Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/iwlwifi...
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/spinlock.h>
43 #include <linux/workqueue.h>
44 #include <linux/bitops.h>
45 #include <linux/io.h>
46 #include <linux/irq.h>
47 #include <linux/clk.h>
48 #include <linux/platform_device.h>
49 #include <linux/phy.h>
50 #include <linux/fec.h>
51 #include <linux/of.h>
52 #include <linux/of_device.h>
53 #include <linux/of_gpio.h>
54 #include <linux/of_net.h>
55 #include <linux/regulator/consumer.h>
56 #include <linux/if_vlan.h>
57
58 #include <asm/cacheflush.h>
59
60 #include "fec.h"
61
62 static void set_multicast_list(struct net_device *ndev);
63
64 #if defined(CONFIG_ARM)
65 #define FEC_ALIGNMENT 0xf
66 #else
67 #define FEC_ALIGNMENT 0x3
68 #endif
69
70 #define DRIVER_NAME "fec"
71
72 /* Pause frame feild and FIFO threshold */
73 #define FEC_ENET_FCE (1 << 5)
74 #define FEC_ENET_RSEM_V 0x84
75 #define FEC_ENET_RSFL_V 16
76 #define FEC_ENET_RAEM_V 0x8
77 #define FEC_ENET_RAFL_V 0x8
78 #define FEC_ENET_OPD_V 0xFFF0
79
80 /* Controller is ENET-MAC */
81 #define FEC_QUIRK_ENET_MAC (1 << 0)
82 /* Controller needs driver to swap frame */
83 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
84 /* Controller uses gasket */
85 #define FEC_QUIRK_USE_GASKET (1 << 2)
86 /* Controller has GBIT support */
87 #define FEC_QUIRK_HAS_GBIT (1 << 3)
88 /* Controller has extend desc buffer */
89 #define FEC_QUIRK_HAS_BUFDESC_EX (1 << 4)
90 /* Controller has hardware checksum support */
91 #define FEC_QUIRK_HAS_CSUM (1 << 5)
92 /* Controller has hardware vlan support */
93 #define FEC_QUIRK_HAS_VLAN (1 << 6)
94 /* ENET IP errata ERR006358
95 *
96 * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
97 * detected as not set during a prior frame transmission, then the
98 * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
99 * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
100 * frames not being transmitted until there is a 0-to-1 transition on
101 * ENET_TDAR[TDAR].
102 */
103 #define FEC_QUIRK_ERR006358 (1 << 7)
104
105 static struct platform_device_id fec_devtype[] = {
106 {
107 /* keep it for coldfire */
108 .name = DRIVER_NAME,
109 .driver_data = 0,
110 }, {
111 .name = "imx25-fec",
112 .driver_data = FEC_QUIRK_USE_GASKET,
113 }, {
114 .name = "imx27-fec",
115 .driver_data = 0,
116 }, {
117 .name = "imx28-fec",
118 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
119 }, {
120 .name = "imx6q-fec",
121 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
122 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
123 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
124 }, {
125 .name = "mvf600-fec",
126 .driver_data = FEC_QUIRK_ENET_MAC,
127 }, {
128 /* sentinel */
129 }
130 };
131 MODULE_DEVICE_TABLE(platform, fec_devtype);
132
133 enum imx_fec_type {
134 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
135 IMX27_FEC, /* runs on i.mx27/35/51 */
136 IMX28_FEC,
137 IMX6Q_FEC,
138 MVF600_FEC,
139 };
140
141 static const struct of_device_id fec_dt_ids[] = {
142 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
143 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
144 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
145 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
146 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
147 { /* sentinel */ }
148 };
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
150
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
154
155 #if defined(CONFIG_M5272)
156 /*
157 * Some hardware gets it MAC address out of local flash memory.
158 * if this is non-zero then assume it is the address to get MAC from.
159 */
160 #if defined(CONFIG_NETtel)
161 #define FEC_FLASHMAC 0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define FEC_FLASHMAC 0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define FEC_FLASHMAC 0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define FEC_FLASHMAC (0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC 0xffc0406b
170 #else
171 #define FEC_FLASHMAC 0
172 #endif
173 #endif /* CONFIG_M5272 */
174
175 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
176 #error "FEC: descriptor ring size constants too large"
177 #endif
178
179 /* Interrupt events/masks. */
180 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
181 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
182 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
183 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
184 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
185 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
186 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
187 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
188 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
189 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
190
191 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
192 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
193
194 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
195 */
196 #define PKT_MAXBUF_SIZE 1522
197 #define PKT_MINBUF_SIZE 64
198 #define PKT_MAXBLR_SIZE 1536
199
200 /* FEC receive acceleration */
201 #define FEC_RACC_IPDIS (1 << 1)
202 #define FEC_RACC_PRODIS (1 << 2)
203 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
204
205 /*
206 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
207 * size bits. Other FEC hardware does not, so we need to take that into
208 * account when setting it.
209 */
210 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
211 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
212 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
213 #else
214 #define OPT_FRAME_SIZE 0
215 #endif
216
217 /* FEC MII MMFR bits definition */
218 #define FEC_MMFR_ST (1 << 30)
219 #define FEC_MMFR_OP_READ (2 << 28)
220 #define FEC_MMFR_OP_WRITE (1 << 28)
221 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
222 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
223 #define FEC_MMFR_TA (2 << 16)
224 #define FEC_MMFR_DATA(v) (v & 0xffff)
225
226 #define FEC_MII_TIMEOUT 30000 /* us */
227
228 /* Transmitter timeout */
229 #define TX_TIMEOUT (2 * HZ)
230
231 #define FEC_PAUSE_FLAG_AUTONEG 0x1
232 #define FEC_PAUSE_FLAG_ENABLE 0x2
233
234 static int mii_cnt;
235
236 static inline
237 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
238 {
239 struct bufdesc *new_bd = bdp + 1;
240 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
241 struct bufdesc_ex *ex_base;
242 struct bufdesc *base;
243 int ring_size;
244
245 if (bdp >= fep->tx_bd_base) {
246 base = fep->tx_bd_base;
247 ring_size = fep->tx_ring_size;
248 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
249 } else {
250 base = fep->rx_bd_base;
251 ring_size = fep->rx_ring_size;
252 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
253 }
254
255 if (fep->bufdesc_ex)
256 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
257 ex_base : ex_new_bd);
258 else
259 return (new_bd >= (base + ring_size)) ?
260 base : new_bd;
261 }
262
263 static inline
264 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
265 {
266 struct bufdesc *new_bd = bdp - 1;
267 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
268 struct bufdesc_ex *ex_base;
269 struct bufdesc *base;
270 int ring_size;
271
272 if (bdp >= fep->tx_bd_base) {
273 base = fep->tx_bd_base;
274 ring_size = fep->tx_ring_size;
275 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
276 } else {
277 base = fep->rx_bd_base;
278 ring_size = fep->rx_ring_size;
279 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
280 }
281
282 if (fep->bufdesc_ex)
283 return (struct bufdesc *)((ex_new_bd < ex_base) ?
284 (ex_new_bd + ring_size) : ex_new_bd);
285 else
286 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
287 }
288
289 static void *swap_buffer(void *bufaddr, int len)
290 {
291 int i;
292 unsigned int *buf = bufaddr;
293
294 for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
295 *buf = cpu_to_be32(*buf);
296
297 return bufaddr;
298 }
299
300 static int
301 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
302 {
303 /* Only run for packets requiring a checksum. */
304 if (skb->ip_summed != CHECKSUM_PARTIAL)
305 return 0;
306
307 if (unlikely(skb_cow_head(skb, 0)))
308 return -1;
309
310 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
311
312 return 0;
313 }
314
315 static netdev_tx_t
316 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
317 {
318 struct fec_enet_private *fep = netdev_priv(ndev);
319 const struct platform_device_id *id_entry =
320 platform_get_device_id(fep->pdev);
321 struct bufdesc *bdp, *bdp_pre;
322 void *bufaddr;
323 unsigned short status;
324 unsigned int index;
325
326 /* Fill in a Tx ring entry */
327 bdp = fep->cur_tx;
328
329 status = bdp->cbd_sc;
330
331 if (status & BD_ENET_TX_READY) {
332 /* Ooops. All transmit buffers are full. Bail out.
333 * This should not happen, since ndev->tbusy should be set.
334 */
335 netdev_err(ndev, "tx queue full!\n");
336 return NETDEV_TX_BUSY;
337 }
338
339 /* Protocol checksum off-load for TCP and UDP. */
340 if (fec_enet_clear_csum(skb, ndev)) {
341 dev_kfree_skb_any(skb);
342 return NETDEV_TX_OK;
343 }
344
345 /* Clear all of the status flags */
346 status &= ~BD_ENET_TX_STATS;
347
348 /* Set buffer length and buffer pointer */
349 bufaddr = skb->data;
350 bdp->cbd_datlen = skb->len;
351
352 /*
353 * On some FEC implementations data must be aligned on
354 * 4-byte boundaries. Use bounce buffers to copy data
355 * and get it aligned. Ugh.
