LiquidIO NIC is detected */
1126 complete(&first_stage);
1127
1128 if (octeon_device_init(oct_dev)) {
1129 liquidio_remove(pdev);
1130 return -ENOMEM;
1131 }
1132
1133 oct_dev->rx_pause = 1;
1134 oct_dev->tx_pause = 1;
1135
1136 dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1137
1138 return 0;
1139 }
1140
1141 /**
1142 *\brief Destroy resources associated with octeon device
1143 * @param pdev PCI device structure
1144 * @param ent unused
1145 */
1146 static void octeon_destroy_resources(struct octeon_device *oct)
1147 {
1148 int i;
1149 struct octeon_device_priv *oct_priv =
1150 (struct octeon_device_priv *)oct->priv;
1151
1152 struct handshake *hs;
1153
1154 switch (atomic_read(&oct->status)) {
1155 case OCT_DEV_RUNNING:
1156 case OCT_DEV_CORE_OK:
1157
1158 /* No more instructions will be forwarded. */
1159 atomic_set(&oct->status, OCT_DEV_IN_RESET);
1160
1161 oct->app_mode = CVM_DRV_INVALID_APP;
1162 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1163 lio_get_state_string(&oct->status));
1164
1165 schedule_timeout_uninterruptible(HZ / 10);
1166
1167 /* fallthrough */
1168 case OCT_DEV_HOST_OK:
1169
1170 /* fallthrough */
1171 case OCT_DEV_CONSOLE_INIT_DONE:
1172 /* Remove any consoles */
1173 octeon_remove_consoles(oct);
1174
1175 /* fallthrough */
1176 case OCT_DEV_IO_QUEUES_DONE:
1177 if (wait_for_pending_requests(oct))
1178 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1179
1180 if (lio_wait_for_instr_fetch(oct))
1181 dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1182
1183 /* Disable the input and output queues now. No more packets will
1184 * arrive from Octeon, but we should wait for all packet
1185 * processing to finish.
1186 */
1187 oct->fn_list.disable_io_queues(oct);
1188
1189 if (lio_wait_for_oq_pkts(oct))
1190 dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1191
1192 /* Disable interrupts */
1193 oct->fn_list.disable_interrupt(oct->chip);
1194
1195 /* Release the interrupt line */
1196 free_irq(oct->pci_dev->irq, oct);
1197
1198 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1199 pci_disable_msi(oct->pci_dev);
1200
1201 /* fallthrough */
1202 case OCT_DEV_IN_RESET:
1203 case OCT_DEV_DROQ_INIT_DONE:
1204 /*atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);*/
1205 mdelay(100);
1206 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
1207 if (!(oct->io_qmask.oq & (1ULL << i)))
1208 continue;
1209 octeon_delete_droq(oct, i);
1210 }
1211
1212 /* Force any pending handshakes to complete */
1213 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1214 hs = &handshake[i];
1215
1216 if (hs->pci_dev) {
1217 handshake[oct->octeon_id].init_ok = 0;
1218 complete(&handshake[oct->octeon_id].init);
1219 handshake[oct->octeon_id].started_ok = 0;
1220 complete(&handshake[oct->octeon_id].started);
1221 }
1222 }
1223
1224 /* fallthrough */
1225 case OCT_DEV_RESP_LIST_INIT_DONE:
1226 octeon_delete_response_list(oct);
1227
1228 /* fallthrough */
1229 case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1230 octeon_free_sc_buffer_pool(oct);
1231
1232 /* fallthrough */
1233 case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1234 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
1235 if (!(oct->io_qmask.iq & (1ULL << i)))
1236 continue;
1237 octeon_delete_instr_queue(oct, i);
1238 }
1239
1240 /* fallthrough */
1241 case OCT_DEV_DISPATCH_INIT_DONE:
1242 octeon_delete_dispatch_list(oct);
1243 cancel_delayed_work_sync(&oct->nic_poll_work.work);
1244
1245 /* fallthrough */
1246 case OCT_DEV_PCI_MAP_DONE:
1247
1248 /* Soft reset the octeon device before exiting */
1249 oct->fn_list.soft_reset(oct);
1250
1251 octeon_unmap_pci_barx(oct, 0);
1252 octeon_unmap_pci_barx(oct, 1);
1253
1254 /* fallthrough */
1255 case OCT_DEV_BEGIN_STATE:
1256 /* Disable the device, releasing the PCI INT */
1257 pci_disable_device(oct->pci_dev);
1258
1259 /* Nothing to be done here either */
1260 break;
1261 } /* end switch (oct->status) */
1262
1263 tasklet_kill(&oct_priv->droq_tasklet);
1264 }
1265
1266 /**
1267 * \brief Send Rx control command
1268 * @param lio per-network private data
1269 * @param start_stop whether to start or stop
1270 */
1271 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1272 {
1273 struct octnic_ctrl_pkt nctrl;
1274
1275 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1276
1277 nctrl.ncmd.s.cmd = OCTNET_CMD_RX_CTL;
1278 nctrl.ncmd.s.param1 = start_stop;
1279 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
1280 nctrl.netpndev = (u64)lio->netdev;
1281
1282 if (octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl) < 0)
1283 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1284 }
1285
1286 /**
1287 * \brief Destroy NIC device interface
1288 * @param oct octeon device
1289 * @param ifidx which interface to destroy
1290 *
1291 * Cleanup associated with each interface for an Octeon device when NIC
1292 * module is being unloaded or if initialization fails during load.
1293 */
1294 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1295 {
1296 struct net_device *netdev = oct->props[ifidx].netdev;
1297 struct lio *lio;
1298 struct napi_struct *napi, *n;
1299
1300 if (!netdev) {
1301 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1302 __func__, ifidx);
1303 return;
1304 }
1305
1306 lio = GET_LIO(netdev);
1307
1308 dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1309
1310 send_rx_ctrl_cmd(lio, 0);
1311
1312 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1313 txqs_stop(netdev);
1314
1315 if (oct->props[lio->ifidx].napi_enabled == 1) {
1316 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1317 napi_disable(napi);
1318
1319 oct->props[lio->ifidx].napi_enabled = 0;
1320 }
1321
1322 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1323 unregister_netdev(netdev);
1324
1325 delete_glists(lio);
1326
1327 free_netdev(netdev);
1328
1329 oct->props[ifidx].gmxport = -1;
1330
1331 oct->props[ifidx].netdev = NULL;
1332 }
1333
1334 /**
1335 * \brief Stop complete NIC functionality
1336 * @param oct octeon device
1337 */
1338 static int liquidio_stop_nic_module(struct octeon_device *oct)
1339 {
1340 int i, j;
1341 struct lio *lio;
1342
1343 dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1344 if (!oct->ifcount) {
1345 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1346 return 1;
1347 }
1348
1349 spin_lock_bh(&oct->cmd_resp_wqlock);
1350 oct->cmd_resp_state = OCT_DRV_OFFLINE;
1351 spin_unlock_bh(&oct->cmd_resp_wqlock);
1352
1353 for (i = 0; i < oct->ifcount; i++) {
1354 lio = GET_LIO(oct->props[i].netdev);
1355 for (j = 0; j < lio->linfo.num_rxpciq; j++)
1356 octeon_unregister_droq_ops(oct,
1357 lio->linfo.rxpciq[j].s.q_no);
1358 }
1359
1360 for (i = 0; i < oct->ifcount; i++)
1361 liquidio_destroy_nic_device(oct, i);
1362
1363 dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1364 return 0;
1365 }
1366
1367 /**
1368 * \brief Cleans up resources at unload time
1369 * @param pdev PCI device structure
1370 */
1371 static void liquidio_remove(struct pci_dev *pdev)
1372 {
1373 struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1374
1375 dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1376
1377 if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1378 liquidio_stop_nic_module(oct_dev);
1379
1380 /* Reset the octeon device and cleanup all memory allocated for
1381 * the octeon device by driver.
1382 */
1383 octeon_destroy_resources(oct_dev);
1384
1385 dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1386
1387 /* This octeon device has been removed. Update the global
1388 * data structure to reflect this. Free the device structure.
1389 */
1390 octeon_free_device_mem(oct_dev);
1391 }
1392
1393 /**
1394 * \brief Identify the Octeon device and to map the BAR address space
1395 * @param oct octeon device
1396 */
1397 static int octeon_chip_specific_setup(struct octeon_device *oct)
1398 {
1399 u32 dev_id, rev_id;
1400 int ret = 1;
1401 char *s;
1402
1403 pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1404 pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1405 oct->rev_id = rev_id & 0xff;
1406
1407 switch (dev_id) {
1408 case OCTEON_CN68XX_PCIID:
1409 oct->chip_id = OCTEON_CN68XX;
1410 ret = lio_setup_cn68xx_octeon_device(oct);
1411 s = "CN68XX";
1412 break;
1413
1414 case OCTEON_CN66XX_PCIID:
1415 oct->chip_id = OCTEON_CN66XX;
1416 ret = lio_setup_cn66xx_octeon_device(oct);
1417 s = "CN66XX";
1418 break;
1419
1420 default:
1421 s = "?";
1422 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1423 dev_id);
1424 }
1425
1426 if (!ret)
1427 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s,
1428 OCTEON_MAJOR_REV(oct),
1429 OCTEON_MINOR_REV(oct),
1430 octeon_get_conf(oct)->card_name,
1431 LIQUIDIO_VERSION);
1432
1433 return ret;
1434 }
1435
1436 /**
1437 * \brief PCI initialization for each Octeon device.
