Merge branch 'for-3.14/drivers' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "l2t.h"
71
72 #include <../drivers/net/bonding/bonding.h>
73
74 #ifdef DRV_VERSION
75 #undef DRV_VERSION
76 #endif
77 #define DRV_VERSION "2.0.0-ko"
78 #define DRV_DESC "Chelsio T4/T5 Network Driver"
79
80 /*
81 * Max interrupt hold-off timer value in us. Queues fall back to this value
82 * under extreme memory pressure so it's largish to give the system time to
83 * recover.
84 */
85 #define MAX_SGE_TIMERVAL 200U
86
87 enum {
88 /*
89 * Physical Function provisioning constants.
90 */
91 PFRES_NVI = 4, /* # of Virtual Interfaces */
92 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */
93 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr
94 */
95 PFRES_NEQ = 256, /* # of egress queues */
96 PFRES_NIQ = 0, /* # of ingress queues */
97 PFRES_TC = 0, /* PCI-E traffic class */
98 PFRES_NEXACTF = 128, /* # of exact MPS filters */
99
100 PFRES_R_CAPS = FW_CMD_CAP_PF,
101 PFRES_WX_CAPS = FW_CMD_CAP_PF,
102
103 #ifdef CONFIG_PCI_IOV
104 /*
105 * Virtual Function provisioning constants. We need two extra Ingress
106 * Queues with Interrupt capability to serve as the VF's Firmware
107 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
108 * neither will have Free Lists associated with them). For each
109 * Ethernet/Control Egress Queue and for each Free List, we need an
110 * Egress Context.
111 */
112 VFRES_NPORTS = 1, /* # of "ports" per VF */
113 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */
114
115 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */
116 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */
117 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
118 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */
119 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */
120 VFRES_TC = 0, /* PCI-E traffic class */
121 VFRES_NEXACTF = 16, /* # of exact MPS filters */
122
123 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
124 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
125 #endif
126 };
127
128 /*
129 * Provide a Port Access Rights Mask for the specified PF/VF. This is very
130 * static and likely not to be useful in the long run. We really need to
131 * implement some form of persistent configuration which the firmware
132 * controls.
133 */
134 static unsigned int pfvfres_pmask(struct adapter *adapter,
135 unsigned int pf, unsigned int vf)
136 {
137 unsigned int portn, portvec;
138
139 /*
140 * Give PF's access to all of the ports.
141 */
142 if (vf == 0)
143 return FW_PFVF_CMD_PMASK_MASK;
144
145 /*
146 * For VFs, we'll assign them access to the ports based purely on the
147 * PF. We assign active ports in order, wrapping around if there are
148 * fewer active ports than PFs: e.g. active port[pf % nports].
149 * Unfortunately the adapter's port_info structs haven't been
150 * initialized yet so we have to compute this.
151 */
152 if (adapter->params.nports == 0)
153 return 0;
154
155 portn = pf % adapter->params.nports;
156 portvec = adapter->params.portvec;
157 for (;;) {
158 /*
159 * Isolate the lowest set bit in the port vector. If we're at
160 * the port number that we want, return that as the pmask.
161 * otherwise mask that bit out of the port vector and
162 * decrement our port number ...
163 */
164 unsigned int pmask = portvec ^ (portvec & (portvec-1));
165 if (portn == 0)
166 return pmask;
167 portn--;
168 portvec &= ~pmask;
169 }
170 /*NOTREACHED*/
171 }
172
173 enum {
174 MAX_TXQ_ENTRIES = 16384,
175 MAX_CTRL_TXQ_ENTRIES = 1024,
176 MAX_RSPQ_ENTRIES = 16384,
177 MAX_RX_BUFFERS = 16384,
178 MIN_TXQ_ENTRIES = 32,
179 MIN_CTRL_TXQ_ENTRIES = 32,
180 MIN_RSPQ_ENTRIES = 128,
181 MIN_FL_ENTRIES = 16
182 };
183
184 /* Host shadow copy of ingress filter entry. This is in host native format
185 * and doesn't match the ordering or bit order, etc. of the hardware of the
186 * firmware command. The use of bit-field structure elements is purely to
187 * remind ourselves of the field size limitations and save memory in the case
188 * where the filter table is large.
189 */
190 struct filter_entry {
191 /* Administrative fields for filter.
192 */
193 u32 valid:1; /* filter allocated and valid */
194 u32 locked:1; /* filter is administratively locked */
195
196 u32 pending:1; /* filter action is pending firmware reply */
197 u32 smtidx:8; /* Source MAC Table index for smac */
198 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
199
200 /* The filter itself. Most of this is a straight copy of information
201 * provided by the extended ioctl(). Some fields are translated to
202 * internal forms -- for instance the Ingress Queue ID passed in from
203 * the ioctl() is translated into the Absolute Ingress Queue ID.
204 */
205 struct ch_filter_specification fs;
206 };
207
208 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
209 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
210 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
211
212 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
213
214 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
215 CH_DEVICE(0xa000, 0), /* PE10K */
216 CH_DEVICE(0x4001, -1),
217 CH_DEVICE(0x4002, -1),
218 CH_DEVICE(0x4003, -1),
219 CH_DEVICE(0x4004, -1),
220 CH_DEVICE(0x4005, -1),
221 CH_DEVICE(0x4006, -1),
222 CH_DEVICE(0x4007, -1),
223 CH_DEVICE(0x4008, -1),
224 CH_DEVICE(0x4009, -1),
225 CH_DEVICE(0x400a, -1),
226 CH_DEVICE(0x4401, 4),
227 CH_DEVICE(0x4402, 4),
228 CH_DEVICE(0x4403, 4),
229 CH_DEVICE(0x4404, 4),
230 CH_DEVICE(0x4405, 4),
231 CH_DEVICE(0x4406, 4),
232 CH_DEVICE(0x4407, 4),
233 CH_DEVICE(0x4408, 4),
234 CH_DEVICE(0x4409, 4),
235 CH_DEVICE(0x440a, 4),
236 CH_DEVICE(0x440d, 4),
237 CH_DEVICE(0x440e, 4),
238 CH_DEVICE(0x5001, 4),
239 CH_DEVICE(0x5002, 4),
240 CH_DEVICE(0x5003, 4),
241 CH_DEVICE(0x5004, 4),
242 CH_DEVICE(0x5005, 4),
243 CH_DEVICE(0x5006, 4),
244 CH_DEVICE(0x5007, 4),
245 CH_DEVICE(0x5008, 4),
246 CH_DEVICE(0x5009, 4),
247 CH_DEVICE(0x500A, 4),
248 CH_DEVICE(0x500B, 4),
249 CH_DEVICE(0x500C, 4),
250 CH_DEVICE(0x500D, 4),
251 CH_DEVICE(0x500E, 4),
252 CH_DEVICE(0x500F, 4),
253 CH_DEVICE(0x5010, 4),
254 CH_DEVICE(0x5011, 4),
255 CH_DEVICE(0x5012, 4),
256 CH_DEVICE(0x5013, 4),
257 CH_DEVICE(0x5401, 4),
258 CH_DEVICE(0x5402, 4),
259 CH_DEVICE(0x5403, 4),
260 CH_DEVICE(0x5404, 4),
261 CH_DEVICE(0x5405, 4),
262 CH_DEVICE(0x5406, 4),
263 CH_DEVICE(0x5407, 4),
264 CH_DEVICE(0x5408, 4),
265 CH_DEVICE(0x5409, 4),
266 CH_DEVICE(0x540A, 4),
267 CH_DEVICE(0x540B, 4),
268 CH_DEVICE(0x540C, 4),
269 CH_DEVICE(0x540D, 4),
270 CH_DEVICE(0x540E, 4),
271 CH_DEVICE(0x540F, 4),
272 CH_DEVICE(0x5410, 4),
273 CH_DEVICE(0x5411, 4),
274 CH_DEVICE(0x5412, 4),
275 CH_DEVICE(0x5413, 4),
276 { 0, }
277 };
278
279 #define FW4_FNAME "cxgb4/t4fw.bin"
280 #define FW5_FNAME "cxgb4/t5fw.bin"
281 #define FW4_CFNAME "cxgb4/t4-config.txt"
282 #define FW5_CFNAME "cxgb4/t5-config.txt"
283
284 MODULE_DESCRIPTION(DRV_DESC);
285 MODULE_AUTHOR("Chelsio Communications");
286 MODULE_LICENSE("Dual BSD/GPL");
287 MODULE_VERSION(DRV_VERSION);
288 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
289 MODULE_FIRMWARE(FW4_FNAME);
290 MODULE_FIRMWARE(FW5_FNAME);
291
292 /*
293 * Normally we're willing to become the firmware's Master PF but will be happy
294 * if another PF has already become the Master and initialized the adapter.
295 * Setting "force_init" will cause this driver to forcibly establish itself as
296 * the Master PF and initialize the adapter.
297 */
298 static uint force_init;
299
300 module_param(force_init, uint, 0644);
301 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
302
303 /*
304 * Normally if the firmware we connect to has Configuration File support, we
305 * use that and only fall back to the old Driver-based initialization if the
306 * Configuration File fails for some reason. If force_old_init is set, then
307 * we'll always use the old Driver-based initialization sequence.
308 */
309 static uint force_old_init;
310
311 module_param(force_old_init, uint, 0644);
312 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
313
314 static int dflt_msg_enable = DFLT_MSG_ENABLE;
315
316 module_param(dflt_msg_enable, int, 0644);
317 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
318
319 /*
320 * The driver uses the best interrupt scheme available on a platform in the
321 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
322 * of these schemes the driver may consider as follows:
323 *
324 * msi = 2: choose from among all three options
325 * msi = 1: only consider MSI and INTx interrupts
326 * msi = 0: force INTx interrupts
327 */
328 static int msi = 2;
329
330 module_param(msi, int, 0644);
331 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
332
333 /*
334 * Queue interrupt hold-off timer values. Queues default to the first of these
335 * upon creation.
336 */
337 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
338
339 module_param_array(intr_holdoff, uint, NULL, 0644);
340 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
341 "0..4 in microseconds");
342
343 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
344
345 module_param_array(intr_cnt, uint, NULL, 0644);
346 MODULE_PARM_DESC(intr_cnt,
347 "thresholds 1..3 for queue interrupt packet counters");
348
349 /*
350 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
351 * offset by 2 bytes in order to have the IP headers line up on 4-byte
352 * boundaries. This is a requirement for many architectures which will throw
353 * a machine check fault if an attempt is made to access one of the 4-byte IP
354 * header fields on a non-4-byte boundary. And it's a major performance issue
355 * even on some architectures which allow it like some implementations of the
356 * x86 ISA. However, some architectures don't mind this and for some very
357 * edge-case performance sensitive applications (like forwarding large volumes
358 * of small packets), setting this DMA offset to 0 will decrease the number of
359 * PCI-E Bus transfers enough to measurably affect performance.
360 */
361 static int rx_dma_offset = 2;
362
363 static bool vf_acls;
364
365 #ifdef CONFIG_PCI_IOV
366 module_param(vf_acls, bool, 0644);
367 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
368
369 /* Configure the number of PCI-E Virtual Function which are to be instantiated
370 * on SR-IOV Capable Physical Functions.
371 */
372 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
373
374 module_param_array(num_vf, uint, NULL, 0644);
375 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
376 #endif
377
378 /*
379 * The filter TCAM has a fixed portion and a variable portion. The fixed
380 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
381 * ports. The variable portion is 36 bits which can include things like Exact
382 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
383 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
384 * far exceed the 36-bit budget for this "compressed" header portion of the
385 * filter. Thus, we have a scarce resource which must be carefully managed.
386 *
387 * By default we set this up to mostly match the set of filter matching
388 * capabilities of T3 but with accommodations for some of T4's more
389 * interesting features:
390 *
391 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
392 * [Inner] VLAN (17), Port (3), FCoE (1) }
393 */
394 enum {
395 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
396 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
397 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
398 };
399
400 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
401
402 module_param(tp_vlan_pri_map, uint, 0644);
403 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
404
405 static struct dentry *cxgb4_debugfs_root;
406
407 static LIST_HEAD(adapter_list);
408 static DEFINE_MUTEX(uld_mutex);
409 /* Adapter list to be accessed from atomic context */
410 static LIST_HEAD(adap_rcu_list);
411 static DEFINE_SPINLOCK(adap_rcu_lock);
412 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
413 static const char *uld_str[] = { "RDMA", "iSCSI" };
414
415 static void link_report(struct net_device *dev)
416 {
417 if (!netif_carrier_ok(dev))
418 netdev_info(dev, "link down\n");
419 else {
420 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
421
422 const char *s = "10Mbps";
423 const struct port_info *p = netdev_priv(dev);
424
425 switch (p->link_cfg.speed) {
426 case SPEED_10000:
427 s = "10Gbps";
428 break;
429 case SPEED_1000:
430 s = "1000Mbps";
431 break;
432 case SPEED_100:
433 s = "100Mbps";
434 break;
435 }
436
437 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
438 fc[p->link_cfg.fc]);
439 }
440 }
441
442 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
443 {
444 struct net_device *dev = adapter->port[port_id];
445
446 /* Skip changes from disabled ports. */
447 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
448 if (link_stat)
449 netif_carrier_on(dev);
450 else
451 netif_carrier_off(dev);
452
453 link_report(dev);
454 }
455 }
456
457 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
458 {
459 static const char *mod_str[] = {
460 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
461 };
462
463 const struct net_device *dev = adap->port[port_id];
464 const struct port_info *pi = netdev_priv(dev);
465
466 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
467 netdev_info(dev, "port module unplugged\n");
468 else if (pi->mod_type < ARRAY_SIZE(mod_str))
469 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
470 }
471
472 /*
473 * Configure the exact and hash address filters to handle a port's multicast
474 * and secondary unicast MAC addresses.
475 */
476 static int set_addr_filters(const struct net_device *dev, bool sleep)
477 {
478 u64 mhash = 0;
479 u64 uhash = 0;
480 bool free = true;
481 u16 filt_idx[7];
482 const u8 *addr[7];
483 int ret, naddr = 0;
484 const struct netdev_hw_addr *ha;
485 int uc_cnt = netdev_uc_count(dev);
486 int mc_cnt = netdev_mc_count(dev);
487 const struct port_info *pi = netdev_priv(dev);
488 unsigned int mb = pi->adapter->fn;
489
490 /* first do the secondary unicast addresses */
491 netdev_for_each_uc_addr(ha, dev) {
492 addr[naddr++] = ha->addr;
493 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
494 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
495 naddr, addr, filt_idx, &uhash, sleep);
496 if (ret < 0)
497 return ret;
498
499 free = false;
500 naddr = 0;
501 }
502 }
503
504 /* next set up the multicast addresses */
505 netdev_for_each_mc_addr(ha, dev) {
506 addr[naddr++] = ha->addr;
507 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
508 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
509 naddr, addr, filt_idx, &mhash, sleep);
510 if (ret < 0)
511 return ret;
512
513 free = false;
514 naddr = 0;
515 }
516 }
517
518 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
519 uhash | mhash, sleep);
520 }
521
522 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
523 module_param(dbfifo_int_thresh, int, 0644);
524 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
525
526 /*
527 * usecs to sleep while draining the dbfifo
528 */
529 static int dbfifo_drain_delay = 1000;
530 module_param(dbfifo_drain_delay, int, 0644);
531 MODULE_PARM_DESC(dbfifo_drain_delay,
532 "usecs to sleep while draining the dbfifo");
533
534 /*
535 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
536 * If @mtu is -1 it is left unchanged.
537 */
538 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
539 {
540 int ret;
541 struct port_info *pi = netdev_priv(dev);
542
543 ret = set_addr_filters(dev, sleep_ok);
544 if (ret == 0)
545 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
546 (dev->flags & IFF_PROMISC) ? 1 : 0,
547 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
548 sleep_ok);
549 return ret;
550 }
551
552 static struct workqueue_struct *workq;
553
554 /**
555 * link_start - enable a port
556 * @dev: the port to enable
557 *
558 * Performs the MAC and PHY actions needed to enable a port.
559 */
560 static int link_start(struct net_device *dev)
561 {
562 int ret;
563 struct port_info *pi = netdev_priv(dev);
564 unsigned int mb = pi->adapter->fn;
565
566 /*
567 * We do not set address filters and promiscuity here, the stack does
568 * that step explicitly.
569 */
570 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
571 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
572 if (ret == 0) {
573 ret = t4_change_mac(pi->adapter, mb, pi->viid,
574 pi->xact_addr_filt, dev->dev_addr, true,
575 true);
576 if (ret >= 0) {
577 pi->xact_addr_filt = ret;
578 ret = 0;
579 }
580 }
581 if (ret == 0)
582 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
583 &pi->link_cfg);
584 if (ret == 0)
585 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
586 return ret;
587 }
588
589 /* Clear a filter and release any of its resources that we own. This also
590 * clears the filter's "pending" status.
591 */
592 static void clear_filter(struct adapter *adap, struct filter_entry *f)
593 {
594 /* If the new or old filter have loopback rewriteing rules then we'll
595 * need to free any existing Layer Two Table (L2T) entries of the old
596 * filter rule. The firmware will handle freeing up any Source MAC
597 * Table (SMT) entries used for rewriting Source MAC Addresses in
598 * loopback rules.
599 */
600 if (f->l2t)
601 cxgb4_l2t_release(f->l2t);
602
603 /* The zeroing of the filter rule below clears the filter valid,
604 * pending, locked flags, l2t pointer, etc. so it's all we need for
605 * this operation.
606 */
607 memset(f, 0, sizeof(*f));
608 }
609
610 /* Handle a filter write/deletion reply.
611 */
612 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
613 {
614 unsigned int idx = GET_TID(rpl);
615 unsigned int nidx = idx - adap->tids.ftid_base;
616 unsigned int ret;
617 struct filter_entry *f;
618
619 if (idx >= adap->tids.ftid_base && nidx <
620 (adap->tids.nftids + adap->tids.nsftids)) {
621 idx = nidx;
622 ret = GET_TCB_COOKIE(rpl->cookie);
623 f = &adap->tids.ftid_tab[idx];
624
625 if (ret == FW_FILTER_WR_FLT_DELETED) {
626 /* Clear the filter when we get confirmation from the
627 * hardware that the filter has been deleted.
628 */
629 clear_filter(adap, f);
630 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
631 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
632 idx);
633 clear_filter(adap, f);
634 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
635 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
636 f->pending = 0; /* asynchronous setup completed */
637 f->valid = 1;
638 } else {
639 /* Something went wrong. Issue a warning about the
640 * problem and clear everything out.
641 */
642 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
643 idx, ret);
644 clear_filter(adap, f);
645 }
646 }
647 }
648
649 /* Response queue handler for the FW event queue.
650 */
651 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
652 const struct pkt_gl *gl)
653 {
654 u8 opcode = ((const struct rss_header *)rsp)->opcode;
655
656 rsp++; /* skip RSS header */
657
658 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
659 */
660 if (unlikely(opcode == CPL_FW4_MSG &&
661 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
662 rsp++;
663 opcode = ((const struct rss_header *)rsp)->opcode;
664 rsp++;
665 if (opcode != CPL_SGE_EGR_UPDATE) {
666 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
667 , opcode);
668 goto out;
669 }
670 }
671
672 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
673 const struct cpl_sge_egr_update *p = (void *)rsp;
674 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
675 struct sge_txq *txq;
676
677 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
678 txq->restarts++;
679 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
680 struct sge_eth_txq *eq;
681
682 eq = container_of(txq, struct sge_eth_txq, q);
683 netif_tx_wake_queue(eq->txq);
684 } else {
685 struct sge_ofld_txq *oq;
686
687 oq = container_of(txq, struct sge_ofld_txq, q);
688 tasklet_schedule(&oq->qresume_tsk);
689 }
690 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
691 const struct cpl_fw6_msg *p = (void *)rsp;
692
693 if (p->type == 0)
694 t4_handle_fw_rpl(q->adap, p->data);
695 } else if (opcode == CPL_L2T_WRITE_RPL) {
696 const struct cpl_l2t_write_rpl *p = (void *)rsp;
697
698 do_l2t_write_rpl(q->adap, p);
699 } else if (opcode == CPL_SET_TCB_RPL) {
700 const struct cpl_set_tcb_rpl *p = (void *)rsp;
701
702 filter_rpl(q->adap, p);
703 } else
704 dev_err(q->adap->pdev_dev,
705 "unexpected CPL %#x on FW event queue\n", opcode);
706 out:
707 return 0;
708 }
709
710 /**
711 * uldrx_handler - response queue handler for ULD queues
712 * @q: the response queue that received the packet
713 * @rsp: the response queue descriptor holding the offload message
714 * @gl: the gather list of packet fragments
715 *
716 * Deliver an ingress offload packet to a ULD. All processing is done by
717 * the ULD, we just maintain statistics.
718 */
719 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
720 const struct pkt_gl *gl)
721 {
722 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
723
724 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
725 */
726 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
727 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
728 rsp += 2;
729
730 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
731 rxq->stats.nomem++;
732 return -1;
733 }
734 if (gl == NULL)
735 rxq->stats.imm++;
736 else if (gl == CXGB4_MSG_AN)
737 rxq->stats.an++;
738 else
739 rxq->stats.pkts++;
740 return 0;
741 }
742
743 static void disable_msi(struct adapter *adapter)
744 {
745 if (adapter->flags & USING_MSIX) {
746 pci_disable_msix(adapter->pdev);
747 adapter->flags &= ~USING_MSIX;
748 } else if (adapter->flags & USING_MSI) {
749 pci_disable_msi(adapter->pdev);
750 adapter->flags &= ~USING_MSI;
751 }
752 }
753
754 /*
755 * Interrupt handler for non-data events used with MSI-X.
756 */
757 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
758 {
759 struct adapter *adap = cookie;
760
761 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
762 if (v & PFSW) {
763 adap->swintr = 1;
764 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
765 }
766 t4_slow_intr_handler(adap);
767 return IRQ_HANDLED;
768 }
769
770 /*
771 * Name the MSI-X interrupts.
772 */
773 static void name_msix_vecs(struct adapter *adap)
774 {
775 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
776
777 /* non-data interrupts */
778 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
779
780 /* FW events */
781 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
782 adap->port[0]->name);
783
784 /* Ethernet queues */
785 for_each_port(adap, j) {
786 struct net_device *d = adap->port[j];
787 const struct port_info *pi = netdev_priv(d);
788
789 for (i = 0; i < pi->nqsets; i++, msi_idx++)
790 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
791 d->name, i);
792 }
793
794 /* offload queues */
795 for_each_ofldrxq(&adap->sge, i)
796 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
797 adap->port[0]->name, i);
798
799 for_each_rdmarxq(&adap->sge, i)
800 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
801 adap->port[0]->name, i);
802 }
803
804 static int request_msix_queue_irqs(struct adapter *adap)
805 {
806 struct sge *s = &adap->sge;
807 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi_index = 2;
808
809 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
810 adap->msix_info[1].desc, &s->fw_evtq);
811 if (err)
812 return err;
813
814 for_each_ethrxq(s, ethqidx) {
815 err = request_irq(adap->msix_info[msi_index].vec,
816 t4_sge_intr_msix, 0,
817 adap->msix_info[msi_index].desc,
818 &s->ethrxq[ethqidx].rspq);
819 if (err)
820 goto unwind;
821 msi_index++;
822 }
823 for_each_ofldrxq(s, ofldqidx) {
824 err = request_irq(adap->msix_info[msi_index].vec,
825 t4_sge_intr_msix, 0,
826 adap->msix_info[msi_index].desc,
827 &s->ofldrxq[ofldqidx].rspq);
828 if (err)
829 goto unwind;
830 msi_index++;
831 }
832 for_each_rdmarxq(s, rdmaqidx) {
833 err = request_irq(adap->msix_info[msi_index].vec,
834 t4_sge_intr_msix, 0,
835 adap->msix_info[msi_index].desc,
836 &s->rdmarxq[rdmaqidx].rspq);
837 if (err)
838 goto unwind;
839 msi_index++;
840 }
841 return 0;
842
843 unwind:
844 while (--rdmaqidx >= 0)
845 free_irq(adap->msix_info[--msi_index].vec,
846 &s->rdmarxq[rdmaqidx].rspq);
847 while (--ofldqidx >= 0)
848 free_irq(adap->msix_info[--msi_index].vec,
849 &s->ofldrxq[ofldqidx].rspq);
850 while (--ethqidx >= 0)
851 free_irq(adap->msix_info[--msi_index].vec,
852 &s->ethrxq[ethqidx].rspq);
853 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
854 return err;
855 }
856
857 static void free_msix_queue_irqs(struct adapter *adap)
858 {
859 int i, msi_index = 2;
860 struct sge *s = &adap->sge;
861
862 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
863 for_each_ethrxq(s, i)
864 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
865 for_each_ofldrxq(s, i)
866 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
867 for_each_rdmarxq(s, i)
868 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
869 }
870
871 /**
872 * write_rss - write the RSS table for a given port
873 * @pi: the port
874 * @queues: array of queue indices for RSS
875 *
876 * Sets up the portion of the HW RSS table for the port's VI to distribute
877 * packets to the Rx queues in @queues.
