c136230d50bb125e6ca1f4de21ae72485e0dbec2
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
47 #include <linux/of.h>
48 #include <linux/of_device.h>
49 #include <linux/of_gpio.h>
50 #include <linux/of_net.h>
51
52 #include <asm/cacheflush.h>
53
54 #ifndef CONFIG_ARM
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
57 #endif
58
59 #include "fec.h"
60
61 #if defined(CONFIG_ARM)
62 #define FEC_ALIGNMENT 0xf
63 #else
64 #define FEC_ALIGNMENT 0x3
65 #endif
66
67 #define DRIVER_NAME "fec"
68
69 /* Controller is ENET-MAC */
70 #define FEC_QUIRK_ENET_MAC (1 << 0)
71 /* Controller needs driver to swap frame */
72 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
73 /* Controller uses gasket */
74 #define FEC_QUIRK_USE_GASKET (1 << 2)
75 /* Controller has GBIT support */
76 #define FEC_QUIRK_HAS_GBIT (1 << 3)
77
78 static struct platform_device_id fec_devtype[] = {
79 {
80 /* keep it for coldfire */
81 .name = DRIVER_NAME,
82 .driver_data = 0,
83 }, {
84 .name = "imx25-fec",
85 .driver_data = FEC_QUIRK_USE_GASKET,
86 }, {
87 .name = "imx27-fec",
88 .driver_data = 0,
89 }, {
90 .name = "imx28-fec",
91 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
92 }, {
93 .name = "imx6q-fec",
94 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT,
95 }, {
96 /* sentinel */
97 }
98 };
99 MODULE_DEVICE_TABLE(platform, fec_devtype);
100
101 enum imx_fec_type {
102 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
103 IMX27_FEC, /* runs on i.mx27/35/51 */
104 IMX28_FEC,
105 IMX6Q_FEC,
106 };
107
108 static const struct of_device_id fec_dt_ids[] = {
109 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
110 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
111 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
112 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
113 { /* sentinel */ }
114 };
115 MODULE_DEVICE_TABLE(of, fec_dt_ids);
116
117 static unsigned char macaddr[ETH_ALEN];
118 module_param_array(macaddr, byte, NULL, 0);
119 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
120
121 #if defined(CONFIG_M5272)
122 /*
123 * Some hardware gets it MAC address out of local flash memory.
124 * if this is non-zero then assume it is the address to get MAC from.
125 */
126 #if defined(CONFIG_NETtel)
127 #define FEC_FLASHMAC 0xf0006006
128 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
129 #define FEC_FLASHMAC 0xf0006000
130 #elif defined(CONFIG_CANCam)
131 #define FEC_FLASHMAC 0xf0020000
132 #elif defined (CONFIG_M5272C3)
133 #define FEC_FLASHMAC (0xffe04000 + 4)
134 #elif defined(CONFIG_MOD5272)
135 #define FEC_FLASHMAC 0xffc0406b
136 #else
137 #define FEC_FLASHMAC 0
138 #endif
139 #endif /* CONFIG_M5272 */
140
141 /* The number of Tx and Rx buffers. These are allocated from the page
142 * pool. The code may assume these are power of two, so it it best
143 * to keep them that size.
144 * We don't need to allocate pages for the transmitter. We just use
145 * the skbuffer directly.
146 */
147 #define FEC_ENET_RX_PAGES 8
148 #define FEC_ENET_RX_FRSIZE 2048
149 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
150 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
151 #define FEC_ENET_TX_FRSIZE 2048
152 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
153 #define TX_RING_SIZE 16 /* Must be power of two */
154 #define TX_RING_MOD_MASK 15 /* for this to work */
155
156 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
157 #error "FEC: descriptor ring size constants too large"
158 #endif
159
160 /* Interrupt events/masks. */
161 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
162 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
163 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
164 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
165 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
166 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
167 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
168 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
169 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
170 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
171
172 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
173
174 /* The FEC stores dest/src/type, data, and checksum for receive packets.
175 */
176 #define PKT_MAXBUF_SIZE 1518
177 #define PKT_MINBUF_SIZE 64
178 #define PKT_MAXBLR_SIZE 1520
179
180 /* This device has up to three irqs on some platforms */
181 #define FEC_IRQ_NUM 3
182
183 /*
184 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
185 * size bits. Other FEC hardware does not, so we need to take that into
186 * account when setting it.
187 */
188 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
189 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
190 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
191 #else
192 #define OPT_FRAME_SIZE 0
193 #endif
194
195 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
196 * tx_bd_base always point to the base of the buffer descriptors. The
197 * cur_rx and cur_tx point to the currently available buffer.
198 * The dirty_tx tracks the current buffer that is being sent by the
199 * controller. The cur_tx and dirty_tx are equal under both completely
200 * empty and completely full conditions. The empty/ready indicator in
201 * the buffer descriptor determines the actual condition.
202 */
203 struct fec_enet_private {
204 /* Hardware registers of the FEC device */
205 void __iomem *hwp;
206
207 struct net_device *netdev;
208
209 struct clk *clk;
210
211 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
212 unsigned char *tx_bounce[TX_RING_SIZE];
213 struct sk_buff* tx_skbuff[TX_RING_SIZE];
214 struct sk_buff* rx_skbuff[RX_RING_SIZE];
215 ushort skb_cur;
216 ushort skb_dirty;
217
218 /* CPM dual port RAM relative addresses */
219 dma_addr_t bd_dma;
220 /* Address of Rx and Tx buffers */
221 struct bufdesc *rx_bd_base;
222 struct bufdesc *tx_bd_base;
223 /* The next free ring entry */
224 struct bufdesc *cur_rx, *cur_tx;
225 /* The ring entries to be free()ed */
226 struct bufdesc *dirty_tx;
227
228 uint tx_full;
229 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
230 spinlock_t hw_lock;
231
232 struct platform_device *pdev;
233
234 int opened;
235 int dev_id;
236
237 /* Phylib and MDIO interface */
238 struct mii_bus *mii_bus;
239 struct phy_device *phy_dev;
240 int mii_timeout;
241 uint phy_speed;
242 phy_interface_t phy_interface;
243 int link;
244 int full_duplex;
245 struct completion mdio_done;
246 int irq[FEC_IRQ_NUM];
247 };
248
249 /* FEC MII MMFR bits definition */
250 #define FEC_MMFR_ST (1 << 30)
251 #define FEC_MMFR_OP_READ (2 << 28)
252 #define FEC_MMFR_OP_WRITE (1 << 28)
253 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
254 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
255 #define FEC_MMFR_TA (2 << 16)
256 #define FEC_MMFR_DATA(v) (v & 0xffff)
257
258 #define FEC_MII_TIMEOUT 1000 /* us */
259
260 /* Transmitter timeout */
261 #define TX_TIMEOUT (2 * HZ)
262
263 static void *swap_buffer(void *bufaddr, int len)
264 {
265 int i;
266 unsigned int *buf = bufaddr;
267
268 for (i = 0; i < (len + 3) / 4; i++, buf++)
269 *buf = cpu_to_be32(*buf);
270
271 return bufaddr;
272 }
273
274 static netdev_tx_t
275 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
276 {
277 struct fec_enet_private *fep = netdev_priv(ndev);
278 const struct platform_device_id *id_entry =
279 platform_get_device_id(fep->pdev);
280 struct bufdesc *bdp;
281 void *bufaddr;
282 unsigned short status;
283 unsigned long flags;
284
285 if (!fep->link) {
286 /* Link is down or autonegotiation is in progress. */
287 return NETDEV_TX_BUSY;
288 }
289
290 spin_lock_irqsave(&fep->hw_lock, flags);
291 /* Fill in a Tx ring entry */
292 bdp = fep->cur_tx;
293
294 status = bdp->cbd_sc;
295
296 if (status & BD_ENET_TX_READY) {
297 /* Ooops. All transmit buffers are full. Bail out.