1438 * @param oct octeon device
1439 */
1440 static int octeon_pci_os_setup(struct octeon_device *oct)
1441 {
1442 /* setup PCI stuff first */
1443 if (pci_enable_device(oct->pci_dev)) {
1444 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1445 return 1;
1446 }
1447
1448 if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1449 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1450 return 1;
1451 }
1452
1453 /* Enable PCI DMA Master. */
1454 pci_set_master(oct->pci_dev);
1455
1456 return 0;
1457 }
1458
1459 static inline int skb_iq(struct lio *lio, struct sk_buff *skb)
1460 {
1461 int q = 0;
1462
1463 if (netif_is_multiqueue(lio->netdev))
1464 q = skb->queue_mapping % lio->linfo.num_txpciq;
1465
1466 return q;
1467 }
1468
1469 /**
1470 * \brief Check Tx queue state for a given network buffer
1471 * @param lio per-network private data
1472 * @param skb network buffer
1473 */
1474 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1475 {
1476 int q = 0, iq = 0;
1477
1478 if (netif_is_multiqueue(lio->netdev)) {
1479 q = skb->queue_mapping;
1480 iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no;
1481 } else {
1482 iq = lio->txq;
1483 q = iq;
1484 }
1485
1486 if (octnet_iq_is_full(lio->oct_dev, iq))
1487 return 0;
1488
1489 if (__netif_subqueue_stopped(lio->netdev, q)) {
1490 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1);
1491 wake_q(lio->netdev, q);
1492 }
1493 return 1;
1494 }
1495
1496 /**
1497 * \brief Unmap and free network buffer
1498 * @param buf buffer
1499 */
1500 static void free_netbuf(void *buf)
1501 {
1502 struct sk_buff *skb;
1503 struct octnet_buf_free_info *finfo;
1504 struct lio *lio;
1505
1506 finfo = (struct octnet_buf_free_info *)buf;
1507 skb = finfo->skb;
1508 lio = finfo->lio;
1509
1510 dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1511 DMA_TO_DEVICE);
1512
1513 check_txq_state(lio, skb);
1514
1515 tx_buffer_free(skb);
1516 }
1517
1518 /**
1519 * \brief Unmap and free gather buffer
1520 * @param buf buffer
1521 */
1522 static void free_netsgbuf(void *buf)
1523 {
1524 struct octnet_buf_free_info *finfo;
1525 struct sk_buff *skb;
1526 struct lio *lio;
1527 struct octnic_gather *g;
1528 int i, frags, iq;
1529
1530 finfo = (struct octnet_buf_free_info *)buf;
1531 skb = finfo->skb;
1532 lio = finfo->lio;
1533 g = finfo->g;
1534 frags = skb_shinfo(skb)->nr_frags;
1535
1536 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1537 g->sg[0].ptr[0], (skb->len - skb->data_len),
1538 DMA_TO_DEVICE);
1539
1540 i = 1;
1541 while (frags--) {
1542 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1543
1544 pci_unmap_page((lio->oct_dev)->pci_dev,
1545 g->sg[(i >> 2)].ptr[(i & 3)],
1546 frag->size, DMA_TO_DEVICE);
1547 i++;
1548 }
1549
1550 dma_sync_single_for_cpu(&lio->oct_dev->pci_dev->dev,
1551 g->sg_dma_ptr, g->sg_size, DMA_TO_DEVICE);
1552
1553 iq = skb_iq(lio, skb);
1554 spin_lock(&lio->glist_lock[iq]);
1555 list_add_tail(&g->list, &lio->glist[iq]);
1556 spin_unlock(&lio->glist_lock[iq]);
1557
1558 check_txq_state(lio, skb); /* mq support: sub-queue state check */
1559
1560 tx_buffer_free(skb);
1561 }
1562
1563 /**
1564 * \brief Unmap and free gather buffer with response
1565 * @param buf buffer
1566 */
1567 static void free_netsgbuf_with_resp(void *buf)
1568 {
1569 struct octeon_soft_command *sc;
1570 struct octnet_buf_free_info *finfo;
1571 struct sk_buff *skb;
1572 struct lio *lio;
1573 struct octnic_gather *g;
1574 int i, frags, iq;
1575
1576 sc = (struct octeon_soft_command *)buf;
1577 skb = (struct sk_buff *)sc->callback_arg;
1578 finfo = (struct octnet_buf_free_info *)&skb->cb;
1579
1580 lio = finfo->lio;
1581 g = finfo->g;
1582 frags = skb_shinfo(skb)->nr_frags;
1583
1584 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1585 g->sg[0].ptr[0], (skb->len - skb->data_len),
1586 DMA_TO_DEVICE);
1587
1588 i = 1;
1589 while (frags--) {
1590 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1591
1592 pci_unmap_page((lio->oct_dev)->pci_dev,
1593 g->sg[(i >> 2)].ptr[(i & 3)],
1594 frag->size, DMA_TO_DEVICE);
1595 i++;
1596 }
1597
1598 dma_sync_single_for_cpu(&lio->oct_dev->pci_dev->dev,
1599 g->sg_dma_ptr, g->sg_size, DMA_TO_DEVICE);
1600
1601 iq = skb_iq(lio, skb);
1602
1603 spin_lock(&lio->glist_lock[iq]);
1604 list_add_tail(&g->list, &lio->glist[iq]);
1605 spin_unlock(&lio->glist_lock[iq]);
1606
1607 /* Don't free the skb yet */
1608
1609 check_txq_state(lio, skb);
1610 }
1611
1612 /**
1613 * \brief Adjust ptp frequency
1614 * @param ptp PTP clock info
1615 * @param ppb how much to adjust by, in parts-per-billion
1616 */
1617 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1618 {
1619 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1620 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1621 u64 comp, delta;
1622 unsigned long flags;
1623 bool neg_adj = false;
1624
1625 if (ppb < 0) {
1626 neg_adj = true;
1627 ppb = -ppb;
1628 }
1629
1630 /* The hardware adds the clock compensation value to the
1631 * PTP clock on every coprocessor clock cycle, so we
1632 * compute the delta in terms of coprocessor clocks.
1633 */
1634 delta = (u64)ppb << 32;
1635 do_div(delta, oct->coproc_clock_rate);
1636
1637 spin_lock_irqsave(&lio->ptp_lock, flags);
1638 comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1639 if (neg_adj)
1640 comp -= delta;
1641 else
1642 comp += delta;
1643 lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1644 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1645
1646 return 0;
1647 }
1648
1649 /**
1650 * \brief Adjust ptp time
1651 * @param ptp PTP clock info
1652 * @param delta how much to adjust by, in nanosecs
1653 */
1654 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1655 {
1656 unsigned long flags;
1657 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1658
1659 spin_lock_irqsave(&lio->ptp_lock, flags);
1660 lio->ptp_adjust += delta;
1661 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1662
1663 return 0;
1664 }
1665
1666 /**
1667 * \brief Get hardware clock time, including any adjustment
1668 * @param ptp PTP clock info
1669 * @param ts timespec
1670 */
1671 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
1672 struct timespec64 *ts)
1673 {
1674 u64 ns;
1675 unsigned long flags;
1676 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1677 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1678
1679 spin_lock_irqsave(&lio->ptp_lock, flags);
1680 ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
1681 ns += lio->ptp_adjust;
1682 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1683
1684 *ts = ns_to_timespec64(ns);
1685
1686 return 0;
1687 }
1688
1689 /**
1690 * \brief Set hardware clock time. Reset adjustment
1691 * @param ptp PTP clock info
1692 * @param ts timespec
1693 */
1694 static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
1695 const struct timespec64 *ts)
1696 {
1697 u64 ns;
1698 unsigned long flags;
1699 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1700 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1701
1702 ns = timespec_to_ns(ts);
1703
1704 spin_lock_irqsave(&lio->ptp_lock, flags);
1705 lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
1706 lio->ptp_adjust = 0;
1707 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1708
1709 return 0;
1710 }
1711
1712 /**
1713 * \brief Check if PTP is enabled
1714 * @param ptp PTP clock info
1715 * @param rq request
1716 * @param on is it on
1717 */
1718 static int
1719 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)),
1720 struct ptp_clock_request *rq __attribute__((unused)),
1721 int on __attribute__((unused)))
1722 {
1723 return -EOPNOTSUPP;
1724 }
1725
1726 /**
1727 * \brief Open PTP clock source
1728 * @param netdev network device
1729 */
1730 static void oct_ptp_open(struct net_device *netdev)
1731 {
1732 struct lio *lio = GET_LIO(netdev);
1733 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1734
1735 spin_lock_init(&lio->ptp_lock);
1736
1737 snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
1738 lio->ptp_info.owner = THIS_MODULE;
1739 lio->ptp_info.max_adj = 250000000;
1740 lio->ptp_info.n_alarm = 0;
1741 lio->ptp_info.n_ext_ts = 0;
1742 lio->ptp_info.n_per_out = 0;
1743 lio->ptp_info.pps = 0;
1744 lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
1745 lio->ptp_info.adjtime = liquidio_ptp_adjtime;
1746 lio->ptp_info.gettime64 = liquidio_ptp_gettime;
1747 lio->ptp_info.settime64 = liquidio_ptp_settime;
1748 lio->ptp_info.enable = liquidio_ptp_enable;
1749
1750 lio->ptp_adjust = 0;
1751
1752 lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
1753 &oct->pci_dev->dev);
1754
1755 if (IS_ERR(lio->ptp_clock))
1756 lio->ptp_clock = NULL;
1757 }
1758
1759 /**
1760 * \brief Init PTP clock
1761 * @param oct octeon device
1762 */
1763 static void liquidio_ptp_init(struct octeon_device *oct)
1764 {
1765 u64 clock_comp, cfg;
1766
1767 clock_comp = (u64)NSEC_PER_SEC << 32;
1768 do_div(clock_comp, oct->coproc_clock_rate);
1769 lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1770
1771 /* Enable */
1772 cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
1773 lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
1774 }
1775
1776 /**
1777 * \brief Load firmware to device
1778 * @param oct octeon device
1779 *
1780 * Maps device to firmware filename, requests firmware, and downloads it
1781 */
1782 static int load_firmware(struct octeon_device *oct)
1783 {
1784 int ret = 0;
1785 const struct firmware *fw;
1786 char fw_name[LIO_MAX_FW_FILENAME_LEN];
1787 char *tmp_fw_type;
1788
1789 if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
1790 sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
1791 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
1792 return ret;
1793 }
1794
1795 if (fw_type[0] == '\0')
1796 tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
1797 else
1798 tmp_fw_type = fw_type;
1799
1800 sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
1801 octeon_get_conf(oct)->card_name, tmp_fw_type,
1802 LIO_FW_NAME_SUFFIX);
1803
1804 ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
1805 if (ret) {
1806 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
1807 fw_name);
1808 release_firmware(fw);
1809 return ret;
1810 }
1811
1812 ret = octeon_download_firmware(oct, fw->data, fw->size);
1813
1814 release_firmware(fw);
1815
1816 return ret;
1817 }
1818
1819 /**
1820 * \brief Setup output queue
1821 * @param oct octeon device
1822 * @param q_no which queue
1823 * @param num_descs how many descriptors
1824 * @param desc_size size of each descriptor
1825 * @param app_ctx application context
1826 */
1827 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
1828 int desc_size, void *app_ctx)
1829 {
1830 int ret_val = 0;
1831
1832 dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
1833 /* droq creation and local register settings. */
1834 ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
1835 if (ret_val < 0)
1836 return ret_val;
1837
1838 if (ret_val == 1) {
1839 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
1840 return 0;
1841 }
1842 /* tasklet creation for the droq */
1843
1844 /* Enable the droq queues */
1845 octeon_set_droq_pkt_op(oct, q_no, 1);
1846
1847 /* Send Credit for Octeon Output queues. Credits are always
1848 * sent after the output queue is enabled.
1849 */
1850 writel(oct->droq[q_no]->max_count,
1851 oct->droq[q_no]->pkts_credit_reg);
1852
1853 return ret_val;
1854 }
1855
1856 /**
1857 * \brief Callback for getting interface configuration
1858 * @param status status of request
1859 * @param buf pointer to resp structure
1860 */
1861 static void if_cfg_callback(struct octeon_device *oct,
1862 u32 status __attribute__((unused)),
1863 void *buf)
1864 {
1865 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1866 struct liquidio_if_cfg_resp *resp;
1867 struct liquidio_if_cfg_context *ctx;
1868
1869 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
1870 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
1871
1872 oct = lio_get_device(ctx->octeon_id);
1873 if (resp->status)
1874 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
1875 CVM_CAST64(resp->status));
1876 WRITE_ONCE(ctx->cond, 1);
1877
1878 snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s",
1879 resp->cfg_info.liquidio_firmware_version);
1880
1881 /* This barrier is required to be sure that the response has been
1882 * written fully before waking up the handler
1883 */
1884 wmb();
1885
1886 wake_up_interruptible(&ctx->wc);
1887 }
1888
1889 /**
1890 * \brief Select queue based on hash
1891 * @param dev Net device
1892 * @param skb sk_buff structure
1893 * @returns selected queue number
1894 */
1895 static u16 select_q(struct net_device *dev, struct sk_buff *skb,
1896 void *accel_priv __attribute__((unused)),
1897 select_queue_fallback_t fallback __attribute__((unused)))
1898 {
1899 u32 qindex = 0;
1900 struct lio *lio;
1901
1902 lio = GET_LIO(dev);
1903 qindex = skb_tx_hash(dev, skb);
1904
1905 return (u16)(qindex % (lio->linfo.num_txpciq));
1906 }
1907
1908 /** Routine to push packets arriving on Octeon interface upto network layer.
1909 * @param oct_id - octeon device id.
1910 * @param skbuff - skbuff struct to be passed to network layer.
1911 * @param len - size of total data received.