356 */
357 if (fep->bufdesc_ex)
358 index = (struct bufdesc_ex *)bdp -
359 (struct bufdesc_ex *)fep->tx_bd_base;
360 else
361 index = bdp - fep->tx_bd_base;
362
363 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
364 memcpy(fep->tx_bounce[index], skb->data, skb->len);
365 bufaddr = fep->tx_bounce[index];
366 }
367
368 /*
369 * Some design made an incorrect assumption on endian mode of
370 * the system that it's running on. As the result, driver has to
371 * swap every frame going to and coming from the controller.
372 */
373 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
374 swap_buffer(bufaddr, skb->len);
375
376 /* Save skb pointer */
377 fep->tx_skbuff[index] = skb;
378
379 /* Push the data cache so the CPM does not get stale memory
380 * data.
381 */
382 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
383 skb->len, DMA_TO_DEVICE);
384 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
385 bdp->cbd_bufaddr = 0;
386 fep->tx_skbuff[index] = NULL;
387 dev_kfree_skb_any(skb);
388 if (net_ratelimit())
389 netdev_err(ndev, "Tx DMA memory map failed\n");
390 return NETDEV_TX_OK;
391 }
392
393 if (fep->bufdesc_ex) {
394
395 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
396 ebdp->cbd_bdu = 0;
397 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
398 fep->hwts_tx_en)) {
399 ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
400 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
401 } else {
402 ebdp->cbd_esc = BD_ENET_TX_INT;
403
404 /* Enable protocol checksum flags
405 * We do not bother with the IP Checksum bits as they
406 * are done by the kernel
407 */
408 if (skb->ip_summed == CHECKSUM_PARTIAL)
409 ebdp->cbd_esc |= BD_ENET_TX_PINS;
410 }
411 }
412
413 /* Send it on its way. Tell FEC it's ready, interrupt when done,
414 * it's the last BD of the frame, and to put the CRC on the end.
415 */
416 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
417 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
418 bdp->cbd_sc = status;
419
420 bdp_pre = fec_enet_get_prevdesc(bdp, fep);
421 if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
422 !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
423 fep->delay_work.trig_tx = true;
424 schedule_delayed_work(&(fep->delay_work.delay_work),
425 msecs_to_jiffies(1));
426 }
427
428 /* If this was the last BD in the ring, start at the beginning again. */
429 bdp = fec_enet_get_nextdesc(bdp, fep);
430
431 skb_tx_timestamp(skb);
432
433 fep->cur_tx = bdp;
434
435 if (fep->cur_tx == fep->dirty_tx)
436 netif_stop_queue(ndev);
437
438 /* Trigger transmission start */
439 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
440
441 return NETDEV_TX_OK;
442 }
443
444 /* Init RX & TX buffer descriptors
445 */
446 static void fec_enet_bd_init(struct net_device *dev)
447 {
448 struct fec_enet_private *fep = netdev_priv(dev);
449 struct bufdesc *bdp;
450 unsigned int i;
451
452 /* Initialize the receive buffer descriptors. */
453 bdp = fep->rx_bd_base;
454 for (i = 0; i < fep->rx_ring_size; i++) {
455
456 /* Initialize the BD for every fragment in the page. */
457 if (bdp->cbd_bufaddr)
458 bdp->cbd_sc = BD_ENET_RX_EMPTY;
459 else
460 bdp->cbd_sc = 0;
461 bdp = fec_enet_get_nextdesc(bdp, fep);
462 }
463
464 /* Set the last buffer to wrap */
465 bdp = fec_enet_get_prevdesc(bdp, fep);
466 bdp->cbd_sc |= BD_SC_WRAP;
467
468 fep->cur_rx = fep->rx_bd_base;
469
470 /* ...and the same for transmit */
471 bdp = fep->tx_bd_base;
472 fep->cur_tx = bdp;
473 for (i = 0; i < fep->tx_ring_size; i++) {
474
475 /* Initialize the BD for every fragment in the page. */
476 bdp->cbd_sc = 0;
477 if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
478 dev_kfree_skb_any(fep->tx_skbuff[i]);
479 fep->tx_skbuff[i] = NULL;
480 }
481 bdp->cbd_bufaddr = 0;
482 bdp = fec_enet_get_nextdesc(bdp, fep);
483 }
484
485 /* Set the last buffer to wrap */
486 bdp = fec_enet_get_prevdesc(bdp, fep);
487 bdp->cbd_sc |= BD_SC_WRAP;
488 fep->dirty_tx = bdp;
489 }
490
491 /* This function is called to start or restart the FEC during a link
492 * change. This only happens when switching between half and full
493 * duplex.
494 */
495 static void
496 fec_restart(struct net_device *ndev, int duplex)
497 {
498 struct fec_enet_private *fep = netdev_priv(ndev);
499 const struct platform_device_id *id_entry =
500 platform_get_device_id(fep->pdev);
501 int i;
502 u32 val;
503 u32 temp_mac[2];
504 u32 rcntl = OPT_FRAME_SIZE | 0x04;
505 u32 ecntl = 0x2; /* ETHEREN */
506
507 if (netif_running(ndev)) {
508 netif_device_detach(ndev);
509 napi_disable(&fep->napi);
510 netif_stop_queue(ndev);
511 netif_tx_lock_bh(ndev);
512 }
513
514 /* Whack a reset. We should wait for this. */
515 writel(1, fep->hwp + FEC_ECNTRL);
516 udelay(10);
517
518 /*
519 * enet-mac reset will reset mac address registers too,
520 * so need to reconfigure it.
521 */
522 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
523 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
524 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
525 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
526 }
527
528 /* Clear any outstanding interrupt. */
529 writel(0xffc00000, fep->hwp + FEC_IEVENT);
530
531 /* Set maximum receive buffer size. */
532 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
533
534 fec_enet_bd_init(ndev);
535
536 /* Set receive and transmit descriptor base. */
537 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
538 if (fep->bufdesc_ex)
539 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
540 * fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
541 else
542 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
543 * fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
544
545
546 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
547 if (fep->tx_skbuff[i]) {
548 dev_kfree_skb_any(fep->tx_skbuff[i]);
549 fep->tx_skbuff[i] = NULL;
550 }
551 }
552
553 /* Enable MII mode */
554 if (duplex) {
555 /* FD enable */
556 writel(0x04, fep->hwp + FEC_X_CNTRL);
557 } else {
558 /* No Rcv on Xmit */
559 rcntl |= 0x02;
560 writel(0x0, fep->hwp + FEC_X_CNTRL);
561 }
562
563 fep->full_duplex = duplex;
564
565 /* Set MII speed */
566 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
567
568 #if !defined(CONFIG_M5272)
569 /* set RX checksum */
570 val = readl(fep->hwp + FEC_RACC);
571 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
572 val |= FEC_RACC_OPTIONS;
573 else
574 val &= ~FEC_RACC_OPTIONS;
575 writel(val, fep->hwp + FEC_RACC);
576 #endif
577
578 /*
579 * The phy interface and speed need to get configured
580 * differently on enet-mac.
