Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64
65 #include <asm/cacheflush.h>
66
67 #include "fec.h"
68
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71
72 #define DRIVER_NAME "fec"
73
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE (1 << 5)
78 #define FEC_ENET_RSEM_V 0x84
79 #define FEC_ENET_RSFL_V 16
80 #define FEC_ENET_RAEM_V 0x8
81 #define FEC_ENET_RAFL_V 0x8
82 #define FEC_ENET_OPD_V 0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
84
85 static struct platform_device_id fec_devtype[] = {
86 {
87 /* keep it for coldfire */
88 .name = DRIVER_NAME,
89 .driver_data = 0,
90 }, {
91 .name = "imx25-fec",
92 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
93 }, {
94 .name = "imx27-fec",
95 .driver_data = FEC_QUIRK_HAS_RACC,
96 }, {
97 .name = "imx28-fec",
98 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 }, {
101 .name = "imx6q-fec",
102 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 FEC_QUIRK_HAS_RACC,
106 }, {
107 .name = "mvf600-fec",
108 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 }, {
110 .name = "imx6sx-fec",
111 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 }, {
117 .name = "imx6ul-fec",
118 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_BUG_CAPTURE |
121 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
122 }, {
123 /* sentinel */
124 }
125 };
126 MODULE_DEVICE_TABLE(platform, fec_devtype);
127
128 enum imx_fec_type {
129 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
130 IMX27_FEC, /* runs on i.mx27/35/51 */
131 IMX28_FEC,
132 IMX6Q_FEC,
133 MVF600_FEC,
134 IMX6SX_FEC,
135 IMX6UL_FEC,
136 };
137
138 static const struct of_device_id fec_dt_ids[] = {
139 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
140 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
141 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
142 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
143 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
144 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
145 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
146 { /* sentinel */ }
147 };
148 MODULE_DEVICE_TABLE(of, fec_dt_ids);
149
150 static unsigned char macaddr[ETH_ALEN];
151 module_param_array(macaddr, byte, NULL, 0);
152 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
153
154 #if defined(CONFIG_M5272)
155 /*
156 * Some hardware gets it MAC address out of local flash memory.
157 * if this is non-zero then assume it is the address to get MAC from.
158 */
159 #if defined(CONFIG_NETtel)
160 #define FEC_FLASHMAC 0xf0006006
161 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
162 #define FEC_FLASHMAC 0xf0006000
163 #elif defined(CONFIG_CANCam)
164 #define FEC_FLASHMAC 0xf0020000
165 #elif defined (CONFIG_M5272C3)
166 #define FEC_FLASHMAC (0xffe04000 + 4)
167 #elif defined(CONFIG_MOD5272)
168 #define FEC_FLASHMAC 0xffc0406b
169 #else
170 #define FEC_FLASHMAC 0
171 #endif
172 #endif /* CONFIG_M5272 */
173
174 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
175 */
176 #define PKT_MAXBUF_SIZE 1522
177 #define PKT_MINBUF_SIZE 64
178 #define PKT_MAXBLR_SIZE 1536
179
180 /* FEC receive acceleration */
181 #define FEC_RACC_IPDIS (1 << 1)
182 #define FEC_RACC_PRODIS (1 << 2)
183 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
184
185 /*
186 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
187 * size bits. Other FEC hardware does not, so we need to take that into
188 * account when setting it.
189 */
190 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
191 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
192 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
193 #else
194 #define OPT_FRAME_SIZE 0
195 #endif
196
197 /* FEC MII MMFR bits definition */
198 #define FEC_MMFR_ST (1 << 30)
199 #define FEC_MMFR_OP_READ (2 << 28)
200 #define FEC_MMFR_OP_WRITE (1 << 28)
201 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
202 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
203 #define FEC_MMFR_TA (2 << 16)
204 #define FEC_MMFR_DATA(v) (v & 0xffff)
205 /* FEC ECR bits definition */
206 #define FEC_ECR_MAGICEN (1 << 2)
207 #define FEC_ECR_SLEEP (1 << 3)
208
209 #define FEC_MII_TIMEOUT 30000 /* us */
210
211 /* Transmitter timeout */
212 #define TX_TIMEOUT (2 * HZ)
213
214 #define FEC_PAUSE_FLAG_AUTONEG 0x1
215 #define FEC_PAUSE_FLAG_ENABLE 0x2
216 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
217 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
218 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
219
220 #define COPYBREAK_DEFAULT 256
221
222 #define TSO_HEADER_SIZE 128
223 /* Max number of allowed TCP segments for software TSO */
224 #define FEC_MAX_TSO_SEGS 100
225 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
226
227 #define IS_TSO_HEADER(txq, addr) \
228 ((addr >= txq->tso_hdrs_dma) && \
229 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
230
231 static int mii_cnt;
232
233 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
234 struct bufdesc_prop *bd)
235 {
236 return (bdp >= bd->last) ? bd->base
237 : (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
238 }
239
240 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
241 struct bufdesc_prop *bd)
242 {
243 return (bdp <= bd->base) ? bd->last
244 : (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
245 }
246
247 static int fec_enet_get_bd_index(struct bufdesc *bdp,
248 struct bufdesc_prop *bd)
249 {
250 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
251 }
252
253 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
254 {
255 int entries;
256
257 entries = (((const char *)txq->dirty_tx -
258 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
259
260 return entries >= 0 ? entries : entries + txq->bd.ring_size;
261 }
262
263 static void swap_buffer(void *bufaddr, int len)
264 {
265 int i;
266 unsigned int *buf = bufaddr;
267
268 for (i = 0; i < len; i += 4, buf++)
269 swab32s(buf);
270 }
271
272 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
273 {
274 int i;
275 unsigned int *src = src_buf;
276 unsigned int *dst = dst_buf;
277
278 for (i = 0; i < len; i += 4, src++, dst++)
279 *dst = swab32p(src);
280 }
281
282 static void fec_dump(struct net_device *ndev)
283 {
284 struct fec_enet_private *fep = netdev_priv(ndev);
285 struct bufdesc *bdp;
286 struct fec_enet_priv_tx_q *txq;
287 int index = 0;
288
289 netdev_info(ndev, "TX ring dump\n");
290 pr_info("Nr SC addr len SKB\n");
291
292 txq = fep->tx_queue[0];
293 bdp = txq->bd.base;
294
295 do {
296 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
297 index,
298 bdp == txq->bd.cur ? 'S' : ' ',
299 bdp == txq->dirty_tx ? 'H' : ' ',
300 fec16_to_cpu(bdp->cbd_sc),
301 fec32_to_cpu(bdp->cbd_bufaddr),
302 fec16_to_cpu(bdp->cbd_datlen),
303 txq->tx_skbuff[index]);
304 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
305 index++;
306 } while (bdp != txq->bd.base);
307 }
308
309 static inline bool is_ipv4_pkt(struct sk_buff *skb)
310 {
311 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
312 }
313
314 static int
315 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
316 {
317 /* Only run for packets requiring a checksum. */
318 if (skb->ip_summed != CHECKSUM_PARTIAL)
319 return 0;
320
321 if (unlikely(skb_cow_head(skb, 0)))
322 return -1;
323
324 if (is_ipv4_pkt(skb))
325 ip_hdr(skb)->check = 0;
326 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
327
328 return 0;
329 }
330
331 static struct bufdesc *
332 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
333 struct sk_buff *skb,
334 struct net_device *ndev)
335 {
336 struct fec_enet_private *fep = netdev_priv(ndev);
337 struct bufdesc *bdp = txq->bd.cur;
338 struct bufdesc_ex *ebdp;
339 int nr_frags = skb_shinfo(skb)->nr_frags;
340 int frag, frag_len;
341 unsigned short status;
342 unsigned int estatus = 0;
343 skb_frag_t *this_frag;
344 unsigned int index;
345 void *bufaddr;
346 dma_addr_t addr;
347 int i;
348
349 for (frag = 0; frag < nr_frags; frag++) {
350 this_frag = &skb_shinfo(skb)->frags[frag];
351 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
352 ebdp = (struct bufdesc_ex *)bdp;
353
354 status = fec16_to_cpu(bdp->cbd_sc);
355 status &= ~BD_ENET_TX_STATS;
356 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
357 frag_len = skb_shinfo(skb)->frags[frag].size;
358
359 /* Handle the last BD specially */
360 if (frag == nr_frags - 1) {
361 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
362 if (fep->bufdesc_ex) {
363 estatus |= BD_ENET_TX_INT;
364 if (unlikely(skb_shinfo(skb)->tx_flags &
365 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
366 estatus |= BD_ENET_TX_TS;
367 }
368 }
369
370 if (fep->bufdesc_ex) {
371 if (fep->quirks & FEC_QUIRK_HAS_AVB)
372 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
373 if (skb->ip_summed == CHECKSUM_PARTIAL)
374 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
375 ebdp->cbd_bdu = 0;
376 ebdp->cbd_esc = cpu_to_fec32(estatus);
377 }
378
379 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
380
381 index = fec_enet_get_bd_index(bdp, &txq->bd);
382 if (((unsigned long) bufaddr) & fep->tx_align ||
383 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
384 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
385 bufaddr = txq->tx_bounce[index];
386
387 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
388 swap_buffer(bufaddr, frag_len);
389 }
390
391 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
392 DMA_TO_DEVICE);
393 if (dma_mapping_error(&fep->pdev->dev, addr)) {
394 if (net_ratelimit())
395 netdev_err(ndev, "Tx DMA memory map failed\n");
396 goto dma_mapping_error;
397 }
398
399 bdp->cbd_bufaddr = cpu_to_fec32(addr);
400 bdp->cbd_datlen = cpu_to_fec16(frag_len);
401 /* Make sure the updates to rest of the descriptor are
402 * performed before transferring ownership.
403 */
404 wmb();
405 bdp->cbd_sc = cpu_to_fec16(status);
406 }
407
408 return bdp;
409 dma_mapping_error:
410 bdp = txq->bd.cur;
411 for (i = 0; i < frag; i++) {
412 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
413 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
414 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
415 }
416 return ERR_PTR(-ENOMEM);
417 }
418
419 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
420 struct sk_buff *skb, struct net_device *ndev)
421 {
422 struct fec_enet_private *fep = netdev_priv(ndev);
423 int nr_frags = skb_shinfo(skb)->nr_frags;
424 struct bufdesc *bdp, *last_bdp;
425 void *bufaddr;
426 dma_addr_t addr;
427 unsigned short status;
428 unsigned short buflen;
429 unsigned int estatus = 0;
430 unsigned int index;
431 int entries_free;
432
433 entries_free = fec_enet_get_free_txdesc_num(txq);
434 if (entries_free < MAX_SKB_FRAGS + 1) {
435 dev_kfree_skb_any(skb);
436 if (net_ratelimit())
437 netdev_err(ndev, "NOT enough BD for SG!\n");
438 return NETDEV_TX_OK;
439 }
440
441 /* Protocol checksum off-load for TCP and UDP. */
442 if (fec_enet_clear_csum(skb, ndev)) {
443 dev_kfree_skb_any(skb);
444 return NETDEV_TX_OK;
445 }
446
447 /* Fill in a Tx ring entry */
448 bdp = txq->bd.cur;
449 last_bdp = bdp;
450 status = fec16_to_cpu(bdp->cbd_sc);
451 status &= ~BD_ENET_TX_STATS;
452
453 /* Set buffer length and buffer pointer */
454 bufaddr = skb->data;
455 buflen = skb_headlen(skb);
456
457 index = fec_enet_get_bd_index(bdp, &txq->bd);
458 if (((unsigned long) bufaddr) & fep->tx_align ||
459 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
460 memcpy(txq->tx_bounce[index], skb->data, buflen);
461 bufaddr = txq->tx_bounce[index];
462
463 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
464 swap_buffer(bufaddr, buflen);
465 }
466
467 /* Push the data cache so the CPM does not get stale memory data. */
468 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
469 if (dma_mapping_error(&fep->pdev->dev, addr)) {
470 dev_kfree_skb_any(skb);
471 if (net_ratelimit())
472 netdev_err(ndev, "Tx DMA memory map failed\n");
473 return NETDEV_TX_OK;
474 }
475
476 if (nr_frags) {
477 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
478 if (IS_ERR(last_bdp)) {
479 dma_unmap_single(&fep->pdev->dev, addr,
480 buflen, DMA_TO_DEVICE);
481 dev_kfree_skb_any(skb);
482 return NETDEV_TX_OK;
483 }
484 } else {
485 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
486 if (fep->bufdesc_ex) {
487 estatus = BD_ENET_TX_INT;
488 if (unlikely(skb_shinfo(skb)->tx_flags &
489 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
490 estatus |= BD_ENET_TX_TS;
491 }
492 }
493 bdp->cbd_bufaddr = cpu_to_fec32(addr);
494 bdp->cbd_datlen = cpu_to_fec16(buflen);
495
496 if (fep->bufdesc_ex) {
497
498 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
499
500 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
501 fep->hwts_tx_en))
502 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
503
504 if (fep->quirks & FEC_QUIRK_HAS_AVB)
505 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
506
507 if (skb->ip_summed == CHECKSUM_PARTIAL)
508 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
509
510 ebdp->cbd_bdu = 0;
511 ebdp->cbd_esc = cpu_to_fec32(estatus);
512 }
513
514 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
515 /* Save skb pointer */
516 txq->tx_skbuff[index] = skb;
517
518 /* Make sure the updates to rest of the descriptor are performed before
519 * transferring ownership.
520 */
521 wmb();
522
523 /* Send it on its way. Tell FEC it's ready, interrupt when done,
524 * it's the last BD of the frame, and to put the CRC on the end.
