Merge remote-tracking branches 'spi/fix/atmel', 'spi/fix/bcm2835', 'spi/fix/doc'...
[deliverable/linux.git] / drivers / net / ethernet / davicom / dm9000.c
1 /*
2 * Davicom DM9000 Fast Ethernet driver for Linux.
3 * Copyright (C) 1997 Sten Wang
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16 *
17 * Additional updates, Copyright:
18 * Ben Dooks <ben@simtec.co.uk>
19 * Sascha Hauer <s.hauer@pengutronix.de>
20 */
21
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/interrupt.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/crc32.h>
30 #include <linux/mii.h>
31 #include <linux/of.h>
32 #include <linux/of_net.h>
33 #include <linux/ethtool.h>
34 #include <linux/dm9000.h>
35 #include <linux/delay.h>
36 #include <linux/platform_device.h>
37 #include <linux/irq.h>
38 #include <linux/slab.h>
39 #include <linux/regulator/consumer.h>
40 #include <linux/gpio.h>
41 #include <linux/of_gpio.h>
42
43 #include <asm/delay.h>
44 #include <asm/irq.h>
45 #include <asm/io.h>
46
47 #include "dm9000.h"
48
49 /* Board/System/Debug information/definition ---------------- */
50
51 #define DM9000_PHY 0x40 /* PHY address 0x01 */
52
53 #define CARDNAME "dm9000"
54 #define DRV_VERSION "1.31"
55
56 /*
57 * Transmit timeout, default 5 seconds.
58 */
59 static int watchdog = 5000;
60 module_param(watchdog, int, 0400);
61 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
62
63 /*
64 * Debug messages level
65 */
66 static int debug;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
69
70 /* DM9000 register address locking.
71 *
72 * The DM9000 uses an address register to control where data written
73 * to the data register goes. This means that the address register
74 * must be preserved over interrupts or similar calls.
75 *
76 * During interrupt and other critical calls, a spinlock is used to
77 * protect the system, but the calls themselves save the address
78 * in the address register in case they are interrupting another
79 * access to the device.
80 *
81 * For general accesses a lock is provided so that calls which are
82 * allowed to sleep are serialised so that the address register does
83 * not need to be saved. This lock also serves to serialise access
84 * to the EEPROM and PHY access registers which are shared between
85 * these two devices.
86 */
87
88 /* The driver supports the original DM9000E, and now the two newer
89 * devices, DM9000A and DM9000B.
90 */
91
92 enum dm9000_type {
93 TYPE_DM9000E, /* original DM9000 */
94 TYPE_DM9000A,
95 TYPE_DM9000B
96 };
97
98 /* Structure/enum declaration ------------------------------- */
99 struct board_info {
100
101 void __iomem *io_addr; /* Register I/O base address */
102 void __iomem *io_data; /* Data I/O address */
103 u16 irq; /* IRQ */
104
105 u16 tx_pkt_cnt;
106 u16 queue_pkt_len;
107 u16 queue_start_addr;
108 u16 queue_ip_summed;
109 u16 dbug_cnt;
110 u8 io_mode; /* 0:word, 2:byte */
111 u8 phy_addr;
112 u8 imr_all;
113
114 unsigned int flags;
115 unsigned int in_timeout:1;
116 unsigned int in_suspend:1;
117 unsigned int wake_supported:1;
118
119 enum dm9000_type type;
120
121 void (*inblk)(void __iomem *port, void *data, int length);
122 void (*outblk)(void __iomem *port, void *data, int length);
123 void (*dumpblk)(void __iomem *port, int length);
124
125 struct device *dev; /* parent device */
126
127 struct resource *addr_res; /* resources found */
128 struct resource *data_res;
129 struct resource *addr_req; /* resources requested */
130 struct resource *data_req;
131 struct resource *irq_res;
132
133 int irq_wake;
134
135 struct mutex addr_lock; /* phy and eeprom access lock */
136
137 struct delayed_work phy_poll;
138 struct net_device *ndev;
139
140 spinlock_t lock;
141
142 struct mii_if_info mii;
143 u32 msg_enable;
144 u32 wake_state;
145
146 int ip_summed;
147 };
148
149 /* debug code */
150
151 #define dm9000_dbg(db, lev, msg...) do { \
152 if ((lev) < debug) { \
153 dev_dbg(db->dev, msg); \
154 } \
155 } while (0)
156
157 static inline struct board_info *to_dm9000_board(struct net_device *dev)
158 {
159 return netdev_priv(dev);
160 }
161
162 /* DM9000 network board routine ---------------------------- */
163
164 /*
165 * Read a byte from I/O port
166 */
167 static u8
168 ior(struct board_info *db, int reg)
169 {
170 writeb(reg, db->io_addr);
171 return readb(db->io_data);
172 }
173
174 /*
175 * Write a byte to I/O port
176 */
177
178 static void
179 iow(struct board_info *db, int reg, int value)
180 {
181 writeb(reg, db->io_addr);
182 writeb(value, db->io_data);
183 }
184
185 static void
186 dm9000_reset(struct board_info *db)
187 {
188 dev_dbg(db->dev, "resetting device\n");
189
190 /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
191 * The essential point is that we have to do a double reset, and the
192 * instruction is to set LBK into MAC internal loopback mode.
193 */
194 iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
195 udelay(100); /* Application note says at least 20 us */
196 if (ior(db, DM9000_NCR) & 1)
197 dev_err(db->dev, "dm9000 did not respond to first reset\n");
198
199 iow(db, DM9000_NCR, 0);
200 iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
201 udelay(100);
202 if (ior(db, DM9000_NCR) & 1)
203 dev_err(db->dev, "dm9000 did not respond to second reset\n");
204 }
205
206 /* routines for sending block to chip */
207
208 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
209 {
210 iowrite8_rep(reg, data, count);
211 }
212
213 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
214 {
215 iowrite16_rep(reg, data, (count+1) >> 1);
216 }
217
218 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
219 {
220 iowrite32_rep(reg, data, (count+3) >> 2);
221 }
222
223 /* input block from chip to memory */
224
225 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
226 {
227 ioread8_rep(reg, data, count);
228 }
229
230
231 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
232 {
233 ioread16_rep(reg, data, (count+1) >> 1);
234 }
235
236 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
237 {
238 ioread32_rep(reg, data, (count+3) >> 2);
239 }
240
241 /* dump block from chip to null */
242
243 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
244 {
245 int i;
246 int tmp;
247
248 for (i = 0; i < count; i++)
249 tmp = readb(reg);
250 }
251
252 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
253 {
254 int i;
255 int tmp;
256
257 count = (count + 1) >> 1;
258
259 for (i = 0; i < count; i++)
260 tmp = readw(reg);
261 }
262
263 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
264 {
265 int i;
266 int tmp;
267
268 count = (count + 3) >> 2;
269
270 for (i = 0; i < count; i++)
271 tmp = readl(reg);
272 }
273
274 /*
275 * Sleep, either by using msleep() or if we are suspending, then
276 * use mdelay() to sleep.
