ASoC: rt5645: Add struct dmi_system_id "Google Ultima" for chrome platform
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 #include <linux/prefetch.h>
61
62 #include <asm/cacheflush.h>
63
64 #include "fec.h"
65
66 static void set_multicast_list(struct net_device *ndev);
67 static void fec_enet_itr_coal_init(struct net_device *ndev);
68
69 #define DRIVER_NAME "fec"
70
71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE (1 << 5)
75 #define FEC_ENET_RSEM_V 0x84
76 #define FEC_ENET_RSFL_V 16
77 #define FEC_ENET_RAEM_V 0x8
78 #define FEC_ENET_RAFL_V 0x8
79 #define FEC_ENET_OPD_V 0xFFF0
80
81 static struct platform_device_id fec_devtype[] = {
82 {
83 /* keep it for coldfire */
84 .name = DRIVER_NAME,
85 .driver_data = 0,
86 }, {
87 .name = "imx25-fec",
88 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
89 }, {
90 .name = "imx27-fec",
91 .driver_data = FEC_QUIRK_HAS_RACC,
92 }, {
93 .name = "imx28-fec",
94 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
95 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
96 }, {
97 .name = "imx6q-fec",
98 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
99 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
100 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
101 FEC_QUIRK_HAS_RACC,
102 }, {
103 .name = "mvf600-fec",
104 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
105 }, {
106 .name = "imx6sx-fec",
107 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
108 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
109 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
110 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
111 FEC_QUIRK_HAS_RACC,
112 }, {
113 /* sentinel */
114 }
115 };
116 MODULE_DEVICE_TABLE(platform, fec_devtype);
117
118 enum imx_fec_type {
119 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
120 IMX27_FEC, /* runs on i.mx27/35/51 */
121 IMX28_FEC,
122 IMX6Q_FEC,
123 MVF600_FEC,
124 IMX6SX_FEC,
125 };
126
127 static const struct of_device_id fec_dt_ids[] = {
128 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
129 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
130 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
131 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
132 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
133 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
134 { /* sentinel */ }
135 };
136 MODULE_DEVICE_TABLE(of, fec_dt_ids);
137
138 static unsigned char macaddr[ETH_ALEN];
139 module_param_array(macaddr, byte, NULL, 0);
140 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
141
142 #if defined(CONFIG_M5272)
143 /*
144 * Some hardware gets it MAC address out of local flash memory.
145 * if this is non-zero then assume it is the address to get MAC from.
146 */
147 #if defined(CONFIG_NETtel)
148 #define FEC_FLASHMAC 0xf0006006
149 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
150 #define FEC_FLASHMAC 0xf0006000
151 #elif defined(CONFIG_CANCam)
152 #define FEC_FLASHMAC 0xf0020000
153 #elif defined (CONFIG_M5272C3)
154 #define FEC_FLASHMAC (0xffe04000 + 4)
155 #elif defined(CONFIG_MOD5272)
156 #define FEC_FLASHMAC 0xffc0406b
157 #else
158 #define FEC_FLASHMAC 0
159 #endif
160 #endif /* CONFIG_M5272 */
161
162 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
163 */
164 #define PKT_MAXBUF_SIZE 1522
165 #define PKT_MINBUF_SIZE 64
166 #define PKT_MAXBLR_SIZE 1536
167
168 /* FEC receive acceleration */
169 #define FEC_RACC_IPDIS (1 << 1)
170 #define FEC_RACC_PRODIS (1 << 2)
171 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
172
173 /*
174 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
175 * size bits. Other FEC hardware does not, so we need to take that into
176 * account when setting it.
177 */
178 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
179 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
180 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
181 #else
182 #define OPT_FRAME_SIZE 0
183 #endif
184
185 /* FEC MII MMFR bits definition */
186 #define FEC_MMFR_ST (1 << 30)
187 #define FEC_MMFR_OP_READ (2 << 28)
188 #define FEC_MMFR_OP_WRITE (1 << 28)
189 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
190 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
191 #define FEC_MMFR_TA (2 << 16)
192 #define FEC_MMFR_DATA(v) (v & 0xffff)
193 /* FEC ECR bits definition */
194 #define FEC_ECR_MAGICEN (1 << 2)
195 #define FEC_ECR_SLEEP (1 << 3)
196
197 #define FEC_MII_TIMEOUT 30000 /* us */
198
199 /* Transmitter timeout */
200 #define TX_TIMEOUT (2 * HZ)
201
202 #define FEC_PAUSE_FLAG_AUTONEG 0x1
203 #define FEC_PAUSE_FLAG_ENABLE 0x2
204 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
205 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
206 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
207
208 #define COPYBREAK_DEFAULT 256
209
210 #define TSO_HEADER_SIZE 128
211 /* Max number of allowed TCP segments for software TSO */
212 #define FEC_MAX_TSO_SEGS 100
213 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
214
215 #define IS_TSO_HEADER(txq, addr) \
216 ((addr >= txq->tso_hdrs_dma) && \
217 (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
218
219 static int mii_cnt;
220
221 static inline
222 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
223 struct fec_enet_private *fep,
224 int queue_id)
225 {
226 struct bufdesc *new_bd = bdp + 1;
227 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
228 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
229 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
230 struct bufdesc_ex *ex_base;
231 struct bufdesc *base;
232 int ring_size;
233
234 if (bdp >= txq->tx_bd_base) {
235 base = txq->tx_bd_base;
236 ring_size = txq->tx_ring_size;
237 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
238 } else {
239 base = rxq->rx_bd_base;
240 ring_size = rxq->rx_ring_size;
241 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
242 }
243
244 if (fep->bufdesc_ex)
245 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
246 ex_base : ex_new_bd);
247 else
248 return (new_bd >= (base + ring_size)) ?
249 base : new_bd;
250 }
251
252 static inline
253 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
254 struct fec_enet_private *fep,
255 int queue_id)
256 {
257 struct bufdesc *new_bd = bdp - 1;
258 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
259 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
260 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
261 struct bufdesc_ex *ex_base;
262 struct bufdesc *base;
263 int ring_size;
264
265 if (bdp >= txq->tx_bd_base) {
266 base = txq->tx_bd_base;
267 ring_size = txq->tx_ring_size;
268 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
269 } else {
270 base = rxq->rx_bd_base;
271 ring_size = rxq->rx_ring_size;
272 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
273 }
274
275 if (fep->bufdesc_ex)
276 return (struct bufdesc *)((ex_new_bd < ex_base) ?
277 (ex_new_bd + ring_size) : ex_new_bd);
278 else
279 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
280 }
281
282 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
283 struct fec_enet_private *fep)
284 {
285 return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
286 }
287
288 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
289 struct fec_enet_priv_tx_q *txq)
290 {
291 int entries;
292
293 entries = ((const char *)txq->dirty_tx -
294 (const char *)txq->cur_tx) / fep->bufdesc_size - 1;
295
296 return entries > 0 ? entries : entries + txq->tx_ring_size;
297 }
298
299 static void swap_buffer(void *bufaddr, int len)
300 {
301 int i;
302 unsigned int *buf = bufaddr;
303
304 for (i = 0; i < len; i += 4, buf++)
305 swab32s(buf);
306 }
307
308 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
309 {
310 int i;
311 unsigned int *src = src_buf;
312 unsigned int *dst = dst_buf;
313
314 for (i = 0; i < len; i += 4, src++, dst++)
315 *dst = swab32p(src);
316 }
317
318 static void fec_dump(struct net_device *ndev)
319 {
320 struct fec_enet_private *fep = netdev_priv(ndev);
321 struct bufdesc *bdp;
322 struct fec_enet_priv_tx_q *txq;
323 int index = 0;
324
325 netdev_info(ndev, "TX ring dump\n");
326 pr_info("Nr SC addr len SKB\n");
327
328 txq = fep->tx_queue[0];
329 bdp = txq->tx_bd_base;
330
331 do {
332 pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
333 index,
334 bdp == txq->cur_tx ? 'S' : ' ',
335 bdp == txq->dirty_tx ? 'H' : ' ',
336 bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
337 txq->tx_skbuff[index]);
338 bdp = fec_enet_get_nextdesc(bdp, fep, 0);
339 index++;
340 } while (bdp != txq->tx_bd_base);
341 }
342
343 static inline bool is_ipv4_pkt(struct sk_buff *skb)
344 {
345 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
346 }
347
348 static int
349 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
350 {
351 /* Only run for packets requiring a checksum. */
352 if (skb->ip_summed != CHECKSUM_PARTIAL)
353 return 0;
354
355 if (unlikely(skb_cow_head(skb, 0)))
356 return -1;
357
358 if (is_ipv4_pkt(skb))
359 ip_hdr(skb)->check = 0;
360 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
361
362 return 0;
363 }
364
365 static int
366 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
367 struct sk_buff *skb,
368 struct net_device *ndev)
369 {
370 struct fec_enet_private *fep = netdev_priv(ndev);
371 struct bufdesc *bdp = txq->cur_tx;
372 struct bufdesc_ex *ebdp;
373 int nr_frags = skb_shinfo(skb)->nr_frags;
374 unsigned short queue = skb_get_queue_mapping(skb);
375 int frag, frag_len;
376 unsigned short status;
377 unsigned int estatus = 0;
378 skb_frag_t *this_frag;
379 unsigned int index;
380 void *bufaddr;
381 dma_addr_t addr;
382 int i;
383
384 for (frag = 0; frag < nr_frags; frag++) {
385 this_frag = &skb_shinfo(skb)->frags[frag];
386 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
387 ebdp = (struct bufdesc_ex *)bdp;
388
389 status = bdp->cbd_sc;
390 status &= ~BD_ENET_TX_STATS;
391 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
392 frag_len = skb_shinfo(skb)->frags[frag].size;
393
394 /* Handle the last BD specially */
395 if (frag == nr_frags - 1) {
396 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
397 if (fep->bufdesc_ex) {
398 estatus |= BD_ENET_TX_INT;
399 if (unlikely(skb_shinfo(skb)->tx_flags &
400 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
401 estatus |= BD_ENET_TX_TS;
402 }
403 }
404
405 if (fep->bufdesc_ex) {
406 if (fep->quirks & FEC_QUIRK_HAS_AVB)
407 estatus |= FEC_TX_BD_FTYPE(queue);
408 if (skb->ip_summed == CHECKSUM_PARTIAL)
409 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
410 ebdp->cbd_bdu = 0;
411 ebdp->cbd_esc = estatus;
412 }
413
414 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
415
416 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
417 if (((unsigned long) bufaddr) & fep->tx_align ||
418 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
419 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
420 bufaddr = txq->tx_bounce[index];
421
422 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
423 swap_buffer(bufaddr, frag_len);
424 }
425
426 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
427 DMA_TO_DEVICE);
428 if (dma_mapping_error(&fep->pdev->dev, addr)) {
429 dev_kfree_skb_any(skb);
430 if (net_ratelimit())
431 netdev_err(ndev, "Tx DMA memory map failed\n");
432 goto dma_mapping_error;
433 }
434
435 bdp->cbd_bufaddr = addr;
436 bdp->cbd_datlen = frag_len;
437 bdp->cbd_sc = status;
438 }
439
440 txq->cur_tx = bdp;
441
442 return 0;
443
444 dma_mapping_error:
445 bdp = txq->cur_tx;
446 for (i = 0; i < frag; i++) {
447 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
448 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
449 bdp->cbd_datlen, DMA_TO_DEVICE);
450 }
451 return NETDEV_TX_OK;
452 }
453
454 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
455 struct sk_buff *skb, struct net_device *ndev)
456 {
457 struct fec_enet_private *fep = netdev_priv(ndev);
458 int nr_frags = skb_shinfo(skb)->nr_frags;
459 struct bufdesc *bdp, *last_bdp;
460 void *bufaddr;
461 dma_addr_t addr;
462 unsigned short status;
463 unsigned short buflen;
464 unsigned short queue;
465 unsigned int estatus = 0;
466 unsigned int index;
467 int entries_free;
468 int ret;
469
470 entries_free = fec_enet_get_free_txdesc_num(fep, txq);
471 if (entries_free < MAX_SKB_FRAGS + 1) {
472 dev_kfree_skb_any(skb);
473 if (net_ratelimit())
474 netdev_err(ndev, "NOT enough BD for SG!\n");
475 return NETDEV_TX_OK;
476 }
477
478 /* Protocol checksum off-load for TCP and UDP. */
479 if (fec_enet_clear_csum(skb, ndev)) {
480 dev_kfree_skb_any(skb);
481 return NETDEV_TX_OK;
482 }
483
484 /* Fill in a Tx ring entry */
485 bdp = txq->cur_tx;
486 status = bdp->cbd_sc;
487 status &= ~BD_ENET_TX_STATS;
488
489 /* Set buffer length and buffer pointer */
490 bufaddr = skb->data;
491 buflen = skb_headlen(skb);
492
493 queue = skb_get_queue_mapping(skb);
494 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
495 if (((unsigned long) bufaddr) & fep->tx_align ||
496 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
497 memcpy(txq->tx_bounce[index], skb->data, buflen);
498 bufaddr = txq->tx_bounce[index];
499
500 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
501 swap_buffer(bufaddr, buflen);
502 }
503
504 /* Push the data cache so the CPM does not get stale memory data. */
505 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
506 if (dma_mapping_error(&fep->pdev->dev, addr)) {
507 dev_kfree_skb_any(skb);
508 if (net_ratelimit())
509 netdev_err(ndev, "Tx DMA memory map failed\n");
510 return NETDEV_TX_OK;
511 }
512
513 if (nr_frags) {
514 ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
515 if (ret)
516 return ret;
517 } else {
518 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
519 if (fep->bufdesc_ex) {
520 estatus = BD_ENET_TX_INT;
521 if (unlikely(skb_shinfo(skb)->tx_flags &
522 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
523 estatus |= BD_ENET_TX_TS;
524 }
525 }
526
527 if (fep->bufdesc_ex) {
528
529 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
530
531 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
532 fep->hwts_tx_en))
533 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
534
535 if (fep->quirks & FEC_QUIRK_HAS_AVB)
536 estatus |= FEC_TX_BD_FTYPE(queue);
537
538 if (skb->ip_summed == CHECKSUM_PARTIAL)
539 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
540
541 ebdp->cbd_bdu = 0;
542 ebdp->cbd_esc = estatus;
543 }
544
545 last_bdp = txq->cur_tx;
546 index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
547 /* Save skb pointer */
548 txq->tx_skbuff[index] = skb;
549
550 bdp->cbd_datlen = buflen;
551 bdp->cbd_bufaddr = addr;
552
553 /* Send it on its way. Tell FEC it's ready, interrupt when done,
554 * it's the last BD of the frame, and to put the CRC on the end.
