Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/if_vlan.h>
58 #include <linux/pinctrl/consumer.h>
59
60 #include <asm/cacheflush.h>
61
62 #include "fec.h"
63
64 static void set_multicast_list(struct net_device *ndev);
65
66 #if defined(CONFIG_ARM)
67 #define FEC_ALIGNMENT 0xf
68 #else
69 #define FEC_ALIGNMENT 0x3
70 #endif
71
72 #define DRIVER_NAME "fec"
73
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE (1 << 5)
76 #define FEC_ENET_RSEM_V 0x84
77 #define FEC_ENET_RSFL_V 16
78 #define FEC_ENET_RAEM_V 0x8
79 #define FEC_ENET_RAFL_V 0x8
80 #define FEC_ENET_OPD_V 0xFFF0
81
82 /* Controller is ENET-MAC */
83 #define FEC_QUIRK_ENET_MAC (1 << 0)
84 /* Controller needs driver to swap frame */
85 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
86 /* Controller uses gasket */
87 #define FEC_QUIRK_USE_GASKET (1 << 2)
88 /* Controller has GBIT support */
89 #define FEC_QUIRK_HAS_GBIT (1 << 3)
90 /* Controller has extend desc buffer */
91 #define FEC_QUIRK_HAS_BUFDESC_EX (1 << 4)
92 /* Controller has hardware checksum support */
93 #define FEC_QUIRK_HAS_CSUM (1 << 5)
94 /* Controller has hardware vlan support */
95 #define FEC_QUIRK_HAS_VLAN (1 << 6)
96 /* ENET IP errata ERR006358
97 *
98 * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
99 * detected as not set during a prior frame transmission, then the
100 * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
101 * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
102 * frames not being transmitted until there is a 0-to-1 transition on
103 * ENET_TDAR[TDAR].
104 */
105 #define FEC_QUIRK_ERR006358 (1 << 7)
106
107 static struct platform_device_id fec_devtype[] = {
108 {
109 /* keep it for coldfire */
110 .name = DRIVER_NAME,
111 .driver_data = 0,
112 }, {
113 .name = "imx25-fec",
114 .driver_data = FEC_QUIRK_USE_GASKET,
115 }, {
116 .name = "imx27-fec",
117 .driver_data = 0,
118 }, {
119 .name = "imx28-fec",
120 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
121 }, {
122 .name = "imx6q-fec",
123 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
124 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
125 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
126 }, {
127 .name = "mvf600-fec",
128 .driver_data = FEC_QUIRK_ENET_MAC,
129 }, {
130 /* sentinel */
131 }
132 };
133 MODULE_DEVICE_TABLE(platform, fec_devtype);
134
135 enum imx_fec_type {
136 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
137 IMX27_FEC, /* runs on i.mx27/35/51 */
138 IMX28_FEC,
139 IMX6Q_FEC,
140 MVF600_FEC,
141 };
142
143 static const struct of_device_id fec_dt_ids[] = {
144 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
145 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
146 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
147 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
148 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
149 { /* sentinel */ }
150 };
151 MODULE_DEVICE_TABLE(of, fec_dt_ids);
152
153 static unsigned char macaddr[ETH_ALEN];
154 module_param_array(macaddr, byte, NULL, 0);
155 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
156
157 #if defined(CONFIG_M5272)
158 /*
159 * Some hardware gets it MAC address out of local flash memory.
160 * if this is non-zero then assume it is the address to get MAC from.
161 */
162 #if defined(CONFIG_NETtel)
163 #define FEC_FLASHMAC 0xf0006006
164 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
165 #define FEC_FLASHMAC 0xf0006000
166 #elif defined(CONFIG_CANCam)
167 #define FEC_FLASHMAC 0xf0020000
168 #elif defined (CONFIG_M5272C3)
169 #define FEC_FLASHMAC (0xffe04000 + 4)
170 #elif defined(CONFIG_MOD5272)
171 #define FEC_FLASHMAC 0xffc0406b
172 #else
173 #define FEC_FLASHMAC 0
174 #endif
175 #endif /* CONFIG_M5272 */
176
177 /* Interrupt events/masks. */
178 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
179 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
180 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
181 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
182 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
183 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
184 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
185 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
186 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
187 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
188
189 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
190 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
191
192 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
193 */
194 #define PKT_MAXBUF_SIZE 1522
195 #define PKT_MINBUF_SIZE 64
196 #define PKT_MAXBLR_SIZE 1536
197
198 /* FEC receive acceleration */
199 #define FEC_RACC_IPDIS (1 << 1)
200 #define FEC_RACC_PRODIS (1 << 2)
201 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
202
203 /*
204 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
205 * size bits. Other FEC hardware does not, so we need to take that into
206 * account when setting it.
207 */
208 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
209 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
210 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
211 #else
212 #define OPT_FRAME_SIZE 0
213 #endif
214
215 /* FEC MII MMFR bits definition */
216 #define FEC_MMFR_ST (1 << 30)
217 #define FEC_MMFR_OP_READ (2 << 28)
218 #define FEC_MMFR_OP_WRITE (1 << 28)
219 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
220 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
221 #define FEC_MMFR_TA (2 << 16)
222 #define FEC_MMFR_DATA(v) (v & 0xffff)
223
224 #define FEC_MII_TIMEOUT 30000 /* us */
225
226 /* Transmitter timeout */
227 #define TX_TIMEOUT (2 * HZ)
228
229 #define FEC_PAUSE_FLAG_AUTONEG 0x1
230 #define FEC_PAUSE_FLAG_ENABLE 0x2
231
232 #define TSO_HEADER_SIZE 128
233 /* Max number of allowed TCP segments for software TSO */
234 #define FEC_MAX_TSO_SEGS 100
235 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
236
237 #define IS_TSO_HEADER(txq, addr) \
238 ((addr >= txq->tso_hdrs_dma) && \
239 (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
240
241 static int mii_cnt;
242
243 static inline
244 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
245 {
246 struct bufdesc *new_bd = bdp + 1;
247 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
248 struct bufdesc_ex *ex_base;
249 struct bufdesc *base;
250 int ring_size;
251
252 if (bdp >= fep->tx_bd_base) {
253 base = fep->tx_bd_base;
254 ring_size = fep->tx_ring_size;
255 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
256 } else {
257 base = fep->rx_bd_base;
258 ring_size = fep->rx_ring_size;
259 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
260 }
261
262 if (fep->bufdesc_ex)
263 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
264 ex_base : ex_new_bd);
265 else
266 return (new_bd >= (base + ring_size)) ?
267 base : new_bd;
268 }
269
270 static inline
271 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
272 {
273 struct bufdesc *new_bd = bdp - 1;
274 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
275 struct bufdesc_ex *ex_base;
276 struct bufdesc *base;
277 int ring_size;
278
279 if (bdp >= fep->tx_bd_base) {
280 base = fep->tx_bd_base;
281 ring_size = fep->tx_ring_size;
282 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
283 } else {
284 base = fep->rx_bd_base;
285 ring_size = fep->rx_ring_size;
286 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
287 }
288
289 if (fep->bufdesc_ex)
290 return (struct bufdesc *)((ex_new_bd < ex_base) ?
291 (ex_new_bd + ring_size) : ex_new_bd);
292 else
293 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
294 }
295
296 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
297 struct fec_enet_private *fep)
298 {
299 return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
300 }
301
302 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep)
303 {
304 int entries;
305
306 entries = ((const char *)fep->dirty_tx -
307 (const char *)fep->cur_tx) / fep->bufdesc_size - 1;
308
309 return entries > 0 ? entries : entries + fep->tx_ring_size;
310 }
311
312 static void *swap_buffer(void *bufaddr, int len)
313 {
314 int i;
315 unsigned int *buf = bufaddr;
316
317 for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
318 *buf = cpu_to_be32(*buf);
319
320 return bufaddr;
321 }
322
323 static int
324 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
325 {
326 /* Only run for packets requiring a checksum. */
327 if (skb->ip_summed != CHECKSUM_PARTIAL)
328 return 0;
329
330 if (unlikely(skb_cow_head(skb, 0)))
331 return -1;
332
333 ip_hdr(skb)->check = 0;
334 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
335
336 return 0;
337 }
338
339 static void
340 fec_enet_submit_work(struct bufdesc *bdp, struct fec_enet_private *fep)
341 {
342 const struct platform_device_id *id_entry =
343 platform_get_device_id(fep->pdev);
344 struct bufdesc *bdp_pre;
345
346 bdp_pre = fec_enet_get_prevdesc(bdp, fep);
347 if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
348 !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
349 fep->delay_work.trig_tx = true;
350 schedule_delayed_work(&(fep->delay_work.delay_work),
351 msecs_to_jiffies(1));
352 }
353 }
354
355 static int
356 fec_enet_txq_submit_frag_skb(struct sk_buff *skb, struct net_device *ndev)
357 {
358 struct fec_enet_private *fep = netdev_priv(ndev);
359 const struct platform_device_id *id_entry =
360 platform_get_device_id(fep->pdev);
361 struct bufdesc *bdp = fep->cur_tx;
362 struct bufdesc_ex *ebdp;
363 int nr_frags = skb_shinfo(skb)->nr_frags;
364 int frag, frag_len;
365 unsigned short status;
366 unsigned int estatus = 0;
367 skb_frag_t *this_frag;
368 unsigned int index;
369 void *bufaddr;
370 int i;
371
372 for (frag = 0; frag < nr_frags; frag++) {
373 this_frag = &skb_shinfo(skb)->frags[frag];
374 bdp = fec_enet_get_nextdesc(bdp, fep);
375 ebdp = (struct bufdesc_ex *)bdp;
376
377 status = bdp->cbd_sc;
378 status &= ~BD_ENET_TX_STATS;
379 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
380 frag_len = skb_shinfo(skb)->frags[frag].size;
381
382 /* Handle the last BD specially */
383 if (frag == nr_frags - 1) {
384 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
385 if (fep->bufdesc_ex) {
386 estatus |= BD_ENET_TX_INT;
387 if (unlikely(skb_shinfo(skb)->tx_flags &
388 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
389 estatus |= BD_ENET_TX_TS;
390 }
391 }
392
393 if (fep->bufdesc_ex) {
394 if (skb->ip_summed == CHECKSUM_PARTIAL)
395 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
396 ebdp->cbd_bdu = 0;
397 ebdp->cbd_esc = estatus;
398 }
399
400 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
401
402 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
403 if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
404 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
405 memcpy(fep->tx_bounce[index], bufaddr, frag_len);
406 bufaddr = fep->tx_bounce[index];
407
408 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
409 swap_buffer(bufaddr, frag_len);
410 }
411
412 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
413 frag_len, DMA_TO_DEVICE);
414 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
415 dev_kfree_skb_any(skb);
416 if (net_ratelimit())
417 netdev_err(ndev, "Tx DMA memory map failed\n");
418 goto dma_mapping_error;
419 }
420
421 bdp->cbd_datlen = frag_len;
422 bdp->cbd_sc = status;
423 }
424
425 fep->cur_tx = bdp;
426
427 return 0;
428
429 dma_mapping_error:
430 bdp = fep->cur_tx;
431 for (i = 0; i < frag; i++) {
432 bdp = fec_enet_get_nextdesc(bdp, fep);
433 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
434 bdp->cbd_datlen, DMA_TO_DEVICE);
435 }
436 return NETDEV_TX_OK;
437 }
438
439 static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
440 {
441 struct fec_enet_private *fep = netdev_priv(ndev);
442 const struct platform_device_id *id_entry =
443 platform_get_device_id(fep->pdev);
444 int nr_frags = skb_shinfo(skb)->nr_frags;
445 struct bufdesc *bdp, *last_bdp;
446 void *bufaddr;
447 unsigned short status;
448 unsigned short buflen;
449 unsigned int estatus = 0;
450 unsigned int index;
451 int entries_free;
452 int ret;
453
454 entries_free = fec_enet_get_free_txdesc_num(fep);
455 if (entries_free < MAX_SKB_FRAGS + 1) {
456 dev_kfree_skb_any(skb);
457 if (net_ratelimit())
458 netdev_err(ndev, "NOT enough BD for SG!\n");
459 return NETDEV_TX_OK;
460 }
461
462 /* Protocol checksum off-load for TCP and UDP. */
463 if (fec_enet_clear_csum(skb, ndev)) {
464 dev_kfree_skb_any(skb);
465 return NETDEV_TX_OK;
466 }
467
468 /* Fill in a Tx ring entry */
469 bdp = fep->cur_tx;
470 status = bdp->cbd_sc;
471 status &= ~BD_ENET_TX_STATS;
472
473 /* Set buffer length and buffer pointer */
474 bufaddr = skb->data;
475 buflen = skb_headlen(skb);
476
477 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
478 if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
479 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
480 memcpy(fep->tx_bounce[index], skb->data, buflen);
481 bufaddr = fep->tx_bounce[index];
482
483 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
484 swap_buffer(bufaddr, buflen);
485 }
486
487 /* Push the data cache so the CPM does not get stale memory
488 * data.
