pstore/ram: add Device Tree bindings
[deliverable/linux.git] / drivers / net / ethernet / ezchip / nps_enet.c
1 /*
2 * Copyright(c) 2015 EZchip Technologies.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 */
16
17 #include <linux/module.h>
18 #include <linux/etherdevice.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_net.h>
22 #include <linux/of_platform.h>
23 #include "nps_enet.h"
24
25 #define DRV_NAME "nps_mgt_enet"
26
27 static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
28 {
29 struct nps_enet_priv *priv = netdev_priv(ndev);
30 u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
31
32 /* Empty Rx FIFO buffer by reading all words */
33 for (i = 0; i < len; i++)
34 nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
35 }
36
37 static void nps_enet_read_rx_fifo(struct net_device *ndev,
38 unsigned char *dst, u32 length)
39 {
40 struct nps_enet_priv *priv = netdev_priv(ndev);
41 s32 i, last = length & (sizeof(u32) - 1);
42 u32 *reg = (u32 *)dst, len = length / sizeof(u32);
43 bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
44
45 /* In case dst is not aligned we need an intermediate buffer */
46 if (dst_is_aligned) {
47 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
48 reg += len;
49 }
50 else { /* !dst_is_aligned */
51 for (i = 0; i < len; i++, reg++) {
52 u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
53 put_unaligned_be32(buf, reg);
54 }
55 }
56 /* copy last bytes (if any) */
57 if (last) {
58 u32 buf;
59 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
60 memcpy((u8 *)reg, &buf, last);
61 }
62 }
63
64 static u32 nps_enet_rx_handler(struct net_device *ndev)
65 {
66 u32 frame_len, err = 0;
67 u32 work_done = 0;
68 struct nps_enet_priv *priv = netdev_priv(ndev);
69 struct sk_buff *skb;
70 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
71 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
72 u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
73 u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
74
75 frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
76
77 /* Check if we got RX */
78 if (!rx_ctrl_cr)
79 return work_done;
80
81 /* If we got here there is a work for us */
82 work_done++;
83
84 /* Check Rx error */
85 if (rx_ctrl_er) {
86 ndev->stats.rx_errors++;
87 err = 1;
88 }
89
90 /* Check Rx CRC error */
91 if (rx_ctrl_crc) {
92 ndev->stats.rx_crc_errors++;
93 ndev->stats.rx_dropped++;
94 err = 1;
95 }
96
97 /* Check Frame length Min 64b */
98 if (unlikely(frame_len < ETH_ZLEN)) {
99 ndev->stats.rx_length_errors++;
100 ndev->stats.rx_dropped++;
101 err = 1;
102 }
103
104 if (err)
105 goto rx_irq_clean;
106
107 /* Skb allocation */
108 skb = netdev_alloc_skb_ip_align(ndev, frame_len);
109 if (unlikely(!skb)) {
110 ndev->stats.rx_errors++;
111 ndev->stats.rx_dropped++;
112 goto rx_irq_clean;
113 }
114
115 /* Copy frame from Rx fifo into the skb */
116 nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
117
118 skb_put(skb, frame_len);
119 skb->protocol = eth_type_trans(skb, ndev);
120 skb->ip_summed = CHECKSUM_UNNECESSARY;
121
122 ndev->stats.rx_packets++;
123 ndev->stats.rx_bytes += frame_len;
124 netif_receive_skb(skb);
125
126 goto rx_irq_frame_done;
127
128 rx_irq_clean:
129 /* Clean Rx fifo */
130 nps_enet_clean_rx_fifo(ndev, frame_len);
131
132 rx_irq_frame_done:
133 /* Ack Rx ctrl register */
134 nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
135
136 return work_done;
137 }
138
139 static void nps_enet_tx_handler(struct net_device *ndev)
140 {
141 struct nps_enet_priv *priv = netdev_priv(ndev);
142 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
143 u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
144 u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
145 u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
146
147 /* Check if we got TX */
148 if (!priv->tx_skb || tx_ctrl_ct)
149 return;
150
151 /* Ack Tx ctrl register */
152 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
153
154 /* Check Tx transmit error */
155 if (unlikely(tx_ctrl_et)) {
156 ndev->stats.tx_errors++;
157 } else {
158 ndev->stats.tx_packets++;
159 ndev->stats.tx_bytes += tx_ctrl_nt;
160 }
161
162 dev_kfree_skb(priv->tx_skb);
163 priv->tx_skb = NULL;
164
165 if (netif_queue_stopped(ndev))
166 netif_wake_queue(ndev);
167 }
168
169 /**
170 * nps_enet_poll - NAPI poll handler.
171 * @napi: Pointer to napi_struct structure.
172 * @budget: How many frames to process on one call.