878 */
879 static int write_rss(const struct port_info *pi, const u16 *queues)
880 {
881 u16 *rss;
882 int i, err;
883 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
884
885 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
886 if (!rss)
887 return -ENOMEM;
888
889 /* map the queue indices to queue ids */
890 for (i = 0; i < pi->rss_size; i++, queues++)
891 rss[i] = q[*queues].rspq.abs_id;
892
893 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
894 pi->rss_size, rss, pi->rss_size);
895 kfree(rss);
896 return err;
897 }
898
899 /**
900 * setup_rss - configure RSS
901 * @adap: the adapter
902 *
903 * Sets up RSS for each port.
904 */
905 static int setup_rss(struct adapter *adap)
906 {
907 int i, err;
908
909 for_each_port(adap, i) {
910 const struct port_info *pi = adap2pinfo(adap, i);
911
912 err = write_rss(pi, pi->rss);
913 if (err)
914 return err;
915 }
916 return 0;
917 }
918
919 /*
920 * Return the channel of the ingress queue with the given qid.
921 */
922 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
923 {
924 qid -= p->ingr_start;
925 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
926 }
927
928 /*
929 * Wait until all NAPI handlers are descheduled.
930 */
931 static void quiesce_rx(struct adapter *adap)
932 {
933 int i;
934
935 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
936 struct sge_rspq *q = adap->sge.ingr_map[i];
937
938 if (q && q->handler)
939 napi_disable(&q->napi);
940 }
941 }
942
943 /*
944 * Enable NAPI scheduling and interrupt generation for all Rx queues.
945 */
946 static void enable_rx(struct adapter *adap)
947 {
948 int i;
949
950 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
951 struct sge_rspq *q = adap->sge.ingr_map[i];
952
953 if (!q)
954 continue;
955 if (q->handler)
956 napi_enable(&q->napi);
957 /* 0-increment GTS to start the timer and enable interrupts */
958 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
959 SEINTARM(q->intr_params) |
960 INGRESSQID(q->cntxt_id));
961 }
962 }
963
964 /**
965 * setup_sge_queues - configure SGE Tx/Rx/response queues
966 * @adap: the adapter
967 *
968 * Determines how many sets of SGE queues to use and initializes them.
969 * We support multiple queue sets per port if we have MSI-X, otherwise
970 * just one queue set per port.
971 */
972 static int setup_sge_queues(struct adapter *adap)
973 {
974 int err, msi_idx, i, j;
975 struct sge *s = &adap->sge;
976
977 bitmap_zero(s->starving_fl, MAX_EGRQ);
978 bitmap_zero(s->txq_maperr, MAX_EGRQ);
979
980 if (adap->flags & USING_MSIX)
981 msi_idx = 1; /* vector 0 is for non-queue interrupts */
982 else {
983 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
984 NULL, NULL);
985 if (err)
986 return err;
987 msi_idx = -((int)s->intrq.abs_id + 1);
988 }
989
990 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
991 msi_idx, NULL, fwevtq_handler);
992 if (err) {
993 freeout: t4_free_sge_resources(adap);
994 return err;
995 }
996
997 for_each_port(adap, i) {
998 struct net_device *dev = adap->port[i];
999 struct port_info *pi = netdev_priv(dev);
1000 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1001 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1002
1003 for (j = 0; j < pi->nqsets; j++, q++) {
1004 if (msi_idx > 0)
1005 msi_idx++;
1006 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1007 msi_idx, &q->fl,
1008 t4_ethrx_handler);
1009 if (err)
1010 goto freeout;
1011 q->rspq.idx = j;
1012 memset(&q->stats, 0, sizeof(q->stats));
1013 }
1014 for (j = 0; j < pi->nqsets; j++, t++) {
1015 err = t4_sge_alloc_eth_txq(adap, t, dev,
1016 netdev_get_tx_queue(dev, j),
1017 s->fw_evtq.cntxt_id);
1018 if (err)
1019 goto freeout;
1020 }
1021 }
1022
1023 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1024 for_each_ofldrxq(s, i) {
1025 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1026 struct net_device *dev = adap->port[i / j];
1027
1028 if (msi_idx > 0)
1029 msi_idx++;
1030 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1031 &q->fl, uldrx_handler);
1032 if (err)
1033 goto freeout;
1034 memset(&q->stats, 0, sizeof(q->stats));
1035 s->ofld_rxq[i] = q->rspq.abs_id;
1036 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1037 s->fw_evtq.cntxt_id);
1038 if (err)
1039 goto freeout;
1040 }
1041
1042 for_each_rdmarxq(s, i) {
1043 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1044
1045 if (msi_idx > 0)
1046 msi_idx++;
1047 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1048 msi_idx, &q->fl, uldrx_handler);
1049 if (err)
1050 goto freeout;
1051 memset(&q->stats, 0, sizeof(q->stats));
1052 s->rdma_rxq[i] = q->rspq.abs_id;
1053 }
1054
1055 for_each_port(adap, i) {
1056 /*
1057 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1058 * have RDMA queues, and that's the right value.
1059 */
1060 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1061 s->fw_evtq.cntxt_id,
1062 s->rdmarxq[i].rspq.cntxt_id);
1063 if (err)
1064 goto freeout;
1065 }
1066
1067 t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1068 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1069 QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1070 return 0;
1071 }
1072
1073 /*
1074 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1075 * The allocated memory is cleared.
1076 */
1077 void *t4_alloc_mem(size_t size)
1078 {
1079 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1080
1081 if (!p)
1082 p = vzalloc(size);
1083 return p;
1084 }
1085
1086 /*
1087 * Free memory allocated through alloc_mem().
1088 */
1089 static void t4_free_mem(void *addr)
1090 {
1091 if (is_vmalloc_addr(addr))
1092 vfree(addr);
1093 else
1094 kfree(addr);
1095 }
1096
1097 /* Send a Work Request to write the filter at a specified index. We construct
1098 * a Firmware Filter Work Request to have the work done and put the indicated
1099 * filter into "pending" mode which will prevent any further actions against
1100 * it till we get a reply from the firmware on the completion status of the
1101 * request.
1102 */
1103 static int set_filter_wr(struct adapter *adapter, int fidx)
1104 {
1105 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1106 struct sk_buff *skb;
1107 struct fw_filter_wr *fwr;
1108 unsigned int ftid;
1109
1110 /* If the new filter requires loopback Destination MAC and/or VLAN
1111 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1112 * the filter.
1113 */
1114 if (f->fs.newdmac || f->fs.newvlan) {
1115 /* allocate L2T entry for new filter */
1116 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1117 if (f->l2t == NULL)
1118 return -EAGAIN;
1119 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1120 f->fs.eport, f->fs.dmac)) {
1121 cxgb4_l2t_release(f->l2t);
1122 f->l2t = NULL;
1123 return -ENOMEM;
1124 }
1125 }
1126
1127 ftid = adapter->tids.ftid_base + fidx;
1128
1129 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1130 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1131 memset(fwr, 0, sizeof(*fwr));
1132
1133 /* It would be nice to put most of the following in t4_hw.c but most
1134 * of the work is translating the cxgbtool ch_filter_specification
1135 * into the Work Request and the definition of that structure is
1136 * currently in cxgbtool.h which isn't appropriate to pull into the
1137 * common code. We may eventually try to come up with a more neutral
1138 * filter specification structure but for now it's easiest to simply
1139 * put this fairly direct code in line ...
1140 */
1141 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1142 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1143 fwr->tid_to_iq =
1144 htonl(V_FW_FILTER_WR_TID(ftid) |
1145 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1146 V_FW_FILTER_WR_NOREPLY(0) |
1147 V_FW_FILTER_WR_IQ(f->fs.iq));
1148 fwr->del_filter_to_l2tix =
1149 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1150 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1151 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1152 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1153 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1154 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1155 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1156 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1157 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1158 f->fs.newvlan == VLAN_REWRITE) |
1159 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1160 f->fs.newvlan == VLAN_REWRITE) |
1161 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1162 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1163 V_FW_FILTER_WR_PRIO(f->fs.prio) |
1164 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1165 fwr->ethtype = htons(f->fs.val.ethtype);
1166 fwr->ethtypem = htons(f->fs.mask.ethtype);
1167 fwr->frag_to_ovlan_vldm =
1168 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1169 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1170 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1171 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1172 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1173 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1174 fwr->smac_sel = 0;
1175 fwr->rx_chan_rx_rpl_iq =
1176 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1177 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1178 fwr->maci_to_matchtypem =
1179 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1180 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1181 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1182 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1183 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1184 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1185 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1186 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1187 fwr->ptcl = f->fs.val.proto;
1188 fwr->ptclm = f->fs.mask.proto;
1189 fwr->ttyp = f->fs.val.tos;
1190 fwr->ttypm = f->fs.mask.tos;
1191 fwr->ivlan = htons(f->fs.val.ivlan);
1192 fwr->ivlanm = htons(f->fs.mask.ivlan);
1193 fwr->ovlan = htons(f->fs.val.ovlan);
1194 fwr->ovlanm = htons(f->fs.mask.ovlan);
1195 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1196 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1197 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1198 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1199 fwr->lp = htons(f->fs.val.lport);
1200 fwr->lpm = htons(f->fs.mask.lport);
1201 fwr->fp = htons(f->fs.val.fport);
1202 fwr->fpm = htons(f->fs.mask.fport);
1203 if (f->fs.newsmac)
1204 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1205
1206 /* Mark the filter as "pending" and ship off the Filter Work Request.
1207 * When we get the Work Request Reply we'll clear the pending status.
1208 */
1209 f->pending = 1;
1210 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1211 t4_ofld_send(adapter, skb);
1212 return 0;
1213 }
1214
1215 /* Delete the filter at a specified index.
1216 */
1217 static int del_filter_wr(struct adapter *adapter, int fidx)
1218 {
1219 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1220 struct sk_buff *skb;
1221 struct fw_filter_wr *fwr;
1222 unsigned int len, ftid;
1223
1224 len = sizeof(*fwr);
1225 ftid = adapter->tids.ftid_base + fidx;
1226
1227 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1228 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1229 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1230
1231 /* Mark the filter as "pending" and ship off the Filter Work Request.
1232 * When we get the Work Request Reply we'll clear the pending status.
1233 */
1234 f->pending = 1;
1235 t4_mgmt_tx(adapter, skb);
1236 return 0;
1237 }
1238
1239 static inline int is_offload(const struct adapter *adap)
1240 {
1241 return adap->params.offload;
1242 }
1243
1244 /*
1245 * Implementation of ethtool operations.
1246 */
1247
1248 static u32 get_msglevel(struct net_device *dev)
1249 {
1250 return netdev2adap(dev)->msg_enable;
1251 }
1252
1253 static void set_msglevel(struct net_device *dev, u32 val)
1254 {
1255 netdev2adap(dev)->msg_enable = val;
1256 }
1257
1258 static char stats_strings[][ETH_GSTRING_LEN] = {
1259 "TxOctetsOK ",
1260 "TxFramesOK ",
1261 "TxBroadcastFrames ",
1262 "TxMulticastFrames ",
1263 "TxUnicastFrames ",
1264 "TxErrorFrames ",
1265
1266 "TxFrames64 ",
1267 "TxFrames65To127 ",
1268 "TxFrames128To255 ",
1269 "TxFrames256To511 ",
1270 "TxFrames512To1023 ",
1271 "TxFrames1024To1518 ",
1272 "TxFrames1519ToMax ",
1273
1274 "TxFramesDropped ",
1275 "TxPauseFrames ",
1276 "TxPPP0Frames ",
1277 "TxPPP1Frames ",
1278 "TxPPP2Frames ",
1279 "TxPPP3Frames ",
1280 "TxPPP4Frames ",
1281 "TxPPP5Frames ",
1282 "TxPPP6Frames ",
1283 "TxPPP7Frames ",
1284
1285 "RxOctetsOK ",
1286 "RxFramesOK ",
1287 "RxBroadcastFrames ",
1288 "RxMulticastFrames ",
1289 "RxUnicastFrames ",
1290
1291 "RxFramesTooLong ",
1292 "RxJabberErrors ",
1293 "RxFCSErrors ",
1294 "RxLengthErrors ",
1295 "RxSymbolErrors ",
1296 "RxRuntFrames ",
1297
1298 "RxFrames64 ",
1299 "RxFrames65To127 ",
1300 "RxFrames128To255 ",
1301 "RxFrames256To511 ",
1302 "RxFrames512To1023 ",
1303 "RxFrames1024To1518 ",
1304 "RxFrames1519ToMax ",
1305
1306 "RxPauseFrames ",
1307 "RxPPP0Frames ",
1308 "RxPPP1Frames ",
1309 "RxPPP2Frames ",
1310 "RxPPP3Frames ",
1311 "RxPPP4Frames ",
1312 "RxPPP5Frames ",
1313 "RxPPP6Frames ",
1314 "RxPPP7Frames ",
1315
1316 "RxBG0FramesDropped ",
1317 "RxBG1FramesDropped ",
1318 "RxBG2FramesDropped ",
1319 "RxBG3FramesDropped ",
1320 "RxBG0FramesTrunc ",
1321 "RxBG1FramesTrunc ",
1322 "RxBG2FramesTrunc ",
1323 "RxBG3FramesTrunc ",
1324
1325 "TSO ",
1326 "TxCsumOffload ",
1327 "RxCsumGood ",
1328 "VLANextractions ",
1329 "VLANinsertions ",
1330 "GROpackets ",
1331 "GROmerged ",
1332 "WriteCoalSuccess ",
1333 "WriteCoalFail ",
1334 };
1335
1336 static int get_sset_count(struct net_device *dev, int sset)
1337 {
1338 switch (sset) {
1339 case ETH_SS_STATS:
1340 return ARRAY_SIZE(stats_strings);
1341 default:
1342 return -EOPNOTSUPP;
1343 }
1344 }
1345
1346 #define T4_REGMAP_SIZE (160 * 1024)
1347 #define T5_REGMAP_SIZE (332 * 1024)
1348
1349 static int get_regs_len(struct net_device *dev)
1350 {
1351 struct adapter *adap = netdev2adap(dev);
1352 if (is_t4(adap->params.chip))
1353 return T4_REGMAP_SIZE;
1354 else
1355 return T5_REGMAP_SIZE;
1356 }
1357
1358 static int get_eeprom_len(struct net_device *dev)
1359 {
1360 return EEPROMSIZE;
1361 }
1362
1363 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1364 {
1365 struct adapter *adapter = netdev2adap(dev);
1366
1367 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1368 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1369 strlcpy(info->bus_info, pci_name(adapter->pdev),
1370 sizeof(info->bus_info));
1371
1372 if (adapter->params.fw_vers)
1373 snprintf(info->fw_version, sizeof(info->fw_version),
1374 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1375 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1376 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1377 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1378 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1379 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1380 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1381 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1382 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1383 }
1384
1385 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1386 {
1387 if (stringset == ETH_SS_STATS)
1388 memcpy(data, stats_strings, sizeof(stats_strings));
1389 }
1390
1391 /*
1392 * port stats maintained per queue of the port. They should be in the same
1393 * order as in stats_strings above.
1394 */
1395 struct queue_port_stats {
1396 u64 tso;
1397 u64 tx_csum;
1398 u64 rx_csum;
1399 u64 vlan_ex;
1400 u64 vlan_ins;
1401 u64 gro_pkts;
1402 u64 gro_merged;
1403 };
1404
1405 static void collect_sge_port_stats(const struct adapter *adap,
1406 const struct port_info *p, struct queue_port_stats *s)
1407 {
1408 int i;
1409 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1410 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1411
1412 memset(s, 0, sizeof(*s));
1413 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1414 s->tso += tx->tso;
1415 s->tx_csum += tx->tx_cso;
1416 s->rx_csum += rx->stats.rx_cso;
1417 s->vlan_ex += rx->stats.vlan_ex;
1418 s->vlan_ins += tx->vlan_ins;
1419 s->gro_pkts += rx->stats.lro_pkts;
1420 s->gro_merged += rx->stats.lro_merged;
1421 }
1422 }
1423
1424 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1425 u64 *data)
1426 {
1427 struct port_info *pi = netdev_priv(dev);
1428 struct adapter *adapter = pi->adapter;
1429 u32 val1, val2;
1430
1431 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1432
1433 data += sizeof(struct port_stats) / sizeof(u64);
1434 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1435 data += sizeof(struct queue_port_stats) / sizeof(u64);
1436 if (!is_t4(adapter->params.chip)) {
1437 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1438 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1439 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1440 *data = val1 - val2;
1441 data++;
1442 *data = val2;
1443 data++;
1444 } else {
1445 memset(data, 0, 2 * sizeof(u64));
1446 *data += 2;
1447 }
1448 }
1449
1450 /*
1451 * Return a version number to identify the type of adapter. The scheme is:
1452 * - bits 0..9: chip version
1453 * - bits 10..15: chip revision
1454 * - bits 16..23: register dump version
1455 */
1456 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1457 {
1458 return CHELSIO_CHIP_VERSION(ap->params.chip) |
1459 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1460 }
1461
1462 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1463 unsigned int end)
1464 {
1465 u32 *p = buf + start;
1466
1467 for ( ; start <= end; start += sizeof(u32))
1468 *p++ = t4_read_reg(ap, start);
1469 }
1470
1471 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1472 void *buf)
1473 {
1474 static const unsigned int t4_reg_ranges[] = {
1475 0x1008, 0x1108,
1476 0x1180, 0x11b4,
1477 0x11fc, 0x123c,
1478 0x1300, 0x173c,
1479 0x1800, 0x18fc,
1480 0x3000, 0x30d8,
1481 0x30e0, 0x5924,
1482 0x5960, 0x59d4,
1483 0x5a00, 0x5af8,
1484 0x6000, 0x6098,
1485 0x6100, 0x6150,
1486 0x6200, 0x6208,
1487 0x6240, 0x6248,
1488 0x6280, 0x6338,
1489 0x6370, 0x638c,
1490 0x6400, 0x643c,
1491 0x6500, 0x6524,
1492 0x6a00, 0x6a38,
1493 0x6a60, 0x6a78,
1494 0x6b00, 0x6b84,
1495 0x6bf0, 0x6c84,
1496 0x6cf0, 0x6d84,
1497 0x6df0, 0x6e84,
1498 0x6ef0, 0x6f84,
1499 0x6ff0, 0x7084,
1500 0x70f0, 0x7184,
1501 0x71f0, 0x7284,
1502 0x72f0, 0x7384,
1503 0x73f0, 0x7450,
1504 0x7500, 0x7530,
1505 0x7600, 0x761c,
1506 0x7680, 0x76cc,
1507 0x7700, 0x7798,
1508 0x77c0, 0x77fc,
1509 0x7900, 0x79fc,
1510 0x7b00, 0x7c38,
1511 0x7d00, 0x7efc,
1512 0x8dc0, 0x8e1c,
1513 0x8e30, 0x8e78,
1514 0x8ea0, 0x8f6c,
1515 0x8fc0, 0x9074,
1516 0x90fc, 0x90fc,
1517 0x9400, 0x9458,
1518 0x9600, 0x96bc,
1519 0x9800, 0x9808,
1520 0x9820, 0x983c,