489 */
490 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
491 buflen, DMA_TO_DEVICE);
492 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
493 dev_kfree_skb_any(skb);
494 if (net_ratelimit())
495 netdev_err(ndev, "Tx DMA memory map failed\n");
496 return NETDEV_TX_OK;
497 }
498
499 if (nr_frags) {
500 ret = fec_enet_txq_submit_frag_skb(skb, ndev);
501 if (ret)
502 return ret;
503 } else {
504 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
505 if (fep->bufdesc_ex) {
506 estatus = BD_ENET_TX_INT;
507 if (unlikely(skb_shinfo(skb)->tx_flags &
508 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
509 estatus |= BD_ENET_TX_TS;
510 }
511 }
512
513 if (fep->bufdesc_ex) {
514
515 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
516
517 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
518 fep->hwts_tx_en))
519 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
520
521 if (skb->ip_summed == CHECKSUM_PARTIAL)
522 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
523
524 ebdp->cbd_bdu = 0;
525 ebdp->cbd_esc = estatus;
526 }
527
528 last_bdp = fep->cur_tx;
529 index = fec_enet_get_bd_index(fep->tx_bd_base, last_bdp, fep);
530 /* Save skb pointer */
531 fep->tx_skbuff[index] = skb;
532
533 bdp->cbd_datlen = buflen;
534
535 /* Send it on its way. Tell FEC it's ready, interrupt when done,
536 * it's the last BD of the frame, and to put the CRC on the end.
537 */
538 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
539 bdp->cbd_sc = status;
540
541 fec_enet_submit_work(bdp, fep);
542
543 /* If this was the last BD in the ring, start at the beginning again. */
544 bdp = fec_enet_get_nextdesc(last_bdp, fep);
545
546 skb_tx_timestamp(skb);
547
548 fep->cur_tx = bdp;
549
550 /* Trigger transmission start */
551 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
552
553 return 0;
554 }
555
556 static int
557 fec_enet_txq_put_data_tso(struct sk_buff *skb, struct net_device *ndev,
558 struct bufdesc *bdp, int index, char *data,
559 int size, bool last_tcp, bool is_last)
560 {
561 struct fec_enet_private *fep = netdev_priv(ndev);
562 const struct platform_device_id *id_entry =
563 platform_get_device_id(fep->pdev);
564 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
565 unsigned short status;
566 unsigned int estatus = 0;
567
568 status = bdp->cbd_sc;
569 status &= ~BD_ENET_TX_STATS;
570
571 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
572 bdp->cbd_datlen = size;
573
574 if (((unsigned long) data) & FEC_ALIGNMENT ||
575 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
576 memcpy(fep->tx_bounce[index], data, size);
577 data = fep->tx_bounce[index];
578
579 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
580 swap_buffer(data, size);
581 }
582
583 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
584 size, DMA_TO_DEVICE);
585 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
586 dev_kfree_skb_any(skb);
587 if (net_ratelimit())
588 netdev_err(ndev, "Tx DMA memory map failed\n");
589 return NETDEV_TX_BUSY;
590 }
591
592 if (fep->bufdesc_ex) {
593 if (skb->ip_summed == CHECKSUM_PARTIAL)
594 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
595 ebdp->cbd_bdu = 0;
596 ebdp->cbd_esc = estatus;
597 }
598
599 /* Handle the last BD specially */
600 if (last_tcp)
601 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
602 if (is_last) {
603 status |= BD_ENET_TX_INTR;
604 if (fep->bufdesc_ex)
605 ebdp->cbd_esc |= BD_ENET_TX_INT;
606 }
607
608 bdp->cbd_sc = status;
609
610 return 0;
611 }
612
613 static int
614 fec_enet_txq_put_hdr_tso(struct sk_buff *skb, struct net_device *ndev,
615 struct bufdesc *bdp, int index)
616 {
617 struct fec_enet_private *fep = netdev_priv(ndev);
618 const struct platform_device_id *id_entry =
619 platform_get_device_id(fep->pdev);
620 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
621 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
622 void *bufaddr;
623 unsigned long dmabuf;
624 unsigned short status;
625 unsigned int estatus = 0;
626
627 status = bdp->cbd_sc;
628 status &= ~BD_ENET_TX_STATS;
629 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
630
631 bufaddr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
632 dmabuf = fep->tso_hdrs_dma + index * TSO_HEADER_SIZE;
633 if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
634 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
635 memcpy(fep->tx_bounce[index], skb->data, hdr_len);
636 bufaddr = fep->tx_bounce[index];
637
638 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
639 swap_buffer(bufaddr, hdr_len);
640
641 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
642 hdr_len, DMA_TO_DEVICE);
643 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
644 dev_kfree_skb_any(skb);
645 if (net_ratelimit())
646 netdev_err(ndev, "Tx DMA memory map failed\n");
647 return NETDEV_TX_BUSY;
648 }
649 }
650
651 bdp->cbd_bufaddr = dmabuf;
652 bdp->cbd_datlen = hdr_len;
653
654 if (fep->bufdesc_ex) {
655 if (skb->ip_summed == CHECKSUM_PARTIAL)
656 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
657 ebdp->cbd_bdu = 0;
658 ebdp->cbd_esc = estatus;
659 }
660
661 bdp->cbd_sc = status;
662
663 return 0;
664 }
665
666 static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
667 {
668 struct fec_enet_private *fep = netdev_priv(ndev);
669 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
670 int total_len, data_left;
671 struct bufdesc *bdp = fep->cur_tx;
672 struct tso_t tso;
673 unsigned int index = 0;
674 int ret;
675
676 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep)) {
677 dev_kfree_skb_any(skb);
678 if (net_ratelimit())
679 netdev_err(ndev, "NOT enough BD for TSO!\n");
680 return NETDEV_TX_OK;
681 }
682
683 /* Protocol checksum off-load for TCP and UDP. */
684 if (fec_enet_clear_csum(skb, ndev)) {
685 dev_kfree_skb_any(skb);
686 return NETDEV_TX_OK;
687 }
688
689 /* Initialize the TSO handler, and prepare the first payload */
690 tso_start(skb, &tso);
691
692 total_len = skb->len - hdr_len;
693 while (total_len > 0) {
694 char *hdr;
695
696 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
697 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
698 total_len -= data_left;
699
700 /* prepare packet headers: MAC + IP + TCP */
701 hdr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
702 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
703 ret = fec_enet_txq_put_hdr_tso(skb, ndev, bdp, index);
704 if (ret)
705 goto err_release;
706
707 while (data_left > 0) {
708 int size;
709
710 size = min_t(int, tso.size, data_left);
711 bdp = fec_enet_get_nextdesc(bdp, fep);
712 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
713 ret = fec_enet_txq_put_data_tso(skb, ndev, bdp, index, tso.data,
714 size, size == data_left,
715 total_len == 0);
716 if (ret)
717 goto err_release;
718
719 data_left -= size;
720 tso_build_data(skb, &tso, size);
721 }
722
723 bdp = fec_enet_get_nextdesc(bdp, fep);
724 }
725
726 /* Save skb pointer */
727 fep->tx_skbuff[index] = skb;
728
729 fec_enet_submit_work(bdp, fep);
730
731 skb_tx_timestamp(skb);
732 fep->cur_tx = bdp;
733
734 /* Trigger transmission start */
735 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
736
737 return 0;
738
739 err_release:
740 /* TODO: Release all used data descriptors for TSO */
741 return ret;
742 }
743
744 static netdev_tx_t
745 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
746 {
747 struct fec_enet_private *fep = netdev_priv(ndev);
748 int entries_free;
749 int ret;
750
751 if (skb_is_gso(skb))
752 ret = fec_enet_txq_submit_tso(skb, ndev);
753 else
754 ret = fec_enet_txq_submit_skb(skb, ndev);
755 if (ret)
756 return ret;
757
758 entries_free = fec_enet_get_free_txdesc_num(fep);
759 if (entries_free <= fep->tx_stop_threshold)
760 netif_stop_queue(ndev);
761
762 return NETDEV_TX_OK;
763 }
764
765 /* Init RX & TX buffer descriptors
766 */
767 static void fec_enet_bd_init(struct net_device *dev)
768 {
769 struct fec_enet_private *fep = netdev_priv(dev);
770 struct bufdesc *bdp;
771 unsigned int i;
772
773 /* Initialize the receive buffer descriptors. */
774 bdp = fep->rx_bd_base;
775 for (i = 0; i < fep->rx_ring_size; i++) {
776
777 /* Initialize the BD for every fragment in the page. */
778 if (bdp->cbd_bufaddr)
779 bdp->cbd_sc = BD_ENET_RX_EMPTY;
780 else
781 bdp->cbd_sc = 0;
782 bdp = fec_enet_get_nextdesc(bdp, fep);
783 }
784
785 /* Set the last buffer to wrap */
786 bdp = fec_enet_get_prevdesc(bdp, fep);
787 bdp->cbd_sc |= BD_SC_WRAP;
788
789 fep->cur_rx = fep->rx_bd_base;
790
791 /* ...and the same for transmit */
792 bdp = fep->tx_bd_base;
793 fep->cur_tx = bdp;
794 for (i = 0; i < fep->tx_ring_size; i++) {
795
796 /* Initialize the BD for every fragment in the page. */
797 bdp->cbd_sc = 0;
798 if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
799 dev_kfree_skb_any(fep->tx_skbuff[i]);
800 fep->tx_skbuff[i] = NULL;
801 }
802 bdp->cbd_bufaddr = 0;
803 bdp = fec_enet_get_nextdesc(bdp, fep);
804 }
805
806 /* Set the last buffer to wrap */
807 bdp = fec_enet_get_prevdesc(bdp, fep);
808 bdp->cbd_sc |= BD_SC_WRAP;
809 fep->dirty_tx = bdp;
810 }
811
812 /* This function is called to start or restart the FEC during a link
813 * change. This only happens when switching between half and full
814 * duplex.