525 */
526 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
527 bdp->cbd_sc = cpu_to_fec16(status);
528
529 /* If this was the last BD in the ring, start at the beginning again. */
530 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
531
532 skb_tx_timestamp(skb);
533
534 /* Make sure the update to bdp and tx_skbuff are performed before
535 * txq->bd.cur.
536 */
537 wmb();
538 txq->bd.cur = bdp;
539
540 /* Trigger transmission start */
541 writel(0, txq->bd.reg_desc_active);
542
543 return 0;
544 }
545
546 static int
547 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
548 struct net_device *ndev,
549 struct bufdesc *bdp, int index, char *data,
550 int size, bool last_tcp, bool is_last)
551 {
552 struct fec_enet_private *fep = netdev_priv(ndev);
553 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
554 unsigned short status;
555 unsigned int estatus = 0;
556 dma_addr_t addr;
557
558 status = fec16_to_cpu(bdp->cbd_sc);
559 status &= ~BD_ENET_TX_STATS;
560
561 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
562
563 if (((unsigned long) data) & fep->tx_align ||
564 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
565 memcpy(txq->tx_bounce[index], data, size);
566 data = txq->tx_bounce[index];
567
568 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
569 swap_buffer(data, size);
570 }
571
572 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
573 if (dma_mapping_error(&fep->pdev->dev, addr)) {
574 dev_kfree_skb_any(skb);
575 if (net_ratelimit())
576 netdev_err(ndev, "Tx DMA memory map failed\n");
577 return NETDEV_TX_BUSY;
578 }
579
580 bdp->cbd_datlen = cpu_to_fec16(size);
581 bdp->cbd_bufaddr = cpu_to_fec32(addr);
582
583 if (fep->bufdesc_ex) {
584 if (fep->quirks & FEC_QUIRK_HAS_AVB)
585 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
586 if (skb->ip_summed == CHECKSUM_PARTIAL)
587 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
588 ebdp->cbd_bdu = 0;
589 ebdp->cbd_esc = cpu_to_fec32(estatus);
590 }
591
592 /* Handle the last BD specially */
593 if (last_tcp)
594 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
595 if (is_last) {
596 status |= BD_ENET_TX_INTR;
597 if (fep->bufdesc_ex)
598 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
599 }
600
601 bdp->cbd_sc = cpu_to_fec16(status);
602
603 return 0;
604 }
605
606 static int
607 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
608 struct sk_buff *skb, struct net_device *ndev,
609 struct bufdesc *bdp, int index)
610 {
611 struct fec_enet_private *fep = netdev_priv(ndev);
612 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
613 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
614 void *bufaddr;
615 unsigned long dmabuf;
616 unsigned short status;
617 unsigned int estatus = 0;
618
619 status = fec16_to_cpu(bdp->cbd_sc);
620 status &= ~BD_ENET_TX_STATS;
621 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
622
623 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
624 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
625 if (((unsigned long)bufaddr) & fep->tx_align ||
626 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
627 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
628 bufaddr = txq->tx_bounce[index];
629
630 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
631 swap_buffer(bufaddr, hdr_len);
632
633 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
634 hdr_len, DMA_TO_DEVICE);
635 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
636 dev_kfree_skb_any(skb);
637 if (net_ratelimit())
638 netdev_err(ndev, "Tx DMA memory map failed\n");
639 return NETDEV_TX_BUSY;
640 }
641 }
642
643 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
644 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
645
646 if (fep->bufdesc_ex) {
647 if (fep->quirks & FEC_QUIRK_HAS_AVB)
648 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
649 if (skb->ip_summed == CHECKSUM_PARTIAL)
650 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
651 ebdp->cbd_bdu = 0;
652 ebdp->cbd_esc = cpu_to_fec32(estatus);
653 }
654
655 bdp->cbd_sc = cpu_to_fec16(status);
656
657 return 0;
658 }
659
660 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
661 struct sk_buff *skb,
662 struct net_device *ndev)
663 {
664 struct fec_enet_private *fep = netdev_priv(ndev);
665 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
666 int total_len, data_left;
667 struct bufdesc *bdp = txq->bd.cur;
668 struct tso_t tso;
669 unsigned int index = 0;
670 int ret;
671
672 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
673 dev_kfree_skb_any(skb);
674 if (net_ratelimit())
675 netdev_err(ndev, "NOT enough BD for TSO!\n");
676 return NETDEV_TX_OK;
677 }
678
679 /* Protocol checksum off-load for TCP and UDP. */
680 if (fec_enet_clear_csum(skb, ndev)) {
681 dev_kfree_skb_any(skb);
682 return NETDEV_TX_OK;
683 }
684
685 /* Initialize the TSO handler, and prepare the first payload */
686 tso_start(skb, &tso);
687
688 total_len = skb->len - hdr_len;
689 while (total_len > 0) {
690 char *hdr;
691
692 index = fec_enet_get_bd_index(bdp, &txq->bd);
693 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
694 total_len -= data_left;
695
696 /* prepare packet headers: MAC + IP + TCP */
697 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
698 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
699 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
700 if (ret)
701 goto err_release;
702
703 while (data_left > 0) {
704 int size;
705
706 size = min_t(int, tso.size, data_left);
707 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
708 index = fec_enet_get_bd_index(bdp, &txq->bd);
709 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
710 bdp, index,
711 tso.data, size,
712 size == data_left,
713 total_len == 0);
714 if (ret)
715 goto err_release;
716
717 data_left -= size;
718 tso_build_data(skb, &tso, size);
719 }
720
721 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
722 }
723
724 /* Save skb pointer */
725 txq->tx_skbuff[index] = skb;
726
727 skb_tx_timestamp(skb);
728 txq->bd.cur = bdp;
729
730 /* Trigger transmission start */
731 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
732 !readl(txq->bd.reg_desc_active) ||
733 !readl(txq->bd.reg_desc_active) ||
734 !readl(txq->bd.reg_desc_active) ||
735 !readl(txq->bd.reg_desc_active))
736 writel(0, txq->bd.reg_desc_active);
737
738 return 0;
739
740 err_release:
741 /* TODO: Release all used data descriptors for TSO */
742 return ret;
743 }
744
745 static netdev_tx_t
746 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
747 {
748 struct fec_enet_private *fep = netdev_priv(ndev);
749 int entries_free;
750 unsigned short queue;
751 struct fec_enet_priv_tx_q *txq;
752 struct netdev_queue *nq;
753 int ret;
754
755 queue = skb_get_queue_mapping(skb);
756 txq = fep->tx_queue[queue];
757 nq = netdev_get_tx_queue(ndev, queue);
758
759 if (skb_is_gso(skb))
760 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
761 else
762 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
763 if (ret)
764 return ret;
765
766 entries_free = fec_enet_get_free_txdesc_num(txq);
767 if (entries_free <= txq->tx_stop_threshold)
768 netif_tx_stop_queue(nq);
769
770 return NETDEV_TX_OK;
771 }
772
773 /* Init RX & TX buffer descriptors
774 */
775 static void fec_enet_bd_init(struct net_device *dev)
776 {
777 struct fec_enet_private *fep = netdev_priv(dev);
778 struct fec_enet_priv_tx_q *txq;
779 struct fec_enet_priv_rx_q *rxq;
780 struct bufdesc *bdp;
781 unsigned int i;
782 unsigned int q;
783
784 for (q = 0; q < fep->num_rx_queues; q++) {
785 /* Initialize the receive buffer descriptors. */
786 rxq = fep->rx_queue[q];
787 bdp = rxq->bd.base;
788
789 for (i = 0; i < rxq->bd.ring_size; i++) {
790
791 /* Initialize the BD for every fragment in the page. */
792 if (bdp->cbd_bufaddr)
793 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
794 else
795 bdp->cbd_sc = cpu_to_fec16(0);
796 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
797 }
798
799 /* Set the last buffer to wrap */
800 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
801 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
802
803 rxq->bd.cur = rxq->bd.base;
804 }
805
806 for (q = 0; q < fep->num_tx_queues; q++) {
807 /* ...and the same for transmit */
808 txq = fep->tx_queue[q];
809 bdp = txq->bd.base;
810 txq->bd.cur = bdp;
811
812 for (i = 0; i < txq->bd.ring_size; i++) {
813 /* Initialize the BD for every fragment in the page. */
814 bdp->cbd_sc = cpu_to_fec16(0);
815 if (txq->tx_skbuff[i]) {
816 dev_kfree_skb_any(txq->tx_skbuff[i]);
817 txq->tx_skbuff[i] = NULL;
818 }
819 bdp->cbd_bufaddr = cpu_to_fec32(0);
820 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
821 }
822
823 /* Set the last buffer to wrap */
824 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
825 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
826 txq->dirty_tx = bdp;
827 }
828 }
829
830 static void fec_enet_active_rxring(struct net_device *ndev)
831 {
832 struct fec_enet_private *fep = netdev_priv(ndev);
833 int i;
834
835 for (i = 0; i < fep->num_rx_queues; i++)
836 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
837 }
838
839 static void fec_enet_enable_ring(struct net_device *ndev)
840 {
841 struct fec_enet_private *fep = netdev_priv(ndev);
842 struct fec_enet_priv_tx_q *txq;
843 struct fec_enet_priv_rx_q *rxq;
844 int i;
845
846 for (i = 0; i < fep->num_rx_queues; i++) {
847 rxq = fep->rx_queue[i];
848 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
849 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
850
851 /* enable DMA1/2 */
852 if (i)
853 writel(RCMR_MATCHEN | RCMR_CMP(i),
854 fep->hwp + FEC_RCMR(i));
855 }
856
857 for (i = 0; i < fep->num_tx_queues; i++) {
858 txq = fep->tx_queue[i];
859 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
860
861 /* enable DMA1/2 */
862 if (i)
863 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
864 fep->hwp + FEC_DMA_CFG(i));
865 }
866 }
867
868 static void fec_enet_reset_skb(struct net_device *ndev)
869 {
870 struct fec_enet_private *fep = netdev_priv(ndev);
871 struct fec_enet_priv_tx_q *txq;
872 int i, j;
873
874 for (i = 0; i < fep->num_tx_queues; i++) {
875 txq = fep->tx_queue[i];
876
877 for (j = 0; j < txq->bd.ring_size; j++) {
878 if (txq->tx_skbuff[j]) {
879 dev_kfree_skb_any(txq->tx_skbuff[j]);
880 txq->tx_skbuff[j] = NULL;
881 }
882 }
883 }
884 }
885
886 /*
887 * This function is called to start or restart the FEC during a link
888 * change, transmit timeout, or to reconfigure the FEC. The network
889 * packet processing for this device must be stopped before this call.
890 */
891 static void
892 fec_restart(struct net_device *ndev)
893 {
894 struct fec_enet_private *fep = netdev_priv(ndev);
895 u32 val;
896 u32 temp_mac[2];
897 u32 rcntl = OPT_FRAME_SIZE | 0x04;
898 u32 ecntl = 0x2; /* ETHEREN */
899
900 /* Whack a reset. We should wait for this.
901 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
902 * instead of reset MAC itself.
903 */
904 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
905 writel(0, fep->hwp + FEC_ECNTRL);
906 } else {
907 writel(1, fep->hwp + FEC_ECNTRL);
908 udelay(10);
909 }
910
911 /*
912 * enet-mac reset will reset mac address registers too,
913 * so need to reconfigure it.
914 */
915 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
916 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
917 writel((__force u32)cpu_to_be32(temp_mac[0]),
918 fep->hwp + FEC_ADDR_LOW);
919 writel((__force u32)cpu_to_be32(temp_mac[1]),
920 fep->hwp + FEC_ADDR_HIGH);
921 }
922
923 /* Clear any outstanding interrupt. */
924 writel(0xffffffff, fep->hwp + FEC_IEVENT);
925
926 fec_enet_bd_init(ndev);
927
928 fec_enet_enable_ring(ndev);
929
930 /* Reset tx SKB buffers. */
931 fec_enet_reset_skb(ndev);
932
933 /* Enable MII mode */
934 if (fep->full_duplex == DUPLEX_FULL) {
935 /* FD enable */
936 writel(0x04, fep->hwp + FEC_X_CNTRL);
937 } else {
938 /* No Rcv on Xmit */
939 rcntl |= 0x02;
940 writel(0x0, fep->hwp + FEC_X_CNTRL);
941 }
942
943 /* Set MII speed */
944 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
945
946 #if !defined(CONFIG_M5272)
947 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
948 /* set RX checksum */
949 val = readl(fep->hwp + FEC_RACC);
950 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
951 val |= FEC_RACC_OPTIONS;
952 else
953 val &= ~FEC_RACC_OPTIONS;
954 writel(val, fep->hwp + FEC_RACC);
955 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
956 }
957 #endif
958
959 /*
960 * The phy interface and speed need to get configured
961 * differently on enet-mac.