1521 0x9850, 0x9864,
1522 0x9c00, 0x9c6c,
1523 0x9c80, 0x9cec,
1524 0x9d00, 0x9d6c,
1525 0x9d80, 0x9dec,
1526 0x9e00, 0x9e6c,
1527 0x9e80, 0x9eec,
1528 0x9f00, 0x9f6c,
1529 0x9f80, 0x9fec,
1530 0xd004, 0xd03c,
1531 0xdfc0, 0xdfe0,
1532 0xe000, 0xea7c,
1533 0xf000, 0x11190,
1534 0x19040, 0x1906c,
1535 0x19078, 0x19080,
1536 0x1908c, 0x19124,
1537 0x19150, 0x191b0,
1538 0x191d0, 0x191e8,
1539 0x19238, 0x1924c,
1540 0x193f8, 0x19474,
1541 0x19490, 0x194f8,
1542 0x19800, 0x19f30,
1543 0x1a000, 0x1a06c,
1544 0x1a0b0, 0x1a120,
1545 0x1a128, 0x1a138,
1546 0x1a190, 0x1a1c4,
1547 0x1a1fc, 0x1a1fc,
1548 0x1e040, 0x1e04c,
1549 0x1e284, 0x1e28c,
1550 0x1e2c0, 0x1e2c0,
1551 0x1e2e0, 0x1e2e0,
1552 0x1e300, 0x1e384,
1553 0x1e3c0, 0x1e3c8,
1554 0x1e440, 0x1e44c,
1555 0x1e684, 0x1e68c,
1556 0x1e6c0, 0x1e6c0,
1557 0x1e6e0, 0x1e6e0,
1558 0x1e700, 0x1e784,
1559 0x1e7c0, 0x1e7c8,
1560 0x1e840, 0x1e84c,
1561 0x1ea84, 0x1ea8c,
1562 0x1eac0, 0x1eac0,
1563 0x1eae0, 0x1eae0,
1564 0x1eb00, 0x1eb84,
1565 0x1ebc0, 0x1ebc8,
1566 0x1ec40, 0x1ec4c,
1567 0x1ee84, 0x1ee8c,
1568 0x1eec0, 0x1eec0,
1569 0x1eee0, 0x1eee0,
1570 0x1ef00, 0x1ef84,
1571 0x1efc0, 0x1efc8,
1572 0x1f040, 0x1f04c,
1573 0x1f284, 0x1f28c,
1574 0x1f2c0, 0x1f2c0,
1575 0x1f2e0, 0x1f2e0,
1576 0x1f300, 0x1f384,
1577 0x1f3c0, 0x1f3c8,
1578 0x1f440, 0x1f44c,
1579 0x1f684, 0x1f68c,
1580 0x1f6c0, 0x1f6c0,
1581 0x1f6e0, 0x1f6e0,
1582 0x1f700, 0x1f784,
1583 0x1f7c0, 0x1f7c8,
1584 0x1f840, 0x1f84c,
1585 0x1fa84, 0x1fa8c,
1586 0x1fac0, 0x1fac0,
1587 0x1fae0, 0x1fae0,
1588 0x1fb00, 0x1fb84,
1589 0x1fbc0, 0x1fbc8,
1590 0x1fc40, 0x1fc4c,
1591 0x1fe84, 0x1fe8c,
1592 0x1fec0, 0x1fec0,
1593 0x1fee0, 0x1fee0,
1594 0x1ff00, 0x1ff84,
1595 0x1ffc0, 0x1ffc8,
1596 0x20000, 0x2002c,
1597 0x20100, 0x2013c,
1598 0x20190, 0x201c8,
1599 0x20200, 0x20318,
1600 0x20400, 0x20528,
1601 0x20540, 0x20614,
1602 0x21000, 0x21040,
1603 0x2104c, 0x21060,
1604 0x210c0, 0x210ec,
1605 0x21200, 0x21268,
1606 0x21270, 0x21284,
1607 0x212fc, 0x21388,
1608 0x21400, 0x21404,
1609 0x21500, 0x21518,
1610 0x2152c, 0x2153c,
1611 0x21550, 0x21554,
1612 0x21600, 0x21600,
1613 0x21608, 0x21628,
1614 0x21630, 0x2163c,
1615 0x21700, 0x2171c,
1616 0x21780, 0x2178c,
1617 0x21800, 0x21c38,
1618 0x21c80, 0x21d7c,
1619 0x21e00, 0x21e04,
1620 0x22000, 0x2202c,
1621 0x22100, 0x2213c,
1622 0x22190, 0x221c8,
1623 0x22200, 0x22318,
1624 0x22400, 0x22528,
1625 0x22540, 0x22614,
1626 0x23000, 0x23040,
1627 0x2304c, 0x23060,
1628 0x230c0, 0x230ec,
1629 0x23200, 0x23268,
1630 0x23270, 0x23284,
1631 0x232fc, 0x23388,
1632 0x23400, 0x23404,
1633 0x23500, 0x23518,
1634 0x2352c, 0x2353c,
1635 0x23550, 0x23554,
1636 0x23600, 0x23600,
1637 0x23608, 0x23628,
1638 0x23630, 0x2363c,
1639 0x23700, 0x2371c,
1640 0x23780, 0x2378c,
1641 0x23800, 0x23c38,
1642 0x23c80, 0x23d7c,
1643 0x23e00, 0x23e04,
1644 0x24000, 0x2402c,
1645 0x24100, 0x2413c,
1646 0x24190, 0x241c8,
1647 0x24200, 0x24318,
1648 0x24400, 0x24528,
1649 0x24540, 0x24614,
1650 0x25000, 0x25040,
1651 0x2504c, 0x25060,
1652 0x250c0, 0x250ec,
1653 0x25200, 0x25268,
1654 0x25270, 0x25284,
1655 0x252fc, 0x25388,
1656 0x25400, 0x25404,
1657 0x25500, 0x25518,
1658 0x2552c, 0x2553c,
1659 0x25550, 0x25554,
1660 0x25600, 0x25600,
1661 0x25608, 0x25628,
1662 0x25630, 0x2563c,
1663 0x25700, 0x2571c,
1664 0x25780, 0x2578c,
1665 0x25800, 0x25c38,
1666 0x25c80, 0x25d7c,
1667 0x25e00, 0x25e04,
1668 0x26000, 0x2602c,
1669 0x26100, 0x2613c,
1670 0x26190, 0x261c8,
1671 0x26200, 0x26318,
1672 0x26400, 0x26528,
1673 0x26540, 0x26614,
1674 0x27000, 0x27040,
1675 0x2704c, 0x27060,
1676 0x270c0, 0x270ec,
1677 0x27200, 0x27268,
1678 0x27270, 0x27284,
1679 0x272fc, 0x27388,
1680 0x27400, 0x27404,
1681 0x27500, 0x27518,
1682 0x2752c, 0x2753c,
1683 0x27550, 0x27554,
1684 0x27600, 0x27600,
1685 0x27608, 0x27628,
1686 0x27630, 0x2763c,
1687 0x27700, 0x2771c,
1688 0x27780, 0x2778c,
1689 0x27800, 0x27c38,
1690 0x27c80, 0x27d7c,
1691 0x27e00, 0x27e04
1692 };
1693
1694 static const unsigned int t5_reg_ranges[] = {
1695 0x1008, 0x1148,
1696 0x1180, 0x11b4,
1697 0x11fc, 0x123c,
1698 0x1280, 0x173c,
1699 0x1800, 0x18fc,
1700 0x3000, 0x3028,
1701 0x3060, 0x30d8,
1702 0x30e0, 0x30fc,
1703 0x3140, 0x357c,
1704 0x35a8, 0x35cc,
1705 0x35ec, 0x35ec,
1706 0x3600, 0x5624,
1707 0x56cc, 0x575c,
1708 0x580c, 0x5814,
1709 0x5890, 0x58bc,
1710 0x5940, 0x59dc,
1711 0x59fc, 0x5a18,
1712 0x5a60, 0x5a9c,
1713 0x5b9c, 0x5bfc,
1714 0x6000, 0x6040,
1715 0x6058, 0x614c,
1716 0x7700, 0x7798,
1717 0x77c0, 0x78fc,
1718 0x7b00, 0x7c54,
1719 0x7d00, 0x7efc,
1720 0x8dc0, 0x8de0,
1721 0x8df8, 0x8e84,
1722 0x8ea0, 0x8f84,
1723 0x8fc0, 0x90f8,
1724 0x9400, 0x9470,
1725 0x9600, 0x96f4,
1726 0x9800, 0x9808,
1727 0x9820, 0x983c,
1728 0x9850, 0x9864,
1729 0x9c00, 0x9c6c,
1730 0x9c80, 0x9cec,
1731 0x9d00, 0x9d6c,
1732 0x9d80, 0x9dec,
1733 0x9e00, 0x9e6c,
1734 0x9e80, 0x9eec,
1735 0x9f00, 0x9f6c,
1736 0x9f80, 0xa020,
1737 0xd004, 0xd03c,
1738 0xdfc0, 0xdfe0,
1739 0xe000, 0x11088,
1740 0x1109c, 0x1117c,
1741 0x11190, 0x11204,
1742 0x19040, 0x1906c,
1743 0x19078, 0x19080,
1744 0x1908c, 0x19124,
1745 0x19150, 0x191b0,
1746 0x191d0, 0x191e8,
1747 0x19238, 0x19290,
1748 0x193f8, 0x19474,
1749 0x19490, 0x194cc,
1750 0x194f0, 0x194f8,
1751 0x19c00, 0x19c60,
1752 0x19c94, 0x19e10,
1753 0x19e50, 0x19f34,
1754 0x19f40, 0x19f50,
1755 0x19f90, 0x19fe4,
1756 0x1a000, 0x1a06c,
1757 0x1a0b0, 0x1a120,
1758 0x1a128, 0x1a138,
1759 0x1a190, 0x1a1c4,
1760 0x1a1fc, 0x1a1fc,
1761 0x1e008, 0x1e00c,
1762 0x1e040, 0x1e04c,
1763 0x1e284, 0x1e290,
1764 0x1e2c0, 0x1e2c0,
1765 0x1e2e0, 0x1e2e0,
1766 0x1e300, 0x1e384,
1767 0x1e3c0, 0x1e3c8,
1768 0x1e408, 0x1e40c,
1769 0x1e440, 0x1e44c,
1770 0x1e684, 0x1e690,
1771 0x1e6c0, 0x1e6c0,
1772 0x1e6e0, 0x1e6e0,
1773 0x1e700, 0x1e784,
1774 0x1e7c0, 0x1e7c8,
1775 0x1e808, 0x1e80c,
1776 0x1e840, 0x1e84c,
1777 0x1ea84, 0x1ea90,
1778 0x1eac0, 0x1eac0,
1779 0x1eae0, 0x1eae0,
1780 0x1eb00, 0x1eb84,
1781 0x1ebc0, 0x1ebc8,
1782 0x1ec08, 0x1ec0c,
1783 0x1ec40, 0x1ec4c,
1784 0x1ee84, 0x1ee90,
1785 0x1eec0, 0x1eec0,
1786 0x1eee0, 0x1eee0,
1787 0x1ef00, 0x1ef84,
1788 0x1efc0, 0x1efc8,
1789 0x1f008, 0x1f00c,
1790 0x1f040, 0x1f04c,
1791 0x1f284, 0x1f290,
1792 0x1f2c0, 0x1f2c0,
1793 0x1f2e0, 0x1f2e0,
1794 0x1f300, 0x1f384,
1795 0x1f3c0, 0x1f3c8,
1796 0x1f408, 0x1f40c,
1797 0x1f440, 0x1f44c,
1798 0x1f684, 0x1f690,
1799 0x1f6c0, 0x1f6c0,
1800 0x1f6e0, 0x1f6e0,
1801 0x1f700, 0x1f784,
1802 0x1f7c0, 0x1f7c8,
1803 0x1f808, 0x1f80c,
1804 0x1f840, 0x1f84c,
1805 0x1fa84, 0x1fa90,
1806 0x1fac0, 0x1fac0,
1807 0x1fae0, 0x1fae0,
1808 0x1fb00, 0x1fb84,
1809 0x1fbc0, 0x1fbc8,
1810 0x1fc08, 0x1fc0c,
1811 0x1fc40, 0x1fc4c,
1812 0x1fe84, 0x1fe90,
1813 0x1fec0, 0x1fec0,
1814 0x1fee0, 0x1fee0,
1815 0x1ff00, 0x1ff84,
1816 0x1ffc0, 0x1ffc8,
1817 0x30000, 0x30030,
1818 0x30100, 0x30144,
1819 0x30190, 0x301d0,
1820 0x30200, 0x30318,
1821 0x30400, 0x3052c,
1822 0x30540, 0x3061c,
1823 0x30800, 0x30834,
1824 0x308c0, 0x30908,
1825 0x30910, 0x309ac,
1826 0x30a00, 0x30a04,
1827 0x30a0c, 0x30a2c,
1828 0x30a44, 0x30a50,
1829 0x30a74, 0x30c24,
1830 0x30d08, 0x30d14,
1831 0x30d1c, 0x30d20,
1832 0x30d3c, 0x30d50,
1833 0x31200, 0x3120c,
1834 0x31220, 0x31220,
1835 0x31240, 0x31240,
1836 0x31600, 0x31600,
1837 0x31608, 0x3160c,
1838 0x31a00, 0x31a1c,
1839 0x31e04, 0x31e20,
1840 0x31e38, 0x31e3c,
1841 0x31e80, 0x31e80,
1842 0x31e88, 0x31ea8,
1843 0x31eb0, 0x31eb4,
1844 0x31ec8, 0x31ed4,
1845 0x31fb8, 0x32004,
1846 0x32208, 0x3223c,
1847 0x32600, 0x32630,
1848 0x32a00, 0x32abc,
1849 0x32b00, 0x32b70,
1850 0x33000, 0x33048,
1851 0x33060, 0x3309c,
1852 0x330f0, 0x33148,
1853 0x33160, 0x3319c,
1854 0x331f0, 0x332e4,
1855 0x332f8, 0x333e4,
1856 0x333f8, 0x33448,
1857 0x33460, 0x3349c,
1858 0x334f0, 0x33548,
1859 0x33560, 0x3359c,
1860 0x335f0, 0x336e4,
1861 0x336f8, 0x337e4,
1862 0x337f8, 0x337fc,
1863 0x33814, 0x33814,
1864 0x3382c, 0x3382c,
1865 0x33880, 0x3388c,
1866 0x338e8, 0x338ec,
1867 0x33900, 0x33948,
1868 0x33960, 0x3399c,
1869 0x339f0, 0x33ae4,
1870 0x33af8, 0x33b10,
1871 0x33b28, 0x33b28,
1872 0x33b3c, 0x33b50,
1873 0x33bf0, 0x33c10,
1874 0x33c28, 0x33c28,
1875 0x33c3c, 0x33c50,
1876 0x33cf0, 0x33cfc,
1877 0x34000, 0x34030,
1878 0x34100, 0x34144,
1879 0x34190, 0x341d0,
1880 0x34200, 0x34318,
1881 0x34400, 0x3452c,
1882 0x34540, 0x3461c,
1883 0x34800, 0x34834,
1884 0x348c0, 0x34908,
1885 0x34910, 0x349ac,
1886 0x34a00, 0x34a04,
1887 0x34a0c, 0x34a2c,
1888 0x34a44, 0x34a50,
1889 0x34a74, 0x34c24,
1890 0x34d08, 0x34d14,
1891 0x34d1c, 0x34d20,
1892 0x34d3c, 0x34d50,
1893 0x35200, 0x3520c,
1894 0x35220, 0x35220,
1895 0x35240, 0x35240,
1896 0x35600, 0x35600,
1897 0x35608, 0x3560c,
1898 0x35a00, 0x35a1c,
1899 0x35e04, 0x35e20,
1900 0x35e38, 0x35e3c,
1901 0x35e80, 0x35e80,
1902 0x35e88, 0x35ea8,
1903 0x35eb0, 0x35eb4,
1904 0x35ec8, 0x35ed4,
1905 0x35fb8, 0x36004,
1906 0x36208, 0x3623c,
1907 0x36600, 0x36630,
1908 0x36a00, 0x36abc,
1909 0x36b00, 0x36b70,
1910 0x37000, 0x37048,
1911 0x37060, 0x3709c,
1912 0x370f0, 0x37148,
1913 0x37160, 0x3719c,
1914 0x371f0, 0x372e4,
1915 0x372f8, 0x373e4,
1916 0x373f8, 0x37448,
1917 0x37460, 0x3749c,
1918 0x374f0, 0x37548,
1919 0x37560, 0x3759c,
1920 0x375f0, 0x376e4,
1921 0x376f8, 0x377e4,
1922 0x377f8, 0x377fc,
1923 0x37814, 0x37814,
1924 0x3782c, 0x3782c,
1925 0x37880, 0x3788c,
1926 0x378e8, 0x378ec,
1927 0x37900, 0x37948,
1928 0x37960, 0x3799c,
1929 0x379f0, 0x37ae4,
1930 0x37af8, 0x37b10,
1931 0x37b28, 0x37b28,
1932 0x37b3c, 0x37b50,
1933 0x37bf0, 0x37c10,
1934 0x37c28, 0x37c28,
1935 0x37c3c, 0x37c50,
1936 0x37cf0, 0x37cfc,
1937 0x38000, 0x38030,
1938 0x38100, 0x38144,
1939 0x38190, 0x381d0,
1940 0x38200, 0x38318,
1941 0x38400, 0x3852c,
1942 0x38540, 0x3861c,
1943 0x38800, 0x38834,
1944 0x388c0, 0x38908,
1945 0x38910, 0x389ac,
1946 0x38a00, 0x38a04,
1947 0x38a0c, 0x38a2c,
1948 0x38a44, 0x38a50,
1949 0x38a74, 0x38c24,
1950 0x38d08, 0x38d14,
1951 0x38d1c, 0x38d20,
1952 0x38d3c, 0x38d50,
1953 0x39200, 0x3920c,
1954 0x39220, 0x39220,
1955 0x39240, 0x39240,
1956 0x39600, 0x39600,
1957 0x39608, 0x3960c,
1958 0x39a00, 0x39a1c,
1959 0x39e04, 0x39e20,
1960 0x39e38, 0x39e3c,
1961 0x39e80, 0x39e80,
1962 0x39e88, 0x39ea8,
1963 0x39eb0, 0x39eb4,
1964 0x39ec8, 0x39ed4,
1965 0x39fb8, 0x3a004,
1966 0x3a208, 0x3a23c,
1967 0x3a600, 0x3a630,
1968 0x3aa00, 0x3aabc,
1969 0x3ab00, 0x3ab70,
1970 0x3b000, 0x3b048,
1971 0x3b060, 0x3b09c,
1972 0x3b0f0, 0x3b148,
1973 0x3b160, 0x3b19c,
1974 0x3b1f0, 0x3b2e4,
1975 0x3b2f8, 0x3b3e4,
1976 0x3b3f8, 0x3b448,
1977 0x3b460, 0x3b49c,
1978 0x3b4f0, 0x3b548,
1979 0x3b560, 0x3b59c,
1980 0x3b5f0, 0x3b6e4,
1981 0x3b6f8, 0x3b7e4,
1982 0x3b7f8, 0x3b7fc,
1983 0x3b814, 0x3b814,
1984 0x3b82c, 0x3b82c,
1985 0x3b880, 0x3b88c,
1986 0x3b8e8, 0x3b8ec,
1987 0x3b900, 0x3b948,
1988 0x3b960, 0x3b99c,
1989 0x3b9f0, 0x3bae4,
1990 0x3baf8, 0x3bb10,
1991 0x3bb28, 0x3bb28,
1992 0x3bb3c, 0x3bb50,
1993 0x3bbf0, 0x3bc10,
1994 0x3bc28, 0x3bc28,
1995 0x3bc3c, 0x3bc50,
1996 0x3bcf0, 0x3bcfc,
1997 0x3c000, 0x3c030,
1998 0x3c100, 0x3c144,
1999 0x3c190, 0x3c1d0,
2000 0x3c200, 0x3c318,
2001 0x3c400, 0x3c52c,
2002 0x3c540, 0x3c61c,
2003 0x3c800, 0x3c834,
2004 0x3c8c0, 0x3c908,
2005 0x3c910, 0x3c9ac,
2006 0x3ca00, 0x3ca04,
2007 0x3ca0c, 0x3ca2c,
2008 0x3ca44, 0x3ca50,
2009 0x3ca74, 0x3cc24,
2010 0x3cd08, 0x3cd14,
2011 0x3cd1c, 0x3cd20,
2012 0x3cd3c, 0x3cd50,
2013 0x3d200, 0x3d20c,
2014 0x3d220, 0x3d220,
2015 0x3d240, 0x3d240,
2016 0x3d600, 0x3d600,
2017 0x3d608, 0x3d60c,
2018 0x3da00, 0x3da1c,
2019 0x3de04, 0x3de20,
2020 0x3de38, 0x3de3c,
2021 0x3de80, 0x3de80,
2022 0x3de88, 0x3dea8,
2023 0x3deb0, 0x3deb4,
2024 0x3dec8, 0x3ded4,
2025 0x3dfb8, 0x3e004,
2026 0x3e208, 0x3e23c,
2027 0x3e600, 0x3e630,
2028 0x3ea00, 0x3eabc,
2029 0x3eb00, 0x3eb70,
2030 0x3f000, 0x3f048,
2031 0x3f060, 0x3f09c,
2032 0x3f0f0, 0x3f148,
2033 0x3f160, 0x3f19c,
2034 0x3f1f0, 0x3f2e4,
2035 0x3f2f8, 0x3f3e4,
2036 0x3f3f8, 0x3f448,
2037 0x3f460, 0x3f49c,
2038 0x3f4f0, 0x3f548,
2039 0x3f560, 0x3f59c,
2040 0x3f5f0, 0x3f6e4,
2041 0x3f6f8, 0x3f7e4,
2042 0x3f7f8, 0x3f7fc,
2043 0x3f814, 0x3f814,
2044 0x3f82c, 0x3f82c,
2045 0x3f880, 0x3f88c,
2046 0x3f8e8, 0x3f8ec,
2047 0x3f900, 0x3f948,
2048 0x3f960, 0x3f99c,
2049 0x3f9f0, 0x3fae4,
2050 0x3faf8, 0x3fb10,
2051 0x3fb28, 0x3fb28,
2052 0x3fb3c, 0x3fb50,
2053 0x3fbf0, 0x3fc10,
2054 0x3fc28, 0x3fc28,
2055 0x3fc3c, 0x3fc50,
2056 0x3fcf0, 0x3fcfc,
2057 0x40000, 0x4000c,
2058 0x40040, 0x40068,
2059 0x40080, 0x40144,
2060 0x40180, 0x4018c,
2061 0x40200, 0x40298,
2062 0x402ac, 0x4033c,
2063 0x403f8, 0x403fc,
2064 0x41300, 0x413c4,
2065 0x41400, 0x4141c,
2066 0x41480, 0x414d0,
2067 0x44000, 0x44078,
2068 0x440c0, 0x44278,
2069 0x442c0, 0x44478,
2070 0x444c0, 0x44678,
2071 0x446c0, 0x44878,
2072 0x448c0, 0x449fc,
2073 0x45000, 0x45068,
2074 0x45080, 0x45084,
2075 0x450a0, 0x450b0,
2076 0x45200, 0x45268,
2077 0x45280, 0x45284,
2078 0x452a0, 0x452b0,
2079 0x460c0, 0x460e4,
2080 0x47000, 0x4708c,
2081 0x47200, 0x47250,
2082 0x47400, 0x47420,
2083 0x47600, 0x47618,
2084 0x47800, 0x47814,
2085 0x48000, 0x4800c,
2086 0x48040, 0x48068,
2087 0x48080, 0x48144,
2088 0x48180, 0x4818c,
2089 0x48200, 0x48298,
2090 0x482ac, 0x4833c,
2091 0x483f8, 0x483fc,
2092 0x49300, 0x493c4,
2093 0x49400, 0x4941c,
2094 0x49480, 0x494d0,
2095 0x4c000, 0x4c078,
2096 0x4c0c0, 0x4c278,
2097 0x4c2c0, 0x4c478,
2098 0x4c4c0, 0x4c678,
2099 0x4c6c0, 0x4c878,
2100 0x4c8c0, 0x4c9fc,
2101 0x4d000, 0x4d068,
2102 0x4d080, 0x4d084,
2103 0x4d0a0, 0x4d0b0,
2104 0x4d200, 0x4d268,
2105 0x4d280, 0x4d284,
2106 0x4d2a0, 0x4d2b0,
2107 0x4e0c0, 0x4e0e4,
2108 0x4f000, 0x4f08c,
2109 0x4f200, 0x4f250,
2110 0x4f400, 0x4f420,
2111 0x4f600, 0x4f618,
2112 0x4f800, 0x4f814,
2113 0x50000, 0x500cc,
2114 0x50400, 0x50400,
2115 0x50800, 0x508cc,
2116 0x50c00, 0x50c00,
2117 0x51000, 0x5101c,
2118 0x51300, 0x51308,
2119 };
2120
2121 int i;
2122 struct adapter *ap = netdev2adap(dev);
2123 static const unsigned int *reg_ranges;
2124 int arr_size = 0, buf_size = 0;
2125
2126 if (is_t4(ap->params.chip)) {
2127 reg_ranges = &t4_reg_ranges[0];
2128 arr_size = ARRAY_SIZE(t4_reg_ranges);
2129 buf_size = T4_REGMAP_SIZE;
2130 } else {
2131 reg_ranges = &t5_reg_ranges[0];
2132 arr_size = ARRAY_SIZE(t5_reg_ranges);
2133 buf_size = T5_REGMAP_SIZE;
2134 }
2135
2136 regs->version = mk_adap_vers(ap);
2137
2138 memset(buf, 0, buf_size);
2139 for (i = 0; i < arr_size; i += 2)
2140 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2141 }
2142
2143 static int restart_autoneg(struct net_device *dev)
2144 {
2145 struct port_info *p = netdev_priv(dev);
2146
2147 if (!netif_running(dev))
2148 return -EAGAIN;
2149 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2150 return -EINVAL;
2151 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2152 return 0;
2153 }
2154
2155 static int identify_port(struct net_device *dev,
2156 enum ethtool_phys_id_state state)
2157 {
2158 unsigned int val;
2159 struct adapter *adap = netdev2adap(dev);
2160
2161 if (state == ETHTOOL_ID_ACTIVE)
2162 val = 0xffff;
2163 else if (state == ETHTOOL_ID_INACTIVE)
2164 val = 0;
2165 else
2166 return -EINVAL;
2167
2168 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2169 }
2170
2171 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2172 {
2173 unsigned int v = 0;
2174
2175 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2176 type == FW_PORT_TYPE_BT_XAUI) {
2177 v |= SUPPORTED_TP;
2178 if (caps & FW_PORT_CAP_SPEED_100M)
2179 v |= SUPPORTED_100baseT_Full;
2180 if (caps & FW_PORT_CAP_SPEED_1G)
2181 v |= SUPPORTED_1000baseT_Full;
2182 if (caps & FW_PORT_CAP_SPEED_10G)
2183 v |= SUPPORTED_10000baseT_Full;
2184 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2185 v |= SUPPORTED_Backplane;
2186 if (caps & FW_PORT_CAP_SPEED_1G)
2187 v |= SUPPORTED_1000baseKX_Full;
2188 if (caps & FW_PORT_CAP_SPEED_10G)
2189 v |= SUPPORTED_10000baseKX4_Full;
2190 } else if (type == FW_PORT_TYPE_KR)
2191 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2192 else if (type == FW_PORT_TYPE_BP_AP)
2193 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2194 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2195 else if (type == FW_PORT_TYPE_BP4_AP)
2196 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2197 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2198 SUPPORTED_10000baseKX4_Full;
2199 else if (type == FW_PORT_TYPE_FIBER_XFI ||
2200 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2201 v |= SUPPORTED_FIBRE;
2202
2203 if (caps & FW_PORT_CAP_ANEG)
2204 v |= SUPPORTED_Autoneg;
2205 return v;
2206 }
2207
2208 static unsigned int to_fw_linkcaps(unsigned int caps)
2209 {
2210 unsigned int v = 0;
2211
2212 if (caps & ADVERTISED_100baseT_Full)
2213 v |= FW_PORT_CAP_SPEED_100M;
2214 if (caps & ADVERTISED_1000baseT_Full)
2215 v |= FW_PORT_CAP_SPEED_1G;
2216 if (caps & ADVERTISED_10000baseT_Full)
2217 v |= FW_PORT_CAP_SPEED_10G;
2218 return v;
2219 }
2220
2221 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2222 {
2223 const struct port_info *p = netdev_priv(dev);
2224
2225 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2226 p->port_type == FW_PORT_TYPE_BT_XFI ||
2227 p->port_type == FW_PORT_TYPE_BT_XAUI)
2228 cmd->port = PORT_TP;
2229 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2230 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2231 cmd->port = PORT_FIBRE;
2232 else if (p->port_type == FW_PORT_TYPE_SFP) {
2233 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2234 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2235 cmd->port = PORT_DA;
2236 else
2237 cmd->port = PORT_FIBRE;
2238 } else
2239 cmd->port = PORT_OTHER;
2240
2241 if (p->mdio_addr >= 0) {
2242 cmd->phy_address = p->mdio_addr;
2243 cmd->transceiver = XCVR_EXTERNAL;
2244 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2245 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2246 } else {
2247 cmd->phy_address = 0; /* not really, but no better option */
2248 cmd->transceiver = XCVR_INTERNAL;
2249 cmd->mdio_support = 0;
2250 }
2251
2252 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2253 cmd->advertising = from_fw_linkcaps(p->port_type,
2254 p->link_cfg.advertising);
2255 ethtool_cmd_speed_set(cmd,
2256 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2257 cmd->duplex = DUPLEX_FULL;
2258 cmd->autoneg = p->link_cfg.autoneg;
2259 cmd->maxtxpkt = 0;
2260 cmd->maxrxpkt = 0;
2261 return 0;
2262 }
2263
2264 static unsigned int speed_to_caps(int speed)
2265 {
2266 if (speed == SPEED_100)
2267 return FW_PORT_CAP_SPEED_100M;
2268 if (speed == SPEED_1000)
2269 return FW_PORT_CAP_SPEED_1G;
2270 if (speed == SPEED_10000)
2271 return FW_PORT_CAP_SPEED_10G;
2272 return 0;
2273 }
2274
2275 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2276 {
2277 unsigned int cap;
2278 struct port_info *p = netdev_priv(dev);
2279 struct link_config *lc = &p->link_cfg;
2280 u32 speed = ethtool_cmd_speed(cmd);
2281
2282 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
2283 return -EINVAL;
2284
2285 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2286 /*
2287 * PHY offers a single speed. See if that's what's
2288 * being requested.