815 */
816 static void
817 fec_restart(struct net_device *ndev, int duplex)
818 {
819 struct fec_enet_private *fep = netdev_priv(ndev);
820 const struct platform_device_id *id_entry =
821 platform_get_device_id(fep->pdev);
822 int i;
823 u32 val;
824 u32 temp_mac[2];
825 u32 rcntl = OPT_FRAME_SIZE | 0x04;
826 u32 ecntl = 0x2; /* ETHEREN */
827
828 if (netif_running(ndev)) {
829 netif_device_detach(ndev);
830 napi_disable(&fep->napi);
831 netif_stop_queue(ndev);
832 netif_tx_lock_bh(ndev);
833 }
834
835 /* Whack a reset. We should wait for this. */
836 writel(1, fep->hwp + FEC_ECNTRL);
837 udelay(10);
838
839 /*
840 * enet-mac reset will reset mac address registers too,
841 * so need to reconfigure it.
842 */
843 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
844 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
845 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
846 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
847 }
848
849 /* Clear any outstanding interrupt. */
850 writel(0xffc00000, fep->hwp + FEC_IEVENT);
851
852 /* Set maximum receive buffer size. */
853 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
854
855 fec_enet_bd_init(ndev);
856
857 /* Set receive and transmit descriptor base. */
858 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
859 if (fep->bufdesc_ex)
860 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
861 * fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
862 else
863 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
864 * fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
865
866
867 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
868 if (fep->tx_skbuff[i]) {
869 dev_kfree_skb_any(fep->tx_skbuff[i]);
870 fep->tx_skbuff[i] = NULL;
871 }
872 }
873
874 /* Enable MII mode */
875 if (duplex) {
876 /* FD enable */
877 writel(0x04, fep->hwp + FEC_X_CNTRL);
878 } else {
879 /* No Rcv on Xmit */
880 rcntl |= 0x02;
881 writel(0x0, fep->hwp + FEC_X_CNTRL);
882 }
883
884 fep->full_duplex = duplex;
885
886 /* Set MII speed */
887 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
888
889 #if !defined(CONFIG_M5272)
890 /* set RX checksum */
891 val = readl(fep->hwp + FEC_RACC);
892 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
893 val |= FEC_RACC_OPTIONS;
894 else
895 val &= ~FEC_RACC_OPTIONS;
896 writel(val, fep->hwp + FEC_RACC);
897 #endif
898
899 /*
900 * The phy interface and speed need to get configured
901 * differently on enet-mac.
902 */
903 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
904 /* Enable flow control and length check */
905 rcntl |= 0x40000000 | 0x00000020;
906
907 /* RGMII, RMII or MII */
908 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
909 rcntl |= (1 << 6);
910 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
911 rcntl |= (1 << 8);
912 else
913 rcntl &= ~(1 << 8);
914
915 /* 1G, 100M or 10M */
916 if (fep->phy_dev) {
917 if (fep->phy_dev->speed == SPEED_1000)
918 ecntl |= (1 << 5);
919 else if (fep->phy_dev->speed == SPEED_100)
920 rcntl &= ~(1 << 9);
921 else
922 rcntl |= (1 << 9);
923 }
924 } else {
925 #ifdef FEC_MIIGSK_ENR
926 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
927 u32 cfgr;
928 /* disable the gasket and wait */
929 writel(0, fep->hwp + FEC_MIIGSK_ENR);
930 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
931 udelay(1);
932
933 /*
934 * configure the gasket:
935 * RMII, 50 MHz, no loopback, no echo
936 * MII, 25 MHz, no loopback, no echo
937 */
938 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
939 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
940 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
941 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
942 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
943
944 /* re-enable the gasket */
945 writel(2, fep->hwp + FEC_MIIGSK_ENR);
946 }
947 #endif
948 }
949
950 #if !defined(CONFIG_M5272)
951 /* enable pause frame*/
952 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
953 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
954 fep->phy_dev && fep->phy_dev->pause)) {
955 rcntl |= FEC_ENET_FCE;
956
957 /* set FIFO threshold parameter to reduce overrun */
958 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
959 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
960 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
961 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
962
963 /* OPD */
964 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
965 } else {
966 rcntl &= ~FEC_ENET_FCE;
967 }
968 #endif /* !defined(CONFIG_M5272) */
969
970 writel(rcntl, fep->hwp + FEC_R_CNTRL);
971
972 /* Setup multicast filter. */
973 set_multicast_list(ndev);
974 #ifndef CONFIG_M5272
975 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
976 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
977 #endif
978
979 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
980 /* enable ENET endian swap */
981 ecntl |= (1 << 8);
982 /* enable ENET store and forward mode */
983 writel(1 << 8, fep->hwp + FEC_X_WMRK);
984 }
985
986 if (fep->bufdesc_ex)
987 ecntl |= (1 << 4);
988
989 #ifndef CONFIG_M5272
990 /* Enable the MIB statistic event counters */
991 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
992 #endif
993
994 /* And last, enable the transmit and receive processing */
995 writel(ecntl, fep->hwp + FEC_ECNTRL);
996 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
997
998 if (fep->bufdesc_ex)
999 fec_ptp_start_cyclecounter(ndev);
1000
1001 /* Enable interrupts we wish to service */
1002 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1003
1004 if (netif_running(ndev)) {
1005 netif_tx_unlock_bh(ndev);
1006 netif_wake_queue(ndev);
1007 napi_enable(&fep->napi);
1008 netif_device_attach(ndev);
1009 }
1010 }
1011
1012 static void
1013 fec_stop(struct net_device *ndev)
1014 {
1015 struct fec_enet_private *fep = netdev_priv(ndev);
1016 const struct platform_device_id *id_entry =
1017 platform_get_device_id(fep->pdev);
1018 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1019
1020 /* We cannot expect a graceful transmit stop without link !!! */
1021 if (fep->link) {
1022 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1023 udelay(10);
1024 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1025 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1026 }
1027
1028 /* Whack a reset. We should wait for this. */
1029 writel(1, fep->hwp + FEC_ECNTRL);
1030 udelay(10);
1031 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1032 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1033
1034 /* We have to keep ENET enabled to have MII interrupt stay working */
1035 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1036 writel(2, fep->hwp + FEC_ECNTRL);
1037 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1038 }
1039 }
1040
1041
1042 static void
1043 fec_timeout(struct net_device *ndev)
1044 {
1045 struct fec_enet_private *fep = netdev_priv(ndev);
1046
1047 ndev->stats.tx_errors++;
1048
1049 fep->delay_work.timeout = true;
1050 schedule_delayed_work(&(fep->delay_work.delay_work), 0);
1051 }
1052
1053 static void fec_enet_work(struct work_struct *work)
1054 {
1055 struct fec_enet_private *fep =
1056 container_of(work,
1057 struct fec_enet_private,
1058 delay_work.delay_work.work);
1059
1060 if (fep->delay_work.timeout) {
1061 fep->delay_work.timeout = false;
1062 fec_restart(fep->netdev, fep->full_duplex);
1063 netif_wake_queue(fep->netdev);
1064 }
1065
1066 if (fep->delay_work.trig_tx) {
1067 fep->delay_work.trig_tx = false;
1068 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1069 }
1070 }
1071
1072 static void
1073 fec_enet_tx(struct net_device *ndev)
1074 {
1075 struct fec_enet_private *fep;
1076 struct bufdesc *bdp;
1077 unsigned short status;
1078 struct sk_buff *skb;
1079 int index = 0;
1080 int entries_free;
1081
1082 fep = netdev_priv(ndev);
1083 bdp = fep->dirty_tx;
1084
1085 /* get next bdp of dirty_tx */
1086 bdp = fec_enet_get_nextdesc(bdp, fep);
1087
1088 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1089
1090 /* current queue is empty */
1091 if (bdp == fep->cur_tx)
1092 break;
1093
1094 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
1095
1096 skb = fep->tx_skbuff[index];
1097 if (!IS_TSO_HEADER(fep, bdp->cbd_bufaddr))
1098 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1099 bdp->cbd_datlen, DMA_TO_DEVICE);
1100 bdp->cbd_bufaddr = 0;
1101 if (!skb) {
1102 bdp = fec_enet_get_nextdesc(bdp, fep);
1103 continue;
1104 }
1105
1106 /* Check for errors. */
1107 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1108 BD_ENET_TX_RL | BD_ENET_TX_UN |
1109 BD_ENET_TX_CSL)) {
1110 ndev->stats.tx_errors++;
1111 if (status & BD_ENET_TX_HB) /* No heartbeat */
1112 ndev->stats.tx_heartbeat_errors++;
1113 if (status & BD_ENET_TX_LC) /* Late collision */
1114 ndev->stats.tx_window_errors++;
1115 if (status & BD_ENET_TX_RL) /* Retrans limit */
1116 ndev->stats.tx_aborted_errors++;
1117 if (status & BD_ENET_TX_UN) /* Underrun */
1118 ndev->stats.tx_fifo_errors++;
1119 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1120 ndev->stats.tx_carrier_errors++;
1121 } else {
1122 ndev->stats.tx_packets++;
1123 ndev->stats.tx_bytes += skb->len;
1124 }
1125
1126 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1127 fep->bufdesc_ex) {
1128 struct skb_shared_hwtstamps shhwtstamps;
1129 unsigned long flags;
1130 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1131
1132 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1133 spin_lock_irqsave(&fep->tmreg_lock, flags);
1134 shhwtstamps.hwtstamp = ns_to_ktime(
1135 timecounter_cyc2time(&fep->tc, ebdp->ts));
1136 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1137 skb_tstamp_tx(skb, &shhwtstamps);
1138 }
1139
1140 if (status & BD_ENET_TX_READY)
1141 netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
1142
1143 /* Deferred means some collisions occurred during transmit,
1144 * but we eventually sent the packet OK.