277 */
278 static void dm9000_msleep(struct board_info *db, unsigned int ms)
279 {
280 if (db->in_suspend || db->in_timeout)
281 mdelay(ms);
282 else
283 msleep(ms);
284 }
285
286 /* Read a word from phyxcer */
287 static int
288 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
289 {
290 struct board_info *db = netdev_priv(dev);
291 unsigned long flags;
292 unsigned int reg_save;
293 int ret;
294
295 mutex_lock(&db->addr_lock);
296
297 spin_lock_irqsave(&db->lock, flags);
298
299 /* Save previous register address */
300 reg_save = readb(db->io_addr);
301
302 /* Fill the phyxcer register into REG_0C */
303 iow(db, DM9000_EPAR, DM9000_PHY | reg);
304
305 /* Issue phyxcer read command */
306 iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
307
308 writeb(reg_save, db->io_addr);
309 spin_unlock_irqrestore(&db->lock, flags);
310
311 dm9000_msleep(db, 1); /* Wait read complete */
312
313 spin_lock_irqsave(&db->lock, flags);
314 reg_save = readb(db->io_addr);
315
316 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
317
318 /* The read data keeps on REG_0D & REG_0E */
319 ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
320
321 /* restore the previous address */
322 writeb(reg_save, db->io_addr);
323 spin_unlock_irqrestore(&db->lock, flags);
324
325 mutex_unlock(&db->addr_lock);
326
327 dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
328 return ret;
329 }
330
331 /* Write a word to phyxcer */
332 static void
333 dm9000_phy_write(struct net_device *dev,
334 int phyaddr_unused, int reg, int value)
335 {
336 struct board_info *db = netdev_priv(dev);
337 unsigned long flags;
338 unsigned long reg_save;
339
340 dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
341 if (!db->in_timeout)
342 mutex_lock(&db->addr_lock);
343
344 spin_lock_irqsave(&db->lock, flags);
345
346 /* Save previous register address */
347 reg_save = readb(db->io_addr);
348
349 /* Fill the phyxcer register into REG_0C */
350 iow(db, DM9000_EPAR, DM9000_PHY | reg);
351
352 /* Fill the written data into REG_0D & REG_0E */
353 iow(db, DM9000_EPDRL, value);
354 iow(db, DM9000_EPDRH, value >> 8);
355
356 /* Issue phyxcer write command */
357 iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
358
359 writeb(reg_save, db->io_addr);
360 spin_unlock_irqrestore(&db->lock, flags);
361
362 dm9000_msleep(db, 1); /* Wait write complete */
363
364 spin_lock_irqsave(&db->lock, flags);
365 reg_save = readb(db->io_addr);
366
367 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
368
369 /* restore the previous address */
370 writeb(reg_save, db->io_addr);
371
372 spin_unlock_irqrestore(&db->lock, flags);
373 if (!db->in_timeout)
374 mutex_unlock(&db->addr_lock);
375 }
376
377 /* dm9000_set_io
378 *
379 * select the specified set of io routines to use with the
380 * device
381 */
382
383 static void dm9000_set_io(struct board_info *db, int byte_width)
384 {
385 /* use the size of the data resource to work out what IO
386 * routines we want to use
387 */
388
389 switch (byte_width) {
390 case 1:
391 db->dumpblk = dm9000_dumpblk_8bit;
392 db->outblk = dm9000_outblk_8bit;
393 db->inblk = dm9000_inblk_8bit;
394 break;
395
396
397 case 3:
398 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
399 case 2:
400 db->dumpblk = dm9000_dumpblk_16bit;
401 db->outblk = dm9000_outblk_16bit;
402 db->inblk = dm9000_inblk_16bit;
403 break;
404
405 case 4:
406 default:
407 db->dumpblk = dm9000_dumpblk_32bit;
408 db->outblk = dm9000_outblk_32bit;
409 db->inblk = dm9000_inblk_32bit;
410 break;
411 }
412 }
413
414 static void dm9000_schedule_poll(struct board_info *db)
415 {
416 if (db->type == TYPE_DM9000E)
417 schedule_delayed_work(&db->phy_poll, HZ * 2);
418 }
419
420 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
421 {
422 struct board_info *dm = to_dm9000_board(dev);
423
424 if (!netif_running(dev))
425 return -EINVAL;
426
427 return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
428 }
429
430 static unsigned int
431 dm9000_read_locked(struct board_info *db, int reg)
432 {
433 unsigned long flags;
434 unsigned int ret;
435
436 spin_lock_irqsave(&db->lock, flags);
437 ret = ior(db, reg);
438 spin_unlock_irqrestore(&db->lock, flags);
439
440 return ret;
441 }
442
443 static int dm9000_wait_eeprom(struct board_info *db)
444 {
445 unsigned int status;
446 int timeout = 8; /* wait max 8msec */
447
448 /* The DM9000 data sheets say we should be able to
449 * poll the ERRE bit in EPCR to wait for the EEPROM
450 * operation. From testing several chips, this bit
451 * does not seem to work.
452 *
453 * We attempt to use the bit, but fall back to the
454 * timeout (which is why we do not return an error
455 * on expiry) to say that the EEPROM operation has
456 * completed.