2289 */
2290 if (cmd->autoneg == AUTONEG_DISABLE &&
2291 (lc->supported & speed_to_caps(speed)))
2292 return 0;
2293 return -EINVAL;
2294 }
2295
2296 if (cmd->autoneg == AUTONEG_DISABLE) {
2297 cap = speed_to_caps(speed);
2298
2299 if (!(lc->supported & cap) || (speed == SPEED_1000) ||
2300 (speed == SPEED_10000))
2301 return -EINVAL;
2302 lc->requested_speed = cap;
2303 lc->advertising = 0;
2304 } else {
2305 cap = to_fw_linkcaps(cmd->advertising);
2306 if (!(lc->supported & cap))
2307 return -EINVAL;
2308 lc->requested_speed = 0;
2309 lc->advertising = cap | FW_PORT_CAP_ANEG;
2310 }
2311 lc->autoneg = cmd->autoneg;
2312
2313 if (netif_running(dev))
2314 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2315 lc);
2316 return 0;
2317 }
2318
2319 static void get_pauseparam(struct net_device *dev,
2320 struct ethtool_pauseparam *epause)
2321 {
2322 struct port_info *p = netdev_priv(dev);
2323
2324 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2325 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2326 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2327 }
2328
2329 static int set_pauseparam(struct net_device *dev,
2330 struct ethtool_pauseparam *epause)
2331 {
2332 struct port_info *p = netdev_priv(dev);
2333 struct link_config *lc = &p->link_cfg;
2334
2335 if (epause->autoneg == AUTONEG_DISABLE)
2336 lc->requested_fc = 0;
2337 else if (lc->supported & FW_PORT_CAP_ANEG)
2338 lc->requested_fc = PAUSE_AUTONEG;
2339 else
2340 return -EINVAL;
2341
2342 if (epause->rx_pause)
2343 lc->requested_fc |= PAUSE_RX;
2344 if (epause->tx_pause)
2345 lc->requested_fc |= PAUSE_TX;
2346 if (netif_running(dev))
2347 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2348 lc);
2349 return 0;
2350 }
2351
2352 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2353 {
2354 const struct port_info *pi = netdev_priv(dev);
2355 const struct sge *s = &pi->adapter->sge;
2356
2357 e->rx_max_pending = MAX_RX_BUFFERS;
2358 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2359 e->rx_jumbo_max_pending = 0;
2360 e->tx_max_pending = MAX_TXQ_ENTRIES;
2361
2362 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2363 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2364 e->rx_jumbo_pending = 0;
2365 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2366 }
2367
2368 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2369 {
2370 int i;
2371 const struct port_info *pi = netdev_priv(dev);
2372 struct adapter *adapter = pi->adapter;
2373 struct sge *s = &adapter->sge;
2374
2375 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2376 e->tx_pending > MAX_TXQ_ENTRIES ||
2377 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2378 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2379 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2380 return -EINVAL;
2381
2382 if (adapter->flags & FULL_INIT_DONE)
2383 return -EBUSY;
2384
2385 for (i = 0; i < pi->nqsets; ++i) {
2386 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2387 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2388 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2389 }
2390 return 0;
2391 }
2392
2393 static int closest_timer(const struct sge *s, int time)
2394 {
2395 int i, delta, match = 0, min_delta = INT_MAX;
2396
2397 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2398 delta = time - s->timer_val[i];
2399 if (delta < 0)
2400 delta = -delta;
2401 if (delta < min_delta) {
2402 min_delta = delta;
2403 match = i;
2404 }
2405 }
2406 return match;
2407 }
2408
2409 static int closest_thres(const struct sge *s, int thres)
2410 {
2411 int i, delta, match = 0, min_delta = INT_MAX;
2412
2413 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2414 delta = thres - s->counter_val[i];
2415 if (delta < 0)
2416 delta = -delta;
2417 if (delta < min_delta) {
2418 min_delta = delta;
2419 match = i;
2420 }
2421 }
2422 return match;
2423 }
2424
2425 /*
2426 * Return a queue's interrupt hold-off time in us. 0 means no timer.
2427 */
2428 static unsigned int qtimer_val(const struct adapter *adap,
2429 const struct sge_rspq *q)
2430 {
2431 unsigned int idx = q->intr_params >> 1;
2432
2433 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2434 }
2435
2436 /**
2437 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
2438 * @adap: the adapter
2439 * @q: the Rx queue
2440 * @us: the hold-off time in us, or 0 to disable timer
2441 * @cnt: the hold-off packet count, or 0 to disable counter
2442 *
2443 * Sets an Rx queue's interrupt hold-off time and packet count. At least
2444 * one of the two needs to be enabled for the queue to generate interrupts.
2445 */
2446 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
2447 unsigned int us, unsigned int cnt)
2448 {
2449 if ((us | cnt) == 0)
2450 cnt = 1;
2451
2452 if (cnt) {
2453 int err;
2454 u32 v, new_idx;
2455
2456 new_idx = closest_thres(&adap->sge, cnt);
2457 if (q->desc && q->pktcnt_idx != new_idx) {
2458 /* the queue has already been created, update it */
2459 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2460 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2461 FW_PARAMS_PARAM_YZ(q->cntxt_id);
2462 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2463 &new_idx);
2464 if (err)
2465 return err;
2466 }
2467 q->pktcnt_idx = new_idx;
2468 }
2469
2470 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2471 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2472 return 0;
2473 }
2474
2475 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2476 {
2477 const struct port_info *pi = netdev_priv(dev);
2478 struct adapter *adap = pi->adapter;
2479 struct sge_rspq *q;
2480 int i;
2481 int r = 0;
2482
2483 for (i = pi->first_qset; i < pi->first_qset + pi->nqsets; i++) {
2484 q = &adap->sge.ethrxq[i].rspq;
2485 r = set_rxq_intr_params(adap, q, c->rx_coalesce_usecs,
2486 c->rx_max_coalesced_frames);
2487 if (r) {
2488 dev_err(&dev->dev, "failed to set coalesce %d\n", r);
2489 break;
2490 }
2491 }
2492 return r;
2493 }
2494
2495 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2496 {
2497 const struct port_info *pi = netdev_priv(dev);
2498 const struct adapter *adap = pi->adapter;
2499 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2500
2501 c->rx_coalesce_usecs = qtimer_val(adap, rq);
2502 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2503 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2504 return 0;
2505 }
2506
2507 /**
2508 * eeprom_ptov - translate a physical EEPROM address to virtual
2509 * @phys_addr: the physical EEPROM address
2510 * @fn: the PCI function number
2511 * @sz: size of function-specific area
2512 *
2513 * Translate a physical EEPROM address to virtual. The first 1K is
2514 * accessed through virtual addresses starting at 31K, the rest is
2515 * accessed through virtual addresses starting at 0.
2516 *
2517 * The mapping is as follows:
2518 * [0..1K) -> [31K..32K)
2519 * [1K..1K+A) -> [31K-A..31K)
2520 * [1K+A..ES) -> [0..ES-A-1K)
2521 *
2522 * where A = @fn * @sz, and ES = EEPROM size.
2523 */
2524 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2525 {
2526 fn *= sz;
2527 if (phys_addr < 1024)
2528 return phys_addr + (31 << 10);
2529 if (phys_addr < 1024 + fn)
2530 return 31744 - fn + phys_addr - 1024;
2531 if (phys_addr < EEPROMSIZE)
2532 return phys_addr - 1024 - fn;
2533 return -EINVAL;
2534 }
2535
2536 /*
2537 * The next two routines implement eeprom read/write from physical addresses.
2538 */
2539 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2540 {
2541 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2542
2543 if (vaddr >= 0)
2544 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2545 return vaddr < 0 ? vaddr : 0;
2546 }
2547
2548 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2549 {
2550 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2551
2552 if (vaddr >= 0)
2553 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2554 return vaddr < 0 ? vaddr : 0;
2555 }
2556
2557 #define EEPROM_MAGIC 0x38E2F10C
2558
2559 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2560 u8 *data)
2561 {
2562 int i, err = 0;
2563 struct adapter *adapter = netdev2adap(dev);
2564
2565 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2566 if (!buf)
2567 return -ENOMEM;
2568
2569 e->magic = EEPROM_MAGIC;
2570 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2571 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2572
2573 if (!err)
2574 memcpy(data, buf + e->offset, e->len);
2575 kfree(buf);
2576 return err;
2577 }
2578
2579 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2580 u8 *data)
2581 {
2582 u8 *buf;
2583 int err = 0;
2584 u32 aligned_offset, aligned_len, *p;
2585 struct adapter *adapter = netdev2adap(dev);
2586
2587 if (eeprom->magic != EEPROM_MAGIC)
2588 return -EINVAL;
2589
2590 aligned_offset = eeprom->offset & ~3;
2591 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2592
2593 if (adapter->fn > 0) {
2594 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2595
2596 if (aligned_offset < start ||
2597 aligned_offset + aligned_len > start + EEPROMPFSIZE)
2598 return -EPERM;
2599 }
2600
2601 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2602 /*
2603 * RMW possibly needed for first or last words.
2604 */
2605 buf = kmalloc(aligned_len, GFP_KERNEL);
2606 if (!buf)
2607 return -ENOMEM;
2608 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2609 if (!err && aligned_len > 4)
2610 err = eeprom_rd_phys(adapter,
2611 aligned_offset + aligned_len - 4,
2612 (u32 *)&buf[aligned_len - 4]);
2613 if (err)
2614 goto out;
2615 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2616 } else
2617 buf = data;
2618
2619 err = t4_seeprom_wp(adapter, false);
2620 if (err)
2621 goto out;
2622
2623 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2624 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2625 aligned_offset += 4;
2626 }
2627
2628 if (!err)
2629 err = t4_seeprom_wp(adapter, true);
2630 out:
2631 if (buf != data)
2632 kfree(buf);
2633 return err;
2634 }
2635
2636 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2637 {
2638 int ret;
2639 const struct firmware *fw;
2640 struct adapter *adap = netdev2adap(netdev);
2641
2642 ef->data[sizeof(ef->data) - 1] = '\0';
2643 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2644 if (ret < 0)
2645 return ret;
2646
2647 ret = t4_load_fw(adap, fw->data, fw->size);
2648 release_firmware(fw);
2649 if (!ret)
2650 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2651 return ret;
2652 }
2653
2654 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2655 #define BCAST_CRC 0xa0ccc1a6
2656
2657 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2658 {
2659 wol->supported = WAKE_BCAST | WAKE_MAGIC;
2660 wol->wolopts = netdev2adap(dev)->wol;
2661 memset(&wol->sopass, 0, sizeof(wol->sopass));
2662 }
2663
2664 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2665 {
2666 int err = 0;
2667 struct port_info *pi = netdev_priv(dev);
2668
2669 if (wol->wolopts & ~WOL_SUPPORTED)
2670 return -EINVAL;
2671 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2672 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2673 if (wol->wolopts & WAKE_BCAST) {
2674 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2675 ~0ULL, 0, false);
2676 if (!err)
2677 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2678 ~6ULL, ~0ULL, BCAST_CRC, true);
2679 } else
2680 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2681 return err;
2682 }
2683
2684 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2685 {
2686 const struct port_info *pi = netdev_priv(dev);
2687 netdev_features_t changed = dev->features ^ features;
2688 int err;
2689
2690 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2691 return 0;
2692
2693 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2694 -1, -1, -1,
2695 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2696 if (unlikely(err))
2697 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
2698 return err;
2699 }
2700
2701 static u32 get_rss_table_size(struct net_device *dev)
2702 {
2703 const struct port_info *pi = netdev_priv(dev);
2704
2705 return pi->rss_size;
2706 }
2707
2708 static int get_rss_table(struct net_device *dev, u32 *p)
2709 {
2710 const struct port_info *pi = netdev_priv(dev);
2711 unsigned int n = pi->rss_size;
2712
2713 while (n--)
2714 p[n] = pi->rss[n];
2715 return 0;
2716 }
2717
2718 static int set_rss_table(struct net_device *dev, const u32 *p)
2719 {
2720 unsigned int i;
2721 struct port_info *pi = netdev_priv(dev);
2722
2723 for (i = 0; i < pi->rss_size; i++)
2724 pi->rss[i] = p[i];
2725 if (pi->adapter->flags & FULL_INIT_DONE)
2726 return write_rss(pi, pi->rss);
2727 return 0;
2728 }
2729
2730 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2731 u32 *rules)
2732 {
2733 const struct port_info *pi = netdev_priv(dev);
2734
2735 switch (info->cmd) {
2736 case ETHTOOL_GRXFH: {
2737 unsigned int v = pi->rss_mode;
2738
2739 info->data = 0;
2740 switch (info->flow_type) {
2741 case TCP_V4_FLOW:
2742 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
2743 info->data = RXH_IP_SRC | RXH_IP_DST |
2744 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2745 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2746 info->data = RXH_IP_SRC | RXH_IP_DST;
2747 break;
2748 case UDP_V4_FLOW:
2749 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
2750 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2751 info->data = RXH_IP_SRC | RXH_IP_DST |
2752 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2753 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2754 info->data = RXH_IP_SRC | RXH_IP_DST;
2755 break;
2756 case SCTP_V4_FLOW:
2757 case AH_ESP_V4_FLOW:
2758 case IPV4_FLOW:
2759 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2760 info->data = RXH_IP_SRC | RXH_IP_DST;
2761 break;
2762 case TCP_V6_FLOW:
2763 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
2764 info->data = RXH_IP_SRC | RXH_IP_DST |
2765 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2766 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2767 info->data = RXH_IP_SRC | RXH_IP_DST;
2768 break;
2769 case UDP_V6_FLOW:
2770 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
2771 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2772 info->data = RXH_IP_SRC | RXH_IP_DST |
2773 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2774 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2775 info->data = RXH_IP_SRC | RXH_IP_DST;
2776 break;
2777 case SCTP_V6_FLOW:
2778 case AH_ESP_V6_FLOW:
2779 case IPV6_FLOW:
2780 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2781 info->data = RXH_IP_SRC | RXH_IP_DST;
2782 break;
2783 }
2784 return 0;
2785 }
2786 case ETHTOOL_GRXRINGS:
2787 info->data = pi->nqsets;
2788 return 0;
2789 }
2790 return -EOPNOTSUPP;
2791 }
2792
2793 static const struct ethtool_ops cxgb_ethtool_ops = {
2794 .get_settings = get_settings,
2795 .set_settings = set_settings,
2796 .get_drvinfo = get_drvinfo,
2797 .get_msglevel = get_msglevel,
2798 .set_msglevel = set_msglevel,
2799 .get_ringparam = get_sge_param,
2800 .set_ringparam = set_sge_param,
2801 .get_coalesce = get_coalesce,
2802 .set_coalesce = set_coalesce,
2803 .get_eeprom_len = get_eeprom_len,
2804 .get_eeprom = get_eeprom,
2805 .set_eeprom = set_eeprom,
2806 .get_pauseparam = get_pauseparam,
2807 .set_pauseparam = set_pauseparam,
2808 .get_link = ethtool_op_get_link,
2809 .get_strings = get_strings,
2810 .set_phys_id = identify_port,
2811 .nway_reset = restart_autoneg,
2812 .get_sset_count = get_sset_count,
2813 .get_ethtool_stats = get_stats,
2814 .get_regs_len = get_regs_len,
2815 .get_regs = get_regs,
2816 .get_wol = get_wol,
2817 .set_wol = set_wol,
2818 .get_rxnfc = get_rxnfc,
2819 .get_rxfh_indir_size = get_rss_table_size,
2820 .get_rxfh_indir = get_rss_table,
2821 .set_rxfh_indir = set_rss_table,
2822 .flash_device = set_flash,
2823 };
2824
2825 /*
2826 * debugfs support
2827 */
2828 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2829 loff_t *ppos)
2830 {
2831 loff_t pos = *ppos;
2832 loff_t avail = file_inode(file)->i_size;
2833 unsigned int mem = (uintptr_t)file->private_data & 3;
2834 struct adapter *adap = file->private_data - mem;
2835
2836 if (pos < 0)
2837 return -EINVAL;
2838 if (pos >= avail)
2839 return 0;
2840 if (count > avail - pos)
2841 count = avail - pos;
2842
2843 while (count) {
2844 size_t len;
2845 int ret, ofst;
2846 __be32 data[16];
2847
2848 if ((mem == MEM_MC) || (mem == MEM_MC1))
2849 ret = t4_mc_read(adap, mem % MEM_MC, pos, data, NULL);
2850 else
2851 ret = t4_edc_read(adap, mem, pos, data, NULL);
2852 if (ret)
2853 return ret;
2854
2855 ofst = pos % sizeof(data);
2856 len = min(count, sizeof(data) - ofst);
2857 if (copy_to_user(buf, (u8 *)data + ofst, len))
2858 return -EFAULT;
2859
2860 buf += len;
2861 pos += len;
2862 count -= len;
2863 }
2864 count = pos - *ppos;
2865 *ppos = pos;
2866 return count;
2867 }
2868
2869 static const struct file_operations mem_debugfs_fops = {
2870 .owner = THIS_MODULE,
2871 .open = simple_open,
2872 .read = mem_read,
2873 .llseek = default_llseek,
2874 };
2875
2876 static void add_debugfs_mem(struct adapter *adap, const char *name,
2877 unsigned int idx, unsigned int size_mb)
2878 {
2879 struct dentry *de;
2880
2881 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2882 (void *)adap + idx, &mem_debugfs_fops);
2883 if (de && de->d_inode)
2884 de->d_inode->i_size = size_mb << 20;
2885 }
2886
2887 static int setup_debugfs(struct adapter *adap)
2888 {
2889 int i;
2890 u32 size;
2891
2892 if (IS_ERR_OR_NULL(adap->debugfs_root))
2893 return -1;
2894
2895 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2896 if (i & EDRAM0_ENABLE) {
2897 size = t4_read_reg(adap, MA_EDRAM0_BAR);
2898 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
2899 }
2900 if (i & EDRAM1_ENABLE) {
2901 size = t4_read_reg(adap, MA_EDRAM1_BAR);
2902 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
2903 }
2904 if (is_t4(adap->params.chip)) {
2905 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
2906 if (i & EXT_MEM_ENABLE)
2907 add_debugfs_mem(adap, "mc", MEM_MC,
2908 EXT_MEM_SIZE_GET(size));
2909 } else {
2910 if (i & EXT_MEM_ENABLE) {
2911 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
2912 add_debugfs_mem(adap, "mc0", MEM_MC0,
2913 EXT_MEM_SIZE_GET(size));
2914 }
2915 if (i & EXT_MEM1_ENABLE) {
2916 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
2917 add_debugfs_mem(adap, "mc1", MEM_MC1,
2918 EXT_MEM_SIZE_GET(size));
2919 }
2920 }
2921 if (adap->l2t)
2922 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2923 &t4_l2t_fops);
2924 return 0;
2925 }
2926
2927 /*
2928 * upper-layer driver support
2929 */
2930
2931 /*
2932 * Allocate an active-open TID and set it to the supplied value.
2933 */
2934 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2935 {
2936 int atid = -1;
2937
2938 spin_lock_bh(&t->atid_lock);
2939 if (t->afree) {
2940 union aopen_entry *p = t->afree;
2941
2942 atid = (p - t->atid_tab) + t->atid_base;
2943 t->afree = p->next;
2944 p->data = data;
2945 t->atids_in_use++;
2946 }
2947 spin_unlock_bh(&t->atid_lock);
2948 return atid;
2949 }
2950 EXPORT_SYMBOL(cxgb4_alloc_atid);
2951
2952 /*
2953 * Release an active-open TID.
2954 */
2955 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
2956 {
2957 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
2958
2959 spin_lock_bh(&t->atid_lock);
2960 p->next = t->afree;
2961 t->afree = p;
2962 t->atids_in_use--;
2963 spin_unlock_bh(&t->atid_lock);
2964 }
2965 EXPORT_SYMBOL(cxgb4_free_atid);
2966
2967 /*
2968 * Allocate a server TID and set it to the supplied value.
2969 */
2970 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
2971 {
2972 int stid;
2973
2974 spin_lock_bh(&t->stid_lock);
2975 if (family == PF_INET) {
2976 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
2977 if (stid < t->nstids)
2978 __set_bit(stid, t->stid_bmap);
2979 else
2980 stid = -1;
2981 } else {
2982 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
2983 if (stid < 0)
2984 stid = -1;
2985 }
2986 if (stid >= 0) {
2987 t->stid_tab[stid].data = data;
2988 stid += t->stid_base;
2989 /* IPv6 requires max of 520 bits or 16 cells in TCAM
2990 * This is equivalent to 4 TIDs. With CLIP enabled it
2991 * needs 2 TIDs.
2992 */
2993 if (family == PF_INET)
2994 t->stids_in_use++;
2995 else
2996 t->stids_in_use += 4;
2997 }
2998 spin_unlock_bh(&t->stid_lock);
2999 return stid;
3000 }
3001 EXPORT_SYMBOL(cxgb4_alloc_stid);
3002
3003 /* Allocate a server filter TID and set it to the supplied value.
3004 */
3005 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3006 {
3007 int stid;
3008
3009 spin_lock_bh(&t->stid_lock);
3010 if (family == PF_INET) {
3011 stid = find_next_zero_bit(t->stid_bmap,
3012 t->nstids + t->nsftids, t->nstids);
3013 if (stid < (t->nstids + t->nsftids))
3014 __set_bit(stid, t->stid_bmap);
3015 else
3016 stid = -1;
3017 } else {
3018 stid = -1;
3019 }
3020 if (stid >= 0) {
3021 t->stid_tab[stid].data = data;
3022 stid -= t->nstids;
3023 stid += t->sftid_base;
3024 t->stids_in_use++;
3025 }
3026 spin_unlock_bh(&t->stid_lock);
3027 return stid;
3028 }
3029 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3030
3031 /* Release a server TID.
3032 */
3033 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3034 {
3035 /* Is it a server filter TID? */
3036 if (t->nsftids && (stid >= t->sftid_base)) {
3037 stid -= t->sftid_base;
3038 stid += t->nstids;
3039 } else {
3040 stid -= t->stid_base;
3041 }
3042
3043 spin_lock_bh(&t->stid_lock);
3044 if (family == PF_INET)
3045 __clear_bit(stid, t->stid_bmap);
3046 else
3047 bitmap_release_region(t->stid_bmap, stid, 2);
3048 t->stid_tab[stid].data = NULL;
3049 if (family == PF_INET)
3050 t->stids_in_use--;
3051 else
3052 t->stids_in_use -= 4;
3053 spin_unlock_bh(&t->stid_lock);
3054 }
3055 EXPORT_SYMBOL(cxgb4_free_stid);
3056
3057 /*
3058 * Populate a TID_RELEASE WR. Caller must properly size the skb.
3059 */
3060 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3061 unsigned int tid)
3062 {
3063 struct cpl_tid_release *req;
3064
3065 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3066 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3067 INIT_TP_WR(req, tid);
3068 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3069 }
3070
3071 /*
3072 * Queue a TID release request and if necessary schedule a work queue to
3073 * process it.
3074 */
3075 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3076 unsigned int tid)
3077 {
3078 void **p = &t->tid_tab[tid];
3079 struct adapter *adap = container_of(t, struct adapter, tids);
3080
3081 spin_lock_bh(&adap->tid_release_lock);
3082 *p = adap->tid_release_head;
3083 /* Low 2 bits encode the Tx channel number */
3084 adap->tid_release_head = (void **)((uintptr_t)p | chan);
3085 if (!adap->tid_release_task_busy) {
3086 adap->tid_release_task_busy = true;
3087 queue_work(workq, &adap->tid_release_task);
3088 }
3089 spin_unlock_bh(&adap->tid_release_lock);
3090 }
3091
3092 /*
3093 * Process the list of pending TID release requests.