1145 */
1146 if (status & BD_ENET_TX_DEF)
1147 ndev->stats.collisions++;
1148
1149 /* Free the sk buffer associated with this last transmit */
1150 dev_kfree_skb_any(skb);
1151 fep->tx_skbuff[index] = NULL;
1152
1153 fep->dirty_tx = bdp;
1154
1155 /* Update pointer to next buffer descriptor to be transmitted */
1156 bdp = fec_enet_get_nextdesc(bdp, fep);
1157
1158 /* Since we have freed up a buffer, the ring is no longer full
1159 */
1160 if (netif_queue_stopped(ndev)) {
1161 entries_free = fec_enet_get_free_txdesc_num(fep);
1162 if (entries_free >= fep->tx_wake_threshold)
1163 netif_wake_queue(ndev);
1164 }
1165 }
1166 return;
1167 }
1168
1169 /* During a receive, the cur_rx points to the current incoming buffer.
1170 * When we update through the ring, if the next incoming buffer has
1171 * not been given to the system, we just set the empty indicator,
1172 * effectively tossing the packet.
1173 */
1174 static int
1175 fec_enet_rx(struct net_device *ndev, int budget)
1176 {
1177 struct fec_enet_private *fep = netdev_priv(ndev);
1178 const struct platform_device_id *id_entry =
1179 platform_get_device_id(fep->pdev);
1180 struct bufdesc *bdp;
1181 unsigned short status;
1182 struct sk_buff *skb;
1183 ushort pkt_len;
1184 __u8 *data;
1185 int pkt_received = 0;
1186 struct bufdesc_ex *ebdp = NULL;
1187 bool vlan_packet_rcvd = false;
1188 u16 vlan_tag;
1189 int index = 0;
1190
1191 #ifdef CONFIG_M532x
1192 flush_cache_all();
1193 #endif
1194
1195 /* First, grab all of the stats for the incoming packet.
1196 * These get messed up if we get called due to a busy condition.
1197 */
1198 bdp = fep->cur_rx;
1199
1200 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1201
1202 if (pkt_received >= budget)
1203 break;
1204 pkt_received++;
1205
1206 /* Since we have allocated space to hold a complete frame,
1207 * the last indicator should be set.
1208 */
1209 if ((status & BD_ENET_RX_LAST) == 0)
1210 netdev_err(ndev, "rcv is not +last\n");
1211
1212 if (!fep->opened)
1213 goto rx_processing_done;
1214
1215 /* Check for errors. */
1216 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1217 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1218 ndev->stats.rx_errors++;
1219 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1220 /* Frame too long or too short. */
1221 ndev->stats.rx_length_errors++;
1222 }
1223 if (status & BD_ENET_RX_NO) /* Frame alignment */
1224 ndev->stats.rx_frame_errors++;
1225 if (status & BD_ENET_RX_CR) /* CRC Error */
1226 ndev->stats.rx_crc_errors++;
1227 if (status & BD_ENET_RX_OV) /* FIFO overrun */
1228 ndev->stats.rx_fifo_errors++;
1229 }
1230
1231 /* Report late collisions as a frame error.
1232 * On this error, the BD is closed, but we don't know what we
1233 * have in the buffer. So, just drop this frame on the floor.
1234 */
1235 if (status & BD_ENET_RX_CL) {
1236 ndev->stats.rx_errors++;
1237 ndev->stats.rx_frame_errors++;
1238 goto rx_processing_done;
1239 }
1240
1241 /* Process the incoming frame. */
1242 ndev->stats.rx_packets++;
1243 pkt_len = bdp->cbd_datlen;
1244 ndev->stats.rx_bytes += pkt_len;
1245
1246 index = fec_enet_get_bd_index(fep->rx_bd_base, bdp, fep);
1247 data = fep->rx_skbuff[index]->data;
1248 dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1249 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1250
1251 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
1252 swap_buffer(data, pkt_len);
1253
1254 /* Extract the enhanced buffer descriptor */
1255 ebdp = NULL;
1256 if (fep->bufdesc_ex)
1257 ebdp = (struct bufdesc_ex *)bdp;
1258
1259 /* If this is a VLAN packet remove the VLAN Tag */
1260 vlan_packet_rcvd = false;
1261 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1262 fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1263 /* Push and remove the vlan tag */
1264 struct vlan_hdr *vlan_header =
1265 (struct vlan_hdr *) (data + ETH_HLEN);
1266 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1267 pkt_len -= VLAN_HLEN;
1268
1269 vlan_packet_rcvd = true;
1270 }
1271
1272 /* This does 16 byte alignment, exactly what we need.
1273 * The packet length includes FCS, but we don't want to
1274 * include that when passing upstream as it messes up
1275 * bridging applications.
1276 */
1277 skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
1278
1279 if (unlikely(!skb)) {
1280 ndev->stats.rx_dropped++;
1281 } else {
1282 int payload_offset = (2 * ETH_ALEN);
1283 skb_reserve(skb, NET_IP_ALIGN);
1284 skb_put(skb, pkt_len - 4); /* Make room */
1285
1286 /* Extract the frame data without the VLAN header. */
1287 skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
1288 if (vlan_packet_rcvd)
1289 payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
1290 skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
1291 data + payload_offset,
1292 pkt_len - 4 - (2 * ETH_ALEN));
1293
1294 skb->protocol = eth_type_trans(skb, ndev);
1295
1296 /* Get receive timestamp from the skb */
1297 if (fep->hwts_rx_en && fep->bufdesc_ex) {
1298 struct skb_shared_hwtstamps *shhwtstamps =
1299 skb_hwtstamps(skb);
1300 unsigned long flags;
1301
1302 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1303
1304 spin_lock_irqsave(&fep->tmreg_lock, flags);
1305 shhwtstamps->hwtstamp = ns_to_ktime(
1306 timecounter_cyc2time(&fep->tc, ebdp->ts));
1307 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1308 }
1309
1310 if (fep->bufdesc_ex &&
1311 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1312 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1313 /* don't check it */
1314 skb->ip_summed = CHECKSUM_UNNECESSARY;
1315 } else {
1316 skb_checksum_none_assert(skb);
1317 }
1318 }
1319
1320 /* Handle received VLAN packets */
1321 if (vlan_packet_rcvd)
1322 __vlan_hwaccel_put_tag(skb,
1323 htons(ETH_P_8021Q),
1324 vlan_tag);
1325
1326 napi_gro_receive(&fep->napi, skb);
1327 }
1328
1329 dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1330 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1331 rx_processing_done:
1332 /* Clear the status flags for this buffer */
1333 status &= ~BD_ENET_RX_STATS;
1334
1335 /* Mark the buffer empty */
1336 status |= BD_ENET_RX_EMPTY;
1337 bdp->cbd_sc = status;
1338
1339 if (fep->bufdesc_ex) {
1340 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1341
1342 ebdp->cbd_esc = BD_ENET_RX_INT;
1343 ebdp->cbd_prot = 0;
1344 ebdp->cbd_bdu = 0;
1345 }
1346
1347 /* Update BD pointer to next entry */
1348 bdp = fec_enet_get_nextdesc(bdp, fep);
1349
1350 /* Doing this here will keep the FEC running while we process
1351 * incoming frames. On a heavily loaded network, we should be
1352 * able to keep up at the expense of system resources.