555 */
556 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
557 bdp->cbd_sc = status;
558
559 /* If this was the last BD in the ring, start at the beginning again. */
560 bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
561
562 skb_tx_timestamp(skb);
563
564 txq->cur_tx = bdp;
565
566 /* Trigger transmission start */
567 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
568
569 return 0;
570 }
571
572 static int
573 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
574 struct net_device *ndev,
575 struct bufdesc *bdp, int index, char *data,
576 int size, bool last_tcp, bool is_last)
577 {
578 struct fec_enet_private *fep = netdev_priv(ndev);
579 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
580 unsigned short queue = skb_get_queue_mapping(skb);
581 unsigned short status;
582 unsigned int estatus = 0;
583 dma_addr_t addr;
584
585 status = bdp->cbd_sc;
586 status &= ~BD_ENET_TX_STATS;
587
588 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
589
590 if (((unsigned long) data) & fep->tx_align ||
591 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
592 memcpy(txq->tx_bounce[index], data, size);
593 data = txq->tx_bounce[index];
594
595 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
596 swap_buffer(data, size);
597 }
598
599 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
600 if (dma_mapping_error(&fep->pdev->dev, addr)) {
601 dev_kfree_skb_any(skb);
602 if (net_ratelimit())
603 netdev_err(ndev, "Tx DMA memory map failed\n");
604 return NETDEV_TX_BUSY;
605 }
606
607 bdp->cbd_datlen = size;
608 bdp->cbd_bufaddr = addr;
609
610 if (fep->bufdesc_ex) {
611 if (fep->quirks & FEC_QUIRK_HAS_AVB)
612 estatus |= FEC_TX_BD_FTYPE(queue);
613 if (skb->ip_summed == CHECKSUM_PARTIAL)
614 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
615 ebdp->cbd_bdu = 0;
616 ebdp->cbd_esc = estatus;
617 }
618
619 /* Handle the last BD specially */
620 if (last_tcp)
621 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
622 if (is_last) {
623 status |= BD_ENET_TX_INTR;
624 if (fep->bufdesc_ex)
625 ebdp->cbd_esc |= BD_ENET_TX_INT;
626 }
627
628 bdp->cbd_sc = status;
629
630 return 0;
631 }
632
633 static int
634 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
635 struct sk_buff *skb, struct net_device *ndev,
636 struct bufdesc *bdp, int index)
637 {
638 struct fec_enet_private *fep = netdev_priv(ndev);
639 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
640 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
641 unsigned short queue = skb_get_queue_mapping(skb);
642 void *bufaddr;
643 unsigned long dmabuf;
644 unsigned short status;
645 unsigned int estatus = 0;
646
647 status = bdp->cbd_sc;
648 status &= ~BD_ENET_TX_STATS;
649 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
650
651 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
652 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
653 if (((unsigned long)bufaddr) & fep->tx_align ||
654 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
655 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
656 bufaddr = txq->tx_bounce[index];
657
658 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
659 swap_buffer(bufaddr, hdr_len);
660
661 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
662 hdr_len, DMA_TO_DEVICE);
663 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
664 dev_kfree_skb_any(skb);
665 if (net_ratelimit())
666 netdev_err(ndev, "Tx DMA memory map failed\n");
667 return NETDEV_TX_BUSY;
668 }
669 }
670
671 bdp->cbd_bufaddr = dmabuf;
672 bdp->cbd_datlen = hdr_len;
673
674 if (fep->bufdesc_ex) {
675 if (fep->quirks & FEC_QUIRK_HAS_AVB)
676 estatus |= FEC_TX_BD_FTYPE(queue);
677 if (skb->ip_summed == CHECKSUM_PARTIAL)
678 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
679 ebdp->cbd_bdu = 0;
680 ebdp->cbd_esc = estatus;
681 }
682
683 bdp->cbd_sc = status;
684
685 return 0;
686 }
687
688 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
689 struct sk_buff *skb,
690 struct net_device *ndev)
691 {
692 struct fec_enet_private *fep = netdev_priv(ndev);
693 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
694 int total_len, data_left;
695 struct bufdesc *bdp = txq->cur_tx;
696 unsigned short queue = skb_get_queue_mapping(skb);
697 struct tso_t tso;
698 unsigned int index = 0;
699 int ret;
700
701 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
702 dev_kfree_skb_any(skb);
703 if (net_ratelimit())
704 netdev_err(ndev, "NOT enough BD for TSO!\n");
705 return NETDEV_TX_OK;
706 }
707
708 /* Protocol checksum off-load for TCP and UDP. */
709 if (fec_enet_clear_csum(skb, ndev)) {
710 dev_kfree_skb_any(skb);
711 return NETDEV_TX_OK;
712 }
713
714 /* Initialize the TSO handler, and prepare the first payload */
715 tso_start(skb, &tso);
716
717 total_len = skb->len - hdr_len;
718 while (total_len > 0) {
719 char *hdr;
720
721 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
722 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
723 total_len -= data_left;
724
725 /* prepare packet headers: MAC + IP + TCP */
726 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
727 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
728 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
729 if (ret)
730 goto err_release;
731
732 while (data_left > 0) {
733 int size;
734
735 size = min_t(int, tso.size, data_left);
736 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
737 index = fec_enet_get_bd_index(txq->tx_bd_base,
738 bdp, fep);
739 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
740 bdp, index,
741 tso.data, size,
742 size == data_left,
743 total_len == 0);
744 if (ret)
745 goto err_release;
746
747 data_left -= size;
748 tso_build_data(skb, &tso, size);
749 }
750
751 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
752 }
753
754 /* Save skb pointer */
755 txq->tx_skbuff[index] = skb;
756
757 skb_tx_timestamp(skb);
758 txq->cur_tx = bdp;
759
760 /* Trigger transmission start */
761 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
762 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
763 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
764 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
765 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
766 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
767
768 return 0;
769
770 err_release:
771 /* TODO: Release all used data descriptors for TSO */
772 return ret;
773 }
774
775 static netdev_tx_t
776 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
777 {
778 struct fec_enet_private *fep = netdev_priv(ndev);
779 int entries_free;
780 unsigned short queue;
781 struct fec_enet_priv_tx_q *txq;
782 struct netdev_queue *nq;
783 int ret;
784
785 queue = skb_get_queue_mapping(skb);
786 txq = fep->tx_queue[queue];
787 nq = netdev_get_tx_queue(ndev, queue);
788
789 if (skb_is_gso(skb))
790 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
791 else
792 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
793 if (ret)
794 return ret;
795
796 entries_free = fec_enet_get_free_txdesc_num(fep, txq);
797 if (entries_free <= txq->tx_stop_threshold)
798 netif_tx_stop_queue(nq);
799
800 return NETDEV_TX_OK;
801 }
802
803 /* Init RX & TX buffer descriptors
804 */
805 static void fec_enet_bd_init(struct net_device *dev)
806 {
807 struct fec_enet_private *fep = netdev_priv(dev);
808 struct fec_enet_priv_tx_q *txq;
809 struct fec_enet_priv_rx_q *rxq;
810 struct bufdesc *bdp;
811 unsigned int i;
812 unsigned int q;
813
814 for (q = 0; q < fep->num_rx_queues; q++) {
815 /* Initialize the receive buffer descriptors. */
816 rxq = fep->rx_queue[q];
817 bdp = rxq->rx_bd_base;
818
819 for (i = 0; i < rxq->rx_ring_size; i++) {
820
821 /* Initialize the BD for every fragment in the page. */
822 if (bdp->cbd_bufaddr)
823 bdp->cbd_sc = BD_ENET_RX_EMPTY;
824 else
825 bdp->cbd_sc = 0;
826 bdp = fec_enet_get_nextdesc(bdp, fep, q);
827 }
828
829 /* Set the last buffer to wrap */
830 bdp = fec_enet_get_prevdesc(bdp, fep, q);
831 bdp->cbd_sc |= BD_SC_WRAP;
832
833 rxq->cur_rx = rxq->rx_bd_base;
834 }
835
836 for (q = 0; q < fep->num_tx_queues; q++) {
837 /* ...and the same for transmit */
838 txq = fep->tx_queue[q];
839 bdp = txq->tx_bd_base;
840 txq->cur_tx = bdp;
841
842 for (i = 0; i < txq->tx_ring_size; i++) {
843 /* Initialize the BD for every fragment in the page. */
844 bdp->cbd_sc = 0;
845 if (txq->tx_skbuff[i]) {
846 dev_kfree_skb_any(txq->tx_skbuff[i]);
847 txq->tx_skbuff[i] = NULL;
848 }
849 bdp->cbd_bufaddr = 0;
850 bdp = fec_enet_get_nextdesc(bdp, fep, q);
851 }
852
853 /* Set the last buffer to wrap */
854 bdp = fec_enet_get_prevdesc(bdp, fep, q);
855 bdp->cbd_sc |= BD_SC_WRAP;
856 txq->dirty_tx = bdp;
857 }
858 }
859
860 static void fec_enet_active_rxring(struct net_device *ndev)
861 {
862 struct fec_enet_private *fep = netdev_priv(ndev);
863 int i;
864
865 for (i = 0; i < fep->num_rx_queues; i++)
866 writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
867 }
868
869 static void fec_enet_enable_ring(struct net_device *ndev)
870 {
871 struct fec_enet_private *fep = netdev_priv(ndev);
872 struct fec_enet_priv_tx_q *txq;
873 struct fec_enet_priv_rx_q *rxq;
874 int i;
875
876 for (i = 0; i < fep->num_rx_queues; i++) {
877 rxq = fep->rx_queue[i];
878 writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
879 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
880
881 /* enable DMA1/2 */
882 if (i)
883 writel(RCMR_MATCHEN | RCMR_CMP(i),
884 fep->hwp + FEC_RCMR(i));
885 }
886
887 for (i = 0; i < fep->num_tx_queues; i++) {
888 txq = fep->tx_queue[i];
889 writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
890
891 /* enable DMA1/2 */
892 if (i)
893 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
894 fep->hwp + FEC_DMA_CFG(i));
895 }
896 }
897
898 static void fec_enet_reset_skb(struct net_device *ndev)
899 {
900 struct fec_enet_private *fep = netdev_priv(ndev);
901 struct fec_enet_priv_tx_q *txq;
902 int i, j;
903
904 for (i = 0; i < fep->num_tx_queues; i++) {
905 txq = fep->tx_queue[i];
906
907 for (j = 0; j < txq->tx_ring_size; j++) {
908 if (txq->tx_skbuff[j]) {
909 dev_kfree_skb_any(txq->tx_skbuff[j]);
910 txq->tx_skbuff[j] = NULL;
911 }
912 }
913 }
914 }
915
916 /*
917 * This function is called to start or restart the FEC during a link
918 * change, transmit timeout, or to reconfigure the FEC. The network
919 * packet processing for this device must be stopped before this call.
920 */
921 static void
922 fec_restart(struct net_device *ndev)
923 {
924 struct fec_enet_private *fep = netdev_priv(ndev);
925 u32 val;
926 u32 temp_mac[2];
927 u32 rcntl = OPT_FRAME_SIZE | 0x04;
928 u32 ecntl = 0x2; /* ETHEREN */
929
930 /* Whack a reset. We should wait for this.
931 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
932 * instead of reset MAC itself.
933 */
934 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
935 writel(0, fep->hwp + FEC_ECNTRL);
936 } else {
937 writel(1, fep->hwp + FEC_ECNTRL);
938 udelay(10);
939 }
940
941 /*
942 * enet-mac reset will reset mac address registers too,
943 * so need to reconfigure it.
944 */
945 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
946 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
947 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
948 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
949 }
950
951 /* Clear any outstanding interrupt. */
952 writel(0xffffffff, fep->hwp + FEC_IEVENT);
953
954 fec_enet_bd_init(ndev);
955
956 fec_enet_enable_ring(ndev);
957
958 /* Reset tx SKB buffers. */
959 fec_enet_reset_skb(ndev);
960
961 /* Enable MII mode */
962 if (fep->full_duplex == DUPLEX_FULL) {
963 /* FD enable */
964 writel(0x04, fep->hwp + FEC_X_CNTRL);
965 } else {
966 /* No Rcv on Xmit */
967 rcntl |= 0x02;
968 writel(0x0, fep->hwp + FEC_X_CNTRL);
969 }
970
971 /* Set MII speed */
972 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
973
974 #if !defined(CONFIG_M5272)
975 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
976 /* set RX checksum */
977 val = readl(fep->hwp + FEC_RACC);
978 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
979 val |= FEC_RACC_OPTIONS;
980 else
981 val &= ~FEC_RACC_OPTIONS;
982 writel(val, fep->hwp + FEC_RACC);
983 }
984 #endif
985
986 /*
987 * The phy interface and speed need to get configured
988 * differently on enet-mac.