1912 * @param rh - Control header associated with the packet
1913 * @param param - additional control data with the packet
1914 * @param arg - farg registered in droq_ops
1915 */
1916 static void
1917 liquidio_push_packet(u32 octeon_id __attribute__((unused)),
1918 void *skbuff,
1919 u32 len,
1920 union octeon_rh *rh,
1921 void *param,
1922 void *arg)
1923 {
1924 struct napi_struct *napi = param;
1925 struct sk_buff *skb = (struct sk_buff *)skbuff;
1926 struct skb_shared_hwtstamps *shhwtstamps;
1927 u64 ns;
1928 u16 vtag = 0;
1929 struct net_device *netdev = (struct net_device *)arg;
1930 struct octeon_droq *droq = container_of(param, struct octeon_droq,
1931 napi);
1932 if (netdev) {
1933 int packet_was_received;
1934 struct lio *lio = GET_LIO(netdev);
1935 struct octeon_device *oct = lio->oct_dev;
1936
1937 /* Do not proceed if the interface is not in RUNNING state. */
1938 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
1939 recv_buffer_free(skb);
1940 droq->stats.rx_dropped++;
1941 return;
1942 }
1943
1944 skb->dev = netdev;
1945
1946 skb_record_rx_queue(skb, droq->q_no);
1947 if (likely(len > MIN_SKB_SIZE)) {
1948 struct octeon_skb_page_info *pg_info;
1949 unsigned char *va;
1950
1951 pg_info = ((struct octeon_skb_page_info *)(skb->cb));
1952 if (pg_info->page) {
1953 /* For Paged allocation use the frags */
1954 va = page_address(pg_info->page) +
1955 pg_info->page_offset;
1956 memcpy(skb->data, va, MIN_SKB_SIZE);
1957 skb_put(skb, MIN_SKB_SIZE);
1958 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1959 pg_info->page,
1960 pg_info->page_offset +
1961 MIN_SKB_SIZE,
1962 len - MIN_SKB_SIZE,
1963 LIO_RXBUFFER_SZ);
1964 }
1965 } else {
1966 struct octeon_skb_page_info *pg_info =
1967 ((struct octeon_skb_page_info *)(skb->cb));
1968 skb_copy_to_linear_data(skb, page_address(pg_info->page)
1969 + pg_info->page_offset, len);
1970 skb_put(skb, len);
1971 put_page(pg_info->page);
1972 }
1973
1974 if (((oct->chip_id == OCTEON_CN66XX) ||
1975 (oct->chip_id == OCTEON_CN68XX)) &&
1976 ptp_enable) {
1977 if (rh->r_dh.has_hwtstamp) {
1978 /* timestamp is included from the hardware at
1979 * the beginning of the packet.
1980 */
1981 if (ifstate_check
1982 (lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
1983 /* Nanoseconds are in the first 64-bits
1984 * of the packet.
1985 */
1986 memcpy(&ns, (skb->data), sizeof(ns));
1987 shhwtstamps = skb_hwtstamps(skb);
1988 shhwtstamps->hwtstamp =
1989 ns_to_ktime(ns +
1990 lio->ptp_adjust);
1991 }
1992 skb_pull(skb, sizeof(ns));
1993 }
1994 }
1995
1996 skb->protocol = eth_type_trans(skb, skb->dev);
1997 if ((netdev->features & NETIF_F_RXCSUM) &&
1998 (((rh->r_dh.encap_on) &&
1999 (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) ||
2000 (!(rh->r_dh.encap_on) &&
2001 (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED))))
2002 /* checksum has already been verified */
2003 skb->ip_summed = CHECKSUM_UNNECESSARY;
2004 else
2005 skb->ip_summed = CHECKSUM_NONE;
2006
2007 /* Setting Encapsulation field on basis of status received
2008 * from the firmware
2009 */
2010 if (rh->r_dh.encap_on) {
2011 skb->encapsulation = 1;
2012 skb->csum_level = 1;
2013 droq->stats.rx_vxlan++;
2014 }
2015
2016 /* inbound VLAN tag */
2017 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
2018 (rh->r_dh.vlan != 0)) {
2019 u16 vid = rh->r_dh.vlan;
2020 u16 priority = rh->r_dh.priority;
2021
2022 vtag = priority << 13 | vid;
2023 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
2024 }
2025
2026 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
2027
2028 if (packet_was_received) {
2029 droq->stats.rx_bytes_received += len;
2030 droq->stats.rx_pkts_received++;
2031 netdev->last_rx = jiffies;
2032 } else {
2033 droq->stats.rx_dropped++;
2034 netif_info(lio, rx_err, lio->netdev,
2035 "droq:%d error rx_dropped:%llu\n",
2036 droq->q_no, droq->stats.rx_dropped);
2037 }
2038
2039 } else {
2040 recv_buffer_free(skb);
2041 }
2042 }
2043
2044 /**
2045 * \brief wrapper for calling napi_schedule
2046 * @param param parameters to pass to napi_schedule
2047 *
2048 * Used when scheduling on different CPUs
2049 */
2050 static void napi_schedule_wrapper(void *param)
2051 {
2052 struct napi_struct *napi = param;
2053
2054 napi_schedule(napi);
2055 }
2056
2057 /**
2058 * \brief callback when receive interrupt occurs and we are in NAPI mode
2059 * @param arg pointer to octeon output queue
2060 */
2061 static void liquidio_napi_drv_callback(void *arg)
2062 {
2063 struct octeon_droq *droq = arg;
2064 int this_cpu = smp_processor_id();
2065
2066 if (droq->cpu_id == this_cpu) {
2067 napi_schedule(&droq->napi);
2068 } else {
2069 struct call_single_data *csd = &droq->csd;
2070
2071 csd->func = napi_schedule_wrapper;
2072 csd->info = &droq->napi;
2073 csd->flags = 0;
2074
2075 smp_call_function_single_async(droq->cpu_id, csd);
2076 }
2077 }
2078
2079 /**
2080 * \brief Entry point for NAPI polling
2081 * @param napi NAPI structure
2082 * @param budget maximum number of items to process
2083 */
2084 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
2085 {
2086 struct octeon_droq *droq;
2087 int work_done;
2088 int tx_done = 0, iq_no;
2089 struct octeon_instr_queue *iq;
2090 struct octeon_device *oct;
2091
2092 droq = container_of(napi, struct octeon_droq, napi);
2093 oct = droq->oct_dev;
2094 iq_no = droq->q_no;
2095 /* Handle Droq descriptors */
2096 work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
2097 POLL_EVENT_PROCESS_PKTS,
2098 budget);
2099
2100 /* Flush the instruction queue */
2101 iq = oct->instr_queue[iq_no];
2102 if (iq) {
2103 /* Process iq buffers with in the budget limits */
2104 tx_done = octeon_flush_iq(oct, iq, 1, budget);
2105 /* Update iq read-index rather than waiting for next interrupt.
2106 * Return back if tx_done is false.
2107 */
2108 update_txq_status(oct, iq_no);
2109 /*tx_done = (iq->flush_index == iq->octeon_read_index);*/
2110 } else {
2111 dev_err(&oct->pci_dev->dev, "%s: iq (%d) num invalid\n",
2112 __func__, iq_no);
2113 }
2114
2115 if ((work_done < budget) && (tx_done)) {
2116 napi_complete(napi);
2117 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
2118 POLL_EVENT_ENABLE_INTR, 0);
2119 return 0;
2120 }
2121
2122 return (!tx_done) ? (budget) : (work_done);
2123 }
2124
2125 /**
2126 * \brief Setup input and output queues
2127 * @param octeon_dev octeon device
2128 * @param ifidx Interface Index
2129 *
2130 * Note: Queues are with respect to the octeon device. Thus
2131 * an input queue is for egress packets, and output queues
2132 * are for ingress packets.
2133 */
2134 static inline int setup_io_queues(struct octeon_device *octeon_dev,
2135 int ifidx)
2136 {
2137 struct octeon_droq_ops droq_ops;
2138 struct net_device *netdev;
2139 static int cpu_id;
2140 static int cpu_id_modulus;
2141 struct octeon_droq *droq;
2142 struct napi_struct *napi;
2143 int q, q_no, retval = 0;
2144 struct lio *lio;
2145 int num_tx_descs;
2146
2147 netdev = octeon_dev->props[ifidx].netdev;
2148
2149 lio = GET_LIO(netdev);
2150
2151 memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
2152
2153 droq_ops.fptr = liquidio_push_packet;
2154 droq_ops.farg = (void *)netdev;
2155
2156 droq_ops.poll_mode = 1;
2157 droq_ops.napi_fn = liquidio_napi_drv_callback;
2158 cpu_id = 0;
2159 cpu_id_modulus = num_present_cpus();
2160
2161 /* set up DROQs. */
2162 for (q = 0; q < lio->linfo.num_rxpciq; q++) {
2163 q_no = lio->linfo.rxpciq[q].s.q_no;
2164 dev_dbg(&octeon_dev->pci_dev->dev,
2165 "setup_io_queues index:%d linfo.rxpciq.s.q_no:%d\n",
2166 q, q_no);
2167 retval = octeon_setup_droq(octeon_dev, q_no,
2168 CFG_GET_NUM_RX_DESCS_NIC_IF
2169 (octeon_get_conf(octeon_dev),
2170 lio->ifidx),
2171 CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
2172 (octeon_get_conf(octeon_dev),
2173 lio->ifidx), NULL);
2174 if (retval) {
2175 dev_err(&octeon_dev->pci_dev->dev,
2176 " %s : Runtime DROQ(RxQ) creation failed.\n",
2177 __func__);
2178 return 1;
2179 }
2180
2181 droq = octeon_dev->droq[q_no];
2182 napi = &droq->napi;
2183 dev_dbg(&octeon_dev->pci_dev->dev,
2184 "netif_napi_add netdev:%llx oct:%llx\n",
2185 (u64)netdev,
2186 (u64)octeon_dev);
2187 netif_napi_add(netdev, napi, liquidio_napi_poll, 64);
2188
2189 /* designate a CPU for this droq */
2190 droq->cpu_id = cpu_id;
2191 cpu_id++;
2192 if (cpu_id >= cpu_id_modulus)
2193 cpu_id = 0;
2194
2195 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
2196 }
2197
2198 /* set up IQs. */
2199 for (q = 0; q < lio->linfo.num_txpciq; q++) {
2200 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
2201 (octeon_dev),
2202 lio->ifidx);
2203 retval = octeon_setup_iq(octeon_dev, ifidx, q,
2204 lio->linfo.txpciq[q], num_tx_descs,
2205 netdev_get_tx_queue(netdev, q));
2206 if (retval) {
2207 dev_err(&octeon_dev->pci_dev->dev,
2208 " %s : Runtime IQ(TxQ) creation failed.\n",
2209 __func__);
2210 return 1;
2211 }
2212 }
2213
2214 return 0;
2215 }
2216
2217 /**
2218 * \brief Poll routine for checking transmit queue status
2219 * @param work work_struct data structure
2220 */
2221 static void octnet_poll_check_txq_status(struct work_struct *work)
2222 {
2223 struct cavium_wk *wk = (struct cavium_wk *)work;
2224 struct lio *lio = (struct lio *)wk->ctxptr;
2225
2226 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2227 return;
2228
2229 check_txq_status(lio);
2230 queue_delayed_work(lio->txq_status_wq.wq,
2231 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2232 }
2233
2234 /**
2235 * \brief Sets up the txq poll check
2236 * @param netdev network device
2237 */
2238 static inline void setup_tx_poll_fn(struct net_device *netdev)
2239 {
2240 struct lio *lio = GET_LIO(netdev);
2241 struct octeon_device *oct = lio->oct_dev;
2242
2243 lio->txq_status_wq.wq = alloc_workqueue("txq-status",
2244 WQ_MEM_RECLAIM, 0);
2245 if (!lio->txq_status_wq.wq) {
2246 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2247 return;
2248 }
2249 INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2250 octnet_poll_check_txq_status);
2251 lio->txq_status_wq.wk.ctxptr = lio;
2252 queue_delayed_work(lio->txq_status_wq.wq,
2253 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2254 }
2255
2256 static inline void cleanup_tx_poll_fn(struct net_device *netdev)
2257 {
2258 struct lio *lio = GET_LIO(netdev);
2259
2260 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2261 destroy_workqueue(lio->txq_status_wq.wq);
2262 }
2263
2264 /**
2265 * \brief Net device open for LiquidIO
2266 * @param netdev network device
2267 */
2268 static int liquidio_open(struct net_device *netdev)
2269 {
2270 struct lio *lio = GET_LIO(netdev);
2271 struct octeon_device *oct = lio->oct_dev;
2272 struct napi_struct *napi, *n;
2273
2274 if (oct->props[lio->ifidx].napi_enabled == 0) {
2275 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2276 napi_enable(napi);
2277
2278 oct->props[lio->ifidx].napi_enabled = 1;
2279 }
2280
2281 oct_ptp_open(netdev);
2282
2283 ifstate_set(lio, LIO_IFSTATE_RUNNING);
2284
2285 setup_tx_poll_fn(netdev);
2286
2287 start_txq(netdev);
2288
2289 netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2290
2291 /* tell Octeon to start forwarding packets to host */
2292 send_rx_ctrl_cmd(lio, 1);
2293
2294 /* Ready for link status updates */
2295 lio->intf_open = 1;
2296
2297 dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2298 netdev->name);
2299
2300 return 0;
2301 }
2302
2303 /**
2304 * \brief Net device stop for LiquidIO
2305 * @param netdev network device
2306 */
2307 static int liquidio_stop(struct net_device *netdev)
2308 {
2309 struct lio *lio = GET_LIO(netdev);
2310 struct octeon_device *oct = lio->oct_dev;
2311
2312 ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2313
2314 netif_tx_disable(netdev);
2315
2316 /* Inform that netif carrier is down */
2317 netif_carrier_off(netdev);
2318 lio->intf_open = 0;
2319 lio->linfo.link.s.link_up = 0;
2320 lio->link_changes++;
2321
2322 /* Pause for a moment and wait for Octeon to flush out (to the wire) any
2323 * egress packets that are in-flight.