1353 */
1354 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1355 }
1356 fep->cur_rx = bdp;
1357
1358 return pkt_received;
1359 }
1360
1361 static irqreturn_t
1362 fec_enet_interrupt(int irq, void *dev_id)
1363 {
1364 struct net_device *ndev = dev_id;
1365 struct fec_enet_private *fep = netdev_priv(ndev);
1366 uint int_events;
1367 irqreturn_t ret = IRQ_NONE;
1368
1369 do {
1370 int_events = readl(fep->hwp + FEC_IEVENT);
1371 writel(int_events, fep->hwp + FEC_IEVENT);
1372
1373 if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1374 ret = IRQ_HANDLED;
1375
1376 /* Disable the RX interrupt */
1377 if (napi_schedule_prep(&fep->napi)) {
1378 writel(FEC_RX_DISABLED_IMASK,
1379 fep->hwp + FEC_IMASK);
1380 __napi_schedule(&fep->napi);
1381 }
1382 }
1383
1384 if (int_events & FEC_ENET_MII) {
1385 ret = IRQ_HANDLED;
1386 complete(&fep->mdio_done);
1387 }
1388 } while (int_events);
1389
1390 return ret;
1391 }
1392
1393 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1394 {
1395 struct net_device *ndev = napi->dev;
1396 int pkts = fec_enet_rx(ndev, budget);
1397 struct fec_enet_private *fep = netdev_priv(ndev);
1398
1399 fec_enet_tx(ndev);
1400
1401 if (pkts < budget) {
1402 napi_complete(napi);
1403 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1404 }
1405 return pkts;
1406 }
1407
1408 /* ------------------------------------------------------------------------- */
1409 static void fec_get_mac(struct net_device *ndev)
1410 {
1411 struct fec_enet_private *fep = netdev_priv(ndev);
1412 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1413 unsigned char *iap, tmpaddr[ETH_ALEN];
1414
1415 /*
1416 * try to get mac address in following order:
1417 *
1418 * 1) module parameter via kernel command line in form
1419 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1420 */
1421 iap = macaddr;
1422
1423 /*
1424 * 2) from device tree data
1425 */
1426 if (!is_valid_ether_addr(iap)) {
1427 struct device_node *np = fep->pdev->dev.of_node;
1428 if (np) {
1429 const char *mac = of_get_mac_address(np);
1430 if (mac)
1431 iap = (unsigned char *) mac;
1432 }
1433 }
1434
1435 /*
1436 * 3) from flash or fuse (via platform data)
1437 */
1438 if (!is_valid_ether_addr(iap)) {
1439 #ifdef CONFIG_M5272
1440 if (FEC_FLASHMAC)
1441 iap = (unsigned char *)FEC_FLASHMAC;
1442 #else
1443 if (pdata)
1444 iap = (unsigned char *)&pdata->mac;
1445 #endif
1446 }
1447
1448 /*
1449 * 4) FEC mac registers set by bootloader
1450 */
1451 if (!is_valid_ether_addr(iap)) {
1452 *((__be32 *) &tmpaddr[0]) =
1453 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1454 *((__be16 *) &tmpaddr[4]) =
1455 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1456 iap = &tmpaddr[0];
1457 }
1458
1459 /*
1460 * 5) random mac address
1461 */
1462 if (!is_valid_ether_addr(iap)) {
1463 /* Report it and use a random ethernet address instead */
1464 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1465 eth_hw_addr_random(ndev);
1466 netdev_info(ndev, "Using random MAC address: %pM\n",
1467 ndev->dev_addr);
1468 return;
1469 }
1470
1471 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1472
1473 /* Adjust MAC if using macaddr */
1474 if (iap == macaddr)
1475 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1476 }
1477
1478 /* ------------------------------------------------------------------------- */
1479
1480 /*
1481 * Phy section
1482 */
1483 static void fec_enet_adjust_link(struct net_device *ndev)
1484 {
1485 struct fec_enet_private *fep = netdev_priv(ndev);
1486 struct phy_device *phy_dev = fep->phy_dev;
1487 int status_change = 0;
1488
1489 /* Prevent a state halted on mii error */
1490 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1491 phy_dev->state = PHY_RESUMING;
1492 return;
1493 }
1494
1495 if (phy_dev->link) {
1496 if (!fep->link) {
1497 fep->link = phy_dev->link;
1498 status_change = 1;
1499 }
1500
1501 if (fep->full_duplex != phy_dev->duplex)
1502 status_change = 1;
1503
1504 if (phy_dev->speed != fep->speed) {
1505 fep->speed = phy_dev->speed;
1506 status_change = 1;
1507 }
1508
1509 /* if any of the above changed restart the FEC */
1510 if (status_change)
1511 fec_restart(ndev, phy_dev->duplex);
1512 } else {
1513 if (fep->link) {
1514 fec_stop(ndev);
1515 fep->link = phy_dev->link;
1516 status_change = 1;
1517 }
1518 }
1519
1520 if (status_change)
1521 phy_print_status(phy_dev);
1522 }
1523
1524 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1525 {
1526 struct fec_enet_private *fep = bus->priv;
1527 unsigned long time_left;
1528
1529 fep->mii_timeout = 0;
1530 init_completion(&fep->mdio_done);
1531
1532 /* start a read op */
1533 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1534 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1535 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1536
1537 /* wait for end of transfer */
1538 time_left = wait_for_completion_timeout(&fep->mdio_done,
1539 usecs_to_jiffies(FEC_MII_TIMEOUT));
1540 if (time_left == 0) {
1541 fep->mii_timeout = 1;
1542 netdev_err(fep->netdev, "MDIO read timeout\n");
1543 return -ETIMEDOUT;
1544 }
1545
1546 /* return value */
1547 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1548 }
1549
1550 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1551 u16 value)
1552 {
1553 struct fec_enet_private *fep = bus->priv;
1554 unsigned long time_left;
1555
1556 fep->mii_timeout = 0;
1557 init_completion(&fep->mdio_done);
1558
1559 /* start a write op */
1560 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1561 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1562 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1563 fep->hwp + FEC_MII_DATA);
1564
1565 /* wait for end of transfer */
1566 time_left = wait_for_completion_timeout(&fep->mdio_done,
1567 usecs_to_jiffies(FEC_MII_TIMEOUT));
1568 if (time_left == 0) {
1569 fep->mii_timeout = 1;
1570 netdev_err(fep->netdev, "MDIO write timeout\n");
1571 return -ETIMEDOUT;
1572 }
1573
1574 return 0;
1575 }
1576
1577 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1578 {
1579 struct fec_enet_private *fep = netdev_priv(ndev);
1580 int ret;
1581
1582 if (enable) {
1583 ret = clk_prepare_enable(fep->clk_ahb);
1584 if (ret)
1585 return ret;
1586 ret = clk_prepare_enable(fep->clk_ipg);
1587 if (ret)
1588 goto failed_clk_ipg;
1589 if (fep->clk_enet_out) {
1590 ret = clk_prepare_enable(fep->clk_enet_out);
1591 if (ret)
1592 goto failed_clk_enet_out;
1593 }
1594 if (fep->clk_ptp) {
1595 ret = clk_prepare_enable(fep->clk_ptp);
1596 if (ret)
1597 goto failed_clk_ptp;
1598 }
1599 } else {
1600 clk_disable_unprepare(fep->clk_ahb);
1601 clk_disable_unprepare(fep->clk_ipg);
1602 if (fep->clk_enet_out)
1603 clk_disable_unprepare(fep->clk_enet_out);
1604 if (fep->clk_ptp)
1605 clk_disable_unprepare(fep->clk_ptp);
1606 }
1607
1608 return 0;
1609 failed_clk_ptp:
1610 if (fep->clk_enet_out)
1611 clk_disable_unprepare(fep->clk_enet_out);
1612 failed_clk_enet_out:
1613 clk_disable_unprepare(fep->clk_ipg);
1614 failed_clk_ipg:
1615 clk_disable_unprepare(fep->clk_ahb);
1616
1617 return ret;
1618 }
1619
1620 static int fec_enet_mii_probe(struct net_device *ndev)
1621 {
1622 struct fec_enet_private *fep = netdev_priv(ndev);
1623 const struct platform_device_id *id_entry =
1624 platform_get_device_id(fep->pdev);
1625 struct phy_device *phy_dev = NULL;
1626 char mdio_bus_id[MII_BUS_ID_SIZE];
1627 char phy_name[MII_BUS_ID_SIZE + 3];
1628 int phy_id;
1629 int dev_id = fep->dev_id;
1630
1631 fep->phy_dev = NULL;
1632
1633 /* check for attached phy */
1634 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1635 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1636 continue;
1637 if (fep->mii_bus->phy_map[phy_id] == NULL)
1638 continue;
1639 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1640 continue;
1641 if (dev_id--)
1642 continue;
1643 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1644 break;
1645 }
1646
1647 if (phy_id >= PHY_MAX_ADDR) {
1648 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1649 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1650 phy_id = 0;
1651 }
1652
1653 snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1654 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1655 fep->phy_interface);
1656 if (IS_ERR(phy_dev)) {
1657 netdev_err(ndev, "could not attach to PHY\n");
1658 return PTR_ERR(phy_dev);
1659 }
1660
1661 /* mask with MAC supported features */
1662 if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1663 phy_dev->supported &= PHY_GBIT_FEATURES;
1664 #if !defined(CONFIG_M5272)
1665 phy_dev->supported |= SUPPORTED_Pause;
1666 #endif
1667 }
1668 else
1669 phy_dev->supported &= PHY_BASIC_FEATURES;
1670
1671 phy_dev->advertising = phy_dev->supported;
1672
1673 fep->phy_dev = phy_dev;
1674 fep->link = 0;
1675 fep->full_duplex = 0;
1676
1677 netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1678 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1679 fep->phy_dev->irq);
1680
1681 return 0;
1682 }
1683
1684 static int fec_enet_mii_init(struct platform_device *pdev)
1685 {
1686 static struct mii_bus *fec0_mii_bus;
1687 struct net_device *ndev = platform_get_drvdata(pdev);
1688 struct fec_enet_private *fep = netdev_priv(ndev);
1689 const struct platform_device_id *id_entry =
1690 platform_get_device_id(fep->pdev);
1691 int err = -ENXIO, i;
1692
1693 /*
1694 * The dual fec interfaces are not equivalent with enet-mac.
1695 * Here are the differences:
1696 *
1697 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1698 * - fec0 acts as the 1588 time master while fec1 is slave
1699 * - external phys can only be configured by fec0
1700 *
1701 * That is to say fec1 can not work independently. It only works
1702 * when fec0 is working. The reason behind this design is that the
1703 * second interface is added primarily for Switch mode.
1704 *
1705 * Because of the last point above, both phys are attached on fec0
1706 * mdio interface in board design, and need to be configured by
1707 * fec0 mii_bus.
1708 */
1709 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1710 /* fec1 uses fec0 mii_bus */
1711 if (mii_cnt && fec0_mii_bus) {
1712 fep->mii_bus = fec0_mii_bus;
1713 mii_cnt++;
1714 return 0;
1715 }
1716 return -ENOENT;
1717 }
1718
1719 fep->mii_timeout = 0;
1720
1721 /*
1722 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1723 *
1724 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1725 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1726 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1727 * document.