298 * This should not happen, since ndev->tbusy should be set.
299 */
300 printk("%s: tx queue full!.\n", ndev->name);
301 spin_unlock_irqrestore(&fep->hw_lock, flags);
302 return NETDEV_TX_BUSY;
303 }
304
305 /* Clear all of the status flags */
306 status &= ~BD_ENET_TX_STATS;
307
308 /* Set buffer length and buffer pointer */
309 bufaddr = skb->data;
310 bdp->cbd_datlen = skb->len;
311
312 /*
313 * On some FEC implementations data must be aligned on
314 * 4-byte boundaries. Use bounce buffers to copy data
315 * and get it aligned. Ugh.
316 */
317 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
318 unsigned int index;
319 index = bdp - fep->tx_bd_base;
320 memcpy(fep->tx_bounce[index], skb->data, skb->len);
321 bufaddr = fep->tx_bounce[index];
322 }
323
324 /*
325 * Some design made an incorrect assumption on endian mode of
326 * the system that it's running on. As the result, driver has to
327 * swap every frame going to and coming from the controller.
328 */
329 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
330 swap_buffer(bufaddr, skb->len);
331
332 /* Save skb pointer */
333 fep->tx_skbuff[fep->skb_cur] = skb;
334
335 ndev->stats.tx_bytes += skb->len;
336 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
337
338 /* Push the data cache so the CPM does not get stale memory
339 * data.
340 */
341 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
342 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
343
344 /* Send it on its way. Tell FEC it's ready, interrupt when done,
345 * it's the last BD of the frame, and to put the CRC on the end.
346 */
347 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
348 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
349 bdp->cbd_sc = status;
350
351 /* Trigger transmission start */
352 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
353
354 /* If this was the last BD in the ring, start at the beginning again. */
355 if (status & BD_ENET_TX_WRAP)
356 bdp = fep->tx_bd_base;
357 else
358 bdp++;
359
360 if (bdp == fep->dirty_tx) {
361 fep->tx_full = 1;
362 netif_stop_queue(ndev);
363 }
364
365 fep->cur_tx = bdp;
366
367 skb_tx_timestamp(skb);
368
369 spin_unlock_irqrestore(&fep->hw_lock, flags);
370
371 return NETDEV_TX_OK;
372 }
373
374 /* This function is called to start or restart the FEC during a link
375 * change. This only happens when switching between half and full
376 * duplex.
377 */
378 static void
379 fec_restart(struct net_device *ndev, int duplex)
380 {
381 struct fec_enet_private *fep = netdev_priv(ndev);
382 const struct platform_device_id *id_entry =
383 platform_get_device_id(fep->pdev);
384 int i;
385 u32 temp_mac[2];
386 u32 rcntl = OPT_FRAME_SIZE | 0x04;
387 u32 ecntl = 0x2; /* ETHEREN */
388
389 /* Whack a reset. We should wait for this. */
390 writel(1, fep->hwp + FEC_ECNTRL);
391 udelay(10);
392
393 /*
394 * enet-mac reset will reset mac address registers too,
395 * so need to reconfigure it.
396 */
397 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
398 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
399 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
400 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
401 }
402
403 /* Clear any outstanding interrupt. */
404 writel(0xffc00000, fep->hwp + FEC_IEVENT);
405
406 /* Reset all multicast. */
407 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
408 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
409 #ifndef CONFIG_M5272
410 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
411 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
412 #endif
413
414 /* Set maximum receive buffer size. */
415 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
416
417 /* Set receive and transmit descriptor base. */
418 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
419 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
420 fep->hwp + FEC_X_DES_START);
421
422 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
423 fep->cur_rx = fep->rx_bd_base;
424
425 /* Reset SKB transmit buffers. */
426 fep->skb_cur = fep->skb_dirty = 0;
427 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
428 if (fep->tx_skbuff[i]) {
429 dev_kfree_skb_any(fep->tx_skbuff[i]);
430 fep->tx_skbuff[i] = NULL;
431 }
432 }
433
434 /* Enable MII mode */
435 if (duplex) {
436 /* FD enable */
437 writel(0x04, fep->hwp + FEC_X_CNTRL);
438 } else {
439 /* No Rcv on Xmit */
440 rcntl |= 0x02;
441 writel(0x0, fep->hwp + FEC_X_CNTRL);
442 }
443
444 fep->full_duplex = duplex;
445
446 /* Set MII speed */
447 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
448
449 /*
450 * The phy interface and speed need to get configured
451 * differently on enet-mac.
452 */
453 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
454 /* Enable flow control and length check */
455 rcntl |= 0x40000000 | 0x00000020;
456
457 /* RGMII, RMII or MII */
458 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
459 rcntl |= (1 << 6);
460 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
461 rcntl |= (1 << 8);
462 else
463 rcntl &= ~(1 << 8);
464
465 /* 1G, 100M or 10M */
466 if (fep->phy_dev) {
467 if (fep->phy_dev->speed == SPEED_1000)
468 ecntl |= (1 << 5);
469 else if (fep->phy_dev->speed == SPEED_100)
470 rcntl &= ~(1 << 9);
471 else
472 rcntl |= (1 << 9);
473 }
474 } else {
475 #ifdef FEC_MIIGSK_ENR
476 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
477 /* disable the gasket and wait */
478 writel(0, fep->hwp + FEC_MIIGSK_ENR);
479 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
480 udelay(1);
481
482 /*
483 * configure the gasket:
484 * RMII, 50 MHz, no loopback, no echo
485 * MII, 25 MHz, no loopback, no echo
486 */
487 writel((fep->phy_interface == PHY_INTERFACE_MODE_RMII) ?