581 */
582 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
583 /* Enable flow control and length check */
584 rcntl |= 0x40000000 | 0x00000020;
585
586 /* RGMII, RMII or MII */
587 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
588 rcntl |= (1 << 6);
589 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
590 rcntl |= (1 << 8);
591 else
592 rcntl &= ~(1 << 8);
593
594 /* 1G, 100M or 10M */
595 if (fep->phy_dev) {
596 if (fep->phy_dev->speed == SPEED_1000)
597 ecntl |= (1 << 5);
598 else if (fep->phy_dev->speed == SPEED_100)
599 rcntl &= ~(1 << 9);
600 else
601 rcntl |= (1 << 9);
602 }
603 } else {
604 #ifdef FEC_MIIGSK_ENR
605 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
606 u32 cfgr;
607 /* disable the gasket and wait */
608 writel(0, fep->hwp + FEC_MIIGSK_ENR);
609 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
610 udelay(1);
611
612 /*
613 * configure the gasket:
614 * RMII, 50 MHz, no loopback, no echo
615 * MII, 25 MHz, no loopback, no echo
616 */
617 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
618 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
619 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
620 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
621 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
622
623 /* re-enable the gasket */
624 writel(2, fep->hwp + FEC_MIIGSK_ENR);
625 }
626 #endif
627 }
628
629 #if !defined(CONFIG_M5272)
630 /* enable pause frame*/
631 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
632 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
633 fep->phy_dev && fep->phy_dev->pause)) {
634 rcntl |= FEC_ENET_FCE;
635
636 /* set FIFO threshold parameter to reduce overrun */
637 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
638 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
639 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
640 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
641
642 /* OPD */
643 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
644 } else {
645 rcntl &= ~FEC_ENET_FCE;
646 }
647 #endif /* !defined(CONFIG_M5272) */
648
649 writel(rcntl, fep->hwp + FEC_R_CNTRL);
650
651 /* Setup multicast filter. */
652 set_multicast_list(ndev);
653 #ifndef CONFIG_M5272
654 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
655 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
656 #endif
657
658 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
659 /* enable ENET endian swap */
660 ecntl |= (1 << 8);
661 /* enable ENET store and forward mode */
662 writel(1 << 8, fep->hwp + FEC_X_WMRK);
663 }
664
665 if (fep->bufdesc_ex)
666 ecntl |= (1 << 4);
667
668 #ifndef CONFIG_M5272
669 /* Enable the MIB statistic event counters */
670 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
671 #endif
672
673 /* And last, enable the transmit and receive processing */
674 writel(ecntl, fep->hwp + FEC_ECNTRL);
675 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
676
677 if (fep->bufdesc_ex)
678 fec_ptp_start_cyclecounter(ndev);
679
680 /* Enable interrupts we wish to service */
681 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
682
683 if (netif_running(ndev)) {
684 netif_tx_unlock_bh(ndev);
685 netif_wake_queue(ndev);
686 napi_enable(&fep->napi);
687 netif_device_attach(ndev);
688 }
689 }
690
691 static void
692 fec_stop(struct net_device *ndev)
693 {
694 struct fec_enet_private *fep = netdev_priv(ndev);
695 const struct platform_device_id *id_entry =
696 platform_get_device_id(fep->pdev);
697 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
698
699 /* We cannot expect a graceful transmit stop without link !!! */
700 if (fep->link) {
701 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
702 udelay(10);
703 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
704 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
705 }
706
707 /* Whack a reset. We should wait for this. */
708 writel(1, fep->hwp + FEC_ECNTRL);
709 udelay(10);
710 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
711 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
712
713 /* We have to keep ENET enabled to have MII interrupt stay working */
714 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
715 writel(2, fep->hwp + FEC_ECNTRL);
716 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
717 }
718 }
719
720
721 static void
722 fec_timeout(struct net_device *ndev)
723 {
724 struct fec_enet_private *fep = netdev_priv(ndev);
725
726 ndev->stats.tx_errors++;
727
728 fep->delay_work.timeout = true;
729 schedule_delayed_work(&(fep->delay_work.delay_work), 0);
730 }
731
732 static void fec_enet_work(struct work_struct *work)
733 {
734 struct fec_enet_private *fep =
735 container_of(work,
736 struct fec_enet_private,
737 delay_work.delay_work.work);
738
739 if (fep->delay_work.timeout) {
740 fep->delay_work.timeout = false;
741 fec_restart(fep->netdev, fep->full_duplex);
742 netif_wake_queue(fep->netdev);
743 }
744
745 if (fep->delay_work.trig_tx) {
746 fep->delay_work.trig_tx = false;
747 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
748 }
749 }
750
751 static void
752 fec_enet_tx(struct net_device *ndev)
753 {
754 struct fec_enet_private *fep;
755 struct bufdesc *bdp;
756 unsigned short status;
757 struct sk_buff *skb;
758 int index = 0;
759
760 fep = netdev_priv(ndev);
761 bdp = fep->dirty_tx;
762
763 /* get next bdp of dirty_tx */
764 bdp = fec_enet_get_nextdesc(bdp, fep);
765
766 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
767
768 /* current queue is empty */
769 if (bdp == fep->cur_tx)
770 break;
771
772 if (fep->bufdesc_ex)
773 index = (struct bufdesc_ex *)bdp -
774 (struct bufdesc_ex *)fep->tx_bd_base;
775 else
776 index = bdp - fep->tx_bd_base;
777
778 skb = fep->tx_skbuff[index];
779 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, skb->len,
780 DMA_TO_DEVICE);
781 bdp->cbd_bufaddr = 0;
782
783 /* Check for errors. */
784 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
785 BD_ENET_TX_RL | BD_ENET_TX_UN |
786 BD_ENET_TX_CSL)) {
787 ndev->stats.tx_errors++;
788 if (status & BD_ENET_TX_HB) /* No heartbeat */
789 ndev->stats.tx_heartbeat_errors++;
790 if (status & BD_ENET_TX_LC) /* Late collision */
791 ndev->stats.tx_window_errors++;
792 if (status & BD_ENET_TX_RL) /* Retrans limit */
793 ndev->stats.tx_aborted_errors++;
794 if (status & BD_ENET_TX_UN) /* Underrun */
795 ndev->stats.tx_fifo_errors++;
796 if (status & BD_ENET_TX_CSL) /* Carrier lost */
797 ndev->stats.tx_carrier_errors++;
798 } else {
799 ndev->stats.tx_packets++;
800 ndev->stats.tx_bytes += bdp->cbd_datlen;
801 }
802
803 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
804 fep->bufdesc_ex) {
805 struct skb_shared_hwtstamps shhwtstamps;
806 unsigned long flags;
807 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
808
809 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
810 spin_lock_irqsave(&fep->tmreg_lock, flags);
811 shhwtstamps.hwtstamp = ns_to_ktime(
812 timecounter_cyc2time(&fep->tc, ebdp->ts));
813 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
814 skb_tstamp_tx(skb, &shhwtstamps);
815 }
816
817 if (status & BD_ENET_TX_READY)
818 netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
819
820 /* Deferred means some collisions occurred during transmit,
821 * but we eventually sent the packet OK.
822 */
823 if (status & BD_ENET_TX_DEF)
824 ndev->stats.collisions++;
825
826 /* Free the sk buffer associated with this last transmit */
827 dev_kfree_skb_any(skb);
828 fep->tx_skbuff[index] = NULL;
829
830 fep->dirty_tx = bdp;
831
832 /* Update pointer to next buffer descriptor to be transmitted */
833 bdp = fec_enet_get_nextdesc(bdp, fep);
834
835 /* Since we have freed up a buffer, the ring is no longer full
836 */
837 if (fep->dirty_tx != fep->cur_tx) {
838 if (netif_queue_stopped(ndev))
839 netif_wake_queue(ndev);
840 }
841 }
842 return;
843 }
844
845
846 /* During a receive, the cur_rx points to the current incoming buffer.
847 * When we update through the ring, if the next incoming buffer has
848 * not been given to the system, we just set the empty indicator,
849 * effectively tossing the packet.
850 */
851 static int
852 fec_enet_rx(struct net_device *ndev, int budget)
853 {
854 struct fec_enet_private *fep = netdev_priv(ndev);
855 const struct platform_device_id *id_entry =
856 platform_get_device_id(fep->pdev);
857 struct bufdesc *bdp;
858 unsigned short status;
859 struct sk_buff *skb;
860 ushort pkt_len;
861 __u8 *data;
862 int pkt_received = 0;
863 struct bufdesc_ex *ebdp = NULL;
864 bool vlan_packet_rcvd = false;
865 u16 vlan_tag;
866 int index = 0;
867
868 #ifdef CONFIG_M532x
869 flush_cache_all();
870 #endif
871
872 /* First, grab all of the stats for the incoming packet.
873 * These get messed up if we get called due to a busy condition.
874 */
875 bdp = fep->cur_rx;
876
877 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
878
879 if (pkt_received >= budget)
880 break;
881 pkt_received++;
882
883 /* Since we have allocated space to hold a complete frame,
884 * the last indicator should be set.
885 */
886 if ((status & BD_ENET_RX_LAST) == 0)
887 netdev_err(ndev, "rcv is not +last\n");
888
889 if (!fep->opened)
890 goto rx_processing_done;
891
892 /* Check for errors. */
893 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
894 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
895 ndev->stats.rx_errors++;
896 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
897 /* Frame too long or too short. */
898 ndev->stats.rx_length_errors++;
899 }
900 if (status & BD_ENET_RX_NO) /* Frame alignment */
901 ndev->stats.rx_frame_errors++;
902 if (status & BD_ENET_RX_CR) /* CRC Error */
903 ndev->stats.rx_crc_errors++;
904 if (status & BD_ENET_RX_OV) /* FIFO overrun */
905 ndev->stats.rx_fifo_errors++;
906 }
907
908 /* Report late collisions as a frame error.
909 * On this error, the BD is closed, but we don't know what we
910 * have in the buffer. So, just drop this frame on the floor.
911 */
912 if (status & BD_ENET_RX_CL) {
913 ndev->stats.rx_errors++;
914 ndev->stats.rx_frame_errors++;
915 goto rx_processing_done;
916 }
917
918 /* Process the incoming frame. */
919 ndev->stats.rx_packets++;
920 pkt_len = bdp->cbd_datlen;
921 ndev->stats.rx_bytes += pkt_len;
922
923 if (fep->bufdesc_ex)
924 index = (struct bufdesc_ex *)bdp -
925 (struct bufdesc_ex *)fep->rx_bd_base;
926 else
927 index = bdp - fep->rx_bd_base;
928 data = fep->rx_skbuff[index]->data;
929 dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
930 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
931
932 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
933 swap_buffer(data, pkt_len);
934
935 /* Extract the enhanced buffer descriptor */
936 ebdp = NULL;
937 if (fep->bufdesc_ex)
938 ebdp = (struct bufdesc_ex *)bdp;
939
940 /* If this is a VLAN packet remove the VLAN Tag */
941 vlan_packet_rcvd = false;
942 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
943 fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
944 /* Push and remove the vlan tag */
945 struct vlan_hdr *vlan_header =
946 (struct vlan_hdr *) (data + ETH_HLEN);
947 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
948 pkt_len -= VLAN_HLEN;
949
950 vlan_packet_rcvd = true;
951 }
952
953 /* This does 16 byte alignment, exactly what we need.
954 * The packet length includes FCS, but we don't want to
955 * include that when passing upstream as it messes up
956 * bridging applications.