962 */
963 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
964 /* Enable flow control and length check */
965 rcntl |= 0x40000000 | 0x00000020;
966
967 /* RGMII, RMII or MII */
968 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
969 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
970 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
971 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
972 rcntl |= (1 << 6);
973 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
974 rcntl |= (1 << 8);
975 else
976 rcntl &= ~(1 << 8);
977
978 /* 1G, 100M or 10M */
979 if (ndev->phydev) {
980 if (ndev->phydev->speed == SPEED_1000)
981 ecntl |= (1 << 5);
982 else if (ndev->phydev->speed == SPEED_100)
983 rcntl &= ~(1 << 9);
984 else
985 rcntl |= (1 << 9);
986 }
987 } else {
988 #ifdef FEC_MIIGSK_ENR
989 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
990 u32 cfgr;
991 /* disable the gasket and wait */
992 writel(0, fep->hwp + FEC_MIIGSK_ENR);
993 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
994 udelay(1);
995
996 /*
997 * configure the gasket:
998 * RMII, 50 MHz, no loopback, no echo
999 * MII, 25 MHz, no loopback, no echo
1000 */
1001 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1002 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1003 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1004 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1005 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1006
1007 /* re-enable the gasket */
1008 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1009 }
1010 #endif
1011 }
1012
1013 #if !defined(CONFIG_M5272)
1014 /* enable pause frame*/
1015 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1016 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1017 ndev->phydev && ndev->phydev->pause)) {
1018 rcntl |= FEC_ENET_FCE;
1019
1020 /* set FIFO threshold parameter to reduce overrun */
1021 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1022 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1023 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1024 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1025
1026 /* OPD */
1027 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1028 } else {
1029 rcntl &= ~FEC_ENET_FCE;
1030 }
1031 #endif /* !defined(CONFIG_M5272) */
1032
1033 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1034
1035 /* Setup multicast filter. */
1036 set_multicast_list(ndev);
1037 #ifndef CONFIG_M5272
1038 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1039 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1040 #endif
1041
1042 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1043 /* enable ENET endian swap */
1044 ecntl |= (1 << 8);
1045 /* enable ENET store and forward mode */
1046 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1047 }
1048
1049 if (fep->bufdesc_ex)
1050 ecntl |= (1 << 4);
1051
1052 #ifndef CONFIG_M5272
1053 /* Enable the MIB statistic event counters */
1054 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1055 #endif
1056
1057 /* And last, enable the transmit and receive processing */
1058 writel(ecntl, fep->hwp + FEC_ECNTRL);
1059 fec_enet_active_rxring(ndev);
1060
1061 if (fep->bufdesc_ex)
1062 fec_ptp_start_cyclecounter(ndev);
1063
1064 /* Enable interrupts we wish to service */
1065 if (fep->link)
1066 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1067 else
1068 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1069
1070 /* Init the interrupt coalescing */
1071 fec_enet_itr_coal_init(ndev);
1072
1073 }
1074
1075 static void
1076 fec_stop(struct net_device *ndev)
1077 {
1078 struct fec_enet_private *fep = netdev_priv(ndev);
1079 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1080 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1081 u32 val;
1082
1083 /* We cannot expect a graceful transmit stop without link !!! */
1084 if (fep->link) {
1085 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1086 udelay(10);
1087 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1088 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1089 }
1090
1091 /* Whack a reset. We should wait for this.
1092 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1093 * instead of reset MAC itself.
1094 */
1095 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1096 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1097 writel(0, fep->hwp + FEC_ECNTRL);
1098 } else {
1099 writel(1, fep->hwp + FEC_ECNTRL);
1100 udelay(10);
1101 }
1102 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1103 } else {
1104 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1105 val = readl(fep->hwp + FEC_ECNTRL);
1106 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1107 writel(val, fep->hwp + FEC_ECNTRL);
1108
1109 if (pdata && pdata->sleep_mode_enable)
1110 pdata->sleep_mode_enable(true);
1111 }
1112 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1113
1114 /* We have to keep ENET enabled to have MII interrupt stay working */
1115 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1116 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1117 writel(2, fep->hwp + FEC_ECNTRL);
1118 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1119 }
1120 }
1121
1122
1123 static void
1124 fec_timeout(struct net_device *ndev)
1125 {
1126 struct fec_enet_private *fep = netdev_priv(ndev);
1127
1128 fec_dump(ndev);
1129
1130 ndev->stats.tx_errors++;
1131
1132 schedule_work(&fep->tx_timeout_work);
1133 }
1134
1135 static void fec_enet_timeout_work(struct work_struct *work)
1136 {
1137 struct fec_enet_private *fep =
1138 container_of(work, struct fec_enet_private, tx_timeout_work);
1139 struct net_device *ndev = fep->netdev;
1140
1141 rtnl_lock();
1142 if (netif_device_present(ndev) || netif_running(ndev)) {
1143 napi_disable(&fep->napi);
1144 netif_tx_lock_bh(ndev);
1145 fec_restart(ndev);
1146 netif_wake_queue(ndev);
1147 netif_tx_unlock_bh(ndev);
1148 napi_enable(&fep->napi);
1149 }
1150 rtnl_unlock();
1151 }
1152
1153 static void
1154 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1155 struct skb_shared_hwtstamps *hwtstamps)
1156 {
1157 unsigned long flags;
1158 u64 ns;
1159
1160 spin_lock_irqsave(&fep->tmreg_lock, flags);
1161 ns = timecounter_cyc2time(&fep->tc, ts);
1162 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1163
1164 memset(hwtstamps, 0, sizeof(*hwtstamps));
1165 hwtstamps->hwtstamp = ns_to_ktime(ns);
1166 }
1167
1168 static void
1169 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1170 {
1171 struct fec_enet_private *fep;
1172 struct bufdesc *bdp;
1173 unsigned short status;
1174 struct sk_buff *skb;
1175 struct fec_enet_priv_tx_q *txq;
1176 struct netdev_queue *nq;
1177 int index = 0;
1178 int entries_free;
1179
1180 fep = netdev_priv(ndev);
1181
1182 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1183
1184 txq = fep->tx_queue[queue_id];
1185 /* get next bdp of dirty_tx */
1186 nq = netdev_get_tx_queue(ndev, queue_id);
1187 bdp = txq->dirty_tx;
1188
1189 /* get next bdp of dirty_tx */
1190 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1191
1192 while (bdp != READ_ONCE(txq->bd.cur)) {
1193 /* Order the load of bd.cur and cbd_sc */
1194 rmb();
1195 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1196 if (status & BD_ENET_TX_READY)
1197 break;
1198
1199 index = fec_enet_get_bd_index(bdp, &txq->bd);
1200
1201 skb = txq->tx_skbuff[index];
1202 txq->tx_skbuff[index] = NULL;
1203 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1204 dma_unmap_single(&fep->pdev->dev,
1205 fec32_to_cpu(bdp->cbd_bufaddr),
1206 fec16_to_cpu(bdp->cbd_datlen),
1207 DMA_TO_DEVICE);
1208 bdp->cbd_bufaddr = cpu_to_fec32(0);
1209 if (!skb)
1210 goto skb_done;
1211
1212 /* Check for errors. */
1213 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1214 BD_ENET_TX_RL | BD_ENET_TX_UN |
1215 BD_ENET_TX_CSL)) {
1216 ndev->stats.tx_errors++;
1217 if (status & BD_ENET_TX_HB) /* No heartbeat */
1218 ndev->stats.tx_heartbeat_errors++;
1219 if (status & BD_ENET_TX_LC) /* Late collision */
1220 ndev->stats.tx_window_errors++;
1221 if (status & BD_ENET_TX_RL) /* Retrans limit */
1222 ndev->stats.tx_aborted_errors++;
1223 if (status & BD_ENET_TX_UN) /* Underrun */
1224 ndev->stats.tx_fifo_errors++;
1225 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1226 ndev->stats.tx_carrier_errors++;
1227 } else {
1228 ndev->stats.tx_packets++;
1229 ndev->stats.tx_bytes += skb->len;
1230 }
1231
1232 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1233 fep->bufdesc_ex) {
1234 struct skb_shared_hwtstamps shhwtstamps;
1235 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1236
1237 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1238 skb_tstamp_tx(skb, &shhwtstamps);
1239 }
1240
1241 /* Deferred means some collisions occurred during transmit,
1242 * but we eventually sent the packet OK.
1243 */
1244 if (status & BD_ENET_TX_DEF)
1245 ndev->stats.collisions++;
1246
1247 /* Free the sk buffer associated with this last transmit */
1248 dev_kfree_skb_any(skb);
1249 skb_done:
1250 /* Make sure the update to bdp and tx_skbuff are performed
1251 * before dirty_tx
1252 */
1253 wmb();
1254 txq->dirty_tx = bdp;
1255
1256 /* Update pointer to next buffer descriptor to be transmitted */
1257 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1258
1259 /* Since we have freed up a buffer, the ring is no longer full
1260 */
1261 if (netif_queue_stopped(ndev)) {
1262 entries_free = fec_enet_get_free_txdesc_num(txq);
1263 if (entries_free >= txq->tx_wake_threshold)
1264 netif_tx_wake_queue(nq);
1265 }
1266 }
1267
1268 /* ERR006538: Keep the transmitter going */
1269 if (bdp != txq->bd.cur &&
1270 readl(txq->bd.reg_desc_active) == 0)
1271 writel(0, txq->bd.reg_desc_active);
1272 }
1273
1274 static void
1275 fec_enet_tx(struct net_device *ndev)
1276 {
1277 struct fec_enet_private *fep = netdev_priv(ndev);
1278 u16 queue_id;
1279 /* First process class A queue, then Class B and Best Effort queue */
1280 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1281 clear_bit(queue_id, &fep->work_tx);
1282 fec_enet_tx_queue(ndev, queue_id);
1283 }
1284 return;
1285 }
1286
1287 static int
1288 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1289 {
1290 struct fec_enet_private *fep = netdev_priv(ndev);
1291 int off;
1292
1293 off = ((unsigned long)skb->data) & fep->rx_align;
1294 if (off)
1295 skb_reserve(skb, fep->rx_align + 1 - off);
1296
1297 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1298 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1299 if (net_ratelimit())
1300 netdev_err(ndev, "Rx DMA memory map failed\n");
1301 return -ENOMEM;
1302 }
1303
1304 return 0;
1305 }
1306
1307 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1308 struct bufdesc *bdp, u32 length, bool swap)
1309 {
1310 struct fec_enet_private *fep = netdev_priv(ndev);
1311 struct sk_buff *new_skb;
1312
1313 if (length > fep->rx_copybreak)
1314 return false;
1315
1316 new_skb = netdev_alloc_skb(ndev, length);
1317 if (!new_skb)
1318 return false;
1319
1320 dma_sync_single_for_cpu(&fep->pdev->dev,
1321 fec32_to_cpu(bdp->cbd_bufaddr),
1322 FEC_ENET_RX_FRSIZE - fep->rx_align,
1323 DMA_FROM_DEVICE);
1324 if (!swap)
1325 memcpy(new_skb->data, (*skb)->data, length);
1326 else
1327 swap_buffer2(new_skb->data, (*skb)->data, length);
1328 *skb = new_skb;
1329
1330 return true;
1331 }
1332
1333 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1334 * When we update through the ring, if the next incoming buffer has
1335 * not been given to the system, we just set the empty indicator,
1336 * effectively tossing the packet.
1337 */
1338 static int
1339 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1340 {
1341 struct fec_enet_private *fep = netdev_priv(ndev);
1342 struct fec_enet_priv_rx_q *rxq;
1343 struct bufdesc *bdp;
1344 unsigned short status;
1345 struct sk_buff *skb_new = NULL;
1346 struct sk_buff *skb;
1347 ushort pkt_len;
1348 __u8 *data;
1349 int pkt_received = 0;
1350 struct bufdesc_ex *ebdp = NULL;
1351 bool vlan_packet_rcvd = false;
1352 u16 vlan_tag;
1353 int index = 0;
1354 bool is_copybreak;
1355 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1356
1357 #ifdef CONFIG_M532x
1358 flush_cache_all();
1359 #endif
1360 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1361 rxq = fep->rx_queue[queue_id];
1362
1363 /* First, grab all of the stats for the incoming packet.
1364 * These get messed up if we get called due to a busy condition.
1365 */
1366 bdp = rxq->bd.cur;
1367
1368 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1369
1370 if (pkt_received >= budget)
1371 break;
1372 pkt_received++;
1373
1374 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1375
1376 /* Check for errors. */
1377 status ^= BD_ENET_RX_LAST;
1378 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1379 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1380 BD_ENET_RX_CL)) {
1381 ndev->stats.rx_errors++;
1382 if (status & BD_ENET_RX_OV) {
1383 /* FIFO overrun */
1384 ndev->stats.rx_fifo_errors++;
1385 goto rx_processing_done;
1386 }
1387 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1388 | BD_ENET_RX_LAST)) {
1389 /* Frame too long or too short. */
1390 ndev->stats.rx_length_errors++;
1391 if (status & BD_ENET_RX_LAST)
1392 netdev_err(ndev, "rcv is not +last\n");
1393 }
1394 if (status & BD_ENET_RX_CR) /* CRC Error */
1395 ndev->stats.rx_crc_errors++;
1396 /* Report late collisions as a frame error. */
1397 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1398 ndev->stats.rx_frame_errors++;
1399 goto rx_processing_done;
1400 }
1401
1402 /* Process the incoming frame. */
1403 ndev->stats.rx_packets++;
1404 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1405 ndev->stats.rx_bytes += pkt_len;
1406
1407 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1408 skb = rxq->rx_skbuff[index];
1409
1410 /* The packet length includes FCS, but we don't want to
1411 * include that when passing upstream as it messes up
1412 * bridging applications.