1728 */
1729 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1730 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1731 fep->phy_speed--;
1732 fep->phy_speed <<= 1;
1733 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1734
1735 fep->mii_bus = mdiobus_alloc();
1736 if (fep->mii_bus == NULL) {
1737 err = -ENOMEM;
1738 goto err_out;
1739 }
1740
1741 fep->mii_bus->name = "fec_enet_mii_bus";
1742 fep->mii_bus->read = fec_enet_mdio_read;
1743 fep->mii_bus->write = fec_enet_mdio_write;
1744 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1745 pdev->name, fep->dev_id + 1);
1746 fep->mii_bus->priv = fep;
1747 fep->mii_bus->parent = &pdev->dev;
1748
1749 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1750 if (!fep->mii_bus->irq) {
1751 err = -ENOMEM;
1752 goto err_out_free_mdiobus;
1753 }
1754
1755 for (i = 0; i < PHY_MAX_ADDR; i++)
1756 fep->mii_bus->irq[i] = PHY_POLL;
1757
1758 if (mdiobus_register(fep->mii_bus))
1759 goto err_out_free_mdio_irq;
1760
1761 mii_cnt++;
1762
1763 /* save fec0 mii_bus */
1764 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1765 fec0_mii_bus = fep->mii_bus;
1766
1767 return 0;
1768
1769 err_out_free_mdio_irq:
1770 kfree(fep->mii_bus->irq);
1771 err_out_free_mdiobus:
1772 mdiobus_free(fep->mii_bus);
1773 err_out:
1774 return err;
1775 }
1776
1777 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1778 {
1779 if (--mii_cnt == 0) {
1780 mdiobus_unregister(fep->mii_bus);
1781 kfree(fep->mii_bus->irq);
1782 mdiobus_free(fep->mii_bus);
1783 }
1784 }
1785
1786 static int fec_enet_get_settings(struct net_device *ndev,
1787 struct ethtool_cmd *cmd)
1788 {
1789 struct fec_enet_private *fep = netdev_priv(ndev);
1790 struct phy_device *phydev = fep->phy_dev;
1791
1792 if (!phydev)
1793 return -ENODEV;
1794
1795 return phy_ethtool_gset(phydev, cmd);
1796 }
1797
1798 static int fec_enet_set_settings(struct net_device *ndev,
1799 struct ethtool_cmd *cmd)
1800 {
1801 struct fec_enet_private *fep = netdev_priv(ndev);
1802 struct phy_device *phydev = fep->phy_dev;
1803
1804 if (!phydev)
1805 return -ENODEV;
1806
1807 return phy_ethtool_sset(phydev, cmd);
1808 }
1809
1810 static void fec_enet_get_drvinfo(struct net_device *ndev,
1811 struct ethtool_drvinfo *info)
1812 {
1813 struct fec_enet_private *fep = netdev_priv(ndev);
1814
1815 strlcpy(info->driver, fep->pdev->dev.driver->name,
1816 sizeof(info->driver));
1817 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1818 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1819 }
1820
1821 static int fec_enet_get_ts_info(struct net_device *ndev,
1822 struct ethtool_ts_info *info)
1823 {
1824 struct fec_enet_private *fep = netdev_priv(ndev);
1825
1826 if (fep->bufdesc_ex) {
1827
1828 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1829 SOF_TIMESTAMPING_RX_SOFTWARE |
1830 SOF_TIMESTAMPING_SOFTWARE |
1831 SOF_TIMESTAMPING_TX_HARDWARE |
1832 SOF_TIMESTAMPING_RX_HARDWARE |
1833 SOF_TIMESTAMPING_RAW_HARDWARE;
1834 if (fep->ptp_clock)
1835 info->phc_index = ptp_clock_index(fep->ptp_clock);
1836 else
1837 info->phc_index = -1;
1838
1839 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1840 (1 << HWTSTAMP_TX_ON);
1841
1842 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1843 (1 << HWTSTAMP_FILTER_ALL);
1844 return 0;
1845 } else {
1846 return ethtool_op_get_ts_info(ndev, info);
1847 }
1848 }
1849
1850 #if !defined(CONFIG_M5272)
1851
1852 static void fec_enet_get_pauseparam(struct net_device *ndev,
1853 struct ethtool_pauseparam *pause)
1854 {
1855 struct fec_enet_private *fep = netdev_priv(ndev);
1856
1857 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1858 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1859 pause->rx_pause = pause->tx_pause;
1860 }
1861
1862 static int fec_enet_set_pauseparam(struct net_device *ndev,
1863 struct ethtool_pauseparam *pause)
1864 {
1865 struct fec_enet_private *fep = netdev_priv(ndev);
1866
1867 if (pause->tx_pause != pause->rx_pause) {
1868 netdev_info(ndev,
1869 "hardware only support enable/disable both tx and rx");
1870 return -EINVAL;
1871 }
1872
1873 fep->pause_flag = 0;
1874
1875 /* tx pause must be same as rx pause */
1876 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1877 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1878
1879 if (pause->rx_pause || pause->autoneg) {
1880 fep->phy_dev->supported |= ADVERTISED_Pause;
1881 fep->phy_dev->advertising |= ADVERTISED_Pause;
1882 } else {
1883 fep->phy_dev->supported &= ~ADVERTISED_Pause;
1884 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1885 }
1886
1887 if (pause->autoneg) {
1888 if (netif_running(ndev))
1889 fec_stop(ndev);
1890 phy_start_aneg(fep->phy_dev);
1891 }
1892 if (netif_running(ndev))
1893 fec_restart(ndev, 0);
1894
1895 return 0;
1896 }
1897
1898 static const struct fec_stat {
1899 char name[ETH_GSTRING_LEN];
1900 u16 offset;
1901 } fec_stats[] = {
1902 /* RMON TX */
1903 { "tx_dropped", RMON_T_DROP },
1904 { "tx_packets", RMON_T_PACKETS },
1905 { "tx_broadcast", RMON_T_BC_PKT },
1906 { "tx_multicast", RMON_T_MC_PKT },
1907 { "tx_crc_errors", RMON_T_CRC_ALIGN },
1908 { "tx_undersize", RMON_T_UNDERSIZE },
1909 { "tx_oversize", RMON_T_OVERSIZE },
1910 { "tx_fragment", RMON_T_FRAG },
1911 { "tx_jabber", RMON_T_JAB },
1912 { "tx_collision", RMON_T_COL },
1913 { "tx_64byte", RMON_T_P64 },
1914 { "tx_65to127byte", RMON_T_P65TO127 },
1915 { "tx_128to255byte", RMON_T_P128TO255 },
1916 { "tx_256to511byte", RMON_T_P256TO511 },
1917 { "tx_512to1023byte", RMON_T_P512TO1023 },
1918 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
1919 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
1920 { "tx_octets", RMON_T_OCTETS },
1921
1922 /* IEEE TX */
1923 { "IEEE_tx_drop", IEEE_T_DROP },
1924 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1925 { "IEEE_tx_1col", IEEE_T_1COL },
1926 { "IEEE_tx_mcol", IEEE_T_MCOL },
1927 { "IEEE_tx_def", IEEE_T_DEF },
1928 { "IEEE_tx_lcol", IEEE_T_LCOL },
1929 { "IEEE_tx_excol", IEEE_T_EXCOL },
1930 { "IEEE_tx_macerr", IEEE_T_MACERR },
1931 { "IEEE_tx_cserr", IEEE_T_CSERR },
1932 { "IEEE_tx_sqe", IEEE_T_SQE },
1933 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1934 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1935
1936 /* RMON RX */
1937 { "rx_packets", RMON_R_PACKETS },
1938 { "rx_broadcast", RMON_R_BC_PKT },
1939 { "rx_multicast", RMON_R_MC_PKT },
1940 { "rx_crc_errors", RMON_R_CRC_ALIGN },
1941 { "rx_undersize", RMON_R_UNDERSIZE },
1942 { "rx_oversize", RMON_R_OVERSIZE },
1943 { "rx_fragment", RMON_R_FRAG },
1944 { "rx_jabber", RMON_R_JAB },
1945 { "rx_64byte", RMON_R_P64 },
1946 { "rx_65to127byte", RMON_R_P65TO127 },
1947 { "rx_128to255byte", RMON_R_P128TO255 },
1948 { "rx_256to511byte", RMON_R_P256TO511 },
1949 { "rx_512to1023byte", RMON_R_P512TO1023 },
1950 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
1951 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
1952 { "rx_octets", RMON_R_OCTETS },
1953
1954 /* IEEE RX */
1955 { "IEEE_rx_drop", IEEE_R_DROP },
1956 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1957 { "IEEE_rx_crc", IEEE_R_CRC },
1958 { "IEEE_rx_align", IEEE_R_ALIGN },
1959 { "IEEE_rx_macerr", IEEE_R_MACERR },
1960 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1961 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1962 };
1963
1964 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1965 struct ethtool_stats *stats, u64 *data)
1966 {
1967 struct fec_enet_private *fep = netdev_priv(dev);
1968 int i;
1969
1970 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1971 data[i] = readl(fep->hwp + fec_stats[i].offset);
1972 }
1973
1974 static void fec_enet_get_strings(struct net_device *netdev,
1975 u32 stringset, u8 *data)
1976 {
1977 int i;
1978 switch (stringset) {
1979 case ETH_SS_STATS:
1980 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1981 memcpy(data + i * ETH_GSTRING_LEN,
1982 fec_stats[i].name, ETH_GSTRING_LEN);
1983 break;
1984 }
1985 }
1986
1987 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1988 {
1989 switch (sset) {
1990 case ETH_SS_STATS:
1991 return ARRAY_SIZE(fec_stats);
1992 default:
1993 return -EOPNOTSUPP;
1994 }
1995 }
1996 #endif /* !defined(CONFIG_M5272) */
1997
1998 static int fec_enet_nway_reset(struct net_device *dev)
1999 {
2000 struct fec_enet_private *fep = netdev_priv(dev);
2001 struct phy_device *phydev = fep->phy_dev;
2002
2003 if (!phydev)
2004 return -ENODEV;
2005
2006 return genphy_restart_aneg(phydev);
2007 }
2008
2009 static const struct ethtool_ops fec_enet_ethtool_ops = {
2010 #if !defined(CONFIG_M5272)
2011 .get_pauseparam = fec_enet_get_pauseparam,
2012 .set_pauseparam = fec_enet_set_pauseparam,
2013 #endif
2014 .get_settings = fec_enet_get_settings,
2015 .set_settings = fec_enet_set_settings,
2016 .get_drvinfo = fec_enet_get_drvinfo,
2017 .get_link = ethtool_op_get_link,
2018 .get_ts_info = fec_enet_get_ts_info,
2019 .nway_reset = fec_enet_nway_reset,
2020 #ifndef CONFIG_M5272
2021 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2022 .get_strings = fec_enet_get_strings,
2023 .get_sset_count = fec_enet_get_sset_count,
2024 #endif
2025 };
2026
2027 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2028 {
2029 struct fec_enet_private *fep = netdev_priv(ndev);
2030 struct phy_device *phydev = fep->phy_dev;
2031
2032 if (!netif_running(ndev))
2033 return -EINVAL;
2034
2035 if (!phydev)
2036 return -ENODEV;
2037
2038 if (fep->bufdesc_ex) {
2039 if (cmd == SIOCSHWTSTAMP)
2040 return fec_ptp_set(ndev, rq);
2041 if (cmd == SIOCGHWTSTAMP)
2042 return fec_ptp_get(ndev, rq);
2043 }
2044
2045 return phy_mii_ioctl(phydev, rq, cmd);
2046 }
2047
2048 static void fec_enet_free_buffers(struct net_device *ndev)
2049 {
2050 struct fec_enet_private *fep = netdev_priv(ndev);
2051 unsigned int i;
2052 struct sk_buff *skb;
2053 struct bufdesc *bdp;
2054
2055 bdp = fep->rx_bd_base;
2056 for (i = 0; i < fep->rx_ring_size; i++) {
2057 skb = fep->rx_skbuff[i];
2058
2059 if (bdp->cbd_bufaddr)
2060 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
2061 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2062 if (skb)
2063 dev_kfree_skb(skb);
2064 bdp = fec_enet_get_nextdesc(bdp, fep);
2065 }
2066
2067 bdp = fep->tx_bd_base;
2068 for (i = 0; i < fep->tx_ring_size; i++)
2069 kfree(fep->tx_bounce[i]);
2070 }
2071
2072 static int fec_enet_alloc_buffers(struct net_device *ndev)
2073 {
2074 struct fec_enet_private *fep = netdev_priv(ndev);
2075 unsigned int i;
2076 struct sk_buff *skb;
2077 struct bufdesc *bdp;
2078
2079 bdp = fep->rx_bd_base;
2080 for (i = 0; i < fep->rx_ring_size; i++) {
2081 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2082 if (!skb) {
2083 fec_enet_free_buffers(ndev);
2084 return -ENOMEM;
2085 }
2086 fep->rx_skbuff[i] = skb;
2087
2088 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
2089 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2090 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
2091 fec_enet_free_buffers(ndev);
2092 if (net_ratelimit())
2093 netdev_err(ndev, "Rx DMA memory map failed\n");
2094 return -ENOMEM;
2095 }
2096 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2097
2098 if (fep->bufdesc_ex) {
2099 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2100 ebdp->cbd_esc = BD_ENET_RX_INT;
2101 }
2102
2103 bdp = fec_enet_get_nextdesc(bdp, fep);
2104 }
2105
2106 /* Set the last buffer to wrap. */
2107 bdp = fec_enet_get_prevdesc(bdp, fep);
2108 bdp->cbd_sc |= BD_SC_WRAP;
2109
2110 bdp = fep->tx_bd_base;
2111 for (i = 0; i < fep->tx_ring_size; i++) {
2112 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2113
2114 bdp->cbd_sc = 0;
2115 bdp->cbd_bufaddr = 0;
2116
2117 if (fep->bufdesc_ex) {
2118 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2119 ebdp->cbd_esc = BD_ENET_TX_INT;
2120 }
2121
2122 bdp = fec_enet_get_nextdesc(bdp, fep);
2123 }
2124
2125 /* Set the last buffer to wrap. */
2126 bdp = fec_enet_get_prevdesc(bdp, fep);
2127 bdp->cbd_sc |= BD_SC_WRAP;
2128
2129 return 0;
2130 }
2131
2132 static int
2133 fec_enet_open(struct net_device *ndev)
2134 {
2135 struct fec_enet_private *fep = netdev_priv(ndev);
2136 int ret;
2137
2138 pinctrl_pm_select_default_state(&fep->pdev->dev);
2139 ret = fec_enet_clk_enable(ndev, true);
2140 if (ret)
2141 return ret;
2142
2143 /* I should reset the ring buffers here, but I don't yet know
2144 * a simple way to do that.