957 */
958 skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
959
960 if (unlikely(!skb)) {
961 ndev->stats.rx_dropped++;
962 } else {
963 int payload_offset = (2 * ETH_ALEN);
964 skb_reserve(skb, NET_IP_ALIGN);
965 skb_put(skb, pkt_len - 4); /* Make room */
966
967 /* Extract the frame data without the VLAN header. */
968 skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
969 if (vlan_packet_rcvd)
970 payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
971 skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
972 data + payload_offset,
973 pkt_len - 4 - (2 * ETH_ALEN));
974
975 skb->protocol = eth_type_trans(skb, ndev);
976
977 /* Get receive timestamp from the skb */
978 if (fep->hwts_rx_en && fep->bufdesc_ex) {
979 struct skb_shared_hwtstamps *shhwtstamps =
980 skb_hwtstamps(skb);
981 unsigned long flags;
982
983 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
984
985 spin_lock_irqsave(&fep->tmreg_lock, flags);
986 shhwtstamps->hwtstamp = ns_to_ktime(
987 timecounter_cyc2time(&fep->tc, ebdp->ts));
988 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
989 }
990
991 if (fep->bufdesc_ex &&
992 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
993 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
994 /* don't check it */
995 skb->ip_summed = CHECKSUM_UNNECESSARY;
996 } else {
997 skb_checksum_none_assert(skb);
998 }
999 }
1000
1001 /* Handle received VLAN packets */
1002 if (vlan_packet_rcvd)
1003 __vlan_hwaccel_put_tag(skb,
1004 htons(ETH_P_8021Q),
1005 vlan_tag);
1006
1007 napi_gro_receive(&fep->napi, skb);
1008 }
1009
1010 dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1011 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1012 rx_processing_done:
1013 /* Clear the status flags for this buffer */
1014 status &= ~BD_ENET_RX_STATS;
1015
1016 /* Mark the buffer empty */
1017 status |= BD_ENET_RX_EMPTY;
1018 bdp->cbd_sc = status;
1019
1020 if (fep->bufdesc_ex) {
1021 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1022
1023 ebdp->cbd_esc = BD_ENET_RX_INT;
1024 ebdp->cbd_prot = 0;
1025 ebdp->cbd_bdu = 0;
1026 }
1027
1028 /* Update BD pointer to next entry */
1029 bdp = fec_enet_get_nextdesc(bdp, fep);
1030
1031 /* Doing this here will keep the FEC running while we process
1032 * incoming frames. On a heavily loaded network, we should be
1033 * able to keep up at the expense of system resources.
1034 */
1035 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1036 }
1037 fep->cur_rx = bdp;
1038
1039 return pkt_received;
1040 }
1041
1042 static irqreturn_t
1043 fec_enet_interrupt(int irq, void *dev_id)
1044 {
1045 struct net_device *ndev = dev_id;
1046 struct fec_enet_private *fep = netdev_priv(ndev);
1047 uint int_events;
1048 irqreturn_t ret = IRQ_NONE;
1049
1050 do {
1051 int_events = readl(fep->hwp + FEC_IEVENT);
1052 writel(int_events, fep->hwp + FEC_IEVENT);
1053
1054 if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1055 ret = IRQ_HANDLED;
1056
1057 /* Disable the RX interrupt */
1058 if (napi_schedule_prep(&fep->napi)) {
1059 writel(FEC_RX_DISABLED_IMASK,
1060 fep->hwp + FEC_IMASK);
1061 __napi_schedule(&fep->napi);
1062 }
1063 }
1064
1065 if (int_events & FEC_ENET_MII) {
1066 ret = IRQ_HANDLED;
1067 complete(&fep->mdio_done);
1068 }
1069 } while (int_events);
1070
1071 return ret;
1072 }
1073
1074 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1075 {
1076 struct net_device *ndev = napi->dev;
1077 int pkts = fec_enet_rx(ndev, budget);
1078 struct fec_enet_private *fep = netdev_priv(ndev);
1079
1080 fec_enet_tx(ndev);
1081
1082 if (pkts < budget) {
1083 napi_complete(napi);
1084 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1085 }
1086 return pkts;
1087 }
1088
1089 /* ------------------------------------------------------------------------- */
1090 static void fec_get_mac(struct net_device *ndev)
1091 {
1092 struct fec_enet_private *fep = netdev_priv(ndev);
1093 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1094 unsigned char *iap, tmpaddr[ETH_ALEN];
1095
1096 /*
1097 * try to get mac address in following order:
1098 *
1099 * 1) module parameter via kernel command line in form
1100 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1101 */
1102 iap = macaddr;
1103
1104 /*
1105 * 2) from device tree data
1106 */
1107 if (!is_valid_ether_addr(iap)) {
1108 struct device_node *np = fep->pdev->dev.of_node;
1109 if (np) {
1110 const char *mac = of_get_mac_address(np);
1111 if (mac)
1112 iap = (unsigned char *) mac;
1113 }
1114 }
1115
1116 /*
1117 * 3) from flash or fuse (via platform data)
1118 */
1119 if (!is_valid_ether_addr(iap)) {
1120 #ifdef CONFIG_M5272
1121 if (FEC_FLASHMAC)
1122 iap = (unsigned char *)FEC_FLASHMAC;
1123 #else
1124 if (pdata)
1125 iap = (unsigned char *)&pdata->mac;
1126 #endif
1127 }
1128
1129 /*
1130 * 4) FEC mac registers set by bootloader
1131 */
1132 if (!is_valid_ether_addr(iap)) {
1133 *((__be32 *) &tmpaddr[0]) =
1134 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1135 *((__be16 *) &tmpaddr[4]) =
1136 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1137 iap = &tmpaddr[0];
1138 }
1139
1140 /*
1141 * 5) random mac address
1142 */
1143 if (!is_valid_ether_addr(iap)) {
1144 /* Report it and use a random ethernet address instead */
1145 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1146 eth_hw_addr_random(ndev);
1147 netdev_info(ndev, "Using random MAC address: %pM\n",
1148 ndev->dev_addr);
1149 return;
1150 }
1151
1152 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1153
1154 /* Adjust MAC if using macaddr */
1155 if (iap == macaddr)
1156 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1157 }
1158
1159 /* ------------------------------------------------------------------------- */
1160
1161 /*
1162 * Phy section
1163 */
1164 static void fec_enet_adjust_link(struct net_device *ndev)
1165 {
1166 struct fec_enet_private *fep = netdev_priv(ndev);
1167 struct phy_device *phy_dev = fep->phy_dev;
1168 int status_change = 0;
1169
1170 /* Prevent a state halted on mii error */
1171 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1172 phy_dev->state = PHY_RESUMING;
1173 return;
1174 }
1175
1176 if (phy_dev->link) {
1177 if (!fep->link) {
1178 fep->link = phy_dev->link;
1179 status_change = 1;
1180 }
1181
1182 if (fep->full_duplex != phy_dev->duplex)
1183 status_change = 1;
1184
1185 if (phy_dev->speed != fep->speed) {
1186 fep->speed = phy_dev->speed;
1187 status_change = 1;
1188 }
1189
1190 /* if any of the above changed restart the FEC */
1191 if (status_change)
1192 fec_restart(ndev, phy_dev->duplex);
1193 } else {
1194 if (fep->link) {
1195 fec_stop(ndev);
1196 fep->link = phy_dev->link;
1197 status_change = 1;
1198 }
1199 }
1200
1201 if (status_change)
1202 phy_print_status(phy_dev);
1203 }
1204
1205 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1206 {
1207 struct fec_enet_private *fep = bus->priv;
1208 unsigned long time_left;
1209
1210 fep->mii_timeout = 0;
1211 init_completion(&fep->mdio_done);
1212
1213 /* start a read op */
1214 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1215 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1216 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1217
1218 /* wait for end of transfer */
1219 time_left = wait_for_completion_timeout(&fep->mdio_done,
1220 usecs_to_jiffies(FEC_MII_TIMEOUT));
1221 if (time_left == 0) {
1222 fep->mii_timeout = 1;
1223 netdev_err(fep->netdev, "MDIO read timeout\n");
1224 return -ETIMEDOUT;
1225 }
1226
1227 /* return value */
1228 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1229 }
1230
1231 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1232 u16 value)
1233 {
1234 struct fec_enet_private *fep = bus->priv;
1235 unsigned long time_left;
1236
1237 fep->mii_timeout = 0;
1238 init_completion(&fep->mdio_done);
1239
1240 /* start a write op */
1241 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1242 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1243 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1244 fep->hwp + FEC_MII_DATA);
1245
1246 /* wait for end of transfer */
1247 time_left = wait_for_completion_timeout(&fep->mdio_done,
1248 usecs_to_jiffies(FEC_MII_TIMEOUT));
1249 if (time_left == 0) {
1250 fep->mii_timeout = 1;
1251 netdev_err(fep->netdev, "MDIO write timeout\n");
1252 return -ETIMEDOUT;
1253 }
1254
1255 return 0;
1256 }
1257
1258 static int fec_enet_mii_probe(struct net_device *ndev)
1259 {
1260 struct fec_enet_private *fep = netdev_priv(ndev);
1261 const struct platform_device_id *id_entry =
1262 platform_get_device_id(fep->pdev);
1263 struct phy_device *phy_dev = NULL;
1264 char mdio_bus_id[MII_BUS_ID_SIZE];
1265 char phy_name[MII_BUS_ID_SIZE + 3];
1266 int phy_id;
1267 int dev_id = fep->dev_id;
1268
1269 fep->phy_dev = NULL;
1270
1271 /* check for attached phy */
1272 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1273 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1274 continue;
1275 if (fep->mii_bus->phy_map[phy_id] == NULL)
1276 continue;
1277 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1278 continue;
1279 if (dev_id--)
1280 continue;
1281 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1282 break;
1283 }
1284
1285 if (phy_id >= PHY_MAX_ADDR) {
1286 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1287 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1288 phy_id = 0;
1289 }
1290
1291 snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1292 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1293 fep->phy_interface);
1294 if (IS_ERR(phy_dev)) {
1295 netdev_err(ndev, "could not attach to PHY\n");
1296 return PTR_ERR(phy_dev);
1297 }
1298
1299 /* mask with MAC supported features */
1300 if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1301 phy_dev->supported &= PHY_GBIT_FEATURES;
1302 #if !defined(CONFIG_M5272)
1303 phy_dev->supported |= SUPPORTED_Pause;
1304 #endif
1305 }
1306 else
1307 phy_dev->supported &= PHY_BASIC_FEATURES;
1308
1309 phy_dev->advertising = phy_dev->supported;
1310
1311 fep->phy_dev = phy_dev;
1312 fep->link = 0;
1313 fep->full_duplex = 0;
1314
1315 netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1316 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1317 fep->phy_dev->irq);
1318
1319 return 0;
1320 }
1321
1322 static int fec_enet_mii_init(struct platform_device *pdev)
1323 {
1324 static struct mii_bus *fec0_mii_bus;
1325 struct net_device *ndev = platform_get_drvdata(pdev);
1326 struct fec_enet_private *fep = netdev_priv(ndev);
1327 const struct platform_device_id *id_entry =
1328 platform_get_device_id(fep->pdev);
1329 int err = -ENXIO, i;
1330
1331 /*
1332 * The dual fec interfaces are not equivalent with enet-mac.