457 */
458
459 while (1) {
460 status = dm9000_read_locked(db, DM9000_EPCR);
461
462 if ((status & EPCR_ERRE) == 0)
463 break;
464
465 msleep(1);
466
467 if (timeout-- < 0) {
468 dev_dbg(db->dev, "timeout waiting EEPROM\n");
469 break;
470 }
471 }
472
473 return 0;
474 }
475
476 /*
477 * Read a word data from EEPROM
478 */
479 static void
480 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
481 {
482 unsigned long flags;
483
484 if (db->flags & DM9000_PLATF_NO_EEPROM) {
485 to[0] = 0xff;
486 to[1] = 0xff;
487 return;
488 }
489
490 mutex_lock(&db->addr_lock);
491
492 spin_lock_irqsave(&db->lock, flags);
493
494 iow(db, DM9000_EPAR, offset);
495 iow(db, DM9000_EPCR, EPCR_ERPRR);
496
497 spin_unlock_irqrestore(&db->lock, flags);
498
499 dm9000_wait_eeprom(db);
500
501 /* delay for at-least 150uS */
502 msleep(1);
503
504 spin_lock_irqsave(&db->lock, flags);
505
506 iow(db, DM9000_EPCR, 0x0);
507
508 to[0] = ior(db, DM9000_EPDRL);
509 to[1] = ior(db, DM9000_EPDRH);
510
511 spin_unlock_irqrestore(&db->lock, flags);
512
513 mutex_unlock(&db->addr_lock);
514 }
515
516 /*
517 * Write a word data to SROM
518 */
519 static void
520 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
521 {
522 unsigned long flags;
523
524 if (db->flags & DM9000_PLATF_NO_EEPROM)
525 return;
526
527 mutex_lock(&db->addr_lock);
528
529 spin_lock_irqsave(&db->lock, flags);
530 iow(db, DM9000_EPAR, offset);
531 iow(db, DM9000_EPDRH, data[1]);
532 iow(db, DM9000_EPDRL, data[0]);
533 iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
534 spin_unlock_irqrestore(&db->lock, flags);
535
536 dm9000_wait_eeprom(db);
537
538 mdelay(1); /* wait at least 150uS to clear */
539
540 spin_lock_irqsave(&db->lock, flags);
541 iow(db, DM9000_EPCR, 0);
542 spin_unlock_irqrestore(&db->lock, flags);
543
544 mutex_unlock(&db->addr_lock);
545 }
546
547 /* ethtool ops */
548
549 static void dm9000_get_drvinfo(struct net_device *dev,
550 struct ethtool_drvinfo *info)
551 {
552 struct board_info *dm = to_dm9000_board(dev);
553
554 strlcpy(info->driver, CARDNAME, sizeof(info->driver));
555 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
556 strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
557 sizeof(info->bus_info));
558 }
559
560 static u32 dm9000_get_msglevel(struct net_device *dev)
561 {
562 struct board_info *dm = to_dm9000_board(dev);
563
564 return dm->msg_enable;
565 }
566
567 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
568 {
569 struct board_info *dm = to_dm9000_board(dev);
570
571 dm->msg_enable = value;
572 }
573
574 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
575 {
576 struct board_info *dm = to_dm9000_board(dev);
577
578 mii_ethtool_gset(&dm->mii, cmd);
579 return 0;
580 }
581
582 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
583 {
584 struct board_info *dm = to_dm9000_board(dev);
585
586 return mii_ethtool_sset(&dm->mii, cmd);
587 }
588
589 static int dm9000_nway_reset(struct net_device *dev)
590 {
591 struct board_info *dm = to_dm9000_board(dev);
592 return mii_nway_restart(&dm->mii);
593 }
594
595 static int dm9000_set_features(struct net_device *dev,
596 netdev_features_t features)
597 {
598 struct board_info *dm = to_dm9000_board(dev);
599 netdev_features_t changed = dev->features ^ features;
600 unsigned long flags;
601
602 if (!(changed & NETIF_F_RXCSUM))
603 return 0;
604
605 spin_lock_irqsave(&dm->lock, flags);
606 iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
607 spin_unlock_irqrestore(&dm->lock, flags);
608
609 return 0;
610 }
611
612 static u32 dm9000_get_link(struct net_device *dev)
613 {
614 struct board_info *dm = to_dm9000_board(dev);
615 u32 ret;
616
617 if (dm->flags & DM9000_PLATF_EXT_PHY)
618 ret = mii_link_ok(&dm->mii);
619 else
620 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
621
622 return ret;
623 }
624
625 #define DM_EEPROM_MAGIC (0x444D394B)
626
627 static int dm9000_get_eeprom_len(struct net_device *dev)
628 {
629 return 128;
630 }
631
632 static int dm9000_get_eeprom(struct net_device *dev,
633 struct ethtool_eeprom *ee, u8 *data)
634 {
635 struct board_info *dm = to_dm9000_board(dev);
636 int offset = ee->offset;
637 int len = ee->len;
638 int i;
639
640 /* EEPROM access is aligned to two bytes */
641
642 if ((len & 1) != 0 || (offset & 1) != 0)
643 return -EINVAL;
644
645 if (dm->flags & DM9000_PLATF_NO_EEPROM)
646 return -ENOENT;
647
648 ee->magic = DM_EEPROM_MAGIC;
649
650 for (i = 0; i < len; i += 2)
651 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
652
653 return 0;
654 }
655
656 static int dm9000_set_eeprom(struct net_device *dev,
657 struct ethtool_eeprom *ee, u8 *data)
658 {
659 struct board_info *dm = to_dm9000_board(dev);
660 int offset = ee->offset;
661 int len = ee->len;
662 int done;
663
664 /* EEPROM access is aligned to two bytes */
665
666 if (dm->flags & DM9000_PLATF_NO_EEPROM)
667 return -ENOENT;
668
669 if (ee->magic != DM_EEPROM_MAGIC)
670 return -EINVAL;
671
672 while (len > 0) {
673 if (len & 1 || offset & 1) {
674 int which = offset & 1;
675 u8 tmp[2];
676
677 dm9000_read_eeprom(dm, offset / 2, tmp);
678 tmp[which] = *data;
679 dm9000_write_eeprom(dm, offset / 2, tmp);
680
681 done = 1;
682 } else {
683 dm9000_write_eeprom(dm, offset / 2, data);
684 done = 2;
685 }
686
687 data += done;
688 offset += done;
689 len -= done;
690 }
691
692 return 0;
693 }
694
695 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
696 {
697 struct board_info *dm = to_dm9000_board(dev);
698
699 memset(w, 0, sizeof(struct ethtool_wolinfo));
700
701 /* note, we could probably support wake-phy too */
702 w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
703 w->wolopts = dm->wake_state;
704 }
705
706 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
707 {
708 struct board_info *dm = to_dm9000_board(dev);
709 unsigned long flags;