3094 */
3095 static void process_tid_release_list(struct work_struct *work)
3096 {
3097 struct sk_buff *skb;
3098 struct adapter *adap;
3099
3100 adap = container_of(work, struct adapter, tid_release_task);
3101
3102 spin_lock_bh(&adap->tid_release_lock);
3103 while (adap->tid_release_head) {
3104 void **p = adap->tid_release_head;
3105 unsigned int chan = (uintptr_t)p & 3;
3106 p = (void *)p - chan;
3107
3108 adap->tid_release_head = *p;
3109 *p = NULL;
3110 spin_unlock_bh(&adap->tid_release_lock);
3111
3112 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3113 GFP_KERNEL)))
3114 schedule_timeout_uninterruptible(1);
3115
3116 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3117 t4_ofld_send(adap, skb);
3118 spin_lock_bh(&adap->tid_release_lock);
3119 }
3120 adap->tid_release_task_busy = false;
3121 spin_unlock_bh(&adap->tid_release_lock);
3122 }
3123
3124 /*
3125 * Release a TID and inform HW. If we are unable to allocate the release
3126 * message we defer to a work queue.
3127 */
3128 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3129 {
3130 void *old;
3131 struct sk_buff *skb;
3132 struct adapter *adap = container_of(t, struct adapter, tids);
3133
3134 old = t->tid_tab[tid];
3135 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3136 if (likely(skb)) {
3137 t->tid_tab[tid] = NULL;
3138 mk_tid_release(skb, chan, tid);
3139 t4_ofld_send(adap, skb);
3140 } else
3141 cxgb4_queue_tid_release(t, chan, tid);
3142 if (old)
3143 atomic_dec(&t->tids_in_use);
3144 }
3145 EXPORT_SYMBOL(cxgb4_remove_tid);
3146
3147 /*
3148 * Allocate and initialize the TID tables. Returns 0 on success.
3149 */
3150 static int tid_init(struct tid_info *t)
3151 {
3152 size_t size;
3153 unsigned int stid_bmap_size;
3154 unsigned int natids = t->natids;
3155 struct adapter *adap = container_of(t, struct adapter, tids);
3156
3157 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3158 size = t->ntids * sizeof(*t->tid_tab) +
3159 natids * sizeof(*t->atid_tab) +
3160 t->nstids * sizeof(*t->stid_tab) +
3161 t->nsftids * sizeof(*t->stid_tab) +
3162 stid_bmap_size * sizeof(long) +
3163 t->nftids * sizeof(*t->ftid_tab) +
3164 t->nsftids * sizeof(*t->ftid_tab);
3165
3166 t->tid_tab = t4_alloc_mem(size);
3167 if (!t->tid_tab)
3168 return -ENOMEM;
3169
3170 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3171 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3172 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3173 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3174 spin_lock_init(&t->stid_lock);
3175 spin_lock_init(&t->atid_lock);
3176
3177 t->stids_in_use = 0;
3178 t->afree = NULL;
3179 t->atids_in_use = 0;
3180 atomic_set(&t->tids_in_use, 0);
3181
3182 /* Setup the free list for atid_tab and clear the stid bitmap. */
3183 if (natids) {
3184 while (--natids)
3185 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3186 t->afree = t->atid_tab;
3187 }
3188 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3189 /* Reserve stid 0 for T4/T5 adapters */
3190 if (!t->stid_base &&
3191 (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3192 __set_bit(0, t->stid_bmap);
3193
3194 return 0;
3195 }
3196
3197 static int cxgb4_clip_get(const struct net_device *dev,
3198 const struct in6_addr *lip)
3199 {
3200 struct adapter *adap;
3201 struct fw_clip_cmd c;
3202
3203 adap = netdev2adap(dev);
3204 memset(&c, 0, sizeof(c));
3205 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3206 FW_CMD_REQUEST | FW_CMD_WRITE);
3207 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3208 *(__be64 *)&c.ip_hi = *(__be64 *)(lip->s6_addr);
3209 *(__be64 *)&c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3210 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3211 }
3212
3213 static int cxgb4_clip_release(const struct net_device *dev,
3214 const struct in6_addr *lip)
3215 {
3216 struct adapter *adap;
3217 struct fw_clip_cmd c;
3218
3219 adap = netdev2adap(dev);
3220 memset(&c, 0, sizeof(c));
3221 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3222 FW_CMD_REQUEST | FW_CMD_READ);
3223 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3224 *(__be64 *)&c.ip_hi = *(__be64 *)(lip->s6_addr);
3225 *(__be64 *)&c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3226 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3227 }
3228
3229 /**
3230 * cxgb4_create_server - create an IP server
3231 * @dev: the device
3232 * @stid: the server TID
3233 * @sip: local IP address to bind server to
3234 * @sport: the server's TCP port
3235 * @queue: queue to direct messages from this server to
3236 *
3237 * Create an IP server for the given port and address.
3238 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3239 */
3240 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3241 __be32 sip, __be16 sport, __be16 vlan,
3242 unsigned int queue)
3243 {
3244 unsigned int chan;
3245 struct sk_buff *skb;
3246 struct adapter *adap;
3247 struct cpl_pass_open_req *req;
3248 int ret;
3249
3250 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3251 if (!skb)
3252 return -ENOMEM;
3253
3254 adap = netdev2adap(dev);
3255 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3256 INIT_TP_WR(req, 0);
3257 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3258 req->local_port = sport;
3259 req->peer_port = htons(0);
3260 req->local_ip = sip;
3261 req->peer_ip = htonl(0);
3262 chan = rxq_to_chan(&adap->sge, queue);
3263 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3264 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3265 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3266 ret = t4_mgmt_tx(adap, skb);
3267 return net_xmit_eval(ret);
3268 }
3269 EXPORT_SYMBOL(cxgb4_create_server);
3270
3271 /* cxgb4_create_server6 - create an IPv6 server
3272 * @dev: the device
3273 * @stid: the server TID
3274 * @sip: local IPv6 address to bind server to
3275 * @sport: the server's TCP port
3276 * @queue: queue to direct messages from this server to
3277 *
3278 * Create an IPv6 server for the given port and address.
3279 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3280 */
3281 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3282 const struct in6_addr *sip, __be16 sport,
3283 unsigned int queue)
3284 {
3285 unsigned int chan;
3286 struct sk_buff *skb;
3287 struct adapter *adap;
3288 struct cpl_pass_open_req6 *req;
3289 int ret;
3290
3291 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3292 if (!skb)
3293 return -ENOMEM;
3294
3295 adap = netdev2adap(dev);
3296 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3297 INIT_TP_WR(req, 0);
3298 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3299 req->local_port = sport;
3300 req->peer_port = htons(0);
3301 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3302 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3303 req->peer_ip_hi = cpu_to_be64(0);
3304 req->peer_ip_lo = cpu_to_be64(0);
3305 chan = rxq_to_chan(&adap->sge, queue);
3306 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3307 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3308 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3309 ret = t4_mgmt_tx(adap, skb);
3310 return net_xmit_eval(ret);
3311 }
3312 EXPORT_SYMBOL(cxgb4_create_server6);
3313
3314 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3315 unsigned int queue, bool ipv6)
3316 {
3317 struct sk_buff *skb;
3318 struct adapter *adap;
3319 struct cpl_close_listsvr_req *req;
3320 int ret;
3321
3322 adap = netdev2adap(dev);
3323
3324 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3325 if (!skb)
3326 return -ENOMEM;
3327
3328 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3329 INIT_TP_WR(req, 0);
3330 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3331 req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3332 LISTSVR_IPV6(0)) | QUEUENO(queue));
3333 ret = t4_mgmt_tx(adap, skb);
3334 return net_xmit_eval(ret);
3335 }
3336 EXPORT_SYMBOL(cxgb4_remove_server);
3337
3338 /**
3339 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3340 * @mtus: the HW MTU table
3341 * @mtu: the target MTU
3342 * @idx: index of selected entry in the MTU table
3343 *
3344 * Returns the index and the value in the HW MTU table that is closest to
3345 * but does not exceed @mtu, unless @mtu is smaller than any value in the
3346 * table, in which case that smallest available value is selected.
3347 */
3348 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3349 unsigned int *idx)
3350 {
3351 unsigned int i = 0;
3352
3353 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3354 ++i;
3355 if (idx)
3356 *idx = i;
3357 return mtus[i];
3358 }
3359 EXPORT_SYMBOL(cxgb4_best_mtu);
3360
3361 /**
3362 * cxgb4_port_chan - get the HW channel of a port
3363 * @dev: the net device for the port
3364 *
3365 * Return the HW Tx channel of the given port.
3366 */
3367 unsigned int cxgb4_port_chan(const struct net_device *dev)
3368 {
3369 return netdev2pinfo(dev)->tx_chan;
3370 }
3371 EXPORT_SYMBOL(cxgb4_port_chan);
3372
3373 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3374 {
3375 struct adapter *adap = netdev2adap(dev);
3376 u32 v1, v2, lp_count, hp_count;
3377
3378 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3379 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3380 if (is_t4(adap->params.chip)) {
3381 lp_count = G_LP_COUNT(v1);
3382 hp_count = G_HP_COUNT(v1);
3383 } else {
3384 lp_count = G_LP_COUNT_T5(v1);
3385 hp_count = G_HP_COUNT_T5(v2);
3386 }
3387 return lpfifo ? lp_count : hp_count;
3388 }
3389 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3390
3391 /**
3392 * cxgb4_port_viid - get the VI id of a port
3393 * @dev: the net device for the port
3394 *
3395 * Return the VI id of the given port.
3396 */
3397 unsigned int cxgb4_port_viid(const struct net_device *dev)
3398 {
3399 return netdev2pinfo(dev)->viid;
3400 }
3401 EXPORT_SYMBOL(cxgb4_port_viid);
3402
3403 /**
3404 * cxgb4_port_idx - get the index of a port
3405 * @dev: the net device for the port
3406 *
3407 * Return the index of the given port.
3408 */
3409 unsigned int cxgb4_port_idx(const struct net_device *dev)
3410 {
3411 return netdev2pinfo(dev)->port_id;
3412 }
3413 EXPORT_SYMBOL(cxgb4_port_idx);
3414
3415 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3416 struct tp_tcp_stats *v6)
3417 {
3418 struct adapter *adap = pci_get_drvdata(pdev);
3419
3420 spin_lock(&adap->stats_lock);
3421 t4_tp_get_tcp_stats(adap, v4, v6);
3422 spin_unlock(&adap->stats_lock);
3423 }
3424 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3425
3426 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3427 const unsigned int *pgsz_order)
3428 {
3429 struct adapter *adap = netdev2adap(dev);
3430
3431 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3432 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3433 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3434 HPZ3(pgsz_order[3]));
3435 }
3436 EXPORT_SYMBOL(cxgb4_iscsi_init);
3437
3438 int cxgb4_flush_eq_cache(struct net_device *dev)
3439 {
3440 struct adapter *adap = netdev2adap(dev);
3441 int ret;
3442
3443 ret = t4_fwaddrspace_write(adap, adap->mbox,
3444 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3445 return ret;
3446 }
3447 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3448
3449 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3450 {
3451 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3452 __be64 indices;
3453 int ret;
3454
3455 ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8);
3456 if (!ret) {
3457 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3458 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3459 }
3460 return ret;
3461 }
3462
3463 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3464 u16 size)
3465 {
3466 struct adapter *adap = netdev2adap(dev);
3467 u16 hw_pidx, hw_cidx;
3468 int ret;
3469
3470 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3471 if (ret)
3472 goto out;
3473
3474 if (pidx != hw_pidx) {
3475 u16 delta;
3476
3477 if (pidx >= hw_pidx)
3478 delta = pidx - hw_pidx;
3479 else
3480 delta = size - hw_pidx + pidx;
3481 wmb();
3482 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3483 QID(qid) | PIDX(delta));
3484 }
3485 out:
3486 return ret;
3487 }
3488 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3489
3490 void cxgb4_disable_db_coalescing(struct net_device *dev)
3491 {
3492 struct adapter *adap;
3493
3494 adap = netdev2adap(dev);
3495 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3496 F_NOCOALESCE);
3497 }
3498 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3499
3500 void cxgb4_enable_db_coalescing(struct net_device *dev)
3501 {
3502 struct adapter *adap;
3503
3504 adap = netdev2adap(dev);
3505 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3506 }
3507 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3508
3509 static struct pci_driver cxgb4_driver;
3510
3511 static void check_neigh_update(struct neighbour *neigh)
3512 {
3513 const struct device *parent;
3514 const struct net_device *netdev = neigh->dev;
3515
3516 if (netdev->priv_flags & IFF_802_1Q_VLAN)
3517 netdev = vlan_dev_real_dev(netdev);
3518 parent = netdev->dev.parent;
3519 if (parent && parent->driver == &cxgb4_driver.driver)
3520 t4_l2t_update(dev_get_drvdata(parent), neigh);
3521 }
3522
3523 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3524 void *data)
3525 {
3526 switch (event) {
3527 case NETEVENT_NEIGH_UPDATE:
3528 check_neigh_update(data);
3529 break;
3530 case NETEVENT_REDIRECT:
3531 default:
3532 break;
3533 }
3534 return 0;
3535 }
3536
3537 static bool netevent_registered;
3538 static struct notifier_block cxgb4_netevent_nb = {
3539 .notifier_call = netevent_cb
3540 };
3541
3542 static void drain_db_fifo(struct adapter *adap, int usecs)
3543 {
3544 u32 v1, v2, lp_count, hp_count;
3545
3546 do {
3547 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3548 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3549 if (is_t4(adap->params.chip)) {
3550 lp_count = G_LP_COUNT(v1);
3551 hp_count = G_HP_COUNT(v1);
3552 } else {
3553 lp_count = G_LP_COUNT_T5(v1);
3554 hp_count = G_HP_COUNT_T5(v2);
3555 }
3556
3557 if (lp_count == 0 && hp_count == 0)
3558 break;
3559 set_current_state(TASK_UNINTERRUPTIBLE);
3560 schedule_timeout(usecs_to_jiffies(usecs));
3561 } while (1);
3562 }
3563
3564 static void disable_txq_db(struct sge_txq *q)
3565 {
3566 spin_lock_irq(&q->db_lock);
3567 q->db_disabled = 1;
3568 spin_unlock_irq(&q->db_lock);
3569 }
3570
3571 static void enable_txq_db(struct sge_txq *q)
3572 {
3573 spin_lock_irq(&q->db_lock);
3574 q->db_disabled = 0;
3575 spin_unlock_irq(&q->db_lock);
3576 }
3577
3578 static void disable_dbs(struct adapter *adap)
3579 {
3580 int i;
3581
3582 for_each_ethrxq(&adap->sge, i)
3583 disable_txq_db(&adap->sge.ethtxq[i].q);
3584 for_each_ofldrxq(&adap->sge, i)
3585 disable_txq_db(&adap->sge.ofldtxq[i].q);
3586 for_each_port(adap, i)
3587 disable_txq_db(&adap->sge.ctrlq[i].q);
3588 }
3589
3590 static void enable_dbs(struct adapter *adap)
3591 {
3592 int i;
3593
3594 for_each_ethrxq(&adap->sge, i)
3595 enable_txq_db(&adap->sge.ethtxq[i].q);
3596 for_each_ofldrxq(&adap->sge, i)
3597 enable_txq_db(&adap->sge.ofldtxq[i].q);
3598 for_each_port(adap, i)
3599 enable_txq_db(&adap->sge.ctrlq[i].q);
3600 }
3601
3602 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
3603 {
3604 u16 hw_pidx, hw_cidx;
3605 int ret;
3606
3607 spin_lock_bh(&q->db_lock);
3608 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
3609 if (ret)
3610 goto out;
3611 if (q->db_pidx != hw_pidx) {
3612 u16 delta;
3613
3614 if (q->db_pidx >= hw_pidx)
3615 delta = q->db_pidx - hw_pidx;
3616 else
3617 delta = q->size - hw_pidx + q->db_pidx;
3618 wmb();
3619 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3620 QID(q->cntxt_id) | PIDX(delta));
3621 }
3622 out:
3623 q->db_disabled = 0;
3624 spin_unlock_bh(&q->db_lock);
3625 if (ret)
3626 CH_WARN(adap, "DB drop recovery failed.\n");
3627 }
3628 static void recover_all_queues(struct adapter *adap)
3629 {
3630 int i;
3631
3632 for_each_ethrxq(&adap->sge, i)
3633 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
3634 for_each_ofldrxq(&adap->sge, i)
3635 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
3636 for_each_port(adap, i)
3637 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
3638 }
3639
3640 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3641 {
3642 mutex_lock(&uld_mutex);
3643 if (adap->uld_handle[CXGB4_ULD_RDMA])
3644 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3645 cmd);
3646 mutex_unlock(&uld_mutex);
3647 }
3648
3649 static void process_db_full(struct work_struct *work)
3650 {
3651 struct adapter *adap;
3652
3653 adap = container_of(work, struct adapter, db_full_task);
3654
3655 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
3656 drain_db_fifo(adap, dbfifo_drain_delay);
3657 t4_set_reg_field(adap, SGE_INT_ENABLE3,
3658 DBFIFO_HP_INT | DBFIFO_LP_INT,
3659 DBFIFO_HP_INT | DBFIFO_LP_INT);
3660 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3661 }
3662
3663 static void process_db_drop(struct work_struct *work)
3664 {
3665 struct adapter *adap;
3666
3667 adap = container_of(work, struct adapter, db_drop_task);
3668
3669 if (is_t4(adap->params.chip)) {
3670 disable_dbs(adap);
3671 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
3672 drain_db_fifo(adap, 1);
3673 recover_all_queues(adap);
3674 enable_dbs(adap);
3675 } else {
3676 u32 dropped_db = t4_read_reg(adap, 0x010ac);
3677 u16 qid = (dropped_db >> 15) & 0x1ffff;
3678 u16 pidx_inc = dropped_db & 0x1fff;
3679 unsigned int s_qpp;
3680 unsigned short udb_density;
3681 unsigned long qpshift;
3682 int page;
3683 u32 udb;
3684
3685 dev_warn(adap->pdev_dev,
3686 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
3687 dropped_db, qid,
3688 (dropped_db >> 14) & 1,
3689 (dropped_db >> 13) & 1,
3690 pidx_inc);
3691
3692 drain_db_fifo(adap, 1);
3693
3694 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
3695 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
3696 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
3697 qpshift = PAGE_SHIFT - ilog2(udb_density);
3698 udb = qid << qpshift;
3699 udb &= PAGE_MASK;
3700 page = udb / PAGE_SIZE;
3701 udb += (qid - (page * udb_density)) * 128;
3702
3703 writel(PIDX(pidx_inc), adap->bar2 + udb + 8);
3704
3705 /* Re-enable BAR2 WC */
3706 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
3707 }
3708
3709 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
3710 }
3711
3712 void t4_db_full(struct adapter *adap)
3713 {
3714 if (is_t4(adap->params.chip)) {
3715 t4_set_reg_field(adap, SGE_INT_ENABLE3,
3716 DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
3717 queue_work(workq, &adap->db_full_task);
3718 }
3719 }
3720
3721 void t4_db_dropped(struct adapter *adap)
3722 {
3723 if (is_t4(adap->params.chip))
3724 queue_work(workq, &adap->db_drop_task);
3725 }
3726
3727 static void uld_attach(struct adapter *adap, unsigned int uld)
3728 {
3729 void *handle;
3730 struct cxgb4_lld_info lli;
3731 unsigned short i;
3732
3733 lli.pdev = adap->pdev;
3734 lli.l2t = adap->l2t;
3735 lli.tids = &adap->tids;
3736 lli.ports = adap->port;
3737 lli.vr = &adap->vres;
3738 lli.mtus = adap->params.mtus;
3739 if (uld == CXGB4_ULD_RDMA) {
3740 lli.rxq_ids = adap->sge.rdma_rxq;
3741 lli.nrxq = adap->sge.rdmaqs;
3742 } else if (uld == CXGB4_ULD_ISCSI) {
3743 lli.rxq_ids = adap->sge.ofld_rxq;
3744 lli.nrxq = adap->sge.ofldqsets;
3745 }
3746 lli.ntxq = adap->sge.ofldqsets;
3747 lli.nchan = adap->params.nports;
3748 lli.nports = adap->params.nports;
3749 lli.wr_cred = adap->params.ofldq_wr_cred;
3750 lli.adapter_type = adap->params.chip;
3751 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
3752 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
3753 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
3754 (adap->fn * 4));
3755 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
3756 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
3757 (adap->fn * 4));
3758 lli.filt_mode = adap->params.tp.vlan_pri_map;
3759 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
3760 for (i = 0; i < NCHAN; i++)
3761 lli.tx_modq[i] = i;
3762 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
3763 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
3764 lli.fw_vers = adap->params.fw_vers;
3765 lli.dbfifo_int_thresh = dbfifo_int_thresh;
3766 lli.sge_pktshift = adap->sge.pktshift;
3767 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
3768
3769 handle = ulds[uld].add(&lli);
3770 if (IS_ERR(handle)) {
3771 dev_warn(adap->pdev_dev,
3772 "could not attach to the %s driver, error %ld\n",
3773 uld_str[uld], PTR_ERR(handle));
3774 return;
3775 }
3776
3777 adap->uld_handle[uld] = handle;
3778
3779 if (!netevent_registered) {
3780 register_netevent_notifier(&cxgb4_netevent_nb);
3781 netevent_registered = true;
3782 }
3783
3784 if (adap->flags & FULL_INIT_DONE)
3785 ulds[uld].state_change(handle, CXGB4_STATE_UP);
3786 }
3787
3788 static void attach_ulds(struct adapter *adap)
3789 {
3790 unsigned int i;
3791
3792 spin_lock(&adap_rcu_lock);
3793 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
3794 spin_unlock(&adap_rcu_lock);
3795
3796 mutex_lock(&uld_mutex);
3797 list_add_tail(&adap->list_node, &adapter_list);
3798 for (i = 0; i < CXGB4_ULD_MAX; i++)
3799 if (ulds[i].add)
3800 uld_attach(adap, i);
3801 mutex_unlock(&uld_mutex);
3802 }
3803
3804 static void detach_ulds(struct adapter *adap)
3805 {
3806 unsigned int i;
3807
3808 mutex_lock(&uld_mutex);
3809 list_del(&adap->list_node);
3810 for (i = 0; i < CXGB4_ULD_MAX; i++)
3811 if (adap->uld_handle[i]) {
3812 ulds[i].state_change(adap->uld_handle[i],
3813 CXGB4_STATE_DETACH);
3814 adap->uld_handle[i] = NULL;
3815 }
3816 if (netevent_registered && list_empty(&adapter_list)) {
3817 unregister_netevent_notifier(&cxgb4_netevent_nb);
3818 netevent_registered = false;
3819 }
3820 mutex_unlock(&uld_mutex);
3821
3822 spin_lock(&adap_rcu_lock);
3823 list_del_rcu(&adap->rcu_node);
3824 spin_unlock(&adap_rcu_lock);
3825 }
3826
3827 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
3828 {
3829 unsigned int i;
3830
3831 mutex_lock(&uld_mutex);
3832 for (i = 0; i < CXGB4_ULD_MAX; i++)
3833 if (adap->uld_handle[i])
3834 ulds[i].state_change(adap->uld_handle[i], new_state);
3835 mutex_unlock(&uld_mutex);
3836 }
3837
3838 /**
3839 * cxgb4_register_uld - register an upper-layer driver
3840 * @type: the ULD type
3841 * @p: the ULD methods
3842 *
3843 * Registers an upper-layer driver with this driver and notifies the ULD
3844 * about any presently available devices that support its type. Returns
3845 * %-EBUSY if a ULD of the same type is already registered.
3846 */
3847 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
3848 {
3849 int ret = 0;
3850 struct adapter *adap;
3851
3852 if (type >= CXGB4_ULD_MAX)
3853 return -EINVAL;
3854 mutex_lock(&uld_mutex);
3855 if (ulds[type].add) {
3856 ret = -EBUSY;
3857 goto out;
3858 }
3859 ulds[type] = *p;
3860 list_for_each_entry(adap, &adapter_list, list_node)
3861 uld_attach(adap, type);
3862 out: mutex_unlock(&uld_mutex);
3863 return ret;
3864 }
3865 EXPORT_SYMBOL(cxgb4_register_uld);
3866
3867 /**
3868 * cxgb4_unregister_uld - unregister an upper-layer driver
3869 * @type: the ULD type
3870 *
3871 * Unregisters an existing upper-layer driver.