989 */
990 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
991 /* Enable flow control and length check */
992 rcntl |= 0x40000000 | 0x00000020;
993
994 /* RGMII, RMII or MII */
995 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
996 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
997 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
998 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
999 rcntl |= (1 << 6);
1000 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1001 rcntl |= (1 << 8);
1002 else
1003 rcntl &= ~(1 << 8);
1004
1005 /* 1G, 100M or 10M */
1006 if (fep->phy_dev) {
1007 if (fep->phy_dev->speed == SPEED_1000)
1008 ecntl |= (1 << 5);
1009 else if (fep->phy_dev->speed == SPEED_100)
1010 rcntl &= ~(1 << 9);
1011 else
1012 rcntl |= (1 << 9);
1013 }
1014 } else {
1015 #ifdef FEC_MIIGSK_ENR
1016 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1017 u32 cfgr;
1018 /* disable the gasket and wait */
1019 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1020 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1021 udelay(1);
1022
1023 /*
1024 * configure the gasket:
1025 * RMII, 50 MHz, no loopback, no echo
1026 * MII, 25 MHz, no loopback, no echo
1027 */
1028 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1029 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1030 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1031 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1032 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1033
1034 /* re-enable the gasket */
1035 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1036 }
1037 #endif
1038 }
1039
1040 #if !defined(CONFIG_M5272)
1041 /* enable pause frame*/
1042 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1043 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1044 fep->phy_dev && fep->phy_dev->pause)) {
1045 rcntl |= FEC_ENET_FCE;
1046
1047 /* set FIFO threshold parameter to reduce overrun */
1048 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1049 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1050 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1051 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1052
1053 /* OPD */
1054 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1055 } else {
1056 rcntl &= ~FEC_ENET_FCE;
1057 }
1058 #endif /* !defined(CONFIG_M5272) */
1059
1060 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1061
1062 /* Setup multicast filter. */
1063 set_multicast_list(ndev);
1064 #ifndef CONFIG_M5272
1065 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1066 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1067 #endif
1068
1069 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1070 /* enable ENET endian swap */
1071 ecntl |= (1 << 8);
1072 /* enable ENET store and forward mode */
1073 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1074 }
1075
1076 if (fep->bufdesc_ex)
1077 ecntl |= (1 << 4);
1078
1079 #ifndef CONFIG_M5272
1080 /* Enable the MIB statistic event counters */
1081 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1082 #endif
1083
1084 /* And last, enable the transmit and receive processing */
1085 writel(ecntl, fep->hwp + FEC_ECNTRL);
1086 fec_enet_active_rxring(ndev);
1087
1088 if (fep->bufdesc_ex)
1089 fec_ptp_start_cyclecounter(ndev);
1090
1091 /* Enable interrupts we wish to service */
1092 if (fep->link)
1093 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1094 else
1095 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1096
1097 /* Init the interrupt coalescing */
1098 fec_enet_itr_coal_init(ndev);
1099
1100 }
1101
1102 static void
1103 fec_stop(struct net_device *ndev)
1104 {
1105 struct fec_enet_private *fep = netdev_priv(ndev);
1106 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1107 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1108 u32 val;
1109
1110 /* We cannot expect a graceful transmit stop without link !!! */
1111 if (fep->link) {
1112 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1113 udelay(10);
1114 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1115 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1116 }
1117
1118 /* Whack a reset. We should wait for this.
1119 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1120 * instead of reset MAC itself.
1121 */
1122 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1123 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1124 writel(0, fep->hwp + FEC_ECNTRL);
1125 } else {
1126 writel(1, fep->hwp + FEC_ECNTRL);
1127 udelay(10);
1128 }
1129 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1130 } else {
1131 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1132 val = readl(fep->hwp + FEC_ECNTRL);
1133 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1134 writel(val, fep->hwp + FEC_ECNTRL);
1135
1136 if (pdata && pdata->sleep_mode_enable)
1137 pdata->sleep_mode_enable(true);
1138 }
1139 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1140
1141 /* We have to keep ENET enabled to have MII interrupt stay working */
1142 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1143 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1144 writel(2, fep->hwp + FEC_ECNTRL);
1145 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1146 }
1147 }
1148
1149
1150 static void
1151 fec_timeout(struct net_device *ndev)
1152 {
1153 struct fec_enet_private *fep = netdev_priv(ndev);
1154
1155 fec_dump(ndev);
1156
1157 ndev->stats.tx_errors++;
1158
1159 schedule_work(&fep->tx_timeout_work);
1160 }
1161
1162 static void fec_enet_timeout_work(struct work_struct *work)
1163 {
1164 struct fec_enet_private *fep =
1165 container_of(work, struct fec_enet_private, tx_timeout_work);
1166 struct net_device *ndev = fep->netdev;
1167
1168 rtnl_lock();
1169 if (netif_device_present(ndev) || netif_running(ndev)) {
1170 napi_disable(&fep->napi);
1171 netif_tx_lock_bh(ndev);
1172 fec_restart(ndev);
1173 netif_wake_queue(ndev);
1174 netif_tx_unlock_bh(ndev);
1175 napi_enable(&fep->napi);
1176 }
1177 rtnl_unlock();
1178 }
1179
1180 static void
1181 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1182 struct skb_shared_hwtstamps *hwtstamps)
1183 {
1184 unsigned long flags;
1185 u64 ns;
1186
1187 spin_lock_irqsave(&fep->tmreg_lock, flags);
1188 ns = timecounter_cyc2time(&fep->tc, ts);
1189 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1190
1191 memset(hwtstamps, 0, sizeof(*hwtstamps));
1192 hwtstamps->hwtstamp = ns_to_ktime(ns);
1193 }
1194
1195 static void
1196 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1197 {
1198 struct fec_enet_private *fep;
1199 struct bufdesc *bdp;
1200 unsigned short status;
1201 struct sk_buff *skb;
1202 struct fec_enet_priv_tx_q *txq;
1203 struct netdev_queue *nq;
1204 int index = 0;
1205 int entries_free;
1206
1207 fep = netdev_priv(ndev);
1208
1209 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1210
1211 txq = fep->tx_queue[queue_id];
1212 /* get next bdp of dirty_tx */
1213 nq = netdev_get_tx_queue(ndev, queue_id);
1214 bdp = txq->dirty_tx;
1215
1216 /* get next bdp of dirty_tx */
1217 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1218
1219 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1220
1221 /* current queue is empty */
1222 if (bdp == txq->cur_tx)
1223 break;
1224
1225 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1226
1227 skb = txq->tx_skbuff[index];
1228 txq->tx_skbuff[index] = NULL;
1229 if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1230 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1231 bdp->cbd_datlen, DMA_TO_DEVICE);
1232 bdp->cbd_bufaddr = 0;
1233 if (!skb) {
1234 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1235 continue;
1236 }
1237
1238 /* Check for errors. */
1239 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1240 BD_ENET_TX_RL | BD_ENET_TX_UN |
1241 BD_ENET_TX_CSL)) {
1242 ndev->stats.tx_errors++;
1243 if (status & BD_ENET_TX_HB) /* No heartbeat */
1244 ndev->stats.tx_heartbeat_errors++;
1245 if (status & BD_ENET_TX_LC) /* Late collision */
1246 ndev->stats.tx_window_errors++;
1247 if (status & BD_ENET_TX_RL) /* Retrans limit */
1248 ndev->stats.tx_aborted_errors++;
1249 if (status & BD_ENET_TX_UN) /* Underrun */
1250 ndev->stats.tx_fifo_errors++;
1251 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1252 ndev->stats.tx_carrier_errors++;
1253 } else {
1254 ndev->stats.tx_packets++;
1255 ndev->stats.tx_bytes += skb->len;
1256 }
1257
1258 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1259 fep->bufdesc_ex) {
1260 struct skb_shared_hwtstamps shhwtstamps;
1261 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1262
1263 fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1264 skb_tstamp_tx(skb, &shhwtstamps);
1265 }
1266
1267 /* Deferred means some collisions occurred during transmit,
1268 * but we eventually sent the packet OK.
1269 */
1270 if (status & BD_ENET_TX_DEF)
1271 ndev->stats.collisions++;
1272
1273 /* Free the sk buffer associated with this last transmit */
1274 dev_kfree_skb_any(skb);
1275
1276 txq->dirty_tx = bdp;
1277
1278 /* Update pointer to next buffer descriptor to be transmitted */
1279 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1280
1281 /* Since we have freed up a buffer, the ring is no longer full
1282 */
1283 if (netif_queue_stopped(ndev)) {
1284 entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1285 if (entries_free >= txq->tx_wake_threshold)
1286 netif_tx_wake_queue(nq);
1287 }
1288 }
1289
1290 /* ERR006538: Keep the transmitter going */
1291 if (bdp != txq->cur_tx &&
1292 readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1293 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1294 }
1295
1296 static void
1297 fec_enet_tx(struct net_device *ndev)
1298 {
1299 struct fec_enet_private *fep = netdev_priv(ndev);
1300 u16 queue_id;
1301 /* First process class A queue, then Class B and Best Effort queue */
1302 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1303 clear_bit(queue_id, &fep->work_tx);
1304 fec_enet_tx_queue(ndev, queue_id);
1305 }
1306 return;
1307 }
1308
1309 static int
1310 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1311 {
1312 struct fec_enet_private *fep = netdev_priv(ndev);
1313 int off;
1314
1315 off = ((unsigned long)skb->data) & fep->rx_align;
1316 if (off)
1317 skb_reserve(skb, fep->rx_align + 1 - off);
1318
1319 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1320 FEC_ENET_RX_FRSIZE - fep->rx_align,
1321 DMA_FROM_DEVICE);
1322 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1323 if (net_ratelimit())
1324 netdev_err(ndev, "Rx DMA memory map failed\n");
1325 return -ENOMEM;
1326 }
1327
1328 return 0;
1329 }
1330
1331 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1332 struct bufdesc *bdp, u32 length, bool swap)
1333 {
1334 struct fec_enet_private *fep = netdev_priv(ndev);
1335 struct sk_buff *new_skb;
1336
1337 if (length > fep->rx_copybreak)
1338 return false;
1339
1340 new_skb = netdev_alloc_skb(ndev, length);
1341 if (!new_skb)
1342 return false;
1343
1344 dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1345 FEC_ENET_RX_FRSIZE - fep->rx_align,
1346 DMA_FROM_DEVICE);
1347 if (!swap)
1348 memcpy(new_skb->data, (*skb)->data, length);
1349 else
1350 swap_buffer2(new_skb->data, (*skb)->data, length);
1351 *skb = new_skb;
1352
1353 return true;
1354 }
1355
1356 /* During a receive, the cur_rx points to the current incoming buffer.
1357 * When we update through the ring, if the next incoming buffer has
1358 * not been given to the system, we just set the empty indicator,
1359 * effectively tossing the packet.
1360 */
1361 static int
1362 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1363 {
1364 struct fec_enet_private *fep = netdev_priv(ndev);
1365 struct fec_enet_priv_rx_q *rxq;
1366 struct bufdesc *bdp;
1367 unsigned short status;
1368 struct sk_buff *skb_new = NULL;
1369 struct sk_buff *skb;
1370 ushort pkt_len;
1371 __u8 *data;
1372 int pkt_received = 0;
1373 struct bufdesc_ex *ebdp = NULL;
1374 bool vlan_packet_rcvd = false;
1375 u16 vlan_tag;
1376 int index = 0;
1377 bool is_copybreak;
1378 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1379
1380 #ifdef CONFIG_M532x
1381 flush_cache_all();
1382 #endif
1383 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1384 rxq = fep->rx_queue[queue_id];
1385
1386 /* First, grab all of the stats for the incoming packet.
1387 * These get messed up if we get called due to a busy condition.
1388 */
1389 bdp = rxq->cur_rx;
1390
1391 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1392
1393 if (pkt_received >= budget)
1394 break;
1395 pkt_received++;
1396
1397 /* Since we have allocated space to hold a complete frame,
1398 * the last indicator should be set.
1399 */
1400 if ((status & BD_ENET_RX_LAST) == 0)
1401 netdev_err(ndev, "rcv is not +last\n");
1402
1403
1404 /* Check for errors. */
1405 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1406 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1407 ndev->stats.rx_errors++;
1408 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1409 /* Frame too long or too short. */
1410 ndev->stats.rx_length_errors++;
1411 }
1412 if (status & BD_ENET_RX_NO) /* Frame alignment */
1413 ndev->stats.rx_frame_errors++;
1414 if (status & BD_ENET_RX_CR) /* CRC Error */
1415 ndev->stats.rx_crc_errors++;
1416 if (status & BD_ENET_RX_OV) /* FIFO overrun */
1417 ndev->stats.rx_fifo_errors++;
1418 }
1419
1420 /* Report late collisions as a frame error.
1421 * On this error, the BD is closed, but we don't know what we
1422 * have in the buffer. So, just drop this frame on the floor.