173 *
174 * returns: Number of processed frames
175 */
176 static int nps_enet_poll(struct napi_struct *napi, int budget)
177 {
178 struct net_device *ndev = napi->dev;
179 struct nps_enet_priv *priv = netdev_priv(ndev);
180 u32 work_done;
181
182 nps_enet_tx_handler(ndev);
183 work_done = nps_enet_rx_handler(ndev);
184 if (work_done < budget) {
185 u32 buf_int_enable_value = 0;
186 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
187 u32 tx_ctrl_ct =
188 (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
189
190 napi_complete(napi);
191
192 /* set tx_done and rx_rdy bits */
193 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
194 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
195
196 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
197 buf_int_enable_value);
198
199 /* in case we will get a tx interrupt while interrupts
200 * are masked, we will lose it since the tx is edge interrupt.
201 * specifically, while executing the code section above,
202 * between nps_enet_tx_handler and the interrupts enable, all
203 * tx requests will be stuck until we will get an rx interrupt.
204 * the two code lines below will solve this situation by
205 * re-adding ourselves to the poll list.
206 */
207
208 if (priv->tx_skb && !tx_ctrl_ct)
209 napi_reschedule(napi);
210 }
211
212 return work_done;
213 }
214
215 /**
216 * nps_enet_irq_handler - Global interrupt handler for ENET.
217 * @irq: irq number.
218 * @dev_instance: device instance.
219 *
220 * returns: IRQ_HANDLED for all cases.
221 *
222 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
223 * CTRL registers we may tell what is a reason for interrupt to fire up.
224 * We got one for RX and the other for TX (completion).
225 */
226 static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
227 {
228 struct net_device *ndev = dev_instance;
229 struct nps_enet_priv *priv = netdev_priv(ndev);
230 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
231 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
232 u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
233 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
234
235 if ((!tx_ctrl_ct && priv->tx_skb) || rx_ctrl_cr)
236 if (likely(napi_schedule_prep(&priv->napi))) {
237 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
238 __napi_schedule(&priv->napi);
239 }
240
241 return IRQ_HANDLED;
242 }
243
244 static void nps_enet_set_hw_mac_address(struct net_device *ndev)
245 {
246 struct nps_enet_priv *priv = netdev_priv(ndev);
247 u32 ge_mac_cfg_1_value = 0;
248 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
249
250 /* set MAC address in HW */
251 ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
252 ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
253 ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
254 ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
255 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
256 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
257 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
258 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
259
260 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
261 ge_mac_cfg_1_value);
262
263 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
264 *ge_mac_cfg_2_value);
265 }
266
267 /**
268 * nps_enet_hw_reset - Reset the network device.
269 * @ndev: Pointer to the network device.
270 *
271 * This function reset the PCS and TX fifo.
272 * The programming model is to set the relevant reset bits
273 * wait for some time for this to propagate and then unset
274 * the reset bits. This way we ensure that reset procedure
275 * is done successfully by device.
276 */
277 static void nps_enet_hw_reset(struct net_device *ndev)
278 {
279 struct nps_enet_priv *priv = netdev_priv(ndev);
280 u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
281
282 /* Pcs reset sequence*/
283 ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
284 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
285 usleep_range(10, 20);
286 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
287
288 /* Tx fifo reset sequence */
289 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
290 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
291 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
292 phase_fifo_ctl_value);
293 usleep_range(10, 20);
294 phase_fifo_ctl_value = 0;
295 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
296 phase_fifo_ctl_value);
297 }
298
299 static void nps_enet_hw_enable_control(struct net_device *ndev)
300 {
301 struct nps_enet_priv *priv = netdev_priv(ndev);
302 u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
303 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
304 u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
305 s32 max_frame_length;
306
307 /* Enable Rx and Tx statistics */
308 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
309 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
310
311 /* Discard packets with different MAC address */
312 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
313 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
314
315 /* Discard multicast packets */
316 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
317 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
318
319 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
320 *ge_mac_cfg_2_value);
321
322 /* Discard Packets bigger than max frame length */
323 max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
324 if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
325 *ge_mac_cfg_3_value =
326 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
327 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
328 }
329
330 /* Enable interrupts */
331 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
332 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
333 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
334 buf_int_enable_value);
335
336 /* Write device MAC address to HW */
337 nps_enet_set_hw_mac_address(ndev);
338
339 /* Rx and Tx HW features */
340 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
341 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
342 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
343
344 /* IFG configuration */
345 ge_mac_cfg_0_value |=
346 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
347 ge_mac_cfg_0_value |=
348 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
349
350 /* preamble configuration */
351 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
352 ge_mac_cfg_0_value |=
353 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
354
355 /* enable flow control frames */
356 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
357 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
358 ge_mac_cfg_0_value |=
359 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
360 *ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
361 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
362
363 /* Enable Rx and Tx */
364 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
365 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
366
367 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
368 *ge_mac_cfg_3_value);
369 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
370 ge_mac_cfg_0_value);
371 }
372
373 static void nps_enet_hw_disable_control(struct net_device *ndev)
374 {
375 struct nps_enet_priv *priv = netdev_priv(ndev);
376
377 /* Disable interrupts */
378 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
379
380 /* Disable Rx and Tx */
381 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
382 }
383
384 static void nps_enet_send_frame(struct net_device *ndev,
385 struct sk_buff *skb)
386 {
387 struct nps_enet_priv *priv = netdev_priv(ndev);
388 u32 tx_ctrl_value = 0;
389 short length = skb->len;
390 u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
391 u32 *src = (void *)skb->data;
392 bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
393
394 /* In case src is not aligned we need an intermediate buffer */
395 if (src_is_aligned)
396 iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
397 else /* !src_is_aligned */
398 for (i = 0; i < len; i++, src++)
399 nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
400 get_unaligned_be32(src));
401
402 /* Write the length of the Frame */
403 tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
404
405 tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
406 /* Send Frame */
407 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
408 }
409
410 /**
411 * nps_enet_set_mac_address - Set the MAC address for this device.