2324 */
2325 set_current_state(TASK_INTERRUPTIBLE);
2326 schedule_timeout(msecs_to_jiffies(100));
2327
2328 /* Now it should be safe to tell Octeon that nic interface is down. */
2329 send_rx_ctrl_cmd(lio, 0);
2330
2331 cleanup_tx_poll_fn(netdev);
2332
2333 if (lio->ptp_clock) {
2334 ptp_clock_unregister(lio->ptp_clock);
2335 lio->ptp_clock = NULL;
2336 }
2337
2338 dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2339
2340 return 0;
2341 }
2342
2343 void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr)
2344 {
2345 struct octnic_ctrl_pkt *nctrl = (struct octnic_ctrl_pkt *)nctrl_ptr;
2346 struct net_device *netdev = (struct net_device *)nctrl->netpndev;
2347 struct lio *lio = GET_LIO(netdev);
2348 struct octeon_device *oct = lio->oct_dev;
2349 u8 *mac;
2350
2351 switch (nctrl->ncmd.s.cmd) {
2352 case OCTNET_CMD_CHANGE_DEVFLAGS:
2353 case OCTNET_CMD_SET_MULTI_LIST:
2354 break;
2355
2356 case OCTNET_CMD_CHANGE_MACADDR:
2357 mac = ((u8 *)&nctrl->udd[0]) + 2;
2358 netif_info(lio, probe, lio->netdev,
2359 "%s %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
2360 "MACAddr changed to", mac[0], mac[1],
2361 mac[2], mac[3], mac[4], mac[5]);
2362 break;
2363
2364 case OCTNET_CMD_CHANGE_MTU:
2365 /* If command is successful, change the MTU. */
2366 netif_info(lio, probe, lio->netdev, " MTU Changed from %d to %d\n",
2367 netdev->mtu, nctrl->ncmd.s.param1);
2368 dev_info(&oct->pci_dev->dev, "%s MTU Changed from %d to %d\n",
2369 netdev->name, netdev->mtu,
2370 nctrl->ncmd.s.param1);
2371 rtnl_lock();
2372 netdev->mtu = nctrl->ncmd.s.param1;
2373 call_netdevice_notifiers(NETDEV_CHANGEMTU, netdev);
2374 rtnl_unlock();
2375 break;
2376
2377 case OCTNET_CMD_GPIO_ACCESS:
2378 netif_info(lio, probe, lio->netdev, "LED Flashing visual identification\n");
2379
2380 break;
2381
2382 case OCTNET_CMD_LRO_ENABLE:
2383 dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2384 break;
2385
2386 case OCTNET_CMD_LRO_DISABLE:
2387 dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2388 netdev->name);
2389 break;
2390
2391 case OCTNET_CMD_VERBOSE_ENABLE:
2392 dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2393 break;
2394
2395 case OCTNET_CMD_VERBOSE_DISABLE:
2396 dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2397 netdev->name);
2398 break;
2399
2400 case OCTNET_CMD_ENABLE_VLAN_FILTER:
2401 dev_info(&oct->pci_dev->dev, "%s VLAN filter enabled\n",
2402 netdev->name);
2403 break;
2404
2405 case OCTNET_CMD_ADD_VLAN_FILTER:
2406 dev_info(&oct->pci_dev->dev, "%s VLAN filter %d added\n",
2407 netdev->name, nctrl->ncmd.s.param1);
2408 break;
2409
2410 case OCTNET_CMD_DEL_VLAN_FILTER:
2411 dev_info(&oct->pci_dev->dev, "%s VLAN filter %d removed\n",
2412 netdev->name, nctrl->ncmd.s.param1);
2413 break;
2414
2415 case OCTNET_CMD_SET_SETTINGS:
2416 dev_info(&oct->pci_dev->dev, "%s settings changed\n",
2417 netdev->name);
2418
2419 break;
2420 /* Case to handle "OCTNET_CMD_TNL_RX_CSUM_CTL"
2421 * Command passed by NIC driver
2422 */
2423 case OCTNET_CMD_TNL_RX_CSUM_CTL:
2424 if (nctrl->ncmd.s.param1 == OCTNET_CMD_RXCSUM_ENABLE) {
2425 netif_info(lio, probe, lio->netdev,
2426 "%s RX Checksum Offload Enabled\n",
2427 netdev->name);
2428 } else if (nctrl->ncmd.s.param1 ==
2429 OCTNET_CMD_RXCSUM_DISABLE) {
2430 netif_info(lio, probe, lio->netdev,
2431 "%s RX Checksum Offload Disabled\n",
2432 netdev->name);
2433 }
2434 break;
2435
2436 /* Case to handle "OCTNET_CMD_TNL_TX_CSUM_CTL"
2437 * Command passed by NIC driver
2438 */
2439 case OCTNET_CMD_TNL_TX_CSUM_CTL:
2440 if (nctrl->ncmd.s.param1 == OCTNET_CMD_TXCSUM_ENABLE) {
2441 netif_info(lio, probe, lio->netdev,
2442 "%s TX Checksum Offload Enabled\n",
2443 netdev->name);
2444 } else if (nctrl->ncmd.s.param1 ==
2445 OCTNET_CMD_TXCSUM_DISABLE) {
2446 netif_info(lio, probe, lio->netdev,
2447 "%s TX Checksum Offload Disabled\n",
2448 netdev->name);
2449 }
2450 break;
2451
2452 /* Case to handle "OCTNET_CMD_VXLAN_PORT_CONFIG"
2453 * Command passed by NIC driver
2454 */
2455 case OCTNET_CMD_VXLAN_PORT_CONFIG:
2456 if (nctrl->ncmd.s.more == OCTNET_CMD_VXLAN_PORT_ADD) {
2457 netif_info(lio, probe, lio->netdev,
2458 "%s VxLAN Destination UDP PORT:%d ADDED\n",
2459 netdev->name,
2460 nctrl->ncmd.s.param1);
2461 } else if (nctrl->ncmd.s.more ==
2462 OCTNET_CMD_VXLAN_PORT_DEL) {
2463 netif_info(lio, probe, lio->netdev,
2464 "%s VxLAN Destination UDP PORT:%d DELETED\n",
2465 netdev->name,
2466 nctrl->ncmd.s.param1);
2467 }
2468 break;
2469
2470 case OCTNET_CMD_SET_FLOW_CTL:
2471 netif_info(lio, probe, lio->netdev, "Set RX/TX flow control parameters\n");
2472 break;
2473
2474 default:
2475 dev_err(&oct->pci_dev->dev, "%s Unknown cmd %d\n", __func__,
2476 nctrl->ncmd.s.cmd);
2477 }
2478 }
2479
2480 /**
2481 * \brief Converts a mask based on net device flags
2482 * @param netdev network device
2483 *
2484 * This routine generates a octnet_ifflags mask from the net device flags
2485 * received from the OS.
2486 */
2487 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2488 {
2489 enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2490
2491 if (netdev->flags & IFF_PROMISC)
2492 f |= OCTNET_IFFLAG_PROMISC;
2493
2494 if (netdev->flags & IFF_ALLMULTI)
2495 f |= OCTNET_IFFLAG_ALLMULTI;
2496
2497 if (netdev->flags & IFF_MULTICAST) {
2498 f |= OCTNET_IFFLAG_MULTICAST;
2499
2500 /* Accept all multicast addresses if there are more than we
2501 * can handle
2502 */
2503 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2504 f |= OCTNET_IFFLAG_ALLMULTI;
2505 }
2506
2507 if (netdev->flags & IFF_BROADCAST)
2508 f |= OCTNET_IFFLAG_BROADCAST;
2509
2510 return f;
2511 }
2512
2513 /**
2514 * \brief Net device set_multicast_list
2515 * @param netdev network device
2516 */
2517 static void liquidio_set_mcast_list(struct net_device *netdev)
2518 {
2519 struct lio *lio = GET_LIO(netdev);
2520 struct octeon_device *oct = lio->oct_dev;
2521 struct octnic_ctrl_pkt nctrl;
2522 struct netdev_hw_addr *ha;
2523 u64 *mc;
2524 int ret;
2525 int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2526
2527 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2528
2529 /* Create a ctrl pkt command to be sent to core app. */
2530 nctrl.ncmd.u64 = 0;
2531 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2532 nctrl.ncmd.s.param1 = get_new_flags(netdev);
2533 nctrl.ncmd.s.param2 = mc_count;
2534 nctrl.ncmd.s.more = mc_count;
2535 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2536 nctrl.netpndev = (u64)netdev;
2537 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2538
2539 /* copy all the addresses into the udd */
2540 mc = &nctrl.udd[0];
2541 netdev_for_each_mc_addr(ha, netdev) {
2542 *mc = 0;
2543 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2544 /* no need to swap bytes */
2545
2546 if (++mc > &nctrl.udd[mc_count])
2547 break;
2548 }
2549
2550 /* Apparently, any activity in this call from the kernel has to
2551 * be atomic. So we won't wait for response.