488 1 : 0, fep->hwp + FEC_MIIGSK_CFGR);
489
490
491 /* re-enable the gasket */
492 writel(2, fep->hwp + FEC_MIIGSK_ENR);
493 }
494 #endif
495 }
496 writel(rcntl, fep->hwp + FEC_R_CNTRL);
497
498 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
499 /* enable ENET endian swap */
500 ecntl |= (1 << 8);
501 /* enable ENET store and forward mode */
502 writel(1 << 8, fep->hwp + FEC_X_WMRK);
503 }
504
505 /* And last, enable the transmit and receive processing */
506 writel(ecntl, fep->hwp + FEC_ECNTRL);
507 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
508
509 /* Enable interrupts we wish to service */
510 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
511 }
512
513 static void
514 fec_stop(struct net_device *ndev)
515 {
516 struct fec_enet_private *fep = netdev_priv(ndev);
517 const struct platform_device_id *id_entry =
518 platform_get_device_id(fep->pdev);
519
520 /* We cannot expect a graceful transmit stop without link !!! */
521 if (fep->link) {
522 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
523 udelay(10);
524 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
525 printk("fec_stop : Graceful transmit stop did not complete !\n");
526 }
527
528 /* Whack a reset. We should wait for this. */
529 writel(1, fep->hwp + FEC_ECNTRL);
530 udelay(10);
531 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
532 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
533
534 /* We have to keep ENET enabled to have MII interrupt stay working */
535 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
536 writel(2, fep->hwp + FEC_ECNTRL);
537 }
538
539
540 static void
541 fec_timeout(struct net_device *ndev)
542 {
543 struct fec_enet_private *fep = netdev_priv(ndev);
544
545 ndev->stats.tx_errors++;
546
547 fec_restart(ndev, fep->full_duplex);
548 netif_wake_queue(ndev);
549 }
550
551 static void
552 fec_enet_tx(struct net_device *ndev)
553 {
554 struct fec_enet_private *fep;
555 struct bufdesc *bdp;
556 unsigned short status;
557 struct sk_buff *skb;
558
559 fep = netdev_priv(ndev);
560 spin_lock(&fep->hw_lock);
561 bdp = fep->dirty_tx;
562
563 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
564 if (bdp == fep->cur_tx && fep->tx_full == 0)
565 break;
566
567 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
568 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
569 bdp->cbd_bufaddr = 0;
570
571 skb = fep->tx_skbuff[fep->skb_dirty];
572 /* Check for errors. */
573 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
574 BD_ENET_TX_RL | BD_ENET_TX_UN |
575 BD_ENET_TX_CSL)) {
576 ndev->stats.tx_errors++;
577 if (status & BD_ENET_TX_HB) /* No heartbeat */
578 ndev->stats.tx_heartbeat_errors++;
579 if (status & BD_ENET_TX_LC) /* Late collision */
580 ndev->stats.tx_window_errors++;
581 if (status & BD_ENET_TX_RL) /* Retrans limit */
582 ndev->stats.tx_aborted_errors++;
583 if (status & BD_ENET_TX_UN) /* Underrun */
584 ndev->stats.tx_fifo_errors++;
585 if (status & BD_ENET_TX_CSL) /* Carrier lost */
586 ndev->stats.tx_carrier_errors++;
587 } else {
588 ndev->stats.tx_packets++;
589 }
590
591 if (status & BD_ENET_TX_READY)
592 printk("HEY! Enet xmit interrupt and TX_READY.\n");
593
594 /* Deferred means some collisions occurred during transmit,
595 * but we eventually sent the packet OK.
596 */
597 if (status & BD_ENET_TX_DEF)
598 ndev->stats.collisions++;
599
600 /* Free the sk buffer associated with this last transmit */
601 dev_kfree_skb_any(skb);
602 fep->tx_skbuff[fep->skb_dirty] = NULL;
603 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
604
605 /* Update pointer to next buffer descriptor to be transmitted */
606 if (status & BD_ENET_TX_WRAP)
607 bdp = fep->tx_bd_base;
608 else
609 bdp++;
610
611 /* Since we have freed up a buffer, the ring is no longer full
612 */
613 if (fep->tx_full) {
614 fep->tx_full = 0;
615 if (netif_queue_stopped(ndev))
616 netif_wake_queue(ndev);
617 }
618 }
619 fep->dirty_tx = bdp;
620 spin_unlock(&fep->hw_lock);
621 }
622
623
624 /* During a receive, the cur_rx points to the current incoming buffer.
625 * When we update through the ring, if the next incoming buffer has
626 * not been given to the system, we just set the empty indicator,
627 * effectively tossing the packet.
628 */
629 static void
630 fec_enet_rx(struct net_device *ndev)
631 {
632 struct fec_enet_private *fep = netdev_priv(ndev);
633 const struct platform_device_id *id_entry =
634 platform_get_device_id(fep->pdev);
635 struct bufdesc *bdp;
636 unsigned short status;
637 struct sk_buff *skb;
638 ushort pkt_len;
639 __u8 *data;
640
641 #ifdef CONFIG_M532x
642 flush_cache_all();
643 #endif
644
645 spin_lock(&fep->hw_lock);
646
647 /* First, grab all of the stats for the incoming packet.
648 * These get messed up if we get called due to a busy condition.
649 */
650 bdp = fep->cur_rx;
651
652 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
653
654 /* Since we have allocated space to hold a complete frame,
655 * the last indicator should be set.
656 */
657 if ((status & BD_ENET_RX_LAST) == 0)
658 printk("FEC ENET: rcv is not +last\n");
659
660 if (!fep->opened)
661 goto rx_processing_done;
662
663 /* Check for errors. */
664 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
665 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
666 ndev->stats.rx_errors++;
667 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
668 /* Frame too long or too short. */
669 ndev->stats.rx_length_errors++;
670 }
671 if (status & BD_ENET_RX_NO) /* Frame alignment */
672 ndev->stats.rx_frame_errors++;
673 if (status & BD_ENET_RX_CR) /* CRC Error */
674 ndev->stats.rx_crc_errors++;
675 if (status & BD_ENET_RX_OV) /* FIFO overrun */
676 ndev->stats.rx_fifo_errors++;
677 }
678
679 /* Report late collisions as a frame error.