412 * @ndev: Pointer to net_device structure.
413 * @p: 6 byte Address to be written as MAC address.
414 *
415 * This function copies the HW address from the sockaddr structure to the
416 * net_device structure and updates the address in HW.
417 *
418 * returns: -EBUSY if the net device is busy or 0 if the address is set
419 * successfully.
420 */
421 static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
422 {
423 struct sockaddr *addr = p;
424 s32 res;
425
426 if (netif_running(ndev))
427 return -EBUSY;
428
429 res = eth_mac_addr(ndev, p);
430 if (!res) {
431 ether_addr_copy(ndev->dev_addr, addr->sa_data);
432 nps_enet_set_hw_mac_address(ndev);
433 }
434
435 return res;
436 }
437
438 /**
439 * nps_enet_set_rx_mode - Change the receive filtering mode.
440 * @ndev: Pointer to the network device.
441 *
442 * This function enables/disables promiscuous mode
443 */
444 static void nps_enet_set_rx_mode(struct net_device *ndev)
445 {
446 struct nps_enet_priv *priv = netdev_priv(ndev);
447 u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
448
449 if (ndev->flags & IFF_PROMISC) {
450 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
451 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
452 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
453 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
454
455 } else {
456 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
457 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
458 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
459 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
460
461 }
462
463 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
464 }
465
466 /**
467 * nps_enet_open - Open the network device.
468 * @ndev: Pointer to the network device.
469 *
470 * returns: 0, on success or non-zero error value on failure.
471 *
472 * This function sets the MAC address, requests and enables an IRQ
473 * for the ENET device and starts the Tx queue.
474 */
475 static s32 nps_enet_open(struct net_device *ndev)
476 {
477 struct nps_enet_priv *priv = netdev_priv(ndev);
478 s32 err;
479
480 /* Reset private variables */
481 priv->tx_skb = NULL;
482 priv->ge_mac_cfg_2_value = 0;
483 priv->ge_mac_cfg_3_value = 0;
484
485 /* ge_mac_cfg_3 default values */
486 priv->ge_mac_cfg_3_value |=
487 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
488
489 priv->ge_mac_cfg_3_value |=
490 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
491
492 /* Disable HW device */
493 nps_enet_hw_disable_control(ndev);
494
495 /* irq Rx allocation */
496 err = request_irq(priv->irq, nps_enet_irq_handler,
497 0, "enet-rx-tx", ndev);
498 if (err)
499 return err;
500
501 napi_enable(&priv->napi);
502
503 /* Enable HW device */
504 nps_enet_hw_reset(ndev);
505 nps_enet_hw_enable_control(ndev);
506
507 netif_start_queue(ndev);
508
509 return 0;
510 }
511
512 /**
513 * nps_enet_stop - Close the network device.
514 * @ndev: Pointer to the network device.
515 *
516 * This function stops the Tx queue, disables interrupts for the ENET device.
517 */
518 static s32 nps_enet_stop(struct net_device *ndev)
519 {
520 struct nps_enet_priv *priv = netdev_priv(ndev);
521
522 napi_disable(&priv->napi);
523 netif_stop_queue(ndev);
524 nps_enet_hw_disable_control(ndev);
525 free_irq(priv->irq, ndev);
526
527 return 0;
528 }
529
530 /**
531 * nps_enet_start_xmit - Starts the data transmission.
532 * @skb: sk_buff pointer that contains data to be Transmitted.
533 * @ndev: Pointer to net_device structure.
534 *
535 * returns: NETDEV_TX_OK, on success
536 * NETDEV_TX_BUSY, if any of the descriptors are not free.