1423 */
1424 if (status & BD_ENET_RX_CL) {
1425 ndev->stats.rx_errors++;
1426 ndev->stats.rx_frame_errors++;
1427 goto rx_processing_done;
1428 }
1429
1430 /* Process the incoming frame. */
1431 ndev->stats.rx_packets++;
1432 pkt_len = bdp->cbd_datlen;
1433 ndev->stats.rx_bytes += pkt_len;
1434
1435 index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1436 skb = rxq->rx_skbuff[index];
1437
1438 /* The packet length includes FCS, but we don't want to
1439 * include that when passing upstream as it messes up
1440 * bridging applications.
1441 */
1442 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1443 need_swap);
1444 if (!is_copybreak) {
1445 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1446 if (unlikely(!skb_new)) {
1447 ndev->stats.rx_dropped++;
1448 goto rx_processing_done;
1449 }
1450 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1451 FEC_ENET_RX_FRSIZE - fep->rx_align,
1452 DMA_FROM_DEVICE);
1453 }
1454
1455 prefetch(skb->data - NET_IP_ALIGN);
1456 skb_put(skb, pkt_len - 4);
1457 data = skb->data;
1458 if (!is_copybreak && need_swap)
1459 swap_buffer(data, pkt_len);
1460
1461 /* Extract the enhanced buffer descriptor */
1462 ebdp = NULL;
1463 if (fep->bufdesc_ex)
1464 ebdp = (struct bufdesc_ex *)bdp;
1465
1466 /* If this is a VLAN packet remove the VLAN Tag */
1467 vlan_packet_rcvd = false;
1468 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1469 fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1470 /* Push and remove the vlan tag */
1471 struct vlan_hdr *vlan_header =
1472 (struct vlan_hdr *) (data + ETH_HLEN);
1473 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1474
1475 vlan_packet_rcvd = true;
1476
1477 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1478 skb_pull(skb, VLAN_HLEN);
1479 }
1480
1481 skb->protocol = eth_type_trans(skb, ndev);
1482
1483 /* Get receive timestamp from the skb */
1484 if (fep->hwts_rx_en && fep->bufdesc_ex)
1485 fec_enet_hwtstamp(fep, ebdp->ts,
1486 skb_hwtstamps(skb));
1487
1488 if (fep->bufdesc_ex &&
1489 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1490 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1491 /* don't check it */
1492 skb->ip_summed = CHECKSUM_UNNECESSARY;
1493 } else {
1494 skb_checksum_none_assert(skb);
1495 }
1496 }
1497
1498 /* Handle received VLAN packets */
1499 if (vlan_packet_rcvd)
1500 __vlan_hwaccel_put_tag(skb,
1501 htons(ETH_P_8021Q),
1502 vlan_tag);
1503
1504 napi_gro_receive(&fep->napi, skb);
1505
1506 if (is_copybreak) {
1507 dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1508 FEC_ENET_RX_FRSIZE - fep->rx_align,
1509 DMA_FROM_DEVICE);
1510 } else {
1511 rxq->rx_skbuff[index] = skb_new;
1512 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1513 }
1514
1515 rx_processing_done:
1516 /* Clear the status flags for this buffer */
1517 status &= ~BD_ENET_RX_STATS;
1518
1519 /* Mark the buffer empty */
1520 status |= BD_ENET_RX_EMPTY;
1521 bdp->cbd_sc = status;
1522
1523 if (fep->bufdesc_ex) {
1524 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1525
1526 ebdp->cbd_esc = BD_ENET_RX_INT;
1527 ebdp->cbd_prot = 0;
1528 ebdp->cbd_bdu = 0;
1529 }
1530
1531 /* Update BD pointer to next entry */
1532 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1533
1534 /* Doing this here will keep the FEC running while we process
1535 * incoming frames. On a heavily loaded network, we should be
1536 * able to keep up at the expense of system resources.
1537 */
1538 writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1539 }
1540 rxq->cur_rx = bdp;
1541 return pkt_received;
1542 }
1543
1544 static int
1545 fec_enet_rx(struct net_device *ndev, int budget)
1546 {
1547 int pkt_received = 0;
1548 u16 queue_id;
1549 struct fec_enet_private *fep = netdev_priv(ndev);
1550
1551 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1552 clear_bit(queue_id, &fep->work_rx);
1553 pkt_received += fec_enet_rx_queue(ndev,
1554 budget - pkt_received, queue_id);
1555 }
1556 return pkt_received;
1557 }
1558
1559 static bool
1560 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1561 {
1562 if (int_events == 0)
1563 return false;
1564
1565 if (int_events & FEC_ENET_RXF)
1566 fep->work_rx |= (1 << 2);
1567 if (int_events & FEC_ENET_RXF_1)
1568 fep->work_rx |= (1 << 0);
1569 if (int_events & FEC_ENET_RXF_2)
1570 fep->work_rx |= (1 << 1);
1571
1572 if (int_events & FEC_ENET_TXF)
1573 fep->work_tx |= (1 << 2);
1574 if (int_events & FEC_ENET_TXF_1)
1575 fep->work_tx |= (1 << 0);
1576 if (int_events & FEC_ENET_TXF_2)
1577 fep->work_tx |= (1 << 1);
1578
1579 return true;
1580 }
1581
1582 static irqreturn_t
1583 fec_enet_interrupt(int irq, void *dev_id)
1584 {
1585 struct net_device *ndev = dev_id;
1586 struct fec_enet_private *fep = netdev_priv(ndev);
1587 uint int_events;
1588 irqreturn_t ret = IRQ_NONE;
1589
1590 int_events = readl(fep->hwp + FEC_IEVENT);
1591 writel(int_events, fep->hwp + FEC_IEVENT);
1592 fec_enet_collect_events(fep, int_events);
1593
1594 if ((fep->work_tx || fep->work_rx) && fep->link) {
1595 ret = IRQ_HANDLED;
1596
1597 if (napi_schedule_prep(&fep->napi)) {
1598 /* Disable the NAPI interrupts */
1599 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1600 __napi_schedule(&fep->napi);
1601 }
1602 }
1603
1604 if (int_events & FEC_ENET_MII) {
1605 ret = IRQ_HANDLED;
1606 complete(&fep->mdio_done);
1607 }
1608
1609 if (fep->ptp_clock)
1610 fec_ptp_check_pps_event(fep);
1611
1612 return ret;
1613 }
1614
1615 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1616 {
1617 struct net_device *ndev = napi->dev;
1618 struct fec_enet_private *fep = netdev_priv(ndev);
1619 int pkts;
1620
1621 pkts = fec_enet_rx(ndev, budget);
1622
1623 fec_enet_tx(ndev);
1624
1625 if (pkts < budget) {
1626 napi_complete(napi);
1627 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1628 }
1629 return pkts;
1630 }
1631
1632 /* ------------------------------------------------------------------------- */
1633 static void fec_get_mac(struct net_device *ndev)
1634 {
1635 struct fec_enet_private *fep = netdev_priv(ndev);
1636 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1637 unsigned char *iap, tmpaddr[ETH_ALEN];
1638
1639 /*
1640 * try to get mac address in following order:
1641 *
1642 * 1) module parameter via kernel command line in form
1643 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1644 */
1645 iap = macaddr;
1646
1647 /*
1648 * 2) from device tree data
1649 */
1650 if (!is_valid_ether_addr(iap)) {
1651 struct device_node *np = fep->pdev->dev.of_node;
1652 if (np) {
1653 const char *mac = of_get_mac_address(np);
1654 if (mac)
1655 iap = (unsigned char *) mac;
1656 }
1657 }
1658
1659 /*
1660 * 3) from flash or fuse (via platform data)
1661 */
1662 if (!is_valid_ether_addr(iap)) {
1663 #ifdef CONFIG_M5272
1664 if (FEC_FLASHMAC)
1665 iap = (unsigned char *)FEC_FLASHMAC;
1666 #else
1667 if (pdata)
1668 iap = (unsigned char *)&pdata->mac;
1669 #endif
1670 }
1671
1672 /*
1673 * 4) FEC mac registers set by bootloader
1674 */
1675 if (!is_valid_ether_addr(iap)) {
1676 *((__be32 *) &tmpaddr[0]) =
1677 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1678 *((__be16 *) &tmpaddr[4]) =
1679 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1680 iap = &tmpaddr[0];
1681 }
1682
1683 /*
1684 * 5) random mac address
1685 */
1686 if (!is_valid_ether_addr(iap)) {
1687 /* Report it and use a random ethernet address instead */
1688 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1689 eth_hw_addr_random(ndev);
1690 netdev_info(ndev, "Using random MAC address: %pM\n",
1691 ndev->dev_addr);
1692 return;
1693 }
1694
1695 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1696
1697 /* Adjust MAC if using macaddr */
1698 if (iap == macaddr)
1699 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1700 }
1701
1702 /* ------------------------------------------------------------------------- */
1703
1704 /*
1705 * Phy section
1706 */
1707 static void fec_enet_adjust_link(struct net_device *ndev)
1708 {
1709 struct fec_enet_private *fep = netdev_priv(ndev);
1710 struct phy_device *phy_dev = fep->phy_dev;
1711 int status_change = 0;
1712
1713 /* Prevent a state halted on mii error */
1714 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1715 phy_dev->state = PHY_RESUMING;
1716 return;
1717 }
1718
1719 /*
1720 * If the netdev is down, or is going down, we're not interested
1721 * in link state events, so just mark our idea of the link as down
1722 * and ignore the event.
1723 */
1724 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1725 fep->link = 0;
1726 } else if (phy_dev->link) {
1727 if (!fep->link) {
1728 fep->link = phy_dev->link;
1729 status_change = 1;
1730 }
1731
1732 if (fep->full_duplex != phy_dev->duplex) {
1733 fep->full_duplex = phy_dev->duplex;
1734 status_change = 1;
1735 }
1736
1737 if (phy_dev->speed != fep->speed) {
1738 fep->speed = phy_dev->speed;
1739 status_change = 1;
1740 }
1741
1742 /* if any of the above changed restart the FEC */
1743 if (status_change) {
1744 napi_disable(&fep->napi);
1745 netif_tx_lock_bh(ndev);
1746 fec_restart(ndev);
1747 netif_wake_queue(ndev);
1748 netif_tx_unlock_bh(ndev);
1749 napi_enable(&fep->napi);
1750 }
1751 } else {
1752 if (fep->link) {
1753 napi_disable(&fep->napi);
1754 netif_tx_lock_bh(ndev);
1755 fec_stop(ndev);
1756 netif_tx_unlock_bh(ndev);
1757 napi_enable(&fep->napi);
1758 fep->link = phy_dev->link;
1759 status_change = 1;
1760 }
1761 }
1762
1763 if (status_change)
1764 phy_print_status(phy_dev);
1765 }
1766
1767 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1768 {
1769 struct fec_enet_private *fep = bus->priv;
1770 unsigned long time_left;
1771
1772 fep->mii_timeout = 0;
1773 init_completion(&fep->mdio_done);
1774
1775 /* start a read op */
1776 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1777 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1778 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1779
1780 /* wait for end of transfer */
1781 time_left = wait_for_completion_timeout(&fep->mdio_done,
1782 usecs_to_jiffies(FEC_MII_TIMEOUT));
1783 if (time_left == 0) {
1784 fep->mii_timeout = 1;
1785 netdev_err(fep->netdev, "MDIO read timeout\n");
1786 return -ETIMEDOUT;
1787 }
1788
1789 /* return value */
1790 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1791 }
1792
1793 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1794 u16 value)
1795 {
1796 struct fec_enet_private *fep = bus->priv;
1797 unsigned long time_left;
1798
1799 fep->mii_timeout = 0;
1800 init_completion(&fep->mdio_done);
1801
1802 /* start a write op */
1803 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1804 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1805 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1806 fep->hwp + FEC_MII_DATA);
1807
1808 /* wait for end of transfer */
1809 time_left = wait_for_completion_timeout(&fep->mdio_done,
1810 usecs_to_jiffies(FEC_MII_TIMEOUT));
1811 if (time_left == 0) {
1812 fep->mii_timeout = 1;
1813 netdev_err(fep->netdev, "MDIO write timeout\n");
1814 return -ETIMEDOUT;
1815 }
1816
1817 return 0;
1818 }
1819
1820 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1821 {
1822 struct fec_enet_private *fep = netdev_priv(ndev);
1823 int ret;
1824
1825 if (enable) {
1826 ret = clk_prepare_enable(fep->clk_ahb);
1827 if (ret)
1828 return ret;
1829 ret = clk_prepare_enable(fep->clk_ipg);
1830 if (ret)
1831 goto failed_clk_ipg;
1832 if (fep->clk_enet_out) {
1833 ret = clk_prepare_enable(fep->clk_enet_out);
1834 if (ret)
1835 goto failed_clk_enet_out;
1836 }
1837 if (fep->clk_ptp) {
1838 mutex_lock(&fep->ptp_clk_mutex);
1839 ret = clk_prepare_enable(fep->clk_ptp);
1840 if (ret) {
1841 mutex_unlock(&fep->ptp_clk_mutex);
1842 goto failed_clk_ptp;
1843 } else {
1844 fep->ptp_clk_on = true;
1845 }
1846 mutex_unlock(&fep->ptp_clk_mutex);
1847 }
1848 if (fep->clk_ref) {
1849 ret = clk_prepare_enable(fep->clk_ref);
1850 if (ret)
1851 goto failed_clk_ref;
1852 }
1853 } else {
1854 clk_disable_unprepare(fep->clk_ahb);
1855 clk_disable_unprepare(fep->clk_ipg);
1856 if (fep->clk_enet_out)
1857 clk_disable_unprepare(fep->clk_enet_out);
1858 if (fep->clk_ptp) {
1859 mutex_lock(&fep->ptp_clk_mutex);
1860 clk_disable_unprepare(fep->clk_ptp);
1861 fep->ptp_clk_on = false;
1862 mutex_unlock(&fep->ptp_clk_mutex);
1863 }
1864 if (fep->clk_ref)
1865 clk_disable_unprepare(fep->clk_ref);
1866 }
1867
1868 return 0;
1869
1870 failed_clk_ref:
1871 if (fep->clk_ref)
1872 clk_disable_unprepare(fep->clk_ref);
1873 failed_clk_ptp:
1874 if (fep->clk_enet_out)
1875 clk_disable_unprepare(fep->clk_enet_out);
1876 failed_clk_enet_out:
1877 clk_disable_unprepare(fep->clk_ipg);
1878 failed_clk_ipg:
1879 clk_disable_unprepare(fep->clk_ahb);
1880
1881 return ret;
1882 }
1883
1884 static int fec_enet_mii_probe(struct net_device *ndev)
1885 {
1886 struct fec_enet_private *fep = netdev_priv(ndev);
1887 struct phy_device *phy_dev = NULL;
1888 char mdio_bus_id[MII_BUS_ID_SIZE];
1889 char phy_name[MII_BUS_ID_SIZE + 3];
1890 int phy_id;
1891 int dev_id = fep->dev_id;
1892
1893 fep->phy_dev = NULL;
1894
1895 if (fep->phy_node) {
1896 phy_dev = of_phy_connect(ndev, fep->phy_node,
1897 &fec_enet_adjust_link, 0,
1898 fep->phy_interface);
1899 if (!phy_dev)
1900 return -ENODEV;
1901 } else {
1902 /* check for attached phy */
1903 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1904 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1905 continue;
1906 if (fep->mii_bus->phy_map[phy_id] == NULL)
1907 continue;
1908 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1909 continue;
1910 if (dev_id--)
1911 continue;
1912 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1913 break;
1914 }
1915
1916 if (phy_id >= PHY_MAX_ADDR) {
1917 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1918 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1919 phy_id = 0;
1920 }
1921
1922 snprintf(phy_name, sizeof(phy_name),
1923 PHY_ID_FMT, mdio_bus_id, phy_id);
1924 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1925 fep->phy_interface);
1926 }
1927
1928 if (IS_ERR(phy_dev)) {
1929 netdev_err(ndev, "could not attach to PHY\n");
1930 return PTR_ERR(phy_dev);
1931 }
1932
1933 /* mask with MAC supported features */
1934 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1935 phy_dev->supported &= PHY_GBIT_FEATURES;
1936 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1937 #if !defined(CONFIG_M5272)
1938 phy_dev->supported |= SUPPORTED_Pause;
1939 #endif
1940 }
1941 else
1942 phy_dev->supported &= PHY_BASIC_FEATURES;
1943
1944 phy_dev->advertising = phy_dev->supported;
1945
1946 fep->phy_dev = phy_dev;
1947 fep->link = 0;
1948 fep->full_duplex = 0;
1949
1950 netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1951 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1952 fep->phy_dev->irq);
1953
1954 return 0;
1955 }
1956
1957 static int fec_enet_mii_init(struct platform_device *pdev)
1958 {
1959 static struct mii_bus *fec0_mii_bus;
1960 struct net_device *ndev = platform_get_drvdata(pdev);
1961 struct fec_enet_private *fep = netdev_priv(ndev);
1962 struct device_node *node;
1963 int err = -ENXIO, i;
1964 u32 mii_speed, holdtime;
1965
1966 /*
1967 * The i.MX28 dual fec interfaces are not equal.