1413 */
1414 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1415 need_swap);
1416 if (!is_copybreak) {
1417 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1418 if (unlikely(!skb_new)) {
1419 ndev->stats.rx_dropped++;
1420 goto rx_processing_done;
1421 }
1422 dma_unmap_single(&fep->pdev->dev,
1423 fec32_to_cpu(bdp->cbd_bufaddr),
1424 FEC_ENET_RX_FRSIZE - fep->rx_align,
1425 DMA_FROM_DEVICE);
1426 }
1427
1428 prefetch(skb->data - NET_IP_ALIGN);
1429 skb_put(skb, pkt_len - 4);
1430 data = skb->data;
1431 if (!is_copybreak && need_swap)
1432 swap_buffer(data, pkt_len);
1433
1434 /* Extract the enhanced buffer descriptor */
1435 ebdp = NULL;
1436 if (fep->bufdesc_ex)
1437 ebdp = (struct bufdesc_ex *)bdp;
1438
1439 /* If this is a VLAN packet remove the VLAN Tag */
1440 vlan_packet_rcvd = false;
1441 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1442 fep->bufdesc_ex &&
1443 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1444 /* Push and remove the vlan tag */
1445 struct vlan_hdr *vlan_header =
1446 (struct vlan_hdr *) (data + ETH_HLEN);
1447 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1448
1449 vlan_packet_rcvd = true;
1450
1451 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1452 skb_pull(skb, VLAN_HLEN);
1453 }
1454
1455 skb->protocol = eth_type_trans(skb, ndev);
1456
1457 /* Get receive timestamp from the skb */
1458 if (fep->hwts_rx_en && fep->bufdesc_ex)
1459 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1460 skb_hwtstamps(skb));
1461
1462 if (fep->bufdesc_ex &&
1463 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1464 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1465 /* don't check it */
1466 skb->ip_summed = CHECKSUM_UNNECESSARY;
1467 } else {
1468 skb_checksum_none_assert(skb);
1469 }
1470 }
1471
1472 /* Handle received VLAN packets */
1473 if (vlan_packet_rcvd)
1474 __vlan_hwaccel_put_tag(skb,
1475 htons(ETH_P_8021Q),
1476 vlan_tag);
1477
1478 napi_gro_receive(&fep->napi, skb);
1479
1480 if (is_copybreak) {
1481 dma_sync_single_for_device(&fep->pdev->dev,
1482 fec32_to_cpu(bdp->cbd_bufaddr),
1483 FEC_ENET_RX_FRSIZE - fep->rx_align,
1484 DMA_FROM_DEVICE);
1485 } else {
1486 rxq->rx_skbuff[index] = skb_new;
1487 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1488 }
1489
1490 rx_processing_done:
1491 /* Clear the status flags for this buffer */
1492 status &= ~BD_ENET_RX_STATS;
1493
1494 /* Mark the buffer empty */
1495 status |= BD_ENET_RX_EMPTY;
1496
1497 if (fep->bufdesc_ex) {
1498 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1499
1500 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1501 ebdp->cbd_prot = 0;
1502 ebdp->cbd_bdu = 0;
1503 }
1504 /* Make sure the updates to rest of the descriptor are
1505 * performed before transferring ownership.
1506 */
1507 wmb();
1508 bdp->cbd_sc = cpu_to_fec16(status);
1509
1510 /* Update BD pointer to next entry */
1511 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1512
1513 /* Doing this here will keep the FEC running while we process
1514 * incoming frames. On a heavily loaded network, we should be
1515 * able to keep up at the expense of system resources.
1516 */
1517 writel(0, rxq->bd.reg_desc_active);
1518 }
1519 rxq->bd.cur = bdp;
1520 return pkt_received;
1521 }
1522
1523 static int
1524 fec_enet_rx(struct net_device *ndev, int budget)
1525 {
1526 int pkt_received = 0;
1527 u16 queue_id;
1528 struct fec_enet_private *fep = netdev_priv(ndev);
1529
1530 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1531 int ret;
1532
1533 ret = fec_enet_rx_queue(ndev,
1534 budget - pkt_received, queue_id);
1535
1536 if (ret < budget - pkt_received)
1537 clear_bit(queue_id, &fep->work_rx);
1538
1539 pkt_received += ret;
1540 }
1541 return pkt_received;
1542 }
1543
1544 static bool
1545 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1546 {
1547 if (int_events == 0)
1548 return false;
1549
1550 if (int_events & FEC_ENET_RXF)
1551 fep->work_rx |= (1 << 2);
1552 if (int_events & FEC_ENET_RXF_1)
1553 fep->work_rx |= (1 << 0);
1554 if (int_events & FEC_ENET_RXF_2)
1555 fep->work_rx |= (1 << 1);
1556
1557 if (int_events & FEC_ENET_TXF)
1558 fep->work_tx |= (1 << 2);
1559 if (int_events & FEC_ENET_TXF_1)
1560 fep->work_tx |= (1 << 0);
1561 if (int_events & FEC_ENET_TXF_2)
1562 fep->work_tx |= (1 << 1);
1563
1564 return true;
1565 }
1566
1567 static irqreturn_t
1568 fec_enet_interrupt(int irq, void *dev_id)
1569 {
1570 struct net_device *ndev = dev_id;
1571 struct fec_enet_private *fep = netdev_priv(ndev);
1572 uint int_events;
1573 irqreturn_t ret = IRQ_NONE;
1574
1575 int_events = readl(fep->hwp + FEC_IEVENT);
1576 writel(int_events, fep->hwp + FEC_IEVENT);
1577 fec_enet_collect_events(fep, int_events);
1578
1579 if ((fep->work_tx || fep->work_rx) && fep->link) {
1580 ret = IRQ_HANDLED;
1581
1582 if (napi_schedule_prep(&fep->napi)) {
1583 /* Disable the NAPI interrupts */
1584 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1585 __napi_schedule(&fep->napi);
1586 }
1587 }
1588
1589 if (int_events & FEC_ENET_MII) {
1590 ret = IRQ_HANDLED;
1591 complete(&fep->mdio_done);
1592 }
1593
1594 if (fep->ptp_clock)
1595 fec_ptp_check_pps_event(fep);
1596
1597 return ret;
1598 }
1599
1600 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1601 {
1602 struct net_device *ndev = napi->dev;
1603 struct fec_enet_private *fep = netdev_priv(ndev);
1604 int pkts;
1605
1606 pkts = fec_enet_rx(ndev, budget);
1607
1608 fec_enet_tx(ndev);
1609
1610 if (pkts < budget) {
1611 napi_complete(napi);
1612 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1613 }
1614 return pkts;
1615 }
1616
1617 /* ------------------------------------------------------------------------- */
1618 static void fec_get_mac(struct net_device *ndev)
1619 {
1620 struct fec_enet_private *fep = netdev_priv(ndev);
1621 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1622 unsigned char *iap, tmpaddr[ETH_ALEN];
1623
1624 /*
1625 * try to get mac address in following order:
1626 *
1627 * 1) module parameter via kernel command line in form
1628 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1629 */
1630 iap = macaddr;
1631
1632 /*
1633 * 2) from device tree data
1634 */
1635 if (!is_valid_ether_addr(iap)) {
1636 struct device_node *np = fep->pdev->dev.of_node;
1637 if (np) {
1638 const char *mac = of_get_mac_address(np);
1639 if (mac)
1640 iap = (unsigned char *) mac;
1641 }
1642 }
1643
1644 /*
1645 * 3) from flash or fuse (via platform data)
1646 */
1647 if (!is_valid_ether_addr(iap)) {
1648 #ifdef CONFIG_M5272
1649 if (FEC_FLASHMAC)
1650 iap = (unsigned char *)FEC_FLASHMAC;
1651 #else
1652 if (pdata)
1653 iap = (unsigned char *)&pdata->mac;
1654 #endif
1655 }
1656
1657 /*
1658 * 4) FEC mac registers set by bootloader
1659 */
1660 if (!is_valid_ether_addr(iap)) {
1661 *((__be32 *) &tmpaddr[0]) =
1662 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1663 *((__be16 *) &tmpaddr[4]) =
1664 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1665 iap = &tmpaddr[0];
1666 }
1667
1668 /*
1669 * 5) random mac address
1670 */
1671 if (!is_valid_ether_addr(iap)) {
1672 /* Report it and use a random ethernet address instead */
1673 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1674 eth_hw_addr_random(ndev);
1675 netdev_info(ndev, "Using random MAC address: %pM\n",
1676 ndev->dev_addr);
1677 return;
1678 }
1679
1680 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1681
1682 /* Adjust MAC if using macaddr */
1683 if (iap == macaddr)
1684 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1685 }
1686
1687 /* ------------------------------------------------------------------------- */
1688
1689 /*
1690 * Phy section
1691 */
1692 static void fec_enet_adjust_link(struct net_device *ndev)
1693 {
1694 struct fec_enet_private *fep = netdev_priv(ndev);
1695 struct phy_device *phy_dev = ndev->phydev;
1696 int status_change = 0;
1697
1698 /* Prevent a state halted on mii error */
1699 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1700 phy_dev->state = PHY_RESUMING;
1701 return;
1702 }
1703
1704 /*
1705 * If the netdev is down, or is going down, we're not interested
1706 * in link state events, so just mark our idea of the link as down
1707 * and ignore the event.
1708 */
1709 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1710 fep->link = 0;
1711 } else if (phy_dev->link) {
1712 if (!fep->link) {
1713 fep->link = phy_dev->link;
1714 status_change = 1;
1715 }
1716
1717 if (fep->full_duplex != phy_dev->duplex) {
1718 fep->full_duplex = phy_dev->duplex;
1719 status_change = 1;
1720 }
1721
1722 if (phy_dev->speed != fep->speed) {
1723 fep->speed = phy_dev->speed;
1724 status_change = 1;
1725 }
1726
1727 /* if any of the above changed restart the FEC */
1728 if (status_change) {
1729 napi_disable(&fep->napi);
1730 netif_tx_lock_bh(ndev);
1731 fec_restart(ndev);
1732 netif_wake_queue(ndev);
1733 netif_tx_unlock_bh(ndev);
1734 napi_enable(&fep->napi);
1735 }
1736 } else {
1737 if (fep->link) {
1738 napi_disable(&fep->napi);
1739 netif_tx_lock_bh(ndev);
1740 fec_stop(ndev);
1741 netif_tx_unlock_bh(ndev);
1742 napi_enable(&fep->napi);
1743 fep->link = phy_dev->link;
1744 status_change = 1;
1745 }
1746 }
1747
1748 if (status_change)
1749 phy_print_status(phy_dev);
1750 }
1751
1752 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1753 {
1754 struct fec_enet_private *fep = bus->priv;
1755 struct device *dev = &fep->pdev->dev;
1756 unsigned long time_left;
1757 int ret = 0;
1758
1759 ret = pm_runtime_get_sync(dev);
1760 if (ret < 0)
1761 return ret;
1762
1763 fep->mii_timeout = 0;
1764 reinit_completion(&fep->mdio_done);
1765
1766 /* start a read op */
1767 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1768 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1769 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1770
1771 /* wait for end of transfer */
1772 time_left = wait_for_completion_timeout(&fep->mdio_done,
1773 usecs_to_jiffies(FEC_MII_TIMEOUT));
1774 if (time_left == 0) {
1775 fep->mii_timeout = 1;
1776 netdev_err(fep->netdev, "MDIO read timeout\n");
1777 ret = -ETIMEDOUT;
1778 goto out;
1779 }
1780
1781 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1782
1783 out:
1784 pm_runtime_mark_last_busy(dev);
1785 pm_runtime_put_autosuspend(dev);
1786
1787 return ret;
1788 }
1789
1790 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1791 u16 value)
1792 {
1793 struct fec_enet_private *fep = bus->priv;
1794 struct device *dev = &fep->pdev->dev;
1795 unsigned long time_left;
1796 int ret;
1797
1798 ret = pm_runtime_get_sync(dev);
1799 if (ret < 0)
1800 return ret;
1801 else
1802 ret = 0;
1803
1804 fep->mii_timeout = 0;
1805 reinit_completion(&fep->mdio_done);
1806
1807 /* start a write op */
1808 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1809 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1810 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1811 fep->hwp + FEC_MII_DATA);
1812
1813 /* wait for end of transfer */
1814 time_left = wait_for_completion_timeout(&fep->mdio_done,
1815 usecs_to_jiffies(FEC_MII_TIMEOUT));
1816 if (time_left == 0) {
1817 fep->mii_timeout = 1;
1818 netdev_err(fep->netdev, "MDIO write timeout\n");
1819 ret = -ETIMEDOUT;
1820 }
1821
1822 pm_runtime_mark_last_busy(dev);
1823 pm_runtime_put_autosuspend(dev);
1824
1825 return ret;
1826 }
1827
1828 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1829 {
1830 struct fec_enet_private *fep = netdev_priv(ndev);
1831 int ret;
1832
1833 if (enable) {
1834 ret = clk_prepare_enable(fep->clk_ahb);
1835 if (ret)
1836 return ret;
1837 if (fep->clk_enet_out) {
1838 ret = clk_prepare_enable(fep->clk_enet_out);
1839 if (ret)
1840 goto failed_clk_enet_out;
1841 }
1842 if (fep->clk_ptp) {
1843 mutex_lock(&fep->ptp_clk_mutex);
1844 ret = clk_prepare_enable(fep->clk_ptp);
1845 if (ret) {
1846 mutex_unlock(&fep->ptp_clk_mutex);
1847 goto failed_clk_ptp;
1848 } else {
1849 fep->ptp_clk_on = true;
1850 }
1851 mutex_unlock(&fep->ptp_clk_mutex);
1852 }
1853 if (fep->clk_ref) {
1854 ret = clk_prepare_enable(fep->clk_ref);
1855 if (ret)
1856 goto failed_clk_ref;
1857 }
1858 } else {
1859 clk_disable_unprepare(fep->clk_ahb);
1860 if (fep->clk_enet_out)
1861 clk_disable_unprepare(fep->clk_enet_out);
1862 if (fep->clk_ptp) {
1863 mutex_lock(&fep->ptp_clk_mutex);
1864 clk_disable_unprepare(fep->clk_ptp);
1865 fep->ptp_clk_on = false;
1866 mutex_unlock(&fep->ptp_clk_mutex);
1867 }
1868 if (fep->clk_ref)
1869 clk_disable_unprepare(fep->clk_ref);
1870 }
1871
1872 return 0;
1873
1874 failed_clk_ref:
1875 if (fep->clk_ref)
1876 clk_disable_unprepare(fep->clk_ref);
1877 failed_clk_ptp:
1878 if (fep->clk_enet_out)
1879 clk_disable_unprepare(fep->clk_enet_out);
1880 failed_clk_enet_out:
1881 clk_disable_unprepare(fep->clk_ahb);
1882
1883 return ret;
1884 }
1885
1886 static int fec_enet_mii_probe(struct net_device *ndev)
1887 {
1888 struct fec_enet_private *fep = netdev_priv(ndev);
1889 struct phy_device *phy_dev = NULL;
1890 char mdio_bus_id[MII_BUS_ID_SIZE];
1891 char phy_name[MII_BUS_ID_SIZE + 3];
1892 int phy_id;
1893 int dev_id = fep->dev_id;
1894
1895 if (fep->phy_node) {
1896 phy_dev = of_phy_connect(ndev, fep->phy_node,
1897 &fec_enet_adjust_link, 0,
1898 fep->phy_interface);
1899 if (!phy_dev)
1900 return -ENODEV;
1901 } else {
1902 /* check for attached phy */
1903 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1904 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1905 continue;
1906 if (dev_id--)
1907 continue;
1908 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1909 break;
1910 }
1911
1912 if (phy_id >= PHY_MAX_ADDR) {
1913 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1914 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1915 phy_id = 0;
1916 }
1917
1918 snprintf(phy_name, sizeof(phy_name),
1919 PHY_ID_FMT, mdio_bus_id, phy_id);
1920 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1921 fep->phy_interface);
1922 }
1923
1924 if (IS_ERR(phy_dev)) {
1925 netdev_err(ndev, "could not attach to PHY\n");
1926 return PTR_ERR(phy_dev);
1927 }
1928
1929 /* mask with MAC supported features */
1930 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1931 phy_dev->supported &= PHY_GBIT_FEATURES;
1932 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1933 #if !defined(CONFIG_M5272)
1934 phy_dev->supported |= SUPPORTED_Pause;
1935 #endif
1936 }
1937 else
1938 phy_dev->supported &= PHY_BASIC_FEATURES;
1939
1940 phy_dev->advertising = phy_dev->supported;
1941
1942 fep->link = 0;
1943 fep->full_duplex = 0;
1944
1945 phy_attached_info(phy_dev);
1946
1947 return 0;
1948 }
1949
1950 static int fec_enet_mii_init(struct platform_device *pdev)
1951 {
1952 static struct mii_bus *fec0_mii_bus;
1953 struct net_device *ndev = platform_get_drvdata(pdev);
1954 struct fec_enet_private *fep = netdev_priv(ndev);
1955 struct device_node *node;
1956 int err = -ENXIO;
1957 u32 mii_speed, holdtime;
1958
1959 /*
1960 * The i.MX28 dual fec interfaces are not equal.