1333 * Here are the differences:
1334 *
1335 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1336 * - fec0 acts as the 1588 time master while fec1 is slave
1337 * - external phys can only be configured by fec0
1338 *
1339 * That is to say fec1 can not work independently. It only works
1340 * when fec0 is working. The reason behind this design is that the
1341 * second interface is added primarily for Switch mode.
1342 *
1343 * Because of the last point above, both phys are attached on fec0
1344 * mdio interface in board design, and need to be configured by
1345 * fec0 mii_bus.
1346 */
1347 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1348 /* fec1 uses fec0 mii_bus */
1349 if (mii_cnt && fec0_mii_bus) {
1350 fep->mii_bus = fec0_mii_bus;
1351 mii_cnt++;
1352 return 0;
1353 }
1354 return -ENOENT;
1355 }
1356
1357 fep->mii_timeout = 0;
1358
1359 /*
1360 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1361 *
1362 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1363 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1364 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1365 * document.
1366 */
1367 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1368 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1369 fep->phy_speed--;
1370 fep->phy_speed <<= 1;
1371 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1372
1373 fep->mii_bus = mdiobus_alloc();
1374 if (fep->mii_bus == NULL) {
1375 err = -ENOMEM;
1376 goto err_out;
1377 }
1378
1379 fep->mii_bus->name = "fec_enet_mii_bus";
1380 fep->mii_bus->read = fec_enet_mdio_read;
1381 fep->mii_bus->write = fec_enet_mdio_write;
1382 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1383 pdev->name, fep->dev_id + 1);
1384 fep->mii_bus->priv = fep;
1385 fep->mii_bus->parent = &pdev->dev;
1386
1387 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1388 if (!fep->mii_bus->irq) {
1389 err = -ENOMEM;
1390 goto err_out_free_mdiobus;
1391 }
1392
1393 for (i = 0; i < PHY_MAX_ADDR; i++)
1394 fep->mii_bus->irq[i] = PHY_POLL;
1395
1396 if (mdiobus_register(fep->mii_bus))
1397 goto err_out_free_mdio_irq;
1398
1399 mii_cnt++;
1400
1401 /* save fec0 mii_bus */
1402 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1403 fec0_mii_bus = fep->mii_bus;
1404
1405 return 0;
1406
1407 err_out_free_mdio_irq:
1408 kfree(fep->mii_bus->irq);
1409 err_out_free_mdiobus:
1410 mdiobus_free(fep->mii_bus);
1411 err_out:
1412 return err;
1413 }
1414
1415 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1416 {
1417 if (--mii_cnt == 0) {
1418 mdiobus_unregister(fep->mii_bus);
1419 kfree(fep->mii_bus->irq);
1420 mdiobus_free(fep->mii_bus);
1421 }
1422 }
1423
1424 static int fec_enet_get_settings(struct net_device *ndev,
1425 struct ethtool_cmd *cmd)
1426 {
1427 struct fec_enet_private *fep = netdev_priv(ndev);
1428 struct phy_device *phydev = fep->phy_dev;
1429
1430 if (!phydev)
1431 return -ENODEV;
1432
1433 return phy_ethtool_gset(phydev, cmd);
1434 }
1435
1436 static int fec_enet_set_settings(struct net_device *ndev,
1437 struct ethtool_cmd *cmd)
1438 {
1439 struct fec_enet_private *fep = netdev_priv(ndev);
1440 struct phy_device *phydev = fep->phy_dev;
1441
1442 if (!phydev)
1443 return -ENODEV;
1444
1445 return phy_ethtool_sset(phydev, cmd);
1446 }
1447
1448 static void fec_enet_get_drvinfo(struct net_device *ndev,
1449 struct ethtool_drvinfo *info)
1450 {
1451 struct fec_enet_private *fep = netdev_priv(ndev);
1452
1453 strlcpy(info->driver, fep->pdev->dev.driver->name,
1454 sizeof(info->driver));
1455 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1456 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1457 }
1458
1459 static int fec_enet_get_ts_info(struct net_device *ndev,
1460 struct ethtool_ts_info *info)
1461 {
1462 struct fec_enet_private *fep = netdev_priv(ndev);
1463
1464 if (fep->bufdesc_ex) {
1465
1466 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1467 SOF_TIMESTAMPING_RX_SOFTWARE |
1468 SOF_TIMESTAMPING_SOFTWARE |
1469 SOF_TIMESTAMPING_TX_HARDWARE |
1470 SOF_TIMESTAMPING_RX_HARDWARE |
1471 SOF_TIMESTAMPING_RAW_HARDWARE;
1472 if (fep->ptp_clock)
1473 info->phc_index = ptp_clock_index(fep->ptp_clock);
1474 else
1475 info->phc_index = -1;
1476
1477 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1478 (1 << HWTSTAMP_TX_ON);
1479
1480 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1481 (1 << HWTSTAMP_FILTER_ALL);
1482 return 0;
1483 } else {
1484 return ethtool_op_get_ts_info(ndev, info);
1485 }
1486 }
1487
1488 #if !defined(CONFIG_M5272)
1489
1490 static void fec_enet_get_pauseparam(struct net_device *ndev,
1491 struct ethtool_pauseparam *pause)
1492 {
1493 struct fec_enet_private *fep = netdev_priv(ndev);
1494
1495 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1496 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1497 pause->rx_pause = pause->tx_pause;
1498 }
1499
1500 static int fec_enet_set_pauseparam(struct net_device *ndev,
1501 struct ethtool_pauseparam *pause)
1502 {
1503 struct fec_enet_private *fep = netdev_priv(ndev);
1504
1505 if (pause->tx_pause != pause->rx_pause) {
1506 netdev_info(ndev,
1507 "hardware only support enable/disable both tx and rx");
1508 return -EINVAL;
1509 }
1510
1511 fep->pause_flag = 0;
1512
1513 /* tx pause must be same as rx pause */
1514 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1515 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1516
1517 if (pause->rx_pause || pause->autoneg) {
1518 fep->phy_dev->supported |= ADVERTISED_Pause;
1519 fep->phy_dev->advertising |= ADVERTISED_Pause;
1520 } else {
1521 fep->phy_dev->supported &= ~ADVERTISED_Pause;
1522 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1523 }
1524
1525 if (pause->autoneg) {
1526 if (netif_running(ndev))
1527 fec_stop(ndev);
1528 phy_start_aneg(fep->phy_dev);
1529 }
1530 if (netif_running(ndev))
1531 fec_restart(ndev, 0);
1532
1533 return 0;
1534 }
1535
1536 static const struct fec_stat {
1537 char name[ETH_GSTRING_LEN];
1538 u16 offset;
1539 } fec_stats[] = {
1540 /* RMON TX */
1541 { "tx_dropped", RMON_T_DROP },
1542 { "tx_packets", RMON_T_PACKETS },
1543 { "tx_broadcast", RMON_T_BC_PKT },
1544 { "tx_multicast", RMON_T_MC_PKT },
1545 { "tx_crc_errors", RMON_T_CRC_ALIGN },
1546 { "tx_undersize", RMON_T_UNDERSIZE },
1547 { "tx_oversize", RMON_T_OVERSIZE },
1548 { "tx_fragment", RMON_T_FRAG },
1549 { "tx_jabber", RMON_T_JAB },
1550 { "tx_collision", RMON_T_COL },
1551 { "tx_64byte", RMON_T_P64 },
1552 { "tx_65to127byte", RMON_T_P65TO127 },
1553 { "tx_128to255byte", RMON_T_P128TO255 },
1554 { "tx_256to511byte", RMON_T_P256TO511 },
1555 { "tx_512to1023byte", RMON_T_P512TO1023 },
1556 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
1557 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
1558 { "tx_octets", RMON_T_OCTETS },
1559
1560 /* IEEE TX */
1561 { "IEEE_tx_drop", IEEE_T_DROP },
1562 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1563 { "IEEE_tx_1col", IEEE_T_1COL },
1564 { "IEEE_tx_mcol", IEEE_T_MCOL },
1565 { "IEEE_tx_def", IEEE_T_DEF },
1566 { "IEEE_tx_lcol", IEEE_T_LCOL },
1567 { "IEEE_tx_excol", IEEE_T_EXCOL },
