gianfar: Use skb_frag_t pointers inside xmit()
[deliverable/linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT (5*HZ)
111
112 const char gfar_driver_version[] = "2.0";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
157 {
158 u32 lstatus;
159
160 bdp->bufPtr = cpu_to_be32(buf);
161
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166 gfar_wmb();
167
168 bdp->lstatus = cpu_to_be32(lstatus);
169 }
170
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 struct gfar_priv_tx_q *tx_queue = NULL;
176 struct gfar_priv_rx_q *rx_queue = NULL;
177 struct txbd8 *txbdp;
178 u32 __iomem *rfbptr;
179 int i, j;
180
181 for (i = 0; i < priv->num_tx_queues; i++) {
182 tx_queue = priv->tx_queue[i];
183 /* Initialize some variables in our dev structure */
184 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 tx_queue->cur_tx = tx_queue->tx_bd_base;
187 tx_queue->skb_curtx = 0;
188 tx_queue->skb_dirtytx = 0;
189
190 /* Initialize Transmit Descriptor Ring */
191 txbdp = tx_queue->tx_bd_base;
192 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 txbdp->lstatus = 0;
194 txbdp->bufPtr = 0;
195 txbdp++;
196 }
197
198 /* Set the last descriptor in the ring to indicate wrap */
199 txbdp--;
200 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 TXBD_WRAP);
202 }
203
204 rfbptr = &regs->rfbptr0;
205 for (i = 0; i < priv->num_rx_queues; i++) {
206 rx_queue = priv->rx_queue[i];
207
208 rx_queue->next_to_clean = 0;
209 rx_queue->next_to_use = 0;
210 rx_queue->next_to_alloc = 0;
211
212 /* make sure next_to_clean != next_to_use after this
213 * by leaving at least 1 unused descriptor
214 */
215 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216
217 rx_queue->rfbptr = rfbptr;
218 rfbptr += 2;
219 }
220 }
221
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 void *vaddr;
225 dma_addr_t addr;
226 int i, j;
227 struct gfar_private *priv = netdev_priv(ndev);
228 struct device *dev = priv->dev;
229 struct gfar_priv_tx_q *tx_queue = NULL;
230 struct gfar_priv_rx_q *rx_queue = NULL;
231
232 priv->total_tx_ring_size = 0;
233 for (i = 0; i < priv->num_tx_queues; i++)
234 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235
236 priv->total_rx_ring_size = 0;
237 for (i = 0; i < priv->num_rx_queues; i++)
238 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239
240 /* Allocate memory for the buffer descriptors */
241 vaddr = dma_alloc_coherent(dev,
242 (priv->total_tx_ring_size *
243 sizeof(struct txbd8)) +
244 (priv->total_rx_ring_size *
245 sizeof(struct rxbd8)),
246 &addr, GFP_KERNEL);
247 if (!vaddr)
248 return -ENOMEM;
249
250 for (i = 0; i < priv->num_tx_queues; i++) {
251 tx_queue = priv->tx_queue[i];
252 tx_queue->tx_bd_base = vaddr;
253 tx_queue->tx_bd_dma_base = addr;
254 tx_queue->dev = ndev;
255 /* enet DMA only understands physical addresses */
256 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 }
259
260 /* Start the rx descriptor ring where the tx ring leaves off */
261 for (i = 0; i < priv->num_rx_queues; i++) {
262 rx_queue = priv->rx_queue[i];
263 rx_queue->rx_bd_base = vaddr;
264 rx_queue->rx_bd_dma_base = addr;
265 rx_queue->ndev = ndev;
266 rx_queue->dev = dev;
267 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 }
270
271 /* Setup the skbuff rings */
272 for (i = 0; i < priv->num_tx_queues; i++) {
273 tx_queue = priv->tx_queue[i];
274 tx_queue->tx_skbuff =
275 kmalloc_array(tx_queue->tx_ring_size,
276 sizeof(*tx_queue->tx_skbuff),
277 GFP_KERNEL);
278 if (!tx_queue->tx_skbuff)
279 goto cleanup;
280
281 for (j = 0; j < tx_queue->tx_ring_size; j++)
282 tx_queue->tx_skbuff[j] = NULL;
283 }
284
285 for (i = 0; i < priv->num_rx_queues; i++) {
286 rx_queue = priv->rx_queue[i];
287 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 sizeof(*rx_queue->rx_buff),
289 GFP_KERNEL);
290 if (!rx_queue->rx_buff)
291 goto cleanup;
292 }
293
294 gfar_init_bds(ndev);
295
296 return 0;
297
298 cleanup:
299 free_skb_resources(priv);
300 return -ENOMEM;
301 }
302
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 u32 __iomem *baddr;
307 int i;
308
309 baddr = &regs->tbase0;
310 for (i = 0; i < priv->num_tx_queues; i++) {
311 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 baddr += 2;
313 }
314
315 baddr = &regs->rbase0;
316 for (i = 0; i < priv->num_rx_queues; i++) {
317 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 baddr += 2;
319 }
320 }
321
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 u32 __iomem *baddr;
326 int i;
327
328 baddr = &regs->rqprm0;
329 for (i = 0; i < priv->num_rx_queues; i++) {
330 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 baddr++;
333 }
334 }
335
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 /* set this when rx hw offload (TOE) functions are being used */
339 priv->uses_rxfcb = 0;
340
341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 priv->uses_rxfcb = 1;
343
344 if (priv->hwts_rx_en || priv->rx_filer_enable)
345 priv->uses_rxfcb = 1;
346 }
347
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 u32 rctrl = 0;
352
353 if (priv->rx_filer_enable) {
354 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 /* Program the RIR0 reg with the required distribution */
356 if (priv->poll_mode == GFAR_SQ_POLLING)
357 gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 else /* GFAR_MQ_POLLING */
359 gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 }
361
362 /* Restore PROMISC mode */
363 if (priv->ndev->flags & IFF_PROMISC)
364 rctrl |= RCTRL_PROM;
365
366 if (priv->ndev->features & NETIF_F_RXCSUM)
367 rctrl |= RCTRL_CHECKSUMMING;
368
369 if (priv->extended_hash)
370 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371
372 if (priv->padding) {
373 rctrl &= ~RCTRL_PAL_MASK;
374 rctrl |= RCTRL_PADDING(priv->padding);
375 }
376
377 /* Enable HW time stamping if requested from user space */
378 if (priv->hwts_rx_en)
379 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380
381 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383
384 /* Clear the LFC bit */
385 gfar_write(&regs->rctrl, rctrl);
386 /* Init flow control threshold values */
387 gfar_init_rqprm(priv);
388 gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 rctrl |= RCTRL_LFC;
390
391 /* Init rctrl based on our settings */
392 gfar_write(&regs->rctrl, rctrl);
393 }
394
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 u32 tctrl = 0;
399
400 if (priv->ndev->features & NETIF_F_IP_CSUM)
401 tctrl |= TCTRL_INIT_CSUM;
402
403 if (priv->prio_sched_en)
404 tctrl |= TCTRL_TXSCHED_PRIO;
405 else {
406 tctrl |= TCTRL_TXSCHED_WRRS;
407 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 }
410
411 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 tctrl |= TCTRL_VLINS;
413
414 gfar_write(&regs->tctrl, tctrl);
415 }
416
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 unsigned long tx_mask, unsigned long rx_mask)
419 {
420 struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 u32 __iomem *baddr;
422
423 if (priv->mode == MQ_MG_MODE) {
424 int i = 0;
425
426 baddr = &regs->txic0;
427 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 gfar_write(baddr + i, 0);
429 if (likely(priv->tx_queue[i]->txcoalescing))
430 gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 }
432
433 baddr = &regs->rxic0;
434 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 gfar_write(baddr + i, 0);
436 if (likely(priv->rx_queue[i]->rxcoalescing))
437 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 }
439 } else {
440 /* Backward compatible case -- even if we enable
441 * multiple queues, there's only single reg to program
442 */
443 gfar_write(&regs->txic, 0);
444 if (likely(priv->tx_queue[0]->txcoalescing))
445 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446
447 gfar_write(&regs->rxic, 0);
448 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 }
451 }
452
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 struct gfar_private *priv = netdev_priv(dev);
461 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 unsigned long tx_packets = 0, tx_bytes = 0;
463 int i;
464
465 for (i = 0; i < priv->num_rx_queues; i++) {
466 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
468 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 }
470
471 dev->stats.rx_packets = rx_packets;
472 dev->stats.rx_bytes = rx_bytes;
473 dev->stats.rx_dropped = rx_dropped;
474
475 for (i = 0; i < priv->num_tx_queues; i++) {
476 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 }
479
480 dev->stats.tx_bytes = tx_bytes;
481 dev->stats.tx_packets = tx_packets;
482
483 return &dev->stats;
484 }
485
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 eth_mac_addr(dev, p);
489
490 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491
492 return 0;
493 }
494
495 static const struct net_device_ops gfar_netdev_ops = {
496 .ndo_open = gfar_enet_open,
497 .ndo_start_xmit = gfar_start_xmit,
498 .ndo_stop = gfar_close,
499 .ndo_change_mtu = gfar_change_mtu,
500 .ndo_set_features = gfar_set_features,
501 .ndo_set_rx_mode = gfar_set_multi,
502 .ndo_tx_timeout = gfar_timeout,
503 .ndo_do_ioctl = gfar_ioctl,
504 .ndo_get_stats = gfar_get_stats,
505 .ndo_set_mac_address = gfar_set_mac_addr,
506 .ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 .ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 int i;
515 for (i = 0; i < priv->num_grps; i++) {
516 struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 /* Clear IEVENT */
518 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519
520 /* Initialize IMASK */
521 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 }
523 }
524
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 int i;
528 for (i = 0; i < priv->num_grps; i++) {
529 struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 /* Unmask the interrupts we look for */
531 gfar_write(&regs->imask, IMASK_DEFAULT);
532 }
533 }
534
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 int i;
538
539 for (i = 0; i < priv->num_tx_queues; i++) {
540 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 GFP_KERNEL);
542 if (!priv->tx_queue[i])
543 return -ENOMEM;
544
545 priv->tx_queue[i]->tx_skbuff = NULL;
546 priv->tx_queue[i]->qindex = i;
547 priv->tx_queue[i]->dev = priv->ndev;
548 spin_lock_init(&(priv->tx_queue[i]->txlock));
549 }
550 return 0;
551 }
552
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 int i;
556
557 for (i = 0; i < priv->num_rx_queues; i++) {
558 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 GFP_KERNEL);
560 if (!priv->rx_queue[i])
561 return -ENOMEM;
562
563 priv->rx_queue[i]->qindex = i;
564 priv->rx_queue[i]->ndev = priv->ndev;
565 }
566 return 0;
567 }
568
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 int i;
572
573 for (i = 0; i < priv->num_tx_queues; i++)
574 kfree(priv->tx_queue[i]);
575 }
576
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 int i;
580
581 for (i = 0; i < priv->num_rx_queues; i++)
582 kfree(priv->rx_queue[i]);
583 }
584
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 int i;
588
589 for (i = 0; i < MAXGROUPS; i++)
590 if (priv->gfargrp[i].regs)
591 iounmap(priv->gfargrp[i].regs);
592 }
593
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 int i, j;
597
598 for (i = 0; i < priv->num_grps; i++)
599 for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 kfree(priv->gfargrp[i].irqinfo[j]);
601 priv->gfargrp[i].irqinfo[j] = NULL;
602 }
603
604 free_netdev(priv->ndev);
605 }
606
607 static void disable_napi(struct gfar_private *priv)
608 {
609 int i;
610
611 for (i = 0; i < priv->num_grps; i++) {
612 napi_disable(&priv->gfargrp[i].napi_rx);
613 napi_disable(&priv->gfargrp[i].napi_tx);
614 }
615 }
616
617 static void enable_napi(struct gfar_private *priv)
618 {
619 int i;
620
621 for (i = 0; i < priv->num_grps; i++) {
622 napi_enable(&priv->gfargrp[i].napi_rx);
623 napi_enable(&priv->gfargrp[i].napi_tx);
624 }
625 }
626
627 static int gfar_parse_group(struct device_node *np,
628 struct gfar_private *priv, const char *model)
629 {
630 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 int i;
632
633 for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 GFP_KERNEL);
636 if (!grp->irqinfo[i])
637 return -ENOMEM;
638 }
639
640 grp->regs = of_iomap(np, 0);
641 if (!grp->regs)
642 return -ENOMEM;
643
644 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645
646 /* If we aren't the FEC we have multiple interrupts */
647 if (model && strcasecmp(model, "FEC")) {
648 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 if (!gfar_irq(grp, TX)->irq ||
651 !gfar_irq(grp, RX)->irq ||
652 !gfar_irq(grp, ER)->irq)
653 return -EINVAL;
654 }
655
656 grp->priv = priv;
657 spin_lock_init(&grp->grplock);
658 if (priv->mode == MQ_MG_MODE) {
659 u32 rxq_mask, txq_mask;
660 int ret;
661
662 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664
665 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 if (!ret) {
667 grp->rx_bit_map = rxq_mask ?
668 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 }
670
671 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 if (!ret) {
673 grp->tx_bit_map = txq_mask ?