2552 */
2553 nctrl.wait_time = 0;
2554
2555 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2556 if (ret < 0) {
2557 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2558 ret);
2559 }
2560 }
2561
2562 /**
2563 * \brief Net device set_mac_address
2564 * @param netdev network device
2565 */
2566 static int liquidio_set_mac(struct net_device *netdev, void *p)
2567 {
2568 int ret = 0;
2569 struct lio *lio = GET_LIO(netdev);
2570 struct octeon_device *oct = lio->oct_dev;
2571 struct sockaddr *addr = (struct sockaddr *)p;
2572 struct octnic_ctrl_pkt nctrl;
2573
2574 if (!is_valid_ether_addr(addr->sa_data))
2575 return -EADDRNOTAVAIL;
2576
2577 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2578
2579 nctrl.ncmd.u64 = 0;
2580 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2581 nctrl.ncmd.s.param1 = 0;
2582 nctrl.ncmd.s.more = 1;
2583 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2584 nctrl.netpndev = (u64)netdev;
2585 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2586 nctrl.wait_time = 100;
2587
2588 nctrl.udd[0] = 0;
2589 /* The MAC Address is presented in network byte order. */
2590 memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2591
2592 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2593 if (ret < 0) {
2594 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2595 return -ENOMEM;
2596 }
2597 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2598 memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2599
2600 return 0;
2601 }
2602
2603 /**
2604 * \brief Net device get_stats
2605 * @param netdev network device
2606 */
2607 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2608 {
2609 struct lio *lio = GET_LIO(netdev);
2610 struct net_device_stats *stats = &netdev->stats;
2611 struct octeon_device *oct;
2612 u64 pkts = 0, drop = 0, bytes = 0;
2613 struct oct_droq_stats *oq_stats;
2614 struct oct_iq_stats *iq_stats;
2615 int i, iq_no, oq_no;
2616
2617 oct = lio->oct_dev;
2618
2619 for (i = 0; i < lio->linfo.num_txpciq; i++) {
2620 iq_no = lio->linfo.txpciq[i].s.q_no;
2621 iq_stats = &oct->instr_queue[iq_no]->stats;
2622 pkts += iq_stats->tx_done;
2623 drop += iq_stats->tx_dropped;
2624 bytes += iq_stats->tx_tot_bytes;
2625 }
2626
2627 stats->tx_packets = pkts;
2628 stats->tx_bytes = bytes;
2629 stats->tx_dropped = drop;
2630
2631 pkts = 0;
2632 drop = 0;
2633 bytes = 0;
2634
2635 for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2636 oq_no = lio->linfo.rxpciq[i].s.q_no;
2637 oq_stats = &oct->droq[oq_no]->stats;
2638 pkts += oq_stats->rx_pkts_received;
2639 drop += (oq_stats->rx_dropped +
2640 oq_stats->dropped_nodispatch +
2641 oq_stats->dropped_toomany +
2642 oq_stats->dropped_nomem);
2643 bytes += oq_stats->rx_bytes_received;
2644 }
2645
2646 stats->rx_bytes = bytes;
2647 stats->rx_packets = pkts;
2648 stats->rx_dropped = drop;
2649
2650 return stats;
2651 }
2652
2653 /**
2654 * \brief Net device change_mtu
2655 * @param netdev network device
2656 */
2657 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2658 {
2659 struct lio *lio = GET_LIO(netdev);
2660 struct octeon_device *oct = lio->oct_dev;
2661 struct octnic_ctrl_pkt nctrl;
2662 int ret = 0;
2663
2664 /* Limit the MTU to make sure the ethernet packets are between 68 bytes
2665 * and 16000 bytes
2666 */
2667 if ((new_mtu < LIO_MIN_MTU_SIZE) ||
2668 (new_mtu > LIO_MAX_MTU_SIZE)) {
2669 dev_err(&oct->pci_dev->dev, "Invalid MTU: %d\n", new_mtu);
2670 dev_err(&oct->pci_dev->dev, "Valid range %d and %d\n",
2671 LIO_MIN_MTU_SIZE, LIO_MAX_MTU_SIZE);
2672 return -EINVAL;
2673 }
2674
2675 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2676
2677 nctrl.ncmd.u64 = 0;
2678 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2679 nctrl.ncmd.s.param1 = new_mtu;
2680 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2681 nctrl.wait_time = 100;
2682 nctrl.netpndev = (u64)netdev;
2683 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2684
2685 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2686 if (ret < 0) {
2687 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2688 return -1;
2689 }
2690
2691 lio->mtu = new_mtu;
2692
2693 return 0;
2694 }
2695
2696 /**
2697 * \brief Handler for SIOCSHWTSTAMP ioctl
2698 * @param netdev network device
2699 * @param ifr interface request
2700 * @param cmd command
2701 */
2702 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
2703 {
2704 struct hwtstamp_config conf;
2705 struct lio *lio = GET_LIO(netdev);
2706
2707 if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2708 return -EFAULT;
2709
2710 if (conf.flags)
2711 return -EINVAL;
2712
2713 switch (conf.tx_type) {
2714 case HWTSTAMP_TX_ON:
2715 case HWTSTAMP_TX_OFF:
2716 break;
2717 default:
2718 return -ERANGE;
2719 }
2720
2721 switch (conf.rx_filter) {
2722 case HWTSTAMP_FILTER_NONE:
2723 break;
2724 case HWTSTAMP_FILTER_ALL:
2725 case HWTSTAMP_FILTER_SOME:
2726 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2727 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2728 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2729 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2730 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2731 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2732 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2733 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2734 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2735 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2736 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2737 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2738 conf.rx_filter = HWTSTAMP_FILTER_ALL;
2739 break;
2740 default:
2741 return -ERANGE;
2742 }
2743
2744 if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2745 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2746
2747 else
2748 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2749
2750 return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2751 }
2752
2753 /**
2754 * \brief ioctl handler
2755 * @param netdev network device
2756 * @param ifr interface request
2757 * @param cmd command
2758 */
2759 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2760 {
2761 switch (cmd) {
2762 case SIOCSHWTSTAMP:
2763 return hwtstamp_ioctl(netdev, ifr);
2764 default:
2765 return -EOPNOTSUPP;
2766 }
2767 }
2768
2769 /**
2770 * \brief handle a Tx timestamp response
2771 * @param status response status
2772 * @param buf pointer to skb
2773 */
2774 static void handle_timestamp(struct octeon_device *oct,
2775 u32 status,
2776 void *buf)
2777 {
2778 struct octnet_buf_free_info *finfo;
2779 struct octeon_soft_command *sc;
2780 struct oct_timestamp_resp *resp;
2781 struct lio *lio;
2782 struct sk_buff *skb = (struct sk_buff *)buf;
2783
2784 finfo = (struct octnet_buf_free_info *)skb->cb;
2785 lio = finfo->lio;
2786 sc = finfo->sc;
2787 oct = lio->oct_dev;
2788 resp = (struct oct_timestamp_resp *)sc->virtrptr;
2789
2790 if (status != OCTEON_REQUEST_DONE) {
2791 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
2792 CVM_CAST64(status));
2793 resp->timestamp = 0;
2794 }
2795
2796 octeon_swap_8B_data(&resp->timestamp, 1);
2797
2798 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) {
2799 struct skb_shared_hwtstamps ts;
2800 u64 ns = resp->timestamp;
2801
2802 netif_info(lio, tx_done, lio->netdev,
2803 "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
2804 skb, (unsigned long long)ns);
2805 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
2806 skb_tstamp_tx(skb, &ts);
2807 }
2808
2809 octeon_free_soft_command(oct, sc);
2810 tx_buffer_free(skb);
2811 }
2812
2813 /* \brief Send a data packet that will be timestamped
2814 * @param oct octeon device
2815 * @param ndata pointer to network data
2816 * @param finfo pointer to private network data
2817 */
2818 static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
2819 struct octnic_data_pkt *ndata,
2820 struct octnet_buf_free_info *finfo,
2821 int xmit_more)
2822 {
2823 int retval;
2824 struct octeon_soft_command *sc;
2825 struct lio *lio;
2826 int ring_doorbell;
2827 u32 len;
2828
2829 lio = finfo->lio;
2830
2831 sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
2832 sizeof(struct oct_timestamp_resp));
2833 finfo->sc = sc;
2834
2835 if (!sc) {
2836 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
2837 return IQ_SEND_FAILED;
2838 }
2839
2840 if (ndata->reqtype == REQTYPE_NORESP_NET)
2841 ndata->reqtype = REQTYPE_RESP_NET;
2842 else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
2843 ndata->reqtype = REQTYPE_RESP_NET_SG;
2844
2845 sc->callback = handle_timestamp;
2846 sc->callback_arg = finfo->skb;
2847 sc->iq_no = ndata->q_no;
2848
2849 len = (u32)((struct octeon_instr_ih2 *)(&sc->cmd.cmd2.ih2))->dlengsz;
2850
2851 ring_doorbell = !xmit_more;
2852 retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
2853 sc, len, ndata->reqtype);
2854
2855 if (retval == IQ_SEND_FAILED) {
2856 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
2857 retval);
2858 octeon_free_soft_command(oct, sc);
2859 } else {
2860 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
2861 }
2862
2863 return retval;
2864 }
2865
2866 /** \brief Transmit networks packets to the Octeon interface
2867 * @param skbuff skbuff struct to be passed to network layer.
2868 * @param netdev pointer to network device
2869 * @returns whether the packet was transmitted to the device okay or not
2870 * (NETDEV_TX_OK or NETDEV_TX_BUSY)
2871 */
2872 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
2873 {
2874 struct lio *lio;
2875 struct octnet_buf_free_info *finfo;
2876 union octnic_cmd_setup cmdsetup;
2877 struct octnic_data_pkt ndata;
2878 struct octeon_device *oct;
2879 struct oct_iq_stats *stats;
2880 struct octeon_instr_irh *irh;
2881 union tx_info *tx_info;
2882 int status = 0;
2883 int q_idx = 0, iq_no = 0;
2884 int xmit_more, j;
2885 u64 dptr = 0;
2886 u32 tag = 0;
2887
2888 lio = GET_LIO(netdev);
2889 oct = lio->oct_dev;
2890
2891 if (netif_is_multiqueue(netdev)) {
2892 q_idx = skb->queue_mapping;
2893 q_idx = (q_idx % (lio->linfo.num_txpciq));
2894 tag = q_idx;
2895 iq_no = lio->linfo.txpciq[q_idx].s.q_no;
2896 } else {
2897 iq_no = lio->txq;
2898 }
2899
2900 stats = &oct->instr_queue[iq_no]->stats;
2901
2902 /* Check for all conditions in which the current packet cannot be
2903 * transmitted.
2904 */
2905 if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
2906 (!lio->linfo.link.s.link_up) ||
2907 (skb->len <= 0)) {
2908 netif_info(lio, tx_err, lio->netdev,
2909 "Transmit failed link_status : %d\n",
2910 lio->linfo.link.s.link_up);
2911 goto lio_xmit_failed;
2912 }
2913
2914 /* Use space in skb->cb to store info used to unmap and
2915 * free the buffers.