1568 { "IEEE_tx_macerr", IEEE_T_MACERR },
1569 { "IEEE_tx_cserr", IEEE_T_CSERR },
1570 { "IEEE_tx_sqe", IEEE_T_SQE },
1571 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1572 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1573
1574 /* RMON RX */
1575 { "rx_packets", RMON_R_PACKETS },
1576 { "rx_broadcast", RMON_R_BC_PKT },
1577 { "rx_multicast", RMON_R_MC_PKT },
1578 { "rx_crc_errors", RMON_R_CRC_ALIGN },
1579 { "rx_undersize", RMON_R_UNDERSIZE },
1580 { "rx_oversize", RMON_R_OVERSIZE },
1581 { "rx_fragment", RMON_R_FRAG },
1582 { "rx_jabber", RMON_R_JAB },
1583 { "rx_64byte", RMON_R_P64 },
1584 { "rx_65to127byte", RMON_R_P65TO127 },
1585 { "rx_128to255byte", RMON_R_P128TO255 },
1586 { "rx_256to511byte", RMON_R_P256TO511 },
1587 { "rx_512to1023byte", RMON_R_P512TO1023 },
1588 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
1589 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
1590 { "rx_octets", RMON_R_OCTETS },
1591
1592 /* IEEE RX */
1593 { "IEEE_rx_drop", IEEE_R_DROP },
1594 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1595 { "IEEE_rx_crc", IEEE_R_CRC },
1596 { "IEEE_rx_align", IEEE_R_ALIGN },
1597 { "IEEE_rx_macerr", IEEE_R_MACERR },
1598 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1599 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1600 };
1601
1602 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1603 struct ethtool_stats *stats, u64 *data)
1604 {
1605 struct fec_enet_private *fep = netdev_priv(dev);
1606 int i;
1607
1608 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1609 data[i] = readl(fep->hwp + fec_stats[i].offset);
1610 }
1611
1612 static void fec_enet_get_strings(struct net_device *netdev,
1613 u32 stringset, u8 *data)
1614 {
1615 int i;
1616 switch (stringset) {
1617 case ETH_SS_STATS:
1618 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1619 memcpy(data + i * ETH_GSTRING_LEN,
1620 fec_stats[i].name, ETH_GSTRING_LEN);
1621 break;
1622 }
1623 }
1624
1625 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1626 {
1627 switch (sset) {
1628 case ETH_SS_STATS:
1629 return ARRAY_SIZE(fec_stats);
1630 default:
1631 return -EOPNOTSUPP;
1632 }
1633 }
1634 #endif /* !defined(CONFIG_M5272) */
1635
1636 static int fec_enet_nway_reset(struct net_device *dev)
1637 {
1638 struct fec_enet_private *fep = netdev_priv(dev);
1639 struct phy_device *phydev = fep->phy_dev;
1640
1641 if (!phydev)
1642 return -ENODEV;
1643
1644 return genphy_restart_aneg(phydev);
1645 }
1646
1647 static const struct ethtool_ops fec_enet_ethtool_ops = {
1648 #if !defined(CONFIG_M5272)
1649 .get_pauseparam = fec_enet_get_pauseparam,
1650 .set_pauseparam = fec_enet_set_pauseparam,
1651 #endif
1652 .get_settings = fec_enet_get_settings,
1653 .set_settings = fec_enet_set_settings,
1654 .get_drvinfo = fec_enet_get_drvinfo,
1655 .get_link = ethtool_op_get_link,
1656 .get_ts_info = fec_enet_get_ts_info,
1657 .nway_reset = fec_enet_nway_reset,
1658 #ifndef CONFIG_M5272
1659 .get_ethtool_stats = fec_enet_get_ethtool_stats,
1660 .get_strings = fec_enet_get_strings,
1661 .get_sset_count = fec_enet_get_sset_count,
1662 #endif
1663 };
1664
1665 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1666 {
1667 struct fec_enet_private *fep = netdev_priv(ndev);
1668 struct phy_device *phydev = fep->phy_dev;
1669
1670 if (!netif_running(ndev))
1671 return -EINVAL;
1672
1673 if (!phydev)
1674 return -ENODEV;
1675
1676 if (fep->bufdesc_ex) {
1677 if (cmd == SIOCSHWTSTAMP)
1678 return fec_ptp_set(ndev, rq);
1679 if (cmd == SIOCGHWTSTAMP)
1680 return fec_ptp_get(ndev, rq);
1681 }
1682
1683 return phy_mii_ioctl(phydev, rq, cmd);
1684 }
1685
1686 static void fec_enet_free_buffers(struct net_device *ndev)
1687 {
1688 struct fec_enet_private *fep = netdev_priv(ndev);
1689 unsigned int i;
1690 struct sk_buff *skb;
1691 struct bufdesc *bdp;
1692
1693 bdp = fep->rx_bd_base;
1694 for (i = 0; i < fep->rx_ring_size; i++) {
1695 skb = fep->rx_skbuff[i];
1696
1697 if (bdp->cbd_bufaddr)
1698 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1699 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1700 if (skb)
1701 dev_kfree_skb(skb);
1702 bdp = fec_enet_get_nextdesc(bdp, fep);
1703 }
1704
1705 bdp = fep->tx_bd_base;
1706 for (i = 0; i < fep->tx_ring_size; i++)
1707 kfree(fep->tx_bounce[i]);
1708 }
1709
1710 static int fec_enet_alloc_buffers(struct net_device *ndev)
1711 {
1712 struct fec_enet_private *fep = netdev_priv(ndev);
1713 unsigned int i;
1714 struct sk_buff *skb;
1715 struct bufdesc *bdp;
1716
1717 bdp = fep->rx_bd_base;
1718 for (i = 0; i < fep->rx_ring_size; i++) {
1719 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1720 if (!skb) {
1721 fec_enet_free_buffers(ndev);
1722 return -ENOMEM;
1723 }
1724 fep->rx_skbuff[i] = skb;
1725
1726 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1727 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1728 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1729 fec_enet_free_buffers(ndev);
1730 if (net_ratelimit())
1731 netdev_err(ndev, "Rx DMA memory map failed\n");
1732 return -ENOMEM;
1733 }
1734 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1735
1736 if (fep->bufdesc_ex) {
1737 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1738 ebdp->cbd_esc = BD_ENET_RX_INT;
1739 }
1740
1741 bdp = fec_enet_get_nextdesc(bdp, fep);
1742 }
1743
1744 /* Set the last buffer to wrap. */
1745 bdp = fec_enet_get_prevdesc(bdp, fep);
1746 bdp->cbd_sc |= BD_SC_WRAP;
1747
1748 bdp = fep->tx_bd_base;
1749 for (i = 0; i < fep->tx_ring_size; i++) {
1750 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1751
1752 bdp->cbd_sc = 0;
1753 bdp->cbd_bufaddr = 0;
1754
1755 if (fep->bufdesc_ex) {
1756 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1757 ebdp->cbd_esc = BD_ENET_TX_INT;
1758 }
1759
1760 bdp = fec_enet_get_nextdesc(bdp, fep);
1761 }
1762
1763 /* Set the last buffer to wrap. */
1764 bdp = fec_enet_get_prevdesc(bdp, fep);
1765 bdp->cbd_sc |= BD_SC_WRAP;
1766
1767 return 0;
1768 }
1769
1770 static int
1771 fec_enet_open(struct net_device *ndev)
1772 {
1773 struct fec_enet_private *fep = netdev_priv(ndev);
1774 int ret;
1775
1776 /* I should reset the ring buffers here, but I don't yet know
1777 * a simple way to do that.
1778 */
1779
1780 ret = fec_enet_alloc_buffers(ndev);
1781 if (ret)
1782 return ret;
1783
1784 /* Probe and connect to PHY when open the interface */
1785 ret = fec_enet_mii_probe(ndev);
1786 if (ret) {
1787 fec_enet_free_buffers(ndev);
1788 return ret;
1789 }
1790
1791 napi_enable(&fep->napi);
1792 phy_start(fep->phy_dev);
1793 netif_start_queue(ndev);
1794 fep->opened = 1;
1795 return 0;
1796 }
1797
1798 static int
1799 fec_enet_close(struct net_device *ndev)
1800 {
1801 struct fec_enet_private *fep = netdev_priv(ndev);
1802
1803 /* Don't know what to do yet. */
1804 napi_disable(&fep->napi);
1805 fep->opened = 0;
1806 netif_stop_queue(ndev);
1807 fec_stop(ndev);
1808
1809 if (fep->phy_dev) {
1810 phy_stop(fep->phy_dev);
1811 phy_disconnect(fep->phy_dev);
1812 }
1813
1814 fec_enet_free_buffers(ndev);
1815
1816 return 0;
1817 }
1818
1819 /* Set or clear the multicast filter for this adaptor.