674 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 }
676
677 if (priv->poll_mode == GFAR_SQ_POLLING) {
678 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 }
682 } else {
683 grp->rx_bit_map = 0xFF;
684 grp->tx_bit_map = 0xFF;
685 }
686
687 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 * right to left, so we need to revert the 8 bits to get the q index
689 */
690 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692
693 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 * also assign queues to groups
695 */
696 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 if (!grp->rx_queue)
698 grp->rx_queue = priv->rx_queue[i];
699 grp->num_rx_queues++;
700 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 priv->rx_queue[i]->grp = grp;
703 }
704
705 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 if (!grp->tx_queue)
707 grp->tx_queue = priv->tx_queue[i];
708 grp->num_tx_queues++;
709 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 priv->tqueue |= (TQUEUE_EN0 >> i);
711 priv->tx_queue[i]->grp = grp;
712 }
713
714 priv->num_grps++;
715
716 return 0;
717 }
718
719 static int gfar_of_group_count(struct device_node *np)
720 {
721 struct device_node *child;
722 int num = 0;
723
724 for_each_available_child_of_node(np, child)
725 if (!of_node_cmp(child->name, "queue-group"))
726 num++;
727
728 return num;
729 }
730
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 const char *model;
734 const char *ctype;
735 const void *mac_addr;
736 int err = 0, i;
737 struct net_device *dev = NULL;
738 struct gfar_private *priv = NULL;
739 struct device_node *np = ofdev->dev.of_node;
740 struct device_node *child = NULL;
741 u32 stash_len = 0;
742 u32 stash_idx = 0;
743 unsigned int num_tx_qs, num_rx_qs;
744 unsigned short mode, poll_mode;
745
746 if (!np)
747 return -ENODEV;
748
749 if (of_device_is_compatible(np, "fsl,etsec2")) {
750 mode = MQ_MG_MODE;
751 poll_mode = GFAR_SQ_POLLING;
752 } else {
753 mode = SQ_SG_MODE;
754 poll_mode = GFAR_SQ_POLLING;
755 }
756
757 if (mode == SQ_SG_MODE) {
758 num_tx_qs = 1;
759 num_rx_qs = 1;
760 } else { /* MQ_MG_MODE */
761 /* get the actual number of supported groups */
762 unsigned int num_grps = gfar_of_group_count(np);
763
764 if (num_grps == 0 || num_grps > MAXGROUPS) {
765 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
766 num_grps);
767 pr_err("Cannot do alloc_etherdev, aborting\n");
768 return -EINVAL;
769 }
770
771 if (poll_mode == GFAR_SQ_POLLING) {
772 num_tx_qs = num_grps; /* one txq per int group */
773 num_rx_qs = num_grps; /* one rxq per int group */
774 } else { /* GFAR_MQ_POLLING */
775 u32 tx_queues, rx_queues;
776 int ret;
777
778 /* parse the num of HW tx and rx queues */
779 ret = of_property_read_u32(np, "fsl,num_tx_queues",
780 &tx_queues);
781 num_tx_qs = ret ? 1 : tx_queues;
782
783 ret = of_property_read_u32(np, "fsl,num_rx_queues",
784 &rx_queues);
785 num_rx_qs = ret ? 1 : rx_queues;
786 }
787 }
788
789 if (num_tx_qs > MAX_TX_QS) {
790 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791 num_tx_qs, MAX_TX_QS);
792 pr_err("Cannot do alloc_etherdev, aborting\n");
793 return -EINVAL;
794 }
795
796 if (num_rx_qs > MAX_RX_QS) {
797 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798 num_rx_qs, MAX_RX_QS);
799 pr_err("Cannot do alloc_etherdev, aborting\n");
800 return -EINVAL;
801 }
802
803 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
804 dev = *pdev;
805 if (NULL == dev)
806 return -ENOMEM;
807
808 priv = netdev_priv(dev);
809 priv->ndev = dev;
810
811 priv->mode = mode;
812 priv->poll_mode = poll_mode;
813
814 priv->num_tx_queues = num_tx_qs;
815 netif_set_real_num_rx_queues(dev, num_rx_qs);
816 priv->num_rx_queues = num_rx_qs;
817
818 err = gfar_alloc_tx_queues(priv);
819 if (err)
820 goto tx_alloc_failed;
821
822 err = gfar_alloc_rx_queues(priv);
823 if (err)
824 goto rx_alloc_failed;
825
826 err = of_property_read_string(np, "model", &model);
827 if (err) {
828 pr_err("Device model property missing, aborting\n");
829 goto rx_alloc_failed;
830 }
831
832 /* Init Rx queue filer rule set linked list */
833 INIT_LIST_HEAD(&priv->rx_list.list);
834 priv->rx_list.count = 0;
835 mutex_init(&priv->rx_queue_access);
836
837 for (i = 0; i < MAXGROUPS; i++)
838 priv->gfargrp[i].regs = NULL;
839
840 /* Parse and initialize group specific information */
841 if (priv->mode == MQ_MG_MODE) {
842 for_each_available_child_of_node(np, child) {
843 if (of_node_cmp(child->name, "queue-group"))
844 continue;
845
846 err = gfar_parse_group(child, priv, model);
847 if (err)
848 goto err_grp_init;
849 }
850 } else { /* SQ_SG_MODE */
851 err = gfar_parse_group(np, priv, model);
852 if (err)
853 goto err_grp_init;
854 }
855
856 if (of_property_read_bool(np, "bd-stash")) {
857 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
858 priv->bd_stash_en = 1;
859 }
860
861 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
862
863 if (err == 0)
864 priv->rx_stash_size = stash_len;
865
866 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
867
868 if (err == 0)
869 priv->rx_stash_index = stash_idx;
870
871 if (stash_len || stash_idx)
872 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
873
874 mac_addr = of_get_mac_address(np);
875
876 if (mac_addr)
877 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
878
879 if (model && !strcasecmp(model, "TSEC"))
880 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
881 FSL_GIANFAR_DEV_HAS_COALESCE |
882 FSL_GIANFAR_DEV_HAS_RMON |
883 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
884
885 if (model && !strcasecmp(model, "eTSEC"))
886 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
887 FSL_GIANFAR_DEV_HAS_COALESCE |
888 FSL_GIANFAR_DEV_HAS_RMON |
889 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
890 FSL_GIANFAR_DEV_HAS_CSUM |
891 FSL_GIANFAR_DEV_HAS_VLAN |
892 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
893 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
894 FSL_GIANFAR_DEV_HAS_TIMER |
895 FSL_GIANFAR_DEV_HAS_RX_FILER;
896
897 err = of_property_read_string(np, "phy-connection-type", &ctype);
898
899 /* We only care about rgmii-id. The rest are autodetected */
900 if (err == 0 && !strcmp(ctype, "rgmii-id"))
901 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
902 else
903 priv->interface = PHY_INTERFACE_MODE_MII;
904
905 if (of_find_property(np, "fsl,magic-packet", NULL))
906 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
907
908 if (of_get_property(np, "fsl,wake-on-filer", NULL))
909 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
910
911 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
912
913 /* In the case of a fixed PHY, the DT node associated
914 * to the PHY is the Ethernet MAC DT node.
915 */
916 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
917 err = of_phy_register_fixed_link(np);
918 if (err)
919 goto err_grp_init;
920
921 priv->phy_node = of_node_get(np);
922 }
923
924 /* Find the TBI PHY. If it's not there, we don't support SGMII */
925 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
926
927 return 0;
928
929 err_grp_init:
930 unmap_group_regs(priv);
931 rx_alloc_failed:
932 gfar_free_rx_queues(priv);
933 tx_alloc_failed:
934 gfar_free_tx_queues(priv);
935 free_gfar_dev(priv);
936 return err;
937 }
938
939 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
940 {
941 struct hwtstamp_config config;
942 struct gfar_private *priv = netdev_priv(netdev);
943
944 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
945 return -EFAULT;
946
947 /* reserved for future extensions */
948 if (config.flags)
949 return -EINVAL;
950
951 switch (config.tx_type) {
952 case HWTSTAMP_TX_OFF:
953 priv->hwts_tx_en = 0;
954 break;
955 case HWTSTAMP_TX_ON:
956 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
957 return -ERANGE;
958 priv->hwts_tx_en = 1;
959 break;
960 default:
961 return -ERANGE;
962 }
963
964 switch (config.rx_filter) {
965 case HWTSTAMP_FILTER_NONE:
966 if (priv->hwts_rx_en) {
967 priv->hwts_rx_en = 0;
968 reset_gfar(netdev);
969 }
970 break;
971 default:
972 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
973 return -ERANGE;
974 if (!priv->hwts_rx_en) {
975 priv->hwts_rx_en = 1;
976 reset_gfar(netdev);
977 }
978 config.rx_filter = HWTSTAMP_FILTER_ALL;
979 break;
980 }
981
982 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
983 -EFAULT : 0;
984 }
985
986 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
987 {
988 struct hwtstamp_config config;
989 struct gfar_private *priv = netdev_priv(netdev);
990
991 config.flags = 0;
992 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
993 config.rx_filter = (priv->hwts_rx_en ?
994 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
995
996 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
997 -EFAULT : 0;
998 }
999
1000 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001 {
1002 struct gfar_private *priv = netdev_priv(dev);
1003
1004 if (!netif_running(dev))
1005 return -EINVAL;
1006
1007 if (cmd == SIOCSHWTSTAMP)
1008 return gfar_hwtstamp_set(dev, rq);
1009 if (cmd == SIOCGHWTSTAMP)
1010 return gfar_hwtstamp_get(dev, rq);
1011
1012 if (!priv->phydev)
1013 return -ENODEV;
1014
1015 return phy_mii_ioctl(priv->phydev, rq, cmd);
1016 }
1017
1018 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019 u32 class)
1020 {
1021 u32 rqfpr = FPR_FILER_MASK;
1022 u32 rqfcr = 0x0;
1023
1024 rqfar--;
1025 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026 priv->ftp_rqfpr[rqfar] = rqfpr;
1027 priv->ftp_rqfcr[rqfar] = rqfcr;
1028 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030 rqfar--;
1031 rqfcr = RQFCR_CMP_NOMATCH;
1032 priv->ftp_rqfpr[rqfar] = rqfpr;
1033 priv->ftp_rqfcr[rqfar] = rqfcr;
1034 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036 rqfar--;
1037 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038 rqfpr = class;
1039 priv->ftp_rqfcr[rqfar] = rqfcr;
1040 priv->ftp_rqfpr[rqfar] = rqfpr;
1041 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043 rqfar--;
1044 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045 rqfpr = class;
1046 priv->ftp_rqfcr[rqfar] = rqfcr;
1047 priv->ftp_rqfpr[rqfar] = rqfpr;
1048 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050 return rqfar;
1051 }
1052
1053 static void gfar_init_filer_table(struct gfar_private *priv)
1054 {
1055 int i = 0x0;
1056 u32 rqfar = MAX_FILER_IDX;
1057 u32 rqfcr = 0x0;
1058 u32 rqfpr = FPR_FILER_MASK;
1059
1060 /* Default rule */
1061 rqfcr = RQFCR_CMP_MATCH;
1062 priv->ftp_rqfcr[rqfar] = rqfcr;
1063 priv->ftp_rqfpr[rqfar] = rqfpr;
1064 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073 /* cur_filer_idx indicated the first non-masked rule */
1074 priv->cur_filer_idx = rqfar;
1075
1076 /* Rest are masked rules */
1077 rqfcr = RQFCR_CMP_NOMATCH;
1078 for (i = 0; i < rqfar; i++) {
1079 priv->ftp_rqfcr[i] = rqfcr;
1080 priv->ftp_rqfpr[i] = rqfpr;
1081 gfar_write_filer(priv, i, rqfcr, rqfpr);
1082 }
1083 }
1084
1085 #ifdef CONFIG_PPC
1086 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087 {
1088 unsigned int pvr = mfspr(SPRN_PVR);
1089 unsigned int svr = mfspr(SPRN_SVR);
1090 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091 unsigned int rev = svr & 0xffff;
1092
1093 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1094 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096 priv->errata |= GFAR_ERRATA_74;
1097
1098 /* MPC8313 and MPC837x all rev */
1099 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101 priv->errata |= GFAR_ERRATA_76;
1102
1103 /* MPC8313 Rev < 2.0 */
1104 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105 priv->errata |= GFAR_ERRATA_12;
1106 }
1107
1108 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109 {
1110 unsigned int svr = mfspr(SPRN_SVR);
1111
1112 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113 priv->errata |= GFAR_ERRATA_12;
1114 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1115 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1116 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1117 }
1118 #endif
1119
1120 static void gfar_detect_errata(struct gfar_private *priv)
1121 {
1122 struct device *dev = &priv->ofdev->dev;
1123
1124 /* no plans to fix */
1125 priv->errata |= GFAR_ERRATA_A002;
1126
1127 #ifdef CONFIG_PPC
1128 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1129 __gfar_detect_errata_85xx(priv);
1130 else /* non-mpc85xx parts, i.e. e300 core based */
1131 __gfar_detect_errata_83xx(priv);
1132 #endif
1133
1134 if (priv->errata)
1135 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1136 priv->errata);
1137 }
1138
1139 void gfar_mac_reset(struct gfar_private *priv)
1140 {
1141 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1142 u32 tempval;
1143
1144 /* Reset MAC layer */
1145 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1146
1147 /* We need to delay at least 3 TX clocks */
1148 udelay(3);
1149
1150 /* the soft reset bit is not self-resetting, so we need to
1151 * clear it before resuming normal operation
1152 */
1153 gfar_write(&regs->maccfg1, 0);
1154
1155 udelay(3);
1156
1157 gfar_rx_offload_en(priv);
1158
1159 /* Initialize the max receive frame/buffer lengths */
1160 gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1161 gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1162
1163 /* Initialize the Minimum Frame Length Register */
1164 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1165
1166 /* Initialize MACCFG2. */
1167 tempval = MACCFG2_INIT_SETTINGS;
1168
1169 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1170 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
1171 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1172 */
1173 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1174 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1175
1176 gfar_write(&regs->maccfg2, tempval);
1177
1178 /* Clear mac addr hash registers */
1179 gfar_write(&regs->igaddr0, 0);
1180 gfar_write(&regs->igaddr1, 0);
1181 gfar_write(&regs->igaddr2, 0);
1182 gfar_write(&regs->igaddr3, 0);
1183 gfar_write(&regs->igaddr4, 0);
1184 gfar_write(&regs->igaddr5, 0);
1185 gfar_write(&regs->igaddr6, 0);
1186 gfar_write(&regs->igaddr7, 0);
1187
1188 gfar_write(&regs->gaddr0, 0);
1189 gfar_write(&regs->gaddr1, 0);
1190 gfar_write(&regs->gaddr2, 0);
1191 gfar_write(&regs->gaddr3, 0);
1192 gfar_write(&regs->gaddr4, 0);
1193 gfar_write(&regs->gaddr5, 0);
1194 gfar_write(&regs->gaddr6, 0);
1195 gfar_write(&regs->gaddr7, 0);
1196
1197 if (priv->extended_hash)
1198 gfar_clear_exact_match(priv->ndev);
1199
1200 gfar_mac_rx_config(priv);
1201
1202 gfar_mac_tx_config(priv);
1203
1204 gfar_set_mac_address(priv->ndev);
1205
1206 gfar_set_multi(priv->ndev);
1207
1208 /* clear ievent and imask before configuring coalescing */
1209 gfar_ints_disable(priv);
1210
1211 /* Configure the coalescing support */
1212 gfar_configure_coalescing_all(priv);
1213 }
1214
1215 static void gfar_hw_init(struct gfar_private *priv)
1216 {
1217 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1218 u32 attrs;
1219
1220 /* Stop the DMA engine now, in case it was running before
1221 * (The firmware could have used it, and left it running).