2145 */
2146
2147 ret = fec_enet_alloc_buffers(ndev);
2148 if (ret)
2149 return ret;
2150
2151 /* Probe and connect to PHY when open the interface */
2152 ret = fec_enet_mii_probe(ndev);
2153 if (ret) {
2154 fec_enet_free_buffers(ndev);
2155 return ret;
2156 }
2157
2158 napi_enable(&fep->napi);
2159 phy_start(fep->phy_dev);
2160 netif_start_queue(ndev);
2161 fep->opened = 1;
2162 return 0;
2163 }
2164
2165 static int
2166 fec_enet_close(struct net_device *ndev)
2167 {
2168 struct fec_enet_private *fep = netdev_priv(ndev);
2169
2170 /* Don't know what to do yet. */
2171 napi_disable(&fep->napi);
2172 fep->opened = 0;
2173 netif_stop_queue(ndev);
2174 fec_stop(ndev);
2175
2176 if (fep->phy_dev) {
2177 phy_stop(fep->phy_dev);
2178 phy_disconnect(fep->phy_dev);
2179 }
2180
2181 fec_enet_clk_enable(ndev, false);
2182 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2183 fec_enet_free_buffers(ndev);
2184
2185 return 0;
2186 }
2187
2188 /* Set or clear the multicast filter for this adaptor.
2189 * Skeleton taken from sunlance driver.
2190 * The CPM Ethernet implementation allows Multicast as well as individual
2191 * MAC address filtering. Some of the drivers check to make sure it is
2192 * a group multicast address, and discard those that are not. I guess I
2193 * will do the same for now, but just remove the test if you want
2194 * individual filtering as well (do the upper net layers want or support
2195 * this kind of feature?).
2196 */
2197
2198 #define HASH_BITS 6 /* #bits in hash */
2199 #define CRC32_POLY 0xEDB88320
2200
2201 static void set_multicast_list(struct net_device *ndev)
2202 {
2203 struct fec_enet_private *fep = netdev_priv(ndev);
2204 struct netdev_hw_addr *ha;
2205 unsigned int i, bit, data, crc, tmp;
2206 unsigned char hash;
2207
2208 if (ndev->flags & IFF_PROMISC) {
2209 tmp = readl(fep->hwp + FEC_R_CNTRL);
2210 tmp |= 0x8;
2211 writel(tmp, fep->hwp + FEC_R_CNTRL);
2212 return;
2213 }
2214
2215 tmp = readl(fep->hwp + FEC_R_CNTRL);
2216 tmp &= ~0x8;
2217 writel(tmp, fep->hwp + FEC_R_CNTRL);
2218
2219 if (ndev->flags & IFF_ALLMULTI) {
2220 /* Catch all multicast addresses, so set the
2221 * filter to all 1's
2222 */
2223 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2224 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2225
2226 return;
2227 }
2228
2229 /* Clear filter and add the addresses in hash register
2230 */
2231 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2232 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2233
2234 netdev_for_each_mc_addr(ha, ndev) {
2235 /* calculate crc32 value of mac address */
2236 crc = 0xffffffff;
2237
2238 for (i = 0; i < ndev->addr_len; i++) {
2239 data = ha->addr[i];
2240 for (bit = 0; bit < 8; bit++, data >>= 1) {
2241 crc = (crc >> 1) ^
2242 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2243 }
2244 }
2245
2246 /* only upper 6 bits (HASH_BITS) are used
2247 * which point to specific bit in he hash registers
2248 */
2249 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2250
2251 if (hash > 31) {
2252 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2253 tmp |= 1 << (hash - 32);
2254 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2255 } else {
2256 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2257 tmp |= 1 << hash;
2258 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2259 }
2260 }
2261 }
2262
2263 /* Set a MAC change in hardware. */
2264 static int
2265 fec_set_mac_address(struct net_device *ndev, void *p)
2266 {
2267 struct fec_enet_private *fep = netdev_priv(ndev);
2268 struct sockaddr *addr = p;
2269
2270 if (addr) {
2271 if (!is_valid_ether_addr(addr->sa_data))
2272 return -EADDRNOTAVAIL;
2273 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2274 }
2275
2276 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2277 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2278 fep->hwp + FEC_ADDR_LOW);
2279 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2280 fep->hwp + FEC_ADDR_HIGH);
2281 return 0;
2282 }
2283
2284 #ifdef CONFIG_NET_POLL_CONTROLLER
2285 /**
2286 * fec_poll_controller - FEC Poll controller function
2287 * @dev: The FEC network adapter
2288 *
2289 * Polled functionality used by netconsole and others in non interrupt mode
2290 *
2291 */
2292 static void fec_poll_controller(struct net_device *dev)
2293 {
2294 int i;
2295 struct fec_enet_private *fep = netdev_priv(dev);
2296
2297 for (i = 0; i < FEC_IRQ_NUM; i++) {
2298 if (fep->irq[i] > 0) {
2299 disable_irq(fep->irq[i]);
2300 fec_enet_interrupt(fep->irq[i], dev);
2301 enable_irq(fep->irq[i]);
2302 }
2303 }
2304 }
2305 #endif
2306
2307 static int fec_set_features(struct net_device *netdev,
2308 netdev_features_t features)
2309 {
2310 struct fec_enet_private *fep = netdev_priv(netdev);
2311 netdev_features_t changed = features ^ netdev->features;
2312
2313 netdev->features = features;
2314
2315 /* Receive checksum has been changed */
2316 if (changed & NETIF_F_RXCSUM) {
2317 if (features & NETIF_F_RXCSUM)
2318 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2319 else
2320 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2321
2322 if (netif_running(netdev)) {
2323 fec_stop(netdev);
2324 fec_restart(netdev, fep->phy_dev->duplex);
2325 netif_wake_queue(netdev);
2326 } else {
2327 fec_restart(netdev, fep->phy_dev->duplex);
2328 }
2329 }
2330
2331 return 0;
2332 }
2333
2334 static const struct net_device_ops fec_netdev_ops = {
2335 .ndo_open = fec_enet_open,
2336 .ndo_stop = fec_enet_close,
2337 .ndo_start_xmit = fec_enet_start_xmit,
2338 .ndo_set_rx_mode = set_multicast_list,
2339 .ndo_change_mtu = eth_change_mtu,
2340 .ndo_validate_addr = eth_validate_addr,
2341 .ndo_tx_timeout = fec_timeout,
2342 .ndo_set_mac_address = fec_set_mac_address,
2343 .ndo_do_ioctl = fec_enet_ioctl,
2344 #ifdef CONFIG_NET_POLL_CONTROLLER
2345 .ndo_poll_controller = fec_poll_controller,
2346 #endif
2347 .ndo_set_features = fec_set_features,
2348 };
2349
2350 /*
2351 * XXX: We need to clean up on failure exits here.