537 *
538 * This function is invoked from upper layers to initiate transmission.
539 */
540 static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
541 struct net_device *ndev)
542 {
543 struct nps_enet_priv *priv = netdev_priv(ndev);
544
545 /* This driver handles one frame at a time */
546 netif_stop_queue(ndev);
547
548 priv->tx_skb = skb;
549
550 /* make sure tx_skb is actually written to the memory
551 * before the HW is informed and the IRQ is fired.
552 */
553 wmb();
554
555 nps_enet_send_frame(ndev, skb);
556
557 return NETDEV_TX_OK;
558 }
559
560 #ifdef CONFIG_NET_POLL_CONTROLLER
561 static void nps_enet_poll_controller(struct net_device *ndev)
562 {
563 disable_irq(ndev->irq);
564 nps_enet_irq_handler(ndev->irq, ndev);
565 enable_irq(ndev->irq);
566 }
567 #endif
568
569 static const struct net_device_ops nps_netdev_ops = {
570 .ndo_open = nps_enet_open,
571 .ndo_stop = nps_enet_stop,
572 .ndo_start_xmit = nps_enet_start_xmit,
573 .ndo_set_mac_address = nps_enet_set_mac_address,
574 .ndo_set_rx_mode = nps_enet_set_rx_mode,
575 #ifdef CONFIG_NET_POLL_CONTROLLER
576 .ndo_poll_controller = nps_enet_poll_controller,
577 #endif
578 };
579
580 static s32 nps_enet_probe(struct platform_device *pdev)
581 {
582 struct device *dev = &pdev->dev;
583 struct net_device *ndev;
584 struct nps_enet_priv *priv;
585 s32 err = 0;
586 const char *mac_addr;
587 struct resource *res_regs;
588
589 if (!dev->of_node)
590 return -ENODEV;
591
592 ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
593 if (!ndev)
594 return -ENOMEM;
595
596 platform_set_drvdata(pdev, ndev);
597 SET_NETDEV_DEV(ndev, dev);
598 priv = netdev_priv(ndev);
599
600 /* The EZ NET specific entries in the device structure. */
601 ndev->netdev_ops = &nps_netdev_ops;
602 ndev->watchdog_timeo = (400 * HZ / 1000);
603 /* FIXME :: no multicast support yet */
604 ndev->flags &= ~IFF_MULTICAST;
605
606 res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
607 priv->regs_base = devm_ioremap_resource(dev, res_regs);
608 if (IS_ERR(priv->regs_base)) {
609 err = PTR_ERR(priv->regs_base);
610 goto out_netdev;
611 }
612 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
613
614 /* set kernel MAC address to dev */
615 mac_addr = of_get_mac_address(dev->of_node);
616 if (mac_addr)
617 ether_addr_copy(ndev->dev_addr, mac_addr);
618 else
619 eth_hw_addr_random(ndev);
620
621 /* Get IRQ number */
622 priv->irq = platform_get_irq(pdev, 0);
623 if (!priv->irq) {
624 dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n");
625 err = -ENODEV;
626 goto out_netdev;
627 }
628
629 netif_napi_add(ndev, &priv->napi, nps_enet_poll,
630 NPS_ENET_NAPI_POLL_WEIGHT);
631
632 /* Register the driver. Should be the last thing in probe */
633 err = register_netdev(ndev);
634 if (err) {
635 dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
636 ndev->name, (s32)err);
637 goto out_netif_api;
638 }
639
640 dev_info(dev, "(rx/tx=%d)\n", priv->irq);
641 return 0;
642
643 out_netif_api:
644 netif_napi_del(&priv->napi);
645 out_netdev:
646 if (err)
647 free_netdev(ndev);
648
649 return err;
650 }
651
652 static s32 nps_enet_remove(struct platform_device *pdev)
653 {
654 struct net_device *ndev = platform_get_drvdata(pdev);
655 struct nps_enet_priv *priv = netdev_priv(ndev);
656
657 unregister_netdev(ndev);
658 free_netdev(ndev);
659 netif_napi_del(&priv->napi);
660
661 return 0;
662 }
663
664 static const struct of_device_id nps_enet_dt_ids[] = {
665 { .compatible = "ezchip,nps-mgt-enet" },
666 { /* Sentinel */ }
667 };
668
669 static struct platform_driver nps_enet_driver = {
670 .probe = nps_enet_probe,
671 .remove = nps_enet_remove,
672 .driver = {
673 .name = DRV_NAME,
674 .of_match_table = nps_enet_dt_ids,
675 },
676 };
677
678 module_platform_driver(nps_enet_driver);
679
680 MODULE_AUTHOR("EZchip Semiconductor");
681 MODULE_LICENSE("GPL v2");
This page took 0.0459 seconds and 5 git commands to generate.