1222 */
1223 gfar_halt(priv);
1224
1225 gfar_mac_reset(priv);
1226
1227 /* Zero out the rmon mib registers if it has them */
1228 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1229 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1230
1231 /* Mask off the CAM interrupts */
1232 gfar_write(&regs->rmon.cam1, 0xffffffff);
1233 gfar_write(&regs->rmon.cam2, 0xffffffff);
1234 }
1235
1236 /* Initialize ECNTRL */
1237 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1238
1239 /* Set the extraction length and index */
1240 attrs = ATTRELI_EL(priv->rx_stash_size) |
1241 ATTRELI_EI(priv->rx_stash_index);
1242
1243 gfar_write(&regs->attreli, attrs);
1244
1245 /* Start with defaults, and add stashing
1246 * depending on driver parameters
1247 */
1248 attrs = ATTR_INIT_SETTINGS;
1249
1250 if (priv->bd_stash_en)
1251 attrs |= ATTR_BDSTASH;
1252
1253 if (priv->rx_stash_size != 0)
1254 attrs |= ATTR_BUFSTASH;
1255
1256 gfar_write(&regs->attr, attrs);
1257
1258 /* FIFO configs */
1259 gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1260 gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1261 gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1262
1263 /* Program the interrupt steering regs, only for MG devices */
1264 if (priv->num_grps > 1)
1265 gfar_write_isrg(priv);
1266 }
1267
1268 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1269 {
1270 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1271
1272 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1273 priv->extended_hash = 1;
1274 priv->hash_width = 9;
1275
1276 priv->hash_regs[0] = &regs->igaddr0;
1277 priv->hash_regs[1] = &regs->igaddr1;
1278 priv->hash_regs[2] = &regs->igaddr2;
1279 priv->hash_regs[3] = &regs->igaddr3;
1280 priv->hash_regs[4] = &regs->igaddr4;
1281 priv->hash_regs[5] = &regs->igaddr5;
1282 priv->hash_regs[6] = &regs->igaddr6;
1283 priv->hash_regs[7] = &regs->igaddr7;
1284 priv->hash_regs[8] = &regs->gaddr0;
1285 priv->hash_regs[9] = &regs->gaddr1;
1286 priv->hash_regs[10] = &regs->gaddr2;
1287 priv->hash_regs[11] = &regs->gaddr3;
1288 priv->hash_regs[12] = &regs->gaddr4;
1289 priv->hash_regs[13] = &regs->gaddr5;
1290 priv->hash_regs[14] = &regs->gaddr6;
1291 priv->hash_regs[15] = &regs->gaddr7;
1292
1293 } else {
1294 priv->extended_hash = 0;
1295 priv->hash_width = 8;
1296
1297 priv->hash_regs[0] = &regs->gaddr0;
1298 priv->hash_regs[1] = &regs->gaddr1;
1299 priv->hash_regs[2] = &regs->gaddr2;
1300 priv->hash_regs[3] = &regs->gaddr3;
1301 priv->hash_regs[4] = &regs->gaddr4;
1302 priv->hash_regs[5] = &regs->gaddr5;
1303 priv->hash_regs[6] = &regs->gaddr6;
1304 priv->hash_regs[7] = &regs->gaddr7;
1305 }
1306 }
1307
1308 /* Set up the ethernet device structure, private data,
1309 * and anything else we need before we start
1310 */
1311 static int gfar_probe(struct platform_device *ofdev)
1312 {
1313 struct net_device *dev = NULL;
1314 struct gfar_private *priv = NULL;
1315 int err = 0, i;
1316
1317 err = gfar_of_init(ofdev, &dev);
1318
1319 if (err)
1320 return err;
1321
1322 priv = netdev_priv(dev);
1323 priv->ndev = dev;
1324 priv->ofdev = ofdev;
1325 priv->dev = &ofdev->dev;
1326 SET_NETDEV_DEV(dev, &ofdev->dev);
1327
1328 INIT_WORK(&priv->reset_task, gfar_reset_task);
1329
1330 platform_set_drvdata(ofdev, priv);
1331
1332 gfar_detect_errata(priv);
1333
1334 /* Set the dev->base_addr to the gfar reg region */
1335 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1336
1337 /* Fill in the dev structure */
1338 dev->watchdog_timeo = TX_TIMEOUT;
1339 dev->mtu = 1500;
1340 dev->netdev_ops = &gfar_netdev_ops;
1341 dev->ethtool_ops = &gfar_ethtool_ops;
1342
1343 /* Register for napi ...We are registering NAPI for each grp */
1344 for (i = 0; i < priv->num_grps; i++) {
1345 if (priv->poll_mode == GFAR_SQ_POLLING) {
1346 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1347 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1348 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1349 gfar_poll_tx_sq, 2);
1350 } else {
1351 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1352 gfar_poll_rx, GFAR_DEV_WEIGHT);
1353 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1354 gfar_poll_tx, 2);
1355 }
1356 }
1357
1358 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1359 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1360 NETIF_F_RXCSUM;
1361 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1362 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1363 }
1364
1365 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1366 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1367 NETIF_F_HW_VLAN_CTAG_RX;
1368 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1369 }
1370
1371 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1372
1373 gfar_init_addr_hash_table(priv);
1374
1375 /* Insert receive time stamps into padding alignment bytes */
1376 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1377 priv->padding = 8;
1378
1379 if (dev->features & NETIF_F_IP_CSUM ||
1380 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1381 dev->needed_headroom = GMAC_FCB_LEN;
1382
1383 /* Initializing some of the rx/tx queue level parameters */
1384 for (i = 0; i < priv->num_tx_queues; i++) {
1385 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1386 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1387 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1388 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1389 }
1390
1391 for (i = 0; i < priv->num_rx_queues; i++) {
1392 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1393 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1394 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1395 }
1396
1397 /* Always enable rx filer if available */
1398 priv->rx_filer_enable =
1399 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1400 /* Enable most messages by default */
1401 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1402 /* use pritority h/w tx queue scheduling for single queue devices */
1403 if (priv->num_tx_queues == 1)
1404 priv->prio_sched_en = 1;
1405
1406 set_bit(GFAR_DOWN, &priv->state);
1407
1408 gfar_hw_init(priv);
1409
1410 /* Carrier starts down, phylib will bring it up */
1411 netif_carrier_off(dev);
1412
1413 err = register_netdev(dev);
1414
1415 if (err) {
1416 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1417 goto register_fail;
1418 }
1419
1420 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1421 priv->wol_supported |= GFAR_WOL_MAGIC;
1422
1423 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1424 priv->rx_filer_enable)
1425 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1426
1427 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1428
1429 /* fill out IRQ number and name fields */
1430 for (i = 0; i < priv->num_grps; i++) {
1431 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1432 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1433 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1434 dev->name, "_g", '0' + i, "_tx");
1435 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1436 dev->name, "_g", '0' + i, "_rx");
1437 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1438 dev->name, "_g", '0' + i, "_er");
1439 } else
1440 strcpy(gfar_irq(grp, TX)->name, dev->name);
1441 }
1442
1443 /* Initialize the filer table */
1444 gfar_init_filer_table(priv);
1445
1446 /* Print out the device info */
1447 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1448
1449 /* Even more device info helps when determining which kernel
1450 * provided which set of benchmarks.
1451 */
1452 netdev_info(dev, "Running with NAPI enabled\n");
1453 for (i = 0; i < priv->num_rx_queues; i++)
1454 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1455 i, priv->rx_queue[i]->rx_ring_size);
1456 for (i = 0; i < priv->num_tx_queues; i++)
1457 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1458 i, priv->tx_queue[i]->tx_ring_size);
1459
1460 return 0;
1461
1462 register_fail:
1463 unmap_group_regs(priv);
1464 gfar_free_rx_queues(priv);
1465 gfar_free_tx_queues(priv);
1466 of_node_put(priv->phy_node);
1467 of_node_put(priv->tbi_node);
1468 free_gfar_dev(priv);
1469 return err;
1470 }
1471
1472 static int gfar_remove(struct platform_device *ofdev)
1473 {
1474 struct gfar_private *priv = platform_get_drvdata(ofdev);
1475
1476 of_node_put(priv->phy_node);
1477 of_node_put(priv->tbi_node);
1478
1479 unregister_netdev(priv->ndev);
1480 unmap_group_regs(priv);
1481 gfar_free_rx_queues(priv);
1482 gfar_free_tx_queues(priv);
1483 free_gfar_dev(priv);
1484
1485 return 0;
1486 }
1487
1488 #ifdef CONFIG_PM
1489
1490 static void __gfar_filer_disable(struct gfar_private *priv)
1491 {
1492 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1493 u32 temp;
1494
1495 temp = gfar_read(&regs->rctrl);
1496 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1497 gfar_write(&regs->rctrl, temp);
1498 }
1499
1500 static void __gfar_filer_enable(struct gfar_private *priv)
1501 {
1502 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1503 u32 temp;
1504
1505 temp = gfar_read(&regs->rctrl);
1506 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1507 gfar_write(&regs->rctrl, temp);
1508 }
1509
1510 /* Filer rules implementing wol capabilities */
1511 static void gfar_filer_config_wol(struct gfar_private *priv)
1512 {
1513 unsigned int i;
1514 u32 rqfcr;
1515
1516 __gfar_filer_disable(priv);
1517
1518 /* clear the filer table, reject any packet by default */
1519 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1520 for (i = 0; i <= MAX_FILER_IDX; i++)
1521 gfar_write_filer(priv, i, rqfcr, 0);
1522
1523 i = 0;
1524 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1525 /* unicast packet, accept it */
1526 struct net_device *ndev = priv->ndev;
1527 /* get the default rx queue index */
1528 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1529 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1530 (ndev->dev_addr[1] << 8) |
1531 ndev->dev_addr[2];
1532
1533 rqfcr = (qindex << 10) | RQFCR_AND |
1534 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1535
1536 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1537
1538 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1539 (ndev->dev_addr[4] << 8) |
1540 ndev->dev_addr[5];
1541 rqfcr = (qindex << 10) | RQFCR_GPI |
1542 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1543 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1544 }
1545
1546 __gfar_filer_enable(priv);
1547 }
1548
1549 static void gfar_filer_restore_table(struct gfar_private *priv)
1550 {
1551 u32 rqfcr, rqfpr;
1552 unsigned int i;
1553
1554 __gfar_filer_disable(priv);
1555
1556 for (i = 0; i <= MAX_FILER_IDX; i++) {
1557 rqfcr = priv->ftp_rqfcr[i];
1558 rqfpr = priv->ftp_rqfpr[i];
1559 gfar_write_filer(priv, i, rqfcr, rqfpr);
1560 }
1561
1562 __gfar_filer_enable(priv);
1563 }
1564
1565 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1566 static void gfar_start_wol_filer(struct gfar_private *priv)
1567 {
1568 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1569 u32 tempval;
1570 int i = 0;
1571
1572 /* Enable Rx hw queues */
1573 gfar_write(&regs->rqueue, priv->rqueue);
1574
1575 /* Initialize DMACTRL to have WWR and WOP */
1576 tempval = gfar_read(&regs->dmactrl);
1577 tempval |= DMACTRL_INIT_SETTINGS;
1578 gfar_write(&regs->dmactrl, tempval);
1579
1580 /* Make sure we aren't stopped */
1581 tempval = gfar_read(&regs->dmactrl);
1582 tempval &= ~DMACTRL_GRS;
1583 gfar_write(&regs->dmactrl, tempval);
1584