1968 * Here are the differences:
1969 *
1970 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1971 * - fec0 acts as the 1588 time master while fec1 is slave
1972 * - external phys can only be configured by fec0
1973 *
1974 * That is to say fec1 can not work independently. It only works
1975 * when fec0 is working. The reason behind this design is that the
1976 * second interface is added primarily for Switch mode.
1977 *
1978 * Because of the last point above, both phys are attached on fec0
1979 * mdio interface in board design, and need to be configured by
1980 * fec0 mii_bus.
1981 */
1982 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1983 /* fec1 uses fec0 mii_bus */
1984 if (mii_cnt && fec0_mii_bus) {
1985 fep->mii_bus = fec0_mii_bus;
1986 mii_cnt++;
1987 return 0;
1988 }
1989 return -ENOENT;
1990 }
1991
1992 fep->mii_timeout = 0;
1993
1994 /*
1995 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1996 *
1997 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1998 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1999 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2000 * document.
2001 */
2002 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2003 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2004 mii_speed--;
2005 if (mii_speed > 63) {
2006 dev_err(&pdev->dev,
2007 "fec clock (%lu) to fast to get right mii speed\n",
2008 clk_get_rate(fep->clk_ipg));
2009 err = -EINVAL;
2010 goto err_out;
2011 }
2012
2013 /*
2014 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2015 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2016 * versions are RAZ there, so just ignore the difference and write the
2017 * register always.
2018 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2019 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2020 * output.
2021 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2022 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2023 * holdtime cannot result in a value greater than 3.
2024 */
2025 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2026
2027 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2028
2029 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2030
2031 fep->mii_bus = mdiobus_alloc();
2032 if (fep->mii_bus == NULL) {
2033 err = -ENOMEM;
2034 goto err_out;
2035 }
2036
2037 fep->mii_bus->name = "fec_enet_mii_bus";
2038 fep->mii_bus->read = fec_enet_mdio_read;
2039 fep->mii_bus->write = fec_enet_mdio_write;
2040 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2041 pdev->name, fep->dev_id + 1);
2042 fep->mii_bus->priv = fep;
2043 fep->mii_bus->parent = &pdev->dev;
2044
2045 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2046 if (!fep->mii_bus->irq) {
2047 err = -ENOMEM;
2048 goto err_out_free_mdiobus;
2049 }
2050
2051 for (i = 0; i < PHY_MAX_ADDR; i++)
2052 fep->mii_bus->irq[i] = PHY_POLL;
2053
2054 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2055 if (node) {
2056 err = of_mdiobus_register(fep->mii_bus, node);
2057 of_node_put(node);
2058 } else {
2059 err = mdiobus_register(fep->mii_bus);
2060 }
2061
2062 if (err)
2063 goto err_out_free_mdio_irq;
2064
2065 mii_cnt++;
2066
2067 /* save fec0 mii_bus */
2068 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2069 fec0_mii_bus = fep->mii_bus;
2070
2071 return 0;
2072
2073 err_out_free_mdio_irq:
2074 kfree(fep->mii_bus->irq);
2075 err_out_free_mdiobus:
2076 mdiobus_free(fep->mii_bus);
2077 err_out:
2078 return err;
2079 }
2080
2081 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2082 {
2083 if (--mii_cnt == 0) {
2084 mdiobus_unregister(fep->mii_bus);
2085 kfree(fep->mii_bus->irq);
2086 mdiobus_free(fep->mii_bus);
2087 }
2088 }
2089
2090 static int fec_enet_get_settings(struct net_device *ndev,
2091 struct ethtool_cmd *cmd)
2092 {
2093 struct fec_enet_private *fep = netdev_priv(ndev);
2094 struct phy_device *phydev = fep->phy_dev;
2095
2096 if (!phydev)
2097 return -ENODEV;
2098
2099 return phy_ethtool_gset(phydev, cmd);
2100 }
2101
2102 static int fec_enet_set_settings(struct net_device *ndev,
2103 struct ethtool_cmd *cmd)
2104 {
2105 struct fec_enet_private *fep = netdev_priv(ndev);
2106 struct phy_device *phydev = fep->phy_dev;
2107
2108 if (!phydev)
2109 return -ENODEV;
2110
2111 return phy_ethtool_sset(phydev, cmd);
2112 }
2113
2114 static void fec_enet_get_drvinfo(struct net_device *ndev,
2115 struct ethtool_drvinfo *info)
2116 {
2117 struct fec_enet_private *fep = netdev_priv(ndev);
2118
2119 strlcpy(info->driver, fep->pdev->dev.driver->name,
2120 sizeof(info->driver));
2121 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2122 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2123 }
2124
2125 static int fec_enet_get_regs_len(struct net_device *ndev)
2126 {
2127 struct fec_enet_private *fep = netdev_priv(ndev);
2128 struct resource *r;
2129 int s = 0;
2130
2131 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2132 if (r)
2133 s = resource_size(r);
2134
2135 return s;
2136 }
2137
2138 /* List of registers that can be safety be read to dump them with ethtool */
2139 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2140 defined(CONFIG_M520x) || defined(CONFIG_M532x) || \
2141 defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
2142 static u32 fec_enet_register_offset[] = {
2143 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2144 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2145 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2146 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2147 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2148 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2149 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2150 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2151 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2152 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2153 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2154 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2155 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2156 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2157 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2158 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2159 RMON_T_P_GTE2048, RMON_T_OCTETS,
2160 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2161 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2162 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2163 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2164 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2165 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2166 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2167 RMON_R_P_GTE2048, RMON_R_OCTETS,
2168 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2169 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2170 };
2171 #else
2172 static u32 fec_enet_register_offset[] = {
2173 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2174 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2175 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2176 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2177 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2178 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2179 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2180 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2181 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2182 };
2183 #endif
2184
2185 static void fec_enet_get_regs(struct net_device *ndev,
2186 struct ethtool_regs *regs, void *regbuf)
2187 {
2188 struct fec_enet_private *fep = netdev_priv(ndev);
2189 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2190 u32 *buf = (u32 *)regbuf;
2191 u32 i, off;
2192
2193 memset(buf, 0, regs->len);
2194
2195 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2196 off = fec_enet_register_offset[i] / 4;
2197 buf[off] = readl(&theregs[off]);
2198 }
2199 }
2200
2201 static int fec_enet_get_ts_info(struct net_device *ndev,
2202 struct ethtool_ts_info *info)
2203 {
2204 struct fec_enet_private *fep = netdev_priv(ndev);
2205
2206 if (fep->bufdesc_ex) {
2207
2208 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2209 SOF_TIMESTAMPING_RX_SOFTWARE |
2210 SOF_TIMESTAMPING_SOFTWARE |
2211 SOF_TIMESTAMPING_TX_HARDWARE |
2212 SOF_TIMESTAMPING_RX_HARDWARE |
2213 SOF_TIMESTAMPING_RAW_HARDWARE;
2214 if (fep->ptp_clock)
2215 info->phc_index = ptp_clock_index(fep->ptp_clock);
2216 else
2217 info->phc_index = -1;
2218
2219 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2220 (1 << HWTSTAMP_TX_ON);
2221
2222 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2223 (1 << HWTSTAMP_FILTER_ALL);
2224 return 0;
2225 } else {
2226 return ethtool_op_get_ts_info(ndev, info);
2227 }
2228 }
2229
2230 #if !defined(CONFIG_M5272)
2231
2232 static void fec_enet_get_pauseparam(struct net_device *ndev,
2233 struct ethtool_pauseparam *pause)
2234 {
2235 struct fec_enet_private *fep = netdev_priv(ndev);
2236
2237 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2238 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2239 pause->rx_pause = pause->tx_pause;
2240 }
2241
2242 static int fec_enet_set_pauseparam(struct net_device *ndev,
2243 struct ethtool_pauseparam *pause)
2244 {
2245 struct fec_enet_private *fep = netdev_priv(ndev);
2246
2247 if (!fep->phy_dev)
2248 return -ENODEV;
2249
2250 if (pause->tx_pause != pause->rx_pause) {
2251 netdev_info(ndev,
2252 "hardware only support enable/disable both tx and rx");
2253 return -EINVAL;
2254 }
2255
2256 fep->pause_flag = 0;
2257
2258 /* tx pause must be same as rx pause */
2259 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2260 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2261
2262 if (pause->rx_pause || pause->autoneg) {
2263 fep->phy_dev->supported |= ADVERTISED_Pause;
2264 fep->phy_dev->advertising |= ADVERTISED_Pause;
2265 } else {
2266 fep->phy_dev->supported &= ~ADVERTISED_Pause;
2267 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2268 }
2269
2270 if (pause->autoneg) {
2271 if (netif_running(ndev))
2272 fec_stop(ndev);
2273 phy_start_aneg(fep->phy_dev);
2274 }
2275 if (netif_running(ndev)) {
2276 napi_disable(&fep->napi);
2277 netif_tx_lock_bh(ndev);
2278 fec_restart(ndev);
2279 netif_wake_queue(ndev);
2280 netif_tx_unlock_bh(ndev);
2281 napi_enable(&fep->napi);
2282 }
2283
2284 return 0;
2285 }
2286
2287 static const struct fec_stat {
2288 char name[ETH_GSTRING_LEN];
2289 u16 offset;
2290 } fec_stats[] = {
2291 /* RMON TX */
2292 { "tx_dropped", RMON_T_DROP },
2293 { "tx_packets", RMON_T_PACKETS },
2294 { "tx_broadcast", RMON_T_BC_PKT },
2295 { "tx_multicast", RMON_T_MC_PKT },
2296 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2297 { "tx_undersize", RMON_T_UNDERSIZE },
2298 { "tx_oversize", RMON_T_OVERSIZE },
2299 { "tx_fragment", RMON_T_FRAG },
2300 { "tx_jabber", RMON_T_JAB },
2301 { "tx_collision", RMON_T_COL },
2302 { "tx_64byte", RMON_T_P64 },
2303 { "tx_65to127byte", RMON_T_P65TO127 },
2304 { "tx_128to255byte", RMON_T_P128TO255 },
2305 { "tx_256to511byte", RMON_T_P256TO511 },
2306 { "tx_512to1023byte", RMON_T_P512TO1023 },
2307 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2308 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2309 { "tx_octets", RMON_T_OCTETS },
2310
2311 /* IEEE TX */
2312 { "IEEE_tx_drop", IEEE_T_DROP },
2313 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2314 { "IEEE_tx_1col", IEEE_T_1COL },
2315 { "IEEE_tx_mcol", IEEE_T_MCOL },
2316 { "IEEE_tx_def", IEEE_T_DEF },
2317 { "IEEE_tx_lcol", IEEE_T_LCOL },
2318 { "IEEE_tx_excol", IEEE_T_EXCOL },
2319 { "IEEE_tx_macerr", IEEE_T_MACERR },
2320 { "IEEE_tx_cserr", IEEE_T_CSERR },
2321 { "IEEE_tx_sqe", IEEE_T_SQE },
2322 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2323 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2324
2325 /* RMON RX */
2326 { "rx_packets", RMON_R_PACKETS },
2327 { "rx_broadcast", RMON_R_BC_PKT },
2328 { "rx_multicast", RMON_R_MC_PKT },
2329 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2330 { "rx_undersize", RMON_R_UNDERSIZE },
2331 { "rx_oversize", RMON_R_OVERSIZE },
2332 { "rx_fragment", RMON_R_FRAG },
2333 { "rx_jabber", RMON_R_JAB },
2334 { "rx_64byte", RMON_R_P64 },
2335 { "rx_65to127byte", RMON_R_P65TO127 },
2336 { "rx_128to255byte", RMON_R_P128TO255 },
2337 { "rx_256to511byte", RMON_R_P256TO511 },
2338 { "rx_512to1023byte", RMON_R_P512TO1023 },
2339 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2340 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2341 { "rx_octets", RMON_R_OCTETS },
2342
2343 /* IEEE RX */
2344 { "IEEE_rx_drop", IEEE_R_DROP },
2345 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2346 { "IEEE_rx_crc", IEEE_R_CRC },
2347 { "IEEE_rx_align", IEEE_R_ALIGN },
2348 { "IEEE_rx_macerr", IEEE_R_MACERR },
2349 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2350 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2351 };
2352
2353 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2354 struct ethtool_stats *stats, u64 *data)
2355 {
2356 struct fec_enet_private *fep = netdev_priv(dev);
2357 int i;
2358
2359 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2360 data[i] = readl(fep->hwp + fec_stats[i].offset);
2361 }
2362
2363 static void fec_enet_get_strings(struct net_device *netdev,
2364 u32 stringset, u8 *data)
2365 {
2366 int i;
2367 switch (stringset) {
2368 case ETH_SS_STATS:
2369 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2370 memcpy(data + i * ETH_GSTRING_LEN,
2371 fec_stats[i].name, ETH_GSTRING_LEN);
2372 break;
2373 }
2374 }
2375
2376 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2377 {
2378 switch (sset) {
2379 case ETH_SS_STATS:
2380 return ARRAY_SIZE(fec_stats);
2381 default:
2382 return -EOPNOTSUPP;
2383 }
2384 }
2385 #endif /* !defined(CONFIG_M5272) */
2386
2387 static int fec_enet_nway_reset(struct net_device *dev)
2388 {
2389 struct fec_enet_private *fep = netdev_priv(dev);
2390 struct phy_device *phydev = fep->phy_dev;
2391
2392 if (!phydev)
2393 return -ENODEV;
2394
2395 return genphy_restart_aneg(phydev);
2396 }
2397
2398 /* ITR clock source is enet system clock (clk_ahb).