1961 * Here are the differences:
1962 *
1963 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1964 * - fec0 acts as the 1588 time master while fec1 is slave
1965 * - external phys can only be configured by fec0
1966 *
1967 * That is to say fec1 can not work independently. It only works
1968 * when fec0 is working. The reason behind this design is that the
1969 * second interface is added primarily for Switch mode.
1970 *
1971 * Because of the last point above, both phys are attached on fec0
1972 * mdio interface in board design, and need to be configured by
1973 * fec0 mii_bus.
1974 */
1975 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1976 /* fec1 uses fec0 mii_bus */
1977 if (mii_cnt && fec0_mii_bus) {
1978 fep->mii_bus = fec0_mii_bus;
1979 mii_cnt++;
1980 return 0;
1981 }
1982 return -ENOENT;
1983 }
1984
1985 fep->mii_timeout = 0;
1986
1987 /*
1988 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1989 *
1990 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1991 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1992 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1993 * document.
1994 */
1995 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1996 if (fep->quirks & FEC_QUIRK_ENET_MAC)
1997 mii_speed--;
1998 if (mii_speed > 63) {
1999 dev_err(&pdev->dev,
2000 "fec clock (%lu) to fast to get right mii speed\n",
2001 clk_get_rate(fep->clk_ipg));
2002 err = -EINVAL;
2003 goto err_out;
2004 }
2005
2006 /*
2007 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2008 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2009 * versions are RAZ there, so just ignore the difference and write the
2010 * register always.
2011 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2012 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2013 * output.
2014 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2015 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2016 * holdtime cannot result in a value greater than 3.
2017 */
2018 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2019
2020 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2021
2022 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2023
2024 fep->mii_bus = mdiobus_alloc();
2025 if (fep->mii_bus == NULL) {
2026 err = -ENOMEM;
2027 goto err_out;
2028 }
2029
2030 fep->mii_bus->name = "fec_enet_mii_bus";
2031 fep->mii_bus->read = fec_enet_mdio_read;
2032 fep->mii_bus->write = fec_enet_mdio_write;
2033 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2034 pdev->name, fep->dev_id + 1);
2035 fep->mii_bus->priv = fep;
2036 fep->mii_bus->parent = &pdev->dev;
2037
2038 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2039 if (node) {
2040 err = of_mdiobus_register(fep->mii_bus, node);
2041 of_node_put(node);
2042 } else {
2043 err = mdiobus_register(fep->mii_bus);
2044 }
2045
2046 if (err)
2047 goto err_out_free_mdiobus;
2048
2049 mii_cnt++;
2050
2051 /* save fec0 mii_bus */
2052 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2053 fec0_mii_bus = fep->mii_bus;
2054
2055 return 0;
2056
2057 err_out_free_mdiobus:
2058 mdiobus_free(fep->mii_bus);
2059 err_out:
2060 return err;
2061 }
2062
2063 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2064 {
2065 if (--mii_cnt == 0) {
2066 mdiobus_unregister(fep->mii_bus);
2067 mdiobus_free(fep->mii_bus);
2068 }
2069 }
2070
2071 static void fec_enet_get_drvinfo(struct net_device *ndev,
2072 struct ethtool_drvinfo *info)
2073 {
2074 struct fec_enet_private *fep = netdev_priv(ndev);
2075
2076 strlcpy(info->driver, fep->pdev->dev.driver->name,
2077 sizeof(info->driver));
2078 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2079 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2080 }
2081
2082 static int fec_enet_get_regs_len(struct net_device *ndev)
2083 {
2084 struct fec_enet_private *fep = netdev_priv(ndev);
2085 struct resource *r;
2086 int s = 0;
2087
2088 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2089 if (r)
2090 s = resource_size(r);
2091
2092 return s;
2093 }
2094
2095 /* List of registers that can be safety be read to dump them with ethtool */
2096 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2097 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2098 static u32 fec_enet_register_offset[] = {
2099 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2100 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2101 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2102 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2103 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2104 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2105 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2106 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2107 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2108 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2109 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2110 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2111 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2112 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2113 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2114 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2115 RMON_T_P_GTE2048, RMON_T_OCTETS,
2116 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2117 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2118 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2119 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2120 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2121 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2122 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2123 RMON_R_P_GTE2048, RMON_R_OCTETS,
2124 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2125 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2126 };
2127 #else
2128 static u32 fec_enet_register_offset[] = {
2129 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2130 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2131 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2132 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2133 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2134 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2135 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2136 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2137 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2138 };
2139 #endif
2140
2141 static void fec_enet_get_regs(struct net_device *ndev,
2142 struct ethtool_regs *regs, void *regbuf)
2143 {
2144 struct fec_enet_private *fep = netdev_priv(ndev);
2145 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2146 u32 *buf = (u32 *)regbuf;
2147 u32 i, off;
2148
2149 memset(buf, 0, regs->len);
2150
2151 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2152 off = fec_enet_register_offset[i] / 4;
2153 buf[off] = readl(&theregs[off]);
2154 }
2155 }
2156
2157 static int fec_enet_get_ts_info(struct net_device *ndev,
2158 struct ethtool_ts_info *info)
2159 {
2160 struct fec_enet_private *fep = netdev_priv(ndev);
2161
2162 if (fep->bufdesc_ex) {
2163
2164 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2165 SOF_TIMESTAMPING_RX_SOFTWARE |
2166 SOF_TIMESTAMPING_SOFTWARE |
2167 SOF_TIMESTAMPING_TX_HARDWARE |
2168 SOF_TIMESTAMPING_RX_HARDWARE |
2169 SOF_TIMESTAMPING_RAW_HARDWARE;
2170 if (fep->ptp_clock)
2171 info->phc_index = ptp_clock_index(fep->ptp_clock);
2172 else
2173 info->phc_index = -1;
2174
2175 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2176 (1 << HWTSTAMP_TX_ON);
2177
2178 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2179 (1 << HWTSTAMP_FILTER_ALL);
2180 return 0;
2181 } else {
2182 return ethtool_op_get_ts_info(ndev, info);
2183 }
2184 }
2185
2186 #if !defined(CONFIG_M5272)
2187
2188 static void fec_enet_get_pauseparam(struct net_device *ndev,
2189 struct ethtool_pauseparam *pause)
2190 {
2191 struct fec_enet_private *fep = netdev_priv(ndev);
2192
2193 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2194 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2195 pause->rx_pause = pause->tx_pause;
2196 }
2197
2198 static int fec_enet_set_pauseparam(struct net_device *ndev,
2199 struct ethtool_pauseparam *pause)
2200 {
2201 struct fec_enet_private *fep = netdev_priv(ndev);
2202
2203 if (!ndev->phydev)
2204 return -ENODEV;
2205
2206 if (pause->tx_pause != pause->rx_pause) {
2207 netdev_info(ndev,
2208 "hardware only support enable/disable both tx and rx");
2209 return -EINVAL;
2210 }
2211
2212 fep->pause_flag = 0;
2213
2214 /* tx pause must be same as rx pause */
2215 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2216 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2217
2218 if (pause->rx_pause || pause->autoneg) {
2219 ndev->phydev->supported |= ADVERTISED_Pause;
2220 ndev->phydev->advertising |= ADVERTISED_Pause;
2221 } else {
2222 ndev->phydev->supported &= ~ADVERTISED_Pause;
2223 ndev->phydev->advertising &= ~ADVERTISED_Pause;
2224 }
2225
2226 if (pause->autoneg) {
2227 if (netif_running(ndev))
2228 fec_stop(ndev);
2229 phy_start_aneg(ndev->phydev);
2230 }
2231 if (netif_running(ndev)) {
2232 napi_disable(&fep->napi);
2233 netif_tx_lock_bh(ndev);
2234 fec_restart(ndev);
2235 netif_wake_queue(ndev);
2236 netif_tx_unlock_bh(ndev);
2237 napi_enable(&fep->napi);
2238 }
2239
2240 return 0;
2241 }
2242
2243 static const struct fec_stat {
2244 char name[ETH_GSTRING_LEN];
2245 u16 offset;
2246 } fec_stats[] = {
2247 /* RMON TX */
2248 { "tx_dropped", RMON_T_DROP },
2249 { "tx_packets", RMON_T_PACKETS },
2250 { "tx_broadcast", RMON_T_BC_PKT },
2251 { "tx_multicast", RMON_T_MC_PKT },
2252 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2253 { "tx_undersize", RMON_T_UNDERSIZE },
2254 { "tx_oversize", RMON_T_OVERSIZE },
2255 { "tx_fragment", RMON_T_FRAG },
2256 { "tx_jabber", RMON_T_JAB },
2257 { "tx_collision", RMON_T_COL },
2258 { "tx_64byte", RMON_T_P64 },
2259 { "tx_65to127byte", RMON_T_P65TO127 },
2260 { "tx_128to255byte", RMON_T_P128TO255 },
2261 { "tx_256to511byte", RMON_T_P256TO511 },
2262 { "tx_512to1023byte", RMON_T_P512TO1023 },
2263 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2264 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2265 { "tx_octets", RMON_T_OCTETS },
2266
2267 /* IEEE TX */
2268 { "IEEE_tx_drop", IEEE_T_DROP },
2269 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2270 { "IEEE_tx_1col", IEEE_T_1COL },
2271 { "IEEE_tx_mcol", IEEE_T_MCOL },
2272 { "IEEE_tx_def", IEEE_T_DEF },
2273 { "IEEE_tx_lcol", IEEE_T_LCOL },
2274 { "IEEE_tx_excol", IEEE_T_EXCOL },
2275 { "IEEE_tx_macerr", IEEE_T_MACERR },
2276 { "IEEE_tx_cserr", IEEE_T_CSERR },
2277 { "IEEE_tx_sqe", IEEE_T_SQE },
2278 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2279 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2280
2281 /* RMON RX */
2282 { "rx_packets", RMON_R_PACKETS },
2283 { "rx_broadcast", RMON_R_BC_PKT },
2284 { "rx_multicast", RMON_R_MC_PKT },
2285 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2286 { "rx_undersize", RMON_R_UNDERSIZE },
2287 { "rx_oversize", RMON_R_OVERSIZE },
2288 { "rx_fragment", RMON_R_FRAG },
2289 { "rx_jabber", RMON_R_JAB },
2290 { "rx_64byte", RMON_R_P64 },
2291 { "rx_65to127byte", RMON_R_P65TO127 },
2292 { "rx_128to255byte", RMON_R_P128TO255 },
2293 { "rx_256to511byte", RMON_R_P256TO511 },
2294 { "rx_512to1023byte", RMON_R_P512TO1023 },
2295 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2296 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2297 { "rx_octets", RMON_R_OCTETS },
2298
2299 /* IEEE RX */
2300 { "IEEE_rx_drop", IEEE_R_DROP },
2301 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2302 { "IEEE_rx_crc", IEEE_R_CRC },
2303 { "IEEE_rx_align", IEEE_R_ALIGN },
2304 { "IEEE_rx_macerr", IEEE_R_MACERR },
2305 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2306 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2307 };
2308
2309 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2310 struct ethtool_stats *stats, u64 *data)
2311 {
2312 struct fec_enet_private *fep = netdev_priv(dev);
2313 int i;
2314
2315 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2316 data[i] = readl(fep->hwp + fec_stats[i].offset);
2317 }
2318
2319 static void fec_enet_get_strings(struct net_device *netdev,
2320 u32 stringset, u8 *data)
2321 {
2322 int i;
2323 switch (stringset) {
2324 case ETH_SS_STATS:
2325 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2326 memcpy(data + i * ETH_GSTRING_LEN,
2327 fec_stats[i].name, ETH_GSTRING_LEN);
2328 break;
2329 }
2330 }
2331
2332 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2333 {
2334 switch (sset) {
2335 case ETH_SS_STATS:
2336 return ARRAY_SIZE(fec_stats);
2337 default:
2338 return -EOPNOTSUPP;
2339 }
2340 }
2341 #endif /* !defined(CONFIG_M5272) */
2342
2343 static int fec_enet_nway_reset(struct net_device *dev)
2344 {
2345 struct phy_device *phydev = dev->phydev;
2346
2347 if (!phydev)
2348 return -ENODEV;
2349
2350 return genphy_restart_aneg(phydev);
2351 }
2352
2353 /* ITR clock source is enet system clock (clk_ahb).