1585 for (i = 0; i < priv->num_grps; i++) {
1586 regs = priv->gfargrp[i].regs;
1587 /* Clear RHLT, so that the DMA starts polling now */
1588 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1589 /* enable the Filer General Purpose Interrupt */
1590 gfar_write(&regs->imask, IMASK_FGPI);
1591 }
1592
1593 /* Enable Rx DMA */
1594 tempval = gfar_read(&regs->maccfg1);
1595 tempval |= MACCFG1_RX_EN;
1596 gfar_write(&regs->maccfg1, tempval);
1597 }
1598
1599 static int gfar_suspend(struct device *dev)
1600 {
1601 struct gfar_private *priv = dev_get_drvdata(dev);
1602 struct net_device *ndev = priv->ndev;
1603 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1604 u32 tempval;
1605 u16 wol = priv->wol_opts;
1606
1607 if (!netif_running(ndev))
1608 return 0;
1609
1610 disable_napi(priv);
1611 netif_tx_lock(ndev);
1612 netif_device_detach(ndev);
1613 netif_tx_unlock(ndev);
1614
1615 gfar_halt(priv);
1616
1617 if (wol & GFAR_WOL_MAGIC) {
1618 /* Enable interrupt on Magic Packet */
1619 gfar_write(&regs->imask, IMASK_MAG);
1620
1621 /* Enable Magic Packet mode */
1622 tempval = gfar_read(&regs->maccfg2);
1623 tempval |= MACCFG2_MPEN;
1624 gfar_write(&regs->maccfg2, tempval);
1625
1626 /* re-enable the Rx block */
1627 tempval = gfar_read(&regs->maccfg1);
1628 tempval |= MACCFG1_RX_EN;
1629 gfar_write(&regs->maccfg1, tempval);
1630
1631 } else if (wol & GFAR_WOL_FILER_UCAST) {
1632 gfar_filer_config_wol(priv);
1633 gfar_start_wol_filer(priv);
1634
1635 } else {
1636 phy_stop(priv->phydev);
1637 }
1638
1639 return 0;
1640 }
1641
1642 static int gfar_resume(struct device *dev)
1643 {
1644 struct gfar_private *priv = dev_get_drvdata(dev);
1645 struct net_device *ndev = priv->ndev;
1646 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1647 u32 tempval;
1648 u16 wol = priv->wol_opts;
1649
1650 if (!netif_running(ndev))
1651 return 0;
1652
1653 if (wol & GFAR_WOL_MAGIC) {
1654 /* Disable Magic Packet mode */
1655 tempval = gfar_read(&regs->maccfg2);
1656 tempval &= ~MACCFG2_MPEN;
1657 gfar_write(&regs->maccfg2, tempval);
1658
1659 } else if (wol & GFAR_WOL_FILER_UCAST) {
1660 /* need to stop rx only, tx is already down */
1661 gfar_halt(priv);
1662 gfar_filer_restore_table(priv);
1663
1664 } else {
1665 phy_start(priv->phydev);
1666 }
1667
1668 gfar_start(priv);
1669
1670 netif_device_attach(ndev);
1671 enable_napi(priv);
1672
1673 return 0;
1674 }
1675
1676 static int gfar_restore(struct device *dev)
1677 {
1678 struct gfar_private *priv = dev_get_drvdata(dev);
1679 struct net_device *ndev = priv->ndev;
1680
1681 if (!netif_running(ndev)) {
1682 netif_device_attach(ndev);
1683
1684 return 0;
1685 }
1686
1687 gfar_init_bds(ndev);
1688
1689 gfar_mac_reset(priv);
1690
1691 gfar_init_tx_rx_base(priv);
1692
1693 gfar_start(priv);
1694
1695 priv->oldlink = 0;
1696 priv->oldspeed = 0;
1697 priv->oldduplex = -1;
1698
1699 if (priv->phydev)
1700 phy_start(priv->phydev);
1701
1702 netif_device_attach(ndev);
1703 enable_napi(priv);
1704
1705 return 0;
1706 }
1707
1708 static struct dev_pm_ops gfar_pm_ops = {
1709 .suspend = gfar_suspend,
1710 .resume = gfar_resume,
1711 .freeze = gfar_suspend,
1712 .thaw = gfar_resume,
1713 .restore = gfar_restore,
1714 };
1715
1716 #define GFAR_PM_OPS (&gfar_pm_ops)
1717
1718 #else
1719
1720 #define GFAR_PM_OPS NULL
1721
1722 #endif
1723
1724 /* Reads the controller's registers to determine what interface
1725 * connects it to the PHY.
1726 */
1727 static phy_interface_t gfar_get_interface(struct net_device *dev)
1728 {
1729 struct gfar_private *priv = netdev_priv(dev);
1730 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1731 u32 ecntrl;
1732
1733 ecntrl = gfar_read(&regs->ecntrl);
1734
1735 if (ecntrl & ECNTRL_SGMII_MODE)
1736 return PHY_INTERFACE_MODE_SGMII;
1737
1738 if (ecntrl & ECNTRL_TBI_MODE) {
1739 if (ecntrl & ECNTRL_REDUCED_MODE)
1740 return PHY_INTERFACE_MODE_RTBI;
1741 else
1742 return PHY_INTERFACE_MODE_TBI;
1743 }
1744
1745 if (ecntrl & ECNTRL_REDUCED_MODE) {
1746 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1747 return PHY_INTERFACE_MODE_RMII;
1748 }
1749 else {
1750 phy_interface_t interface = priv->interface;
1751
1752 /* This isn't autodetected right now, so it must
1753 * be set by the device tree or platform code.
1754 */
1755 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1756 return PHY_INTERFACE_MODE_RGMII_ID;
1757
1758 return PHY_INTERFACE_MODE_RGMII;
1759 }
1760 }
1761
1762 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1763 return PHY_INTERFACE_MODE_GMII;
1764
1765 return PHY_INTERFACE_MODE_MII;
1766 }
1767
1768
1769 /* Initializes driver's PHY state, and attaches to the PHY.
1770 * Returns 0 on success.
1771 */
1772 static int init_phy(struct net_device *dev)
1773 {
1774 struct gfar_private *priv = netdev_priv(dev);
1775 uint gigabit_support =
1776 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1777 GFAR_SUPPORTED_GBIT : 0;
1778 phy_interface_t interface;
1779
1780 priv->oldlink = 0;
1781 priv->oldspeed = 0;
1782 priv->oldduplex = -1;
1783
1784 interface = gfar_get_interface(dev);
1785
1786 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1787 interface);
1788 if (!priv->phydev) {
1789 dev_err(&dev->dev, "could not attach to PHY\n");
1790 return -ENODEV;
1791 }
1792
1793 if (interface == PHY_INTERFACE_MODE_SGMII)
1794 gfar_configure_serdes(dev);
1795
1796 /* Remove any features not supported by the controller */
1797 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1798 priv->phydev->advertising = priv->phydev->supported;
1799
1800 /* Add support for flow control, but don't advertise it by default */
1801 priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1802
1803 return 0;
1804 }
1805
1806 /* Initialize TBI PHY interface for communicating with the
1807 * SERDES lynx PHY on the chip. We communicate with this PHY
1808 * through the MDIO bus on each controller, treating it as a
1809 * "normal" PHY at the address found in the TBIPA register. We assume
1810 * that the TBIPA register is valid. Either the MDIO bus code will set
1811 * it to a value that doesn't conflict with other PHYs on the bus, or the
1812 * value doesn't matter, as there are no other PHYs on the bus.
1813 */
1814 static void gfar_configure_serdes(struct net_device *dev)
1815 {
1816 struct gfar_private *priv = netdev_priv(dev);
1817 struct phy_device *tbiphy;
1818
1819 if (!priv->tbi_node) {
1820 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1821 "device tree specify a tbi-handle\n");
1822 return;
1823 }
1824
1825 tbiphy = of_phy_find_device(priv->tbi_node);
1826 if (!tbiphy) {
1827 dev_err(&dev->dev, "error: Could not get TBI device\n");
1828 return;
1829 }
1830
1831 /* If the link is already up, we must already be ok, and don't need to
1832 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1833 * everything for us? Resetting it takes the link down and requires
1834 * several seconds for it to come back.
1835 */
1836 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1837 put_device(&tbiphy->mdio.dev);
1838 return;
1839 }
1840
1841 /* Single clk mode, mii mode off(for serdes communication) */
1842 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1843
1844 phy_write(tbiphy, MII_ADVERTISE,
1845 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1846 ADVERTISE_1000XPSE_ASYM);
1847
1848 phy_write(tbiphy, MII_BMCR,
1849 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1850 BMCR_SPEED1000);
1851
1852 put_device(&tbiphy->mdio.dev);
1853 }
1854
1855 static int __gfar_is_rx_idle(struct gfar_private *priv)
1856 {
1857 u32 res;
1858
1859 /* Normaly TSEC should not hang on GRS commands, so we should
1860 * actually wait for IEVENT_GRSC flag.
1861 */
1862 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1863 return 0;
1864
1865 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1866 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1867 * and the Rx can be safely reset.
1868 */
1869 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1870 res &= 0x7f807f80;
1871 if ((res & 0xffff) == (res >> 16))
1872 return 1;
1873
1874 return 0;
1875 }
1876
1877 /* Halt the receive and transmit queues */
1878 static void gfar_halt_nodisable(struct gfar_private *priv)
1879 {
1880 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1881 u32 tempval;
1882 unsigned int timeout;
1883 int stopped;
1884
1885 gfar_ints_disable(priv);
1886
1887 if (gfar_is_dma_stopped(priv))
1888 return;
1889
1890 /* Stop the DMA, and wait for it to stop */
1891 tempval = gfar_read(&regs->dmactrl);
1892 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1893 gfar_write(&regs->dmactrl, tempval);
1894
1895 retry:
1896 timeout = 1000;
1897 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1898 cpu_relax();
1899 timeout--;
1900 }
1901
1902 if (!timeout)
1903 stopped = gfar_is_dma_stopped(priv);
1904
1905 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1906 !__gfar_is_rx_idle(priv))
1907 goto retry;
1908 }
1909
1910 /* Halt the receive and transmit queues */
1911 void gfar_halt(struct gfar_private *priv)
1912 {
1913 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1914 u32 tempval;
1915
1916 /* Dissable the Rx/Tx hw queues */
1917 gfar_write(&regs->rqueue, 0);
1918 gfar_write(&regs->tqueue, 0);
1919
1920 mdelay(10);
1921
1922 gfar_halt_nodisable(priv);
1923
1924 /* Disable Rx/Tx DMA */
1925 tempval = gfar_read(&regs->maccfg1);
1926 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1927 gfar_write(&regs->maccfg1, tempval);
1928 }
1929
1930 void stop_gfar(struct net_device *dev)
1931 {
1932 struct gfar_private *priv = netdev_priv(dev);
1933
1934 netif_tx_stop_all_queues(dev);
1935
1936 smp_mb__before_atomic();
1937 set_bit(GFAR_DOWN, &priv->state);
1938 smp_mb__after_atomic();
1939
1940 disable_napi(priv);
1941
1942 /* disable ints and gracefully shut down Rx/Tx DMA */
1943 gfar_halt(priv);
1944
1945 phy_stop(priv->phydev);
1946
1947 free_skb_resources(priv);
1948 }
1949
1950 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1951 {
1952 struct txbd8 *txbdp;
1953 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1954 int i, j;
1955
1956 txbdp = tx_queue->tx_bd_base;
1957
1958 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1959 if (!tx_queue->tx_skbuff[i])
1960 continue;
1961
1962 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1963 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1964 txbdp->lstatus = 0;
1965 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1966 j++) {
1967 txbdp++;
1968 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1969 be16_to_cpu(txbdp->length),
1970 DMA_TO_DEVICE);
1971 }
1972 txbdp++;
1973 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1974 tx_queue->tx_skbuff[i] = NULL;
1975 }
1976 kfree(tx_queue->tx_skbuff);
1977 tx_queue->tx_skbuff = NULL;
1978 }
1979
1980 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1981 {
1982 int i;
1983
1984 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1985
1986 if (rx_queue->skb)
1987 dev_kfree_skb(rx_queue->skb);
1988
1989 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1990 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1991
1992 rxbdp->lstatus = 0;
1993 rxbdp->bufPtr = 0;
1994 rxbdp++;
1995
1996 if (!rxb->page)
1997 continue;
1998
1999 dma_unmap_single(rx_queue->dev, rxb->dma,
2000 PAGE_SIZE, DMA_FROM_DEVICE);
2001 __free_page(rxb->page);
2002
2003 rxb->page = NULL;
2004 }
2005
2006 kfree(rx_queue->rx_buff);
2007 rx_queue->rx_buff = NULL;
2008 }
2009
2010 /* If there are any tx skbs or rx skbs still around, free them.