680 * On this error, the BD is closed, but we don't know what we
681 * have in the buffer. So, just drop this frame on the floor.
682 */
683 if (status & BD_ENET_RX_CL) {
684 ndev->stats.rx_errors++;
685 ndev->stats.rx_frame_errors++;
686 goto rx_processing_done;
687 }
688
689 /* Process the incoming frame. */
690 ndev->stats.rx_packets++;
691 pkt_len = bdp->cbd_datlen;
692 ndev->stats.rx_bytes += pkt_len;
693 data = (__u8*)__va(bdp->cbd_bufaddr);
694
695 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
696 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
697
698 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
699 swap_buffer(data, pkt_len);
700
701 /* This does 16 byte alignment, exactly what we need.
702 * The packet length includes FCS, but we don't want to
703 * include that when passing upstream as it messes up
704 * bridging applications.
705 */
706 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
707
708 if (unlikely(!skb)) {
709 printk("%s: Memory squeeze, dropping packet.\n",
710 ndev->name);
711 ndev->stats.rx_dropped++;
712 } else {
713 skb_reserve(skb, NET_IP_ALIGN);
714 skb_put(skb, pkt_len - 4); /* Make room */
715 skb_copy_to_linear_data(skb, data, pkt_len - 4);
716 skb->protocol = eth_type_trans(skb, ndev);
717 if (!skb_defer_rx_timestamp(skb))
718 netif_rx(skb);
719 }
720
721 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
722 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
723 rx_processing_done:
724 /* Clear the status flags for this buffer */
725 status &= ~BD_ENET_RX_STATS;
726
727 /* Mark the buffer empty */
728 status |= BD_ENET_RX_EMPTY;
729 bdp->cbd_sc = status;
730
731 /* Update BD pointer to next entry */
732 if (status & BD_ENET_RX_WRAP)
733 bdp = fep->rx_bd_base;
734 else
735 bdp++;
736 /* Doing this here will keep the FEC running while we process
737 * incoming frames. On a heavily loaded network, we should be
738 * able to keep up at the expense of system resources.
739 */
740 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
741 }
742 fep->cur_rx = bdp;
743
744 spin_unlock(&fep->hw_lock);
745 }
746
747 static irqreturn_t
748 fec_enet_interrupt(int irq, void *dev_id)
749 {
750 struct net_device *ndev = dev_id;
751 struct fec_enet_private *fep = netdev_priv(ndev);
752 uint int_events;
753 irqreturn_t ret = IRQ_NONE;
754
755 do {
756 int_events = readl(fep->hwp + FEC_IEVENT);
757 writel(int_events, fep->hwp + FEC_IEVENT);
758
759 if (int_events & FEC_ENET_RXF) {
760 ret = IRQ_HANDLED;
761 fec_enet_rx(ndev);
762 }
763
764 /* Transmit OK, or non-fatal error. Update the buffer
765 * descriptors. FEC handles all errors, we just discover
766 * them as part of the transmit process.
767 */
768 if (int_events & FEC_ENET_TXF) {
769 ret = IRQ_HANDLED;
770 fec_enet_tx(ndev);
771 }
772
773 if (int_events & FEC_ENET_MII) {
774 ret = IRQ_HANDLED;
775 complete(&fep->mdio_done);
776 }
777 } while (int_events);
778
779 return ret;
780 }
781
782
783
784 /* ------------------------------------------------------------------------- */
785 static void __inline__ fec_get_mac(struct net_device *ndev)
786 {
787 struct fec_enet_private *fep = netdev_priv(ndev);
788 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
789 unsigned char *iap, tmpaddr[ETH_ALEN];
790
791 /*
792 * try to get mac address in following order:
793 *
794 * 1) module parameter via kernel command line in form
795 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
796 */
797 iap = macaddr;
798
799 #ifdef CONFIG_OF
800 /*
801 * 2) from device tree data
802 */
803 if (!is_valid_ether_addr(iap)) {
804 struct device_node *np = fep->pdev->dev.of_node;
805 if (np) {
806 const char *mac = of_get_mac_address(np);
807 if (mac)
808 iap = (unsigned char *) mac;
809 }
810 }
811 #endif
812
813 /*
814 * 3) from flash or fuse (via platform data)
815 */
816 if (!is_valid_ether_addr(iap)) {
817 #ifdef CONFIG_M5272
818 if (FEC_FLASHMAC)
819 iap = (unsigned char *)FEC_FLASHMAC;
820 #else
821 if (pdata)
822 memcpy(iap, pdata->mac, ETH_ALEN);
823 #endif
824 }
825
826 /*
827 * 4) FEC mac registers set by bootloader
828 */
829 if (!is_valid_ether_addr(iap)) {
830 *((unsigned long *) &tmpaddr[0]) =
831 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
832 *((unsigned short *) &tmpaddr[4]) =
833 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
834 iap = &tmpaddr[0];
835 }
836
837 memcpy(ndev->dev_addr, iap, ETH_ALEN);
838
839 /* Adjust MAC if using macaddr */
840 if (iap == macaddr)
841 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
842 }
843
844 /* ------------------------------------------------------------------------- */
845
846 /*
847 * Phy section
848 */
849 static void fec_enet_adjust_link(struct net_device *ndev)
850 {
851 struct fec_enet_private *fep = netdev_priv(ndev);
852 struct phy_device *phy_dev = fep->phy_dev;
853 unsigned long flags;
854
855 int status_change = 0;
856
857 spin_lock_irqsave(&fep->hw_lock, flags);
858
859 /* Prevent a state halted on mii error */
860 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
861 phy_dev->state = PHY_RESUMING;
862 goto spin_unlock;
863 }
864
865 /* Duplex link change */
866 if (phy_dev->link) {
867 if (fep->full_duplex != phy_dev->duplex) {
868 fec_restart(ndev, phy_dev->duplex);
869 status_change = 1;
870 }
871 }
872
873 /* Link on or off change */
874 if (phy_dev->link != fep->link) {
875 fep->link = phy_dev->link;
876 if (phy_dev->link)
877 fec_restart(ndev, phy_dev->duplex);
878 else
879 fec_stop(ndev);
880 status_change = 1;
881 }
882
883 spin_unlock:
884 spin_unlock_irqrestore(&fep->hw_lock, flags);
885
886 if (status_change)