2399 * TCTT unit is cycle_ns * 64 cycle
2400 * So, the ICTT value = X us / (cycle_ns * 64)
2401 */
2402 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2403 {
2404 struct fec_enet_private *fep = netdev_priv(ndev);
2405
2406 return us * (fep->itr_clk_rate / 64000) / 1000;
2407 }
2408
2409 /* Set threshold for interrupt coalescing */
2410 static void fec_enet_itr_coal_set(struct net_device *ndev)
2411 {
2412 struct fec_enet_private *fep = netdev_priv(ndev);
2413 int rx_itr, tx_itr;
2414
2415 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2416 return;
2417
2418 /* Must be greater than zero to avoid unpredictable behavior */
2419 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2420 !fep->tx_time_itr || !fep->tx_pkts_itr)
2421 return;
2422
2423 /* Select enet system clock as Interrupt Coalescing
2424 * timer Clock Source
2425 */
2426 rx_itr = FEC_ITR_CLK_SEL;
2427 tx_itr = FEC_ITR_CLK_SEL;
2428
2429 /* set ICFT and ICTT */
2430 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2431 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2432 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2433 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2434
2435 rx_itr |= FEC_ITR_EN;
2436 tx_itr |= FEC_ITR_EN;
2437
2438 writel(tx_itr, fep->hwp + FEC_TXIC0);
2439 writel(rx_itr, fep->hwp + FEC_RXIC0);
2440 writel(tx_itr, fep->hwp + FEC_TXIC1);
2441 writel(rx_itr, fep->hwp + FEC_RXIC1);
2442 writel(tx_itr, fep->hwp + FEC_TXIC2);
2443 writel(rx_itr, fep->hwp + FEC_RXIC2);
2444 }
2445
2446 static int
2447 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2448 {
2449 struct fec_enet_private *fep = netdev_priv(ndev);
2450
2451 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2452 return -EOPNOTSUPP;
2453
2454 ec->rx_coalesce_usecs = fep->rx_time_itr;
2455 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2456
2457 ec->tx_coalesce_usecs = fep->tx_time_itr;
2458 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2459
2460 return 0;
2461 }
2462
2463 static int
2464 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2465 {
2466 struct fec_enet_private *fep = netdev_priv(ndev);
2467 unsigned int cycle;
2468
2469 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2470 return -EOPNOTSUPP;
2471
2472 if (ec->rx_max_coalesced_frames > 255) {
2473 pr_err("Rx coalesced frames exceed hardware limiation");
2474 return -EINVAL;
2475 }
2476
2477 if (ec->tx_max_coalesced_frames > 255) {
2478 pr_err("Tx coalesced frame exceed hardware limiation");
2479 return -EINVAL;
2480 }
2481
2482 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2483 if (cycle > 0xFFFF) {
2484 pr_err("Rx coalesed usec exceeed hardware limiation");
2485 return -EINVAL;
2486 }
2487
2488 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2489 if (cycle > 0xFFFF) {
2490 pr_err("Rx coalesed usec exceeed hardware limiation");
2491 return -EINVAL;
2492 }
2493
2494 fep->rx_time_itr = ec->rx_coalesce_usecs;
2495 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2496
2497 fep->tx_time_itr = ec->tx_coalesce_usecs;
2498 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2499
2500 fec_enet_itr_coal_set(ndev);
2501
2502 return 0;
2503 }
2504
2505 static void fec_enet_itr_coal_init(struct net_device *ndev)
2506 {
2507 struct ethtool_coalesce ec;
2508
2509 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2510 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2511
2512 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2513 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2514
2515 fec_enet_set_coalesce(ndev, &ec);
2516 }
2517
2518 static int fec_enet_get_tunable(struct net_device *netdev,
2519 const struct ethtool_tunable *tuna,
2520 void *data)
2521 {
2522 struct fec_enet_private *fep = netdev_priv(netdev);
2523 int ret = 0;
2524
2525 switch (tuna->id) {
2526 case ETHTOOL_RX_COPYBREAK:
2527 *(u32 *)data = fep->rx_copybreak;
2528 break;
2529 default:
2530 ret = -EINVAL;
2531 break;
2532 }
2533
2534 return ret;
2535 }
2536
2537 static int fec_enet_set_tunable(struct net_device *netdev,
2538 const struct ethtool_tunable *tuna,
2539 const void *data)
2540 {
2541 struct fec_enet_private *fep = netdev_priv(netdev);
2542 int ret = 0;
2543
2544 switch (tuna->id) {
2545 case ETHTOOL_RX_COPYBREAK:
2546 fep->rx_copybreak = *(u32 *)data;
2547 break;
2548 default:
2549 ret = -EINVAL;
2550 break;
2551 }
2552
2553 return ret;
2554 }
2555
2556 static void
2557 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2558 {
2559 struct fec_enet_private *fep = netdev_priv(ndev);
2560
2561 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2562 wol->supported = WAKE_MAGIC;
2563 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2564 } else {
2565 wol->supported = wol->wolopts = 0;
2566 }
2567 }
2568
2569 static int
2570 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2571 {
2572 struct fec_enet_private *fep = netdev_priv(ndev);
2573
2574 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2575 return -EINVAL;
2576
2577 if (wol->wolopts & ~WAKE_MAGIC)
2578 return -EINVAL;
2579
2580 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2581 if (device_may_wakeup(&ndev->dev)) {
2582 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2583 if (fep->irq[0] > 0)
2584 enable_irq_wake(fep->irq[0]);
2585 } else {
2586 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2587 if (fep->irq[0] > 0)
2588 disable_irq_wake(fep->irq[0]);
2589 }
2590
2591 return 0;
2592 }
2593
2594 static const struct ethtool_ops fec_enet_ethtool_ops = {
2595 .get_settings = fec_enet_get_settings,
2596 .set_settings = fec_enet_set_settings,
2597 .get_drvinfo = fec_enet_get_drvinfo,
2598 .get_regs_len = fec_enet_get_regs_len,
2599 .get_regs = fec_enet_get_regs,
2600 .nway_reset = fec_enet_nway_reset,
2601 .get_link = ethtool_op_get_link,
2602 .get_coalesce = fec_enet_get_coalesce,
2603 .set_coalesce = fec_enet_set_coalesce,
2604 #ifndef CONFIG_M5272
2605 .get_pauseparam = fec_enet_get_pauseparam,
2606 .set_pauseparam = fec_enet_set_pauseparam,
2607 .get_strings = fec_enet_get_strings,
2608 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2609 .get_sset_count = fec_enet_get_sset_count,
2610 #endif
2611 .get_ts_info = fec_enet_get_ts_info,
2612 .get_tunable = fec_enet_get_tunable,
2613 .set_tunable = fec_enet_set_tunable,
2614 .get_wol = fec_enet_get_wol,
2615 .set_wol = fec_enet_set_wol,
2616 };
2617
2618 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2619 {
2620 struct fec_enet_private *fep = netdev_priv(ndev);
2621 struct phy_device *phydev = fep->phy_dev;
2622
2623 if (!netif_running(ndev))
2624 return -EINVAL;
2625
2626 if (!phydev)
2627 return -ENODEV;
2628
2629 if (fep->bufdesc_ex) {
2630 if (cmd == SIOCSHWTSTAMP)
2631 return fec_ptp_set(ndev, rq);
2632 if (cmd == SIOCGHWTSTAMP)
2633 return fec_ptp_get(ndev, rq);
2634 }
2635
2636 return phy_mii_ioctl(phydev, rq, cmd);
2637 }
2638
2639 static void fec_enet_free_buffers(struct net_device *ndev)
2640 {
2641 struct fec_enet_private *fep = netdev_priv(ndev);
2642 unsigned int i;
2643 struct sk_buff *skb;
2644 struct bufdesc *bdp;
2645 struct fec_enet_priv_tx_q *txq;
2646 struct fec_enet_priv_rx_q *rxq;
2647 unsigned int q;
2648
2649 for (q = 0; q < fep->num_rx_queues; q++) {
2650 rxq = fep->rx_queue[q];
2651 bdp = rxq->rx_bd_base;
2652 for (i = 0; i < rxq->rx_ring_size; i++) {
2653 skb = rxq->rx_skbuff[i];
2654 rxq->rx_skbuff[i] = NULL;
2655 if (skb) {
2656 dma_unmap_single(&fep->pdev->dev,
2657 bdp->cbd_bufaddr,
2658 FEC_ENET_RX_FRSIZE - fep->rx_align,
2659 DMA_FROM_DEVICE);
2660 dev_kfree_skb(skb);
2661 }
2662 bdp = fec_enet_get_nextdesc(bdp, fep, q);
2663 }
2664 }
2665
2666 for (q = 0; q < fep->num_tx_queues; q++) {
2667 txq = fep->tx_queue[q];
2668 bdp = txq->tx_bd_base;
2669 for (i = 0; i < txq->tx_ring_size; i++) {
2670 kfree(txq->tx_bounce[i]);
2671 txq->tx_bounce[i] = NULL;
2672 skb = txq->tx_skbuff[i];
2673 txq->tx_skbuff[i] = NULL;
2674 dev_kfree_skb(skb);
2675 }
2676 }
2677 }
2678
2679 static void fec_enet_free_queue(struct net_device *ndev)
2680 {
2681 struct fec_enet_private *fep = netdev_priv(ndev);
2682 int i;
2683 struct fec_enet_priv_tx_q *txq;
2684
2685 for (i = 0; i < fep->num_tx_queues; i++)
2686 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2687 txq = fep->tx_queue[i];
2688 dma_free_coherent(NULL,
2689 txq->tx_ring_size * TSO_HEADER_SIZE,
2690 txq->tso_hdrs,
2691 txq->tso_hdrs_dma);
2692 }
2693
2694 for (i = 0; i < fep->num_rx_queues; i++)
2695 kfree(fep->rx_queue[i]);
2696 for (i = 0; i < fep->num_tx_queues; i++)
2697 kfree(fep->tx_queue[i]);
2698 }
2699
2700 static int fec_enet_alloc_queue(struct net_device *ndev)
2701 {
2702 struct fec_enet_private *fep = netdev_priv(ndev);
2703 int i;
2704 int ret = 0;
2705 struct fec_enet_priv_tx_q *txq;
2706
2707 for (i = 0; i < fep->num_tx_queues; i++) {
2708 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2709 if (!txq) {
2710 ret = -ENOMEM;
2711 goto alloc_failed;
2712 }
2713
2714 fep->tx_queue[i] = txq;
2715 txq->tx_ring_size = TX_RING_SIZE;
2716 fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2717
2718 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2719 txq->tx_wake_threshold =
2720 (txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2721
2722 txq->tso_hdrs = dma_alloc_coherent(NULL,
2723 txq->tx_ring_size * TSO_HEADER_SIZE,
2724 &txq->tso_hdrs_dma,
2725 GFP_KERNEL);
2726 if (!txq->tso_hdrs) {
2727 ret = -ENOMEM;
2728 goto alloc_failed;
2729 }
2730 }
2731
2732 for (i = 0; i < fep->num_rx_queues; i++) {
2733 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2734 GFP_KERNEL);
2735 if (!fep->rx_queue[i]) {
2736 ret = -ENOMEM;
2737 goto alloc_failed;
2738 }
2739
2740 fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2741 fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2742 }