2916 */
2917 finfo = (struct octnet_buf_free_info *)skb->cb;
2918 finfo->lio = lio;
2919 finfo->skb = skb;
2920 finfo->sc = NULL;
2921
2922 /* Prepare the attributes for the data to be passed to OSI. */
2923 memset(&ndata, 0, sizeof(struct octnic_data_pkt));
2924
2925 ndata.buf = (void *)finfo;
2926
2927 ndata.q_no = iq_no;
2928
2929 if (netif_is_multiqueue(netdev)) {
2930 if (octnet_iq_is_full(oct, ndata.q_no)) {
2931 /* defer sending if queue is full */
2932 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2933 ndata.q_no);
2934 stats->tx_iq_busy++;
2935 return NETDEV_TX_BUSY;
2936 }
2937 } else {
2938 if (octnet_iq_is_full(oct, lio->txq)) {
2939 /* defer sending if queue is full */
2940 stats->tx_iq_busy++;
2941 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2942 lio->txq);
2943 return NETDEV_TX_BUSY;
2944 }
2945 }
2946 /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n",
2947 * lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no);
2948 */
2949
2950 ndata.datasize = skb->len;
2951
2952 cmdsetup.u64 = 0;
2953 cmdsetup.s.iq_no = iq_no;
2954
2955 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2956 if (skb->encapsulation) {
2957 cmdsetup.s.tnl_csum = 1;
2958 stats->tx_vxlan++;
2959 } else {
2960 cmdsetup.s.transport_csum = 1;
2961 }
2962 }
2963 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
2964 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2965 cmdsetup.s.timestamp = 1;
2966 }
2967
2968 if (skb_shinfo(skb)->nr_frags == 0) {
2969 cmdsetup.s.u.datasize = skb->len;
2970 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
2971
2972 /* Offload checksum calculation for TCP/UDP packets */
2973 dptr = dma_map_single(&oct->pci_dev->dev,
2974 skb->data,
2975 skb->len,
2976 DMA_TO_DEVICE);
2977 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
2978 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
2979 __func__);
2980 return NETDEV_TX_BUSY;
2981 }
2982
2983 ndata.cmd.cmd2.dptr = dptr;
2984 finfo->dptr = dptr;
2985 ndata.reqtype = REQTYPE_NORESP_NET;
2986
2987 } else {
2988 int i, frags;
2989 struct skb_frag_struct *frag;
2990 struct octnic_gather *g;
2991
2992 spin_lock(&lio->glist_lock[q_idx]);
2993 g = (struct octnic_gather *)
2994 list_delete_head(&lio->glist[q_idx]);
2995 spin_unlock(&lio->glist_lock[q_idx]);
2996
2997 if (!g) {
2998 netif_info(lio, tx_err, lio->netdev,
2999 "Transmit scatter gather: glist null!\n");
3000 goto lio_xmit_failed;
3001 }
3002
3003 cmdsetup.s.gather = 1;
3004 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
3005 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3006
3007 memset(g->sg, 0, g->sg_size);
3008
3009 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
3010 skb->data,
3011 (skb->len - skb->data_len),
3012 DMA_TO_DEVICE);
3013 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
3014 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
3015 __func__);
3016 return NETDEV_TX_BUSY;
3017 }
3018 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
3019
3020 frags = skb_shinfo(skb)->nr_frags;
3021 i = 1;
3022 while (frags--) {
3023 frag = &skb_shinfo(skb)->frags[i - 1];
3024
3025 g->sg[(i >> 2)].ptr[(i & 3)] =
3026 dma_map_page(&oct->pci_dev->dev,
3027 frag->page.p,
3028 frag->page_offset,
3029 frag->size,
3030 DMA_TO_DEVICE);
3031
3032 if (dma_mapping_error(&oct->pci_dev->dev,
3033 g->sg[i >> 2].ptr[i & 3])) {
3034 dma_unmap_single(&oct->pci_dev->dev,
3035 g->sg[0].ptr[0],
3036 skb->len - skb->data_len,
3037 DMA_TO_DEVICE);
3038 for (j = 1; j < i; j++) {
3039 frag = &skb_shinfo(skb)->frags[j - 1];
3040 dma_unmap_page(&oct->pci_dev->dev,
3041 g->sg[j >> 2].ptr[j & 3],
3042 frag->size,
3043 DMA_TO_DEVICE);
3044 }
3045 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
3046 __func__);
3047 return NETDEV_TX_BUSY;
3048 }
3049
3050 add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
3051 i++;
3052 }
3053
3054 dma_sync_single_for_device(&oct->pci_dev->dev, g->sg_dma_ptr,
3055 g->sg_size, DMA_TO_DEVICE);
3056 dptr = g->sg_dma_ptr;
3057
3058 ndata.cmd.cmd2.dptr = dptr;
3059 finfo->dptr = dptr;
3060 finfo->g = g;
3061
3062 ndata.reqtype = REQTYPE_NORESP_NET_SG;
3063 }
3064
3065 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh;
3066 tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0];
3067
3068 if (skb_shinfo(skb)->gso_size) {
3069 tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
3070 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
3071 stats->tx_gso++;
3072 }
3073
3074 /* HW insert VLAN tag */
3075 if (skb_vlan_tag_present(skb)) {
3076 irh->priority = skb_vlan_tag_get(skb) >> 13;
3077 irh->vlan = skb_vlan_tag_get(skb) & 0xfff;
3078 }
3079
3080 xmit_more = skb->xmit_more;
3081
3082 if (unlikely(cmdsetup.s.timestamp))
3083 status = send_nic_timestamp_pkt(oct, &ndata, finfo, xmit_more);
3084 else
3085 status = octnet_send_nic_data_pkt(oct, &ndata, xmit_more);
3086 if (status == IQ_SEND_FAILED)
3087 goto lio_xmit_failed;
3088
3089 netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
3090
3091 if (status == IQ_SEND_STOP)
3092 stop_q(lio->netdev, q_idx);
3093
3094 netif_trans_update(netdev);
3095
3096 if (skb_shinfo(skb)->gso_size)
3097 stats->tx_done += skb_shinfo(skb)->gso_segs;
3098 else
3099 stats->tx_done++;
3100 stats->tx_tot_bytes += skb->len;
3101
3102 return NETDEV_TX_OK;
3103
3104 lio_xmit_failed:
3105 stats->tx_dropped++;
3106 netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
3107 iq_no, stats->tx_dropped);
3108 if (dptr)
3109 dma_unmap_single(&oct->pci_dev->dev, dptr,
3110 ndata.datasize, DMA_TO_DEVICE);
3111 tx_buffer_free(skb);
3112 return NETDEV_TX_OK;
3113 }
3114
3115 /** \brief Network device Tx timeout
3116 * @param netdev pointer to network device
3117 */
3118 static void liquidio_tx_timeout(struct net_device *netdev)
3119 {
3120 struct lio *lio;
3121
3122 lio = GET_LIO(netdev);
3123
3124 netif_info(lio, tx_err, lio->netdev,
3125 "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
3126 netdev->stats.tx_dropped);
3127 netif_trans_update(netdev);
3128 txqs_wake(netdev);
3129 }
3130
3131 static int liquidio_vlan_rx_add_vid(struct net_device *netdev,
3132 __be16 proto __attribute__((unused)),
3133 u16 vid)
3134 {
3135 struct lio *lio = GET_LIO(netdev);
3136 struct octeon_device *oct = lio->oct_dev;
3137 struct octnic_ctrl_pkt nctrl;
3138 int ret = 0;
3139
3140 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3141
3142 nctrl.ncmd.u64 = 0;
3143 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
3144 nctrl.ncmd.s.param1 = vid;
3145 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3146 nctrl.wait_time = 100;
3147 nctrl.netpndev = (u64)netdev;
3148 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3149
3150 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3151 if (ret < 0) {
3152 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3153 ret);
3154 }
3155
3156 return ret;
3157 }
3158
3159 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev,
3160 __be16 proto __attribute__((unused)),
3161 u16 vid)
3162 {
3163 struct lio *lio = GET_LIO(netdev);
3164 struct octeon_device *oct = lio->oct_dev;
3165 struct octnic_ctrl_pkt nctrl;
3166 int ret = 0;
3167
3168 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3169
3170 nctrl.ncmd.u64 = 0;
3171 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
3172 nctrl.ncmd.s.param1 = vid;
3173 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3174 nctrl.wait_time = 100;
3175 nctrl.netpndev = (u64)netdev;
3176 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3177
3178 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3179 if (ret < 0) {
3180 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3181 ret);
3182 }
3183 return ret;
3184 }
3185
3186 /** Sending command to enable/disable RX checksum offload
3187 * @param netdev pointer to network device
3188 * @param command OCTNET_CMD_TNL_RX_CSUM_CTL
3189 * @param rx_cmd_bit OCTNET_CMD_RXCSUM_ENABLE/
3190 * OCTNET_CMD_RXCSUM_DISABLE
3191 * @returns SUCCESS or FAILURE
3192 */
3193 int liquidio_set_rxcsum_command(struct net_device *netdev, int command,
3194 u8 rx_cmd)
3195 {
3196 struct lio *lio = GET_LIO(netdev);
3197 struct octeon_device *oct = lio->oct_dev;
3198 struct octnic_ctrl_pkt nctrl;
3199 int ret = 0;
3200
3201 nctrl.ncmd.u64 = 0;
3202 nctrl.ncmd.s.cmd = command;
3203 nctrl.ncmd.s.param1 = rx_cmd;
3204 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3205 nctrl.wait_time = 100;
3206 nctrl.netpndev = (u64)netdev;
3207 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3208
3209 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3210 if (ret < 0) {
3211 dev_err(&oct->pci_dev->dev,
3212 "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n",
3213 ret);
3214 }
3215 return ret;
3216 }
3217
3218 /** Sending command to add/delete VxLAN UDP port to firmware
3219 * @param netdev pointer to network device
3220 * @param command OCTNET_CMD_VXLAN_PORT_CONFIG
3221 * @param vxlan_port VxLAN port to be added or deleted
3222 * @param vxlan_cmd_bit OCTNET_CMD_VXLAN_PORT_ADD,
3223 * OCTNET_CMD_VXLAN_PORT_DEL
3224 * @returns SUCCESS or FAILURE
3225 */
3226 static int liquidio_vxlan_port_command(struct net_device *netdev, int command,
3227 u16 vxlan_port, u8 vxlan_cmd_bit)
3228 {
3229 struct lio *lio = GET_LIO(netdev);
3230 struct octeon_device *oct = lio->oct_dev;
3231 struct octnic_ctrl_pkt nctrl;
3232 int ret = 0;
3233
3234 nctrl.ncmd.u64 = 0;
3235 nctrl.ncmd.s.cmd = command;
3236 nctrl.ncmd.s.more = vxlan_cmd_bit;
3237 nctrl.ncmd.s.param1 = vxlan_port;
3238 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3239 nctrl.wait_time = 100;
3240 nctrl.netpndev = (u64)netdev;
3241 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3242
3243 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3244 if (ret < 0) {
3245 dev_err(&oct->pci_dev->dev,
3246 "VxLAN port add/delete failed in core (ret:0x%x)\n",
3247 ret);
3248 }
3249 return ret;
3250 }
3251
3252 int liquidio_set_feature(struct net_device *netdev, int cmd, u16 param1)
3253 {
3254 struct lio *lio = GET_LIO(netdev);
3255 struct octeon_device *oct = lio->oct_dev;
3256 struct octnic_ctrl_pkt nctrl;
3257 int ret = 0;
3258
3259 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3260
3261 nctrl.ncmd.u64 = 0;
3262 nctrl.ncmd.s.cmd = cmd;
3263 nctrl.ncmd.s.param1 = param1;
3264 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3265 nctrl.wait_time = 100;
3266 nctrl.netpndev = (u64)netdev;
3267 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3268
3269 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3270 if (ret < 0) {
3271 dev_err(&oct->pci_dev->dev, "Feature change failed in core (ret: 0x%x)\n",
3272 ret);
3273 }
3274 return ret;
3275 }
3276
3277 /** \brief Net device fix features
3278 * @param netdev pointer to network device
3279 * @param request features requested
3280 * @returns updated features list
3281 */
3282 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
3283 netdev_features_t request)
3284 {
3285 struct lio *lio = netdev_priv(netdev);
3286
3287 if ((request & NETIF_F_RXCSUM) &&
3288 !(lio->dev_capability & NETIF_F_RXCSUM))
3289 request &= ~NETIF_F_RXCSUM;
3290
3291 if ((request & NETIF_F_HW_CSUM) &&
3292 !(lio->dev_capability & NETIF_F_HW_CSUM))
3293 request &= ~NETIF_F_HW_CSUM;
3294
3295 if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
3296 request &= ~NETIF_F_TSO;
3297
3298 if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
3299 request &= ~NETIF_F_TSO6;
3300
3301 if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
3302 request &= ~NETIF_F_LRO;
3303
3304 /*Disable LRO if RXCSUM is off */
3305 if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