710 u32 opts = w->wolopts;
711 u32 wcr = 0;
712
713 if (!dm->wake_supported)
714 return -EOPNOTSUPP;
715
716 if (opts & ~WAKE_MAGIC)
717 return -EINVAL;
718
719 if (opts & WAKE_MAGIC)
720 wcr |= WCR_MAGICEN;
721
722 mutex_lock(&dm->addr_lock);
723
724 spin_lock_irqsave(&dm->lock, flags);
725 iow(dm, DM9000_WCR, wcr);
726 spin_unlock_irqrestore(&dm->lock, flags);
727
728 mutex_unlock(&dm->addr_lock);
729
730 if (dm->wake_state != opts) {
731 /* change in wol state, update IRQ state */
732
733 if (!dm->wake_state)
734 irq_set_irq_wake(dm->irq_wake, 1);
735 else if (dm->wake_state && !opts)
736 irq_set_irq_wake(dm->irq_wake, 0);
737 }
738
739 dm->wake_state = opts;
740 return 0;
741 }
742
743 static const struct ethtool_ops dm9000_ethtool_ops = {
744 .get_drvinfo = dm9000_get_drvinfo,
745 .get_settings = dm9000_get_settings,
746 .set_settings = dm9000_set_settings,
747 .get_msglevel = dm9000_get_msglevel,
748 .set_msglevel = dm9000_set_msglevel,
749 .nway_reset = dm9000_nway_reset,
750 .get_link = dm9000_get_link,
751 .get_wol = dm9000_get_wol,
752 .set_wol = dm9000_set_wol,
753 .get_eeprom_len = dm9000_get_eeprom_len,
754 .get_eeprom = dm9000_get_eeprom,
755 .set_eeprom = dm9000_set_eeprom,
756 };
757
758 static void dm9000_show_carrier(struct board_info *db,
759 unsigned carrier, unsigned nsr)
760 {
761 int lpa;
762 struct net_device *ndev = db->ndev;
763 struct mii_if_info *mii = &db->mii;
764 unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
765
766 if (carrier) {
767 lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
768 dev_info(db->dev,
769 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
770 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
771 (ncr & NCR_FDX) ? "full" : "half", lpa);
772 } else {
773 dev_info(db->dev, "%s: link down\n", ndev->name);
774 }
775 }
776
777 static void
778 dm9000_poll_work(struct work_struct *w)
779 {
780 struct delayed_work *dw = to_delayed_work(w);
781 struct board_info *db = container_of(dw, struct board_info, phy_poll);
782 struct net_device *ndev = db->ndev;
783
784 if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
785 !(db->flags & DM9000_PLATF_EXT_PHY)) {
786 unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
787 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
788 unsigned new_carrier;
789
790 new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
791
792 if (old_carrier != new_carrier) {
793 if (netif_msg_link(db))
794 dm9000_show_carrier(db, new_carrier, nsr);
795
796 if (!new_carrier)
797 netif_carrier_off(ndev);
798 else
799 netif_carrier_on(ndev);
800 }
801 } else
802 mii_check_media(&db->mii, netif_msg_link(db), 0);
803
804 if (netif_running(ndev))
805 dm9000_schedule_poll(db);
806 }
807
808 /* dm9000_release_board
809 *
810 * release a board, and any mapped resources
811 */
812
813 static void
814 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
815 {
816 /* unmap our resources */
817
818 iounmap(db->io_addr);
819 iounmap(db->io_data);
820
821 /* release the resources */
822
823 if (db->data_req)
824 release_resource(db->data_req);
825 kfree(db->data_req);
826
827 if (db->addr_req)
828 release_resource(db->addr_req);
829 kfree(db->addr_req);
830 }
831
832 static unsigned char dm9000_type_to_char(enum dm9000_type type)
833 {
834 switch (type) {
835 case TYPE_DM9000E: return 'e';
836 case TYPE_DM9000A: return 'a';
837 case TYPE_DM9000B: return 'b';
838 }
839
840 return '?';
841 }
842
843 /*
844 * Set DM9000 multicast address
845 */
846 static void
847 dm9000_hash_table_unlocked(struct net_device *dev)
848 {
849 struct board_info *db = netdev_priv(dev);
850 struct netdev_hw_addr *ha;
851 int i, oft;
852 u32 hash_val;
853 u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
854 u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
855
856 dm9000_dbg(db, 1, "entering %s\n", __func__);
857
858 for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
859 iow(db, oft, dev->dev_addr[i]);
860
861 if (dev->flags & IFF_PROMISC)
862 rcr |= RCR_PRMSC;
863
864 if (dev->flags & IFF_ALLMULTI)
865 rcr |= RCR_ALL;
866
867 /* the multicast address in Hash Table : 64 bits */
868 netdev_for_each_mc_addr(ha, dev) {
869 hash_val = ether_crc_le(6, ha->addr) & 0x3f;
870 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
871 }
872
873 /* Write the hash table to MAC MD table */
874 for (i = 0, oft = DM9000_MAR; i < 4; i++) {
875 iow(db, oft++, hash_table[i]);
876 iow(db, oft++, hash_table[i] >> 8);
877 }
878
879 iow(db, DM9000_RCR, rcr);
880 }
881
882 static void
883 dm9000_hash_table(struct net_device *dev)
884 {
885 struct board_info *db = netdev_priv(dev);
886 unsigned long flags;
887
888 spin_lock_irqsave(&db->lock, flags);
889 dm9000_hash_table_unlocked(dev);
890 spin_unlock_irqrestore(&db->lock, flags);
891 }
892
893 static void
894 dm9000_mask_interrupts(struct board_info *db)
895 {
896 iow(db, DM9000_IMR, IMR_PAR);
897 }
898
899 static void
900 dm9000_unmask_interrupts(struct board_info *db)
901 {
902 iow(db, DM9000_IMR, db->imr_all);
903 }
904
905 /*
906 * Initialize dm9000 board
907 */
908 static void
909 dm9000_init_dm9000(struct net_device *dev)
910 {
911 struct board_info *db = netdev_priv(dev);
912 unsigned int imr;
913 unsigned int ncr;
914
915 dm9000_dbg(db, 1, "entering %s\n", __func__);
916
917 dm9000_reset(db);
918 dm9000_mask_interrupts(db);
919
920 /* I/O mode */
921 db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
922
923 /* Checksum mode */
924 if (dev->hw_features & NETIF_F_RXCSUM)
925 iow(db, DM9000_RCSR,
926 (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
927
928 iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
929 iow(db, DM9000_GPR, 0);
930
931 /* If we are dealing with DM9000B, some extra steps are required: a
932 * manual phy reset, and setting init params.