1820 * Skeleton taken from sunlance driver.
1821 * The CPM Ethernet implementation allows Multicast as well as individual
1822 * MAC address filtering. Some of the drivers check to make sure it is
1823 * a group multicast address, and discard those that are not. I guess I
1824 * will do the same for now, but just remove the test if you want
1825 * individual filtering as well (do the upper net layers want or support
1826 * this kind of feature?).
1827 */
1828
1829 #define HASH_BITS 6 /* #bits in hash */
1830 #define CRC32_POLY 0xEDB88320
1831
1832 static void set_multicast_list(struct net_device *ndev)
1833 {
1834 struct fec_enet_private *fep = netdev_priv(ndev);
1835 struct netdev_hw_addr *ha;
1836 unsigned int i, bit, data, crc, tmp;
1837 unsigned char hash;
1838
1839 if (ndev->flags & IFF_PROMISC) {
1840 tmp = readl(fep->hwp + FEC_R_CNTRL);
1841 tmp |= 0x8;
1842 writel(tmp, fep->hwp + FEC_R_CNTRL);
1843 return;
1844 }
1845
1846 tmp = readl(fep->hwp + FEC_R_CNTRL);
1847 tmp &= ~0x8;
1848 writel(tmp, fep->hwp + FEC_R_CNTRL);
1849
1850 if (ndev->flags & IFF_ALLMULTI) {
1851 /* Catch all multicast addresses, so set the
1852 * filter to all 1's
1853 */
1854 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1855 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1856
1857 return;
1858 }
1859
1860 /* Clear filter and add the addresses in hash register
1861 */
1862 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1863 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1864
1865 netdev_for_each_mc_addr(ha, ndev) {
1866 /* calculate crc32 value of mac address */
1867 crc = 0xffffffff;
1868
1869 for (i = 0; i < ndev->addr_len; i++) {
1870 data = ha->addr[i];
1871 for (bit = 0; bit < 8; bit++, data >>= 1) {
1872 crc = (crc >> 1) ^
1873 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1874 }
1875 }
1876
1877 /* only upper 6 bits (HASH_BITS) are used
1878 * which point to specific bit in he hash registers
1879 */
1880 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1881
1882 if (hash > 31) {
1883 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1884 tmp |= 1 << (hash - 32);
1885 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1886 } else {
1887 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1888 tmp |= 1 << hash;
1889 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1890 }
1891 }
1892 }
1893
1894 /* Set a MAC change in hardware. */
1895 static int
1896 fec_set_mac_address(struct net_device *ndev, void *p)
1897 {
1898 struct fec_enet_private *fep = netdev_priv(ndev);
1899 struct sockaddr *addr = p;
1900
1901 if (addr) {
1902 if (!is_valid_ether_addr(addr->sa_data))
1903 return -EADDRNOTAVAIL;
1904 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1905 }
1906
1907 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1908 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1909 fep->hwp + FEC_ADDR_LOW);
1910 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1911 fep->hwp + FEC_ADDR_HIGH);
1912 return 0;
1913 }
1914
1915 #ifdef CONFIG_NET_POLL_CONTROLLER
1916 /**
1917 * fec_poll_controller - FEC Poll controller function
1918 * @dev: The FEC network adapter
1919 *
1920 * Polled functionality used by netconsole and others in non interrupt mode
1921 *
1922 */
1923 static void fec_poll_controller(struct net_device *dev)
1924 {
1925 int i;
1926 struct fec_enet_private *fep = netdev_priv(dev);
1927
1928 for (i = 0; i < FEC_IRQ_NUM; i++) {
1929 if (fep->irq[i] > 0) {
1930 disable_irq(fep->irq[i]);
1931 fec_enet_interrupt(fep->irq[i], dev);
1932 enable_irq(fep->irq[i]);
1933 }
1934 }
1935 }
1936 #endif
1937
1938 static int fec_set_features(struct net_device *netdev,
1939 netdev_features_t features)
1940 {
1941 struct fec_enet_private *fep = netdev_priv(netdev);
1942 netdev_features_t changed = features ^ netdev->features;
1943
1944 netdev->features = features;
1945
1946 /* Receive checksum has been changed */
1947 if (changed & NETIF_F_RXCSUM) {
1948 if (features & NETIF_F_RXCSUM)
1949 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1950 else
1951 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1952
1953 if (netif_running(netdev)) {
1954 fec_stop(netdev);
1955 fec_restart(netdev, fep->phy_dev->duplex);
1956 netif_wake_queue(netdev);
1957 } else {
1958 fec_restart(netdev, fep->phy_dev->duplex);
1959 }
1960 }
1961
1962 return 0;
1963 }
1964
1965 static const struct net_device_ops fec_netdev_ops = {
1966 .ndo_open = fec_enet_open,
1967 .ndo_stop = fec_enet_close,
1968 .ndo_start_xmit = fec_enet_start_xmit,
1969 .ndo_set_rx_mode = set_multicast_list,
1970 .ndo_change_mtu = eth_change_mtu,
1971 .ndo_validate_addr = eth_validate_addr,
1972 .ndo_tx_timeout = fec_timeout,
1973 .ndo_set_mac_address = fec_set_mac_address,
1974 .ndo_do_ioctl = fec_enet_ioctl,
1975 #ifdef CONFIG_NET_POLL_CONTROLLER
1976 .ndo_poll_controller = fec_poll_controller,
1977 #endif
1978 .ndo_set_features = fec_set_features,
1979 };
1980
1981 /*
1982 * XXX: We need to clean up on failure exits here.
1983 *
1984 */
1985 static int fec_enet_init(struct net_device *ndev)
1986 {
1987 struct fec_enet_private *fep = netdev_priv(ndev);
1988 const struct platform_device_id *id_entry =
1989 platform_get_device_id(fep->pdev);
1990 struct bufdesc *cbd_base;
1991
1992 /* Allocate memory for buffer descriptors. */
1993 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1994 GFP_KERNEL);
1995 if (!cbd_base)
1996 return -ENOMEM;
1997
1998 memset(cbd_base, 0, PAGE_SIZE);
1999
2000 fep->netdev = ndev;
2001
2002 /* Get the Ethernet address */
2003 fec_get_mac(ndev);
2004 /* make sure MAC we just acquired is programmed into the hw */
2005 fec_set_mac_address(ndev, NULL);
2006
2007 /* init the tx & rx ring size */
2008 fep->tx_ring_size = TX_RING_SIZE;
2009 fep->rx_ring_size = RX_RING_SIZE;
2010
2011 /* Set receive and transmit descriptor base. */
2012 fep->rx_bd_base = cbd_base;
2013 if (fep->bufdesc_ex)
2014 fep->tx_bd_base = (struct bufdesc *)
2015 (((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2016 else
2017 fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2018
2019 /* The FEC Ethernet specific entries in the device structure */
2020 ndev->watchdog_timeo = TX_TIMEOUT;
2021 ndev->netdev_ops = &fec_netdev_ops;
2022 ndev->ethtool_ops = &fec_enet_ethtool_ops;
2023
2024 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2025 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2026
2027 if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
2028 /* enable hw VLAN support */
2029 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2030 ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2031 }
2032
2033 if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2034 /* enable hw accelerator */
2035 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2036 | NETIF_F_RXCSUM);
2037 ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2038 | NETIF_F_RXCSUM);
2039 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2040 }
2041
2042 fec_restart(ndev, 0);
2043
2044 return 0;
2045 }
2046
2047 #ifdef CONFIG_OF
2048 static void fec_reset_phy(struct platform_device *pdev)
2049 {
2050 int err, phy_reset;
2051 int msec = 1;
2052 struct device_node *np = pdev->dev.of_node;
2053
2054 if (!np)
2055 return;
2056
2057 of_property_read_u32(np, "phy-reset-duration", &msec);
2058 /* A sane reset duration should not be longer than 1s */
2059 if (msec > 1000)
2060 msec = 1;
2061
2062 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2063 if (!gpio_is_valid(phy_reset))
2064 return;
2065
2066 err = devm_gpio_request_one(&pdev->dev, phy_reset,
2067 GPIOF_OUT_INIT_LOW, "phy-reset");
2068 if (err) {
2069 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2070 return;
2071 }
2072 msleep(msec);
2073 gpio_set_value(phy_reset, 1);
2074 }
2075 #else /* CONFIG_OF */
2076 static void fec_reset_phy(struct platform_device *pdev)
2077 {
2078 /*
2079 * In case of platform probe, the reset has been done
2080 * by machine code.