3872 */
3873 int cxgb4_unregister_uld(enum cxgb4_uld type)
3874 {
3875 struct adapter *adap;
3876
3877 if (type >= CXGB4_ULD_MAX)
3878 return -EINVAL;
3879 mutex_lock(&uld_mutex);
3880 list_for_each_entry(adap, &adapter_list, list_node)
3881 adap->uld_handle[type] = NULL;
3882 ulds[type].add = NULL;
3883 mutex_unlock(&uld_mutex);
3884 return 0;
3885 }
3886 EXPORT_SYMBOL(cxgb4_unregister_uld);
3887
3888 /* Check if netdev on which event is occured belongs to us or not. Return
3889 * suceess (1) if it belongs otherwise failure (0).
3890 */
3891 static int cxgb4_netdev(struct net_device *netdev)
3892 {
3893 struct adapter *adap;
3894 int i;
3895
3896 spin_lock(&adap_rcu_lock);
3897 list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
3898 for (i = 0; i < MAX_NPORTS; i++)
3899 if (adap->port[i] == netdev) {
3900 spin_unlock(&adap_rcu_lock);
3901 return 1;
3902 }
3903 spin_unlock(&adap_rcu_lock);
3904 return 0;
3905 }
3906
3907 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
3908 unsigned long event)
3909 {
3910 int ret = NOTIFY_DONE;
3911
3912 rcu_read_lock();
3913 if (cxgb4_netdev(event_dev)) {
3914 switch (event) {
3915 case NETDEV_UP:
3916 ret = cxgb4_clip_get(event_dev,
3917 (const struct in6_addr *)ifa->addr.s6_addr);
3918 if (ret < 0) {
3919 rcu_read_unlock();
3920 return ret;
3921 }
3922 ret = NOTIFY_OK;
3923 break;
3924 case NETDEV_DOWN:
3925 cxgb4_clip_release(event_dev,
3926 (const struct in6_addr *)ifa->addr.s6_addr);
3927 ret = NOTIFY_OK;
3928 break;
3929 default:
3930 break;
3931 }
3932 }
3933 rcu_read_unlock();
3934 return ret;
3935 }
3936
3937 static int cxgb4_inet6addr_handler(struct notifier_block *this,
3938 unsigned long event, void *data)
3939 {
3940 struct inet6_ifaddr *ifa = data;
3941 struct net_device *event_dev;
3942 int ret = NOTIFY_DONE;
3943 struct bonding *bond = netdev_priv(ifa->idev->dev);
3944 struct list_head *iter;
3945 struct slave *slave;
3946 struct pci_dev *first_pdev = NULL;
3947
3948 if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
3949 event_dev = vlan_dev_real_dev(ifa->idev->dev);
3950 ret = clip_add(event_dev, ifa, event);
3951 } else if (ifa->idev->dev->flags & IFF_MASTER) {
3952 /* It is possible that two different adapters are bonded in one
3953 * bond. We need to find such different adapters and add clip
3954 * in all of them only once.
3955 */
3956 read_lock(&bond->lock);
3957 bond_for_each_slave(bond, slave, iter) {
3958 if (!first_pdev) {
3959 ret = clip_add(slave->dev, ifa, event);
3960 /* If clip_add is success then only initialize
3961 * first_pdev since it means it is our device
3962 */
3963 if (ret == NOTIFY_OK)
3964 first_pdev = to_pci_dev(
3965 slave->dev->dev.parent);
3966 } else if (first_pdev !=
3967 to_pci_dev(slave->dev->dev.parent))
3968 ret = clip_add(slave->dev, ifa, event);
3969 }
3970 read_unlock(&bond->lock);
3971 } else
3972 ret = clip_add(ifa->idev->dev, ifa, event);
3973
3974 return ret;
3975 }
3976
3977 static struct notifier_block cxgb4_inet6addr_notifier = {
3978 .notifier_call = cxgb4_inet6addr_handler
3979 };
3980
3981 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
3982 * a physical device.
3983 * The physical device reference is needed to send the actul CLIP command.
3984 */
3985 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
3986 {
3987 struct inet6_dev *idev = NULL;
3988 struct inet6_ifaddr *ifa;
3989 int ret = 0;
3990
3991 idev = __in6_dev_get(root_dev);
3992 if (!idev)
3993 return ret;
3994
3995 read_lock_bh(&idev->lock);
3996 list_for_each_entry(ifa, &idev->addr_list, if_list) {
3997 ret = cxgb4_clip_get(dev,
3998 (const struct in6_addr *)ifa->addr.s6_addr);
3999 if (ret < 0)
4000 break;
4001 }
4002 read_unlock_bh(&idev->lock);
4003
4004 return ret;
4005 }
4006
4007 static int update_root_dev_clip(struct net_device *dev)
4008 {
4009 struct net_device *root_dev = NULL;
4010 int i, ret = 0;
4011
4012 /* First populate the real net device's IPv6 addresses */
4013 ret = update_dev_clip(dev, dev);
4014 if (ret)
4015 return ret;
4016
4017 /* Parse all bond and vlan devices layered on top of the physical dev */
4018 for (i = 0; i < VLAN_N_VID; i++) {
4019 root_dev = __vlan_find_dev_deep(dev, htons(ETH_P_8021Q), i);
4020 if (!root_dev)
4021 continue;
4022
4023 ret = update_dev_clip(root_dev, dev);
4024 if (ret)
4025 break;
4026 }
4027 return ret;
4028 }
4029
4030 static void update_clip(const struct adapter *adap)
4031 {
4032 int i;
4033 struct net_device *dev;
4034 int ret;
4035
4036 rcu_read_lock();
4037
4038 for (i = 0; i < MAX_NPORTS; i++) {
4039 dev = adap->port[i];
4040 ret = 0;
4041
4042 if (dev)
4043 ret = update_root_dev_clip(dev);
4044
4045 if (ret < 0)
4046 break;
4047 }
4048 rcu_read_unlock();
4049 }
4050
4051 /**
4052 * cxgb_up - enable the adapter
4053 * @adap: adapter being enabled
4054 *
4055 * Called when the first port is enabled, this function performs the
4056 * actions necessary to make an adapter operational, such as completing
4057 * the initialization of HW modules, and enabling interrupts.
4058 *
4059 * Must be called with the rtnl lock held.
4060 */
4061 static int cxgb_up(struct adapter *adap)
4062 {
4063 int err;
4064
4065 err = setup_sge_queues(adap);
4066 if (err)
4067 goto out;
4068 err = setup_rss(adap);
4069 if (err)
4070 goto freeq;
4071
4072 if (adap->flags & USING_MSIX) {
4073 name_msix_vecs(adap);
4074 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4075 adap->msix_info[0].desc, adap);
4076 if (err)
4077 goto irq_err;
4078
4079 err = request_msix_queue_irqs(adap);
4080 if (err) {
4081 free_irq(adap->msix_info[0].vec, adap);
4082 goto irq_err;
4083 }
4084 } else {
4085 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4086 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4087 adap->port[0]->name, adap);
4088 if (err)
4089 goto irq_err;
4090 }
4091 enable_rx(adap);
4092 t4_sge_start(adap);
4093 t4_intr_enable(adap);
4094 adap->flags |= FULL_INIT_DONE;
4095 notify_ulds(adap, CXGB4_STATE_UP);
4096 update_clip(adap);
4097 out:
4098 return err;
4099 irq_err:
4100 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4101 freeq:
4102 t4_free_sge_resources(adap);
4103 goto out;
4104 }
4105
4106 static void cxgb_down(struct adapter *adapter)
4107 {
4108 t4_intr_disable(adapter);
4109 cancel_work_sync(&adapter->tid_release_task);
4110 cancel_work_sync(&adapter->db_full_task);
4111 cancel_work_sync(&adapter->db_drop_task);
4112 adapter->tid_release_task_busy = false;
4113 adapter->tid_release_head = NULL;
4114
4115 if (adapter->flags & USING_MSIX) {
4116 free_msix_queue_irqs(adapter);
4117 free_irq(adapter->msix_info[0].vec, adapter);
4118 } else
4119 free_irq(adapter->pdev->irq, adapter);
4120 quiesce_rx(adapter);
4121 t4_sge_stop(adapter);
4122 t4_free_sge_resources(adapter);
4123 adapter->flags &= ~FULL_INIT_DONE;
4124 }
4125
4126 /*
4127 * net_device operations
4128 */
4129 static int cxgb_open(struct net_device *dev)
4130 {
4131 int err;
4132 struct port_info *pi = netdev_priv(dev);
4133 struct adapter *adapter = pi->adapter;
4134
4135 netif_carrier_off(dev);
4136
4137 if (!(adapter->flags & FULL_INIT_DONE)) {
4138 err = cxgb_up(adapter);
4139 if (err < 0)
4140 return err;
4141 }
4142
4143 err = link_start(dev);
4144 if (!err)
4145 netif_tx_start_all_queues(dev);
4146 return err;
4147 }
4148
4149 static int cxgb_close(struct net_device *dev)
4150 {
4151 struct port_info *pi = netdev_priv(dev);
4152 struct adapter *adapter = pi->adapter;
4153
4154 netif_tx_stop_all_queues(dev);
4155 netif_carrier_off(dev);
4156 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4157 }
4158
4159 /* Return an error number if the indicated filter isn't writable ...
4160 */
4161 static int writable_filter(struct filter_entry *f)
4162 {
4163 if (f->locked)
4164 return -EPERM;
4165 if (f->pending)
4166 return -EBUSY;
4167
4168 return 0;
4169 }
4170
4171 /* Delete the filter at the specified index (if valid). The checks for all
4172 * the common problems with doing this like the filter being locked, currently
4173 * pending in another operation, etc.
4174 */
4175 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4176 {
4177 struct filter_entry *f;
4178 int ret;
4179
4180 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4181 return -EINVAL;
4182
4183 f = &adapter->tids.ftid_tab[fidx];
4184 ret = writable_filter(f);
4185 if (ret)
4186 return ret;
4187 if (f->valid)
4188 return del_filter_wr(adapter, fidx);
4189
4190 return 0;
4191 }
4192
4193 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4194 __be32 sip, __be16 sport, __be16 vlan,
4195 unsigned int queue, unsigned char port, unsigned char mask)
4196 {
4197 int ret;
4198 struct filter_entry *f;
4199 struct adapter *adap;
4200 int i;
4201 u8 *val;
4202
4203 adap = netdev2adap(dev);
4204
4205 /* Adjust stid to correct filter index */
4206 stid -= adap->tids.sftid_base;
4207 stid += adap->tids.nftids;
4208
4209 /* Check to make sure the filter requested is writable ...
4210 */
4211 f = &adap->tids.ftid_tab[stid];
4212 ret = writable_filter(f);
4213 if (ret)
4214 return ret;
4215
4216 /* Clear out any old resources being used by the filter before
4217 * we start constructing the new filter.
4218 */
4219 if (f->valid)
4220 clear_filter(adap, f);
4221
4222 /* Clear out filter specifications */
4223 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4224 f->fs.val.lport = cpu_to_be16(sport);
4225 f->fs.mask.lport = ~0;
4226 val = (u8 *)&sip;
4227 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4228 for (i = 0; i < 4; i++) {
4229 f->fs.val.lip[i] = val[i];
4230 f->fs.mask.lip[i] = ~0;
4231 }
4232 if (adap->params.tp.vlan_pri_map & F_PORT) {
4233 f->fs.val.iport = port;
4234 f->fs.mask.iport = mask;
4235 }
4236 }
4237
4238 if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4239 f->fs.val.proto = IPPROTO_TCP;
4240 f->fs.mask.proto = ~0;
4241 }
4242
4243 f->fs.dirsteer = 1;
4244 f->fs.iq = queue;
4245 /* Mark filter as locked */
4246 f->locked = 1;
4247 f->fs.rpttid = 1;
4248
4249 ret = set_filter_wr(adap, stid);
4250 if (ret) {
4251 clear_filter(adap, f);
4252 return ret;
4253 }
4254
4255 return 0;
4256 }
4257 EXPORT_SYMBOL(cxgb4_create_server_filter);
4258
4259 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4260 unsigned int queue, bool ipv6)
4261 {
4262 int ret;
4263 struct filter_entry *f;
4264 struct adapter *adap;
4265
4266 adap = netdev2adap(dev);
4267
4268 /* Adjust stid to correct filter index */
4269 stid -= adap->tids.sftid_base;
4270 stid += adap->tids.nftids;
4271
4272 f = &adap->tids.ftid_tab[stid];
4273 /* Unlock the filter */
4274 f->locked = 0;
4275
4276 ret = delete_filter(adap, stid);
4277 if (ret)
4278 return ret;
4279
4280 return 0;
4281 }
4282 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4283
4284 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4285 struct rtnl_link_stats64 *ns)
4286 {
4287 struct port_stats stats;
4288 struct port_info *p = netdev_priv(dev);
4289 struct adapter *adapter = p->adapter;
4290
4291 /* Block retrieving statistics during EEH error
4292 * recovery. Otherwise, the recovery might fail
4293 * and the PCI device will be removed permanently
4294 */
4295 spin_lock(&adapter->stats_lock);
4296 if (!netif_device_present(dev)) {
4297 spin_unlock(&adapter->stats_lock);
4298 return ns;
4299 }
4300 t4_get_port_stats(adapter, p->tx_chan, &stats);
4301 spin_unlock(&adapter->stats_lock);
4302
4303 ns->tx_bytes = stats.tx_octets;
4304 ns->tx_packets = stats.tx_frames;
4305 ns->rx_bytes = stats.rx_octets;
4306 ns->rx_packets = stats.rx_frames;
4307 ns->multicast = stats.rx_mcast_frames;
4308
4309 /* detailed rx_errors */
4310 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4311 stats.rx_runt;
4312 ns->rx_over_errors = 0;
4313 ns->rx_crc_errors = stats.rx_fcs_err;
4314 ns->rx_frame_errors = stats.rx_symbol_err;
4315 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
4316 stats.rx_ovflow2 + stats.rx_ovflow3 +
4317 stats.rx_trunc0 + stats.rx_trunc1 +
4318 stats.rx_trunc2 + stats.rx_trunc3;
4319 ns->rx_missed_errors = 0;
4320
4321 /* detailed tx_errors */
4322 ns->tx_aborted_errors = 0;
4323 ns->tx_carrier_errors = 0;
4324 ns->tx_fifo_errors = 0;
4325 ns->tx_heartbeat_errors = 0;
4326 ns->tx_window_errors = 0;
4327
4328 ns->tx_errors = stats.tx_error_frames;
4329 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4330 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4331 return ns;
4332 }
4333
4334 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4335 {
4336 unsigned int mbox;
4337 int ret = 0, prtad, devad;
4338 struct port_info *pi = netdev_priv(dev);
4339 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4340
4341 switch (cmd) {
4342 case SIOCGMIIPHY:
4343 if (pi->mdio_addr < 0)
4344 return -EOPNOTSUPP;
4345 data->phy_id = pi->mdio_addr;
4346 break;
4347 case SIOCGMIIREG:
4348 case SIOCSMIIREG:
4349 if (mdio_phy_id_is_c45(data->phy_id)) {
4350 prtad = mdio_phy_id_prtad(data->phy_id);
4351 devad = mdio_phy_id_devad(data->phy_id);
4352 } else if (data->phy_id < 32) {
4353 prtad = data->phy_id;
4354 devad = 0;
4355 data->reg_num &= 0x1f;
4356 } else
4357 return -EINVAL;
4358
4359 mbox = pi->adapter->fn;
4360 if (cmd == SIOCGMIIREG)
4361 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4362 data->reg_num, &data->val_out);
4363 else
4364 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4365 data->reg_num, data->val_in);
4366 break;
4367 default:
4368 return -EOPNOTSUPP;
4369 }
4370 return ret;
4371 }
4372
4373 static void cxgb_set_rxmode(struct net_device *dev)
4374 {
4375 /* unfortunately we can't return errors to the stack */
4376 set_rxmode(dev, -1, false);
4377 }
4378
4379 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4380 {
4381 int ret;
4382 struct port_info *pi = netdev_priv(dev);
4383
4384 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
4385 return -EINVAL;
4386 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4387 -1, -1, -1, true);
4388 if (!ret)
4389 dev->mtu = new_mtu;
4390 return ret;
4391 }
4392
4393 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4394 {
4395 int ret;
4396 struct sockaddr *addr = p;
4397 struct port_info *pi = netdev_priv(dev);
4398
4399 if (!is_valid_ether_addr(addr->sa_data))
4400 return -EADDRNOTAVAIL;
4401
4402 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4403 pi->xact_addr_filt, addr->sa_data, true, true);
4404 if (ret < 0)
4405 return ret;
4406
4407 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4408 pi->xact_addr_filt = ret;
4409 return 0;
4410 }
4411
4412 #ifdef CONFIG_NET_POLL_CONTROLLER
4413 static void cxgb_netpoll(struct net_device *dev)
4414 {
4415 struct port_info *pi = netdev_priv(dev);
4416 struct adapter *adap = pi->adapter;
4417
4418 if (adap->flags & USING_MSIX) {
4419 int i;
4420 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4421
4422 for (i = pi->nqsets; i; i--, rx++)
4423 t4_sge_intr_msix(0, &rx->rspq);
4424 } else
4425 t4_intr_handler(adap)(0, adap);
4426 }
4427 #endif
4428
4429 static const struct net_device_ops cxgb4_netdev_ops = {
4430 .ndo_open = cxgb_open,
4431 .ndo_stop = cxgb_close,
4432 .ndo_start_xmit = t4_eth_xmit,
4433 .ndo_get_stats64 = cxgb_get_stats,
4434 .ndo_set_rx_mode = cxgb_set_rxmode,
4435 .ndo_set_mac_address = cxgb_set_mac_addr,
4436 .ndo_set_features = cxgb_set_features,
4437 .ndo_validate_addr = eth_validate_addr,
4438 .ndo_do_ioctl = cxgb_ioctl,
4439 .ndo_change_mtu = cxgb_change_mtu,
4440 #ifdef CONFIG_NET_POLL_CONTROLLER
4441 .ndo_poll_controller = cxgb_netpoll,
4442 #endif
4443 };
4444
4445 void t4_fatal_err(struct adapter *adap)
4446 {
4447 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4448 t4_intr_disable(adap);
4449 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4450 }
4451
4452 static void setup_memwin(struct adapter *adap)
4453 {
4454 u32 bar0, mem_win0_base, mem_win1_base, mem_win2_base;
4455
4456 bar0 = pci_resource_start(adap->pdev, 0); /* truncation intentional */
4457 if (is_t4(adap->params.chip)) {
4458 mem_win0_base = bar0 + MEMWIN0_BASE;
4459 mem_win1_base = bar0 + MEMWIN1_BASE;
4460 mem_win2_base = bar0 + MEMWIN2_BASE;
4461 } else {
4462 /* For T5, only relative offset inside the PCIe BAR is passed */
4463 mem_win0_base = MEMWIN0_BASE;
4464 mem_win1_base = MEMWIN1_BASE_T5;
4465 mem_win2_base = MEMWIN2_BASE_T5;
4466 }
4467 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4468 mem_win0_base | BIR(0) |
4469 WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4470 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4471 mem_win1_base | BIR(0) |
4472 WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4473 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4474 mem_win2_base | BIR(0) |
4475 WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
4476 }
4477
4478 static void setup_memwin_rdma(struct adapter *adap)
4479 {
4480 if (adap->vres.ocq.size) {
4481 unsigned int start, sz_kb;
4482
4483 start = pci_resource_start(adap->pdev, 2) +
4484 OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4485 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4486 t4_write_reg(adap,
4487 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4488 start | BIR(1) | WINDOW(ilog2(sz_kb)));
4489 t4_write_reg(adap,
4490 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4491 adap->vres.ocq.start);
4492 t4_read_reg(adap,
4493 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4494 }
4495 }
4496
4497 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4498 {
4499 u32 v;
4500 int ret;
4501
4502 /* get device capabilities */
4503 memset(c, 0, sizeof(*c));
4504 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4505 FW_CMD_REQUEST | FW_CMD_READ);
4506 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4507 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
4508 if (ret < 0)
4509 return ret;
4510
4511 /* select capabilities we'll be using */
4512 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4513 if (!vf_acls)
4514 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4515 else
4516 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4517 } else if (vf_acls) {
4518 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4519 return ret;
4520 }
4521 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4522 FW_CMD_REQUEST | FW_CMD_WRITE);
4523 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
4524 if (ret < 0)
4525 return ret;
4526
4527 ret = t4_config_glbl_rss(adap, adap->fn,
4528 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4529 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4530 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4531 if (ret < 0)
4532 return ret;
4533
4534 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4535 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
4536 if (ret < 0)
4537 return ret;
4538
4539 t4_sge_init(adap);
4540
4541 /* tweak some settings */
4542 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
4543 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
4544 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
4545 v = t4_read_reg(adap, TP_PIO_DATA);
4546 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
4547
4548 /* first 4 Tx modulation queues point to consecutive Tx channels */
4549 adap->params.tp.tx_modq_map = 0xE4;
4550 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
4551 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
4552
4553 /* associate each Tx modulation queue with consecutive Tx channels */
4554 v = 0x84218421;
4555 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4556 &v, 1, A_TP_TX_SCHED_HDR);
4557 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4558 &v, 1, A_TP_TX_SCHED_FIFO);
4559 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4560 &v, 1, A_TP_TX_SCHED_PCMD);
4561
4562 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4563 if (is_offload(adap)) {
4564 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
4565 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4566 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4567 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4568 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4569 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
4570 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4571 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4572 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4573 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4574 }
4575
4576 /* get basic stuff going */
4577 return t4_early_init(adap, adap->fn);
4578 }
4579
4580 /*
4581 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
4582 */
4583 #define MAX_ATIDS 8192U
4584
4585 /*
4586 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4587 *
4588 * If the firmware we're dealing with has Configuration File support, then
4589 * we use that to perform all configuration
4590 */
4591
4592 /*
4593 * Tweak configuration based on module parameters, etc. Most of these have
4594 * defaults assigned to them by Firmware Configuration Files (if we're using
4595 * them) but need to be explicitly set if we're using hard-coded
4596 * initialization. But even in the case of using Firmware Configuration
4597 * Files, we'd like to expose the ability to change these via module
4598 * parameters so these are essentially common tweaks/settings for
4599 * Configuration Files and hard-coded initialization ...
4600 */
4601 static int adap_init0_tweaks(struct adapter *adapter)
4602 {
4603 /*
4604 * Fix up various Host-Dependent Parameters like Page Size, Cache
4605 * Line Size, etc. The firmware default is for a 4KB Page Size and
4606 * 64B Cache Line Size ...
4607 */
4608 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4609
4610 /*
4611 * Process module parameters which affect early initialization.
4612 */
4613 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4614 dev_err(&adapter->pdev->dev,
4615 "Ignoring illegal rx_dma_offset=%d, using 2\n",
4616 rx_dma_offset);
4617 rx_dma_offset = 2;
4618 }
4619 t4_set_reg_field(adapter, SGE_CONTROL,
4620 PKTSHIFT_MASK,
4621 PKTSHIFT(rx_dma_offset));
4622
4623 /*
4624 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4625 * adds the pseudo header itself.
4626 */
4627 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
4628 CSUM_HAS_PSEUDO_HDR, 0);
4629
4630 return 0;
4631 }
4632
4633 /*
4634 * Attempt to initialize the adapter via a Firmware Configuration File.
4635 */
4636 static int adap_init0_config(struct adapter *adapter, int reset)
4637 {
4638 struct fw_caps_config_cmd caps_cmd;
4639 const struct firmware *cf;
4640 unsigned long mtype = 0, maddr = 0;
4641 u32 finiver, finicsum, cfcsum;
4642 int ret;
4643 int config_issued = 0;
4644 char *fw_config_file, fw_config_file_path[256];
4645 char *config_name = NULL;
4646
4647 /*
4648 * Reset device if necessary.
4649 */
4650 if (reset) {
4651 ret = t4_fw_reset(adapter, adapter->mbox,
4652 PIORSTMODE | PIORST);
4653 if (ret < 0)
4654 goto bye;
4655 }
4656
4657 /*
4658 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4659 * then use that. Otherwise, use the configuration file stored
4660 * in the adapter flash ...