2354 * TCTT unit is cycle_ns * 64 cycle
2355 * So, the ICTT value = X us / (cycle_ns * 64)
2356 */
2357 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2358 {
2359 struct fec_enet_private *fep = netdev_priv(ndev);
2360
2361 return us * (fep->itr_clk_rate / 64000) / 1000;
2362 }
2363
2364 /* Set threshold for interrupt coalescing */
2365 static void fec_enet_itr_coal_set(struct net_device *ndev)
2366 {
2367 struct fec_enet_private *fep = netdev_priv(ndev);
2368 int rx_itr, tx_itr;
2369
2370 /* Must be greater than zero to avoid unpredictable behavior */
2371 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2372 !fep->tx_time_itr || !fep->tx_pkts_itr)
2373 return;
2374
2375 /* Select enet system clock as Interrupt Coalescing
2376 * timer Clock Source
2377 */
2378 rx_itr = FEC_ITR_CLK_SEL;
2379 tx_itr = FEC_ITR_CLK_SEL;
2380
2381 /* set ICFT and ICTT */
2382 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2383 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2384 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2385 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2386
2387 rx_itr |= FEC_ITR_EN;
2388 tx_itr |= FEC_ITR_EN;
2389
2390 writel(tx_itr, fep->hwp + FEC_TXIC0);
2391 writel(rx_itr, fep->hwp + FEC_RXIC0);
2392 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2393 writel(tx_itr, fep->hwp + FEC_TXIC1);
2394 writel(rx_itr, fep->hwp + FEC_RXIC1);
2395 writel(tx_itr, fep->hwp + FEC_TXIC2);
2396 writel(rx_itr, fep->hwp + FEC_RXIC2);
2397 }
2398 }
2399
2400 static int
2401 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2402 {
2403 struct fec_enet_private *fep = netdev_priv(ndev);
2404
2405 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2406 return -EOPNOTSUPP;
2407
2408 ec->rx_coalesce_usecs = fep->rx_time_itr;
2409 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2410
2411 ec->tx_coalesce_usecs = fep->tx_time_itr;
2412 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2413
2414 return 0;
2415 }
2416
2417 static int
2418 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2419 {
2420 struct fec_enet_private *fep = netdev_priv(ndev);
2421 unsigned int cycle;
2422
2423 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2424 return -EOPNOTSUPP;
2425
2426 if (ec->rx_max_coalesced_frames > 255) {
2427 pr_err("Rx coalesced frames exceed hardware limitation\n");
2428 return -EINVAL;
2429 }
2430
2431 if (ec->tx_max_coalesced_frames > 255) {
2432 pr_err("Tx coalesced frame exceed hardware limitation\n");
2433 return -EINVAL;
2434 }
2435
2436 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2437 if (cycle > 0xFFFF) {
2438 pr_err("Rx coalesced usec exceed hardware limitation\n");
2439 return -EINVAL;
2440 }
2441
2442 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2443 if (cycle > 0xFFFF) {
2444 pr_err("Rx coalesced usec exceed hardware limitation\n");
2445 return -EINVAL;
2446 }
2447
2448 fep->rx_time_itr = ec->rx_coalesce_usecs;
2449 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2450
2451 fep->tx_time_itr = ec->tx_coalesce_usecs;
2452 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2453
2454 fec_enet_itr_coal_set(ndev);
2455
2456 return 0;
2457 }
2458
2459 static void fec_enet_itr_coal_init(struct net_device *ndev)
2460 {
2461 struct ethtool_coalesce ec;
2462
2463 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2464 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2465
2466 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2467 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2468
2469 fec_enet_set_coalesce(ndev, &ec);
2470 }
2471
2472 static int fec_enet_get_tunable(struct net_device *netdev,
2473 const struct ethtool_tunable *tuna,
2474 void *data)
2475 {
2476 struct fec_enet_private *fep = netdev_priv(netdev);
2477 int ret = 0;
2478
2479 switch (tuna->id) {
2480 case ETHTOOL_RX_COPYBREAK:
2481 *(u32 *)data = fep->rx_copybreak;
2482 break;
2483 default:
2484 ret = -EINVAL;
2485 break;
2486 }
2487
2488 return ret;
2489 }
2490
2491 static int fec_enet_set_tunable(struct net_device *netdev,
2492 const struct ethtool_tunable *tuna,
2493 const void *data)
2494 {
2495 struct fec_enet_private *fep = netdev_priv(netdev);
2496 int ret = 0;
2497
2498 switch (tuna->id) {
2499 case ETHTOOL_RX_COPYBREAK:
2500 fep->rx_copybreak = *(u32 *)data;
2501 break;
2502 default:
2503 ret = -EINVAL;
2504 break;
2505 }
2506
2507 return ret;
2508 }
2509
2510 static void
2511 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2512 {
2513 struct fec_enet_private *fep = netdev_priv(ndev);
2514
2515 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2516 wol->supported = WAKE_MAGIC;
2517 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2518 } else {
2519 wol->supported = wol->wolopts = 0;
2520 }
2521 }
2522
2523 static int
2524 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2525 {
2526 struct fec_enet_private *fep = netdev_priv(ndev);
2527
2528 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2529 return -EINVAL;
2530
2531 if (wol->wolopts & ~WAKE_MAGIC)
2532 return -EINVAL;
2533
2534 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2535 if (device_may_wakeup(&ndev->dev)) {
2536 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2537 if (fep->irq[0] > 0)
2538 enable_irq_wake(fep->irq[0]);
2539 } else {
2540 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2541 if (fep->irq[0] > 0)
2542 disable_irq_wake(fep->irq[0]);
2543 }
2544
2545 return 0;
2546 }
2547
2548 static const struct ethtool_ops fec_enet_ethtool_ops = {
2549 .get_drvinfo = fec_enet_get_drvinfo,
2550 .get_regs_len = fec_enet_get_regs_len,
2551 .get_regs = fec_enet_get_regs,
2552 .nway_reset = fec_enet_nway_reset,
2553 .get_link = ethtool_op_get_link,
2554 .get_coalesce = fec_enet_get_coalesce,
2555 .set_coalesce = fec_enet_set_coalesce,
2556 #ifndef CONFIG_M5272
2557 .get_pauseparam = fec_enet_get_pauseparam,
2558 .set_pauseparam = fec_enet_set_pauseparam,
2559 .get_strings = fec_enet_get_strings,
2560 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2561 .get_sset_count = fec_enet_get_sset_count,
2562 #endif
2563 .get_ts_info = fec_enet_get_ts_info,
2564 .get_tunable = fec_enet_get_tunable,
2565 .set_tunable = fec_enet_set_tunable,
2566 .get_wol = fec_enet_get_wol,
2567 .set_wol = fec_enet_set_wol,
2568 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2569 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2570 };
2571
2572 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2573 {
2574 struct fec_enet_private *fep = netdev_priv(ndev);
2575 struct phy_device *phydev = ndev->phydev;
2576
2577 if (!netif_running(ndev))
2578 return -EINVAL;
2579
2580 if (!phydev)
2581 return -ENODEV;
2582
2583 if (fep->bufdesc_ex) {
2584 if (cmd == SIOCSHWTSTAMP)
2585 return fec_ptp_set(ndev, rq);
2586 if (cmd == SIOCGHWTSTAMP)
2587 return fec_ptp_get(ndev, rq);
2588 }
2589
2590 return phy_mii_ioctl(phydev, rq, cmd);
2591 }
2592
2593 static void fec_enet_free_buffers(struct net_device *ndev)
2594 {
2595 struct fec_enet_private *fep = netdev_priv(ndev);
2596 unsigned int i;
2597 struct sk_buff *skb;
2598 struct bufdesc *bdp;
2599 struct fec_enet_priv_tx_q *txq;
2600 struct fec_enet_priv_rx_q *rxq;
2601 unsigned int q;
2602
2603 for (q = 0; q < fep->num_rx_queues; q++) {
2604 rxq = fep->rx_queue[q];
2605 bdp = rxq->bd.base;
2606 for (i = 0; i < rxq->bd.ring_size; i++) {
2607 skb = rxq->rx_skbuff[i];
2608 rxq->rx_skbuff[i] = NULL;
2609 if (skb) {
2610 dma_unmap_single(&fep->pdev->dev,
2611 fec32_to_cpu(bdp->cbd_bufaddr),
2612 FEC_ENET_RX_FRSIZE - fep->rx_align,
2613 DMA_FROM_DEVICE);
2614 dev_kfree_skb(skb);
2615 }
2616 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2617 }
2618 }
2619
2620 for (q = 0; q < fep->num_tx_queues; q++) {
2621 txq = fep->tx_queue[q];
2622 bdp = txq->bd.base;
2623 for (i = 0; i < txq->bd.ring_size; i++) {
2624 kfree(txq->tx_bounce[i]);
2625 txq->tx_bounce[i] = NULL;
2626 skb = txq->tx_skbuff[i];
2627 txq->tx_skbuff[i] = NULL;
2628 dev_kfree_skb(skb);
2629 }
2630 }
2631 }
2632
2633 static void fec_enet_free_queue(struct net_device *ndev)
2634 {
2635 struct fec_enet_private *fep = netdev_priv(ndev);
2636 int i;
2637 struct fec_enet_priv_tx_q *txq;
2638
2639 for (i = 0; i < fep->num_tx_queues; i++)
2640 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2641 txq = fep->tx_queue[i];
2642 dma_free_coherent(NULL,
2643 txq->bd.ring_size * TSO_HEADER_SIZE,
2644 txq->tso_hdrs,
2645 txq->tso_hdrs_dma);
2646 }
2647
2648 for (i = 0; i < fep->num_rx_queues; i++)
2649 kfree(fep->rx_queue[i]);
2650 for (i = 0; i < fep->num_tx_queues; i++)
2651 kfree(fep->tx_queue[i]);
2652 }
2653
2654 static int fec_enet_alloc_queue(struct net_device *ndev)
2655 {
2656 struct fec_enet_private *fep = netdev_priv(ndev);
2657 int i;
2658 int ret = 0;
2659 struct fec_enet_priv_tx_q *txq;
2660
2661 for (i = 0; i < fep->num_tx_queues; i++) {
2662 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2663 if (!txq) {
2664 ret = -ENOMEM;
2665 goto alloc_failed;
2666 }
2667
2668 fep->tx_queue[i] = txq;
2669 txq->bd.ring_size = TX_RING_SIZE;
2670 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2671
2672 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2673 txq->tx_wake_threshold =
2674 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2675
2676 txq->tso_hdrs = dma_alloc_coherent(NULL,
2677 txq->bd.ring_size * TSO_HEADER_SIZE,
2678 &txq->tso_hdrs_dma,
2679 GFP_KERNEL);
2680 if (!txq->tso_hdrs) {
2681 ret = -ENOMEM;
2682 goto alloc_failed;
2683 }
2684 }
2685
2686 for (i = 0; i < fep->num_rx_queues; i++) {
2687 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2688 GFP_KERNEL);
2689 if (!fep->rx_queue[i]) {
2690 ret = -ENOMEM;
2691 goto alloc_failed;
2692 }
2693
2694 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2695 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2696 }
2697 return ret;
2698
2699 alloc_failed:
2700 fec_enet_free_queue(ndev);
2701 return ret;
2702 }
2703
2704 static int
2705 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2706 {
2707 struct fec_enet_private *fep = netdev_priv(ndev);
2708 unsigned int i;
2709 struct sk_buff *skb;
2710 struct bufdesc *bdp;
2711 struct fec_enet_priv_rx_q *rxq;
2712
2713 rxq = fep->rx_queue[queue];
2714 bdp = rxq->bd.base;
2715 for (i = 0; i < rxq->bd.ring_size; i++) {
2716 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2717 if (!skb)
2718 goto err_alloc;
2719
2720 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2721 dev_kfree_skb(skb);
2722 goto err_alloc;
2723 }
2724
2725 rxq->rx_skbuff[i] = skb;
2726 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2727
2728 if (fep->bufdesc_ex) {
2729 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2730 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2731 }
2732
2733 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2734 }
2735
2736 /* Set the last buffer to wrap. */
2737 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2738 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2739 return 0;
2740
2741 err_alloc:
2742 fec_enet_free_buffers(ndev);
2743 return -ENOMEM;
2744 }
2745
2746 static int
2747 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2748 {
2749 struct fec_enet_private *fep = netdev_priv(ndev);
2750 unsigned int i;
2751 struct bufdesc *bdp;
2752 struct fec_enet_priv_tx_q *txq;
2753
2754 txq = fep->tx_queue[queue];
2755 bdp = txq->bd.base;
2756 for (i = 0; i < txq->bd.ring_size; i++) {
2757 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2758 if (!txq->tx_bounce[i])
2759 goto err_alloc;
2760
2761 bdp->cbd_sc = cpu_to_fec16(0);
2762 bdp->cbd_bufaddr = cpu_to_fec32(0);
2763
2764 if (fep->bufdesc_ex) {
2765 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2766 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2767 }
2768
2769 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2770 }
2771
2772 /* Set the last buffer to wrap. */
2773 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2774 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2775
2776 return 0;
2777
2778 err_alloc:
2779 fec_enet_free_buffers(ndev);
2780 return -ENOMEM;
2781 }
2782
2783 static int fec_enet_alloc_buffers(struct net_device *ndev)
2784 {
2785 struct fec_enet_private *fep = netdev_priv(ndev);
2786 unsigned int i;
2787
2788 for (i = 0; i < fep->num_rx_queues; i++)
2789 if (fec_enet_alloc_rxq_buffers(ndev, i))
2790 return -ENOMEM;
2791
2792 for (i = 0; i < fep->num_tx_queues; i++)
2793 if (fec_enet_alloc_txq_buffers(ndev, i))
2794 return -ENOMEM;
2795 return 0;
2796 }
2797
2798 static int
2799 fec_enet_open(struct net_device *ndev)
2800 {
2801 struct fec_enet_private *fep = netdev_priv(ndev);
2802 int ret;
2803
2804 ret = pm_runtime_get_sync(&fep->pdev->dev);
2805 if (ret < 0)
2806 return ret;
2807
2808 pinctrl_pm_select_default_state(&fep->pdev->dev);
2809 ret = fec_enet_clk_enable(ndev, true);
2810 if (ret)
2811 goto clk_enable;
2812
2813 /* I should reset the ring buffers here, but I don't yet know
2814 * a simple way to do that.