2011 * Then free tx_skbuff and rx_skbuff
2012 */
2013 static void free_skb_resources(struct gfar_private *priv)
2014 {
2015 struct gfar_priv_tx_q *tx_queue = NULL;
2016 struct gfar_priv_rx_q *rx_queue = NULL;
2017 int i;
2018
2019 /* Go through all the buffer descriptors and free their data buffers */
2020 for (i = 0; i < priv->num_tx_queues; i++) {
2021 struct netdev_queue *txq;
2022
2023 tx_queue = priv->tx_queue[i];
2024 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2025 if (tx_queue->tx_skbuff)
2026 free_skb_tx_queue(tx_queue);
2027 netdev_tx_reset_queue(txq);
2028 }
2029
2030 for (i = 0; i < priv->num_rx_queues; i++) {
2031 rx_queue = priv->rx_queue[i];
2032 if (rx_queue->rx_buff)
2033 free_skb_rx_queue(rx_queue);
2034 }
2035
2036 dma_free_coherent(priv->dev,
2037 sizeof(struct txbd8) * priv->total_tx_ring_size +
2038 sizeof(struct rxbd8) * priv->total_rx_ring_size,
2039 priv->tx_queue[0]->tx_bd_base,
2040 priv->tx_queue[0]->tx_bd_dma_base);
2041 }
2042
2043 void gfar_start(struct gfar_private *priv)
2044 {
2045 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2046 u32 tempval;
2047 int i = 0;
2048
2049 /* Enable Rx/Tx hw queues */
2050 gfar_write(&regs->rqueue, priv->rqueue);
2051 gfar_write(&regs->tqueue, priv->tqueue);
2052
2053 /* Initialize DMACTRL to have WWR and WOP */
2054 tempval = gfar_read(&regs->dmactrl);
2055 tempval |= DMACTRL_INIT_SETTINGS;
2056 gfar_write(&regs->dmactrl, tempval);
2057
2058 /* Make sure we aren't stopped */
2059 tempval = gfar_read(&regs->dmactrl);
2060 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2061 gfar_write(&regs->dmactrl, tempval);
2062
2063 for (i = 0; i < priv->num_grps; i++) {
2064 regs = priv->gfargrp[i].regs;
2065 /* Clear THLT/RHLT, so that the DMA starts polling now */
2066 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2067 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2068 }
2069
2070 /* Enable Rx/Tx DMA */
2071 tempval = gfar_read(&regs->maccfg1);
2072 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2073 gfar_write(&regs->maccfg1, tempval);
2074
2075 gfar_ints_enable(priv);
2076
2077 priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2078 }
2079
2080 static void free_grp_irqs(struct gfar_priv_grp *grp)
2081 {
2082 free_irq(gfar_irq(grp, TX)->irq, grp);
2083 free_irq(gfar_irq(grp, RX)->irq, grp);
2084 free_irq(gfar_irq(grp, ER)->irq, grp);
2085 }
2086
2087 static int register_grp_irqs(struct gfar_priv_grp *grp)
2088 {
2089 struct gfar_private *priv = grp->priv;
2090 struct net_device *dev = priv->ndev;
2091 int err;
2092
2093 /* If the device has multiple interrupts, register for
2094 * them. Otherwise, only register for the one
2095 */
2096 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2097 /* Install our interrupt handlers for Error,
2098 * Transmit, and Receive
2099 */
2100 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2101 gfar_irq(grp, ER)->name, grp);
2102 if (err < 0) {
2103 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2104 gfar_irq(grp, ER)->irq);
2105
2106 goto err_irq_fail;
2107 }
2108 enable_irq_wake(gfar_irq(grp, ER)->irq);
2109
2110 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2111 gfar_irq(grp, TX)->name, grp);
2112 if (err < 0) {
2113 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2114 gfar_irq(grp, TX)->irq);
2115 goto tx_irq_fail;
2116 }
2117 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2118 gfar_irq(grp, RX)->name, grp);
2119 if (err < 0) {
2120 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2121 gfar_irq(grp, RX)->irq);
2122 goto rx_irq_fail;
2123 }
2124 enable_irq_wake(gfar_irq(grp, RX)->irq);
2125
2126 } else {
2127 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2128 gfar_irq(grp, TX)->name, grp);
2129 if (err < 0) {
2130 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2131 gfar_irq(grp, TX)->irq);
2132 goto err_irq_fail;
2133 }
2134 enable_irq_wake(gfar_irq(grp, TX)->irq);
2135 }
2136
2137 return 0;
2138
2139 rx_irq_fail:
2140 free_irq(gfar_irq(grp, TX)->irq, grp);
2141 tx_irq_fail:
2142 free_irq(gfar_irq(grp, ER)->irq, grp);
2143 err_irq_fail:
2144 return err;
2145
2146 }
2147
2148 static void gfar_free_irq(struct gfar_private *priv)
2149 {
2150 int i;
2151
2152 /* Free the IRQs */
2153 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2154 for (i = 0; i < priv->num_grps; i++)
2155 free_grp_irqs(&priv->gfargrp[i]);
2156 } else {
2157 for (i = 0; i < priv->num_grps; i++)
2158 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2159 &priv->gfargrp[i]);
2160 }
2161 }
2162
2163 static int gfar_request_irq(struct gfar_private *priv)
2164 {
2165 int err, i, j;
2166
2167 for (i = 0; i < priv->num_grps; i++) {
2168 err = register_grp_irqs(&priv->gfargrp[i]);
2169 if (err) {
2170 for (j = 0; j < i; j++)
2171 free_grp_irqs(&priv->gfargrp[j]);
2172 return err;
2173 }
2174 }
2175
2176 return 0;
2177 }
2178
2179 /* Bring the controller up and running */
2180 int startup_gfar(struct net_device *ndev)
2181 {
2182 struct gfar_private *priv = netdev_priv(ndev);
2183 int err;
2184
2185 gfar_mac_reset(priv);
2186
2187 err = gfar_alloc_skb_resources(ndev);
2188 if (err)
2189 return err;
2190
2191 gfar_init_tx_rx_base(priv);
2192
2193 smp_mb__before_atomic();
2194 clear_bit(GFAR_DOWN, &priv->state);
2195 smp_mb__after_atomic();
2196
2197 /* Start Rx/Tx DMA and enable the interrupts */
2198 gfar_start(priv);
2199
2200 /* force link state update after mac reset */
2201 priv->oldlink = 0;
2202 priv->oldspeed = 0;
2203 priv->oldduplex = -1;
2204
2205 phy_start(priv->phydev);
2206
2207 enable_napi(priv);
2208
2209 netif_tx_wake_all_queues(ndev);
2210
2211 return 0;
2212 }
2213
2214 /* Called when something needs to use the ethernet device
2215 * Returns 0 for success.
2216 */
2217 static int gfar_enet_open(struct net_device *dev)
2218 {
2219 struct gfar_private *priv = netdev_priv(dev);
2220 int err;
2221
2222 err = init_phy(dev);
2223 if (err)
2224 return err;
2225
2226 err = gfar_request_irq(priv);
2227 if (err)
2228 return err;
2229
2230 err = startup_gfar(dev);
2231 if (err)
2232 return err;
2233
2234 return err;
2235 }
2236
2237 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2238 {
2239 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2240
2241 memset(fcb, 0, GMAC_FCB_LEN);
2242
2243 return fcb;
2244 }
2245
2246 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2247 int fcb_length)
2248 {
2249 /* If we're here, it's a IP packet with a TCP or UDP
2250 * payload. We set it to checksum, using a pseudo-header
2251 * we provide
2252 */
2253 u8 flags = TXFCB_DEFAULT;
2254
2255 /* Tell the controller what the protocol is
2256 * And provide the already calculated phcs
2257 */
2258 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2259 flags |= TXFCB_UDP;
2260 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2261 } else
2262 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2263
2264 /* l3os is the distance between the start of the
2265 * frame (skb->data) and the start of the IP hdr.
2266 * l4os is the distance between the start of the
2267 * l3 hdr and the l4 hdr
2268 */
2269 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2270 fcb->l4os = skb_network_header_len(skb);
2271
2272 fcb->flags = flags;
2273 }
2274
2275 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2276 {
2277 fcb->flags |= TXFCB_VLN;
2278 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2279 }
2280
2281 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2282 struct txbd8 *base, int ring_size)
2283 {
2284 struct txbd8 *new_bd = bdp + stride;
2285
2286 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2287 }
2288
2289 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2290 int ring_size)
2291 {
2292 return skip_txbd(bdp, 1, base, ring_size);
2293 }
2294
2295 /* eTSEC12: csum generation not supported for some fcb offsets */
2296 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2297 unsigned long fcb_addr)
2298 {
2299 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2300 (fcb_addr % 0x20) > 0x18);
2301 }
2302
2303 /* eTSEC76: csum generation for frames larger than 2500 may
2304 * cause excess delays before start of transmission
2305 */
2306 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2307 unsigned int len)
2308 {
2309 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2310 (len > 2500));
2311 }
2312
2313 /* This is called by the kernel when a frame is ready for transmission.
2314 * It is pointed to by the dev->hard_start_xmit function pointer
2315 */
2316 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2317 {
2318 struct gfar_private *priv = netdev_priv(dev);
2319 struct gfar_priv_tx_q *tx_queue = NULL;
2320 struct netdev_queue *txq;
2321 struct gfar __iomem *regs = NULL;
2322 struct txfcb *fcb = NULL;
2323 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2324 u32 lstatus;
2325 skb_frag_t *frag;
2326 int i, rq = 0;
2327 int do_tstamp, do_csum, do_vlan;
2328 u32 bufaddr;
2329 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2330
2331 rq = skb->queue_mapping;
2332 tx_queue = priv->tx_queue[rq];
2333 txq = netdev_get_tx_queue(dev, rq);
2334 base = tx_queue->tx_bd_base;
2335 regs = tx_queue->grp->regs;
2336
2337 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2338 do_vlan = skb_vlan_tag_present(skb);
2339 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2340 priv->hwts_tx_en;
2341
2342 if (do_csum || do_vlan)
2343 fcb_len = GMAC_FCB_LEN;
2344
2345 /* check if time stamp should be generated */
2346 if (unlikely(do_tstamp))
2347 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2348
2349 /* make space for additional header when fcb is needed */
2350 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2351 struct sk_buff *skb_new;
2352
2353 skb_new = skb_realloc_headroom(skb, fcb_len);
2354 if (!skb_new) {
2355 dev->stats.tx_errors++;
2356 dev_kfree_skb_any(skb);
2357 return NETDEV_TX_OK;
2358 }
2359
2360 if (skb->sk)
2361 skb_set_owner_w(skb_new, skb->sk);
2362 dev_consume_skb_any(skb);
2363 skb = skb_new;
2364 }
2365
2366 /* total number of fragments in the SKB */
2367 nr_frags = skb_shinfo(skb)->nr_frags;
2368
2369 /* calculate the required number of TxBDs for this skb */
2370 if (unlikely(do_tstamp))
2371 nr_txbds = nr_frags + 2;
2372 else
2373 nr_txbds = nr_frags + 1;
2374
2375 /* check if there is space to queue this packet */
2376 if (nr_txbds > tx_queue->num_txbdfree) {
2377 /* no space, stop the queue */
2378 netif_tx_stop_queue(txq);
2379 dev->stats.tx_fifo_errors++;
2380 return NETDEV_TX_BUSY;
2381 }
2382
2383 /* Update transmit stats */
2384 bytes_sent = skb->len;
2385 tx_queue->stats.tx_bytes += bytes_sent;
2386 /* keep Tx bytes on wire for BQL accounting */
2387 GFAR_CB(skb)->bytes_sent = bytes_sent;
2388 tx_queue->stats.tx_packets++;
2389
2390 txbdp = txbdp_start = tx_queue->cur_tx;
2391 lstatus = be32_to_cpu(txbdp->lstatus);
2392
2393 /* Add TxPAL between FCB and frame if required */
2394 if (unlikely(do_tstamp)) {
2395 skb_push(skb, GMAC_TXPAL_LEN);
2396 memset(skb->data, 0, GMAC_TXPAL_LEN);
2397 }
2398
2399 /* Add TxFCB if required */
2400 if (fcb_len) {
2401 fcb = gfar_add_fcb(skb);
2402 lstatus |= BD_LFLAG(TXBD_TOE);
2403 }
2404
2405 /* Set up checksumming */
2406 if (do_csum) {
2407 gfar_tx_checksum(skb, fcb, fcb_len);
2408
2409 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2410 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2411 __skb_pull(skb, GMAC_FCB_LEN);
2412 skb_checksum_help(skb);
2413 if (do_vlan || do_tstamp) {
2414 /* put back a new fcb for vlan/tstamp TOE */
2415 fcb = gfar_add_fcb(skb);
2416 } else {
2417 /* Tx TOE not used */
2418 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2419 fcb = NULL;
2420 }
2421 }
2422 }
2423
2424 if (do_vlan)
2425 gfar_tx_vlan(skb, fcb);
2426
2427 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2428 DMA_TO_DEVICE);
2429 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2430 goto dma_map_err;
2431
2432 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2433
2434 /* Time stamp insertion requires one additional TxBD */
2435 if (unlikely(do_tstamp))
2436 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2437 tx_queue->tx_ring_size);
2438
2439 if (nr_frags == 0) {
2440 if (unlikely(do_tstamp)) {
2441 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2442
2443 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2444 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2445 } else {
2446 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2447 }
2448 } else {
2449 u32 lstatus_start = lstatus;
2450
2451 /* Place the fragment addresses and lengths into the TxBDs */
2452 frag = &skb_shinfo(skb)->frags[0];
2453 for (i = 0; i < nr_frags; i++, frag++) {
2454 unsigned int size;
2455
2456 /* Point at the next BD, wrapping as needed */
2457 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2458
2459 size = skb_frag_size(frag);
2460
2461 lstatus = be32_to_cpu(txbdp->lstatus) | size |
2462 BD_LFLAG(TXBD_READY);
2463
2464 /* Handle the last BD specially */
2465 if (i == nr_frags - 1)
2466 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2467
2468 bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2469 size, DMA_TO_DEVICE);
2470 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2471 goto dma_map_err;
2472
2473 /* set the TxBD length and buffer pointer */
2474 txbdp->bufPtr = cpu_to_be32(bufaddr);
2475 txbdp->lstatus = cpu_to_be32(lstatus);
2476 }
2477
2478 lstatus = lstatus_start;
2479 }
2480
2481 /* If time stamping is requested one additional TxBD must be set up. The
2482 * first TxBD points to the FCB and must have a data length of
2483 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2484 * the full frame length.