4661 */
4662 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4663 case CHELSIO_T4:
4664 fw_config_file = FW4_CFNAME;
4665 break;
4666 case CHELSIO_T5:
4667 fw_config_file = FW5_CFNAME;
4668 break;
4669 default:
4670 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4671 adapter->pdev->device);
4672 ret = -EINVAL;
4673 goto bye;
4674 }
4675
4676 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4677 if (ret < 0) {
4678 config_name = "On FLASH";
4679 mtype = FW_MEMTYPE_CF_FLASH;
4680 maddr = t4_flash_cfg_addr(adapter);
4681 } else {
4682 u32 params[7], val[7];
4683
4684 sprintf(fw_config_file_path,
4685 "/lib/firmware/%s", fw_config_file);
4686 config_name = fw_config_file_path;
4687
4688 if (cf->size >= FLASH_CFG_MAX_SIZE)
4689 ret = -ENOMEM;
4690 else {
4691 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4692 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
4693 ret = t4_query_params(adapter, adapter->mbox,
4694 adapter->fn, 0, 1, params, val);
4695 if (ret == 0) {
4696 /*
4697 * For t4_memory_write() below addresses and
4698 * sizes have to be in terms of multiples of 4
4699 * bytes. So, if the Configuration File isn't
4700 * a multiple of 4 bytes in length we'll have
4701 * to write that out separately since we can't
4702 * guarantee that the bytes following the
4703 * residual byte in the buffer returned by
4704 * request_firmware() are zeroed out ...
4705 */
4706 size_t resid = cf->size & 0x3;
4707 size_t size = cf->size & ~0x3;
4708 __be32 *data = (__be32 *)cf->data;
4709
4710 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
4711 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
4712
4713 ret = t4_memory_write(adapter, mtype, maddr,
4714 size, data);
4715 if (ret == 0 && resid != 0) {
4716 union {
4717 __be32 word;
4718 char buf[4];
4719 } last;
4720 int i;
4721
4722 last.word = data[size >> 2];
4723 for (i = resid; i < 4; i++)
4724 last.buf[i] = 0;
4725 ret = t4_memory_write(adapter, mtype,
4726 maddr + size,
4727 4, &last.word);
4728 }
4729 }
4730 }
4731
4732 release_firmware(cf);
4733 if (ret)
4734 goto bye;
4735 }
4736
4737 /*
4738 * Issue a Capability Configuration command to the firmware to get it
4739 * to parse the Configuration File. We don't use t4_fw_config_file()
4740 * because we want the ability to modify various features after we've
4741 * processed the configuration file ...
4742 */
4743 memset(&caps_cmd, 0, sizeof(caps_cmd));
4744 caps_cmd.op_to_write =
4745 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4746 FW_CMD_REQUEST |
4747 FW_CMD_READ);
4748 caps_cmd.cfvalid_to_len16 =
4749 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
4750 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4751 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
4752 FW_LEN16(caps_cmd));
4753 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4754 &caps_cmd);
4755
4756 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4757 * Configuration File in FLASH), our last gasp effort is to use the
4758 * Firmware Configuration File which is embedded in the firmware. A
4759 * very few early versions of the firmware didn't have one embedded
4760 * but we can ignore those.
4761 */
4762 if (ret == -ENOENT) {
4763 memset(&caps_cmd, 0, sizeof(caps_cmd));
4764 caps_cmd.op_to_write =
4765 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4766 FW_CMD_REQUEST |
4767 FW_CMD_READ);
4768 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4769 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4770 sizeof(caps_cmd), &caps_cmd);
4771 config_name = "Firmware Default";
4772 }
4773
4774 config_issued = 1;
4775 if (ret < 0)
4776 goto bye;
4777
4778 finiver = ntohl(caps_cmd.finiver);
4779 finicsum = ntohl(caps_cmd.finicsum);
4780 cfcsum = ntohl(caps_cmd.cfcsum);
4781 if (finicsum != cfcsum)
4782 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4783 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4784 finicsum, cfcsum);
4785
4786 /*
4787 * And now tell the firmware to use the configuration we just loaded.
4788 */
4789 caps_cmd.op_to_write =
4790 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4791 FW_CMD_REQUEST |
4792 FW_CMD_WRITE);
4793 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4794 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4795 NULL);
4796 if (ret < 0)
4797 goto bye;
4798
4799 /*
4800 * Tweak configuration based on system architecture, module
4801 * parameters, etc.
4802 */
4803 ret = adap_init0_tweaks(adapter);
4804 if (ret < 0)
4805 goto bye;
4806
4807 /*
4808 * And finally tell the firmware to initialize itself using the
4809 * parameters from the Configuration File.
4810 */
4811 ret = t4_fw_initialize(adapter, adapter->mbox);
4812 if (ret < 0)
4813 goto bye;
4814
4815 /*
4816 * Return successfully and note that we're operating with parameters
4817 * not supplied by the driver, rather than from hard-wired
4818 * initialization constants burried in the driver.
4819 */
4820 adapter->flags |= USING_SOFT_PARAMS;
4821 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4822 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4823 config_name, finiver, cfcsum);
4824 return 0;
4825
4826 /*
4827 * Something bad happened. Return the error ... (If the "error"
4828 * is that there's no Configuration File on the adapter we don't
4829 * want to issue a warning since this is fairly common.)
4830 */
4831 bye:
4832 if (config_issued && ret != -ENOENT)
4833 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4834 config_name, -ret);
4835 return ret;
4836 }
4837
4838 /*
4839 * Attempt to initialize the adapter via hard-coded, driver supplied
4840 * parameters ...
4841 */
4842 static int adap_init0_no_config(struct adapter *adapter, int reset)
4843 {
4844 struct sge *s = &adapter->sge;
4845 struct fw_caps_config_cmd caps_cmd;
4846 u32 v;
4847 int i, ret;
4848
4849 /*
4850 * Reset device if necessary
4851 */
4852 if (reset) {
4853 ret = t4_fw_reset(adapter, adapter->mbox,
4854 PIORSTMODE | PIORST);
4855 if (ret < 0)
4856 goto bye;
4857 }
4858
4859 /*
4860 * Get device capabilities and select which we'll be using.
4861 */
4862 memset(&caps_cmd, 0, sizeof(caps_cmd));
4863 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4864 FW_CMD_REQUEST | FW_CMD_READ);
4865 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4866 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4867 &caps_cmd);
4868 if (ret < 0)
4869 goto bye;
4870
4871 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4872 if (!vf_acls)
4873 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4874 else
4875 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4876 } else if (vf_acls) {
4877 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
4878 goto bye;
4879 }
4880 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4881 FW_CMD_REQUEST | FW_CMD_WRITE);
4882 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4883 NULL);
4884 if (ret < 0)
4885 goto bye;
4886
4887 /*
4888 * Tweak configuration based on system architecture, module
4889 * parameters, etc.
4890 */
4891 ret = adap_init0_tweaks(adapter);
4892 if (ret < 0)
4893 goto bye;
4894
4895 /*
4896 * Select RSS Global Mode we want to use. We use "Basic Virtual"
4897 * mode which maps each Virtual Interface to its own section of
4898 * the RSS Table and we turn on all map and hash enables ...
4899 */
4900 adapter->flags |= RSS_TNLALLLOOKUP;
4901 ret = t4_config_glbl_rss(adapter, adapter->mbox,
4902 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4903 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4904 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
4905 ((adapter->flags & RSS_TNLALLLOOKUP) ?
4906 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
4907 if (ret < 0)
4908 goto bye;
4909
4910 /*
4911 * Set up our own fundamental resource provisioning ...
4912 */
4913 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
4914 PFRES_NEQ, PFRES_NETHCTRL,
4915 PFRES_NIQFLINT, PFRES_NIQ,
4916 PFRES_TC, PFRES_NVI,
4917 FW_PFVF_CMD_CMASK_MASK,
4918 pfvfres_pmask(adapter, adapter->fn, 0),
4919 PFRES_NEXACTF,
4920 PFRES_R_CAPS, PFRES_WX_CAPS);
4921 if (ret < 0)
4922 goto bye;
4923
4924 /*
4925 * Perform low level SGE initialization. We need to do this before we
4926 * send the firmware the INITIALIZE command because that will cause
4927 * any other PF Drivers which are waiting for the Master
4928 * Initialization to proceed forward.
4929 */
4930 for (i = 0; i < SGE_NTIMERS - 1; i++)
4931 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
4932 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
4933 s->counter_val[0] = 1;
4934 for (i = 1; i < SGE_NCOUNTERS; i++)
4935 s->counter_val[i] = min(intr_cnt[i - 1],
4936 THRESHOLD_0_GET(THRESHOLD_0_MASK));
4937 t4_sge_init(adapter);
4938
4939 #ifdef CONFIG_PCI_IOV
4940 /*
4941 * Provision resource limits for Virtual Functions. We currently
4942 * grant them all the same static resource limits except for the Port
4943 * Access Rights Mask which we're assigning based on the PF. All of
4944 * the static provisioning stuff for both the PF and VF really needs
4945 * to be managed in a persistent manner for each device which the
4946 * firmware controls.
4947 */
4948 {
4949 int pf, vf;
4950
4951 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
4952 if (num_vf[pf] <= 0)
4953 continue;
4954
4955 /* VF numbering starts at 1! */
4956 for (vf = 1; vf <= num_vf[pf]; vf++) {
4957 ret = t4_cfg_pfvf(adapter, adapter->mbox,
4958 pf, vf,
4959 VFRES_NEQ, VFRES_NETHCTRL,
4960 VFRES_NIQFLINT, VFRES_NIQ,
4961 VFRES_TC, VFRES_NVI,
4962 FW_PFVF_CMD_CMASK_MASK,
4963 pfvfres_pmask(
4964 adapter, pf, vf),
4965 VFRES_NEXACTF,
4966 VFRES_R_CAPS, VFRES_WX_CAPS);
4967 if (ret < 0)
4968 dev_warn(adapter->pdev_dev,
4969 "failed to "\
4970 "provision pf/vf=%d/%d; "
4971 "err=%d\n", pf, vf, ret);
4972 }
4973 }
4974 }
4975 #endif
4976
4977 /*
4978 * Set up the default filter mode. Later we'll want to implement this
4979 * via a firmware command, etc. ... This needs to be done before the
4980 * firmare initialization command ... If the selected set of fields
4981 * isn't equal to the default value, we'll need to make sure that the
4982 * field selections will fit in the 36-bit budget.
4983 */
4984 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
4985 int j, bits = 0;
4986
4987 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
4988 switch (tp_vlan_pri_map & (1 << j)) {
4989 case 0:
4990 /* compressed filter field not enabled */
4991 break;
4992 case FCOE_MASK:
4993 bits += 1;
4994 break;
4995 case PORT_MASK:
4996 bits += 3;
4997 break;
4998 case VNIC_ID_MASK:
4999 bits += 17;
5000 break;
5001 case VLAN_MASK:
5002 bits += 17;
5003 break;
5004 case TOS_MASK:
5005 bits += 8;
5006 break;
5007 case PROTOCOL_MASK:
5008 bits += 8;
5009 break;
5010 case ETHERTYPE_MASK:
5011 bits += 16;
5012 break;
5013 case MACMATCH_MASK:
5014 bits += 9;
5015 break;
5016 case MPSHITTYPE_MASK:
5017 bits += 3;
5018 break;
5019 case FRAGMENTATION_MASK:
5020 bits += 1;
5021 break;
5022 }
5023
5024 if (bits > 36) {
5025 dev_err(adapter->pdev_dev,
5026 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5027 " using %#x\n", tp_vlan_pri_map, bits,
5028 TP_VLAN_PRI_MAP_DEFAULT);
5029 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5030 }
5031 }
5032 v = tp_vlan_pri_map;
5033 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5034 &v, 1, TP_VLAN_PRI_MAP);
5035
5036 /*
5037 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5038 * to support any of the compressed filter fields above. Newer
5039 * versions of the firmware do this automatically but it doesn't hurt
5040 * to set it here. Meanwhile, we do _not_ need to set Lookup Every
5041 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5042 * since the firmware automatically turns this on and off when we have
5043 * a non-zero number of filters active (since it does have a
5044 * performance impact).
5045 */
5046 if (tp_vlan_pri_map)
5047 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5048 FIVETUPLELOOKUP_MASK,
5049 FIVETUPLELOOKUP_MASK);
5050
5051 /*
5052 * Tweak some settings.
5053 */
5054 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5055 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5056 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5057 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5058
5059 /*
5060 * Get basic stuff going by issuing the Firmware Initialize command.
5061 * Note that this _must_ be after all PFVF commands ...
5062 */
5063 ret = t4_fw_initialize(adapter, adapter->mbox);
5064 if (ret < 0)
5065 goto bye;
5066
5067 /*
5068 * Return successfully!
5069 */
5070 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5071 "driver parameters\n");
5072 return 0;
5073
5074 /*
5075 * Something bad happened. Return the error ...
5076 */
5077 bye:
5078 return ret;
5079 }
5080
5081 static struct fw_info fw_info_array[] = {
5082 {
5083 .chip = CHELSIO_T4,
5084 .fs_name = FW4_CFNAME,
5085 .fw_mod_name = FW4_FNAME,
5086 .fw_hdr = {
5087 .chip = FW_HDR_CHIP_T4,
5088 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5089 .intfver_nic = FW_INTFVER(T4, NIC),
5090 .intfver_vnic = FW_INTFVER(T4, VNIC),
5091 .intfver_ri = FW_INTFVER(T4, RI),
5092 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5093 .intfver_fcoe = FW_INTFVER(T4, FCOE),
5094 },
5095 }, {
5096 .chip = CHELSIO_T5,
5097 .fs_name = FW5_CFNAME,
5098 .fw_mod_name = FW5_FNAME,
5099 .fw_hdr = {
5100 .chip = FW_HDR_CHIP_T5,
5101 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5102 .intfver_nic = FW_INTFVER(T5, NIC),
5103 .intfver_vnic = FW_INTFVER(T5, VNIC),
5104 .intfver_ri = FW_INTFVER(T5, RI),
5105 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5106 .intfver_fcoe = FW_INTFVER(T5, FCOE),
5107 },
5108 }
5109 };
5110
5111 static struct fw_info *find_fw_info(int chip)
5112 {
5113 int i;
5114
5115 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5116 if (fw_info_array[i].chip == chip)
5117 return &fw_info_array[i];
5118 }
5119 return NULL;
5120 }
5121
5122 /*
5123 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5124 */
5125 static int adap_init0(struct adapter *adap)
5126 {
5127 int ret;
5128 u32 v, port_vec;
5129 enum dev_state state;
5130 u32 params[7], val[7];
5131 struct fw_caps_config_cmd caps_cmd;
5132 int reset = 1;
5133
5134 /*
5135 * Contact FW, advertising Master capability (and potentially forcing
5136 * ourselves as the Master PF if our module parameter force_init is
5137 * set).
5138 */
5139 ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5140 force_init ? MASTER_MUST : MASTER_MAY,
5141 &state);
5142 if (ret < 0) {
5143 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5144 ret);
5145 return ret;
5146 }
5147 if (ret == adap->mbox)
5148 adap->flags |= MASTER_PF;
5149 if (force_init && state == DEV_STATE_INIT)
5150 state = DEV_STATE_UNINIT;
5151
5152 /*
5153 * If we're the Master PF Driver and the device is uninitialized,
5154 * then let's consider upgrading the firmware ... (We always want
5155 * to check the firmware version number in order to A. get it for
5156 * later reporting and B. to warn if the currently loaded firmware
5157 * is excessively mismatched relative to the driver.)
5158 */
5159 t4_get_fw_version(adap, &adap->params.fw_vers);
5160 t4_get_tp_version(adap, &adap->params.tp_vers);
5161 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5162 struct fw_info *fw_info;
5163 struct fw_hdr *card_fw;
5164 const struct firmware *fw;
5165 const u8 *fw_data = NULL;
5166 unsigned int fw_size = 0;
5167
5168 /* This is the firmware whose headers the driver was compiled
5169 * against
5170 */
5171 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5172 if (fw_info == NULL) {
5173 dev_err(adap->pdev_dev,
5174 "unable to get firmware info for chip %d.\n",
5175 CHELSIO_CHIP_VERSION(adap->params.chip));
5176 return -EINVAL;
5177 }
5178
5179 /* allocate memory to read the header of the firmware on the
5180 * card
5181 */
5182 card_fw = t4_alloc_mem(sizeof(*card_fw));
5183
5184 /* Get FW from from /lib/firmware/ */
5185 ret = request_firmware(&fw, fw_info->fw_mod_name,
5186 adap->pdev_dev);
5187 if (ret < 0) {
5188 dev_err(adap->pdev_dev,
5189 "unable to load firmware image %s, error %d\n",
5190 fw_info->fw_mod_name, ret);
5191 } else {
5192 fw_data = fw->data;
5193 fw_size = fw->size;
5194 }
5195
5196 /* upgrade FW logic */
5197 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5198 state, &reset);
5199
5200 /* Cleaning up */
5201 if (fw != NULL)
5202 release_firmware(fw);
5203 t4_free_mem(card_fw);
5204
5205 if (ret < 0)
5206 goto bye;
5207 }
5208
5209 /*
5210 * Grab VPD parameters. This should be done after we establish a
5211 * connection to the firmware since some of the VPD parameters
5212 * (notably the Core Clock frequency) are retrieved via requests to
5213 * the firmware. On the other hand, we need these fairly early on
5214 * so we do this right after getting ahold of the firmware.
5215 */
5216 ret = get_vpd_params(adap, &adap->params.vpd);
5217 if (ret < 0)
5218 goto bye;
5219
5220 /*
5221 * Find out what ports are available to us. Note that we need to do
5222 * this before calling adap_init0_no_config() since it needs nports
5223 * and portvec ...
5224 */
5225 v =
5226 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5227 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5228 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5229 if (ret < 0)
5230 goto bye;
5231
5232 adap->params.nports = hweight32(port_vec);
5233 adap->params.portvec = port_vec;
5234
5235 /*
5236 * If the firmware is initialized already (and we're not forcing a
5237 * master initialization), note that we're living with existing
5238 * adapter parameters. Otherwise, it's time to try initializing the
5239 * adapter ...
5240 */
5241 if (state == DEV_STATE_INIT) {
5242 dev_info(adap->pdev_dev, "Coming up as %s: "\
5243 "Adapter already initialized\n",
5244 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5245 adap->flags |= USING_SOFT_PARAMS;
5246 } else {
5247 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5248 "Initializing adapter\n");
5249
5250 /*
5251 * If the firmware doesn't support Configuration
5252 * Files warn user and exit,
5253 */
5254 if (ret < 0)
5255 dev_warn(adap->pdev_dev, "Firmware doesn't support "
5256 "configuration file.\n");
5257 if (force_old_init)
5258 ret = adap_init0_no_config(adap, reset);
5259 else {
5260 /*
5261 * Find out whether we're dealing with a version of
5262 * the firmware which has configuration file support.
5263 */
5264 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5265 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5266 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5267 params, val);
5268
5269 /*
5270 * If the firmware doesn't support Configuration
5271 * Files, use the old Driver-based, hard-wired
5272 * initialization. Otherwise, try using the
5273 * Configuration File support and fall back to the
5274 * Driver-based initialization if there's no
5275 * Configuration File found.
5276 */
5277 if (ret < 0)
5278 ret = adap_init0_no_config(adap, reset);
5279 else {
5280 /*
5281 * The firmware provides us with a memory
5282 * buffer where we can load a Configuration
5283 * File from the host if we want to override
5284 * the Configuration File in flash.
5285 */
5286
5287 ret = adap_init0_config(adap, reset);
5288 if (ret == -ENOENT) {
5289 dev_info(adap->pdev_dev,
5290 "No Configuration File present "
5291 "on adapter. Using hard-wired "
5292 "configuration parameters.\n");
5293 ret = adap_init0_no_config(adap, reset);
5294 }
5295 }
5296 }
5297 if (ret < 0) {
5298 dev_err(adap->pdev_dev,
5299 "could not initialize adapter, error %d\n",
5300 -ret);
5301 goto bye;
5302 }
5303 }
5304
5305 /*
5306 * If we're living with non-hard-coded parameters (either from a
5307 * Firmware Configuration File or values programmed by a different PF
5308 * Driver), give the SGE code a chance to pull in anything that it
5309 * needs ... Note that this must be called after we retrieve our VPD
5310 * parameters in order to know how to convert core ticks to seconds.
5311 */
5312 if (adap->flags & USING_SOFT_PARAMS) {
5313 ret = t4_sge_init(adap);
5314 if (ret < 0)
5315 goto bye;
5316 }
5317
5318 if (is_bypass_device(adap->pdev->device))
5319 adap->params.bypass = 1;
5320
5321 /*
5322 * Grab some of our basic fundamental operating parameters.
5323 */
5324 #define FW_PARAM_DEV(param) \
5325 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5326 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5327
5328 #define FW_PARAM_PFVF(param) \
5329 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5330 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \
5331 FW_PARAMS_PARAM_Y(0) | \
5332 FW_PARAMS_PARAM_Z(0)
5333
5334 params[0] = FW_PARAM_PFVF(EQ_START);
5335 params[1] = FW_PARAM_PFVF(L2T_START);
5336 params[2] = FW_PARAM_PFVF(L2T_END);
5337 params[3] = FW_PARAM_PFVF(FILTER_START);
5338 params[4] = FW_PARAM_PFVF(FILTER_END);
5339 params[5] = FW_PARAM_PFVF(IQFLINT_START);
5340 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5341 if (ret < 0)
5342 goto bye;
5343 adap->sge.egr_start = val[0];
5344 adap->l2t_start = val[1];
5345 adap->l2t_end = val[2];
5346 adap->tids.ftid_base = val[3];
5347 adap->tids.nftids = val[4] - val[3] + 1;
5348 adap->sge.ingr_start = val[5];
5349
5350 /* query params related to active filter region */
5351 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5352 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5353 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5354 /* If Active filter size is set we enable establishing
5355 * offload connection through firmware work request
5356 */
5357 if ((val[0] != val[1]) && (ret >= 0)) {
5358 adap->flags |= FW_OFLD_CONN;
5359 adap->tids.aftid_base = val[0];
5360 adap->tids.aftid_end = val[1];
5361 }
5362
5363 /* If we're running on newer firmware, let it know that we're
5364 * prepared to deal with encapsulated CPL messages. Older
5365 * firmware won't understand this and we'll just get
5366 * unencapsulated messages ...
5367 */
5368 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5369 val[0] = 1;
5370 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5371
5372 /*
5373 * Get device capabilities so we can determine what resources we need
5374 * to manage.
5375 */
5376 memset(&caps_cmd, 0, sizeof(caps_cmd));
5377 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5378 FW_CMD_REQUEST | FW_CMD_READ);
5379 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5380 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5381 &caps_cmd);
5382 if (ret < 0)
5383 goto bye;
5384
5385 if (caps_cmd.ofldcaps) {
5386 /* query offload-related parameters */
5387 params[0] = FW_PARAM_DEV(NTID);
5388 params[1] = FW_PARAM_PFVF(SERVER_START);
5389 params[2] = FW_PARAM_PFVF(SERVER_END);
5390 params[3] = FW_PARAM_PFVF(TDDP_START);
5391 params[4] = FW_PARAM_PFVF(TDDP_END);
5392 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5393 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5394 params, val);
5395 if (ret < 0)
5396 goto bye;
5397 adap->tids.ntids = val[0];
5398 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5399 adap->tids.stid_base = val[1];
5400 adap->tids.nstids = val[2] - val[1] + 1;
5401 /*
5402 * Setup server filter region. Divide the availble filter
5403 * region into two parts. Regular filters get 1/3rd and server
5404 * filters get 2/3rd part. This is only enabled if workarond
5405 * path is enabled.
5406 * 1. For regular filters.
5407 * 2. Server filter: This are special filters which are used
5408 * to redirect SYN packets to offload queue.