2352 *
2353 */
2354 static int fec_enet_init(struct net_device *ndev)
2355 {
2356 struct fec_enet_private *fep = netdev_priv(ndev);
2357 const struct platform_device_id *id_entry =
2358 platform_get_device_id(fep->pdev);
2359 struct bufdesc *cbd_base;
2360 int bd_size;
2361
2362 /* init the tx & rx ring size */
2363 fep->tx_ring_size = TX_RING_SIZE;
2364 fep->rx_ring_size = RX_RING_SIZE;
2365
2366 fep->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2367 fep->tx_wake_threshold = (fep->tx_ring_size - fep->tx_stop_threshold) / 2;
2368
2369 if (fep->bufdesc_ex)
2370 fep->bufdesc_size = sizeof(struct bufdesc_ex);
2371 else
2372 fep->bufdesc_size = sizeof(struct bufdesc);
2373 bd_size = (fep->tx_ring_size + fep->rx_ring_size) *
2374 fep->bufdesc_size;
2375
2376 /* Allocate memory for buffer descriptors. */
2377 cbd_base = dma_alloc_coherent(NULL, bd_size, &fep->bd_dma,
2378 GFP_KERNEL);
2379 if (!cbd_base)
2380 return -ENOMEM;
2381
2382 fep->tso_hdrs = dma_alloc_coherent(NULL, fep->tx_ring_size * TSO_HEADER_SIZE,
2383 &fep->tso_hdrs_dma, GFP_KERNEL);
2384 if (!fep->tso_hdrs) {
2385 dma_free_coherent(NULL, bd_size, cbd_base, fep->bd_dma);
2386 return -ENOMEM;
2387 }
2388
2389 memset(cbd_base, 0, PAGE_SIZE);
2390
2391 fep->netdev = ndev;
2392
2393 /* Get the Ethernet address */
2394 fec_get_mac(ndev);
2395 /* make sure MAC we just acquired is programmed into the hw */
2396 fec_set_mac_address(ndev, NULL);
2397
2398 /* Set receive and transmit descriptor base. */
2399 fep->rx_bd_base = cbd_base;
2400 if (fep->bufdesc_ex)
2401 fep->tx_bd_base = (struct bufdesc *)
2402 (((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2403 else
2404 fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2405
2406 /* The FEC Ethernet specific entries in the device structure */
2407 ndev->watchdog_timeo = TX_TIMEOUT;
2408 ndev->netdev_ops = &fec_netdev_ops;
2409 ndev->ethtool_ops = &fec_enet_ethtool_ops;
2410
2411 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2412 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2413
2414 if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
2415 /* enable hw VLAN support */
2416 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2417
2418 if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2419 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
2420
2421 /* enable hw accelerator */
2422 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2423 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
2424 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2425 }
2426
2427 ndev->hw_features = ndev->features;
2428
2429 fec_restart(ndev, 0);
2430
2431 return 0;
2432 }
2433
2434 #ifdef CONFIG_OF
2435 static void fec_reset_phy(struct platform_device *pdev)
2436 {
2437 int err, phy_reset;
2438 int msec = 1;
2439 struct device_node *np = pdev->dev.of_node;
2440
2441 if (!np)
2442 return;
2443
2444 of_property_read_u32(np, "phy-reset-duration", &msec);
2445 /* A sane reset duration should not be longer than 1s */
2446 if (msec > 1000)
2447 msec = 1;
2448
2449 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2450 if (!gpio_is_valid(phy_reset))
2451 return;
2452
2453 err = devm_gpio_request_one(&pdev->dev, phy_reset,
2454 GPIOF_OUT_INIT_LOW, "phy-reset");
2455 if (err) {
2456 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2457 return;
2458 }
2459 msleep(msec);
2460 gpio_set_value(phy_reset, 1);
2461 }
2462 #else /* CONFIG_OF */
2463 static void fec_reset_phy(struct platform_device *pdev)
2464 {
2465 /*
2466 * In case of platform probe, the reset has been done
2467 * by machine code.
2468 */
2469 }
2470 #endif /* CONFIG_OF */
2471
2472 static int
2473 fec_probe(struct platform_device *pdev)
2474 {
2475 struct fec_enet_private *fep;
2476 struct fec_platform_data *pdata;
2477 struct net_device *ndev;
2478 int i, irq, ret = 0;
2479 struct resource *r;
2480 const struct of_device_id *of_id;
2481 static int dev_id;
2482
2483 of_id = of_match_device(fec_dt_ids, &pdev->dev);
2484 if (of_id)
2485 pdev->id_entry = of_id->data;
2486
2487 /* Init network device */
2488 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2489 if (!ndev)
2490 return -ENOMEM;
2491
2492 SET_NETDEV_DEV(ndev, &pdev->dev);
2493
2494 /* setup board info structure */
2495 fep = netdev_priv(ndev);
2496
2497 #if !defined(CONFIG_M5272)
2498 /* default enable pause frame auto negotiation */
2499 if (pdev->id_entry &&
2500 (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2501 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2502 #endif
2503
2504 /* Select default pin state */
2505 pinctrl_pm_select_default_state(&pdev->dev);
2506
2507 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2508 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2509 if (IS_ERR(fep->hwp)) {
2510 ret = PTR_ERR(fep->hwp);
2511 goto failed_ioremap;
2512 }
2513
2514 fep->pdev = pdev;
2515 fep->dev_id = dev_id++;
2516
2517 fep->bufdesc_ex = 0;
2518
2519 platform_set_drvdata(pdev, ndev);
2520
2521 ret = of_get_phy_mode(pdev->dev.of_node);
2522 if (ret < 0) {
2523 pdata = dev_get_platdata(&pdev->dev);
2524 if (pdata)
2525 fep->phy_interface = pdata->phy;
2526 else
2527 fep->phy_interface = PHY_INTERFACE_MODE_MII;
2528 } else {
2529 fep->phy_interface = ret;
2530 }
2531
2532 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2533 if (IS_ERR(fep->clk_ipg)) {
2534 ret = PTR_ERR(fep->clk_ipg);
2535 goto failed_clk;
2536 }
2537
2538 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2539 if (IS_ERR(fep->clk_ahb)) {
2540 ret = PTR_ERR(fep->clk_ahb);
2541 goto failed_clk;
2542 }
2543
2544 /* enet_out is optional, depends on board */
2545 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2546 if (IS_ERR(fep->clk_enet_out))
2547 fep->clk_enet_out = NULL;
2548
2549 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2550 fep->bufdesc_ex =
2551 pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2552 if (IS_ERR(fep->clk_ptp)) {
2553 fep->clk_ptp = NULL;
2554 fep->bufdesc_ex = 0;
2555 }
2556
2557 ret = fec_enet_clk_enable(ndev, true);
2558 if (ret)
2559 goto failed_clk;
2560
2561 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2562 if (!IS_ERR(fep->reg_phy)) {
2563 ret = regulator_enable(fep->reg_phy);
2564 if (ret) {
2565 dev_err(&pdev->dev,
2566 "Failed to enable phy regulator: %d\n", ret);
2567 goto failed_regulator;
2568 }
2569 } else {
2570 fep->reg_phy = NULL;
2571 }
2572
2573 fec_reset_phy(pdev);
2574
2575 if (fep->bufdesc_ex)
2576 fec_ptp_init(pdev);
2577
2578 ret = fec_enet_init(ndev);
2579 if (ret)
2580 goto failed_init;
2581
2582 for (i = 0; i < FEC_IRQ_NUM; i++) {
2583 irq = platform_get_irq(pdev, i);
2584 if (irq < 0) {
2585 if (i)
2586 break;
2587 ret = irq;
2588 goto failed_irq;
2589 }
2590 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2591 0, pdev->name, ndev);
2592 if (ret)
2593 goto failed_irq;
2594 }
2595
2596 ret = fec_enet_mii_init(pdev);
2597 if (ret)
2598 goto failed_mii_init;
2599
2600 /* Carrier starts down, phylib will bring it up */
2601 netif_carrier_off(ndev);
2602 fec_enet_clk_enable(ndev, false);
2603 pinctrl_pm_select_sleep_state(&pdev->dev);
2604
2605 ret = register_netdev(ndev);
2606 if (ret)
2607 goto failed_register;
2608
2609 if (fep->bufdesc_ex && fep->ptp_clock)
2610 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2611
2612 INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2613 return 0;
2614
2615 failed_register:
2616 fec_enet_mii_remove(fep);
2617 failed_mii_init:
2618 failed_irq:
2619 failed_init:
2620 if (fep->reg_phy)
2621 regulator_disable(fep->reg_phy);
2622 failed_regulator:
2623 fec_enet_clk_enable(ndev, false);
2624 failed_clk:
2625 failed_ioremap:
2626 free_netdev(ndev);
2627
2628 return ret;
2629 }
2630
2631 static int
2632 fec_drv_remove(struct platform_device *pdev)
2633 {
2634 struct net_device *ndev = platform_get_drvdata(pdev);
2635 struct fec_enet_private *fep = netdev_priv(ndev);
2636
2637 cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2638 unregister_netdev(ndev);
2639 fec_enet_mii_remove(fep);
2640 del_timer_sync(&fep->time_keep);
2641 if (fep->reg_phy)
2642 regulator_disable(fep->reg_phy);
2643 if (fep->ptp_clock)
2644 ptp_clock_unregister(fep->ptp_clock);
2645 fec_enet_clk_enable(ndev, false);
2646 free_netdev(ndev);
2647
2648 return 0;
2649 }
2650
2651 #ifdef CONFIG_PM_SLEEP
2652 static int
2653 fec_suspend(struct device *dev)
2654 {
2655 struct net_device *ndev = dev_get_drvdata(dev);
2656 struct fec_enet_private *fep = netdev_priv(ndev);
2657
2658 if (netif_running(ndev)) {
2659 fec_stop(ndev);
2660 netif_device_detach(ndev);
2661 }
2662 fec_enet_clk_enable(ndev, false);
2663 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2664
2665 if (fep->reg_phy)
2666 regulator_disable(fep->reg_phy);
2667
2668 return 0;
2669 }
2670
2671 static int
2672 fec_resume(struct device *dev)
2673 {
2674 struct net_device *ndev = dev_get_drvdata(dev);
2675 struct fec_enet_private *fep = netdev_priv(ndev);
2676 int ret;
2677
2678 if (fep->reg_phy) {
2679 ret = regulator_enable(fep->reg_phy);
2680 if (ret)
2681 return ret;
2682 }
2683
2684 pinctrl_pm_select_default_state(&fep->pdev->dev);
2685 ret = fec_enet_clk_enable(ndev, true);
2686 if (ret)
2687 goto failed_clk;
2688
2689 if (netif_running(ndev)) {
2690 fec_restart(ndev, fep->full_duplex);
2691 netif_device_attach(ndev);
2692 }
2693
2694 return 0;
2695
2696 failed_clk:
2697 if (fep->reg_phy)
2698 regulator_disable(fep->reg_phy);
2699 return ret;
2700 }
2701 #endif /* CONFIG_PM_SLEEP */
2702
2703 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2704
2705 static struct platform_driver fec_driver = {
2706 .driver = {
2707 .name = DRIVER_NAME,
2708 .owner = THIS_MODULE,
2709 .pm = &fec_pm_ops,
2710 .of_match_table = fec_dt_ids,
2711 },
2712 .id_table = fec_devtype,
2713 .probe = fec_probe,
2714 .remove = fec_drv_remove,
2715 };
2716
2717 module_platform_driver(fec_driver);
2718
2719 MODULE_ALIAS("platform:"DRIVER_NAME);
2720 MODULE_LICENSE("GPL");
This page took 0.086264 seconds and 6 git commands to generate.