2815 */
2816
2817 ret = fec_enet_alloc_buffers(ndev);
2818 if (ret)
2819 goto err_enet_alloc;
2820
2821 /* Init MAC prior to mii bus probe */
2822 fec_restart(ndev);
2823
2824 /* Probe and connect to PHY when open the interface */
2825 ret = fec_enet_mii_probe(ndev);
2826 if (ret)
2827 goto err_enet_mii_probe;
2828
2829 if (fep->quirks & FEC_QUIRK_ERR006687)
2830 imx6q_cpuidle_fec_irqs_used();
2831
2832 napi_enable(&fep->napi);
2833 phy_start(ndev->phydev);
2834 netif_tx_start_all_queues(ndev);
2835
2836 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2837 FEC_WOL_FLAG_ENABLE);
2838
2839 return 0;
2840
2841 err_enet_mii_probe:
2842 fec_enet_free_buffers(ndev);
2843 err_enet_alloc:
2844 fec_enet_clk_enable(ndev, false);
2845 clk_enable:
2846 pm_runtime_mark_last_busy(&fep->pdev->dev);
2847 pm_runtime_put_autosuspend(&fep->pdev->dev);
2848 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2849 return ret;
2850 }
2851
2852 static int
2853 fec_enet_close(struct net_device *ndev)
2854 {
2855 struct fec_enet_private *fep = netdev_priv(ndev);
2856
2857 phy_stop(ndev->phydev);
2858
2859 if (netif_device_present(ndev)) {
2860 napi_disable(&fep->napi);
2861 netif_tx_disable(ndev);
2862 fec_stop(ndev);
2863 }
2864
2865 phy_disconnect(ndev->phydev);
2866
2867 if (fep->quirks & FEC_QUIRK_ERR006687)
2868 imx6q_cpuidle_fec_irqs_unused();
2869
2870 fec_enet_clk_enable(ndev, false);
2871 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2872 pm_runtime_mark_last_busy(&fep->pdev->dev);
2873 pm_runtime_put_autosuspend(&fep->pdev->dev);
2874
2875 fec_enet_free_buffers(ndev);
2876
2877 return 0;
2878 }
2879
2880 /* Set or clear the multicast filter for this adaptor.
2881 * Skeleton taken from sunlance driver.
2882 * The CPM Ethernet implementation allows Multicast as well as individual
2883 * MAC address filtering. Some of the drivers check to make sure it is
2884 * a group multicast address, and discard those that are not. I guess I
2885 * will do the same for now, but just remove the test if you want
2886 * individual filtering as well (do the upper net layers want or support
2887 * this kind of feature?).
2888 */
2889
2890 #define HASH_BITS 6 /* #bits in hash */
2891 #define CRC32_POLY 0xEDB88320
2892
2893 static void set_multicast_list(struct net_device *ndev)
2894 {
2895 struct fec_enet_private *fep = netdev_priv(ndev);
2896 struct netdev_hw_addr *ha;
2897 unsigned int i, bit, data, crc, tmp;
2898 unsigned char hash;
2899
2900 if (ndev->flags & IFF_PROMISC) {
2901 tmp = readl(fep->hwp + FEC_R_CNTRL);
2902 tmp |= 0x8;
2903 writel(tmp, fep->hwp + FEC_R_CNTRL);
2904 return;
2905 }
2906
2907 tmp = readl(fep->hwp + FEC_R_CNTRL);
2908 tmp &= ~0x8;
2909 writel(tmp, fep->hwp + FEC_R_CNTRL);
2910
2911 if (ndev->flags & IFF_ALLMULTI) {
2912 /* Catch all multicast addresses, so set the
2913 * filter to all 1's
2914 */
2915 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2916 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2917
2918 return;
2919 }
2920
2921 /* Clear filter and add the addresses in hash register
2922 */
2923 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2924 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2925
2926 netdev_for_each_mc_addr(ha, ndev) {
2927 /* calculate crc32 value of mac address */
2928 crc = 0xffffffff;
2929
2930 for (i = 0; i < ndev->addr_len; i++) {
2931 data = ha->addr[i];
2932 for (bit = 0; bit < 8; bit++, data >>= 1) {
2933 crc = (crc >> 1) ^
2934 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2935 }
2936 }
2937
2938 /* only upper 6 bits (HASH_BITS) are used
2939 * which point to specific bit in he hash registers
2940 */
2941 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2942
2943 if (hash > 31) {
2944 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2945 tmp |= 1 << (hash - 32);
2946 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2947 } else {
2948 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2949 tmp |= 1 << hash;
2950 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2951 }
2952 }
2953 }
2954
2955 /* Set a MAC change in hardware. */
2956 static int
2957 fec_set_mac_address(struct net_device *ndev, void *p)
2958 {
2959 struct fec_enet_private *fep = netdev_priv(ndev);
2960 struct sockaddr *addr = p;
2961
2962 if (addr) {
2963 if (!is_valid_ether_addr(addr->sa_data))
2964 return -EADDRNOTAVAIL;
2965 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2966 }
2967
2968 /* Add netif status check here to avoid system hang in below case:
2969 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2970 * After ethx down, fec all clocks are gated off and then register
2971 * access causes system hang.
2972 */
2973 if (!netif_running(ndev))
2974 return 0;
2975
2976 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2977 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2978 fep->hwp + FEC_ADDR_LOW);
2979 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2980 fep->hwp + FEC_ADDR_HIGH);
2981 return 0;
2982 }
2983
2984 #ifdef CONFIG_NET_POLL_CONTROLLER
2985 /**
2986 * fec_poll_controller - FEC Poll controller function
2987 * @dev: The FEC network adapter
2988 *
2989 * Polled functionality used by netconsole and others in non interrupt mode
2990 *
2991 */
2992 static void fec_poll_controller(struct net_device *dev)
2993 {
2994 int i;
2995 struct fec_enet_private *fep = netdev_priv(dev);
2996
2997 for (i = 0; i < FEC_IRQ_NUM; i++) {
2998 if (fep->irq[i] > 0) {
2999 disable_irq(fep->irq[i]);
3000 fec_enet_interrupt(fep->irq[i], dev);
3001 enable_irq(fep->irq[i]);
3002 }
3003 }
3004 }
3005 #endif
3006
3007 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3008 netdev_features_t features)
3009 {
3010 struct fec_enet_private *fep = netdev_priv(netdev);
3011 netdev_features_t changed = features ^ netdev->features;
3012
3013 netdev->features = features;
3014
3015 /* Receive checksum has been changed */
3016 if (changed & NETIF_F_RXCSUM) {
3017 if (features & NETIF_F_RXCSUM)
3018 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3019 else
3020 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3021 }
3022 }
3023
3024 static int fec_set_features(struct net_device *netdev,
3025 netdev_features_t features)
3026 {
3027 struct fec_enet_private *fep = netdev_priv(netdev);
3028 netdev_features_t changed = features ^ netdev->features;
3029
3030 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3031 napi_disable(&fep->napi);
3032 netif_tx_lock_bh(netdev);
3033 fec_stop(netdev);
3034 fec_enet_set_netdev_features(netdev, features);
3035 fec_restart(netdev);
3036 netif_tx_wake_all_queues(netdev);
3037 netif_tx_unlock_bh(netdev);
3038 napi_enable(&fep->napi);
3039 } else {
3040 fec_enet_set_netdev_features(netdev, features);
3041 }
3042
3043 return 0;
3044 }
3045
3046 static const struct net_device_ops fec_netdev_ops = {
3047 .ndo_open = fec_enet_open,
3048 .ndo_stop = fec_enet_close,
3049 .ndo_start_xmit = fec_enet_start_xmit,
3050 .ndo_set_rx_mode = set_multicast_list,
3051 .ndo_change_mtu = eth_change_mtu,
3052 .ndo_validate_addr = eth_validate_addr,
3053 .ndo_tx_timeout = fec_timeout,
3054 .ndo_set_mac_address = fec_set_mac_address,
3055 .ndo_do_ioctl = fec_enet_ioctl,
3056 #ifdef CONFIG_NET_POLL_CONTROLLER
3057 .ndo_poll_controller = fec_poll_controller,
3058 #endif
3059 .ndo_set_features = fec_set_features,
3060 };
3061
3062 static const unsigned short offset_des_active_rxq[] = {
3063 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3064 };
3065
3066 static const unsigned short offset_des_active_txq[] = {
3067 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3068 };
3069
3070 /*
3071 * XXX: We need to clean up on failure exits here.
3072 *
3073 */
3074 static int fec_enet_init(struct net_device *ndev)
3075 {
3076 struct fec_enet_private *fep = netdev_priv(ndev);
3077 struct bufdesc *cbd_base;
3078 dma_addr_t bd_dma;
3079 int bd_size;
3080 unsigned int i;
3081 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3082 sizeof(struct bufdesc);
3083 unsigned dsize_log2 = __fls(dsize);
3084
3085 WARN_ON(dsize != (1 << dsize_log2));
3086 #if defined(CONFIG_ARM)
3087 fep->rx_align = 0xf;
3088 fep->tx_align = 0xf;
3089 #else
3090 fep->rx_align = 0x3;
3091 fep->tx_align = 0x3;
3092 #endif
3093
3094 fec_enet_alloc_queue(ndev);
3095
3096 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3097
3098 /* Allocate memory for buffer descriptors. */
3099 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3100 GFP_KERNEL);
3101 if (!cbd_base) {
3102 return -ENOMEM;
3103 }
3104
3105 memset(cbd_base, 0, bd_size);
3106
3107 /* Get the Ethernet address */
3108 fec_get_mac(ndev);
3109 /* make sure MAC we just acquired is programmed into the hw */
3110 fec_set_mac_address(ndev, NULL);
3111
3112 /* Set receive and transmit descriptor base. */
3113 for (i = 0; i < fep->num_rx_queues; i++) {
3114 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3115 unsigned size = dsize * rxq->bd.ring_size;
3116
3117 rxq->bd.qid = i;
3118 rxq->bd.base = cbd_base;
3119 rxq->bd.cur = cbd_base;
3120 rxq->bd.dma = bd_dma;
3121 rxq->bd.dsize = dsize;
3122 rxq->bd.dsize_log2 = dsize_log2;
3123 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3124 bd_dma += size;
3125 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3126 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3127 }
3128
3129 for (i = 0; i < fep->num_tx_queues; i++) {
3130 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3131 unsigned size = dsize * txq->bd.ring_size;
3132
3133 txq->bd.qid = i;
3134 txq->bd.base = cbd_base;
3135 txq->bd.cur = cbd_base;
3136 txq->bd.dma = bd_dma;
3137 txq->bd.dsize = dsize;
3138 txq->bd.dsize_log2 = dsize_log2;
3139 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3140 bd_dma += size;
3141 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3142 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3143 }
3144
3145
3146 /* The FEC Ethernet specific entries in the device structure */
3147 ndev->watchdog_timeo = TX_TIMEOUT;
3148 ndev->netdev_ops = &fec_netdev_ops;
3149 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3150
3151 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3152 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3153
3154 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3155 /* enable hw VLAN support */
3156 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3157
3158 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3159 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3160
3161 /* enable hw accelerator */
3162 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3163 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3164 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3165 }
3166
3167 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3168 fep->tx_align = 0;
3169 fep->rx_align = 0x3f;
3170 }
3171
3172 ndev->hw_features = ndev->features;
3173
3174 fec_restart(ndev);
3175
3176 return 0;
3177 }
3178
3179 #ifdef CONFIG_OF
3180 static void fec_reset_phy(struct platform_device *pdev)
3181 {
3182 int err, phy_reset;
3183 bool active_high = false;
3184 int msec = 1;
3185 struct device_node *np = pdev->dev.of_node;
3186
3187 if (!np)
3188 return;
3189
3190 of_property_read_u32(np, "phy-reset-duration", &msec);
3191 /* A sane reset duration should not be longer than 1s */
3192 if (msec > 1000)
3193 msec = 1;
3194
3195 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3196 if (!gpio_is_valid(phy_reset))
3197 return;
3198
3199 active_high = of_property_read_bool(np, "phy-reset-active-high");
3200
3201 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3202 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3203 "phy-reset");
3204 if (err) {
3205 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3206 return;
3207 }
3208
3209 if (msec > 20)
3210 msleep(msec);
3211 else
3212 usleep_range(msec * 1000, msec * 1000 + 1000);
3213
3214 gpio_set_value_cansleep(phy_reset, !active_high);
3215 }
3216 #else /* CONFIG_OF */
3217 static void fec_reset_phy(struct platform_device *pdev)
3218 {
3219 /*
3220 * In case of platform probe, the reset has been done
3221 * by machine code.