887 phy_print_status(phy_dev);
888 }
889
890 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
891 {
892 struct fec_enet_private *fep = bus->priv;
893 unsigned long time_left;
894
895 fep->mii_timeout = 0;
896 init_completion(&fep->mdio_done);
897
898 /* start a read op */
899 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
900 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
901 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
902
903 /* wait for end of transfer */
904 time_left = wait_for_completion_timeout(&fep->mdio_done,
905 usecs_to_jiffies(FEC_MII_TIMEOUT));
906 if (time_left == 0) {
907 fep->mii_timeout = 1;
908 printk(KERN_ERR "FEC: MDIO read timeout\n");
909 return -ETIMEDOUT;
910 }
911
912 /* return value */
913 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
914 }
915
916 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
917 u16 value)
918 {
919 struct fec_enet_private *fep = bus->priv;
920 unsigned long time_left;
921
922 fep->mii_timeout = 0;
923 init_completion(&fep->mdio_done);
924
925 /* start a write op */
926 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
927 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
928 FEC_MMFR_TA | FEC_MMFR_DATA(value),
929 fep->hwp + FEC_MII_DATA);
930
931 /* wait for end of transfer */
932 time_left = wait_for_completion_timeout(&fep->mdio_done,
933 usecs_to_jiffies(FEC_MII_TIMEOUT));
934 if (time_left == 0) {
935 fep->mii_timeout = 1;
936 printk(KERN_ERR "FEC: MDIO write timeout\n");
937 return -ETIMEDOUT;
938 }
939
940 return 0;
941 }
942
943 static int fec_enet_mdio_reset(struct mii_bus *bus)
944 {
945 return 0;
946 }
947
948 static int fec_enet_mii_probe(struct net_device *ndev)
949 {
950 struct fec_enet_private *fep = netdev_priv(ndev);
951 const struct platform_device_id *id_entry =
952 platform_get_device_id(fep->pdev);
953 struct phy_device *phy_dev = NULL;
954 char mdio_bus_id[MII_BUS_ID_SIZE];
955 char phy_name[MII_BUS_ID_SIZE + 3];
956 int phy_id;
957 int dev_id = fep->dev_id;
958
959 fep->phy_dev = NULL;
960
961 /* check for attached phy */
962 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
963 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
964 continue;
965 if (fep->mii_bus->phy_map[phy_id] == NULL)
966 continue;
967 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
968 continue;
969 if (dev_id--)
970 continue;
971 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
972 break;
973 }
974
975 if (phy_id >= PHY_MAX_ADDR) {
976 printk(KERN_INFO "%s: no PHY, assuming direct connection "
977 "to switch\n", ndev->name);
978 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
979 phy_id = 0;
980 }
981
982 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
983 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
984 fep->phy_interface);
985 if (IS_ERR(phy_dev)) {
986 printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
987 return PTR_ERR(phy_dev);
988 }
989
990 /* mask with MAC supported features */
991 if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT)
992 phy_dev->supported &= PHY_GBIT_FEATURES;
993 else
994 phy_dev->supported &= PHY_BASIC_FEATURES;
995
996 phy_dev->advertising = phy_dev->supported;
997
998 fep->phy_dev = phy_dev;
999 fep->link = 0;
1000 fep->full_duplex = 0;
1001
1002 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
1003 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
1004 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1005 fep->phy_dev->irq);
1006
1007 return 0;
1008 }
1009
1010 static int fec_enet_mii_init(struct platform_device *pdev)
1011 {
1012 static struct mii_bus *fec0_mii_bus;
1013 struct net_device *ndev = platform_get_drvdata(pdev);
1014 struct fec_enet_private *fep = netdev_priv(ndev);
1015 const struct platform_device_id *id_entry =
1016 platform_get_device_id(fep->pdev);
1017 int err = -ENXIO, i;
1018
1019 /*
1020 * The dual fec interfaces are not equivalent with enet-mac.
1021 * Here are the differences:
1022 *
1023 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1024 * - fec0 acts as the 1588 time master while fec1 is slave
1025 * - external phys can only be configured by fec0
1026 *
1027 * That is to say fec1 can not work independently. It only works
1028 * when fec0 is working. The reason behind this design is that the
1029 * second interface is added primarily for Switch mode.
1030 *
1031 * Because of the last point above, both phys are attached on fec0
1032 * mdio interface in board design, and need to be configured by
1033 * fec0 mii_bus.
1034 */
1035 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1036 /* fec1 uses fec0 mii_bus */
1037 fep->mii_bus = fec0_mii_bus;
1038 return 0;
1039 }
1040
1041 fep->mii_timeout = 0;
1042
1043 /*
1044 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1045 *
1046 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1047 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1048 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1049 * document.
1050 */
1051 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000);
1052 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1053 fep->phy_speed--;
1054 fep->phy_speed <<= 1;
1055 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1056
1057 fep->mii_bus = mdiobus_alloc();
1058 if (fep->mii_bus == NULL) {
1059 err = -ENOMEM;
1060 goto err_out;
1061 }
1062
1063 fep->mii_bus->name = "fec_enet_mii_bus";
1064 fep->mii_bus->read = fec_enet_mdio_read;
1065 fep->mii_bus->write = fec_enet_mdio_write;
1066 fep->mii_bus->reset = fec_enet_mdio_reset;
1067 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", fep->dev_id + 1);
1068 fep->mii_bus->priv = fep;