2485 */
2486 if (unlikely(do_tstamp)) {
2487 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2488
2489 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2490 bufaddr += fcb_len;
2491 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2492 (skb_headlen(skb) - fcb_len);
2493
2494 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2495 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2496 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2497
2498 /* Setup tx hardware time stamping */
2499 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2500 fcb->ptp = 1;
2501 } else {
2502 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2503 }
2504
2505 netdev_tx_sent_queue(txq, bytes_sent);
2506
2507 gfar_wmb();
2508
2509 txbdp_start->lstatus = cpu_to_be32(lstatus);
2510
2511 gfar_wmb(); /* force lstatus write before tx_skbuff */
2512
2513 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2514
2515 /* Update the current skb pointer to the next entry we will use
2516 * (wrapping if necessary)
2517 */
2518 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2519 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2520
2521 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2522
2523 /* We can work in parallel with gfar_clean_tx_ring(), except
2524 * when modifying num_txbdfree. Note that we didn't grab the lock
2525 * when we were reading the num_txbdfree and checking for available
2526 * space, that's because outside of this function it can only grow.
2527 */
2528 spin_lock_bh(&tx_queue->txlock);
2529 /* reduce TxBD free count */
2530 tx_queue->num_txbdfree -= (nr_txbds);
2531 spin_unlock_bh(&tx_queue->txlock);
2532
2533 /* If the next BD still needs to be cleaned up, then the bds
2534 * are full. We need to tell the kernel to stop sending us stuff.
2535 */
2536 if (!tx_queue->num_txbdfree) {
2537 netif_tx_stop_queue(txq);
2538
2539 dev->stats.tx_fifo_errors++;
2540 }
2541
2542 /* Tell the DMA to go go go */
2543 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2544
2545 return NETDEV_TX_OK;
2546
2547 dma_map_err:
2548 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2549 if (do_tstamp)
2550 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2551 for (i = 0; i < nr_frags; i++) {
2552 lstatus = be32_to_cpu(txbdp->lstatus);
2553 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2554 break;
2555
2556 lstatus &= ~BD_LFLAG(TXBD_READY);
2557 txbdp->lstatus = cpu_to_be32(lstatus);
2558 bufaddr = be32_to_cpu(txbdp->bufPtr);
2559 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2560 DMA_TO_DEVICE);
2561 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2562 }
2563 gfar_wmb();
2564 dev_kfree_skb_any(skb);
2565 return NETDEV_TX_OK;
2566 }
2567
2568 /* Stops the kernel queue, and halts the controller */
2569 static int gfar_close(struct net_device *dev)
2570 {
2571 struct gfar_private *priv = netdev_priv(dev);
2572
2573 cancel_work_sync(&priv->reset_task);
2574 stop_gfar(dev);
2575
2576 /* Disconnect from the PHY */
2577 phy_disconnect(priv->phydev);
2578 priv->phydev = NULL;
2579
2580 gfar_free_irq(priv);
2581
2582 return 0;
2583 }
2584
2585 /* Changes the mac address if the controller is not running. */
2586 static int gfar_set_mac_address(struct net_device *dev)
2587 {
2588 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2589
2590 return 0;
2591 }
2592
2593 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2594 {
2595 struct gfar_private *priv = netdev_priv(dev);
2596 int frame_size = new_mtu + ETH_HLEN;
2597
2598 if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2599 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2600 return -EINVAL;
2601 }
2602
2603 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2604 cpu_relax();
2605
2606 if (dev->flags & IFF_UP)
2607 stop_gfar(dev);
2608
2609 dev->mtu = new_mtu;
2610
2611 if (dev->flags & IFF_UP)
2612 startup_gfar(dev);
2613
2614 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2615
2616 return 0;
2617 }
2618
2619 void reset_gfar(struct net_device *ndev)
2620 {
2621 struct gfar_private *priv = netdev_priv(ndev);
2622
2623 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2624 cpu_relax();
2625
2626 stop_gfar(ndev);
2627 startup_gfar(ndev);
2628
2629 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2630 }
2631
2632 /* gfar_reset_task gets scheduled when a packet has not been
2633 * transmitted after a set amount of time.
2634 * For now, assume that clearing out all the structures, and
2635 * starting over will fix the problem.
2636 */
2637 static void gfar_reset_task(struct work_struct *work)
2638 {
2639 struct gfar_private *priv = container_of(work, struct gfar_private,
2640 reset_task);
2641 reset_gfar(priv->ndev);
2642 }
2643
2644 static void gfar_timeout(struct net_device *dev)
2645 {
2646 struct gfar_private *priv = netdev_priv(dev);
2647
2648 dev->stats.tx_errors++;
2649 schedule_work(&priv->reset_task);
2650 }
2651
2652 /* Interrupt Handler for Transmit complete */
2653 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2654 {
2655 struct net_device *dev = tx_queue->dev;
2656 struct netdev_queue *txq;
2657 struct gfar_private *priv = netdev_priv(dev);
2658 struct txbd8 *bdp, *next = NULL;
2659 struct txbd8 *lbdp = NULL;
2660 struct txbd8 *base = tx_queue->tx_bd_base;
2661 struct sk_buff *skb;
2662 int skb_dirtytx;
2663 int tx_ring_size = tx_queue->tx_ring_size;
2664 int frags = 0, nr_txbds = 0;
2665 int i;
2666 int howmany = 0;
2667 int tqi = tx_queue->qindex;
2668 unsigned int bytes_sent = 0;
2669 u32 lstatus;
2670 size_t buflen;
2671
2672 txq = netdev_get_tx_queue(dev, tqi);
2673 bdp = tx_queue->dirty_tx;
2674 skb_dirtytx = tx_queue->skb_dirtytx;
2675
2676 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2677
2678 frags = skb_shinfo(skb)->nr_frags;
2679
2680 /* When time stamping, one additional TxBD must be freed.
2681 * Also, we need to dma_unmap_single() the TxPAL.
2682 */
2683 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2684 nr_txbds = frags + 2;
2685 else
2686 nr_txbds = frags + 1;
2687
2688 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2689
2690 lstatus = be32_to_cpu(lbdp->lstatus);
2691
2692 /* Only clean completed frames */
2693 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2694 (lstatus & BD_LENGTH_MASK))
2695 break;
2696
2697 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2698 next = next_txbd(bdp, base, tx_ring_size);
2699 buflen = be16_to_cpu(next->length) +
2700 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2701 } else
2702 buflen = be16_to_cpu(bdp->length);
2703
2704 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2705 buflen, DMA_TO_DEVICE);
2706
2707 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2708 struct skb_shared_hwtstamps shhwtstamps;
2709 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2710 ~0x7UL);
2711
2712 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2713 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2714 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2715 skb_tstamp_tx(skb, &shhwtstamps);
2716 gfar_clear_txbd_status(bdp);
2717 bdp = next;
2718 }
2719
2720 gfar_clear_txbd_status(bdp);
2721 bdp = next_txbd(bdp, base, tx_ring_size);
2722
2723 for (i = 0; i < frags; i++) {
2724 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2725 be16_to_cpu(bdp->length),
2726 DMA_TO_DEVICE);
2727 gfar_clear_txbd_status(bdp);
2728 bdp = next_txbd(bdp, base, tx_ring_size);
2729 }
2730
2731 bytes_sent += GFAR_CB(skb)->bytes_sent;
2732
2733 dev_kfree_skb_any(skb);
2734
2735 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2736
2737 skb_dirtytx = (skb_dirtytx + 1) &
2738 TX_RING_MOD_MASK(tx_ring_size);
2739
2740 howmany++;
2741 spin_lock(&tx_queue->txlock);
2742 tx_queue->num_txbdfree += nr_txbds;
2743 spin_unlock(&tx_queue->txlock);
2744 }
2745
2746 /* If we freed a buffer, we can restart transmission, if necessary */
2747 if (tx_queue->num_txbdfree &&
2748 netif_tx_queue_stopped(txq) &&
2749 !(test_bit(GFAR_DOWN, &priv->state)))
2750 netif_wake_subqueue(priv->ndev, tqi);
2751
2752 /* Update dirty indicators */
2753 tx_queue->skb_dirtytx = skb_dirtytx;
2754 tx_queue->dirty_tx = bdp;
2755
2756 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2757 }
2758
2759 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2760 {
2761 struct page *page;
2762 dma_addr_t addr;
2763
2764 page = dev_alloc_page();
2765 if (unlikely(!page))
2766 return false;
2767
2768 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2769 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2770 __free_page(page);
2771
2772 return false;
2773 }
2774
2775 rxb->dma = addr;
2776 rxb->page = page;
2777 rxb->page_offset = 0;
2778
2779 return true;
2780 }
2781
2782 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2783 {
2784 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2785 struct gfar_extra_stats *estats = &priv->extra_stats;
2786
2787 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2788 atomic64_inc(&estats->rx_alloc_err);
2789 }
2790
2791 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2792 int alloc_cnt)
2793 {
2794 struct rxbd8 *bdp;
2795 struct gfar_rx_buff *rxb;
2796 int i;
2797
2798 i = rx_queue->next_to_use;
2799 bdp = &rx_queue->rx_bd_base[i];
2800 rxb = &rx_queue->rx_buff[i];
2801
2802 while (alloc_cnt--) {
2803 /* try reuse page */
2804 if (unlikely(!rxb->page)) {
2805 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2806 gfar_rx_alloc_err(rx_queue);
2807 break;
2808 }
2809 }
2810
2811 /* Setup the new RxBD */
2812 gfar_init_rxbdp(rx_queue, bdp,
2813 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2814
2815 /* Update to the next pointer */
2816 bdp++;
2817 rxb++;
2818
2819 if (unlikely(++i == rx_queue->rx_ring_size)) {
2820 i = 0;
2821 bdp = rx_queue->rx_bd_base;
2822 rxb = rx_queue->rx_buff;
2823 }
2824 }
2825
2826 rx_queue->next_to_use = i;
2827 rx_queue->next_to_alloc = i;
2828 }
2829
2830 static void count_errors(u32 lstatus, struct net_device *ndev)
2831 {
2832 struct gfar_private *priv = netdev_priv(ndev);
2833 struct net_device_stats *stats = &ndev->stats;
2834 struct gfar_extra_stats *estats = &priv->extra_stats;
2835
2836 /* If the packet was truncated, none of the other errors matter */
2837 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2838 stats->rx_length_errors++;
2839
2840 atomic64_inc(&estats->rx_trunc);
2841
2842 return;
2843 }
2844 /* Count the errors, if there were any */
2845 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2846 stats->rx_length_errors++;
2847
2848 if (lstatus & BD_LFLAG(RXBD_LARGE))
2849 atomic64_inc(&estats->rx_large);
2850 else
2851 atomic64_inc(&estats->rx_short);
2852 }
2853 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2854 stats->rx_frame_errors++;
2855 atomic64_inc(&estats->rx_nonoctet);
2856 }
2857 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2858 atomic64_inc(&estats->rx_crcerr);
2859 stats->rx_crc_errors++;
2860 }
2861 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2862 atomic64_inc(&estats->rx_overrun);
2863 stats->rx_over_errors++;
2864 }
2865 }
2866
2867 irqreturn_t gfar_receive(int irq, void *grp_id)
2868 {
2869 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2870 unsigned long flags;
2871 u32 imask, ievent;
2872
2873 ievent = gfar_read(&grp->regs->ievent);
2874
2875 if (unlikely(ievent & IEVENT_FGPI)) {
2876 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2877 return IRQ_HANDLED;
2878 }
2879
2880 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2881 spin_lock_irqsave(&grp->grplock, flags);
2882 imask = gfar_read(&grp->regs->imask);
2883 imask &= IMASK_RX_DISABLED;
2884 gfar_write(&grp->regs->imask, imask);
2885 spin_unlock_irqrestore(&grp->grplock, flags);
2886 __napi_schedule(&grp->napi_rx);
2887 } else {
2888 /* Clear IEVENT, so interrupts aren't called again
2889 * because of the packets that have already arrived.
2890 */
2891 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2892 }
2893
2894 return IRQ_HANDLED;
2895 }
2896
2897 /* Interrupt Handler for Transmit complete */
2898 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2899 {
2900 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2901 unsigned long flags;
2902 u32 imask;
2903
2904 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2905 spin_lock_irqsave(&grp->grplock, flags);
2906 imask = gfar_read(&grp->regs->imask);
2907 imask &= IMASK_TX_DISABLED;
2908 gfar_write(&grp->regs->imask, imask);
2909 spin_unlock_irqrestore(&grp->grplock, flags);
2910 __napi_schedule(&grp->napi_tx);
2911 } else {
2912 /* Clear IEVENT, so interrupts aren't called again
2913 * because of the packets that have already arrived.