2081 */
2082 }
2083 #endif /* CONFIG_OF */
2084
2085 static int
2086 fec_probe(struct platform_device *pdev)
2087 {
2088 struct fec_enet_private *fep;
2089 struct fec_platform_data *pdata;
2090 struct net_device *ndev;
2091 int i, irq, ret = 0;
2092 struct resource *r;
2093 const struct of_device_id *of_id;
2094 static int dev_id;
2095
2096 of_id = of_match_device(fec_dt_ids, &pdev->dev);
2097 if (of_id)
2098 pdev->id_entry = of_id->data;
2099
2100 /* Init network device */
2101 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2102 if (!ndev)
2103 return -ENOMEM;
2104
2105 SET_NETDEV_DEV(ndev, &pdev->dev);
2106
2107 /* setup board info structure */
2108 fep = netdev_priv(ndev);
2109
2110 #if !defined(CONFIG_M5272)
2111 /* default enable pause frame auto negotiation */
2112 if (pdev->id_entry &&
2113 (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2114 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2115 #endif
2116
2117 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2118 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2119 if (IS_ERR(fep->hwp)) {
2120 ret = PTR_ERR(fep->hwp);
2121 goto failed_ioremap;
2122 }
2123
2124 fep->pdev = pdev;
2125 fep->dev_id = dev_id++;
2126
2127 fep->bufdesc_ex = 0;
2128
2129 platform_set_drvdata(pdev, ndev);
2130
2131 ret = of_get_phy_mode(pdev->dev.of_node);
2132 if (ret < 0) {
2133 pdata = dev_get_platdata(&pdev->dev);
2134 if (pdata)
2135 fep->phy_interface = pdata->phy;
2136 else
2137 fep->phy_interface = PHY_INTERFACE_MODE_MII;
2138 } else {
2139 fep->phy_interface = ret;
2140 }
2141
2142 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2143 if (IS_ERR(fep->clk_ipg)) {
2144 ret = PTR_ERR(fep->clk_ipg);
2145 goto failed_clk;
2146 }
2147
2148 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2149 if (IS_ERR(fep->clk_ahb)) {
2150 ret = PTR_ERR(fep->clk_ahb);
2151 goto failed_clk;
2152 }
2153
2154 /* enet_out is optional, depends on board */
2155 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2156 if (IS_ERR(fep->clk_enet_out))
2157 fep->clk_enet_out = NULL;
2158
2159 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2160 fep->bufdesc_ex =
2161 pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2162 if (IS_ERR(fep->clk_ptp)) {
2163 fep->clk_ptp = NULL;
2164 fep->bufdesc_ex = 0;
2165 }
2166
2167 ret = clk_prepare_enable(fep->clk_ahb);
2168 if (ret)
2169 goto failed_clk;
2170
2171 ret = clk_prepare_enable(fep->clk_ipg);
2172 if (ret)
2173 goto failed_clk_ipg;
2174
2175 if (fep->clk_enet_out) {
2176 ret = clk_prepare_enable(fep->clk_enet_out);
2177 if (ret)
2178 goto failed_clk_enet_out;
2179 }
2180
2181 if (fep->clk_ptp) {
2182 ret = clk_prepare_enable(fep->clk_ptp);
2183 if (ret)
2184 goto failed_clk_ptp;
2185 }
2186
2187 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2188 if (!IS_ERR(fep->reg_phy)) {
2189 ret = regulator_enable(fep->reg_phy);
2190 if (ret) {
2191 dev_err(&pdev->dev,
2192 "Failed to enable phy regulator: %d\n", ret);
2193 goto failed_regulator;
2194 }
2195 } else {
2196 fep->reg_phy = NULL;
2197 }
2198
2199 fec_reset_phy(pdev);
2200
2201 if (fep->bufdesc_ex)
2202 fec_ptp_init(pdev);
2203
2204 ret = fec_enet_init(ndev);
2205 if (ret)
2206 goto failed_init;
2207
2208 for (i = 0; i < FEC_IRQ_NUM; i++) {
2209 irq = platform_get_irq(pdev, i);
2210 if (irq < 0) {
2211 if (i)
2212 break;
2213 ret = irq;
2214 goto failed_irq;
2215 }
2216 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2217 0, pdev->name, ndev);
2218 if (ret)
2219 goto failed_irq;
2220 }
2221
2222 ret = fec_enet_mii_init(pdev);
2223 if (ret)
2224 goto failed_mii_init;
2225
2226 /* Carrier starts down, phylib will bring it up */
2227 netif_carrier_off(ndev);
2228
2229 ret = register_netdev(ndev);
2230 if (ret)
2231 goto failed_register;
2232
2233 if (fep->bufdesc_ex && fep->ptp_clock)
2234 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2235
2236 INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2237 return 0;
2238
2239 failed_register:
2240 fec_enet_mii_remove(fep);
2241 failed_mii_init:
2242 failed_irq:
2243 failed_init:
2244 if (fep->reg_phy)
2245 regulator_disable(fep->reg_phy);
2246 failed_regulator:
2247 if (fep->clk_ptp)
2248 clk_disable_unprepare(fep->clk_ptp);
2249 failed_clk_ptp:
2250 if (fep->clk_enet_out)
2251 clk_disable_unprepare(fep->clk_enet_out);
2252 failed_clk_enet_out:
2253 clk_disable_unprepare(fep->clk_ipg);
2254 failed_clk_ipg:
2255 clk_disable_unprepare(fep->clk_ahb);
2256 failed_clk:
2257 failed_ioremap:
2258 free_netdev(ndev);
2259
2260 return ret;
2261 }
2262
2263 static int
2264 fec_drv_remove(struct platform_device *pdev)
2265 {
2266 struct net_device *ndev = platform_get_drvdata(pdev);
2267 struct fec_enet_private *fep = netdev_priv(ndev);
2268
2269 cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2270 unregister_netdev(ndev);
2271 fec_enet_mii_remove(fep);
2272 del_timer_sync(&fep->time_keep);
2273 if (fep->reg_phy)
2274 regulator_disable(fep->reg_phy);
2275 if (fep->clk_ptp)
2276 clk_disable_unprepare(fep->clk_ptp);
2277 if (fep->ptp_clock)
2278 ptp_clock_unregister(fep->ptp_clock);
2279 if (fep->clk_enet_out)
2280 clk_disable_unprepare(fep->clk_enet_out);
2281 clk_disable_unprepare(fep->clk_ipg);
2282 clk_disable_unprepare(fep->clk_ahb);
2283 free_netdev(ndev);
2284
2285 return 0;
2286 }
2287
2288 #ifdef CONFIG_PM_SLEEP
2289 static int
2290 fec_suspend(struct device *dev)
2291 {
2292 struct net_device *ndev = dev_get_drvdata(dev);
2293 struct fec_enet_private *fep = netdev_priv(ndev);
2294
2295 if (netif_running(ndev)) {
2296 fec_stop(ndev);
2297 netif_device_detach(ndev);
2298 }
2299 if (fep->clk_ptp)
2300 clk_disable_unprepare(fep->clk_ptp);
2301 if (fep->clk_enet_out)
2302 clk_disable_unprepare(fep->clk_enet_out);
2303 clk_disable_unprepare(fep->clk_ipg);
2304 clk_disable_unprepare(fep->clk_ahb);
2305
2306 if (fep->reg_phy)
2307 regulator_disable(fep->reg_phy);
2308
2309 return 0;
2310 }
2311
2312 static int
2313 fec_resume(struct device *dev)
2314 {
2315 struct net_device *ndev = dev_get_drvdata(dev);
2316 struct fec_enet_private *fep = netdev_priv(ndev);
2317 int ret;
2318
2319 if (fep->reg_phy) {
2320 ret = regulator_enable(fep->reg_phy);
2321 if (ret)
2322 return ret;
2323 }
2324
2325 ret = clk_prepare_enable(fep->clk_ahb);
2326 if (ret)
2327 goto failed_clk_ahb;
2328
2329 ret = clk_prepare_enable(fep->clk_ipg);
2330 if (ret)
2331 goto failed_clk_ipg;
2332
2333 if (fep->clk_enet_out) {
2334 ret = clk_prepare_enable(fep->clk_enet_out);
2335 if (ret)
2336 goto failed_clk_enet_out;
2337 }
2338
2339 if (fep->clk_ptp) {
2340 ret = clk_prepare_enable(fep->clk_ptp);
2341 if (ret)
2342 goto failed_clk_ptp;
2343 }
2344
2345 if (netif_running(ndev)) {
2346 fec_restart(ndev, fep->full_duplex);
2347 netif_device_attach(ndev);
2348 }
2349
2350 return 0;
2351
2352 failed_clk_ptp:
2353 if (fep->clk_enet_out)
2354 clk_disable_unprepare(fep->clk_enet_out);
2355 failed_clk_enet_out:
2356 clk_disable_unprepare(fep->clk_ipg);
2357 failed_clk_ipg:
2358 clk_disable_unprepare(fep->clk_ahb);
2359 failed_clk_ahb:
2360 if (fep->reg_phy)
2361 regulator_disable(fep->reg_phy);
2362 return ret;
2363 }
2364 #endif /* CONFIG_PM_SLEEP */
2365
2366 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2367
2368 static struct platform_driver fec_driver = {
2369 .driver = {
2370 .name = DRIVER_NAME,
2371 .owner = THIS_MODULE,
2372 .pm = &fec_pm_ops,
2373 .of_match_table = fec_dt_ids,
2374 },
2375 .id_table = fec_devtype,
2376 .probe = fec_probe,
2377 .remove = fec_drv_remove,
2378 };
2379
2380 module_platform_driver(fec_driver);
2381
2382 MODULE_ALIAS("platform:"DRIVER_NAME);
2383 MODULE_LICENSE("GPL");
This page took 0.079418 seconds and 6 git commands to generate.