933 */
934 if (db->type == TYPE_DM9000B) {
935 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
936 dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
937 }
938
939 ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
940
941 /* if wol is needed, then always set NCR_WAKEEN otherwise we end
942 * up dumping the wake events if we disable this. There is already
943 * a wake-mask in DM9000_WCR */
944 if (db->wake_supported)
945 ncr |= NCR_WAKEEN;
946
947 iow(db, DM9000_NCR, ncr);
948
949 /* Program operating register */
950 iow(db, DM9000_TCR, 0); /* TX Polling clear */
951 iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
952 iow(db, DM9000_FCR, 0xff); /* Flow Control */
953 iow(db, DM9000_SMCR, 0); /* Special Mode */
954 /* clear TX status */
955 iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
956 iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
957
958 /* Set address filter table */
959 dm9000_hash_table_unlocked(dev);
960
961 imr = IMR_PAR | IMR_PTM | IMR_PRM;
962 if (db->type != TYPE_DM9000E)
963 imr |= IMR_LNKCHNG;
964
965 db->imr_all = imr;
966
967 /* Init Driver variable */
968 db->tx_pkt_cnt = 0;
969 db->queue_pkt_len = 0;
970 dev->trans_start = jiffies;
971 }
972
973 /* Our watchdog timed out. Called by the networking layer */
974 static void dm9000_timeout(struct net_device *dev)
975 {
976 struct board_info *db = netdev_priv(dev);
977 u8 reg_save;
978 unsigned long flags;
979
980 /* Save previous register address */
981 spin_lock_irqsave(&db->lock, flags);
982 db->in_timeout = 1;
983 reg_save = readb(db->io_addr);
984
985 netif_stop_queue(dev);
986 dm9000_init_dm9000(dev);
987 dm9000_unmask_interrupts(db);
988 /* We can accept TX packets again */
989 dev->trans_start = jiffies; /* prevent tx timeout */
990 netif_wake_queue(dev);
991
992 /* Restore previous register address */
993 writeb(reg_save, db->io_addr);
994 db->in_timeout = 0;
995 spin_unlock_irqrestore(&db->lock, flags);
996 }
997
998 static void dm9000_send_packet(struct net_device *dev,
999 int ip_summed,
1000 u16 pkt_len)
1001 {
1002 struct board_info *dm = to_dm9000_board(dev);
1003
1004 /* The DM9000 is not smart enough to leave fragmented packets alone. */
1005 if (dm->ip_summed != ip_summed) {
1006 if (ip_summed == CHECKSUM_NONE)
1007 iow(dm, DM9000_TCCR, 0);
1008 else
1009 iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1010 dm->ip_summed = ip_summed;
1011 }
1012
1013 /* Set TX length to DM9000 */
1014 iow(dm, DM9000_TXPLL, pkt_len);
1015 iow(dm, DM9000_TXPLH, pkt_len >> 8);
1016
1017 /* Issue TX polling command */
1018 iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
1019 }
1020
1021 /*
1022 * Hardware start transmission.
1023 * Send a packet to media from the upper layer.
1024 */
1025 static int
1026 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1027 {
1028 unsigned long flags;
1029 struct board_info *db = netdev_priv(dev);
1030
1031 dm9000_dbg(db, 3, "%s:\n", __func__);
1032
1033 if (db->tx_pkt_cnt > 1)
1034 return NETDEV_TX_BUSY;
1035
1036 spin_lock_irqsave(&db->lock, flags);
1037
1038 /* Move data to DM9000 TX RAM */
1039 writeb(DM9000_MWCMD, db->io_addr);
1040
1041 (db->outblk)(db->io_data, skb->data, skb->len);
1042 dev->stats.tx_bytes += skb->len;
1043
1044 db->tx_pkt_cnt++;
1045 /* TX control: First packet immediately send, second packet queue */
1046 if (db->tx_pkt_cnt == 1) {
1047 dm9000_send_packet(dev, skb->ip_summed, skb->len);
1048 } else {
1049 /* Second packet */
1050 db->queue_pkt_len = skb->len;
1051 db->queue_ip_summed = skb->ip_summed;
1052 netif_stop_queue(dev);
1053 }
1054
1055 spin_unlock_irqrestore(&db->lock, flags);
1056
1057 /* free this SKB */
1058 dev_consume_skb_any(skb);
1059
1060 return NETDEV_TX_OK;
1061 }
1062
1063 /*
1064 * DM9000 interrupt handler
1065 * receive the packet to upper layer, free the transmitted packet
1066 */
1067
1068 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1069 {
1070 int tx_status = ior(db, DM9000_NSR); /* Got TX status */
1071
1072 if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1073 /* One packet sent complete */
1074 db->tx_pkt_cnt--;
1075 dev->stats.tx_packets++;
1076
1077 if (netif_msg_tx_done(db))
1078 dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1079
1080 /* Queue packet check & send */
1081 if (db->tx_pkt_cnt > 0)
1082 dm9000_send_packet(dev, db->queue_ip_summed,
1083 db->queue_pkt_len);
1084 netif_wake_queue(dev);
1085 }
1086 }
1087
1088 struct dm9000_rxhdr {
1089 u8 RxPktReady;
1090 u8 RxStatus;
1091 __le16 RxLen;
1092 } __packed;
1093
1094 /*
1095 * Received a packet and pass to upper layer
1096 */
1097 static void
1098 dm9000_rx(struct net_device *dev)
1099 {
1100 struct board_info *db = netdev_priv(dev);
1101 struct dm9000_rxhdr rxhdr;
1102 struct sk_buff *skb;
1103 u8 rxbyte, *rdptr;
1104 bool GoodPacket;
1105 int RxLen;
1106
1107 /* Check packet ready or not */
1108 do {
1109 ior(db, DM9000_MRCMDX); /* Dummy read */
1110
1111 /* Get most updated data */
1112 rxbyte = readb(db->io_data);
1113
1114 /* Status check: this byte must be 0 or 1 */
1115 if (rxbyte & DM9000_PKT_ERR) {
1116 dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1117 iow(db, DM9000_RCR, 0x00); /* Stop Device */
1118 return;
1119 }
1120
1121 if (!(rxbyte & DM9000_PKT_RDY))
1122 return;
1123
1124 /* A packet ready now & Get status/length */
1125 GoodPacket = true;
1126 writeb(DM9000_MRCMD, db->io_addr);
1127
1128 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1129
1130 RxLen = le16_to_cpu(rxhdr.RxLen);
1131
1132 if (netif_msg_rx_status(db))
1133 dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1134 rxhdr.RxStatus, RxLen);
1135
1136 /* Packet Status check */
1137 if (RxLen < 0x40) {
1138 GoodPacket = false;
1139 if (netif_msg_rx_err(db))
1140 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1141 }
1142
1143 if (RxLen > DM9000_PKT_MAX) {
1144 dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1145 }
1146
1147 /* rxhdr.RxStatus is identical to RSR register. */