2914 */
2915 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2916 }
2917
2918 return IRQ_HANDLED;
2919 }
2920
2921 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2922 struct sk_buff *skb, bool first)
2923 {
2924 unsigned int size = lstatus & BD_LENGTH_MASK;
2925 struct page *page = rxb->page;
2926
2927 /* Remove the FCS from the packet length */
2928 if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2929 size -= ETH_FCS_LEN;
2930
2931 if (likely(first))
2932 skb_put(skb, size);
2933 else
2934 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2935 rxb->page_offset + RXBUF_ALIGNMENT,
2936 size, GFAR_RXB_TRUESIZE);
2937
2938 /* try reuse page */
2939 if (unlikely(page_count(page) != 1))
2940 return false;
2941
2942 /* change offset to the other half */
2943 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2944
2945 atomic_inc(&page->_count);
2946
2947 return true;
2948 }
2949
2950 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2951 struct gfar_rx_buff *old_rxb)
2952 {
2953 struct gfar_rx_buff *new_rxb;
2954 u16 nta = rxq->next_to_alloc;
2955
2956 new_rxb = &rxq->rx_buff[nta];
2957
2958 /* find next buf that can reuse a page */
2959 nta++;
2960 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2961
2962 /* copy page reference */
2963 *new_rxb = *old_rxb;
2964
2965 /* sync for use by the device */
2966 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2967 old_rxb->page_offset,
2968 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2969 }
2970
2971 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2972 u32 lstatus, struct sk_buff *skb)
2973 {
2974 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2975 struct page *page = rxb->page;
2976 bool first = false;
2977
2978 if (likely(!skb)) {
2979 void *buff_addr = page_address(page) + rxb->page_offset;
2980
2981 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2982 if (unlikely(!skb)) {
2983 gfar_rx_alloc_err(rx_queue);
2984 return NULL;
2985 }
2986 skb_reserve(skb, RXBUF_ALIGNMENT);
2987 first = true;
2988 }
2989
2990 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2991 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2992
2993 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2994 /* reuse the free half of the page */
2995 gfar_reuse_rx_page(rx_queue, rxb);
2996 } else {
2997 /* page cannot be reused, unmap it */
2998 dma_unmap_page(rx_queue->dev, rxb->dma,
2999 PAGE_SIZE, DMA_FROM_DEVICE);
3000 }
3001
3002 /* clear rxb content */
3003 rxb->page = NULL;
3004
3005 return skb;
3006 }
3007
3008 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3009 {
3010 /* If valid headers were found, and valid sums
3011 * were verified, then we tell the kernel that no
3012 * checksumming is necessary. Otherwise, it is [FIXME]
3013 */
3014 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3015 (RXFCB_CIP | RXFCB_CTU))
3016 skb->ip_summed = CHECKSUM_UNNECESSARY;
3017 else
3018 skb_checksum_none_assert(skb);
3019 }
3020
3021 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3022 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3023 {
3024 struct gfar_private *priv = netdev_priv(ndev);
3025 struct rxfcb *fcb = NULL;
3026
3027 /* fcb is at the beginning if exists */
3028 fcb = (struct rxfcb *)skb->data;
3029
3030 /* Remove the FCB from the skb
3031 * Remove the padded bytes, if there are any
3032 */
3033 if (priv->uses_rxfcb)
3034 skb_pull(skb, GMAC_FCB_LEN);
3035
3036 /* Get receive timestamp from the skb */
3037 if (priv->hwts_rx_en) {
3038 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3039 u64 *ns = (u64 *) skb->data;
3040
3041 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3042 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
3043 }
3044
3045 if (priv->padding)
3046 skb_pull(skb, priv->padding);
3047
3048 if (ndev->features & NETIF_F_RXCSUM)
3049 gfar_rx_checksum(skb, fcb);
3050
3051 /* Tell the skb what kind of packet this is */
3052 skb->protocol = eth_type_trans(skb, ndev);
3053
3054 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3055 * Even if vlan rx accel is disabled, on some chips
3056 * RXFCB_VLN is pseudo randomly set.
3057 */
3058 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3059 be16_to_cpu(fcb->flags) & RXFCB_VLN)
3060 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3061 be16_to_cpu(fcb->vlctl));
3062 }
3063
3064 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3065 * until the budget/quota has been reached. Returns the number
3066 * of frames handled
3067 */
3068 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3069 {
3070 struct net_device *ndev = rx_queue->ndev;
3071 struct gfar_private *priv = netdev_priv(ndev);
3072 struct rxbd8 *bdp;
3073 int i, howmany = 0;
3074 struct sk_buff *skb = rx_queue->skb;
3075 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3076 unsigned int total_bytes = 0, total_pkts = 0;
3077
3078 /* Get the first full descriptor */
3079 i = rx_queue->next_to_clean;
3080
3081 while (rx_work_limit--) {
3082 u32 lstatus;
3083
3084 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3085 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3086 cleaned_cnt = 0;
3087 }
3088
3089 bdp = &rx_queue->rx_bd_base[i];
3090 lstatus = be32_to_cpu(bdp->lstatus);
3091 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3092 break;
3093
3094 /* order rx buffer descriptor reads */
3095 rmb();
3096
3097 /* fetch next to clean buffer from the ring */
3098 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3099 if (unlikely(!skb))
3100 break;
3101
3102 cleaned_cnt++;
3103 howmany++;
3104
3105 if (unlikely(++i == rx_queue->rx_ring_size))
3106 i = 0;
3107
3108 rx_queue->next_to_clean = i;
3109
3110 /* fetch next buffer if not the last in frame */
3111 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3112 continue;
3113
3114 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3115 count_errors(lstatus, ndev);
3116
3117 /* discard faulty buffer */
3118 dev_kfree_skb(skb);
3119 skb = NULL;
3120 rx_queue->stats.rx_dropped++;
3121 continue;
3122 }
3123
3124 /* Increment the number of packets */
3125 total_pkts++;
3126 total_bytes += skb->len;
3127
3128 skb_record_rx_queue(skb, rx_queue->qindex);
3129
3130 gfar_process_frame(ndev, skb);
3131
3132 /* Send the packet up the stack */
3133 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3134
3135 skb = NULL;
3136 }
3137
3138 /* Store incomplete frames for completion */
3139 rx_queue->skb = skb;
3140
3141 rx_queue->stats.rx_packets += total_pkts;
3142 rx_queue->stats.rx_bytes += total_bytes;
3143
3144 if (cleaned_cnt)
3145 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3146
3147 /* Update Last Free RxBD pointer for LFC */
3148 if (unlikely(priv->tx_actual_en)) {
3149 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3150
3151 gfar_write(rx_queue->rfbptr, bdp_dma);
3152 }
3153
3154 return howmany;
3155 }
3156
3157 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3158 {
3159 struct gfar_priv_grp *gfargrp =
3160 container_of(napi, struct gfar_priv_grp, napi_rx);
3161 struct gfar __iomem *regs = gfargrp->regs;
3162 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3163 int work_done = 0;
3164
3165 /* Clear IEVENT, so interrupts aren't called again
3166 * because of the packets that have already arrived
3167 */
3168 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3169
3170 work_done = gfar_clean_rx_ring(rx_queue, budget);
3171
3172 if (work_done < budget) {
3173 u32 imask;
3174 napi_complete(napi);
3175 /* Clear the halt bit in RSTAT */
3176 gfar_write(&regs->rstat, gfargrp->rstat);
3177
3178 spin_lock_irq(&gfargrp->grplock);
3179 imask = gfar_read(&regs->imask);
3180 imask |= IMASK_RX_DEFAULT;
3181 gfar_write(&regs->imask, imask);
3182 spin_unlock_irq(&gfargrp->grplock);
3183 }
3184
3185 return work_done;
3186 }
3187
3188 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3189 {
3190 struct gfar_priv_grp *gfargrp =
3191 container_of(napi, struct gfar_priv_grp, napi_tx);
3192 struct gfar __iomem *regs = gfargrp->regs;
3193 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3194 u32 imask;
3195
3196 /* Clear IEVENT, so interrupts aren't called again
3197 * because of the packets that have already arrived
3198 */
3199 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3200
3201 /* run Tx cleanup to completion */
3202 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3203 gfar_clean_tx_ring(tx_queue);
3204
3205 napi_complete(napi);
3206
3207 spin_lock_irq(&gfargrp->grplock);
3208 imask = gfar_read(&regs->imask);
3209 imask |= IMASK_TX_DEFAULT;
3210 gfar_write(&regs->imask, imask);
3211 spin_unlock_irq(&gfargrp->grplock);
3212
3213 return 0;
3214 }
3215
3216 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3217 {
3218 struct gfar_priv_grp *gfargrp =
3219 container_of(napi, struct gfar_priv_grp, napi_rx);
3220 struct gfar_private *priv = gfargrp->priv;
3221 struct gfar __iomem *regs = gfargrp->regs;
3222 struct gfar_priv_rx_q *rx_queue = NULL;
3223 int work_done = 0, work_done_per_q = 0;
3224 int i, budget_per_q = 0;
3225 unsigned long rstat_rxf;
3226 int num_act_queues;
3227
3228 /* Clear IEVENT, so interrupts aren't called again
3229 * because of the packets that have already arrived
3230 */
3231 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3232
3233 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3234
3235 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3236 if (num_act_queues)
3237 budget_per_q = budget/num_act_queues;
3238
3239 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3240 /* skip queue if not active */
3241 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3242 continue;
3243
3244 rx_queue = priv->rx_queue[i];
3245 work_done_per_q =
3246 gfar_clean_rx_ring(rx_queue, budget_per_q);
3247 work_done += work_done_per_q;
3248
3249 /* finished processing this queue */
3250 if (work_done_per_q < budget_per_q) {
3251 /* clear active queue hw indication */
3252 gfar_write(&regs->rstat,
3253 RSTAT_CLEAR_RXF0 >> i);
3254 num_act_queues--;
3255
3256 if (!num_act_queues)
3257 break;
3258 }
3259 }
3260
3261 if (!num_act_queues) {
3262 u32 imask;
3263 napi_complete(napi);
3264
3265 /* Clear the halt bit in RSTAT */
3266 gfar_write(&regs->rstat, gfargrp->rstat);
3267
3268 spin_lock_irq(&gfargrp->grplock);
3269 imask = gfar_read(&regs->imask);
3270 imask |= IMASK_RX_DEFAULT;
3271 gfar_write(&regs->imask, imask);
3272 spin_unlock_irq(&gfargrp->grplock);
3273 }
3274
3275 return work_done;
3276 }
3277
3278 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3279 {
3280 struct gfar_priv_grp *gfargrp =
3281 container_of(napi, struct gfar_priv_grp, napi_tx);
3282 struct gfar_private *priv = gfargrp->priv;
3283 struct gfar __iomem *regs = gfargrp->regs;
3284 struct gfar_priv_tx_q *tx_queue = NULL;
3285 int has_tx_work = 0;
3286 int i;
3287
3288 /* Clear IEVENT, so interrupts aren't called again
3289 * because of the packets that have already arrived
3290 */
3291 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3292
3293 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3294 tx_queue = priv->tx_queue[i];
3295 /* run Tx cleanup to completion */
3296 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3297 gfar_clean_tx_ring(tx_queue);
3298 has_tx_work = 1;
3299 }
3300 }
3301
3302 if (!has_tx_work) {
3303 u32 imask;
3304 napi_complete(napi);
3305
3306 spin_lock_irq(&gfargrp->grplock);
3307 imask = gfar_read(&regs->imask);
3308 imask |= IMASK_TX_DEFAULT;
3309 gfar_write(&regs->imask, imask);
3310 spin_unlock_irq(&gfargrp->grplock);
3311 }
3312
3313 return 0;
3314 }
3315
3316
3317 #ifdef CONFIG_NET_POLL_CONTROLLER
3318 /* Polling 'interrupt' - used by things like netconsole to send skbs
3319 * without having to re-enable interrupts. It's not called while
3320 * the interrupt routine is executing.
3321 */
3322 static void gfar_netpoll(struct net_device *dev)
3323 {
3324 struct gfar_private *priv = netdev_priv(dev);
3325 int i;
3326
3327 /* If the device has multiple interrupts, run tx/rx */
3328 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3329 for (i = 0; i < priv->num_grps; i++) {
3330 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3331
3332 disable_irq(gfar_irq(grp, TX)->irq);
3333 disable_irq(gfar_irq(grp, RX)->irq);
3334 disable_irq(gfar_irq(grp, ER)->irq);
3335 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3336 enable_irq(gfar_irq(grp, ER)->irq);
3337 enable_irq(gfar_irq(grp, RX)->irq);
3338 enable_irq(gfar_irq(grp, TX)->irq);
3339 }
3340 } else {
3341 for (i = 0; i < priv->num_grps; i++) {
3342 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3343
3344 disable_irq(gfar_irq(grp, TX)->irq);
3345 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3346 enable_irq(gfar_irq(grp, TX)->irq);
3347 }
3348 }
3349 }
3350 #endif
3351
3352 /* The interrupt handler for devices with one interrupt */
3353 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3354 {
3355 struct gfar_priv_grp *gfargrp = grp_id;
3356
3357 /* Save ievent for future reference */
3358 u32 events = gfar_read(&gfargrp->regs->ievent);
3359
3360 /* Check for reception */
3361 if (events & IEVENT_RX_MASK)
3362 gfar_receive(irq, grp_id);
3363
3364 /* Check for transmit completion */
3365 if (events & IEVENT_TX_MASK)
3366 gfar_transmit(irq, grp_id);
3367
3368 /* Check for errors */
3369 if (events & IEVENT_ERR_MASK)
3370 gfar_error(irq, grp_id);
3371
3372 return IRQ_HANDLED;
3373 }
3374
3375 /* Called every time the controller might need to be made
3376 * aware of new link state. The PHY code conveys this
3377 * information through variables in the phydev structure, and this
3378 * function converts those variables into the appropriate
3379 * register values, and can bring down the device if needed.