2743 return ret;
2744
2745 alloc_failed:
2746 fec_enet_free_queue(ndev);
2747 return ret;
2748 }
2749
2750 static int
2751 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2752 {
2753 struct fec_enet_private *fep = netdev_priv(ndev);
2754 unsigned int i;
2755 struct sk_buff *skb;
2756 struct bufdesc *bdp;
2757 struct fec_enet_priv_rx_q *rxq;
2758
2759 rxq = fep->rx_queue[queue];
2760 bdp = rxq->rx_bd_base;
2761 for (i = 0; i < rxq->rx_ring_size; i++) {
2762 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2763 if (!skb)
2764 goto err_alloc;
2765
2766 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2767 dev_kfree_skb(skb);
2768 goto err_alloc;
2769 }
2770
2771 rxq->rx_skbuff[i] = skb;
2772 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2773
2774 if (fep->bufdesc_ex) {
2775 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2776 ebdp->cbd_esc = BD_ENET_RX_INT;
2777 }
2778
2779 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2780 }
2781
2782 /* Set the last buffer to wrap. */
2783 bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2784 bdp->cbd_sc |= BD_SC_WRAP;
2785 return 0;
2786
2787 err_alloc:
2788 fec_enet_free_buffers(ndev);
2789 return -ENOMEM;
2790 }
2791
2792 static int
2793 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2794 {
2795 struct fec_enet_private *fep = netdev_priv(ndev);
2796 unsigned int i;
2797 struct bufdesc *bdp;
2798 struct fec_enet_priv_tx_q *txq;
2799
2800 txq = fep->tx_queue[queue];
2801 bdp = txq->tx_bd_base;
2802 for (i = 0; i < txq->tx_ring_size; i++) {
2803 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2804 if (!txq->tx_bounce[i])
2805 goto err_alloc;
2806
2807 bdp->cbd_sc = 0;
2808 bdp->cbd_bufaddr = 0;
2809
2810 if (fep->bufdesc_ex) {
2811 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2812 ebdp->cbd_esc = BD_ENET_TX_INT;
2813 }
2814
2815 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2816 }
2817
2818 /* Set the last buffer to wrap. */
2819 bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2820 bdp->cbd_sc |= BD_SC_WRAP;
2821
2822 return 0;
2823
2824 err_alloc:
2825 fec_enet_free_buffers(ndev);
2826 return -ENOMEM;
2827 }
2828
2829 static int fec_enet_alloc_buffers(struct net_device *ndev)
2830 {
2831 struct fec_enet_private *fep = netdev_priv(ndev);
2832 unsigned int i;
2833
2834 for (i = 0; i < fep->num_rx_queues; i++)
2835 if (fec_enet_alloc_rxq_buffers(ndev, i))
2836 return -ENOMEM;
2837
2838 for (i = 0; i < fep->num_tx_queues; i++)
2839 if (fec_enet_alloc_txq_buffers(ndev, i))
2840 return -ENOMEM;
2841 return 0;
2842 }
2843
2844 static int
2845 fec_enet_open(struct net_device *ndev)
2846 {
2847 struct fec_enet_private *fep = netdev_priv(ndev);
2848 int ret;
2849
2850 pinctrl_pm_select_default_state(&fep->pdev->dev);
2851 ret = fec_enet_clk_enable(ndev, true);
2852 if (ret)
2853 return ret;
2854
2855 /* I should reset the ring buffers here, but I don't yet know
2856 * a simple way to do that.
2857 */
2858
2859 ret = fec_enet_alloc_buffers(ndev);
2860 if (ret)
2861 goto err_enet_alloc;
2862
2863 /* Init MAC prior to mii bus probe */
2864 fec_restart(ndev);
2865
2866 /* Probe and connect to PHY when open the interface */
2867 ret = fec_enet_mii_probe(ndev);
2868 if (ret)
2869 goto err_enet_mii_probe;
2870
2871 napi_enable(&fep->napi);
2872 phy_start(fep->phy_dev);
2873 netif_tx_start_all_queues(ndev);
2874
2875 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2876 FEC_WOL_FLAG_ENABLE);
2877
2878 return 0;
2879
2880 err_enet_mii_probe:
2881 fec_enet_free_buffers(ndev);
2882 err_enet_alloc:
2883 fec_enet_clk_enable(ndev, false);
2884 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2885 return ret;
2886 }
2887
2888 static int
2889 fec_enet_close(struct net_device *ndev)
2890 {
2891 struct fec_enet_private *fep = netdev_priv(ndev);
2892
2893 phy_stop(fep->phy_dev);
2894
2895 if (netif_device_present(ndev)) {
2896 napi_disable(&fep->napi);
2897 netif_tx_disable(ndev);
2898 fec_stop(ndev);
2899 }
2900
2901 phy_disconnect(fep->phy_dev);
2902 fep->phy_dev = NULL;
2903
2904 fec_enet_clk_enable(ndev, false);
2905 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2906 fec_enet_free_buffers(ndev);
2907
2908 return 0;
2909 }
2910
2911 /* Set or clear the multicast filter for this adaptor.
2912 * Skeleton taken from sunlance driver.
2913 * The CPM Ethernet implementation allows Multicast as well as individual
2914 * MAC address filtering. Some of the drivers check to make sure it is
2915 * a group multicast address, and discard those that are not. I guess I
2916 * will do the same for now, but just remove the test if you want
2917 * individual filtering as well (do the upper net layers want or support
2918 * this kind of feature?).
2919 */
2920
2921 #define HASH_BITS 6 /* #bits in hash */
2922 #define CRC32_POLY 0xEDB88320
2923
2924 static void set_multicast_list(struct net_device *ndev)
2925 {
2926 struct fec_enet_private *fep = netdev_priv(ndev);
2927 struct netdev_hw_addr *ha;
2928 unsigned int i, bit, data, crc, tmp;
2929 unsigned char hash;
2930
2931 if (ndev->flags & IFF_PROMISC) {
2932 tmp = readl(fep->hwp + FEC_R_CNTRL);
2933 tmp |= 0x8;
2934 writel(tmp, fep->hwp + FEC_R_CNTRL);
2935 return;
2936 }
2937
2938 tmp = readl(fep->hwp + FEC_R_CNTRL);
2939 tmp &= ~0x8;
2940 writel(tmp, fep->hwp + FEC_R_CNTRL);
2941
2942 if (ndev->flags & IFF_ALLMULTI) {
2943 /* Catch all multicast addresses, so set the
2944 * filter to all 1's
2945 */
2946 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2947 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2948
2949 return;
2950 }
2951
2952 /* Clear filter and add the addresses in hash register
2953 */
2954 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2955 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2956
2957 netdev_for_each_mc_addr(ha, ndev) {
2958 /* calculate crc32 value of mac address */
2959 crc = 0xffffffff;
2960
2961 for (i = 0; i < ndev->addr_len; i++) {
2962 data = ha->addr[i];
2963 for (bit = 0; bit < 8; bit++, data >>= 1) {
2964 crc = (crc >> 1) ^
2965 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2966 }
2967 }
2968
2969 /* only upper 6 bits (HASH_BITS) are used
2970 * which point to specific bit in he hash registers
2971 */
2972 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2973
2974 if (hash > 31) {
2975 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2976 tmp |= 1 << (hash - 32);
2977 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2978 } else {
2979 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2980 tmp |= 1 << hash;
2981 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2982 }
2983 }
2984 }
2985
2986 /* Set a MAC change in hardware. */
2987 static int
2988 fec_set_mac_address(struct net_device *ndev, void *p)
2989 {
2990 struct fec_enet_private *fep = netdev_priv(ndev);
2991 struct sockaddr *addr = p;
2992
2993 if (addr) {
2994 if (!is_valid_ether_addr(addr->sa_data))
2995 return -EADDRNOTAVAIL;
2996 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2997 }
2998
2999 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3000 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3001 fep->hwp + FEC_ADDR_LOW);
3002 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3003 fep->hwp + FEC_ADDR_HIGH);
3004 return 0;
3005 }
3006
3007 #ifdef CONFIG_NET_POLL_CONTROLLER
3008 /**
3009 * fec_poll_controller - FEC Poll controller function
3010 * @dev: The FEC network adapter
3011 *
3012 * Polled functionality used by netconsole and others in non interrupt mode
3013 *
3014 */
3015 static void fec_poll_controller(struct net_device *dev)
3016 {
3017 int i;
3018 struct fec_enet_private *fep = netdev_priv(dev);
3019
3020 for (i = 0; i < FEC_IRQ_NUM; i++) {
3021 if (fep->irq[i] > 0) {
3022 disable_irq(fep->irq[i]);
3023 fec_enet_interrupt(fep->irq[i], dev);
3024 enable_irq(fep->irq[i]);
3025 }
3026 }
3027 }
3028 #endif
3029
3030 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
3031 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3032 netdev_features_t features)
3033 {
3034 struct fec_enet_private *fep = netdev_priv(netdev);
3035 netdev_features_t changed = features ^ netdev->features;
3036
3037 netdev->features = features;
3038
3039 /* Receive checksum has been changed */
3040 if (changed & NETIF_F_RXCSUM) {
3041 if (features & NETIF_F_RXCSUM)
3042 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3043 else
3044 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3045 }
3046 }
3047
3048 static int fec_set_features(struct net_device *netdev,
3049 netdev_features_t features)
3050 {
3051 struct fec_enet_private *fep = netdev_priv(netdev);
3052 netdev_features_t changed = features ^ netdev->features;
3053
3054 if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
3055 napi_disable(&fep->napi);
3056 netif_tx_lock_bh(netdev);
3057 fec_stop(netdev);
3058 fec_enet_set_netdev_features(netdev, features);
3059 fec_restart(netdev);
3060 netif_tx_wake_all_queues(netdev);
3061 netif_tx_unlock_bh(netdev);
3062 napi_enable(&fep->napi);
3063 } else {
3064 fec_enet_set_netdev_features(netdev, features);
3065 }
3066
3067 return 0;
3068 }
3069
3070 static const struct net_device_ops fec_netdev_ops = {
3071 .ndo_open = fec_enet_open,
3072 .ndo_stop = fec_enet_close,
3073 .ndo_start_xmit = fec_enet_start_xmit,
3074 .ndo_set_rx_mode = set_multicast_list,
3075 .ndo_change_mtu = eth_change_mtu,
3076 .ndo_validate_addr = eth_validate_addr,
3077 .ndo_tx_timeout = fec_timeout,
3078 .ndo_set_mac_address = fec_set_mac_address,
3079 .ndo_do_ioctl = fec_enet_ioctl,
3080 #ifdef CONFIG_NET_POLL_CONTROLLER
3081 .ndo_poll_controller = fec_poll_controller,
3082 #endif
3083 .ndo_set_features = fec_set_features,
3084 };
3085
3086 /*
3087 * XXX: We need to clean up on failure exits here.