1148 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1149 RSR_PLE | RSR_RWTO |
1150 RSR_LCS | RSR_RF)) {
1151 GoodPacket = false;
1152 if (rxhdr.RxStatus & RSR_FOE) {
1153 if (netif_msg_rx_err(db))
1154 dev_dbg(db->dev, "fifo error\n");
1155 dev->stats.rx_fifo_errors++;
1156 }
1157 if (rxhdr.RxStatus & RSR_CE) {
1158 if (netif_msg_rx_err(db))
1159 dev_dbg(db->dev, "crc error\n");
1160 dev->stats.rx_crc_errors++;
1161 }
1162 if (rxhdr.RxStatus & RSR_RF) {
1163 if (netif_msg_rx_err(db))
1164 dev_dbg(db->dev, "length error\n");
1165 dev->stats.rx_length_errors++;
1166 }
1167 }
1168
1169 /* Move data from DM9000 */
1170 if (GoodPacket &&
1171 ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1172 skb_reserve(skb, 2);
1173 rdptr = (u8 *) skb_put(skb, RxLen - 4);
1174
1175 /* Read received packet from RX SRAM */
1176
1177 (db->inblk)(db->io_data, rdptr, RxLen);
1178 dev->stats.rx_bytes += RxLen;
1179
1180 /* Pass to upper layer */
1181 skb->protocol = eth_type_trans(skb, dev);
1182 if (dev->features & NETIF_F_RXCSUM) {
1183 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1184 skb->ip_summed = CHECKSUM_UNNECESSARY;
1185 else
1186 skb_checksum_none_assert(skb);
1187 }
1188 netif_rx(skb);
1189 dev->stats.rx_packets++;
1190
1191 } else {
1192 /* need to dump the packet's data */
1193
1194 (db->dumpblk)(db->io_data, RxLen);
1195 }
1196 } while (rxbyte & DM9000_PKT_RDY);
1197 }
1198
1199 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1200 {
1201 struct net_device *dev = dev_id;
1202 struct board_info *db = netdev_priv(dev);
1203 int int_status;
1204 unsigned long flags;
1205 u8 reg_save;
1206
1207 dm9000_dbg(db, 3, "entering %s\n", __func__);
1208
1209 /* A real interrupt coming */
1210
1211 /* holders of db->lock must always block IRQs */
1212 spin_lock_irqsave(&db->lock, flags);
1213
1214 /* Save previous register address */
1215 reg_save = readb(db->io_addr);
1216
1217 dm9000_mask_interrupts(db);
1218 /* Got DM9000 interrupt status */
1219 int_status = ior(db, DM9000_ISR); /* Got ISR */
1220 iow(db, DM9000_ISR, int_status); /* Clear ISR status */
1221
1222 if (netif_msg_intr(db))
1223 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1224
1225 /* Received the coming packet */
1226 if (int_status & ISR_PRS)
1227 dm9000_rx(dev);
1228
1229 /* Transmit Interrupt check */
1230 if (int_status & ISR_PTS)
1231 dm9000_tx_done(dev, db);
1232
1233 if (db->type != TYPE_DM9000E) {
1234 if (int_status & ISR_LNKCHNG) {
1235 /* fire a link-change request */
1236 schedule_delayed_work(&db->phy_poll, 1);
1237 }
1238 }
1239
1240 dm9000_unmask_interrupts(db);
1241 /* Restore previous register address */
1242 writeb(reg_save, db->io_addr);
1243
1244 spin_unlock_irqrestore(&db->lock, flags);
1245
1246 return IRQ_HANDLED;
1247 }
1248
1249 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1250 {
1251 struct net_device *dev = dev_id;
1252 struct board_info *db = netdev_priv(dev);
1253 unsigned long flags;
1254 unsigned nsr, wcr;
1255
1256 spin_lock_irqsave(&db->lock, flags);
1257
1258 nsr = ior(db, DM9000_NSR);
1259 wcr = ior(db, DM9000_WCR);
1260
1261 dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1262
1263 if (nsr & NSR_WAKEST) {
1264 /* clear, so we can avoid */
1265 iow(db, DM9000_NSR, NSR_WAKEST);
1266
1267 if (wcr & WCR_LINKST)
1268 dev_info(db->dev, "wake by link status change\n");
1269 if (wcr & WCR_SAMPLEST)
1270 dev_info(db->dev, "wake by sample packet\n");
1271 if (wcr & WCR_MAGICST)
1272 dev_info(db->dev, "wake by magic packet\n");
1273 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1274 dev_err(db->dev, "wake signalled with no reason? "
1275 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1276 }
1277
1278 spin_unlock_irqrestore(&db->lock, flags);
1279
1280 return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1281 }
1282
1283 #ifdef CONFIG_NET_POLL_CONTROLLER
1284 /*
1285 *Used by netconsole
1286 */
1287 static void dm9000_poll_controller(struct net_device *dev)
1288 {
1289 disable_irq(dev->irq);
1290 dm9000_interrupt(dev->irq, dev);
1291 enable_irq(dev->irq);
1292 }
1293 #endif
1294
1295 /*
1296 * Open the interface.
1297 * The interface is opened whenever "ifconfig" actives it.
1298 */
1299 static int
1300 dm9000_open(struct net_device *dev)
1301 {
1302 struct board_info *db = netdev_priv(dev);
1303 unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1304
1305 if (netif_msg_ifup(db))
1306 dev_dbg(db->dev, "enabling %s\n", dev->name);
1307
1308 /* If there is no IRQ type specified, default to something that
1309 * may work, and tell the user that this is a problem */
1310
1311 if (irqflags == IRQF_TRIGGER_NONE)
1312 irqflags = irq_get_trigger_type(dev->irq);
1313
1314 if (irqflags == IRQF_TRIGGER_NONE)
1315 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1316
1317 irqflags |= IRQF_SHARED;
1318
1319 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1320 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1321 mdelay(1); /* delay needs by DM9000B */
1322
1323 /* Initialize DM9000 board */
1324 dm9000_init_dm9000(dev);
1325
1326 if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1327 return -EAGAIN;
1328 /* Now that we have an interrupt handler hooked up we can unmask
1329 * our interrupts
1330 */
1331 dm9000_unmask_interrupts(db);
1332
1333 /* Init driver variable */
1334 db->dbug_cnt = 0;
1335
1336 mii_check_media(&db->mii, netif_msg_link(db), 1);
1337 netif_start_queue(dev);
1338
1339 /* Poll initial link status */
1340 schedule_delayed_work(&db->phy_poll, 1);
1341
1342 return 0;
1343 }
1344
1345 static void
1346 dm9000_shutdown(struct net_device *dev)
1347 {
1348 struct board_info *db = netdev_priv(dev);
1349
1350 /* RESET device */
1351 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1352 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
1353 dm9000_mask_interrupts(db);
1354 iow(db, DM9000_RCR, 0x00); /* Disable RX */
1355 }
1356
1357 /*
1358 * Stop the interface.
1359 * The interface is stopped when it is brought.