1069 fep->mii_bus->parent = &pdev->dev;
1070
1071 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1072 if (!fep->mii_bus->irq) {
1073 err = -ENOMEM;
1074 goto err_out_free_mdiobus;
1075 }
1076
1077 for (i = 0; i < PHY_MAX_ADDR; i++)
1078 fep->mii_bus->irq[i] = PHY_POLL;
1079
1080 if (mdiobus_register(fep->mii_bus))
1081 goto err_out_free_mdio_irq;
1082
1083 /* save fec0 mii_bus */
1084 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1085 fec0_mii_bus = fep->mii_bus;
1086
1087 return 0;
1088
1089 err_out_free_mdio_irq:
1090 kfree(fep->mii_bus->irq);
1091 err_out_free_mdiobus:
1092 mdiobus_free(fep->mii_bus);
1093 err_out:
1094 return err;
1095 }
1096
1097 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1098 {
1099 if (fep->phy_dev)
1100 phy_disconnect(fep->phy_dev);
1101 mdiobus_unregister(fep->mii_bus);
1102 kfree(fep->mii_bus->irq);
1103 mdiobus_free(fep->mii_bus);
1104 }
1105
1106 static int fec_enet_get_settings(struct net_device *ndev,
1107 struct ethtool_cmd *cmd)
1108 {
1109 struct fec_enet_private *fep = netdev_priv(ndev);
1110 struct phy_device *phydev = fep->phy_dev;
1111
1112 if (!phydev)
1113 return -ENODEV;
1114
1115 return phy_ethtool_gset(phydev, cmd);
1116 }
1117
1118 static int fec_enet_set_settings(struct net_device *ndev,
1119 struct ethtool_cmd *cmd)
1120 {
1121 struct fec_enet_private *fep = netdev_priv(ndev);
1122 struct phy_device *phydev = fep->phy_dev;
1123
1124 if (!phydev)
1125 return -ENODEV;
1126
1127 return phy_ethtool_sset(phydev, cmd);
1128 }
1129
1130 static void fec_enet_get_drvinfo(struct net_device *ndev,
1131 struct ethtool_drvinfo *info)
1132 {
1133 struct fec_enet_private *fep = netdev_priv(ndev);
1134
1135 strcpy(info->driver, fep->pdev->dev.driver->name);
1136 strcpy(info->version, "Revision: 1.0");
1137 strcpy(info->bus_info, dev_name(&ndev->dev));
1138 }
1139
1140 static struct ethtool_ops fec_enet_ethtool_ops = {
1141 .get_settings = fec_enet_get_settings,
1142 .set_settings = fec_enet_set_settings,
1143 .get_drvinfo = fec_enet_get_drvinfo,
1144 .get_link = ethtool_op_get_link,
1145 };
1146
1147 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1148 {
1149 struct fec_enet_private *fep = netdev_priv(ndev);
1150 struct phy_device *phydev = fep->phy_dev;
1151
1152 if (!netif_running(ndev))
1153 return -EINVAL;
1154
1155 if (!phydev)
1156 return -ENODEV;
1157
1158 return phy_mii_ioctl(phydev, rq, cmd);
1159 }
1160
1161 static void fec_enet_free_buffers(struct net_device *ndev)
1162 {
1163 struct fec_enet_private *fep = netdev_priv(ndev);
1164 int i;
1165 struct sk_buff *skb;
1166 struct bufdesc *bdp;
1167
1168 bdp = fep->rx_bd_base;
1169 for (i = 0; i < RX_RING_SIZE; i++) {
1170 skb = fep->rx_skbuff[i];
1171
1172 if (bdp->cbd_bufaddr)
1173 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1174 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1175 if (skb)
1176 dev_kfree_skb(skb);
1177 bdp++;
1178 }
1179
1180 bdp = fep->tx_bd_base;
1181 for (i = 0; i < TX_RING_SIZE; i++)
1182 kfree(fep->tx_bounce[i]);
1183 }
1184
1185 static int fec_enet_alloc_buffers(struct net_device *ndev)
1186 {
1187 struct fec_enet_private *fep = netdev_priv(ndev);
1188 int i;
1189 struct sk_buff *skb;
1190 struct bufdesc *bdp;
1191
1192 bdp = fep->rx_bd_base;
1193 for (i = 0; i < RX_RING_SIZE; i++) {
1194 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
1195 if (!skb) {
1196 fec_enet_free_buffers(ndev);
1197 return -ENOMEM;
1198 }
1199 fep->rx_skbuff[i] = skb;
1200
1201 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1202 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1203 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1204 bdp++;
1205 }
1206
1207 /* Set the last buffer to wrap. */
1208 bdp--;
1209 bdp->cbd_sc |= BD_SC_WRAP;
1210
1211 bdp = fep->tx_bd_base;
1212 for (i = 0; i < TX_RING_SIZE; i++) {
1213 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1214
1215 bdp->cbd_sc = 0;
1216 bdp->cbd_bufaddr = 0;
1217 bdp++;
1218 }
1219
1220 /* Set the last buffer to wrap. */
1221 bdp--;
1222 bdp->cbd_sc |= BD_SC_WRAP;
1223
1224 return 0;
1225 }
1226
1227 static int
1228 fec_enet_open(struct net_device *ndev)
1229 {
1230 struct fec_enet_private *fep = netdev_priv(ndev);
1231 int ret;
1232
1233 /* I should reset the ring buffers here, but I don't yet know
1234 * a simple way to do that.
1235 */
1236
1237 ret = fec_enet_alloc_buffers(ndev);
1238 if (ret)
1239 return ret;
1240
1241 /* Probe and connect to PHY when open the interface */
1242 ret = fec_enet_mii_probe(ndev);
1243 if (ret) {
1244 fec_enet_free_buffers(ndev);
1245 return ret;
1246 }
1247 phy_start(fep->phy_dev);
1248 netif_start_queue(ndev);
1249 fep->opened = 1;
1250 return 0;
1251 }
1252
1253 static int
1254 fec_enet_close(struct net_device *ndev)
1255 {
1256 struct fec_enet_private *fep = netdev_priv(ndev);
1257
1258 /* Don't know what to do yet. */
1259 fep->opened = 0;
1260 netif_stop_queue(ndev);
1261 fec_stop(ndev);
1262
1263 if (fep->phy_dev) {
1264 phy_stop(fep->phy_dev);
1265 phy_disconnect(fep->phy_dev);
1266 }
1267
1268 fec_enet_free_buffers(ndev);
1269
1270 return 0;
1271 }
1272
1273 /* Set or clear the multicast filter for this adaptor.
1274 * Skeleton taken from sunlance driver.
1275 * The CPM Ethernet implementation allows Multicast as well as individual
1276 * MAC address filtering. Some of the drivers check to make sure it is
1277 * a group multicast address, and discard those that are not. I guess I
1278 * will do the same for now, but just remove the test if you want
1279 * individual filtering as well (do the upper net layers want or support
1280 * this kind of feature?).