3222 */
3223 }
3224 #endif /* CONFIG_OF */
3225
3226 static void
3227 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3228 {
3229 struct device_node *np = pdev->dev.of_node;
3230
3231 *num_tx = *num_rx = 1;
3232
3233 if (!np || !of_device_is_available(np))
3234 return;
3235
3236 /* parse the num of tx and rx queues */
3237 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3238
3239 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3240
3241 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3242 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3243 *num_tx);
3244 *num_tx = 1;
3245 return;
3246 }
3247
3248 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3249 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3250 *num_rx);
3251 *num_rx = 1;
3252 return;
3253 }
3254
3255 }
3256
3257 static int
3258 fec_probe(struct platform_device *pdev)
3259 {
3260 struct fec_enet_private *fep;
3261 struct fec_platform_data *pdata;
3262 struct net_device *ndev;
3263 int i, irq, ret = 0;
3264 struct resource *r;
3265 const struct of_device_id *of_id;
3266 static int dev_id;
3267 struct device_node *np = pdev->dev.of_node, *phy_node;
3268 int num_tx_qs;
3269 int num_rx_qs;
3270
3271 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3272
3273 /* Init network device */
3274 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3275 num_tx_qs, num_rx_qs);
3276 if (!ndev)
3277 return -ENOMEM;
3278
3279 SET_NETDEV_DEV(ndev, &pdev->dev);
3280
3281 /* setup board info structure */
3282 fep = netdev_priv(ndev);
3283
3284 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3285 if (of_id)
3286 pdev->id_entry = of_id->data;
3287 fep->quirks = pdev->id_entry->driver_data;
3288
3289 fep->netdev = ndev;
3290 fep->num_rx_queues = num_rx_qs;
3291 fep->num_tx_queues = num_tx_qs;
3292
3293 #if !defined(CONFIG_M5272)
3294 /* default enable pause frame auto negotiation */
3295 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3296 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3297 #endif
3298
3299 /* Select default pin state */
3300 pinctrl_pm_select_default_state(&pdev->dev);
3301
3302 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3303 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3304 if (IS_ERR(fep->hwp)) {
3305 ret = PTR_ERR(fep->hwp);
3306 goto failed_ioremap;
3307 }
3308
3309 fep->pdev = pdev;
3310 fep->dev_id = dev_id++;
3311
3312 platform_set_drvdata(pdev, ndev);
3313
3314 if ((of_machine_is_compatible("fsl,imx6q") ||
3315 of_machine_is_compatible("fsl,imx6dl")) &&
3316 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3317 fep->quirks |= FEC_QUIRK_ERR006687;
3318
3319 if (of_get_property(np, "fsl,magic-packet", NULL))
3320 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3321
3322 phy_node = of_parse_phandle(np, "phy-handle", 0);
3323 if (!phy_node && of_phy_is_fixed_link(np)) {
3324 ret = of_phy_register_fixed_link(np);
3325 if (ret < 0) {
3326 dev_err(&pdev->dev,
3327 "broken fixed-link specification\n");
3328 goto failed_phy;
3329 }
3330 phy_node = of_node_get(np);
3331 }
3332 fep->phy_node = phy_node;
3333
3334 ret = of_get_phy_mode(pdev->dev.of_node);
3335 if (ret < 0) {
3336 pdata = dev_get_platdata(&pdev->dev);
3337 if (pdata)
3338 fep->phy_interface = pdata->phy;
3339 else
3340 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3341 } else {
3342 fep->phy_interface = ret;
3343 }
3344
3345 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3346 if (IS_ERR(fep->clk_ipg)) {
3347 ret = PTR_ERR(fep->clk_ipg);
3348 goto failed_clk;
3349 }
3350
3351 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3352 if (IS_ERR(fep->clk_ahb)) {
3353 ret = PTR_ERR(fep->clk_ahb);
3354 goto failed_clk;
3355 }
3356
3357 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3358
3359 /* enet_out is optional, depends on board */
3360 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3361 if (IS_ERR(fep->clk_enet_out))
3362 fep->clk_enet_out = NULL;
3363
3364 fep->ptp_clk_on = false;
3365 mutex_init(&fep->ptp_clk_mutex);
3366
3367 /* clk_ref is optional, depends on board */
3368 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3369 if (IS_ERR(fep->clk_ref))
3370 fep->clk_ref = NULL;
3371
3372 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3373 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3374 if (IS_ERR(fep->clk_ptp)) {
3375 fep->clk_ptp = NULL;
3376 fep->bufdesc_ex = false;
3377 }
3378
3379 ret = fec_enet_clk_enable(ndev, true);
3380 if (ret)
3381 goto failed_clk;
3382
3383 ret = clk_prepare_enable(fep->clk_ipg);
3384 if (ret)
3385 goto failed_clk_ipg;
3386
3387 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3388 if (!IS_ERR(fep->reg_phy)) {
3389 ret = regulator_enable(fep->reg_phy);
3390 if (ret) {
3391 dev_err(&pdev->dev,
3392 "Failed to enable phy regulator: %d\n", ret);
3393 goto failed_regulator;
3394 }
3395 } else {
3396 fep->reg_phy = NULL;
3397 }
3398
3399 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3400 pm_runtime_use_autosuspend(&pdev->dev);
3401 pm_runtime_get_noresume(&pdev->dev);
3402 pm_runtime_set_active(&pdev->dev);
3403 pm_runtime_enable(&pdev->dev);
3404
3405 fec_reset_phy(pdev);
3406
3407 if (fep->bufdesc_ex)
3408 fec_ptp_init(pdev);
3409
3410 ret = fec_enet_init(ndev);
3411 if (ret)
3412 goto failed_init;
3413
3414 for (i = 0; i < FEC_IRQ_NUM; i++) {
3415 irq = platform_get_irq(pdev, i);
3416 if (irq < 0) {
3417 if (i)
3418 break;
3419 ret = irq;
3420 goto failed_irq;
3421 }
3422 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3423 0, pdev->name, ndev);
3424 if (ret)
3425 goto failed_irq;
3426
3427 fep->irq[i] = irq;
3428 }
3429
3430 init_completion(&fep->mdio_done);
3431 ret = fec_enet_mii_init(pdev);
3432 if (ret)
3433 goto failed_mii_init;
3434
3435 /* Carrier starts down, phylib will bring it up */
3436 netif_carrier_off(ndev);
3437 fec_enet_clk_enable(ndev, false);
3438 pinctrl_pm_select_sleep_state(&pdev->dev);
3439
3440 ret = register_netdev(ndev);
3441 if (ret)
3442 goto failed_register;
3443
3444 device_init_wakeup(&ndev->dev, fep->wol_flag &
3445 FEC_WOL_HAS_MAGIC_PACKET);
3446
3447 if (fep->bufdesc_ex && fep->ptp_clock)
3448 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3449
3450 fep->rx_copybreak = COPYBREAK_DEFAULT;
3451 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3452
3453 pm_runtime_mark_last_busy(&pdev->dev);
3454 pm_runtime_put_autosuspend(&pdev->dev);
3455
3456 return 0;
3457
3458 failed_register:
3459 fec_enet_mii_remove(fep);
3460 failed_mii_init:
3461 failed_irq:
3462 failed_init:
3463 fec_ptp_stop(pdev);
3464 if (fep->reg_phy)
3465 regulator_disable(fep->reg_phy);
3466 failed_regulator:
3467 clk_disable_unprepare(fep->clk_ipg);
3468 failed_clk_ipg:
3469 fec_enet_clk_enable(ndev, false);
3470 failed_clk:
3471 failed_phy:
3472 of_node_put(phy_node);
3473 failed_ioremap:
3474 free_netdev(ndev);
3475
3476 return ret;
3477 }
3478
3479 static int
3480 fec_drv_remove(struct platform_device *pdev)
3481 {
3482 struct net_device *ndev = platform_get_drvdata(pdev);
3483 struct fec_enet_private *fep = netdev_priv(ndev);
3484
3485 cancel_work_sync(&fep->tx_timeout_work);
3486 fec_ptp_stop(pdev);
3487 unregister_netdev(ndev);
3488 fec_enet_mii_remove(fep);
3489 if (fep->reg_phy)
3490 regulator_disable(fep->reg_phy);
3491 of_node_put(fep->phy_node);
3492 free_netdev(ndev);
3493
3494 return 0;
3495 }
3496
3497 static int __maybe_unused fec_suspend(struct device *dev)
3498 {
3499 struct net_device *ndev = dev_get_drvdata(dev);
3500 struct fec_enet_private *fep = netdev_priv(ndev);
3501
3502 rtnl_lock();
3503 if (netif_running(ndev)) {
3504 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3505 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3506 phy_stop(ndev->phydev);
3507 napi_disable(&fep->napi);
3508 netif_tx_lock_bh(ndev);
3509 netif_device_detach(ndev);
3510 netif_tx_unlock_bh(ndev);
3511 fec_stop(ndev);
3512 fec_enet_clk_enable(ndev, false);
3513 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3514 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3515 }
3516 rtnl_unlock();
3517
3518 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3519 regulator_disable(fep->reg_phy);
3520
3521 /* SOC supply clock to phy, when clock is disabled, phy link down
3522 * SOC control phy regulator, when regulator is disabled, phy link down
3523 */
3524 if (fep->clk_enet_out || fep->reg_phy)
3525 fep->link = 0;
3526
3527 return 0;
3528 }
3529
3530 static int __maybe_unused fec_resume(struct device *dev)
3531 {
3532 struct net_device *ndev = dev_get_drvdata(dev);
3533 struct fec_enet_private *fep = netdev_priv(ndev);
3534 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3535 int ret;
3536 int val;
3537
3538 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3539 ret = regulator_enable(fep->reg_phy);
3540 if (ret)
3541 return ret;
3542 }
3543
3544 rtnl_lock();
3545 if (netif_running(ndev)) {
3546 ret = fec_enet_clk_enable(ndev, true);
3547 if (ret) {
3548 rtnl_unlock();
3549 goto failed_clk;
3550 }
3551 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3552 if (pdata && pdata->sleep_mode_enable)
3553 pdata->sleep_mode_enable(false);
3554 val = readl(fep->hwp + FEC_ECNTRL);
3555 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3556 writel(val, fep->hwp + FEC_ECNTRL);
3557 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3558 } else {
3559 pinctrl_pm_select_default_state(&fep->pdev->dev);
3560 }
3561 fec_restart(ndev);
3562 netif_tx_lock_bh(ndev);
3563 netif_device_attach(ndev);
3564 netif_tx_unlock_bh(ndev);
3565 napi_enable(&fep->napi);
3566 phy_start(ndev->phydev);
3567 }
3568 rtnl_unlock();
3569
3570 return 0;
3571
3572 failed_clk:
3573 if (fep->reg_phy)
3574 regulator_disable(fep->reg_phy);
3575 return ret;
3576 }
3577
3578 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3579 {
3580 struct net_device *ndev = dev_get_drvdata(dev);
3581 struct fec_enet_private *fep = netdev_priv(ndev);
3582
3583 clk_disable_unprepare(fep->clk_ipg);
3584
3585 return 0;
3586 }
3587
3588 static int __maybe_unused fec_runtime_resume(struct device *dev)
3589 {
3590 struct net_device *ndev = dev_get_drvdata(dev);
3591 struct fec_enet_private *fep = netdev_priv(ndev);
3592
3593 return clk_prepare_enable(fep->clk_ipg);
3594 }
3595
3596 static const struct dev_pm_ops fec_pm_ops = {
3597 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3598 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3599 };
3600
3601 static struct platform_driver fec_driver = {
3602 .driver = {
3603 .name = DRIVER_NAME,
3604 .pm = &fec_pm_ops,
3605 .of_match_table = fec_dt_ids,
3606 },
3607 .id_table = fec_devtype,
3608 .probe = fec_probe,
3609 .remove = fec_drv_remove,
3610 };
3611
3612 module_platform_driver(fec_driver);
3613
3614 MODULE_ALIAS("platform:"DRIVER_NAME);
3615 MODULE_LICENSE("GPL");
This page took 0.103464 seconds and 6 git commands to generate.