1360 */
1361 static int
1362 dm9000_stop(struct net_device *ndev)
1363 {
1364 struct board_info *db = netdev_priv(ndev);
1365
1366 if (netif_msg_ifdown(db))
1367 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1368
1369 cancel_delayed_work_sync(&db->phy_poll);
1370
1371 netif_stop_queue(ndev);
1372 netif_carrier_off(ndev);
1373
1374 /* free interrupt */
1375 free_irq(ndev->irq, ndev);
1376
1377 dm9000_shutdown(ndev);
1378
1379 return 0;
1380 }
1381
1382 static const struct net_device_ops dm9000_netdev_ops = {
1383 .ndo_open = dm9000_open,
1384 .ndo_stop = dm9000_stop,
1385 .ndo_start_xmit = dm9000_start_xmit,
1386 .ndo_tx_timeout = dm9000_timeout,
1387 .ndo_set_rx_mode = dm9000_hash_table,
1388 .ndo_do_ioctl = dm9000_ioctl,
1389 .ndo_change_mtu = eth_change_mtu,
1390 .ndo_set_features = dm9000_set_features,
1391 .ndo_validate_addr = eth_validate_addr,
1392 .ndo_set_mac_address = eth_mac_addr,
1393 #ifdef CONFIG_NET_POLL_CONTROLLER
1394 .ndo_poll_controller = dm9000_poll_controller,
1395 #endif
1396 };
1397
1398 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1399 {
1400 struct dm9000_plat_data *pdata;
1401 struct device_node *np = dev->of_node;
1402 const void *mac_addr;
1403
1404 if (!IS_ENABLED(CONFIG_OF) || !np)
1405 return ERR_PTR(-ENXIO);
1406
1407 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1408 if (!pdata)
1409 return ERR_PTR(-ENOMEM);
1410
1411 if (of_find_property(np, "davicom,ext-phy", NULL))
1412 pdata->flags |= DM9000_PLATF_EXT_PHY;
1413 if (of_find_property(np, "davicom,no-eeprom", NULL))
1414 pdata->flags |= DM9000_PLATF_NO_EEPROM;
1415
1416 mac_addr = of_get_mac_address(np);
1417 if (mac_addr)
1418 memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1419
1420 return pdata;
1421 }
1422
1423 /*
1424 * Search DM9000 board, allocate space and register it
1425 */
1426 static int
1427 dm9000_probe(struct platform_device *pdev)
1428 {
1429 struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1430 struct board_info *db; /* Point a board information structure */
1431 struct net_device *ndev;
1432 struct device *dev = &pdev->dev;
1433 const unsigned char *mac_src;
1434 int ret = 0;
1435 int iosize;
1436 int i;
1437 u32 id_val;
1438 int reset_gpios;
1439 enum of_gpio_flags flags;
1440 struct regulator *power;
1441
1442 power = devm_regulator_get(dev, "vcc");
1443 if (IS_ERR(power)) {
1444 if (PTR_ERR(power) == -EPROBE_DEFER)
1445 return -EPROBE_DEFER;
1446 dev_dbg(dev, "no regulator provided\n");
1447 } else {
1448 ret = regulator_enable(power);
1449 if (ret != 0) {
1450 dev_err(dev,
1451 "Failed to enable power regulator: %d\n", ret);
1452 return ret;
1453 }
1454 dev_dbg(dev, "regulator enabled\n");
1455 }
1456
1457 reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1458 &flags);
1459 if (gpio_is_valid(reset_gpios)) {
1460 ret = devm_gpio_request_one(dev, reset_gpios, flags,
1461 "dm9000_reset");
1462 if (ret) {
1463 dev_err(dev, "failed to request reset gpio %d: %d\n",
1464 reset_gpios, ret);
1465 return -ENODEV;
1466 }
1467
1468 /* According to manual PWRST# Low Period Min 1ms */
1469 msleep(2);
1470 gpio_set_value(reset_gpios, 1);
1471 /* Needs 3ms to read eeprom when PWRST is deasserted */
1472 msleep(4);
1473 }
1474
1475 if (!pdata) {
1476 pdata = dm9000_parse_dt(&pdev->dev);
1477 if (IS_ERR(pdata))
1478 return PTR_ERR(pdata);
1479 }
1480
1481 /* Init network device */
1482 ndev = alloc_etherdev(sizeof(struct board_info));
1483 if (!ndev)
1484 return -ENOMEM;
1485
1486 SET_NETDEV_DEV(ndev, &pdev->dev);
1487
1488 dev_dbg(&pdev->dev, "dm9000_probe()\n");
1489
1490 /* setup board info structure */
1491 db = netdev_priv(ndev);
1492
1493 db->dev = &pdev->dev;
1494 db->ndev = ndev;
1495
1496 spin_lock_init(&db->lock);
1497 mutex_init(&db->addr_lock);
1498
1499 INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1500
1501 db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1502 db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1503 db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1504
1505 if (db->addr_res == NULL || db->data_res == NULL ||
1506 db->irq_res == NULL) {
1507 dev_err(db->dev, "insufficient resources\n");
1508 ret = -ENOENT;
1509 goto out;
1510 }
1511
1512 db->irq_wake = platform_get_irq(pdev, 1);
1513 if (db->irq_wake >= 0) {
1514 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1515
1516 ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1517 IRQF_SHARED, dev_name(db->dev), ndev);
1518 if (ret) {
1519 dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1520 } else {
1521
1522 /* test to see if irq is really wakeup capable */
1523 ret = irq_set_irq_wake(db->irq_wake, 1);
1524 if (ret) {
1525 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1526 db->irq_wake, ret);
1527 ret = 0;
1528 } else {
1529 irq_set_irq_wake(db->irq_wake, 0);
1530 db->wake_supported = 1;
1531 }
1532 }
1533 }
1534
1535 iosize = resource_size(db->addr_res);
1536 db->addr_req = request_mem_region(db->addr_res->start, iosize,
1537 pdev->name);
1538
1539 if (db->addr_req == NULL) {
1540 dev_err(db->dev, "cannot claim address reg area\n");
1541 ret = -EIO;
1542 goto out;
1543 }
1544
1545 db->io_addr = ioremap(db->addr_res->start, iosize);
1546
1547 if (db->io_addr == NULL) {
1548 dev_err(db->dev, "failed to ioremap address reg\n");
1549 ret = -EINVAL;
1550 goto out;
1551 }
1552
1553 iosize = resource_size(db->data_res);
1554 db->data_req = request_mem_region(db->data_res->start, iosize,
1555 pdev->name);
1556
1557 if (db->data_req == NULL) {
1558 dev_err(db->dev, "cannot claim data reg area\n");
1559 ret = -EIO;
1560 goto out;
1561 }
1562
1563 db->io_data = ioremap(db->data_res->start, iosize);
1564
1565 if (db->io_data == NULL) {
1566 dev_err(db->dev, "failed to ioremap data reg\n");
1567 ret = -EINVAL;
1568 goto out;
1569 }
1570
1571 /* fill in parameters for net-dev structure */
1572 ndev->base_addr = (unsigned long)db->io_addr;
1573 ndev->irq = db->irq_res->start;
1574
1575 /* ensure at least we have a default set of IO routines */
1576 dm9000_set_io(db, iosize);
1577
1578 /* check to see if anything is being over-ridden */
1579 if (pdata != NULL) {
1580 /* check to see if the driver wants to over-ride the