1281 */
1282
1283 #define HASH_BITS 6 /* #bits in hash */
1284 #define CRC32_POLY 0xEDB88320
1285
1286 static void set_multicast_list(struct net_device *ndev)
1287 {
1288 struct fec_enet_private *fep = netdev_priv(ndev);
1289 struct netdev_hw_addr *ha;
1290 unsigned int i, bit, data, crc, tmp;
1291 unsigned char hash;
1292
1293 if (ndev->flags & IFF_PROMISC) {
1294 tmp = readl(fep->hwp + FEC_R_CNTRL);
1295 tmp |= 0x8;
1296 writel(tmp, fep->hwp + FEC_R_CNTRL);
1297 return;
1298 }
1299
1300 tmp = readl(fep->hwp + FEC_R_CNTRL);
1301 tmp &= ~0x8;
1302 writel(tmp, fep->hwp + FEC_R_CNTRL);
1303
1304 if (ndev->flags & IFF_ALLMULTI) {
1305 /* Catch all multicast addresses, so set the
1306 * filter to all 1's
1307 */
1308 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1309 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1310
1311 return;
1312 }
1313
1314 /* Clear filter and add the addresses in hash register
1315 */
1316 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1317 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1318
1319 netdev_for_each_mc_addr(ha, ndev) {
1320 /* calculate crc32 value of mac address */
1321 crc = 0xffffffff;
1322
1323 for (i = 0; i < ndev->addr_len; i++) {
1324 data = ha->addr[i];
1325 for (bit = 0; bit < 8; bit++, data >>= 1) {
1326 crc = (crc >> 1) ^
1327 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1328 }
1329 }
1330
1331 /* only upper 6 bits (HASH_BITS) are used
1332 * which point to specific bit in he hash registers
1333 */
1334 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1335
1336 if (hash > 31) {
1337 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1338 tmp |= 1 << (hash - 32);
1339 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1340 } else {
1341 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1342 tmp |= 1 << hash;
1343 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1344 }
1345 }
1346 }
1347
1348 /* Set a MAC change in hardware. */
1349 static int
1350 fec_set_mac_address(struct net_device *ndev, void *p)
1351 {
1352 struct fec_enet_private *fep = netdev_priv(ndev);
1353 struct sockaddr *addr = p;
1354
1355 if (!is_valid_ether_addr(addr->sa_data))
1356 return -EADDRNOTAVAIL;
1357
1358 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1359
1360 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1361 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1362 fep->hwp + FEC_ADDR_LOW);
1363 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1364 fep->hwp + FEC_ADDR_HIGH);
1365 return 0;
1366 }
1367
1368 #ifdef CONFIG_NET_POLL_CONTROLLER
1369 /*
1370 * fec_poll_controller: FEC Poll controller function
1371 * @dev: The FEC network adapter
1372 *
1373 * Polled functionality used by netconsole and others in non interrupt mode
1374 *
1375 */
1376 void fec_poll_controller(struct net_device *dev)
1377 {
1378 int i;
1379 struct fec_enet_private *fep = netdev_priv(dev);
1380
1381 for (i = 0; i < FEC_IRQ_NUM; i++) {
1382 if (fep->irq[i] > 0) {
1383 disable_irq(fep->irq[i]);
1384 fec_enet_interrupt(fep->irq[i], dev);
1385 enable_irq(fep->irq[i]);
1386 }
1387 }
1388 }
1389 #endif
1390
1391 static const struct net_device_ops fec_netdev_ops = {
1392 .ndo_open = fec_enet_open,
1393 .ndo_stop = fec_enet_close,
1394 .ndo_start_xmit = fec_enet_start_xmit,
1395 .ndo_set_rx_mode = set_multicast_list,
1396 .ndo_change_mtu = eth_change_mtu,
1397 .ndo_validate_addr = eth_validate_addr,
1398 .ndo_tx_timeout = fec_timeout,
1399 .ndo_set_mac_address = fec_set_mac_address,
1400 .ndo_do_ioctl = fec_enet_ioctl,
1401 #ifdef CONFIG_NET_POLL_CONTROLLER
1402 .ndo_poll_controller = fec_poll_controller,
1403 #endif
1404 };
1405
1406 /*
1407 * XXX: We need to clean up on failure exits here.
1408 *
1409 */
1410 static int fec_enet_init(struct net_device *ndev)
1411 {
1412 struct fec_enet_private *fep = netdev_priv(ndev);
1413 struct bufdesc *cbd_base;
1414 struct bufdesc *bdp;
1415 int i;
1416
1417 /* Allocate memory for buffer descriptors. */
1418 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1419 GFP_KERNEL);
1420 if (!cbd_base) {
1421 printk("FEC: allocate descriptor memory failed?\n");
1422 return -ENOMEM;
1423 }
1424
1425 spin_lock_init(&fep->hw_lock);
1426
1427 fep->netdev = ndev;
1428
1429 /* Get the Ethernet address */
1430 fec_get_mac(ndev);
1431
1432 /* Set receive and transmit descriptor base. */
1433 fep->rx_bd_base = cbd_base;
1434 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1435
1436 /* The FEC Ethernet specific entries in the device structure */
1437 ndev->watchdog_timeo = TX_TIMEOUT;
1438 ndev->netdev_ops = &fec_netdev_ops;
1439 ndev->ethtool_ops = &fec_enet_ethtool_ops;
1440
1441 /* Initialize the receive buffer descriptors. */
1442 bdp = fep->rx_bd_base;
1443 for (i = 0; i < RX_RING_SIZE; i++) {
1444
1445 /* Initialize the BD for every fragment in the page. */
1446 bdp->cbd_sc = 0;
1447 bdp++;
1448 }
1449
1450 /* Set the last buffer to wrap */
1451 bdp--;
1452 bdp->cbd_sc |= BD_SC_WRAP;
1453
1454 /* ...and the same for transmit */
1455 bdp = fep->tx_bd_base;
1456 for (i = 0; i < TX_RING_SIZE; i++) {
1457
1458 /* Initialize the BD for every fragment in the page. */
1459 bdp->cbd_sc = 0;
1460 bdp->cbd_bufaddr = 0;
1461 bdp++;
1462 }
1463
1464 /* Set the last buffer to wrap */
1465 bdp--;
1466 bdp->cbd_sc |= BD_SC_WRAP;
1467
1468 fec_restart(ndev, 0);
1469
1470 return 0;
1471 }
1472
1473 #ifdef CONFIG_OF
1474 static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
1475 {
1476 struct device_node *np = pdev->dev.of_node;
1477
1478 if (np)
1479 return of_get_phy_mode(np);
1480
1481 return -ENODEV;
1482 }
1483
1484 static void __devinit fec_reset_phy(struct platform_device *pdev)
1485 {
1486 int err, phy_reset;
1487 struct device_node *np = pdev->dev.of_node;
1488
1489 if (!np)
1490 return;
1491
1492 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1493 err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
1494 if (err) {
1495 pr_debug("FEC: failed to get gpio phy-reset: %d\n", err);
1496 return;
1497 }
1498 msleep(1);
1499 gpio_set_value(phy_reset, 1);
1500 }
1501 #else /* CONFIG_OF */
1502 static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
1503 {
1504 return -ENODEV;
1505 }
1506
1507 static inline void fec_reset_phy(struct platform_device *pdev)
1508 {
1509 /*
1510 * In case of platform probe, the reset has been done
1511 * by machine code.