3306 (lio->dev_capability & NETIF_F_LRO))
3307 request &= ~NETIF_F_LRO;
3308
3309 return request;
3310 }
3311
3312 /** \brief Net device set features
3313 * @param netdev pointer to network device
3314 * @param features features to enable/disable
3315 */
3316 static int liquidio_set_features(struct net_device *netdev,
3317 netdev_features_t features)
3318 {
3319 struct lio *lio = netdev_priv(netdev);
3320
3321 if (!((netdev->features ^ features) & NETIF_F_LRO))
3322 return 0;
3323
3324 if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3325 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3326 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3327 else if (!(features & NETIF_F_LRO) &&
3328 (lio->dev_capability & NETIF_F_LRO))
3329 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE,
3330 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3331
3332 /* Sending command to firmware to enable/disable RX checksum
3333 * offload settings using ethtool
3334 */
3335 if (!(netdev->features & NETIF_F_RXCSUM) &&
3336 (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3337 (features & NETIF_F_RXCSUM))
3338 liquidio_set_rxcsum_command(netdev,
3339 OCTNET_CMD_TNL_RX_CSUM_CTL,
3340 OCTNET_CMD_RXCSUM_ENABLE);
3341 else if ((netdev->features & NETIF_F_RXCSUM) &&
3342 (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3343 !(features & NETIF_F_RXCSUM))
3344 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3345 OCTNET_CMD_RXCSUM_DISABLE);
3346
3347 return 0;
3348 }
3349
3350 static void liquidio_add_vxlan_port(struct net_device *netdev,
3351 struct udp_tunnel_info *ti)
3352 {
3353 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3354 return;
3355
3356 liquidio_vxlan_port_command(netdev,
3357 OCTNET_CMD_VXLAN_PORT_CONFIG,
3358 htons(ti->port),
3359 OCTNET_CMD_VXLAN_PORT_ADD);
3360 }
3361
3362 static void liquidio_del_vxlan_port(struct net_device *netdev,
3363 struct udp_tunnel_info *ti)
3364 {
3365 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3366 return;
3367
3368 liquidio_vxlan_port_command(netdev,
3369 OCTNET_CMD_VXLAN_PORT_CONFIG,
3370 htons(ti->port),
3371 OCTNET_CMD_VXLAN_PORT_DEL);
3372 }
3373
3374 static struct net_device_ops lionetdevops = {
3375 .ndo_open = liquidio_open,
3376 .ndo_stop = liquidio_stop,
3377 .ndo_start_xmit = liquidio_xmit,
3378 .ndo_get_stats = liquidio_get_stats,
3379 .ndo_set_mac_address = liquidio_set_mac,
3380 .ndo_set_rx_mode = liquidio_set_mcast_list,
3381 .ndo_tx_timeout = liquidio_tx_timeout,
3382
3383 .ndo_vlan_rx_add_vid = liquidio_vlan_rx_add_vid,
3384 .ndo_vlan_rx_kill_vid = liquidio_vlan_rx_kill_vid,
3385 .ndo_change_mtu = liquidio_change_mtu,
3386 .ndo_do_ioctl = liquidio_ioctl,
3387 .ndo_fix_features = liquidio_fix_features,
3388 .ndo_set_features = liquidio_set_features,
3389 .ndo_udp_tunnel_add = liquidio_add_vxlan_port,
3390 .ndo_udp_tunnel_del = liquidio_del_vxlan_port,
3391 };
3392
3393 /** \brief Entry point for the liquidio module
3394 */
3395 static int __init liquidio_init(void)
3396 {
3397 int i;
3398 struct handshake *hs;
3399
3400 init_completion(&first_stage);
3401
3402 octeon_init_device_list(conf_type);
3403
3404 if (liquidio_init_pci())
3405 return -EINVAL;
3406
3407 wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3408
3409 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3410 hs = &handshake[i];
3411 if (hs->pci_dev) {
3412 wait_for_completion(&hs->init);
3413 if (!hs->init_ok) {
3414 /* init handshake failed */
3415 dev_err(&hs->pci_dev->dev,
3416 "Failed to init device\n");
3417 liquidio_deinit_pci();
3418 return -EIO;
3419 }
3420 }
3421 }
3422
3423 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3424 hs = &handshake[i];
3425 if (hs->pci_dev) {
3426 wait_for_completion_timeout(&hs->started,
3427 msecs_to_jiffies(30000));
3428 if (!hs->started_ok) {
3429 /* starter handshake failed */
3430 dev_err(&hs->pci_dev->dev,
3431 "Firmware failed to start\n");
3432 liquidio_deinit_pci();
3433 return -EIO;
3434 }
3435 }
3436 }
3437
3438 return 0;
3439 }
3440
3441 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3442 {
3443 struct octeon_device *oct = (struct octeon_device *)buf;
3444 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3445 int gmxport = 0;
3446 union oct_link_status *ls;
3447 int i;
3448
3449 if (recv_pkt->buffer_size[0] != sizeof(*ls)) {
3450 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3451 recv_pkt->buffer_size[0],
3452 recv_pkt->rh.r_nic_info.gmxport);
3453 goto nic_info_err;
3454 }
3455
3456 gmxport = recv_pkt->rh.r_nic_info.gmxport;
3457 ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3458
3459 octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3460 for (i = 0; i < oct->ifcount; i++) {
3461 if (oct->props[i].gmxport == gmxport) {
3462 update_link_status(oct->props[i].netdev, ls);
3463 break;
3464 }
3465 }
3466
3467 nic_info_err:
3468 for (i = 0; i < recv_pkt->buffer_count; i++)
3469 recv_buffer_free(recv_pkt->buffer_ptr[i]);
3470 octeon_free_recv_info(recv_info);
3471 return 0;
3472 }
3473
3474 /**
3475 * \brief Setup network interfaces
3476 * @param octeon_dev octeon device
3477 *
3478 * Called during init time for each device. It assumes the NIC
3479 * is already up and running. The link information for each
3480 * interface is passed in link_info.
3481 */
3482 static int setup_nic_devices(struct octeon_device *octeon_dev)
3483 {
3484 struct lio *lio = NULL;
3485 struct net_device *netdev;
3486 u8 mac[6], i, j;
3487 struct octeon_soft_command *sc;
3488 struct liquidio_if_cfg_context *ctx;
3489 struct liquidio_if_cfg_resp *resp;
3490 struct octdev_props *props;
3491 int retval, num_iqueues, num_oqueues;
3492 union oct_nic_if_cfg if_cfg;
3493 unsigned int base_queue;
3494 unsigned int gmx_port_id;
3495 u32 resp_size, ctx_size;
3496 u32 ifidx_or_pfnum;
3497
3498 /* This is to handle link status changes */
3499 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3500 OPCODE_NIC_INFO,
3501 lio_nic_info, octeon_dev);
3502
3503 /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3504 * They are handled directly.
3505 */
3506 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3507 free_netbuf);
3508
3509 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3510 free_netsgbuf);
3511
3512 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3513 free_netsgbuf_with_resp);
3514
3515 for (i = 0; i < octeon_dev->ifcount; i++) {
3516 resp_size = sizeof(struct liquidio_if_cfg_resp);
3517 ctx_size = sizeof(struct liquidio_if_cfg_context);
3518 sc = (struct octeon_soft_command *)
3519 octeon_alloc_soft_command(octeon_dev, 0,
3520 resp_size, ctx_size);
3521 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3522 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
3523
3524 num_iqueues =
3525 CFG_GET_NUM_TXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3526 num_oqueues =
3527 CFG_GET_NUM_RXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3528 base_queue =
3529 CFG_GET_BASE_QUE_NIC_IF(octeon_get_conf(octeon_dev), i);
3530 gmx_port_id =
3531 CFG_GET_GMXID_NIC_IF(octeon_get_conf(octeon_dev), i);
3532 ifidx_or_pfnum = i;
3533
3534 dev_dbg(&octeon_dev->pci_dev->dev,
3535 "requesting config for interface %d, iqs %d, oqs %d\n",
3536 ifidx_or_pfnum, num_iqueues, num_oqueues);
3537 WRITE_ONCE(ctx->cond, 0);
3538 ctx->octeon_id = lio_get_device_id(octeon_dev);
3539 init_waitqueue_head(&ctx->wc);
3540
3541 if_cfg.u64 = 0;
3542 if_cfg.s.num_iqueues = num_iqueues;
3543 if_cfg.s.num_oqueues = num_oqueues;
3544 if_cfg.s.base_queue = base_queue;
3545 if_cfg.s.gmx_port_id = gmx_port_id;
3546
3547 sc->iq_no = 0;
3548
3549 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3550 OPCODE_NIC_IF_CFG, 0,
3551 if_cfg.u64, 0);
3552
3553 sc->callback = if_cfg_callback;
3554 sc->callback_arg = sc;
3555 sc->wait_time = 3000;
3556
3557 retval = octeon_send_soft_command(octeon_dev, sc);
3558 if (retval == IQ_SEND_FAILED) {
3559 dev_err(&octeon_dev->pci_dev->dev,
3560 "iq/oq config failed status: %x\n",
3561 retval);
3562 /* Soft instr is freed by driver in case of failure. */
3563 goto setup_nic_dev_fail;
3564 }
3565
3566 /* Sleep on a wait queue till the cond flag indicates that the
3567 * response arrived or timed-out.
3568 */
3569 sleep_cond(&ctx->wc, &ctx->cond);
3570 retval = resp->status;
3571 if (retval) {
3572 dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3573 goto setup_nic_dev_fail;
3574 }
3575
3576 octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3577 (sizeof(struct liquidio_if_cfg_info)) >> 3);
3578
3579 num_iqueues = hweight64(resp->cfg_info.iqmask);
3580 num_oqueues = hweight64(resp->cfg_info.oqmask);
3581
3582 if (!(num_iqueues) || !(num_oqueues)) {
3583 dev_err(&octeon_dev->pci_dev->dev,
3584 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3585 resp->cfg_info.iqmask,
3586 resp->cfg_info.oqmask);
3587 goto setup_nic_dev_fail;
3588 }
3589 dev_dbg(&octeon_dev->pci_dev->dev,
3590 "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3591 i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3592 num_iqueues, num_oqueues);
3593 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3594
3595 if (!netdev) {
3596 dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3597 goto setup_nic_dev_fail;
3598 }
3599
3600 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev);
3601
3602 if (num_iqueues > 1)
3603 lionetdevops.ndo_select_queue = select_q;
3604
3605 /* Associate the routines that will handle different
3606 * netdev tasks.
3607 */
3608 netdev->netdev_ops = &lionetdevops;
3609
3610 lio = GET_LIO(netdev);
3611
3612 memset(lio, 0, sizeof(struct lio));
3613
3614 lio->ifidx = ifidx_or_pfnum;
3615
3616 props = &octeon_dev->props[i];
3617 props->gmxport = resp->cfg_info.linfo.gmxport;
3618 props->netdev = netdev;
3619
3620 lio->linfo.num_rxpciq = num_oqueues;
3621 lio->linfo.num_txpciq = num_iqueues;
3622 for (j = 0; j < num_oqueues; j++) {
3623 lio->linfo.rxpciq[j].u64 =
3624 resp->cfg_info.linfo.rxpciq[j].u64;
3625 }
3626 for (j = 0; j < num_iqueues; j++) {
3627 lio->linfo.txpciq[j].u64 =
3628 resp->cfg_info.linfo.txpciq[j].u64;
3629 }
3630 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
3631 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
3632 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
3633
3634 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3635
3636 lio->dev_capability = NETIF_F_HIGHDMA
3637 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3638 | NETIF_F_SG | NETIF_F_RXCSUM
3639 | NETIF_F_GRO
3640 | NETIF_F_TSO | NETIF_F_TSO6
3641 | NETIF_F_LRO;
3642 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
3643
3644 /* Copy of transmit encapsulation capabilities:
3645 * TSO, TSO6, Checksums for this device
3646 */
3647 lio->enc_dev_capability = NETIF_F_IP_CSUM
3648 | NETIF_F_IPV6_CSUM
3649 | NETIF_F_GSO_UDP_TUNNEL
3650 | NETIF_F_HW_CSUM | NETIF_F_SG
3651 | NETIF_F_RXCSUM
3652 | NETIF_F_TSO | NETIF_F_TSO6
3653 | NETIF_F_LRO;
3654
3655 netdev->hw_enc_features = (lio->enc_dev_capability &
3656 ~NETIF_F_LRO);
3657
3658 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL;
3659
3660 netdev->vlan_features = lio->dev_capability;
3661 /* Add any unchangeable hw features */
3662 lio->dev_capability |= NETIF_F_HW_VLAN_CTAG_FILTER |
3663 NETIF_F_HW_VLAN_CTAG_RX |
3664 NETIF_F_HW_VLAN_CTAG_TX;
3665
3666 netdev->features = (lio->dev_capability & ~NETIF_F_LRO);
3667
3668 netdev->hw_features = lio->dev_capability;
3669 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/
3670 netdev->hw_features = netdev->hw_features &
3671 ~NETIF_F_HW_VLAN_CTAG_RX;
3672
3673 /* Point to the properties for octeon device to which this
3674 * interface belongs.