3088 *
3089 */
3090 static int fec_enet_init(struct net_device *ndev)
3091 {
3092 struct fec_enet_private *fep = netdev_priv(ndev);
3093 struct fec_enet_priv_tx_q *txq;
3094 struct fec_enet_priv_rx_q *rxq;
3095 struct bufdesc *cbd_base;
3096 dma_addr_t bd_dma;
3097 int bd_size;
3098 unsigned int i;
3099
3100 #if defined(CONFIG_ARM)
3101 fep->rx_align = 0xf;
3102 fep->tx_align = 0xf;
3103 #else
3104 fep->rx_align = 0x3;
3105 fep->tx_align = 0x3;
3106 #endif
3107
3108 fec_enet_alloc_queue(ndev);
3109
3110 if (fep->bufdesc_ex)
3111 fep->bufdesc_size = sizeof(struct bufdesc_ex);
3112 else
3113 fep->bufdesc_size = sizeof(struct bufdesc);
3114 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3115 fep->bufdesc_size;
3116
3117 /* Allocate memory for buffer descriptors. */
3118 cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
3119 GFP_KERNEL);
3120 if (!cbd_base) {
3121 return -ENOMEM;
3122 }
3123
3124 memset(cbd_base, 0, bd_size);
3125
3126 /* Get the Ethernet address */
3127 fec_get_mac(ndev);
3128 /* make sure MAC we just acquired is programmed into the hw */
3129 fec_set_mac_address(ndev, NULL);
3130
3131 /* Set receive and transmit descriptor base. */
3132 for (i = 0; i < fep->num_rx_queues; i++) {
3133 rxq = fep->rx_queue[i];
3134 rxq->index = i;
3135 rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3136 rxq->bd_dma = bd_dma;
3137 if (fep->bufdesc_ex) {
3138 bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3139 cbd_base = (struct bufdesc *)
3140 (((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3141 } else {
3142 bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3143 cbd_base += rxq->rx_ring_size;
3144 }
3145 }
3146
3147 for (i = 0; i < fep->num_tx_queues; i++) {
3148 txq = fep->tx_queue[i];
3149 txq->index = i;
3150 txq->tx_bd_base = (struct bufdesc *)cbd_base;
3151 txq->bd_dma = bd_dma;
3152 if (fep->bufdesc_ex) {
3153 bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3154 cbd_base = (struct bufdesc *)
3155 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3156 } else {
3157 bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3158 cbd_base += txq->tx_ring_size;
3159 }
3160 }
3161
3162
3163 /* The FEC Ethernet specific entries in the device structure */
3164 ndev->watchdog_timeo = TX_TIMEOUT;
3165 ndev->netdev_ops = &fec_netdev_ops;
3166 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3167
3168 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3169 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3170
3171 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3172 /* enable hw VLAN support */
3173 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3174
3175 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3176 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3177
3178 /* enable hw accelerator */
3179 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3180 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3181 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3182 }
3183
3184 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3185 fep->tx_align = 0;
3186 fep->rx_align = 0x3f;
3187 }
3188
3189 ndev->hw_features = ndev->features;
3190
3191 fec_restart(ndev);
3192
3193 return 0;
3194 }
3195
3196 #ifdef CONFIG_OF
3197 static void fec_reset_phy(struct platform_device *pdev)
3198 {
3199 int err, phy_reset;
3200 int msec = 1;
3201 struct device_node *np = pdev->dev.of_node;
3202
3203 if (!np)
3204 return;
3205
3206 of_property_read_u32(np, "phy-reset-duration", &msec);
3207 /* A sane reset duration should not be longer than 1s */
3208 if (msec > 1000)
3209 msec = 1;
3210
3211 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3212 if (!gpio_is_valid(phy_reset))
3213 return;
3214
3215 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3216 GPIOF_OUT_INIT_LOW, "phy-reset");
3217 if (err) {
3218 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3219 return;
3220 }
3221 msleep(msec);
3222 gpio_set_value(phy_reset, 1);
3223 }
3224 #else /* CONFIG_OF */
3225 static void fec_reset_phy(struct platform_device *pdev)
3226 {
3227 /*
3228 * In case of platform probe, the reset has been done
3229 * by machine code.
3230 */
3231 }
3232 #endif /* CONFIG_OF */
3233
3234 static void
3235 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3236 {
3237 struct device_node *np = pdev->dev.of_node;
3238 int err;
3239
3240 *num_tx = *num_rx = 1;
3241
3242 if (!np || !of_device_is_available(np))
3243 return;
3244
3245 /* parse the num of tx and rx queues */
3246 err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3247 if (err)
3248 *num_tx = 1;
3249
3250 err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3251 if (err)
3252 *num_rx = 1;
3253
3254 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3255 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3256 *num_tx);
3257 *num_tx = 1;
3258 return;
3259 }
3260
3261 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3262 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3263 *num_rx);
3264 *num_rx = 1;
3265 return;
3266 }
3267
3268 }
3269
3270 static int
3271 fec_probe(struct platform_device *pdev)
3272 {
3273 struct fec_enet_private *fep;
3274 struct fec_platform_data *pdata;
3275 struct net_device *ndev;
3276 int i, irq, ret = 0;
3277 struct resource *r;
3278 const struct of_device_id *of_id;
3279 static int dev_id;
3280 struct device_node *np = pdev->dev.of_node, *phy_node;
3281 int num_tx_qs;
3282 int num_rx_qs;
3283
3284 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3285
3286 /* Init network device */
3287 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3288 num_tx_qs, num_rx_qs);
3289 if (!ndev)
3290 return -ENOMEM;
3291
3292 SET_NETDEV_DEV(ndev, &pdev->dev);
3293
3294 /* setup board info structure */
3295 fep = netdev_priv(ndev);
3296
3297 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3298 if (of_id)
3299 pdev->id_entry = of_id->data;
3300 fep->quirks = pdev->id_entry->driver_data;
3301
3302 fep->netdev = ndev;
3303 fep->num_rx_queues = num_rx_qs;
3304 fep->num_tx_queues = num_tx_qs;
3305
3306 #if !defined(CONFIG_M5272)
3307 /* default enable pause frame auto negotiation */
3308 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3309 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3310 #endif
3311
3312 /* Select default pin state */
3313 pinctrl_pm_select_default_state(&pdev->dev);
3314
3315 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3316 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3317 if (IS_ERR(fep->hwp)) {
3318 ret = PTR_ERR(fep->hwp);
3319 goto failed_ioremap;
3320 }
3321
3322 fep->pdev = pdev;
3323 fep->dev_id = dev_id++;
3324
3325 platform_set_drvdata(pdev, ndev);
3326
3327 if (of_get_property(np, "fsl,magic-packet", NULL))
3328 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3329
3330 phy_node = of_parse_phandle(np, "phy-handle", 0);
3331 if (!phy_node && of_phy_is_fixed_link(np)) {
3332 ret = of_phy_register_fixed_link(np);
3333 if (ret < 0) {
3334 dev_err(&pdev->dev,
3335 "broken fixed-link specification\n");
3336 goto failed_phy;
3337 }
3338 phy_node = of_node_get(np);
3339 }
3340 fep->phy_node = phy_node;
3341
3342 ret = of_get_phy_mode(pdev->dev.of_node);
3343 if (ret < 0) {
3344 pdata = dev_get_platdata(&pdev->dev);
3345 if (pdata)
3346 fep->phy_interface = pdata->phy;
3347 else
3348 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3349 } else {
3350 fep->phy_interface = ret;
3351 }
3352
3353 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3354 if (IS_ERR(fep->clk_ipg)) {
3355 ret = PTR_ERR(fep->clk_ipg);
3356 goto failed_clk;
3357 }
3358
3359 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3360 if (IS_ERR(fep->clk_ahb)) {
3361 ret = PTR_ERR(fep->clk_ahb);
3362 goto failed_clk;
3363 }
3364
3365 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3366
3367 /* enet_out is optional, depends on board */
3368 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3369 if (IS_ERR(fep->clk_enet_out))
3370 fep->clk_enet_out = NULL;
3371
3372 fep->ptp_clk_on = false;
3373 mutex_init(&fep->ptp_clk_mutex);
3374
3375 /* clk_ref is optional, depends on board */
3376 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3377 if (IS_ERR(fep->clk_ref))
3378 fep->clk_ref = NULL;
3379
3380 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3381 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3382 if (IS_ERR(fep->clk_ptp)) {
3383 fep->clk_ptp = NULL;
3384 fep->bufdesc_ex = false;
3385 }
3386
3387 ret = fec_enet_clk_enable(ndev, true);
3388 if (ret)
3389 goto failed_clk;
3390
3391 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3392 if (!IS_ERR(fep->reg_phy)) {
3393 ret = regulator_enable(fep->reg_phy);
3394 if (ret) {
3395 dev_err(&pdev->dev,
3396 "Failed to enable phy regulator: %d\n", ret);
3397 goto failed_regulator;
3398 }
3399 } else {
3400 fep->reg_phy = NULL;
3401 }
3402
3403 fec_reset_phy(pdev);
3404
3405 if (fep->bufdesc_ex)
3406 fec_ptp_init(pdev);
3407
3408 ret = fec_enet_init(ndev);
3409 if (ret)
3410 goto failed_init;
3411
3412 for (i = 0; i < FEC_IRQ_NUM; i++) {
3413 irq = platform_get_irq(pdev, i);
3414 if (irq < 0) {
3415 if (i)
3416 break;
3417 ret = irq;
3418 goto failed_irq;
3419 }
3420 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3421 0, pdev->name, ndev);
3422 if (ret)
3423 goto failed_irq;
3424
3425 fep->irq[i] = irq;
3426 }
3427
3428 init_completion(&fep->mdio_done);
3429 ret = fec_enet_mii_init(pdev);
3430 if (ret)
3431 goto failed_mii_init;
3432
3433 /* Carrier starts down, phylib will bring it up */
3434 netif_carrier_off(ndev);
3435 fec_enet_clk_enable(ndev, false);
3436 pinctrl_pm_select_sleep_state(&pdev->dev);
3437
3438 ret = register_netdev(ndev);
3439 if (ret)
3440 goto failed_register;
3441
3442 device_init_wakeup(&ndev->dev, fep->wol_flag &
3443 FEC_WOL_HAS_MAGIC_PACKET);
3444
3445 if (fep->bufdesc_ex && fep->ptp_clock)
3446 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3447
3448 fep->rx_copybreak = COPYBREAK_DEFAULT;
3449 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3450 return 0;
3451
3452 failed_register:
3453 fec_enet_mii_remove(fep);
3454 failed_mii_init:
3455 failed_irq:
3456 failed_init:
3457 if (fep->reg_phy)
3458 regulator_disable(fep->reg_phy);
3459 failed_regulator:
3460 fec_enet_clk_enable(ndev, false);
3461 failed_clk:
3462 failed_phy:
3463 of_node_put(phy_node);
3464 failed_ioremap:
3465 free_netdev(ndev);
3466
3467 return ret;
3468 }
3469
3470 static int
3471 fec_drv_remove(struct platform_device *pdev)
3472 {
3473 struct net_device *ndev = platform_get_drvdata(pdev);
3474 struct fec_enet_private *fep = netdev_priv(ndev);
3475
3476 cancel_delayed_work_sync(&fep->time_keep);
3477 cancel_work_sync(&fep->tx_timeout_work);
3478 unregister_netdev(ndev);
3479 fec_enet_mii_remove(fep);
3480 if (fep->reg_phy)
3481 regulator_disable(fep->reg_phy);
3482 if (fep->ptp_clock)
3483 ptp_clock_unregister(fep->ptp_clock);
3484 of_node_put(fep->phy_node);
3485 free_netdev(ndev);
3486
3487 return 0;
3488 }
3489
3490 static int __maybe_unused fec_suspend(struct device *dev)
3491 {
3492 struct net_device *ndev = dev_get_drvdata(dev);
3493 struct fec_enet_private *fep = netdev_priv(ndev);
3494
3495 rtnl_lock();
3496 if (netif_running(ndev)) {
3497 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3498 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3499 phy_stop(fep->phy_dev);
3500 napi_disable(&fep->napi);
3501 netif_tx_lock_bh(ndev);
3502 netif_device_detach(ndev);
3503 netif_tx_unlock_bh(ndev);
3504 fec_stop(ndev);
3505 fec_enet_clk_enable(ndev, false);
3506 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3507 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3508 }
3509 rtnl_unlock();
3510
3511 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3512 regulator_disable(fep->reg_phy);
3513
3514 /* SOC supply clock to phy, when clock is disabled, phy link down
3515 * SOC control phy regulator, when regulator is disabled, phy link down
3516 */
3517 if (fep->clk_enet_out || fep->reg_phy)
3518 fep->link = 0;
3519
3520 return 0;
3521 }
3522
3523 static int __maybe_unused fec_resume(struct device *dev)
3524 {
3525 struct net_device *ndev = dev_get_drvdata(dev);
3526 struct fec_enet_private *fep = netdev_priv(ndev);
3527 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3528 int ret;
3529 int val;
3530
3531 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3532 ret = regulator_enable(fep->reg_phy);
3533 if (ret)
3534 return ret;
3535 }
3536
3537 rtnl_lock();
3538 if (netif_running(ndev)) {
3539 ret = fec_enet_clk_enable(ndev, true);
3540 if (ret) {
3541 rtnl_unlock();
3542 goto failed_clk;
3543 }
3544 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3545 if (pdata && pdata->sleep_mode_enable)
3546 pdata->sleep_mode_enable(false);
3547 val = readl(fep->hwp + FEC_ECNTRL);
3548 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3549 writel(val, fep->hwp + FEC_ECNTRL);
3550 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3551 } else {
3552 pinctrl_pm_select_default_state(&fep->pdev->dev);
3553 }
3554 fec_restart(ndev);
3555 netif_tx_lock_bh(ndev);
3556 netif_device_attach(ndev);
3557 netif_tx_unlock_bh(ndev);
3558 napi_enable(&fep->napi);
3559 phy_start(fep->phy_dev);
3560 }
3561 rtnl_unlock();
3562
3563 return 0;
3564
3565 failed_clk:
3566 if (fep->reg_phy)
3567 regulator_disable(fep->reg_phy);
3568 return ret;
3569 }
3570
3571 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3572
3573 static struct platform_driver fec_driver = {
3574 .driver = {
3575 .name = DRIVER_NAME,
3576 .pm = &fec_pm_ops,
3577 .of_match_table = fec_dt_ids,
3578 },
3579 .id_table = fec_devtype,
3580 .probe = fec_probe,
3581 .remove = fec_drv_remove,
3582 };
3583
3584 module_platform_driver(fec_driver);
3585
3586 MODULE_ALIAS("platform:"DRIVER_NAME);
3587 MODULE_LICENSE("GPL");
This page took 0.15125 seconds and 5 git commands to generate.