1512 */
1513 }
1514 #endif /* CONFIG_OF */
1515
1516 static int __devinit
1517 fec_probe(struct platform_device *pdev)
1518 {
1519 struct fec_enet_private *fep;
1520 struct fec_platform_data *pdata;
1521 struct net_device *ndev;
1522 int i, irq, ret = 0;
1523 struct resource *r;
1524 const struct of_device_id *of_id;
1525 static int dev_id;
1526
1527 of_id = of_match_device(fec_dt_ids, &pdev->dev);
1528 if (of_id)
1529 pdev->id_entry = of_id->data;
1530
1531 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1532 if (!r)
1533 return -ENXIO;
1534
1535 r = request_mem_region(r->start, resource_size(r), pdev->name);
1536 if (!r)
1537 return -EBUSY;
1538
1539 /* Init network device */
1540 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1541 if (!ndev) {
1542 ret = -ENOMEM;
1543 goto failed_alloc_etherdev;
1544 }
1545
1546 SET_NETDEV_DEV(ndev, &pdev->dev);
1547
1548 /* setup board info structure */
1549 fep = netdev_priv(ndev);
1550
1551 fep->hwp = ioremap(r->start, resource_size(r));
1552 fep->pdev = pdev;
1553 fep->dev_id = dev_id++;
1554
1555 if (!fep->hwp) {
1556 ret = -ENOMEM;
1557 goto failed_ioremap;
1558 }
1559
1560 platform_set_drvdata(pdev, ndev);
1561
1562 ret = fec_get_phy_mode_dt(pdev);
1563 if (ret < 0) {
1564 pdata = pdev->dev.platform_data;
1565 if (pdata)
1566 fep->phy_interface = pdata->phy;
1567 else
1568 fep->phy_interface = PHY_INTERFACE_MODE_MII;
1569 } else {
1570 fep->phy_interface = ret;
1571 }
1572
1573 fec_reset_phy(pdev);
1574
1575 for (i = 0; i < FEC_IRQ_NUM; i++) {
1576 irq = platform_get_irq(pdev, i);
1577 if (i && irq < 0)
1578 break;
1579 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1580 if (ret) {
1581 while (--i >= 0) {
1582 irq = platform_get_irq(pdev, i);
1583 free_irq(irq, ndev);
1584 }
1585 goto failed_irq;
1586 }
1587 }
1588
1589 fep->clk = clk_get(&pdev->dev, "fec_clk");
1590 if (IS_ERR(fep->clk)) {
1591 ret = PTR_ERR(fep->clk);
1592 goto failed_clk;
1593 }
1594 clk_enable(fep->clk);
1595
1596 ret = fec_enet_init(ndev);
1597 if (ret)
1598 goto failed_init;
1599
1600 ret = fec_enet_mii_init(pdev);
1601 if (ret)
1602 goto failed_mii_init;
1603
1604 /* Carrier starts down, phylib will bring it up */
1605 netif_carrier_off(ndev);
1606
1607 ret = register_netdev(ndev);
1608 if (ret)
1609 goto failed_register;
1610
1611 return 0;
1612
1613 failed_register:
1614 fec_enet_mii_remove(fep);
1615 failed_mii_init:
1616 failed_init:
1617 clk_disable(fep->clk);
1618 clk_put(fep->clk);
1619 failed_clk:
1620 for (i = 0; i < FEC_IRQ_NUM; i++) {
1621 irq = platform_get_irq(pdev, i);
1622 if (irq > 0)
1623 free_irq(irq, ndev);
1624 }
1625 failed_irq:
1626 iounmap(fep->hwp);
1627 failed_ioremap:
1628 free_netdev(ndev);
1629 failed_alloc_etherdev:
1630 release_mem_region(r->start, resource_size(r));
1631
1632 return ret;
1633 }
1634
1635 static int __devexit
1636 fec_drv_remove(struct platform_device *pdev)
1637 {
1638 struct net_device *ndev = platform_get_drvdata(pdev);
1639 struct fec_enet_private *fep = netdev_priv(ndev);
1640 struct resource *r;
1641
1642 fec_stop(ndev);
1643 fec_enet_mii_remove(fep);
1644 clk_disable(fep->clk);
1645 clk_put(fep->clk);
1646 iounmap(fep->hwp);
1647 unregister_netdev(ndev);
1648 free_netdev(ndev);
1649
1650 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1651 BUG_ON(!r);
1652 release_mem_region(r->start, resource_size(r));
1653
1654 platform_set_drvdata(pdev, NULL);
1655
1656 return 0;
1657 }
1658
1659 #ifdef CONFIG_PM
1660 static int
1661 fec_suspend(struct device *dev)
1662 {
1663 struct net_device *ndev = dev_get_drvdata(dev);
1664 struct fec_enet_private *fep = netdev_priv(ndev);
1665
1666 if (netif_running(ndev)) {
1667 fec_stop(ndev);
1668 netif_device_detach(ndev);
1669 }
1670 clk_disable(fep->clk);
1671
1672 return 0;
1673 }
1674
1675 static int
1676 fec_resume(struct device *dev)
1677 {
1678 struct net_device *ndev = dev_get_drvdata(dev);
1679 struct fec_enet_private *fep = netdev_priv(ndev);
1680
1681 clk_enable(fep->clk);
1682 if (netif_running(ndev)) {
1683 fec_restart(ndev, fep->full_duplex);
1684 netif_device_attach(ndev);
1685 }
1686
1687 return 0;
1688 }
1689
1690 static const struct dev_pm_ops fec_pm_ops = {
1691 .suspend = fec_suspend,
1692 .resume = fec_resume,
1693 .freeze = fec_suspend,
1694 .thaw = fec_resume,
1695 .poweroff = fec_suspend,
1696 .restore = fec_resume,
1697 };
1698 #endif
1699
1700 static struct platform_driver fec_driver = {
1701 .driver = {
1702 .name = DRIVER_NAME,
1703 .owner = THIS_MODULE,
1704 #ifdef CONFIG_PM
1705 .pm = &fec_pm_ops,
1706 #endif
1707 .of_match_table = fec_dt_ids,
1708 },
1709 .id_table = fec_devtype,
1710 .probe = fec_probe,
1711 .remove = __devexit_p(fec_drv_remove),
1712 };
1713
1714 static int __init
1715 fec_enet_module_init(void)
1716 {
1717 printk(KERN_INFO "FEC Ethernet Driver\n");
1718
1719 return platform_driver_register(&fec_driver);
1720 }
1721
1722 static void __exit
1723 fec_enet_cleanup(void)
1724 {
1725 platform_driver_unregister(&fec_driver);
1726 }
1727
1728 module_exit(fec_enet_cleanup);
1729 module_init(fec_enet_module_init);
1730
1731 MODULE_LICENSE("GPL");
This page took 0.101864 seconds and 5 git commands to generate.