3675 */
3676 lio->oct_dev = octeon_dev;
3677 lio->octprops = props;
3678 lio->netdev = netdev;
3679
3680 dev_dbg(&octeon_dev->pci_dev->dev,
3681 "if%d gmx: %d hw_addr: 0x%llx\n", i,
3682 lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
3683
3684 /* 64-bit swap required on LE machines */
3685 octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
3686 for (j = 0; j < 6; j++)
3687 mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
3688
3689 /* Copy MAC Address to OS network device structure */
3690
3691 ether_addr_copy(netdev->dev_addr, mac);
3692
3693 /* By default all interfaces on a single Octeon uses the same
3694 * tx and rx queues
3695 */
3696 lio->txq = lio->linfo.txpciq[0].s.q_no;
3697 lio->rxq = lio->linfo.rxpciq[0].s.q_no;
3698 if (setup_io_queues(octeon_dev, i)) {
3699 dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
3700 goto setup_nic_dev_fail;
3701 }
3702
3703 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
3704
3705 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
3706 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
3707
3708 if (setup_glists(octeon_dev, lio, num_iqueues)) {
3709 dev_err(&octeon_dev->pci_dev->dev,
3710 "Gather list allocation failed\n");
3711 goto setup_nic_dev_fail;
3712 }
3713
3714 /* Register ethtool support */
3715 liquidio_set_ethtool_ops(netdev);
3716 octeon_dev->priv_flags = 0x0;
3717
3718 if (netdev->features & NETIF_F_LRO)
3719 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3720 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3721
3722 liquidio_set_feature(netdev, OCTNET_CMD_ENABLE_VLAN_FILTER, 0);
3723
3724 if ((debug != -1) && (debug & NETIF_MSG_HW))
3725 liquidio_set_feature(netdev,
3726 OCTNET_CMD_VERBOSE_ENABLE, 0);
3727
3728 /* Register the network device with the OS */
3729 if (register_netdev(netdev)) {
3730 dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
3731 goto setup_nic_dev_fail;
3732 }
3733
3734 dev_dbg(&octeon_dev->pci_dev->dev,
3735 "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
3736 i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
3737 netif_carrier_off(netdev);
3738 lio->link_changes++;
3739
3740 ifstate_set(lio, LIO_IFSTATE_REGISTERED);
3741
3742 /* Sending command to firmware to enable Rx checksum offload
3743 * by default at the time of setup of Liquidio driver for
3744 * this device
3745 */
3746 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3747 OCTNET_CMD_RXCSUM_ENABLE);
3748 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL,
3749 OCTNET_CMD_TXCSUM_ENABLE);
3750
3751 dev_dbg(&octeon_dev->pci_dev->dev,
3752 "NIC ifidx:%d Setup successful\n", i);
3753
3754 octeon_free_soft_command(octeon_dev, sc);
3755 }
3756
3757 return 0;
3758
3759 setup_nic_dev_fail:
3760
3761 octeon_free_soft_command(octeon_dev, sc);
3762
3763 while (i--) {
3764 dev_err(&octeon_dev->pci_dev->dev,
3765 "NIC ifidx:%d Setup failed\n", i);
3766 liquidio_destroy_nic_device(octeon_dev, i);
3767 }
3768 return -ENODEV;
3769 }
3770
3771 /**
3772 * \brief initialize the NIC
3773 * @param oct octeon device
3774 *
3775 * This initialization routine is called once the Octeon device application is
3776 * up and running
3777 */
3778 static int liquidio_init_nic_module(struct octeon_device *oct)
3779 {
3780 struct oct_intrmod_cfg *intrmod_cfg;
3781 int i, retval = 0;
3782 int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
3783
3784 dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
3785
3786 /* only default iq and oq were initialized
3787 * initialize the rest as well
3788 */
3789 /* run port_config command for each port */
3790 oct->ifcount = num_nic_ports;
3791
3792 memset(oct->props, 0,
3793 sizeof(struct octdev_props) * num_nic_ports);
3794
3795 for (i = 0; i < MAX_OCTEON_LINKS; i++)
3796 oct->props[i].gmxport = -1;
3797
3798 retval = setup_nic_devices(oct);
3799 if (retval) {
3800 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
3801 goto octnet_init_failure;
3802 }
3803
3804 liquidio_ptp_init(oct);
3805
3806 /* Initialize interrupt moderation params */
3807 intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
3808 intrmod_cfg->rx_enable = 1;
3809 intrmod_cfg->check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
3810 intrmod_cfg->maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
3811 intrmod_cfg->minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
3812 intrmod_cfg->rx_maxcnt_trigger = LIO_INTRMOD_RXMAXCNT_TRIGGER;
3813 intrmod_cfg->rx_maxtmr_trigger = LIO_INTRMOD_RXMAXTMR_TRIGGER;
3814 intrmod_cfg->rx_mintmr_trigger = LIO_INTRMOD_RXMINTMR_TRIGGER;
3815 intrmod_cfg->rx_mincnt_trigger = LIO_INTRMOD_RXMINCNT_TRIGGER;
3816 intrmod_cfg->tx_enable = 1;
3817 intrmod_cfg->tx_maxcnt_trigger = LIO_INTRMOD_TXMAXCNT_TRIGGER;
3818 intrmod_cfg->tx_mincnt_trigger = LIO_INTRMOD_TXMINCNT_TRIGGER;
3819 intrmod_cfg->rx_frames = CFG_GET_OQ_INTR_PKT(octeon_get_conf(oct));
3820 intrmod_cfg->rx_usecs = CFG_GET_OQ_INTR_TIME(octeon_get_conf(oct));
3821 dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
3822
3823 return retval;
3824
3825 octnet_init_failure:
3826
3827 oct->ifcount = 0;
3828
3829 return retval;
3830 }
3831
3832 /**
3833 * \brief starter callback that invokes the remaining initialization work after
3834 * the NIC is up and running.
3835 * @param octptr work struct work_struct
3836 */
3837 static void nic_starter(struct work_struct *work)
3838 {
3839 struct octeon_device *oct;
3840 struct cavium_wk *wk = (struct cavium_wk *)work;
3841
3842 oct = (struct octeon_device *)wk->ctxptr;
3843
3844 if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
3845 return;
3846
3847 /* If the status of the device is CORE_OK, the core
3848 * application has reported its application type. Call
3849 * any registered handlers now and move to the RUNNING
3850 * state.
3851 */
3852 if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
3853 schedule_delayed_work(&oct->nic_poll_work.work,
3854 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3855 return;
3856 }
3857
3858 atomic_set(&oct->status, OCT_DEV_RUNNING);
3859
3860 if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
3861 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
3862
3863 if (liquidio_init_nic_module(oct))
3864 dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
3865 else
3866 handshake[oct->octeon_id].started_ok = 1;
3867 } else {
3868 dev_err(&oct->pci_dev->dev,
3869 "Unexpected application running on NIC (%d). Check firmware.\n",
3870 oct->app_mode);
3871 }
3872
3873 complete(&handshake[oct->octeon_id].started);
3874 }
3875
3876 /**
3877 * \brief Device initialization for each Octeon device that is probed
3878 * @param octeon_dev octeon device
3879 */
3880 static int octeon_device_init(struct octeon_device *octeon_dev)
3881 {
3882 int j, ret;
3883 char bootcmd[] = "\n";
3884 struct octeon_device_priv *oct_priv =
3885 (struct octeon_device_priv *)octeon_dev->priv;
3886 atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
3887
3888 /* Enable access to the octeon device and make its DMA capability
3889 * known to the OS.
3890 */
3891 if (octeon_pci_os_setup(octeon_dev))
3892 return 1;
3893
3894 /* Identify the Octeon type and map the BAR address space. */
3895 if (octeon_chip_specific_setup(octeon_dev)) {
3896 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
3897 return 1;
3898 }
3899
3900 atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
3901
3902 octeon_dev->app_mode = CVM_DRV_INVALID_APP;
3903
3904 /* Do a soft reset of the Octeon device. */
3905 if (octeon_dev->fn_list.soft_reset(octeon_dev))
3906 return 1;
3907
3908 /* Initialize the dispatch mechanism used to push packets arriving on
3909 * Octeon Output queues.
3910 */
3911 if (octeon_init_dispatch_list(octeon_dev))
3912 return 1;
3913
3914 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3915 OPCODE_NIC_CORE_DRV_ACTIVE,
3916 octeon_core_drv_init,
3917 octeon_dev);
3918
3919 INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
3920 octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
3921 schedule_delayed_work(&octeon_dev->nic_poll_work.work,
3922 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3923
3924 atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
3925
3926 octeon_set_io_queues_off(octeon_dev);
3927
3928 /* Setup the data structures that manage this Octeon's Input queues. */
3929 if (octeon_setup_instr_queues(octeon_dev)) {
3930 dev_err(&octeon_dev->pci_dev->dev,
3931 "instruction queue initialization failed\n");
3932 /* On error, release any previously allocated queues */
3933 for (j = 0; j < octeon_dev->num_iqs; j++)
3934 octeon_delete_instr_queue(octeon_dev, j);
3935 return 1;
3936 }
3937 atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
3938
3939 /* Initialize soft command buffer pool
3940 */
3941 if (octeon_setup_sc_buffer_pool(octeon_dev)) {
3942 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
3943 return 1;
3944 }
3945 atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
3946
3947 /* Initialize lists to manage the requests of different types that
3948 * arrive from user & kernel applications for this octeon device.
3949 */
3950 if (octeon_setup_response_list(octeon_dev)) {
3951 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
3952 return 1;
3953 }
3954 atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
3955
3956 if (octeon_setup_output_queues(octeon_dev)) {
3957 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
3958 /* Release any previously allocated queues */
3959 for (j = 0; j < octeon_dev->num_oqs; j++)
3960 octeon_delete_droq(octeon_dev, j);
3961 return 1;
3962 }
3963
3964 atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
3965
3966 /* The input and output queue registers were setup earlier (the queues
3967 * were not enabled). Any additional registers that need to be
3968 * programmed should be done now.
3969 */
3970 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
3971 if (ret) {
3972 dev_err(&octeon_dev->pci_dev->dev,
3973 "Failed to configure device registers\n");
3974 return ret;
3975 }
3976
3977 /* Initialize the tasklet that handles output queue packet processing.*/
3978 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
3979 tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
3980 (unsigned long)octeon_dev);
3981
3982 /* Setup the interrupt handler and record the INT SUM register address
3983 */
3984 if (octeon_setup_interrupt(octeon_dev))
3985 return 1;
3986
3987 /* Enable Octeon device interrupts */
3988 octeon_dev->fn_list.enable_interrupt(octeon_dev->chip);
3989
3990 /* Enable the input and output queues for this Octeon device */
3991 octeon_dev->fn_list.enable_io_queues(octeon_dev);
3992
3993 atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
3994
3995 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
3996
3997 if (ddr_timeout == 0)
3998 dev_info(&octeon_dev->pci_dev->dev, "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
3999
4000 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
4001
4002 /* Wait for the octeon to initialize DDR after the soft-reset. */
4003 while (ddr_timeout == 0) {
4004 set_current_state(TASK_INTERRUPTIBLE);
4005 if (schedule_timeout(HZ / 10)) {
4006 /* user probably pressed Control-C */
4007 return 1;
4008 }
4009 }
4010 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
4011 if (ret) {
4012 dev_err(&octeon_dev->pci_dev->dev,
4013 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
4014 ret);
4015 return 1;
4016 }
4017
4018 if (octeon_wait_for_bootloader(octeon_dev, 1000) != 0) {
4019 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
4020 return 1;
4021 }
4022
4023 /* Divert uboot to take commands from host instead. */
4024 ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50);
4025
4026 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
4027 ret = octeon_init_consoles(octeon_dev);
4028 if (ret) {
4029 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
4030 return 1;
4031 }
4032 ret = octeon_add_console(octeon_dev, 0);
4033 if (ret) {
4034 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
4035 return 1;
4036 }
4037
4038 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
4039
4040 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
4041 ret = load_firmware(octeon_dev);
4042 if (ret) {
4043 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
4044 return 1;
4045 }
4046
4047 handshake[octeon_dev->octeon_id].init_ok = 1;
4048 complete(&handshake[octeon_dev->octeon_id].init);
4049
4050 atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
4051
4052 /* Send Credit for Octeon Output queues. Credits are always sent after
4053 * the output queue is enabled.
4054 */
4055 for (j = 0; j < octeon_dev->num_oqs; j++)
4056 writel(octeon_dev->droq[j]->max_count,
4057 octeon_dev->droq[j]->pkts_credit_reg);
4058
4059 /* Packets can start arriving on the output queues from this point. */
4060
4061 return 0;
4062 }
4063
4064 /**
4065 * \brief Exits the module
4066 */
4067 static void __exit liquidio_exit(void)
4068 {
4069 liquidio_deinit_pci();
4070
4071 pr_info("LiquidIO network module is now unloaded\n");
4072 }
4073
4074 module_init(liquidio_init);
4075 module_exit(liquidio_exit);
This page took 0.154315 seconds and 6 git commands to generate.