1581 * default IO width */
1582
1583 if (pdata->flags & DM9000_PLATF_8BITONLY)
1584 dm9000_set_io(db, 1);
1585
1586 if (pdata->flags & DM9000_PLATF_16BITONLY)
1587 dm9000_set_io(db, 2);
1588
1589 if (pdata->flags & DM9000_PLATF_32BITONLY)
1590 dm9000_set_io(db, 4);
1591
1592 /* check to see if there are any IO routine
1593 * over-rides */
1594
1595 if (pdata->inblk != NULL)
1596 db->inblk = pdata->inblk;
1597
1598 if (pdata->outblk != NULL)
1599 db->outblk = pdata->outblk;
1600
1601 if (pdata->dumpblk != NULL)
1602 db->dumpblk = pdata->dumpblk;
1603
1604 db->flags = pdata->flags;
1605 }
1606
1607 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1608 db->flags |= DM9000_PLATF_SIMPLE_PHY;
1609 #endif
1610
1611 dm9000_reset(db);
1612
1613 /* try multiple times, DM9000 sometimes gets the read wrong */
1614 for (i = 0; i < 8; i++) {
1615 id_val = ior(db, DM9000_VIDL);
1616 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1617 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1618 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1619
1620 if (id_val == DM9000_ID)
1621 break;
1622 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1623 }
1624
1625 if (id_val != DM9000_ID) {
1626 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1627 ret = -ENODEV;
1628 goto out;
1629 }
1630
1631 /* Identify what type of DM9000 we are working on */
1632
1633 id_val = ior(db, DM9000_CHIPR);
1634 dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1635
1636 switch (id_val) {
1637 case CHIPR_DM9000A:
1638 db->type = TYPE_DM9000A;
1639 break;
1640 case CHIPR_DM9000B:
1641 db->type = TYPE_DM9000B;
1642 break;
1643 default:
1644 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1645 db->type = TYPE_DM9000E;
1646 }
1647
1648 /* dm9000a/b are capable of hardware checksum offload */
1649 if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1650 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1651 ndev->features |= ndev->hw_features;
1652 }
1653
1654 /* from this point we assume that we have found a DM9000 */
1655
1656 ndev->netdev_ops = &dm9000_netdev_ops;
1657 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1658 ndev->ethtool_ops = &dm9000_ethtool_ops;
1659
1660 db->msg_enable = NETIF_MSG_LINK;
1661 db->mii.phy_id_mask = 0x1f;
1662 db->mii.reg_num_mask = 0x1f;
1663 db->mii.force_media = 0;
1664 db->mii.full_duplex = 0;
1665 db->mii.dev = ndev;
1666 db->mii.mdio_read = dm9000_phy_read;
1667 db->mii.mdio_write = dm9000_phy_write;
1668
1669 mac_src = "eeprom";
1670
1671 /* try reading the node address from the attached EEPROM */
1672 for (i = 0; i < 6; i += 2)
1673 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1674
1675 if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1676 mac_src = "platform data";
1677 memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1678 }
1679
1680 if (!is_valid_ether_addr(ndev->dev_addr)) {
1681 /* try reading from mac */
1682
1683 mac_src = "chip";
1684 for (i = 0; i < 6; i++)
1685 ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1686 }
1687
1688 if (!is_valid_ether_addr(ndev->dev_addr)) {
1689 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1690 "set using ifconfig\n", ndev->name);
1691
1692 eth_hw_addr_random(ndev);
1693 mac_src = "random";
1694 }
1695
1696
1697 platform_set_drvdata(pdev, ndev);
1698 ret = register_netdev(ndev);
1699
1700 if (ret == 0)
1701 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1702 ndev->name, dm9000_type_to_char(db->type),
1703 db->io_addr, db->io_data, ndev->irq,
1704 ndev->dev_addr, mac_src);
1705 return 0;
1706
1707 out:
1708 dev_err(db->dev, "not found (%d).\n", ret);
1709
1710 dm9000_release_board(pdev, db);
1711 free_netdev(ndev);
1712
1713 return ret;
1714 }
1715
1716 static int
1717 dm9000_drv_suspend(struct device *dev)
1718 {
1719 struct platform_device *pdev = to_platform_device(dev);
1720 struct net_device *ndev = platform_get_drvdata(pdev);
1721 struct board_info *db;
1722
1723 if (ndev) {
1724 db = netdev_priv(ndev);
1725 db->in_suspend = 1;
1726
1727 if (!netif_running(ndev))
1728 return 0;
1729
1730 netif_device_detach(ndev);
1731
1732 /* only shutdown if not using WoL */
1733 if (!db->wake_state)
1734 dm9000_shutdown(ndev);
1735 }
1736 return 0;
1737 }
1738
1739 static int
1740 dm9000_drv_resume(struct device *dev)
1741 {
1742 struct platform_device *pdev = to_platform_device(dev);
1743 struct net_device *ndev = platform_get_drvdata(pdev);
1744 struct board_info *db = netdev_priv(ndev);
1745
1746 if (ndev) {
1747 if (netif_running(ndev)) {
1748 /* reset if we were not in wake mode to ensure if
1749 * the device was powered off it is in a known state */
1750 if (!db->wake_state) {
1751 dm9000_init_dm9000(ndev);
1752 dm9000_unmask_interrupts(db);
1753 }
1754
1755 netif_device_attach(ndev);
1756 }
1757
1758 db->in_suspend = 0;
1759 }
1760 return 0;
1761 }
1762
1763 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1764 .suspend = dm9000_drv_suspend,
1765 .resume = dm9000_drv_resume,
1766 };
1767
1768 static int
1769 dm9000_drv_remove(struct platform_device *pdev)
1770 {
1771 struct net_device *ndev = platform_get_drvdata(pdev);
1772
1773 unregister_netdev(ndev);
1774 dm9000_release_board(pdev, netdev_priv(ndev));
1775 free_netdev(ndev); /* free device structure */
1776
1777 dev_dbg(&pdev->dev, "released and freed device\n");
1778 return 0;
1779 }
1780
1781 #ifdef CONFIG_OF
1782 static const struct of_device_id dm9000_of_matches[] = {
1783 { .compatible = "davicom,dm9000", },
1784 { /* sentinel */ }
1785 };
1786 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1787 #endif
1788
1789 static struct platform_driver dm9000_driver = {
1790 .driver = {
1791 .name = "dm9000",
1792 .pm = &dm9000_drv_pm_ops,
1793 .of_match_table = of_match_ptr(dm9000_of_matches),
1794 },
1795 .probe = dm9000_probe,
1796 .remove = dm9000_drv_remove,
1797 };
1798
1799 module_platform_driver(dm9000_driver);
1800
1801 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1802 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1803 MODULE_LICENSE("GPL");
1804 MODULE_ALIAS("platform:dm9000");
This page took 0.094467 seconds and 5 git commands to generate.