3380 */
3381 static void adjust_link(struct net_device *dev)
3382 {
3383 struct gfar_private *priv = netdev_priv(dev);
3384 struct phy_device *phydev = priv->phydev;
3385
3386 if (unlikely(phydev->link != priv->oldlink ||
3387 (phydev->link && (phydev->duplex != priv->oldduplex ||
3388 phydev->speed != priv->oldspeed))))
3389 gfar_update_link_state(priv);
3390 }
3391
3392 /* Update the hash table based on the current list of multicast
3393 * addresses we subscribe to. Also, change the promiscuity of
3394 * the device based on the flags (this function is called
3395 * whenever dev->flags is changed
3396 */
3397 static void gfar_set_multi(struct net_device *dev)
3398 {
3399 struct netdev_hw_addr *ha;
3400 struct gfar_private *priv = netdev_priv(dev);
3401 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3402 u32 tempval;
3403
3404 if (dev->flags & IFF_PROMISC) {
3405 /* Set RCTRL to PROM */
3406 tempval = gfar_read(&regs->rctrl);
3407 tempval |= RCTRL_PROM;
3408 gfar_write(&regs->rctrl, tempval);
3409 } else {
3410 /* Set RCTRL to not PROM */
3411 tempval = gfar_read(&regs->rctrl);
3412 tempval &= ~(RCTRL_PROM);
3413 gfar_write(&regs->rctrl, tempval);
3414 }
3415
3416 if (dev->flags & IFF_ALLMULTI) {
3417 /* Set the hash to rx all multicast frames */
3418 gfar_write(&regs->igaddr0, 0xffffffff);
3419 gfar_write(&regs->igaddr1, 0xffffffff);
3420 gfar_write(&regs->igaddr2, 0xffffffff);
3421 gfar_write(&regs->igaddr3, 0xffffffff);
3422 gfar_write(&regs->igaddr4, 0xffffffff);
3423 gfar_write(&regs->igaddr5, 0xffffffff);
3424 gfar_write(&regs->igaddr6, 0xffffffff);
3425 gfar_write(&regs->igaddr7, 0xffffffff);
3426 gfar_write(&regs->gaddr0, 0xffffffff);
3427 gfar_write(&regs->gaddr1, 0xffffffff);
3428 gfar_write(&regs->gaddr2, 0xffffffff);
3429 gfar_write(&regs->gaddr3, 0xffffffff);
3430 gfar_write(&regs->gaddr4, 0xffffffff);
3431 gfar_write(&regs->gaddr5, 0xffffffff);
3432 gfar_write(&regs->gaddr6, 0xffffffff);
3433 gfar_write(&regs->gaddr7, 0xffffffff);
3434 } else {
3435 int em_num;
3436 int idx;
3437
3438 /* zero out the hash */
3439 gfar_write(&regs->igaddr0, 0x0);
3440 gfar_write(&regs->igaddr1, 0x0);
3441 gfar_write(&regs->igaddr2, 0x0);
3442 gfar_write(&regs->igaddr3, 0x0);
3443 gfar_write(&regs->igaddr4, 0x0);
3444 gfar_write(&regs->igaddr5, 0x0);
3445 gfar_write(&regs->igaddr6, 0x0);
3446 gfar_write(&regs->igaddr7, 0x0);
3447 gfar_write(&regs->gaddr0, 0x0);
3448 gfar_write(&regs->gaddr1, 0x0);
3449 gfar_write(&regs->gaddr2, 0x0);
3450 gfar_write(&regs->gaddr3, 0x0);
3451 gfar_write(&regs->gaddr4, 0x0);
3452 gfar_write(&regs->gaddr5, 0x0);
3453 gfar_write(&regs->gaddr6, 0x0);
3454 gfar_write(&regs->gaddr7, 0x0);
3455
3456 /* If we have extended hash tables, we need to
3457 * clear the exact match registers to prepare for
3458 * setting them
3459 */
3460 if (priv->extended_hash) {
3461 em_num = GFAR_EM_NUM + 1;
3462 gfar_clear_exact_match(dev);
3463 idx = 1;
3464 } else {
3465 idx = 0;
3466 em_num = 0;
3467 }
3468
3469 if (netdev_mc_empty(dev))
3470 return;
3471
3472 /* Parse the list, and set the appropriate bits */
3473 netdev_for_each_mc_addr(ha, dev) {
3474 if (idx < em_num) {
3475 gfar_set_mac_for_addr(dev, idx, ha->addr);
3476 idx++;
3477 } else
3478 gfar_set_hash_for_addr(dev, ha->addr);
3479 }
3480 }
3481 }
3482
3483
3484 /* Clears each of the exact match registers to zero, so they
3485 * don't interfere with normal reception
3486 */
3487 static void gfar_clear_exact_match(struct net_device *dev)
3488 {
3489 int idx;
3490 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3491
3492 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3493 gfar_set_mac_for_addr(dev, idx, zero_arr);
3494 }
3495
3496 /* Set the appropriate hash bit for the given addr */
3497 /* The algorithm works like so:
3498 * 1) Take the Destination Address (ie the multicast address), and
3499 * do a CRC on it (little endian), and reverse the bits of the
3500 * result.
3501 * 2) Use the 8 most significant bits as a hash into a 256-entry
3502 * table. The table is controlled through 8 32-bit registers:
3503 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3504 * gaddr7. This means that the 3 most significant bits in the
3505 * hash index which gaddr register to use, and the 5 other bits
3506 * indicate which bit (assuming an IBM numbering scheme, which
3507 * for PowerPC (tm) is usually the case) in the register holds
3508 * the entry.
3509 */
3510 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3511 {
3512 u32 tempval;
3513 struct gfar_private *priv = netdev_priv(dev);
3514 u32 result = ether_crc(ETH_ALEN, addr);
3515 int width = priv->hash_width;
3516 u8 whichbit = (result >> (32 - width)) & 0x1f;
3517 u8 whichreg = result >> (32 - width + 5);
3518 u32 value = (1 << (31-whichbit));
3519
3520 tempval = gfar_read(priv->hash_regs[whichreg]);
3521 tempval |= value;
3522 gfar_write(priv->hash_regs[whichreg], tempval);
3523 }
3524
3525
3526 /* There are multiple MAC Address register pairs on some controllers
3527 * This function sets the numth pair to a given address
3528 */
3529 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3530 const u8 *addr)
3531 {
3532 struct gfar_private *priv = netdev_priv(dev);
3533 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3534 u32 tempval;
3535 u32 __iomem *macptr = &regs->macstnaddr1;
3536
3537 macptr += num*2;
3538
3539 /* For a station address of 0x12345678ABCD in transmission
3540 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3541 * MACnADDR2 is set to 0x34120000.
3542 */
3543 tempval = (addr[5] << 24) | (addr[4] << 16) |
3544 (addr[3] << 8) | addr[2];
3545
3546 gfar_write(macptr, tempval);
3547
3548 tempval = (addr[1] << 24) | (addr[0] << 16);
3549
3550 gfar_write(macptr+1, tempval);
3551 }
3552
3553 /* GFAR error interrupt handler */
3554 static irqreturn_t gfar_error(int irq, void *grp_id)
3555 {
3556 struct gfar_priv_grp *gfargrp = grp_id;
3557 struct gfar __iomem *regs = gfargrp->regs;
3558 struct gfar_private *priv= gfargrp->priv;
3559 struct net_device *dev = priv->ndev;
3560
3561 /* Save ievent for future reference */
3562 u32 events = gfar_read(&regs->ievent);
3563
3564 /* Clear IEVENT */
3565 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3566
3567 /* Magic Packet is not an error. */
3568 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3569 (events & IEVENT_MAG))
3570 events &= ~IEVENT_MAG;
3571
3572 /* Hmm... */
3573 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3574 netdev_dbg(dev,
3575 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3576 events, gfar_read(&regs->imask));
3577
3578 /* Update the error counters */
3579 if (events & IEVENT_TXE) {
3580 dev->stats.tx_errors++;
3581
3582 if (events & IEVENT_LC)
3583 dev->stats.tx_window_errors++;
3584 if (events & IEVENT_CRL)
3585 dev->stats.tx_aborted_errors++;
3586 if (events & IEVENT_XFUN) {
3587 netif_dbg(priv, tx_err, dev,
3588 "TX FIFO underrun, packet dropped\n");
3589 dev->stats.tx_dropped++;
3590 atomic64_inc(&priv->extra_stats.tx_underrun);
3591
3592 schedule_work(&priv->reset_task);
3593 }
3594 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3595 }
3596 if (events & IEVENT_BSY) {
3597 dev->stats.rx_over_errors++;
3598 atomic64_inc(&priv->extra_stats.rx_bsy);
3599
3600 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3601 gfar_read(&regs->rstat));
3602 }
3603 if (events & IEVENT_BABR) {
3604 dev->stats.rx_errors++;
3605 atomic64_inc(&priv->extra_stats.rx_babr);
3606
3607 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3608 }
3609 if (events & IEVENT_EBERR) {
3610 atomic64_inc(&priv->extra_stats.eberr);
3611 netif_dbg(priv, rx_err, dev, "bus error\n");
3612 }
3613 if (events & IEVENT_RXC)
3614 netif_dbg(priv, rx_status, dev, "control frame\n");
3615
3616 if (events & IEVENT_BABT) {
3617 atomic64_inc(&priv->extra_stats.tx_babt);
3618 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3619 }
3620 return IRQ_HANDLED;
3621 }
3622
3623 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3624 {
3625 struct phy_device *phydev = priv->phydev;
3626 u32 val = 0;
3627
3628 if (!phydev->duplex)
3629 return val;
3630
3631 if (!priv->pause_aneg_en) {
3632 if (priv->tx_pause_en)
3633 val |= MACCFG1_TX_FLOW;
3634 if (priv->rx_pause_en)
3635 val |= MACCFG1_RX_FLOW;
3636 } else {
3637 u16 lcl_adv, rmt_adv;
3638 u8 flowctrl;
3639 /* get link partner capabilities */
3640 rmt_adv = 0;
3641 if (phydev->pause)
3642 rmt_adv = LPA_PAUSE_CAP;
3643 if (phydev->asym_pause)
3644 rmt_adv |= LPA_PAUSE_ASYM;
3645
3646 lcl_adv = 0;
3647 if (phydev->advertising & ADVERTISED_Pause)
3648 lcl_adv |= ADVERTISE_PAUSE_CAP;
3649 if (phydev->advertising & ADVERTISED_Asym_Pause)
3650 lcl_adv |= ADVERTISE_PAUSE_ASYM;
3651
3652 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3653 if (flowctrl & FLOW_CTRL_TX)
3654 val |= MACCFG1_TX_FLOW;
3655 if (flowctrl & FLOW_CTRL_RX)
3656 val |= MACCFG1_RX_FLOW;
3657 }
3658
3659 return val;
3660 }
3661
3662 static noinline void gfar_update_link_state(struct gfar_private *priv)
3663 {
3664 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3665 struct phy_device *phydev = priv->phydev;
3666 struct gfar_priv_rx_q *rx_queue = NULL;
3667 int i;
3668
3669 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3670 return;
3671
3672 if (phydev->link) {
3673 u32 tempval1 = gfar_read(&regs->maccfg1);
3674 u32 tempval = gfar_read(&regs->maccfg2);
3675 u32 ecntrl = gfar_read(&regs->ecntrl);
3676 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3677
3678 if (phydev->duplex != priv->oldduplex) {
3679 if (!(phydev->duplex))
3680 tempval &= ~(MACCFG2_FULL_DUPLEX);
3681 else
3682 tempval |= MACCFG2_FULL_DUPLEX;
3683
3684 priv->oldduplex = phydev->duplex;
3685 }
3686
3687 if (phydev->speed != priv->oldspeed) {
3688 switch (phydev->speed) {
3689 case 1000:
3690 tempval =
3691 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3692
3693 ecntrl &= ~(ECNTRL_R100);
3694 break;
3695 case 100:
3696 case 10:
3697 tempval =
3698 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3699
3700 /* Reduced mode distinguishes
3701 * between 10 and 100
3702 */
3703 if (phydev->speed == SPEED_100)
3704 ecntrl |= ECNTRL_R100;
3705 else
3706 ecntrl &= ~(ECNTRL_R100);
3707 break;
3708 default:
3709 netif_warn(priv, link, priv->ndev,
3710 "Ack! Speed (%d) is not 10/100/1000!\n",
3711 phydev->speed);
3712 break;
3713 }
3714
3715 priv->oldspeed = phydev->speed;
3716 }
3717
3718 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3719 tempval1 |= gfar_get_flowctrl_cfg(priv);
3720
3721 /* Turn last free buffer recording on */
3722 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3723 for (i = 0; i < priv->num_rx_queues; i++) {
3724 u32 bdp_dma;
3725
3726 rx_queue = priv->rx_queue[i];
3727 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3728 gfar_write(rx_queue->rfbptr, bdp_dma);
3729 }
3730
3731 priv->tx_actual_en = 1;
3732 }
3733
3734 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3735 priv->tx_actual_en = 0;
3736
3737 gfar_write(&regs->maccfg1, tempval1);
3738 gfar_write(&regs->maccfg2, tempval);
3739 gfar_write(&regs->ecntrl, ecntrl);
3740
3741 if (!priv->oldlink)
3742 priv->oldlink = 1;
3743
3744 } else if (priv->oldlink) {
3745 priv->oldlink = 0;
3746 priv->oldspeed = 0;
3747 priv->oldduplex = -1;
3748 }
3749
3750 if (netif_msg_link(priv))
3751 phy_print_status(phydev);
3752 }
3753
3754 static const struct of_device_id gfar_match[] =
3755 {
3756 {
3757 .type = "network",
3758 .compatible = "gianfar",
3759 },
3760 {
3761 .compatible = "fsl,etsec2",
3762 },
3763 {},
3764 };
3765 MODULE_DEVICE_TABLE(of, gfar_match);
3766
3767 /* Structure for a device driver */
3768 static struct platform_driver gfar_driver = {
3769 .driver = {
3770 .name = "fsl-gianfar",
3771 .pm = GFAR_PM_OPS,
3772 .of_match_table = gfar_match,
3773 },
3774 .probe = gfar_probe,
3775 .remove = gfar_remove,
3776 };
3777
3778 module_platform_driver(gfar_driver);
This page took 0.11366 seconds and 5 git commands to generate.