5409 */
5410 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5411 adap->tids.sftid_base = adap->tids.ftid_base +
5412 DIV_ROUND_UP(adap->tids.nftids, 3);
5413 adap->tids.nsftids = adap->tids.nftids -
5414 DIV_ROUND_UP(adap->tids.nftids, 3);
5415 adap->tids.nftids = adap->tids.sftid_base -
5416 adap->tids.ftid_base;
5417 }
5418 adap->vres.ddp.start = val[3];
5419 adap->vres.ddp.size = val[4] - val[3] + 1;
5420 adap->params.ofldq_wr_cred = val[5];
5421
5422 adap->params.offload = 1;
5423 }
5424 if (caps_cmd.rdmacaps) {
5425 params[0] = FW_PARAM_PFVF(STAG_START);
5426 params[1] = FW_PARAM_PFVF(STAG_END);
5427 params[2] = FW_PARAM_PFVF(RQ_START);
5428 params[3] = FW_PARAM_PFVF(RQ_END);
5429 params[4] = FW_PARAM_PFVF(PBL_START);
5430 params[5] = FW_PARAM_PFVF(PBL_END);
5431 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5432 params, val);
5433 if (ret < 0)
5434 goto bye;
5435 adap->vres.stag.start = val[0];
5436 adap->vres.stag.size = val[1] - val[0] + 1;
5437 adap->vres.rq.start = val[2];
5438 adap->vres.rq.size = val[3] - val[2] + 1;
5439 adap->vres.pbl.start = val[4];
5440 adap->vres.pbl.size = val[5] - val[4] + 1;
5441
5442 params[0] = FW_PARAM_PFVF(SQRQ_START);
5443 params[1] = FW_PARAM_PFVF(SQRQ_END);
5444 params[2] = FW_PARAM_PFVF(CQ_START);
5445 params[3] = FW_PARAM_PFVF(CQ_END);
5446 params[4] = FW_PARAM_PFVF(OCQ_START);
5447 params[5] = FW_PARAM_PFVF(OCQ_END);
5448 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
5449 if (ret < 0)
5450 goto bye;
5451 adap->vres.qp.start = val[0];
5452 adap->vres.qp.size = val[1] - val[0] + 1;
5453 adap->vres.cq.start = val[2];
5454 adap->vres.cq.size = val[3] - val[2] + 1;
5455 adap->vres.ocq.start = val[4];
5456 adap->vres.ocq.size = val[5] - val[4] + 1;
5457 }
5458 if (caps_cmd.iscsicaps) {
5459 params[0] = FW_PARAM_PFVF(ISCSI_START);
5460 params[1] = FW_PARAM_PFVF(ISCSI_END);
5461 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5462 params, val);
5463 if (ret < 0)
5464 goto bye;
5465 adap->vres.iscsi.start = val[0];
5466 adap->vres.iscsi.size = val[1] - val[0] + 1;
5467 }
5468 #undef FW_PARAM_PFVF
5469 #undef FW_PARAM_DEV
5470
5471 /*
5472 * These are finalized by FW initialization, load their values now.
5473 */
5474 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5475 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5476 adap->params.b_wnd);
5477
5478 t4_init_tp_params(adap);
5479 adap->flags |= FW_OK;
5480 return 0;
5481
5482 /*
5483 * Something bad happened. If a command timed out or failed with EIO
5484 * FW does not operate within its spec or something catastrophic
5485 * happened to HW/FW, stop issuing commands.
5486 */
5487 bye:
5488 if (ret != -ETIMEDOUT && ret != -EIO)
5489 t4_fw_bye(adap, adap->mbox);
5490 return ret;
5491 }
5492
5493 /* EEH callbacks */
5494
5495 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5496 pci_channel_state_t state)
5497 {
5498 int i;
5499 struct adapter *adap = pci_get_drvdata(pdev);
5500
5501 if (!adap)
5502 goto out;
5503
5504 rtnl_lock();
5505 adap->flags &= ~FW_OK;
5506 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5507 spin_lock(&adap->stats_lock);
5508 for_each_port(adap, i) {
5509 struct net_device *dev = adap->port[i];
5510
5511 netif_device_detach(dev);
5512 netif_carrier_off(dev);
5513 }
5514 spin_unlock(&adap->stats_lock);
5515 if (adap->flags & FULL_INIT_DONE)
5516 cxgb_down(adap);
5517 rtnl_unlock();
5518 if ((adap->flags & DEV_ENABLED)) {
5519 pci_disable_device(pdev);
5520 adap->flags &= ~DEV_ENABLED;
5521 }
5522 out: return state == pci_channel_io_perm_failure ?
5523 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5524 }
5525
5526 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5527 {
5528 int i, ret;
5529 struct fw_caps_config_cmd c;
5530 struct adapter *adap = pci_get_drvdata(pdev);
5531
5532 if (!adap) {
5533 pci_restore_state(pdev);
5534 pci_save_state(pdev);
5535 return PCI_ERS_RESULT_RECOVERED;
5536 }
5537
5538 if (!(adap->flags & DEV_ENABLED)) {
5539 if (pci_enable_device(pdev)) {
5540 dev_err(&pdev->dev, "Cannot reenable PCI "
5541 "device after reset\n");
5542 return PCI_ERS_RESULT_DISCONNECT;
5543 }
5544 adap->flags |= DEV_ENABLED;
5545 }
5546
5547 pci_set_master(pdev);
5548 pci_restore_state(pdev);
5549 pci_save_state(pdev);
5550 pci_cleanup_aer_uncorrect_error_status(pdev);
5551
5552 if (t4_wait_dev_ready(adap) < 0)
5553 return PCI_ERS_RESULT_DISCONNECT;
5554 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
5555 return PCI_ERS_RESULT_DISCONNECT;
5556 adap->flags |= FW_OK;
5557 if (adap_init1(adap, &c))
5558 return PCI_ERS_RESULT_DISCONNECT;
5559
5560 for_each_port(adap, i) {
5561 struct port_info *p = adap2pinfo(adap, i);
5562
5563 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
5564 NULL, NULL);
5565 if (ret < 0)
5566 return PCI_ERS_RESULT_DISCONNECT;
5567 p->viid = ret;
5568 p->xact_addr_filt = -1;
5569 }
5570
5571 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5572 adap->params.b_wnd);
5573 setup_memwin(adap);
5574 if (cxgb_up(adap))
5575 return PCI_ERS_RESULT_DISCONNECT;
5576 return PCI_ERS_RESULT_RECOVERED;
5577 }
5578
5579 static void eeh_resume(struct pci_dev *pdev)
5580 {
5581 int i;
5582 struct adapter *adap = pci_get_drvdata(pdev);
5583
5584 if (!adap)
5585 return;
5586
5587 rtnl_lock();
5588 for_each_port(adap, i) {
5589 struct net_device *dev = adap->port[i];
5590
5591 if (netif_running(dev)) {
5592 link_start(dev);
5593 cxgb_set_rxmode(dev);
5594 }
5595 netif_device_attach(dev);
5596 }
5597 rtnl_unlock();
5598 }
5599
5600 static const struct pci_error_handlers cxgb4_eeh = {
5601 .error_detected = eeh_err_detected,
5602 .slot_reset = eeh_slot_reset,
5603 .resume = eeh_resume,
5604 };
5605
5606 static inline bool is_10g_port(const struct link_config *lc)
5607 {
5608 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
5609 }
5610
5611 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
5612 unsigned int size, unsigned int iqe_size)
5613 {
5614 q->intr_params = QINTR_TIMER_IDX(timer_idx) |
5615 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
5616 q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
5617 q->iqe_len = iqe_size;
5618 q->size = size;
5619 }
5620
5621 /*
5622 * Perform default configuration of DMA queues depending on the number and type
5623 * of ports we found and the number of available CPUs. Most settings can be
5624 * modified by the admin prior to actual use.
5625 */
5626 static void cfg_queues(struct adapter *adap)
5627 {
5628 struct sge *s = &adap->sge;
5629 int i, q10g = 0, n10g = 0, qidx = 0;
5630
5631 for_each_port(adap, i)
5632 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
5633
5634 /*
5635 * We default to 1 queue per non-10G port and up to # of cores queues
5636 * per 10G port.
5637 */
5638 if (n10g)
5639 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5640 if (q10g > netif_get_num_default_rss_queues())
5641 q10g = netif_get_num_default_rss_queues();
5642
5643 for_each_port(adap, i) {
5644 struct port_info *pi = adap2pinfo(adap, i);
5645
5646 pi->first_qset = qidx;
5647 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
5648 qidx += pi->nqsets;
5649 }
5650
5651 s->ethqsets = qidx;
5652 s->max_ethqsets = qidx; /* MSI-X may lower it later */
5653
5654 if (is_offload(adap)) {
5655 /*
5656 * For offload we use 1 queue/channel if all ports are up to 1G,
5657 * otherwise we divide all available queues amongst the channels
5658 * capped by the number of available cores.
5659 */
5660 if (n10g) {
5661 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
5662 num_online_cpus());
5663 s->ofldqsets = roundup(i, adap->params.nports);
5664 } else
5665 s->ofldqsets = adap->params.nports;
5666 /* For RDMA one Rx queue per channel suffices */
5667 s->rdmaqs = adap->params.nports;
5668 }
5669
5670 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5671 struct sge_eth_rxq *r = &s->ethrxq[i];
5672
5673 init_rspq(&r->rspq, 0, 0, 1024, 64);
5674 r->fl.size = 72;
5675 }
5676
5677 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5678 s->ethtxq[i].q.size = 1024;
5679
5680 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5681 s->ctrlq[i].q.size = 512;
5682
5683 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
5684 s->ofldtxq[i].q.size = 1024;
5685
5686 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
5687 struct sge_ofld_rxq *r = &s->ofldrxq[i];
5688
5689 init_rspq(&r->rspq, 0, 0, 1024, 64);
5690 r->rspq.uld = CXGB4_ULD_ISCSI;
5691 r->fl.size = 72;
5692 }
5693
5694 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
5695 struct sge_ofld_rxq *r = &s->rdmarxq[i];
5696
5697 init_rspq(&r->rspq, 0, 0, 511, 64);
5698 r->rspq.uld = CXGB4_ULD_RDMA;
5699 r->fl.size = 72;
5700 }
5701
5702 init_rspq(&s->fw_evtq, 6, 0, 512, 64);
5703 init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
5704 }
5705
5706 /*
5707 * Reduce the number of Ethernet queues across all ports to at most n.
5708 * n provides at least one queue per port.
5709 */
5710 static void reduce_ethqs(struct adapter *adap, int n)
5711 {
5712 int i;
5713 struct port_info *pi;
5714
5715 while (n < adap->sge.ethqsets)
5716 for_each_port(adap, i) {
5717 pi = adap2pinfo(adap, i);
5718 if (pi->nqsets > 1) {
5719 pi->nqsets--;
5720 adap->sge.ethqsets--;
5721 if (adap->sge.ethqsets <= n)
5722 break;
5723 }
5724 }
5725
5726 n = 0;
5727 for_each_port(adap, i) {
5728 pi = adap2pinfo(adap, i);
5729 pi->first_qset = n;
5730 n += pi->nqsets;
5731 }
5732 }
5733
5734 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5735 #define EXTRA_VECS 2
5736
5737 static int enable_msix(struct adapter *adap)
5738 {
5739 int ofld_need = 0;
5740 int i, err, want, need;
5741 struct sge *s = &adap->sge;
5742 unsigned int nchan = adap->params.nports;
5743 struct msix_entry entries[MAX_INGQ + 1];
5744
5745 for (i = 0; i < ARRAY_SIZE(entries); ++i)
5746 entries[i].entry = i;
5747
5748 want = s->max_ethqsets + EXTRA_VECS;
5749 if (is_offload(adap)) {
5750 want += s->rdmaqs + s->ofldqsets;
5751 /* need nchan for each possible ULD */
5752 ofld_need = 2 * nchan;
5753 }
5754 need = adap->params.nports + EXTRA_VECS + ofld_need;
5755
5756 while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
5757 want = err;
5758
5759 if (!err) {
5760 /*
5761 * Distribute available vectors to the various queue groups.
5762 * Every group gets its minimum requirement and NIC gets top
5763 * priority for leftovers.
5764 */
5765 i = want - EXTRA_VECS - ofld_need;
5766 if (i < s->max_ethqsets) {
5767 s->max_ethqsets = i;
5768 if (i < s->ethqsets)
5769 reduce_ethqs(adap, i);
5770 }
5771 if (is_offload(adap)) {
5772 i = want - EXTRA_VECS - s->max_ethqsets;
5773 i -= ofld_need - nchan;
5774 s->ofldqsets = (i / nchan) * nchan; /* round down */
5775 }
5776 for (i = 0; i < want; ++i)
5777 adap->msix_info[i].vec = entries[i].vector;
5778 } else if (err > 0)
5779 dev_info(adap->pdev_dev,
5780 "only %d MSI-X vectors left, not using MSI-X\n", err);
5781 return err;
5782 }
5783
5784 #undef EXTRA_VECS
5785
5786 static int init_rss(struct adapter *adap)
5787 {
5788 unsigned int i, j;
5789
5790 for_each_port(adap, i) {
5791 struct port_info *pi = adap2pinfo(adap, i);
5792
5793 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5794 if (!pi->rss)
5795 return -ENOMEM;
5796 for (j = 0; j < pi->rss_size; j++)
5797 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
5798 }
5799 return 0;
5800 }
5801
5802 static void print_port_info(const struct net_device *dev)
5803 {
5804 static const char *base[] = {
5805 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
5806 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4"
5807 };
5808
5809 char buf[80];
5810 char *bufp = buf;
5811 const char *spd = "";
5812 const struct port_info *pi = netdev_priv(dev);
5813 const struct adapter *adap = pi->adapter;
5814
5815 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
5816 spd = " 2.5 GT/s";
5817 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
5818 spd = " 5 GT/s";
5819
5820 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
5821 bufp += sprintf(bufp, "100/");
5822 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
5823 bufp += sprintf(bufp, "1000/");
5824 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
5825 bufp += sprintf(bufp, "10G/");
5826 if (bufp != buf)
5827 --bufp;
5828 sprintf(bufp, "BASE-%s", base[pi->port_type]);
5829
5830 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
5831 adap->params.vpd.id,
5832 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
5833 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
5834 (adap->flags & USING_MSIX) ? " MSI-X" :
5835 (adap->flags & USING_MSI) ? " MSI" : "");
5836 netdev_info(dev, "S/N: %s, E/C: %s\n",
5837 adap->params.vpd.sn, adap->params.vpd.ec);
5838 }
5839
5840 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
5841 {
5842 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
5843 }
5844
5845 /*
5846 * Free the following resources:
5847 * - memory used for tables
5848 * - MSI/MSI-X
5849 * - net devices
5850 * - resources FW is holding for us
5851 */
5852 static void free_some_resources(struct adapter *adapter)
5853 {
5854 unsigned int i;
5855
5856 t4_free_mem(adapter->l2t);
5857 t4_free_mem(adapter->tids.tid_tab);
5858 disable_msi(adapter);
5859
5860 for_each_port(adapter, i)
5861 if (adapter->port[i]) {
5862 kfree(adap2pinfo(adapter, i)->rss);
5863 free_netdev(adapter->port[i]);
5864 }
5865 if (adapter->flags & FW_OK)
5866 t4_fw_bye(adapter, adapter->fn);
5867 }
5868
5869 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5870 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5871 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5872 #define SEGMENT_SIZE 128
5873
5874 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5875 {
5876 int func, i, err, s_qpp, qpp, num_seg;
5877 struct port_info *pi;
5878 bool highdma = false;
5879 struct adapter *adapter = NULL;
5880
5881 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5882
5883 err = pci_request_regions(pdev, KBUILD_MODNAME);
5884 if (err) {
5885 /* Just info, some other driver may have claimed the device. */
5886 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5887 return err;
5888 }
5889
5890 /* We control everything through one PF */
5891 func = PCI_FUNC(pdev->devfn);
5892 if (func != ent->driver_data) {
5893 pci_save_state(pdev); /* to restore SR-IOV later */
5894 goto sriov;
5895 }
5896
5897 err = pci_enable_device(pdev);
5898 if (err) {
5899 dev_err(&pdev->dev, "cannot enable PCI device\n");
5900 goto out_release_regions;
5901 }
5902
5903 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5904 highdma = true;
5905 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5906 if (err) {
5907 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5908 "coherent allocations\n");
5909 goto out_disable_device;
5910 }
5911 } else {
5912 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5913 if (err) {
5914 dev_err(&pdev->dev, "no usable DMA configuration\n");
5915 goto out_disable_device;
5916 }
5917 }
5918
5919 pci_enable_pcie_error_reporting(pdev);
5920 enable_pcie_relaxed_ordering(pdev);
5921 pci_set_master(pdev);
5922 pci_save_state(pdev);
5923
5924 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5925 if (!adapter) {
5926 err = -ENOMEM;
5927 goto out_disable_device;
5928 }
5929
5930 /* PCI device has been enabled */
5931 adapter->flags |= DEV_ENABLED;
5932
5933 adapter->regs = pci_ioremap_bar(pdev, 0);
5934 if (!adapter->regs) {
5935 dev_err(&pdev->dev, "cannot map device registers\n");
5936 err = -ENOMEM;
5937 goto out_free_adapter;
5938 }
5939
5940 adapter->pdev = pdev;
5941 adapter->pdev_dev = &pdev->dev;
5942 adapter->mbox = func;
5943 adapter->fn = func;
5944 adapter->msg_enable = dflt_msg_enable;
5945 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5946
5947 spin_lock_init(&adapter->stats_lock);
5948 spin_lock_init(&adapter->tid_release_lock);
5949
5950 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5951 INIT_WORK(&adapter->db_full_task, process_db_full);
5952 INIT_WORK(&adapter->db_drop_task, process_db_drop);
5953
5954 err = t4_prep_adapter(adapter);
5955 if (err)
5956 goto out_unmap_bar0;
5957
5958 if (!is_t4(adapter->params.chip)) {
5959 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
5960 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
5961 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
5962 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5963
5964 /* Each segment size is 128B. Write coalescing is enabled only
5965 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5966 * queue is less no of segments that can be accommodated in
5967 * a page size.
5968 */
5969 if (qpp > num_seg) {
5970 dev_err(&pdev->dev,
5971 "Incorrect number of egress queues per page\n");
5972 err = -EINVAL;
5973 goto out_unmap_bar0;
5974 }
5975 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5976 pci_resource_len(pdev, 2));
5977 if (!adapter->bar2) {
5978 dev_err(&pdev->dev, "cannot map device bar2 region\n");
5979 err = -ENOMEM;
5980 goto out_unmap_bar0;
5981 }
5982 }
5983
5984 setup_memwin(adapter);
5985 err = adap_init0(adapter);
5986 setup_memwin_rdma(adapter);
5987 if (err)
5988 goto out_unmap_bar;
5989
5990 for_each_port(adapter, i) {
5991 struct net_device *netdev;
5992
5993 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5994 MAX_ETH_QSETS);
5995 if (!netdev) {
5996 err = -ENOMEM;
5997 goto out_free_dev;
5998 }
5999
6000 SET_NETDEV_DEV(netdev, &pdev->dev);
6001
6002 adapter->port[i] = netdev;
6003 pi = netdev_priv(netdev);
6004 pi->adapter = adapter;
6005 pi->xact_addr_filt = -1;
6006 pi->port_id = i;
6007 netdev->irq = pdev->irq;
6008
6009 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6010 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6011 NETIF_F_RXCSUM | NETIF_F_RXHASH |
6012 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6013 if (highdma)
6014 netdev->hw_features |= NETIF_F_HIGHDMA;
6015 netdev->features |= netdev->hw_features;
6016 netdev->vlan_features = netdev->features & VLAN_FEAT;
6017
6018 netdev->priv_flags |= IFF_UNICAST_FLT;
6019
6020 netdev->netdev_ops = &cxgb4_netdev_ops;
6021 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
6022 }
6023
6024 pci_set_drvdata(pdev, adapter);
6025
6026 if (adapter->flags & FW_OK) {
6027 err = t4_port_init(adapter, func, func, 0);
6028 if (err)
6029 goto out_free_dev;
6030 }
6031
6032 /*
6033 * Configure queues and allocate tables now, they can be needed as
6034 * soon as the first register_netdev completes.
6035 */
6036 cfg_queues(adapter);
6037
6038 adapter->l2t = t4_init_l2t();
6039 if (!adapter->l2t) {
6040 /* We tolerate a lack of L2T, giving up some functionality */
6041 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6042 adapter->params.offload = 0;
6043 }
6044
6045 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6046 dev_warn(&pdev->dev, "could not allocate TID table, "
6047 "continuing\n");
6048 adapter->params.offload = 0;
6049 }
6050
6051 /* See what interrupts we'll be using */
6052 if (msi > 1 && enable_msix(adapter) == 0)
6053 adapter->flags |= USING_MSIX;
6054 else if (msi > 0 && pci_enable_msi(pdev) == 0)
6055 adapter->flags |= USING_MSI;
6056
6057 err = init_rss(adapter);
6058 if (err)
6059 goto out_free_dev;
6060
6061 /*
6062 * The card is now ready to go. If any errors occur during device
6063 * registration we do not fail the whole card but rather proceed only
6064 * with the ports we manage to register successfully. However we must
6065 * register at least one net device.
6066 */
6067 for_each_port(adapter, i) {
6068 pi = adap2pinfo(adapter, i);
6069 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6070 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6071
6072 err = register_netdev(adapter->port[i]);
6073 if (err)
6074 break;
6075 adapter->chan_map[pi->tx_chan] = i;
6076 print_port_info(adapter->port[i]);
6077 }
6078 if (i == 0) {
6079 dev_err(&pdev->dev, "could not register any net devices\n");
6080 goto out_free_dev;
6081 }
6082 if (err) {
6083 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6084 err = 0;
6085 }
6086
6087 if (cxgb4_debugfs_root) {
6088 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6089 cxgb4_debugfs_root);
6090 setup_debugfs(adapter);
6091 }
6092
6093 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6094 pdev->needs_freset = 1;
6095
6096 if (is_offload(adapter))
6097 attach_ulds(adapter);
6098
6099 sriov:
6100 #ifdef CONFIG_PCI_IOV
6101 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6102 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6103 dev_info(&pdev->dev,
6104 "instantiated %u virtual functions\n",
6105 num_vf[func]);
6106 #endif
6107 return 0;
6108
6109 out_free_dev:
6110 free_some_resources(adapter);
6111 out_unmap_bar:
6112 if (!is_t4(adapter->params.chip))
6113 iounmap(adapter->bar2);
6114 out_unmap_bar0:
6115 iounmap(adapter->regs);
6116 out_free_adapter:
6117 kfree(adapter);
6118 out_disable_device:
6119 pci_disable_pcie_error_reporting(pdev);
6120 pci_disable_device(pdev);
6121 out_release_regions:
6122 pci_release_regions(pdev);
6123 return err;
6124 }
6125
6126 static void remove_one(struct pci_dev *pdev)
6127 {
6128 struct adapter *adapter = pci_get_drvdata(pdev);
6129
6130 #ifdef CONFIG_PCI_IOV
6131 pci_disable_sriov(pdev);
6132
6133 #endif
6134
6135 if (adapter) {
6136 int i;
6137
6138 if (is_offload(adapter))
6139 detach_ulds(adapter);
6140
6141 for_each_port(adapter, i)
6142 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6143 unregister_netdev(adapter->port[i]);
6144
6145 if (adapter->debugfs_root)
6146 debugfs_remove_recursive(adapter->debugfs_root);
6147
6148 /* If we allocated filters, free up state associated with any
6149 * valid filters ...
6150 */
6151 if (adapter->tids.ftid_tab) {
6152 struct filter_entry *f = &adapter->tids.ftid_tab[0];
6153 for (i = 0; i < (adapter->tids.nftids +
6154 adapter->tids.nsftids); i++, f++)
6155 if (f->valid)
6156 clear_filter(adapter, f);
6157 }
6158
6159 if (adapter->flags & FULL_INIT_DONE)
6160 cxgb_down(adapter);
6161
6162 free_some_resources(adapter);
6163 iounmap(adapter->regs);
6164 if (!is_t4(adapter->params.chip))
6165 iounmap(adapter->bar2);
6166 pci_disable_pcie_error_reporting(pdev);
6167 if ((adapter->flags & DEV_ENABLED)) {
6168 pci_disable_device(pdev);
6169 adapter->flags &= ~DEV_ENABLED;
6170 }
6171 pci_release_regions(pdev);
6172 kfree(adapter);
6173 } else
6174 pci_release_regions(pdev);
6175 }
6176
6177 static struct pci_driver cxgb4_driver = {
6178 .name = KBUILD_MODNAME,
6179 .id_table = cxgb4_pci_tbl,
6180 .probe = init_one,
6181 .remove = remove_one,
6182 .err_handler = &cxgb4_eeh,
6183 };
6184
6185 static int __init cxgb4_init_module(void)
6186 {
6187 int ret;
6188
6189 workq = create_singlethread_workqueue("cxgb4");
6190 if (!workq)
6191 return -ENOMEM;
6192
6193 /* Debugfs support is optional, just warn if this fails */
6194 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6195 if (!cxgb4_debugfs_root)
6196 pr_warn("could not create debugfs entry, continuing\n");
6197
6198 ret = pci_register_driver(&cxgb4_driver);
6199 if (ret < 0) {
6200 debugfs_remove(cxgb4_debugfs_root);
6201 destroy_workqueue(workq);
6202 }
6203
6204 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6205
6206 return ret;
6207 }
6208
6209 static void __exit cxgb4_cleanup_module(void)
6210 {
6211 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6212 pci_unregister_driver(&cxgb4_driver);
6213 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
6214 flush_workqueue(workq);
6215 destroy_workqueue(workq);
6216 }
6217
6218 module_init(cxgb4_init_module);
6219 module_exit(cxgb4_cleanup_module);
This page took 0.170365 seconds and 6 git commands to generate.